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Preface

The International Supercomputing Conference, founded in 1986 as the Super-
computer Seminar by Professor Hans Meuer, has been held annually for the last
27 years. Originally, the seminar brought together a group of 81 scientists and
industrial partners who all shared an interest in high-performance computing.
Since then, the annual conference has become a major international event within
the HPC community. Accompanying its growth in size over the years, the con-
ference has moved from Mannheim via Heidelberg, Dresden, and Hamburg to
Leipzig. With 2,400 attendees and 175 exhibitors from over 50 countries in 2012,
we are optimistic that this steady growth of interest will also turn ISC’13 into a
powerful and memorable event.

In 2007 we decided to strengthen the scientific part of the conference by pre-
senting selected talks on relevant research results within the HPC field. These
research paper sessions began as a separate day preceding the conference, where
slides and accompanying papers were made available via the conference website.
The research paper sessions have since evolved into an integral part of the con-
ference, and this year the scientific presentations are scheduled over three days.
The call for participation was issued in winter 2012, inviting researchers and
developers to submit the latest results of their work as full research papers to
the sessions Program Committee.

A total of 89 paper abstracts were submitted from authors all over the world.
In a peer-review process an international committee selected the best 35 papers
for publication and for presentation in the research paper sessions. This year’s
review process was modified to improve the overall quality of the reviews by
including an early abstract submission and author rebuttal phase.

We are pleased to announce that many fascinating topics in HPC were pre-
sented this year. The papers address the following issues regarding the develop-
ment of an environment for exascale supercomputers:

– Scalable applications with 50K+ cores
– Performance improvements in algorithms
– Accelerators
– Performance analysis and optimization
– Library development
– Administration and management of supercomputers
– Energy efficiency
– Parallel I/O
– Grid and cloud



VI Preface

We believe that this selection is highly appealing and that the presentations will
foster inspiring discussions with the audience.

As in the previous years, two independent award committees selected two
papers considered to be of exceptional quality and worthy of special recognition.

– The Gauss Centre for Supercomputing sponsors the Gauss Award. This
award is assigned to the most outstanding paper in the field of scalable
supercomputing.

– PRACE, the Partnership for Advanced Computing in Europe, awards a prize
to the best scientific paper by a European student or scientist.

The award winners are announced on the website of ISC’13.

We would like to express our gratitude to all our colleagues for submitting
papers to the ISC scientific sessions, as well as to the members of the Program
Committee for organizing this year’s attractive program.

June 2013 Julian M. Kunkel
Thomas Ludwig

Hans Meuer



Organization

Program Committee

Pavan Balaji Argonne National Laboratory, USA
Venkatramani Balaji Princeton University, USA
Mahdi Bohlouli University of Siegen, Germany
Xing Cai Simula Research Laboratory, Norway
Anne Elster Norwegian University of Science and

Technology, Norway
Michael Gerndt Technische Universität München, Germany
Lutz Gross University of Queensland, Australia
David Ham Imperial College London, UK
Frank Hannig Friedrich Alexander University

Erlangen-Nürnberg, Germany
Magne Haveraaen University of Bergen, Norway
Huynh Phung Huynh A*STAR, IHPC, Singapore
Kenichi Itakura JAMSTEC, Japan
Oleksiy Koshulko Glushkov Institute of Cybernetics NAS,

Ukraine
Julian M. Kunkel Deutsches Klimarechenzentrum, Germany
Dong Li Oak Ridge National Lab, USA
Fang-Pang Lin National Center for High-Performance

Computing, Taiwan
Thomas Ludwig Deutsches Klimarechenzentrum, Germany
Muniyappa Manjunathaiah University of Reading, UK
Simon McIntosh-Smith University of Bristol, UK
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591 TFLOPS Multi-trillion Particles Simulation

on SuperMUC

Wolfgang Eckhardt1, Alexander Heinecke1,
Reinhold Bader2, Matthias Brehm2, Nicolay Hammer2, Herbert Huber2,
Hans-Georg Kleinhenz2, Jadran Vrabec3, Hans Hasse4, Martin Horsch4,

Martin Bernreuther5, Colin W. Glass5, Christoph Niethammer5,
Arndt Bode1,2, and Hans-Joachim Bungartz1,2

1 Technische Universität München, Boltzmannstr. 3, D-85748 Garching, Germany
2 Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,

Boltzmannstr. 1, D-85748 Garching, Germany
3 University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany

4 Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern,
Erwin-Schrödinger-Str. 44, D-67663 Kaiserslautern, Germany

5 High Performance Computing Centre Stuttgart (HLRS), Nobelstr. 19, D-70569
Stuttgart, Germany

Abstract. Anticipating large-scale molecular dynamics simulations
(MD) in nano-fluidics, we conduct performance and scalability studies
of an optimized version of the code ls1 mardyn. We present our imple-
mentation requiring only 32 Bytes per molecule, which allows us to run
the, to our knowledge, largest MD simulation to date. Our optimizations
tailored to the Intel Sandy Bridge processor are explained, including
vectorization as well as shared-memory parallelization to make use of
Hyperthreading. Finally we present results for weak and strong scaling
experiments on up to 146016 Cores of SuperMUC at the Leibniz Super-
computing Centre, achieving a speed-up of 133k times which corresponds
to an absolute performance of 591.2 TFLOPS.

Keywords: molecular dynamics simulations, highly scalable simulation,
vectorization, Intel AVX, SuperMUC.

1 Introduction and Related Work

MD simulation has become a recognized tool in engineering and natural sciences,
complementing theory and experiment. Despite its development for over half a
century, scientists still quest for ever larger and longer simulation runs to cover
processes on greater length and time scales. Due to the massive parallelism MD
typically exhibits, it is a preeminent task for high-performance computing.

An application requiring large-scale simulations is the investigation of nucle-
ation processes, where the spontaneous emergence of a new phase is studied [8].
To enable such simulations, we optimized our program derived from the code ls1
mardyn. A description of ls1 mardyn focusing on use cases, software structure
and load balancing considerations can be found in [1]. Based on the further devel-
opment of the memory optimization described in [3], an extremely low memory

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 W. Eckhardt et al.

requirement of only 32 Bytes per molecule has been achieved, which allows us
to carry out the to our knowledge largest MD simulation to date on SuperMUC
at Leibniz Supercomputing Centre. In order to run these large-scale simulations
at satisfactory performance, we tuned the implementation of the molecular in-
teractions outlined in [2] to the Intel Sandy Bridge processor and added a newly
developed shared-memory parallelization to make use of Intel Hyperthreading.
Thereby, this contribution continues a series of publications on extreme-scale
MD. In 2000, Roth [18] performed a simulation of 5 · 109 molecules, the largest
simulation ever at that time. Kadau and Germann [4, 10] followed up, holding
the current world record with 1012 particles. These simulations demonstrated the
state of the art on the one hand, and showed the scalability and performance of
the respective codes. More recent examples include the simulation of blood flow
[15] as well as the force calculation of 3 · 1012 particles by Kabadshow in 2011
[9], however without calculating particle trajectories.

The remainder of the paper is organized as follows: this Section describes the
computational model of our simulation code. Section 2 describes the architecture
of SuperMUC, Section 3 details the implementation with respect to vectorization
and memory-efficiency, and Section 4 presents the results.

The fluid under consideration is modeled as a system of N discrete particles.
Only particles i and j separated by a distance rij that is smaller than a cut-
off radius rc interact pairwise through the truncated and shifted Lennard-Jones
potential [19], which is determined by the usual Lennard-Jones-12-6 potential
(LJ-12-6) ULJ (rij) with the potential parameters ε and σ:

ULJ (rij) = 4ε ·
((

σ

rij

)12

−
(

σ

rij

)6
)
.

The interactions with all neighbors results in a force Fi =
∑

j∈particles Fij(rij)
on each of the particles, which is evaluated only once per particle pair, due to
Newton’s law Fij = −Fji.

In MD, the most time-consuming step is the force

Fig. 1. Schematic of the
linked-cell algorithm (2D)

calculation. To efficiently search for neighboring par-
ticles, the linked-cell algorithm is employed in a sim-
ilar way as in [10]. The computational domain is
subdivided into cubic cells with an edge length rc.
Consequently, for a given particle, the distances to
all other particles contained in the same cell as well
as in the (in 3D) 26 adjacent cells have to be com-
puted. This results in a linear complexity of the
force calculation. The particles’ data are stored in
dynamic arrays, i.e. contiguous memory blocks, per
cell, to avoid additional memory for pointers. Thus,
the organization of the linked-cells data structure causes only small overhead.

In accordance with preceding large-scale simulations [4], single-precision vari-
ables are used for the calculation. For a particle we store only its position (3 · 4
Bytes), velocity (3 · 4 Bytes) and an identifier (8 Bytes), i.e. 32 Bytes in total.
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The force vector does not need to be stored permanently, because the time in-
tegration of the equations of motion is carried out on the fly, as detailed in
Section 3.

To evaluate our implementation, single-center Lennard-Jones particles were
distributed on a regular grid according to a body-centered cubic lattice, with a
liquid-like number density of ρσ3 = 0.78, and the cut-off radius was specified to
be rc = 3.5σ. The time step length was set to 1 fs.

For the MPI parallelization, we employ a spatial domain decomposition scheme.
For n processes, the domain is divided in n equally-sized sub-domains, which are
assigned to one process each. Each sub-domain is surrounded by a layer of ghost
cells residing on neighboring processes, so the particles at the process boundaries
have to be exchanged at the beginning of each time step.

2 SuperMUC – The World’s Largest x86 Machine

2.1 System Topology

We optimized our MD code on the micro-architecture level for a specific pro-
cessor: the Intel Sandy Bridge EP driving SuperMUC operated at the Leibniz
Supercomputing Centre in Munich. This system features 147456 cores and is at
present the biggest x86 system worldwide with a theoretical double precision
peak performance of more than 3 PFLOPS, placed #6 on the current Top500
list. The system was assembled by IBM and features a highly efficient hot-water
cooling solution. In contrast to supercomputers offered by Cray, SGI or even
IBM’s own BlueGene, the machine is based on a high-performance commodity
network: a FDR-10 infiniband pruned tree topology by Mellanox. Each of the
18 leafs, or islands, consists of 512 nodes with 16 cores at 2.7 GHz clock speed
(turbo mode is disabled) sharing 32GB of main memory. Within one island, all
nodes can communicate at full FDR-10 data-rate. In case of inter-island commu-
nication, four nodes share one uplink to the spine switch. Since the machine is
operated diskless, a significant fraction of the nodes’ memory has to be reserved
for the operation environment.

2.2 Intel Sandy Bridge Architecture

After a bird’s eye view on the entire system, we now focus on its heart, the Intel
Sandy Bridge EP processor that was introduced in January 2012, featuring a
new vector instruction set called AVX. In order to execute code with high per-
formance and to increase the core’s instructions per clock, major changes to the
previous core micro-architecture code-named Nehalem have been applied. These
changes are highlighted by italic characters in Fig. 2. Since the vector-instruction
width has been doubled with AVX (AVX is available with two vector widths:
AVX128 and AVX256), also the load port’s (port 2) width needs to be doubled.
However, doubling a load port’s width would impose tremendous changes to the
entire chip architecture. In order to avoid this, Intel changed two ports by ad-
ditionally implementing in each port the other port’s functionality as shown for
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Fig. 2. Intel Sandy Bridge, changes w.r.t. Intel Nehalem are highlighted with italic
characters: trace-cache for decoded instructions, AVX support and physical register
file

ports 2 and 3. Through this trick, the load bandwidth has been doubled from 16
Bytes to 32 Bytes per cycle at the price of reduced instruction level parallelism.
Changes to the ALUs are straightforward: ports 0, 1 and 5 were simply doubled,
and they provide classic SSE functionality for AVX instructions and extensions
for blend and mask operations. However, this bandwidth improvement still does
not allow for an efficient exploitation of AVX256 instructions as this would re-
quire a 64 Bytes per cycle load and 32 Bytes per cycle store bandwidth. This
increase will be implemented with the up-coming Haswell micro-architecture [14].
Due to 32 Bytes load bandwidth and the non-destructive AVX128 instruction
set, AVX128 codes can often yield the same performance as AVX256 on Sandy
Bridge but much better than SSE4.2 on an equally clocked Nehalem chip. This
can also be attributed to the fact that 16 Bytes load instructions have a three
times higher throughput (0.33 cycles) than 32 Bytes load instructions (here ports
2 and 3 have to be paired and cannot be used independently). According to ex-
periments we did with different applications and kernels using AVX256 on Sandy
Bridge, the full performance enhancement of 2× speed-up can be just exploited
for kernels which can be perfectly register-blocked, e.g. DGEMM [7]. If in con-
trast only a standard 1D-blocking is possible, roughly a 1.5-1.6 × speed-up can
be achieved in comparison to AVX128 [6].

Up to Nehalem, each unit had dedicated memory for storing register contents
for executing operations on them. A so-called out-of-order unit took care of the
correctness of the execution pipeline. With AVX, a register allocation in each
compute unit of the core would be too expensive in terms of transistors required,
therefore a so-called register file was implemented: Register contents are stored
in a central directory. Shadow registers and pointers allow for an efficient out-
of-order execution. Furthermore, a general performance enhancement was added
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to the Sandy Bridge architecture: a cache for decoded instructions. This trace-
cache like cache boosts the performance of kernels with small loop bodies, such
as the force calculation in MD. Furthermore, the Sandy Bridge EP cores feature
Intel’s SMT implementation called Hyperthreading Technology which helps to
increase the core’s utilization in workload scenarios where the instruction mix is
not optimal or the application is suffering from high memory latencies.

3 Implementation

3.1 Vectorization of the Compute Kernel

Since our simulation code is written in C++ and therefore applies standard
object-oriented design principles with cells and particles being single entities, we
follow an approach of memory organization and vectorization, first sketched in
[2]. That work describes, by using a simple proxy application and not the entire
ls1 mardyn code base, how the LJ-12-6 force calculation inside a linked cell
algorithm can be vectorized on x86 processors. That prototype implementation
does not feature important statistical measurements such as virial pressure and
potential energy which we added in this work.

The object-oriented memory layout is cache-efficient by design because parti-
cles belonging to a cell are stored closely together. However, implementing par-
ticles in a cell as a so-called array of structures (AoS) forbids easy vectorization,
at least without gather and scatter operations (see [5]) which, unfortunately, are
not available on Intel Sandy Bridge. Only in simple cases (e.g., updates of one
member, etc.) this drawback does not matter, because prefetch logic inside the
hardware loads only cache-lines containing data which have to be modified.

(a) AoS to SoA conversion: In or-
der to allow for efficient vectoriza-
tion, corresponding elements have to
be stored for data streaming access.

(b) Kernel vectorization: The vectorization of
the LJ-12-6 force calucation is optimized by
duplicating one particle and streaming four
other particles.

Fig. 3. Optimizing LJ-12-6 force calculation by SoA storage scheme and vectorization

Implementing the LJ-12-6 force calculation on AoS-structures poses major
challenges: The upper part of Fig. 3a shows elements scattered across several
cache-lines. Taking into account that only a small portion of the members is
needed for the force calculation, a temporary structure of arrays (SoA) can be
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constructed in order to address cache-line pollution and vectorization opportu-
nities, illustrated in the lower part of Fig. 3a. Figure 3b sketches the applied
vectorization of the LJ-12-6 calculations. In contrast to other methods which
vectorize across the spatial coordinates [11–13], the present approach can ex-
ploit vector-units of arbitrary length.

In this work, single-precision AVX128 instructions were employed. The calcu-
lation is performed on particle pairs, therefore we broadcast-load the required
data of one particle in the first register (a), the second register is filled by data
from four other particles (1, 2, 3 and 4). Dealing with four particle pairs at once,
we can theoretically reduce the number of operations by a factor of four. Since
the force calculation may be required for all, some or none of the pairs in the
vector register, we need to apply some pre- and post-processing performed by
regular logical operations: It has to be determined, if for any particle pair the
distance is smaller than rc (pre-processing), because only then the force calcula-
tion has to be executed. If the force calculation has been executed, the calculated
results need to be zeroed by a mask for all particle pairs whose distance is larger
than rc (post-processing). In order to ensure vectorization of the kernel we em-
ployed intrinsics. Due to the cut-off radius if-condition inside the inner-most
loop, current compilers (gcc and icc) deny to vectorize the loop structure iterat-
ing over particles in cell-pairs. For the chosen simulation scenario (cut-off radius
rc = 3.5σ) a speed-up of 3 × is possible on a single core by using the proposed
SoA-structure and vectorization.

With increasing vector length, this masking technique becomes the major
bottleneck. Here, it can easily happen that more elements are being masked
than elements which have to be computed. Therefore, moving to a wider vector-
instruction set may result in more instructions being executed. However, if the
vector-instruction set features gather and scatter instructions, this issue can be
overcome because only the particle pairs taking part in the interaction are pro-
cessed, which has been successfully demonstrated by Rapaport with the layered-
linked-cell algorithm [16, 17]. The first x86 processor which offers full gather/s-
catter support is the so-called Xeon Phi coprocessor. Enabling ls1 mardyn for
Xeon Phi is ongoing research.

A different issue inhibiting the most efficient usage of the Sandy Bridge core is
the lack of instruction level parallelism in the compute kernel. The evaluation of
distance, potential energy and force on the particles requires significantly more
multiplications than additions, thus the ADD unit cannot be fully utilized. Even
worse, the calculation of the power-12-term of the LJ-12-6 requires a sequence
of dependent multiplications. Therefore, the superscalarity of a Sandy Bridge
core can not be exploited optimally, a fact we address by using Hypterthreading
Technology as described below.

We restricted ourselves to AVX128 instructions for several reasons. In Sec-
tion 2.2 we described that Intel Sandy Bridge is not able to handle AVX256
instructions at full speed. This fact would also forbid to use Hyperthreading effi-
ciently as currently ports 2 and 3 inside the core can be used by different threads.
Switching to AVX256, these ports are operated in paired mode, available to just
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one of both threads. Furthermore, we showed in the outlook of [2] that AVX256
instruction are only beneficial when increasing the cut-off radius. Last but not
least we want to ensure that ls1 mardyn runs best on various x86 platforms.
Besides Intel Sandy Bridge, AMD Interlagos plays an important role since this
chip is used as processor in most of Cray’s supercomputers. AMD Interlagos fea-
tures two 128bit FPUs shared between two integer units. Therefore an AVX128
code is essential for best performance on Interlagos. With the current code base
we only expect slight changes when moving to an Interlagos based machine.

3.2 Memory and Utilization Optimizations

In order to achieve the low memory requirement of only 32 Byte per molecule, we
refined the linked-cells algorithm with the sliding window that was introduced
in [3]. It is based on the observation that the access pattern of the cells can be
described by a sliding window, which moves through the domain. After a cell
has been searched for interacting particles for the first time in a time step, its
data will be required for several successive force calculations with particles in
neighboring cells. If the force calculation proceeds according to the cells’ index
as depicted in Fig. 4a, these data accesses happen within a short time period,
until the interactions with all neighbors have been computed. While the cells in
the window are accessed several times, they naturally move in and out of the
window in FIFO order.

(a) Sliding window (cells in bold black
frame) in 2D. Particles in cells in the
window will be accessed several times,
cells 2 through 23 are covered by the win-
dow in FIFO order. For the force calcula-
tion for the molecules in cell 13, cell 23 is
searched for interacting particles for the
first time in this iteration. The particles
in cell 2 are checked for the last time for
interactions.

(b) Extension of the sliding window for
multi-threading. By increasing the win-
dow by 5 cells, two threads can indepen-
dently work on three cells each: thread 1
works on cells 13, 14, 15; thread 2 works
on cells 16, 17, 18. To avoid that threads
work on same cells (e. g., thread 1 on the
cell pair 15–25, thread 2 on 16–25), a
barrier is required after each thread fin-
ished its first cell.

Fig. 4. Basic idea of the sliding window algorithm and extension for multi-threading

Particle data outside the the sliding window are stored in form of C++ objects
in AoS-manner, only with position, velocity and an identifier. Per cell, particle
objects are stored in dynamic arrays. When the sliding window is shifted further
and covers a new cell, the positions and velocities of the particles in that cell are
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converted to SoA-representation. Additionally, arrays for the forces have to be
allocated. The force calculation is now performed on the particles as described
above. When a cell has been considered for the last time during an iteration, its
particles are converted back to AoS-layout. Therefore, the calculation of forces,
potential energy and virial pressure can be performed memory- and runtime-
efficiently on the SoA, while the remaining parts of the simulation code can be
kept unchanged according to their object-oriented layout. To avoid the overhead
of repeated memory (de-)allocations when particle data in a cell are converted,
we initially allocate dynamic arrays fitted to the maximum number of particles
per cell for each cell in the window, and reuse that memory. Since the sliding
window covers three layers of cells, these buffers consume a comparably small
amount of memory, while the vast majority of the particles is stored memory-
efficiently. At this point, it becomes apparent that the traversal order imposed by
the sliding window also supports cache reusage: when particle data are converted
to SoA-representation, that data are placed in the cache and will be reused
several times soon after.

In order to reduce the memory requirement to 32 Byte per particle and to
further improve the hardware utilization, this algorithm needs two further re-
visions: the time integration has to be performed on the fly, and opportunity
for multi-threading needs to be created. Since the forces are not stored with the
molecule objects, the time integration has to be performed during that conver-
sion, i. e., the particles’ new positions and velocities have to be calculated at that
moment. Nevertheless, the correct traversal of the particles is ensured, because
cells that have been converted are not required for the force calculation during
this time step any more and the update of the linked-cells data structure, i.e.
the assignment of particles to cells, takes place only between two time steps.

As stated above, the LJ-12-6 kernel is not well instruction-balanced, impeding
the use of the superscalarity of a Sandy Bridge core. In order to make use
of Hyperthreading Technology, we implemented a lightweight shared-memory
parallelization. By extending the size of the sliding window as shown in Fig.
4b, two threads can perform calculations concurrently on three independent
cells. Exploiting Newtons third law Fij = −Fji for the force calculation and
considering cell pairs only once, it must be avoided that threads work on directly
neighboring cells simultaneously. Therefore, a barrier, causing comparably little
overhead on a Hyperthreading core, is required after each thread has processed
the first of its three cells. This allows the execution of one MPI rank per core with
two (OpenMP-)threads to create sufficient instruction level parallelism, leading
to a 12% performance improvement.

4 Strong and Weak Scaling on SuperMUC

In order to evaluate the performance of the MD simulation code ls1 mardyn, we
executed different tests on SuperMUC. With respect to strong scaling behavior,
we ran a scenario with N = 4.8 · 109 particles, which perfectly fits onto 8 nodes;
18 GB per node are needed for particle data. Fig. 5 shows that a very good
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Fig. 5. Weak and strong scaling for 2048 to 146016 cores with respect to speed-up and
GFLOPS on SuperMUC. Ideal scaling was achieved in case of weak scaling whereas as
a parallel efficiency of 42% was obtained in the strong scaling tests. We cut off the plot
at 2048 cores, here we obtained a parallel efficiency of 91.1% in case of strong scaling
(compared to 128 cores) and 98.6% in case of weak scaling (compared to one core).

scaling was achieved for up to 146016 cores using 292032 threads at a parallel
efficiency of 42 % comparing 128 to 146016 cores.

In this case, less than 20 MB (5.2 ·

Fig. 6. GFLOPS dependeding on particle
count and cut-off on 128 cores

105 particles) of main memory per node,
which fits basically into the proces-
sors’ caches, are used. This excellent
scaling behavior can be explained by
analyzing Fig. 6. Here we measured
achievable GFLOPS depending on the
number of particles simulated on 8 nodes.
Already for N = 3 · 108 particles (ap-
prox. 8% of the available memory) we
are able to hit the performance of roughly
550 GFLOPS which we also obtained
for N = 4.8 · 109.

It should be pointed out that the
performance only decreases slightly for
systems containing fewer particles (reducing the particle system size by a factor
of 100): for N = 107 (which corresponds to the strong scaling setting in case
of 146016 cores w.r.t. particles per node) we see a drop by 27% which only in-
creases to the mentioned 58% when moving from 128 to 146016 cores. We have
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to note that the overall simulation time in this case was 1.5 s for 10 time steps,
thereof 0.43 s were communication time. Since 0.43 s are roughly 29% of 1.5 s, it
becomes clear that the biggest fractions of the 58% decrease are stemming from
low particle counts per process and relatively high communication costs.

Moreover, we performed a weak scaling analysis which is, to our knowledge,
the largest MD simulation to date. Due to MPI buffers on all nodes, we were not
able to keep the high number of particles per node (6.0 · 108) and were forced to
reduce it to 4.52·108. Particularly, buffers for eager communication turned out to
be the most limiting factor. Although we reduced them to a bare minimum (64
MB buffer space for each process), roughly 1 GB per node had to be reserved
as we use one MPI rank per core. By keeping Fig. 6 in mind, we know that
this slight reduction has no negative impact on the overall performance of our
simulation. In case of 146016 cores we were able to run a simulation of 4.125·1012
particles with one time step taking roughly 40 s. For this scenario, a speed-up
of 133183 × (compared to a single core) with an absolute performance of 591.2
TFLOPS was achieved, which corresponds to 9.4% peak performance efficiency.

These performance numbers can be easily improved by increasing simulation
parameters like the cut-off radius rc which results in a higher vector-register
utilization. However, preceding publications [18, 10, 4] used cut-off radii within
the interval 2.5σ < rc < 5.0σ. Therefore we restricted ourselves to rc = 3.5σ in
order to ensure fairness, please consult Fig. 6 for a performance comparison of
ls1 mardyn for different cutoff radii in this interval.

5 Conclusions

In this paper we showed that MD simulations can be scaled up to more than
140000 cores and a multi-trillion (4.125 · 1012) number of particles on modern
supercomputers. Due to the sliding window technique, only 32 Bytes are required
per particle, and with the help of a shared memory parallelization and a carefully
optimized force calculation kernel we achieved 591.2 TFLOPS, which is 9.4% of
the system’s theoretical peak performance.

We achieved not only perfect weak scaling, but also excellent strong scaling re-
sults together with a good performance of the kernel also for comparably small
particle numbers per core. These properties are essential for the investigation
of large inhomogeneous molecular systems. Such scenarios are characterized by
highly heterogeneous particle distributions, which requires a powerful load bal-
ancing method implementation. Therefore, we are working on the incorporation
of the load balancing from the original ls1 mardyn code.

As indicated during the force kernel’s discussion, the current kernel implemen-
tation suffers from not fully exploited vector-registers. Increasing the net-usage
of vector-registers is subject of ongoing research. The most promising instruction
set is currently provided by the Intel Xeon Phi coprocessor which features a full
blown gather/scatter implementation.

Beside tuning ls1 mardyn for better performance on emerging architectures,
energy efficiency with focus on the energy to solution ratio is an additional
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research direction, especially when targeting MD scenarios with millions of time
steps. Since SuperMUC is capable of dynamic frequency scaling, it provides an
optimal testbed for such activities.
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Abstract. We present benchmarks on high precision direct astrophys-
ical N-body simulations using up to several 100k GPU cores; their soft
and strong scaling behaves very well at that scale and allows further in-
crease of the core number in the future path to Exascale computing. Our
simulations use large GPU clusters both in China (Chinese Academy of
Sciences) as well as in Germany (Judge/Milkyway cluster at FZ Jülich).
Also we present first results on the performance gain by the new Kepler
K20 GPU technology, which we have tested in two small experimental
systems, and which also runs in the titan supercomputer in the United
States, currently the fastest computer in the world. Our high resolu-
tion astrophysical N-body simulations are used for simulations of star
clusters and galactic nuclei with central black holes. Some key issues
in theoretical physics and astrophysics are addressed with them, such
as galaxy formation and evolution, massive black hole formation, grav-
itational wave emission. The models have to cover thousands or more
orbital time scales for the order of several million bodies. The total nu-
merical effort is comparable if not higher than for the more widely known
cosmological N-body simulations. Due to a complex structure in time (hi-
erarchical blocked time steps) our codes are not considered “brute force”.

1 Introduction

Theoretical numerical modeling has become a third pillar of sciences in addition
to theory and experiment (in case of astrophysics the experiment is mostly sub-
stituted by observations). Numerical modeling allows one to compare theory with
experimental or observational data in unprecedented detail, and it also provides
theoretical insight into physical processes at work in complex systems. Similarly,
data processing of e.g. astrophysical observations comprises the use of complex
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software pipelines to bring raw data into a form digestible for observational as-
tronomers and ready for exchange and publication. Required algorithms are, for
example, mathematical transformations like Fourier analyses of time series or
spatial structures, complex template analyses or huge matrix-vector operations.
Here fast access to and transmission of data, too, require supercomputing capac-
ities. However, sufficient resolution of multi-scale physical processes still poses a
formidable challenge, such as in the examples of few-body correlations in large
astrophysical many-body systems, or in the case of turbulence in physical and
astrophysical flows.

We are undergoing a new revolution on parallel processor technologies, and a
change in parallel programming paradigms, which may help to advance current
software towards the Exaflop/s scale and help better resolving and understand-
ing typical multi-scale problems. The current revolution in parallel program-
ming has been mostly catalyzed by the use of graphical processing units (GPU)
for general purpose programming, but it is not clear whether this will remain
the case in the future. GPU’s have become widely used nowadays to acceler-
ate a broad range of applications, including computational physics and astro-
physics, image/video processing, engineering simulations, quantum chemistry,
just to name a few [10,25,24,5,15]. GPU’s are rapidly emerging as a powerful and
cost-effective platform for high performance parallel computing. The GPU Tech-
nology Conferences held annually in San Jose (and offsprings in other parts of the
world)1,2 regularly provides a snapshot of the breadth and depth of present day
GPU (super)computing applications. Recent GPU’s, such as the NVIDIA Kepler
K20 Computing Processor, offer 2496 CUDA processor cores and extremely fast
on-chip-memory chip, as compared to only 4-8 cores on a standard Intel or AMD
CPU. Groups of cores have access to very fast shared memory pieces. A single Ke-
pler Tesla K20 device supports double precision operations fully with a peak speed
of about 1 Tflop/s (double precision) and a little less than 4 Tflop/s (single preci-
sion). In this paper we use a code which still uses the single precision operations,
which was originally developed for previous GPU architectures, which had no or
very inefficient support for double precision. We circumvented this by emulation
of a few critical parts of the code with the double precision operations “emulation”
using a combination of few single precision operations (see: [22]). More details can
be found in the Ph.D. thesis of one of us (Keigo Nitadori), “New approaches to
high-performanceN -body simulations with high-order integrator, new parallel al-
gorithm, and efficient use of SIMD hardware”, Univ. of Tokyo, 2009.

Dynamical modeling of dense star clusters with and without massive black
holes poses extraordinary physical and numerical challenges. One of them is
that gravity cannot be shielded such as electromagnetic forces in plasmas, there-
fore long-range interactions go across the entire system and couple non-linearly
with small scales. High-order integration schemes and direct force computations
for large numbers of particles have to be used to properly resolve all physical pro-
cesses in the system. On small scales inevitably correlations form already early

1 http://www.gputechconf.com
2 http://www.nvidia.com/gtc



100k GPU Cores 15

during the process of star formation in a molecular cloud. Such systems are dy-
namically extremely rich, they exhibit a strong sensitivity to initial conditions
and regions of phase space with deterministic chaos.

Direct N -Body Codes in astrophysical applications for galactic nuclei, galac-
tic dynamics and star cluster dynamics usually have a kernel in which direct
particle-particle forces are evaluated. Astrophysical structures can develop also
the high density contrasts. High-density regions created by gravitational collapse
co-exist with low-density fields, as is known from structure formation in the uni-
verse or the turbulent structure of the interstellar medium. A high-order time
integrator in connection with individual, hierarchically blocked time steps for
particles in a direct N -body simulation provides the best compromise between
accuracy, efficiency and scalability [21,1,2,23,14]. With GPU hardware up to a
few million bodies could be reached for our models [6,7,12]. Note that while [11]
already mention that their algorithm can be used to compute gravitational forces
between particles to high accuracy, [21] find that the self-adaptive hierarchical
time-step structure inherited from Aarseth’s codes improves the performance for
spatially structured systems by O(N ) - it means that at least for astrophysical
applications with high density contrast FMM is not a priori more efficient than
direct N -body (which sometimes is called “brute force”, but that should only be
used if a shared time step is used, which is not the case in our codes). One could
explain this result by comparing the efficient spatial decomposition of forces (in
FMM, using a simple shared time step) with the equally efficient temporal de-
composition (in direct N -body, using a simple spatial force calculation). Some
exemplary research papers on dynamics of black holes in dense stellar systems,
which illustrate the application domain of our code, can be found in [16,17].

2 Hardware

We present here results obtained from our GPU clusters in China and Germany:
the Laohu at NAOC/CAS in Beijing with 85 Dual Intel Xeon nodes and 170
NVIDIA Tesla C1060 GPU’s), the Mole-8.5 at IPE/CAS in Beijing with 362
Dual Intel Xeon nodes integrating totally 2088 GPU’s (NVIDIA Tesla C2050),
and the Milkyway Judge cluster at Jülich supercomputing center (JSC) in Ger-
many, with 200 Dual Intel Xeon nodes and 400 NVIDIA Tesla M2070 GPU’s.
In addition to that a first benchmark on a recently installed cluster with GPU’s
based on the Kepler architecture is added.

3 Software

The test code which we use for benchmarking on our clusters is a direct N -
body simulation code for astrophysics, using a high order Hermite integration
scheme and individual block time steps (the code supports time integration of
particle orbits with 4th, 6th and 8th order schemes). The code is called ϕGPU,
it has been developed from our earlier published version ϕGRAPE [14] (which
originally use the GRAPE6a cards as a hardware accelerator for the calculus of
the particles mutual gravitational interaction).
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The code is fully parallelized using the MPI library, and on each node using
many cores of the special hardware. The code was mainly developed and tested
by two of us (Keigo Nitadori and Peter Berczik, see also [13]) and is based on an
earlier C code version3 for GRAPE6a clusters [14]. The new code is written from
scratch in C++ and based on [22] earlier CPU serial N -body code (yebisu). More
details and also the ϕGPU code public version will be published in an upcoming
publication [8].

The MPI parallelization was done in the same “j” particle parallelization
mode as in the earlier ϕGRAPE code [14]. All the particles are divided equally
between the working nodes (using the MPI Bcast() commands) and in each node
we calculate only the fractional forces for the, so call, “active” – “i” particles
at the current time step. Due to the hierarchical block time step scheme the
average number 〈Nact〉 of active particles (due for a new force computation at
a given time level) is usually small compared to the total particle number N ,
but its actual value can vary from 1 . . .N . The full forces from all the particles
acting on the active particles we get after using the global MPI Allreduce()

communication routines.
The present version of ϕGPU code we used and tested only with the recent

GNU compilers (ver. 4.x). We use native GPU support and direct code access
to the GPU using only the NVIDIA native CUDA library4. We use CUDA 3.2
and 4.0, the code is rather robust against the different CUDA versions. One first
test was done with a single Kepler K20 and CUDA 5.0 (see Fig. 4). Multi GPU
support is achieved through MPI parallelization. Each MPI process uses only a
single GPU, but we can start two MPI processes per node (to use effectively for
example the dual quad core CPU’s and the multi GPU’s in the NAOC, CAS
and IPE, CAS GPU cluster). In this case each MPI process uses its own GPU
inside the node. Communication always (even for the processes inside one node)
works via MPI. We do not use any of the possible OMP (multi-thread) features
of recent gcc 4.x compilers inside one node.

The ϕGPU code uses a blocked hierarchical individual time step scheme
(HITS) and a Hermite high order time integration scheme of at least 4th or-
der for integration of the equation of motions for all particles [20]. At every
time we integrate the motion only for 〈Nact〉 particles, a number which is usu-
ally much less compared to the total number of particles N . The average value
〈Nact〉 depends on the details of the algorithm and on the particle configuration
integrated. According to a simple theoretical estimate it is 〈Nact〉 ∝ N2/3 [18],
but the real value of the exponent deviates from 2/3, depending on the initial
model and details of the time step choice [21] (see our actual measurements given
by equation (8).

For the time step itself first the so-called individual “Aarseth” time step is
used [1]:

3 ftp://ftp.ari.uni-heidelberg.de/staff/berczik/phi-GRAPE/
4 http://www.nvidia.com/object/cuda home new.html



100k GPU Cores 17

Δt =

√
η

|a||a(2)|+ |a(1)|2
|a(1)||a(3)|+ |a(2)|2 , (1)

where a(k) is the kth derivative of acceleration and η is a parameter which
controls the accuracy. Usually, a value around 0.02 is used for η. This time step
choice is known to work well with fourth-order schemes, but it is less efficient for
higher-order schemes [19]. In our ϕGPU code we use the generalized “Aarseth”
type criterion already proposed in the paper [22]:

Δt = ηp

(
A(1)

A(p−2)

)1/(p−3)

(2)

where

A(k) =
√
|a(k−1)||a(k+1)|+ |a(k)|2. (3)

Here, p is the order of the integrator. We moved the accuracy parameter ηp out
of the fractional power, so that the time step is directly proportional to ηp. The
enumerator is the same as that for the Aarseth criterion for the fourth-order
scheme, and for the denominators we used the terms of highest orders available.
The fractional power is chosen to give the correct dimension of time.

For efficient parallelization and vectorization we introduce the block time step
scheme [20]. Particles are grouped together in time by replacing their original
individual time steps Δti with a common block time step Δti,b = (1/2)n, where
n is chosen according to

(
1

2

)n

≤ Δti <

(
1

2

)n−1

. (4)

The commensurability is enforced by requiring that ti/Δti be an integer.
For the performance analysis we run the code for a fixed physical time span,

one time unit (TU) in our dimensionless N-body units, which is approximately
one orbital time around the half-mass radius of the system. We count time steps
and floating point operations and also analyse the cumulative number

∑
Nact

of active particles, as well as the average number of active particles during at
intermediate time points 〈Nact〉. nts is the number of advancements of time in
the simulation:

〈Nact〉 ≡
∑

Nact

nts
(5)

Empirically, we get the following best fits for the number of steps:

nts(4
th) ∝ N0.575,

nts(6
th) ∝ N0.585,

nts(8
th) ∝ N0.581.

(6)
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∑
Nact(4

th) ∝ N1.185,∑
Nact(6

th) ∝ N1.259,∑
Nact(8

th) ∝ N1.273.
(7)

Hence:

〈Nact〉(4th) ∝ N0.613,
〈Nact〉(6th) ∝ N0.681,
〈Nact〉(8th) ∝ N0.687.

(8)

These numbers depend on several parameters, such as the chosen time step
parameter, and the density and velocity distribution of the particles (here we
use a rather simple example of a Plummer model, which has a homogeneous core
and a halo with decreasing density outside). For the more detail study of this
dependences we refer the reader to the paper [21] and also to our more detailed
analyis in preparation[8].

In a simple theoretical model our code should asymptotically scale with N2, so
we would expect N ·〈Nact〉·nts ∝ N2. However, the measurements (see equation
(7)) deliver a slightly smaller number 〈Nact〉 · nts ∝ N1+x, with x4th = 0.18,
x6th = 0.26 and x8th = 0.27, which is in good agreement with the earlier results
of [21].

4 Results of Benchmarks

In this section we describe some results of our extensive performance testing of
the 6th order HITS scheme on several different GPU clusters. The wall clock
time TTOT needed for our particle based algorithm to advance the simulation by
the fixed time integration interval (1 TU, see definition above) is decomposed
into several components:

TTOT = Thost + TGPU + Tcomm + TMPI (9)

We have from left to right: the computing time spent on the host – Thost, on the
GPU – TGPU, the communication time to send data between host and GPU –
Tcomm, and the communication time for MPI data exchange between the nodes
– TMPI. In our present implementation all components are blocking, so there is
no hiding of communication. This could be improved in further code versions,
but for now it eases profiling.

We use a detailed timing model for the determination of the wall clock time
needed for different components of our code on CPU and GPU, which is then
fitted to the measured timing data. Its full definition is given in Table. 1.

In practice we see that only two terms play the dominant role (∼90% of the
time) in the understanding of the strong and weak scaling behavior of our code.
These are the:

– Force computation time (on GPU) – TGPU:
nts · O(N · 〈Nact〉/NGPU).
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Table 1. Breaking down the computational tasks in a parallel direct N-body code
with individual hierarchical block time steps. At every block time step level we denote
〈Nact〉 ≤ N particles, which should be advanced by the high order corrector as active
or “i” particles, while the field particles, which exert forces on the “i” particles to be
computed are denoted as “j” particles. Note that the number of “j” particles in our
present code is always N/NGPU (in each node, where Ngpu is the number of GPU’s
used for the simulation). We also have timing components for low-order prediction of
all “j” particles and distinguish communication of data from host to GPU and return,
and through the MPI message passing network.

Components of our timing model for ϕGPU code. One time step integration

task expected scaling timing variable

active particle determination O(Nact log(Nact)) Thost

all particle prediction O(N/NGPU) Thost

active (“i”) particle prediction O(Nact) Thost

“j” part. send. to GPU O(N/NGPU) Tcomm

“i” part. send. to GPU O(Nact) Tcomm

force computation on GPU O(N ·Nact/NGPU) TGPU

receive the force from GPU O(Nact) Tcomm

MPI global communication O((τlat +Nact) log(NGPU)) TMPI

correction/advancing “i” particle O(Nact) Thost

– Message passing communication time – TMPI:
nts · O((τlat + 〈Nact〉) log(NGPU)).

Within the TMPI we can distinguish a bandwidth dependent part (scaling as
〈Nact〉 · log(NGPU)) and a latency dependent part (scaling as τlat · log(NGPU)).

Hence, for this short paper we only discuss the simplified form of the
equation (9):

TTOT ≈ TGPU + TMPI (10)

or:

TTOT ≈ αN
∑

Nact

NGPU
+ β(ntsτlat +

∑
Nact) log(NGPU) (11)

The latency is only relevant for a downturn of efficiency for strong scaling at
relatively large numbers of NGPU. Starting in the strong scaling curves from the
dominant term at small NGPU there is a linearly rising part in Fig. 1., just the
force computation on GPU, while the turnover to a flat curve is dominated by
the time of MPI communication between the computing nodes – TMPI.

To find a model for our performance measurements we use the ansatz:

P =
(total flop operations)

TTOT
≈ γ ·N ·∑Nact

TTOT
(12)
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where TTOT is the computational wall clock time needed to integrate the system
for 1 TU. Here γ defines how many floating point operations our particular
Hermite scheme requires per particle per interaction per step. Based on the detail
flop count (see Table. 1. in [22]) we have: γ4th = 60, γ6th = 97 and γ8th = 144.

Replacing here the TTOT with the approximation from equation (11) we have:

P ≈ γ N
∑

Nact

αN
∑

Nact

NGPU
+ β(ntsτlat +

∑
Nact) log(NGPU)

(13)

The reader with interest in more detail how this formula can be theoretically
derived for general purpose parallel computers is referred to [9]. The α, β and
τlat are hardware time constants for the floating point calculation on GPU, for
the bandwidth of the interconnect hardware used for message passing and its
latency, respectively.

Putting to the equation (13) our earlier power approximations for the nts and∑
Nact as a function of total particle numbers N (see equations (6) and (7)) we

get P as a function only of N and NGPU:

P ≈ γ N2+x

αN2+x

NGPU
+ β(N0.33+xτlat +N1+x) log(NGPU)

(14)

The parameter x = 0.26 is a particular result for our case of the 6th order HITS
and the particular initial model used for the N -body system, virial Plummer’s
model as in [21].

Comparison of the functional form of Eq. 14 yields to a very good match for
x = 0.26, as can be seen in Fig. 1. The dotted gray lines for 0.5M, 1M, 2M, 4M
and 6M particles show our approximation formula results. The real maximum
performance data which we get for the largest 1536 GPU simulations (using
in total about 700k GPU cores) for these above particle numbers are (approxi-
mately): 29 Tflop/s, 58 Tflop/s, 147 Tflop/s, 239 Tflop/s and 315 Tflop/s.

The parameters α, β and τlat can be determined for each particular hardware
used. The timing formula (14) can then be used to approximate our ϕGPU 6th or-
der code calculation “speed” for any other number of particles, GPU’s, or different
hardware parameters (possible faster MPI LAN on the other GPU clusters).

For example, on the Mole-8.5 system, we see, that for N = 6M particles if we
are usingNGPU = 2000 GPU cards we expect to get ≈330 Tflop/s (see: Fig. 1.). If
we use our scaling formula for the much higher node-to-node bandwidth (4 times
faster MPI LAN) of the Tianhe-1A5 system at National Supercomputing Center,
Tianjin, China (this is the number one supercomputer according to the Top500
list of November 2010, with ∼7000 NVIDIA Fermi Tesla C2050 GPU’s and 160
Gbit/s node-to-node bandwidth) we can possibly reach sustained performance
of ∼1.1 Petaflop/s (see the faster LAN approximation lines on: Fig. 1.). This is
subject of our near future research application.

To our knowledge the direct N -body simulation with four million and six mil-
lion bodies in the framework of a so-called Aarseth style high precision N -body

5 http://en.wikipedia.org/wiki/Tianhe-I#Tianhe-1A
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Fig. 1. Strong scaling for different problem sizes on Mole-8.5 cluster, each line cor-
responds to a different problem size (particle number), which is given in the key. Here
as in all the following plots the symbols (like quadrat, star, triangle, cross) represent
our actual runs and measurements; the curves having the same colour represent the fit
by our timing model; their grey extensions represent extrapolations beyond our actual
tests. If one would use all ∼2000 GPU’s on the system a sustained speed of ≈0.33
Petaflop/s is feasible (for 6M particles). We also show the approximation lines for the
6M particle runs on the cluster with the possible 2 times and 4 times faster MPI LAN
(for example the Tianhe-1A GPU cluster with up to ∼7000 GPU’s). On such a system
we expect to get the maximum ∼1.1 Petaflop/s performance for 6M particles. Our
largest run uses 1600 GPU’s equivalent to about 700k GPU cores. The yellow color of
the data points indicated the runs where we have the number of particles per GPU 1k
or even less. This small number of particles clearly not give us a good usage of the cur-
rent many cores Fermi GPU’s, so we try to have in the real astrophysical simulations
always this number larger as 1k.

code (high order Hermite scheme, hierarchical block time step, integrating an as-
trophysically relevant virial Plummer model with core-halo structure in density
for a certain physical time) is the largest of such simulation which exists so far.

However, the presently used parallel MPI-CUDA GPU code ϕGPU is on the
algorithmic level of NBODY1 [1] - though it is already strongly used in pro-
duction, useful features such as regularization of few-body encounters and an
Ahmad-Cohen neighbor scheme [4] are not yet implemented. Only with those
the code would be equivalent to NBODY6, which is the most efficient code for
single workstations [1,3], eventually with acceleration on a single node by one or
two GPU’s (work by Aarseth & Nitadori, see NBODY66).

6 http://www.ast.cam.ac.uk/∼sverre/web/pages/nbody.htm
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Fig. 2. Left: Same benchmark simulations as in Fig. 1, but for the laohu cluster in
Beijing, using the older C1060 GPUs. We reach about 330 Gflop/s per GPU, a total
of 51.2 Tflop/s on 164 GPUs.

Fig. 3. Same as previous figure, but now using the most recent Milky Way GPU cluster
at JSC; as in the case of Mole-8.5 we reach about 550 Gflop/s per GPU card, and a
total sustained performance of 150 Tflop/s for six million bodies on 400 GPU’s, which
is equal to about 160k GPU cores.
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Fig. 4. Here we report a preliminary result from a benchmark test of our code on
one Kepler K20 card; we compare with the performance on Fermi C2050 (used in the
Mole-8.5 cluster), and the oldest Tesla C1060 GPU (used in the laohu cluster of 2009)
- the latter is used as a normalization reference. We plot the speed ratio of our usual
benchmarking simulation used in the previous figures, as a function of particle number.
From this we see the sustained performance of a Kepler K20 would be about 1.4 - 1.5
Tflop/s.

We have shown that our GPU clusters for the very favorable direct N -body
application reach about one third of the theoretical peak speed sustained for a
real application code with individual block time steps.

5 Conclusions

We have presented exemplary implementation of parallel code using many graph-
ical processing units as accelerators, so combining message passing parallelization
with many-core parallelization and discussed their benchmarks using up to 1536
Fermi Tesla C2050 GPU’s with more than 700k GPU thread cores in parallel.
On this hardware we reach a sustained speed of 550 Gflop/s per GPU card;
similar results are obtained from the Milkyway cluster at JSC, which uses 400
M2070 GPUs. At the University of Heidelberg we have just started first bench-
marking using the new Kepler K20 GPU architecture; the code described in this
paper reached a sustained performance of about 1500 Gflop/s, which is a speed
up of 3 compared to Fermi architecture, and of 5 compared to the older C1060
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GPUs. However, we only show here a first benchmark (Fig. 4), because a small
cluster with 20 Kepler K20 GPUs in Heidelberg is not yet fully operational; in
the future more promising benchmarks could be achieved on large GPU clusters
with Kepler architecture, such as the Titan system at ORNL. From our figure
one can see that the maximum sustained performance per Kepler GPU card for
our code (which is reached when the communication balances further speed-up)
has not yet been reached at 1.5 Tflop/s. Also the question how much of the
Kepler performance stems from just scaling up the number of cores and how
much originates from using CUDA 5.0 has to be checked in future work.

For direct high-accuracy gravitating N -body simulations we discussed how
self-gravity, because it cannot be shielded, generates inevitably strong multi-scale
structures in space and time, spanning many orders of magnitude. This requires
special codes, which nevertheless scale with a high efficiency on GPU clusters.
So our codes are examples that it is possible to reach the sub-Petaflop/s scale in
sustained speed for realistic application software with large GPU clusters, and
all results for soft and strong scaling show that more than a million GPU cores
can be efficiently used. Whether our programming models can be scaled up for
future hardware and the Exaflop/s scale, however, remains yet to be studied.
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Abstract. In this paper, with MPI+CUDA, we present a dual-level par-
allelization of a high-order CFD software for 3D, multi-block structural
girds on the TianHe-1A supercomputer. A self-developed compact high-
order finite difference scheme HDCS is used in the CFD software. Our
GPU parallelization can efficiently exploit both fine-grained data-level
parallelism within a grid block and coarse-grained task-level parallelism
among multiple grid blocks. Further, we perform multiple systematic
optimizations for the high-order CFD scheme at the CUDA-device level
and the cluster level. We present the performance results using up to 256
GPUs (with 114K+ processing cores) on TianHe-1A. We can achieve a
speedup of over 10 when comparing our GPU code on a Tesla M2050
with the serial code on an Xeon X5670, and our implementation scales
well on TianHe-1A. With our method, we successfully simulate a flow
over a high-lift airfoil configuration using 400 GPUs. To the authors’
best knowledge, our work involves the largest-scale simulation on GPU-
accelerated systems that solves a realistic CFD problem with complex
configurations and high-order schemes.

Keywords: GPU parallelization, high-order CFD, multi-block struc-
tural grid, heterogeneous system.

1 Introduction

Although low-order (e.g., second-order) schemes for computational fluid dynam-
ics (CFD) have been widely used in engineering applications, they are insufficient
in capturing small disturbances in an environment containing sharp gradients.
To ensure the high-resolution and fidelity of a numerical simulation, it is im-
perative that CFD researchers develop and apply robust and high-order CFD
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methods that can deal with complex flows in complex domains. Among others,
compact high-order finite difference schemes based on a compact stencil are very
attractive for flows with multiscales (e.g., aeroacoustics and turbulence), due to
their high formal order, good spectral resolution and flexibility[1].

Despite the rapid development of high-order algorithms in CFD, the applica-
tions of high-order finite difference schemes on complex configurations are still
few. One main factor which hinders the widely application of these methods is the
complexity of grids. Particularly, the Geometric Conservation Law (GCL)[2] and
block-interface conditions, which can be neglected for low-order schemes must
be treated carefully for high-order ones when the configurations are complex.
In order to apply high-order finite difference schemes on complex multi-block
grids, we have developed a Conservative Metric Method (CMM)[3] to calculate
the grid derivatives, and employed a Characteristic-Based Interface Condition
(CBIC)[4] to fulfill high-order multi-block computing. Based on CMM and CBIC,
we have developed a Hybrid cell-edge and cell-node Dissipative Compact Scheme
(HDCS)[5] recently and implemented it in our high-order CFD software HOSTA
(High-Order SimulaTor for Aerodynamics) for multi-block structural grids (see
Sect.2).

HOSTA has been successfully applied to a wide range of flow simulations so
far, showing its flexibility and robustness[6]. However, to parallelize HOSTA on
supercomputer like TianHe-1A[7] (a GPU-accelerated massive parallel process-
ing system) is challenging. Developers often need to manage different levels of
parallelisms using different parallel programming models (e.g., NVIDIA’s Com-
pute Unified Device Architecture (CUDA)[8] for GPUs and MPI or OpenMP for
CPUs) for heterogeneous compute devices. Further, when performing complex
high-order, multi-block grid CFD simulations, we need extensive implementation
and optimization efforts to achieve high performance and efficiency.

The work that we present here demonstrates a comprehensive effort to effi-
ciently accelerate large-scale simulations of realistic CFD problems us-
ing both complex multi-block grids and high-order CFD schemes on
the TianHe-1A supercomputer (see Sect.3). In the past 8 months, we have
successfully parallelized HOSTA (using the HDCS scheme) with MPI+CUDA.
When parallelizing HOSTA on a single GPU, we exploit dual-level parallelisms:
fine-grained parallelism by using a CUDA thread to compute a cell within a
grid block, and coarse-grained parallelism by using multiple CUDA streams
to compute multiple blocks. At the CUDA-device level, we also use a kernel-
decomposition optimization to further enhance the performance. For efficient
simulations on large-scale GPUs, we use non-blocking MPI, CUDA multi-stream
and CUDA events to maximize the overlapping of kernel computation, intra-node
data transfer and inter-node communication. The GPU-enabled HOSTA shows
promising strong and weak scalability for large-scale parallel tests on TianHe-1A.
Finally, we simulate a flow over a high-lift airfoil configuration to evaluate the
high-order behavior of HDCS. To our best knowledge, this is the largest-scale
simulation on GPU-accelerated systems that solves a realistic CFD problem with
both complex configurations and high-order schemes so far.
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The remainder of the paper is organized as follows. Section 2 briefly describes
the numerical methods and HOSTA implementation. In Section 3, we detail our
MPI-CUDA implementation and optimizations, and present the performance
results and the validation results. In Section 4, we introduce some related work.
Finally we conclude this paper in Section 5.

2 Numerical Methods and HOSTA Implementation

Do nstep=nstepst,nsteped   !time-marching loop
Do iter=1,nsubmax     !sub-iteration for unsteady flows

Call boundary_conditions()    !boundary conditions
Call Exchange_BC(PV)     !exchange primitive variables(PV) for boundaries
Call Exchange_Singular(PV)    !exchange PV for singularities
Call calc_spectral_radius()     !calculate delta of spectral radius
Call calc_time_step()     !calculate delta of time step
!begin of calculation of RHS 
Call calc_gradient()    !calculate gradient of PV (DPV)
Call Exchange_BC(DPV)    !exchange DPVs for boundaries
Call Exchange_Singular(DPV)    !exchange DPVs for singularities
Call calc_inviscid()    !calculate the inviscid fluxes 
Call calc_viscous()    !calculate the viscous fluxes 
Call calc_source()    !calculate the source flux
Call Exchange_BC(RHS)     !exchange RHSs for boundaries
Call Exchange_Singular(RHS)    !exchange RHSs for singularities
! end of calculation of RHS 
Call sol_jacobi()     !Jacobi solver for delta of conservative variables(DQ)
Call Exchange_BC(DQ)     !exchange DQs for boundaries
Call Exchange_Singular(DQ)     !exchange DQs for singularities
Call Update()    !update PV
Call Residual()    !calculate residual

End do    !end of sub-iteration
End do     !end of time-marching

Fig. 1. The main pseudocode for the time-marching loop of HOSTA

In curvilinear coordinates the governing equations (Euler or Navier-Stokes) in
strong conservative form are:

∂Q̃

∂τ
+

∂F̃

∂ξ
+

∂G̃

∂η
+

∂H̃

∂ζ
= 0 (1)

where F̃ , G̃ and H̃ are the fluxes along the ξ, η and ζ direction respectively; Q̃
is the conservative variable.

Let us first consider the discretization of the inviscid flux derivative along
the ξ direction. The discretization for the other inviscid fluxes can be computed
in a similar way. The seventh order HDCS scheme called HDCS-E8T7 can be
expressed as follows:

∂F̃i

∂ξ = 256
175h (F̃i+1/2 − F̃i−1/2)− 1

4h (F̃i+1 − F̃i−1)

+ 1
100h (F̃i+2 − F̃i−2)− 1

2100h (F̃i+3 − F̃i−3)
(2)
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where h is the grid size, F̃i±1/2 = F̃ (Ui±1/2) are the cell-edge fluxes, and

F̃i+m = F̃ (Ui+m) are the cell-node fluxes. The cell-edge variables (Ui±1/2) are

interpolated, and the numerical flux F̃i±1/2 can be evaluated by cell-edge vari-
ables, which is similar to that of the WCNS (Weighted Compact Nonlinear
Schemes)[9]:

F̃i±1/2 = F̃ (UL
i±1/2, U

R
i±1/2) (3)

where UL
i±1/2 and UR

i±1/2 are the left-hand and right-hand cell-edge variables.
For HDCS-E8T7, the seventh-order dissipative compact interpolation needs to
solve the following system of tri-diagonal equations:

5
14 (1− α)UL

i−1/2 + UL
i+1/2 +

5
14 (1 + α)UL

i+3/2 = 25
32 (Ui+1 + Ui)

+ 5
64 (Ui+2 + Ui−1)− 1

448 (Ui+3 + Ui−2) + α[ 2564 (Ui+1 − Ui)
+ 15

128 (Ui+2 − Ui−1)− 5
896 (Ui+3 − Ui−2)]

(4)

where α is the dissipative parameter to control numerical dissipation. For the
viscous fluxes, we also use a sixth order central difference scheme (see [9] for
more details).

HOSTA is a production-level in-house CFD software containing more than
25,000 lines of FORTRAN90 codes. We present the main pseudo-code for the
timing-marching loop of HOSTA in Fig.1. The HDCS scheme is implemented
when calculating the viscous (calc viscous) fluxes and the inviscid fluxes
(calc inviscid). We have implemented explicit Runge-Kutta method and several
implicit time marching methods in HOSTA, but in the following GPU paral-
lelization, we focus on the Jacobi iterative method (Sol jacobi). Note that in
each time step HOSTA performs four exchanges of boundary and singularity
data to ensure the robustness of high-order schemes (see Fig.1).

3 MPI-CUDA Implementation and Optimizations for
HOSTA

When parallelizing HOSTA via MPI, we partition a complex grid with single or
multiple computational domains into multiple grid blocks for better load balance
and then distribute them to MPI processes (as shown in Fig.2(a)). For a MPI-
CUDA implementation, a collection of grid blocks owned by a MPI process will
be computed by a GPU. In this section, we begin by parallelizing and optimizing
HOSTA on a single GPU, and then move forward to large-scale GPU-accelerated
systems. Finally we evaluate and validate our solutions on TianHe-1A.

3.1 Parallelization and Optimizations on a Single GPU

On a single GPU, we present a dual-level parallelization: fine-grained data paral-
lelism within a block and coarse-grained task parallelism among multiple blocks.
For the fine-grained parallelism, we use two approaches (3D kernel configuration
or 2D kernel configuration) according to data dependency among cells in a block.
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If there is no data dependency between cells (e.g., the procedure Sol jacobi),
each GPU thread calculates a cell independently. A 3D grid block is mapped to
a GPU grid in CUDA as illustrated in Fig.2(b): the processing of grid cells on
I,J and K direction (coordinate) are mapped to GPU threads on X,Y and Z
dimension respectively; a grid block of size (NI,NJ,NK ) is logically decomposed
to some sub blocks of size (x blk,y blk,z blk) , each sub block is computed by a
GPU thread block of the same size, and those thread blocks compose a GPU
grid of size (	NI/x blk
 ,	NJ/y blk
, 	NK/z blk
), where 	x
 is the minimum
integer that is larger than x. When implementing HOSTA, complex stencil com-
putations for the viscous (calc viscous) and inviscid (calc inviscid) fluxes are
decomposed along the I, J and K directions. Thus, data dependencies only exist
in the corresponding direction. Since CUDA has no global synchronization, we
choose to use a 2D kernel configuration or 2D decomposition for this case, i.e.,
we use one GPU thread to compute all the cells on a cell line. For example, in
the I direction, the 2D thread block is configured as (1,y blk,z blk) and the size
of GPU grid is (1,	NJ/y blk
, 	NK/z blk
).

domain decomposition for MPI 

collection of grid blocks 
owned by a MPI process

a grid block

a logical “sub-block” computed 
by a GPU thread block 

NI

NK

NJ

a GPU grid

a thread block

NI/x_blk

NK/z_blk

NJ/y_blk

x_blk
z_blk

y_blk

(a) (b)

Fig. 2. Domain decomposition for MPI-CUDA parallelization

When there is a data dependency, we propose and use a kernel decomposition
strategy to substitute a large 2D kernel with several small 3D kernels. A 3D con-
figuration can ensure more GPU threads on the same dimension to access the
global memory in a coalesced manner and thus improve performance. The kernel
decomposition is mainly implemented in the computation of viscous and inviscid
fluxes. For example, by carefully analyzing the data dependency, the initial 2D
I viscous kernel to compute I direction’s viscous fluxes is decomposed to three
3D kernels: I viscous kernel 1 to compute the cell-edge metrics and primitives,
and the cell-node viscous fluxes, I viscous kernel 2 to compute the cell-edge
viscous fluxes and I viscous kernel 3 to compute the cell-node derivative of vis-
cous fluxes. However, due to the interpolation in HDCS-E8T7, the initial 2D
I inviscid kernel to compute I direction’s inviscid fluxes is decomposed to four
small kernels (three 3D kernels and one semi-3D kernel): I inviscid kernel 1 to
compute the cell-edge metrics, I inviscid kernel 2 to reconstruct the left-hand
and right-hand cell-edge primitives, I inviscid kernel 3 to compute the cell-edge
and cell-node inviscid fluxes and I inviscid kernel 4 to compute the cell-node



Parallelizing a High-Order CFD Solver 31

derivative of inviscid fluxes. We implement the semi-3D I inviscid kernel 2 by
changing data structure and inter-exchanging loops. As Fig.3(a) shows, initially
separated primitive variables Um(i, j, k) (1 ≤ m ≤ 5) for the cell-node (i,j,k)
form a system of tri-diagonal equations and there is a data dependency among
neighboring statements. Fig.3(b) shows the new code snippet. A merged prim-
itive variable PV (m,i,j,k) replaces the five separate primitive variables to form
another loop for m. Then we exchange loop m and loop i, and an indepen-
dent ”M ” direction is available to be parallelized on GPU. Thus, a semi-3D
kernel configuration of a 3D thread block (5,y blk,z blk) and a 2D GPU grid
(1,	NJ/y blk
, 	NK/z blk
) can be used for the decomposed kernel.

Do k=1,nk  !K-direction loop 
Do j=1,nj  !J-direction loop  

Do m=1,5  !”M-direction” loop 

End do 
End do 

End do

Do i=1,ni
…
F(PV(m,i-1,j,k),PV(m,i,j,k),PV(m,i+1,j,k))=…
…
End do

Do k=1,nk  !K-direction loop 
Do j=1,nj  !J-direction loop 

Do i=1,ni  !I-direction loop 

End do 
End do 

End do

…
F(U1(i-1,j,k),U1(i,j,k),U1(i+1,j,k))=… 
…
F(U5(i-1,j,k),U5(i,j,k),U5(i+1,j,k))=… 
…

I-direction data dependency 

data structure 
adjustment and 
loop exchange

(a) (b)

Fig. 3. Data structure adjustment and loop exchange for HDCS-E8T7

We implement the coarse-grained parallelism based on CUDA streams. Be-
cause there is no data dependency among grid blocks between exchanges of
boundary/singularity data, we bind each block to a CUDA stream and issue all
the streams simultaneously to the GPU. As Fig.4 shows, all the operations for
block i such as computation, host to device (H2D) data copy and device to host
(D2H) data copy are associated with stream i. The multi-stream implementation
can fully exploit the potential power of modern GPU architecture. For example,
when a stream is accessing global memory, the kernel engine can schedule and
execute warps from other streams to hide memory access latency. More impor-
tantly, the kernel execution and PCI-E data transfer of different streams can
be substantially overlapped, especially for GPUs with separate copy engines for
H2D and D2H such as Tesla M2050 in TianHe-1A. Our multi-stream design is
independent with the fine-grained GPU parallelization within a block. Further-
more, it can be used to overlap the GPU computation, data transfer and MPI
communication as Sect.3.2 describes.

3.2 Moving Forward to Large-Scale GPU-Accelerated Systems

Since a compute node (of TianHe-1A) contains only one GPU, and thus, we
choose to use one MPI process on each node for large-scale simulations on mul-
tiple GPUs. Considering a 3D block with six boundaries (or ghost zones), the
data for a single boundary is continuously stored in the device memory, while the
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H2D engine i i+1 i+2

kernel engine i ii+1 i+2 i+1 ii+2 i+1 i+2

timeline

mem access i ii+1 i+1i+2 i+2

D2H engine i+2i i+1

Fig. 4. Multi-stream execution for
multiple grid blocks
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Scatter_kernel

BC_InBuffer_D

ghost layer

H2D copy

CPU_gather 

BC_InBuffer_H

BC_OutBuffer_H
MPI_Isend 

D2H copy

Fig. 5. Gather-scatter optimization for
boundary data transfer of a 3D block

data for different boundaries is not. Further, CUDA API for data transfer can
only copy continuous data elements for a time. Thus, we use a Scatter-Gather
optimization to minimize the times of data transfer for boundary/singularity
data of a 3D grid block via PCI-E, as Fig.5 illustrated. Before performing D2H
copy, we use a gather kernel (i.e., Gather kernel) to collect all non-continuous
data to a continuous device buffer BC OutBuffer D, and then the entire buffer
is copied to host buffer BC OutBuffer H. Correspondingly, before performing
H2D copy, we use a gather procedure (i.e., CPU gather) on the CPU to pack all
the updated boundary data to a host buffer BC InBuffer H, and then the entire
buffer is transferred to device buffer BC InBuffer D. Finally, we use a scatter
kernel (i.e., Scatter kernel) to distribute the data elements to each boundary.

Furthermore, we overlap the kernel execution, data transfer and MPI commu-
nication using CUDA multi-stream, non-blocking MPI and CUDA events. Fig.6
shows a schematic for the computation of the gradient of primitives, the inviscid
and viscous fluxes. When the GPU finishes all the stream/block’s operations for
the gradient of primitives, a CUDA event with the same stream ID is recorded to
represent data dependency between MPI communication and the boundary data
computed by the stream. Before the host calls MPI Isend to send the boundary
data for a block, it must query the device to make sure that the event associated
with the block/stream has been executed. As we can see from Fig.6, the data
copy for block i, the non-blocking MPI send for block (i-1 ) and the computation
of the gradient of primitives for block (i+1 ) are largely overlapped. When the
GPU is executing the kernel or performing data copy, the CPU can also call
MPI Irecv to receive boundary data from blocks on other nodes ( e.g., block
(i+1 ), as illustrated by Fig.6). Note that MPI Waitall must be called to ensure
that MPI Irecv has finished receiving data.

3.3 Performance Evaluation and Validation

We ported HOSTA to the GPU using a CUDA C and Fortran90 mixed imple-
mentation. Thus, our performance results on the CPU are all obtained from the
Fortran90 implementation. We ported all the procedures (more than 16000 lines
of CUDA C codes) in the time-marching loop except the procedures for boundary
conditions and MPI communication (red codes in Fig.1). In our implementation,
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data dependencyGPU side  

CPU side  

MPI_IsendMPI_Irecv

MPI_Waitalli-1 i i+1i+2

calculate the gradient of PVi-1 i i+1 calculate the inviscid flux

i-1 i-1i i+1 i i+1

i-1 i i+1

calculate the viscous flux

timeline

i-1 i-1i i+1 i i+1

i-1 i i+1

i-1 i i+1

event

Fig. 6. The overlapping of kernel execution, data transfer and MPI communication
when computing the gradient of primitives, the inviscid and viscous fluxes

we often maximize the kernel’s performance when setting (x blk,y blk,z blk) to
(16,4,4) ( i.e., the number of threads in a thread block is 256) and thus we choose
it as the default setting in the following tests.

We use the TianHe-1A supercomputer as our test platform. Each of TianHe-
1A compute nodes contains a Tesla M2050 and two six-core 2.93GHz Xeon
X5670s. A customized high-speed interconnection network is used for the inter-
node communication with a bi-directional bandwidth of 160Gbps and a latency
of 1.57μs. For more information about TianHe-1A, please refer to [7]. We use
MPICH2-GLEX for MPI communication. The CUDA version is 4.2, and the
compilers for FORTRAN and C are icc11.1 and ifort 11.1. All the code is com-
piled with -O3 optimization flag.
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In Fig.7, we present the speedup of a M2050 GPU over a single core of X5670
CPU, and the speedups of a M2050 GPU over a six-core X5670 CPU using 6
OpenMP threads and dual six-core X5670 CPUs using 12 OpenMP threads. The
grid size is 128*128*112, and the block number is varying from 1 to 8. We can
see that our GPU code can achieve a speedup of more than 10 over the serial
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CPU code. Note that the price of a M2050 is similar to the price of an X5670,
and a speedup of about 2.1 when comparing a M2050 to a six-core X5670 is also
comparable to the results of paper [10] as far as similar-priced comparison of
CPU and GPU is concerned. A speedup of about 1.3 when comparing a M2050 to
dual X5670s further validates GPU’s cost-effectiveness. We also observed slight
performance degradation for both GPU and CPU when the block number is
increased for a fixed grid size. This can be explained by the fact that multiple
blocks will incur extra OpenMP and kernel overheads.
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In Fig.8, we present performance results for different grid sizes and the block
number is fixed to 4. We get better performance for larger problem sizes. This is
because higher workloads can better overlap the computation and global memory
access for GPUs. Fig.9 shows the results of the multi-stream optimization. We
see a 20% to 30% performance enhancement for a whole iteration. But our multi-
stream implementation requires multiple blocks on a GPU to be associated with
multiple streams and the extra GPU memory space to store the intermediate
results for simultaneously executed blocks. Fig.10 shows the results when the
kernel decomposition is adopted for the computation of the inviscid fluxes. We
can reduce about 80% execution time for the I direction kernel, but for the J
and K directions, the performance improvements are only about 15%. This is
because the decomposition in the I direction can ensure more GPU threads to
access the global memory in a coalesced manner.

In Fig.11, we shows the strong scaling results with and without overlapping.
We obtain the results without the overlapping described in Sect.3.2 by directly
copying the whole grid block between GPU and CPU. We use the performance
achieved on 32 GPUs as a baseline and each GPU simulates a 128*128*112 grid
with 4 blocks for the baseline test. Thus our total grid size for strong scalability
test is fixed to 58720256 (namely 32*128*128*112). The grid is evenly partitioned
to grid blocks and distributed to GPUs. The GPU number is scaled from 32 to
256 and the block number per GPU is fixed to 4. We see that the overlapping of
computation, data transfer and MPI communication plays an important role for
good scalability. We observe a speedup of about 5.5 when scaling from 32 GPUs
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to 256 GPUs with overlapping, and a speedup of about 5.0 without overlapping,
demonstrating a promising result for strong scalability test on large-scale GPU-
accelerated systems. Fig.12 presents the weak scaling efficiency results with and
without overlapping. The problem size for each GPU is fixed to 128*128*112
with 4 blocks. Again we use the performance achieved on 32 GPUs as a baseline
and the GPU number is increased from 32 to 256. We lose about 23% (from the
perfect weak scaling efficiency of 100%) using our overlapping strategy and 256
GPUs, while the efficiency loss is up to 33.5% for the non-overlapping one.

We use the same EET high-lift configuration and the same conditions as
tested in the LTPT facility at NASA LaRC[11] to validate HDCS. Fig.13 shows
the grid structure. The incoming Mach number M=0.17, and the chord length
c=0.457m, the corresponding chord Reyonlds number is 1.71× 106, the angle of
attack is 4◦. The effects of explicit LES models are imitated by the truncation
error of HDCS to simulate the turbulent flow. The computational grid contains
approximately 800, 000, 000 grid points. The dual time stepping scheme with 60
subiterations based on Jacobi iterative method is used for the time integration.
The computation has been successfully performed on TianHe-1A using 400 GPUs
and advanced with a time step of 2.5× 10−6s for total 30,000 time steps. Flow
statistics are collected for 10, 000 time steps. Fig.14 demonstrates the iso-surfaces
of the second invariant colored by density contours for the instantaneous flow.
The second invariant Q is:

Q = (ΩijΩij + SijSij)/2 (5)

where Ωij = (ui,j−uj,i)/2 and Sij = (ui,j+uj,i)/2 . Due to the fine mesh, we can
see the details about the vortex structure. The computational mean spanwise
vorticity comparing with the experimental measurement from [11] is shown in
Fig.15. We clearly see that the shear layer separating from the leading edge is
demonstrated by the computation.
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Fig. 13. Grid structure of the high-lift airfoil configuration

(a)Whole field (b)Near the slat

Fig. 14. Iso-surfaces of the second invariant of velocity gradient tensor for instanta-
neous vortex structure

(a)Experiment (b)Computation

Fig. 15. Time-averaged spanwise-vorticity distribution
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4 Related Work

In the past twenty years, there have been many studies in developing and ap-
plying high-order compact finite difference schemes for CFD. Lele[1] has de-
veloped several central compact schemes with spectral-like resolution. Visbal
and Gaitonde[12] use filters to prevent numerical oscillations of central compact
schemes. Recently, Lele’s central compact schemes have been successfully applied
by Rizzetta et al.[13] for the simulation of low speed flows. In order to deal with
shock wave problems, Adams et al.[14] have developed a compact-ENO (Essen-
tially Non-Oscillatory) scheme. Pirozzoli[15] has developed a compact-WENO
(Weighted Essentially Non-Oscillatory) scheme which was further improved by
Ren et al.[16]. Deng et al. have developed the WCNS[9]. But as mentioned
by Deng et al.[6], meeting GCL for complex configurations is difficult, which
limits the applications of high-order finite difference schemes. For this, HDCS
with inherent dissipation was derived and implemented in HOSTA for the high-
resolution flow simulation on complex geometry. HDCS employs a new central
compact scheme to fulfil the GCL and adds dissipation on the central scheme
by high-order dissipative interpolation of cell-edge variables (see Sect.2).

Prior work has also shown the experiences of porting CFD codes to GPUs,
with impressive speed-ups. Phillips et al.[17] have developed a 2D compressible
Euler solver on a cluster of GPUs for rapid aerodynamic performance prediction.
Appa et al.[18] implemented and optimized an unstructured 3D explicit finite
volume CFD code on multi-core CPUs and GPUs for efficient aerodynamic de-
sign. Corrigan et al.[19] have ported an adaptive, edge-based finite element code
FEFLO to GPU clusters in a semi-automated fashion: the existing Fortran-MPI
code is preserved while the translator inserts data transfer calls as required.
Brandvik and Pullan[22] implemented a multi-GPU enabled Navier-Stokes solver
for flows in turbomachines. They reported almost linear weak scaling for typical
turbomachinery cases using up to 16 GPUs. All the above studies were tested
on small-scale GPU platforms using low-order CFD methods. For large-scale
GPU clusters, Jacobsen et al.[20] parallelized a CFD solver for incompressible
fluid flows. They used up to 128 GPUs for parallel scalability test. They fur-
ther demonstrated the large eddy simulation of a turbulent channel flow on 256
GPUs[21], but they only simulated a lid-driven cavity problem using low-order
schemes.

Due to the complexity, high-order CFD schemes generally require extra im-
plementation and optimization efforts on GPUs. Tutkun et al.[23] have imple-
mented a six-order compact finite difference scheme on a single GPU. Antoniou
et al.[24] implemented a high-order solver that can run on multi-GPUs for the
compressible turbulence using WENO. But the solver can only run on a single
node platform containing 4 GPUs for very simple domains like a 2D or 3D box.
Results show that their single-precision implementation can achieve a speedup
of 53 when comparing 4 Tesla C1070 GPUs with a single core of an Xeon X5450
CPU. Castonguay et al.[25] published the parallelization of the first high-order,
compressible viscous flow solver for mixed unstructured grids by using MPI and
CUDA, where the Vincent-Castonguay-Jameson-Huynh method is used. A flow
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over SD7003 airfoil and a flow over sphere is simulated using 32 GPUs. Apple-
yard et al.[26] reported a MPI-CUDA implementation to accelerate the solution
of the level set equations for interface tracking using a HOUC (High-Order Up-
stream Central) scheme. But they only demonstrated performance results using
4 GPUs. Zaspel et al.[10] described the implementation of an incompressible
double-precision two-phase solver on GPU clusters using a fifth-order WENO
scheme. The test problem is a rising bubble of air inside a tank of water with
surface tension effects and parallel performance results are reported using up
to 48 GPUs. To summarize, we see that the above GPU-enabled CFD simula-
tions using high-order schemes are still preliminary as far as the grid complexity,
problem size and parallel scale are comprehensively concerned.

5 Conclusion and Future Work

The complexity of high-order CFD simulation for complex multi-block grids
makes it very difficult to parallelize on large-scale heterogeneous HPC systems.
In this work, we parallelize and optimize HOSTA, a high-order CFD software
for multi-block structural grids. We successfully simulate a flow over a high-lift
airfoil configuration on TianHe-1A using 400 GPUs. We conclude that TianHe-
1A is a suitable platform to run the HOSTA-like CFD software in terms of
performance and scalability, although programming it takes many efforts. Thus,
we want to develop a heterogenous programming and auto-tuning framework
for CFD-like scientific applications based on the current work. Furthermore, we
plan to collaborate CPUs and GPUs for large-scale calculation on multi-block
grids to further improve HOSTA’s performance.
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Abstract. Lattice Quantum Chromodynamics (LQCD) is currently the only known
model independent, non perturbative computational method for calculations in
the theory of the strong interactions, and is of importance in studies of nuclear
and high energy physics. LQCD codes use large fractions of supercomputing
cycles worldwide and are often amongst the first to be ported to new high perfor-
mance computing architectures. The recently released Intel Xeon Phi architecture
from Intel Corporation features parallelism at the level of many x86-based cores,
multiple threads per core, and vector processing units. In this contribution, we
describe our experiences with optimizing a key LQCD kernel for the Xeon Phi
architecture. On a single node, using single precision, our Dslash kernel sustains
a performance of up to 320 GFLOPS, while our Conjugate Gradients solver sus-
tains up to 237 GFLOPS. Furthermore we demonstrate a fully ’native’ multi-node
LQCD implementation running entirely on KNC nodes with minimum involve-
ment of the host CPU. Our multi-node implementation of the solver has been
strong scaled to 3.9 TFLOPS on 32 KNCs.

1 Introduction

A computationally challenging problem in Lattice Quantum Chromodynamics (LQCD)
is the solution of the discretized Dirac equation in the presence of an SU(3) gauge field.
Its key operation is the multiplication of a vector by a sparse matrix known as the Dslash
operator. LQCD is an important calculational tool in nuclear and high energy physics.

The current trend in high performance computing is to couple commodity processors
with various types of computational accelerators, which offers dramatic increases in
both compute density, memory bandwidth and energy efficiency.

In this paper we describe the implementation and tuning of some key LQCD op-
erations: Dslash and the solution of the Dirac Equation, for Intel’s recently released
Intel R© Xeon Phi

TM
Coprocessor, codenamed Knights Corner (KNC). Our implementa-

tion exploits the salient architectural features of KNC, such as large caches, inter-core
communication as well as hardware support for irregular memory accesses. By using a
KNC-friendly lattice data layout together with a parallel cache blocked algorithm, our
implementation of Dslash kernel on KNC sustains up to 320 GFLOPS on a single node,
in single precision, which corresponds to nearly 87% of achievable performance. Fur-
thermore, we demonstrate a fully ’native’ multi-node LQCD implementation running
entirely on KNC nodes, with minimum involvement of the host CPU. Our multi-node

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 40–54, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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implementations of the Dslash operator and the Conjugate Gradients [1] solver have
been strong scaled to 5 TFLOPS and 3.9 TFLOPS, respectively, on 32 KNCs.

2 Background

2.1 Lattice QCD

In this section we provide relevant details of LQCD for our work. For further details,
many excellent references are available, e.g [2]. LQCD operates on an Nd = 4 dimen-
sional space time lattice, with V = LxLyLzLt sites, where Lx, Ly, Lz and Lt are the
dimensions of the lattice in the X, Y, Z and T directions respectively. Quark fields are
ascribed to the sites of the lattice while gluon fields are ascribed to the links between
sites. The interaction of quarks and glouns is given by the Fermion matrix M . In the
Wilson [3] formulation of quarks, M is given by:

M = (Nd+m)− 1

2
D,with D =

4∑
μ=1

(
(1−γμ)⊗Uμ

x δx+μ̂,x′ +(1+γμ)⊗Uμ†
x−μ̂ δx−μ̂,x′

)
(1)

where D is the Wilson-Dslash operator (WD). In Eq. 1 the sum is over directions μ,
m is a quark mass parameter, Uμ

x is the gauge link matrix connecting site x with its
neighbor in the μ direction, and γμ are elements of a Dirac spin-algebra. The propaga-
tion of quarks in a gluon field is given by the Dirac equation: Mψ = χ where ψ and
χ are spinors, which at each lattice site x are complex matrices carrying a spin index
α ∈ [0, 1, 2, 3] and color index a ∈ [0, 1, 2]. Applying D to a spinor can be viewed
as a nearest neighbour stencil operation. To facilitate the solution of M , an even-odd
preconditioning is typically used, wherein a lattice is checkerboarded into even and
odd sub-lattices and one solves the Schur complement system M̃ooψ̃o = χ̃o only on
one checkeboard (in this case ‘odd’). Here M̃oo is the Schur complement of M after
checkerboarding given by:

M̃oo = (Nd +m)Ioo − 1

4(Nd +m)
DoeDeo (2)

where subscripts oe, eo indicate that the operator maps odd sites to even, even to odd
respectively. The system is large and sparse and is typically solved by an interative
solver such as Conjguate Gradients (CG) [1] or BiCGStab [4].

The key operation is the sparse matrix vector multiplication Dψ. The naive arith-
metic intensity of the Dslash operator is 1320 flops / 1440 bytes = 0.92 flops/byte in
single precision, however, due to nearest neighbor nature of the Dslash operator, there
is substantial reuse amongst spinors. Properly exploiting this reuse with caches reduces
memory traffic, and can almost double the arithmetic intensity [5]. In addition, memory
traffic can be reduced further by performing 2-row gauge field compression, by mak-
ing use of the SU(3) nature of the links and storing only two rows of the matrix and
reconstucting the third row on the fly [6].
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2.2 Intel R© Xeon Phi
TM

Coprocessor Architecture

The recently released Intel R© Xeon Phi
TM

Coprocessor architecture features many in-
order cores on a single die. Each core has 4-way simultaneous multithreading (SMT or
hyper-threading) support to help hide memory and multi-cycle instruction latency. In
addition, each core has 32 vector registers, 512 bits wide, and its vector unit executes
a 16-wide (8-wide) single (double) precision vector instruction in a clock cycle, which
can be paired with scalar instructions and data prefetches. KNC has two levels of cache:
a single-cycle access 32 KB first level data cache (L1) per core and a larger globally
coherent second level cache (L2) that is partitioned among the cores, with a private
512 KB partition per core. KNC also has hardware support for irregular data accesses
and several flavors of prefetch instructions for each level of the memory hierarchy.

KNC is physically mounted on a PCIe slot and has dedicated GDDR memory. Com-
munication between the host CPU and KNC is therefore done explicitly through mes-
sage passing. However, unlike many other coprocessors, it runs a complete Linux-based
operating system, with full paging and virtual memory support, and features a shared
memory model across all threads and hardware cache coherence. Thus, in addition to
common programming models for coprocessors, KNC supports more traditional multi-
processor programming models such as OpenMP [7].

3 QCD Implementation on KNC

Our library is written in C++ and threading is carried out using OpenMP threads. The
library implements the Wilson Dslash, the even-odd preconditioned Wilson operator
and a CG solver. We consider the code in two parts: a high level part which is concerned
with parallelizing over threads, and performs the loop structure for our cache blocking
strategy, and a ’back end’ part which takes care of working on a vector of lattice sites.

To achieve high performance on KNC, one must take full advantage of its vector ca-
pabilities. A SIMD friendly, partial structure of arrays (SOA) layout such as described
in [5] can run with high vector efficiency, however it requires that a scanline (line of
sites in X) be a multiple of the hardware vector unit length (vec). This can restrict the
application of the code to problems where Lxh = Lx/2, the X-width of a checker-
board, is a multiple of vec. The larger vec is, the more restrictive this becomes. Our
first KNC implementation was written this way. However, we have developed a more
general approach, described below, to address this limitation. Specifically, we allow the
inner array length soa of the SOA (or SOA length) to be a factor of vec. This has the ad-
vantage of allowing more general problem sizes, but since it mixes X and Y dimensions
it can complicate communications in those directions. Our code is templated on floating
point type, vector length vec and SOA length soa. The back end codes are generated
using a code generator which we will describe below, and are hooked into the main
library using template specialization. We focused specifically on the cases of vec = 16,
soa = 4, 8, 16 for Xeon Phi and vec = 8, soa = 4, 8 for SNB-EP (using AVX).

3.1 Data Structures and Indexing

Our primary data structures are SU(3) gauge fields and 4-spinors as discussed earlier.
Each of these fields is associated with a lattice site. In the case of the gauge fields we
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typedef float SU3MatrixBlock[8][3][3][2][vec];
typedef float FourSpinorBlock[3][4][2][soa];

Fig. 1. The structures of the fields used for a single block of computation

Lxh

Ly

By

 ngy

soa

X

Y

Fig. 2. Our vectorization scheme: An X-Y planar view shows blocks of length soa in X, and ngy
lines in Y. In this instance ngy = 2 and vec = 2soa.

associate with a site the 8 links emenating from it (forward and backwards in each of
4 directions). We then split the lattice into blocks of soa sites. In the case of spinors
we have VB = LxhLyLzLt/soa such spinor-blocks per checkerboard. We require that
soa divide Lxh exactly. Our back end kernels process ngy blocks, each of length soa
sites, where ngy = vec/soa. A single processing step can thus process a full vec
sites worth of data, made up of spinor blocks of length soa sites from ngy different
y coordinates. Hence we must also have that Ly be divisible by ngy. The situation is
illustrated in Fig. 2. The gauge fields could be packed similarly, however since they
are typically used in several dslash applications, it is worth repacking the ngy blocks
of length soa into a single block of length vec up-front, allowing them to be read as a
single vector. Hence the gauge field has VBG = LxhLyLzLt/vec blocks. We show the
C++ definitions of the spinor and gauge block datatypes in figure 1.

To reduce the effects of associativity conflict misses, we pad our lattice arrays, by
adding Padxy blocks onto the end of every XY plane and Padxyz blocks onto the
end of every XYZ time-slice. Hence a spinor site with coordinates (x, y, z, t) is in-
dexed as follows: We locate the XY plane for the z and t indices using the formula
xyBase = t Pxyz + z Pxy with Pxy = (LxhLy/soa) + Padxy, and Pxyz =
LzPxy + Padxyz. Within the XY plane, we first split the x coordinate into an x-block
index; xb = x/soa and an index within the block: xi = x mod soa. The offset to the
block is now xb+nsoa× y with nsoa = Lxh/soa. Given an array spinor of objects
of type FourSpinorBlock as defined in Fig. 1, with VB array elements, the site
would be indexed as spinor[ xb + nsoa*y + xyBase ][c][s][r][xi]
where c, s and r are indices for the color, spin and complex component respectively.
In our code, we compute xyBase and then separate offsets in terms of floating point
numbers to be used by gathering loads. Indexing gauge fields is slightly different, since
ngy lines of y are packed together. In this case the block offset would be computed as
xb+ (nsoa ∗ y + xyBase)/ngy.



44 B. Joó et al.
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Fig. 3. Cache Blocking: The lattice is blocked in the Y and Z dimensions with block sizes By

and Bz respetively. In this example there are 6 blocks to be processed by 4 cores. The number
on each block is the index of the core which will process it. The first four blocks are mapped
round-robin to the cores in phase 1 (blue). In phase 2 the remaining 2 blocks are each split in the
temporal direction over 2 cores (Ct = 2) to use all 4 cores (orange).

3.2 Code Generator

We wrote a simple code generator to overcome two programming challenges: having
a portable abstraction for producing intrinsics to generate code for both Xeon Phi, and
AVX. The second challenge was to schedule software prefetches with the main com-
putation. The generation of L1 prefetch instructions is part of the code generating rou-
tines. The L2 prefetches are generated in a separate pass and the two instruction streams
are intermixed. The current version of the generator supports single precision vector in-
structions for Xeon Phi and AVX. It is straightforward to extend the generator to support
double precision and other vector architectures. Gathering (scattering) spinors from (to)
their soa × ngy XY blocks is supported both via the gather intrinsics on Xeon Phi, or
via a sequence of masked load-unpack, or pack-store instructions. To take advantage
of streaming stores we use in-register shuffles to pack full cache lines, which are then
streamed to memory using nontemporal store instructions.

3.3 Cache Blocking and Block-to-Core Mapping

Our code implements a variant of 3.5D blocking [8]. To deal with the per-core private
caches of Xeon Phi, we define cache blocking dimensions By and Bz such that at
minimum 3 T-slices of LxhByBz sites fit into the private L2 cache of each core. The
second problem we addressed was to maximize the number of cores that can be used
from the Nc cores available, while maintaining load-balance. Our scheme for assigning
blocks to cores, which is pre-computed at initialization, is as follows:

Given By and Bz , we have in total Nb = lylz blocks, where ly = Ly/By and
lz = Lz/Bz. The blocks are assigned to cores in potentially several phases. Initially
we set the number of remaining blocks Nr to Nb. Then, in each phase p, if Nr ≥ Nc,
we assign one block to each core, and allow the core to stream through all Lt T-slices.
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We then decrement Nr to Nr−Nc for the next phase and repeat this process until either
all the blocks are assigned, or fewer blocks remain than available cores: Nr < Nc.

At this point, we will start using multiple cores per block by dividing each block
into Cp

t parts along the T-direction and assigning a core to each part. If Nr divides
Nc exactly, we choose Cp

t = Nc/Nr and finish the assignments. Otherwise we first
calculate candidate values Cl

t = floor(Nc/Nr) and Cu
t = ceil(Nc/Nr) respectively.

Choosing Cl
t partitions, would allow us to finish all the Nr remaning blocks, but at

the expense of under utilizing the Nc cores, since we would use only NrC
l
t cores,

which is less than Nc. Instead, choosing Cu
t partitions, would allow processing only

floor(Nc/C
u
t ) blocks in this phase (which are less than the remaning Nr blocks), but

utilize most of the cores. We would then keep the remaining Nr − floor(Nc/C
u
t )

blocks for the next phase, however, in this situation we would have even fewer blocks
to assign to the cores in the next phase, which would lead to a further reduction of work
per core in that phase. We use a simple heuristic to pick between Cl

t and Cu
t : If Cu

t is
greater than some threshold Tt we will assume that picking Cu

t would result in each
core having too little work, so we pick Cl

t instead and terminate the process. Otherwise
we pick Cu

t , decrement Nr to Nr − floor(Nc/C
u
t ) and carry on to the next phase. We

found Tt = 4 was optimal on both Xeon and Xeon Phi. It is useful to keep track of the
number of blocks to be processed by the phase defined as Cp

yz = min(Nr, Nc/Ct).
The scheme can be elaborated, to allow the user to specify a minimum value of Cp

t

(denoted minCt) at the start of the mapping process to allow the handling of non-
uniform memory access (NUMA) affinity issues. Since our data structures are divided
in the T-dimension accross different NUMA domains, we set minCt to the number of
NUMA domains and we re-define Nc to be the number of cores per NUMA domain
throughout our mapping process. Now, for cases where we would not have split the
blocks previously, we will split them into minCt parts with a core (from a different
NUMA domain) being assigned to each part. For the phases where originally we would
have split the blocks, we now compute Cp

t with the re-defined Nc and we multiply the
result by minCt. It should be clear that the scheme we described originally is the case
when minCt = 1 which is appropriate for uniform memory access architectures such
as for Xeon Phi whereas for a dual socket Xeon we would have minCt = 2.

We illustrate the blocking scheme in Fig. 3, using a case of 6 blocks to be mapped to 4
cores as an example. The work splits into 2 phases: phase 1 processes the blocks colored
in light blue. With minCt = 1, each of these blocks will be processed by a single core
without splitting the time direction. The remaining 2 blocks will be processed by phase
2. In this phase, we have that Nr divides Nc exactly so we choose C2

t = Nc/Nr = 2
and finish the assignment process. Although the number of cores does not exactly divide
the original number of blocks, all the cores are utilized in both phases in this example.

In each phase, Cp
t should be kept to the minimum, to minimize T-boundary exchange

overhead between cores. In this scheme cores working on the same T-slice in the same
phase, on adjacent By × Bz blocks will share boundary data via inter-core communi-
cation, without going back to memory. However, in order to ensure constructive shar-
ing, some degree of synchronization must be maintained between these cores, which is
achieved via infrequent inter-core barriers amongst the groups of Cp

yz cores working on
the same portion of the Cp

t -way split in the T-direction.



46 B. Joó et al.

3.4 SMT Threading and Lattice Traversal

Within each core we treat the available SMT threads as a grid of threads with dimen-
sions Sy × Sz . Our lattice traversal looping strategy for any given thread is as follows:
First, the core index ci and SMT coordinates (sy , sz) of the thread are computed from
the thread index tid using the relation: tid = sy+Sy(sz+Szci). The threads then loop
through all the phases. Threads with core index ci ≥ Cp

yzC
p
t for the current phase p,

have no work to do and can continue to the next one. The core indices of the remaining
threads are then divided into coordinates (cyz , ct) for the current phase using the rela-
tion ci = cyz + Cp

yzct. Using cyz and the phase index p, the block to be processed by
the core is identified and the starting value of t = ct(Lt/C

p
t ) for the core is computed.

The thread then streams through its range of T values in the block, and for each
value of t it scans through the XYZ volume. The local YZ plane of the block is split
between the SMT threads on the core. Loops over the Z dimension are carried out with
a stride of Sz . As each SMT thread processes a soa × ngy block, looping is done in
units of spinor-blocks of length soa in X, and in increments of ngy Sy in Y respectively.
The innermost loop can then use the information from the loop indices and the origins
computed to index the neighbouring spinor-blocks to be read, the output spinor-block
to be written, and to identify the neighbours of the successive spinor-block for L2 cache
prefetching. On Xeon Phi, the optimal tile size was By = Bz = 4 which gave the best
tradeoff between cache efficiency and redundant memory traffic on the edges of the
blocks.

3.5 Linear Algebre Routines

In order to implement a Conjugate Gradients solver, one needs several vector linear
algebra operations. These are essentially streaming operations, requiring few floating
point operations and are heavily bound by memory bandwidth. If there is a chance to
increase reuse between them it is worth fusing several successive kernels, for example in
a situation where one can compute a residual vector, and compute its norm at the same
time. We coded these operations in vector intrinsics with explicit software prefetching.
We found we can achieve different levels of throughput depending on how many threads
are used per core. We show in table 1 the various kernels used along with the (possibly
fused) operations they perform, and as an illustration, the memory bandwidths achieved
by the kernels from a particular timing measurement. We see that in most kernels one
or two threads per core performed optimally. In our timing runs we have auto-tuned the
number of threads in our linear algebra kernels for efficiency.

3.6 Multi-node Considerations

It is typical to parallelize LQCD problems onto multiple nodes to increase performance.
Further, memory limitations can also force the calculation onto multiple nodes. Conse-
quently we parallelized our code onto multiple Xeon Phis (and also SNB-EPs). Since
our vectorization scheme mixes X and Y directions, we communicate between nodes
only in the T and Z directions. The multi-node implementation overlaps computation
of the body with the communication of the faces which are projected using the (1±γμ)
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Table 1. Vector linear algebra kernels and the operations they perform. Here x, y, r, p, q are
lattice spinors, α and ρ are scalars, and in a Conjugate Gradients solver we have that q = M†Mp.
We also quote memory bandwidths observed in these kernels as a function of threads per core
from a single timing measurement on a Xeon Phi 7110P device in a node of the Endeavor cluster,
rounded to the nearest GB/sec.

B/W B/W B/W B/W
Routine Name operation 1 thread 2 threads 3 threads 4 threads

(GB/s) ( GB/s) (GB/s) (GB/s)
aypx2 y → αy + x 170 175 167 161

xmyNorm2 r → x− y 112 158 150 149
ρ → ||r||2

norm2 ρ → ||r||2 154 157 157 157
r → r − αq

rmammpNorm2rxpap ρ → ||r||2 175 159 143 135
x → x+ αp

copy x → y 133 154 156 152

operations in Eq.1 into buffers prior to sending. Once the body computation and com-
munications are complete, the received faces are multiplied appropriately with gauge
links, and their contribution to Dslash is accumulated as is common in LQCD imple-
mentations (e.g. [9, 10]).

A novel feature of the Xeon Phi architecture and software ecosystem, is that native
implementations can make direct MPI [11] message passing calls, freeing up the user
from orchestrating data transfers between host and the co-processor as would be needed
in an offload model. This allows the programmer to treat a cluster of KNCs as a regular
cluster of homogenous MPI nodes and thus improves the ease of programming. Our
code uses the QMP [12] message passing layer over MPI.

On the other hand, although communication across the KNCs using MPI directly
is optimized for latency, the achievable peak bandwidth is quite low due to hardware
issues unrelated to Xeon Phi. As we scale LQCD in a cluster, the boundaries that are
exchanged with the neighbors vary in size between 256KB and several MBs for large
problems such as one would schedule on Xeon Phi-s, and for these message sizes the
bottleneck is typically the communication bandwidth.

There are different bandwidth characteristics between different endpoints in a multi-
node Xeon-Phi platform and we have developed a reverse communication MPI proxy
that exercises the fastest path, similar to the design proposed in [13]. We use this proxy
to handle the bandwidth limited nearest neighbour communications via the host. We
assign a CPU core to process requests from local KNCs, for extracting the data from lo-
cal KNC memory to host memory via DMA and for sending the data to the destination
CPU. Similarly, at the destination, a CPU core receives the data and copies it from host
memory to KNC memory. The whole process is performed in a pipelined manner by
splitting the application data into several small chunks. The chunk sizes for a given ap-
plication message are also chosen dynamically since smaller chunk sizes can amortize
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the startup overheads but at the cost of lower bandwidth while larger chunk sizes give
good bandwidth but may expose startup overheads. We use a memory mapped request
and response queue model [14] to control message handshakes between the CPU and
Xeon Phi. This proxy is lightweight and does not consume significant CPU resources.

4 Hardware Setup and Experiments

Our numerical experiments consist of two kinds of measurements: the performance of
our Dslash operator and the performance of the Conjugate Gradients solver. We have
also measured single node performance of both, for comparison, using SNB-EP CPUs
as well as NVIDIA Tesla R© Kepler

TM
K20 GPUs, specifically K20m models (referred to

as K20m or Kepler K20m from here on).
Two different kinds of Xeon Phi systems were used: nodes from the Endeavor Xeon

Phi Cluster operated by Intel and nodes from from the Jefferson Lab (JLab) 12m cluster.
An Endeavor cluster node is comprised of dual socket Intel Xeon E5-2670 (SNB-EP)
CPUs with 8 cores per socket running at 2.6 GHz, and two Xeon Phi co-processors
with 61 cores each running at 1.1 GHz. The Xeon Phi has SKU B1PRQ-7110P (7110P
from here on), using B1 stepping silicon, running Intel MPSS version 2.1.3552-1. The
7110P has 7936 MB of GDDR memory running at 2.75GHz. The nodes are connected
with an FDR Infiniband interconnect. For compilation we used Intel Composer XE
version 13.0.0 and Intel MPI version 4.1.0.027. Nodes of the JLab 12m cluster contain
dual socket Xeon E5-2650 CPUs running at 2.0 GHz. They contain four Xeon Phi
5110P co-processors (5110P from here on), each of which has 60 cores running at
1.053GHz. The 12m nodes run MPSS version 2.1.4346-16 (Gold) and are connected
by FDR Infiniband. The JLab 12m nodes run CentOS 6.2. The Xeon Phi nodes were
booted with icache snooping turned off, and we utilized large memory pages. The last
core on each Xeon Phi is reserved for system functions and was not used in our tests.

Our Kepler K20m measurements were made on a node of the JLab 12k cluster. The
base nodes of this system (chassis, motherboard, CPU, fabric) are the same as for the
12m cluster node described previously. We used the gcc-4.4.6 and CUDA Toolkit v5.0
for compilation, and ran using version 304.54 of the CUDA driver. Our reference mea-
surements used the publicly available QUDA [6] software package for lattice QCD on
GPUs1 in a pure single precision mode. We have also verified our measured perfor-
mance using an NVIDIA Tesla R© Kepler

TM
K20c model GPU and found the results to

be identical to the K20m results within experimental fluctuations.
We have chosen 5 volumes on which to run our timing tests. We were driven in our

choice by the spatial sizes of 243, 323, 403 and 483 sites for the first four of these,
aiming to make the temporal direction as large as we could fit on the device, in order to
mimic a capacity mode of operation, where as few nodes as possible are used to perform
a calculation. However due to memory limitations we had to vary the T-extent and in
one case the Z extent. The volumes thus chosen were 243 × 128, 323 × 128, 403 × 96
and 482×24×64 sites respectively. Our fifth volume, of 32×40×24×96was chosen

1 We used git commit-ID: 541c66ba1a0eca11eb555dc8de6686cd54383c6c, master branch, Feb-
04, 2013, available from https://github.com/lattice/quda

https://github.com/lattice/quda
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to allow maximum performance on 60 cores without having to split the time direction
over the cores. Using 4 × 4 blocks in the Y and Z directions, this volume can ideally
use a single phase with C1

yz of 60 cores and C1
t = 1.

5 Single-Node Results

Our single node measurements for Wilson Dslash are shown in figure 4. We show both
the case when gauge fields are compressed and when they are uncompressed. We show
performance for all 4 systems considered. The different colored bars correspond to
different volumes.

On our Xeon Phi platforms we see performances between 270 - 296 GFLOPS on our
5110P part and between 295 - 320 GFLOPS on our 7110P part when 2 row compres-
sion is enabled. We note that in the V = 32 × 40 × 24 × 96 case, performance hits
320 GFLOPS on the 7110P, but recall that this is an ’ideal volume’ for this device. In
contrast, on the NVIDIA K20m devices the performances we have seen for Dslash are
in the region of 250 GFLOPS with compression.

We note that a dual socket Xeon E5-2680 (2.6GHz) CPU can sustain performances
that are just under half the speed of a the Xeon Phi 5110 – roughly 120 GFLOPS in the
case of the SNB-EP vs roughly 280 GFLOPS in the case of the Xeon Phi 5110 with
compression enabled.
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Fig. 4. Performance of Wilson Dslash for various volumes, for Xeon E5 (Sandy Bridge), Xeon-
Phi 5110P, XeonPhi 7110P and NVIDIA K20m, Vertical axis shows performance in GFLOPS,
rounded to the nearest GFLOPS
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The performances of the Conjugate Gradients algorithm are shown in figure 5. We
consider the same volumes as for the Dslash. Here we find that for uncompressed gauge
fields the 5110P system slightly outperforms the K20m and with compression the 5110P
and the K20m are very similar with the 5110P being faster on some volumes and the
K20m being faster on others. The 7110P system is slightly faster than both the 5110P
and K20m. Again, we observe roughly a factor of 2 in performance between the dual
socket SNB-EP system and the Xeon Phi 5110P.
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Fig. 5. Performance of Conjugate Gradient solver for various volumes, for Xeon E5 (Sandy
Bridge), XeonPhi 5110P, XeonPhi 7110P and NVIDIA K20m. Vertical Axis shows performance
in GFLOPS

Finally we note that compression does not appear to help on the SNB-EP system,
which sustains roughly 120 GFLOPS in the Dslash in both cases with and without
compression. This is due to a temporary shortcoming in our implementation which
explicitly stores the third row of the gauge fields. While the compressed implementation
does not explicitly use this row, it is still prefetched by the hardware prefetcher of the
SNB-EP resulting in the same amount of memory traffic as the uncompressed case and
hence no speedup over that case is observed. Reducing the dimension of the rows from
3 to 2 in the SU3MatrixBlock datatype in Fig. 1 increased the performance on our
V = 243 × 128 problem to 146 GFLOPS in a test harness and we will integrate this
change into our main code as future work.

To understand these results let us consider the following: with perfect spinor reuse
where all but one of the neighbouring spinors are in cache, using gauge compression
(but not counting the extra flops it incurs) the memory-bound performance of Wilson-
Dslash is 1320

4(24×2+12×8)/Bm
GFLOPS [5]. Here 1320 is the naive floating point opera-

tion count per site, and the numerical factors in the denominator count the amount of
data required by the operation per site in bytes: one input and one output spinor com-
prised of 24 floats each, and 8 gauge link matrices comprised of 12 floats each
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when compressed. The remaining factor of 4 is the size of a float in bytes and Bm is
the memory bandwidth in GB/sec. Memory bandwidth can be measured using stream-
ing kernels such as aypx2 in Tab. 1, which is similar to the STREAMS triad bench-
mark. We see from Tab. 1 that the aypx2 and copy kernels achieve bandwidths of 161
GB/sec and 152 GB/sec respectively, when using 4 threads per core. With Bm = 161
GB/sec, the maximum expected Dslash performance is ∼369 GFLOPS. The deviation
from this idealized model is due in part to synchronization overheads and in part to our
inability to use all the cores for certain problem sizes, although our blocking scheme
attempts to maximize the number of cores used. These additional factors are mildest for
the 32× 40× 24× 96 site volume on the 7110P part where, as a result, we achieve 320
GFLOPS which is 87% of the available performance. On the SNB-EP, memory band-
width is about half that of KNC, while on the K20m it is comparable to KNC. Hence the
SNB-EP runs at roughly half the speed of, while the NVIDIA K20m performs similarly
to KNC.

6 Multi-node Results

Our multi-node experiments were carried out on up to 32 nodes of the Endeavor cluster
described in sec. 4. In our tests we used one KNC processor per cluster node. Figure 6
shows the strong scaling performance of our code on lattices of size V = 323 × 256
and V = 483 × 256 sites for both the Dslash operator and the Conjugate Gradients
algorithm.
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Fig. 6. Strong Scaling multi-node Performance on the Endeavor cluster: (a) Wilson Dslash, (b)
Conjugate Gradients. The vertical axis shows the performance in GFLOPS rounded to the nearest
GFLOPS.

The performances in Fig. 6 show nearly linear strong scaling up to 16 nodes on both
problem sizes. However, the scaling seems to top out when going to 32 nodes in the case
of the 323 × 256 site problem, and we can see strong scaling effetcs on the 483 × 256
problem also, where scaling efficiency is reduced to 62% for Dslash. The two problems
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sustain 3.9 TFLOPS and 5 TFLOPS respectively on 32 nodes. The reduction in scaling
is due to the local problem decreasing to a sufficiently small size, that the overhead of
packing, communicating and processing the boundaries is exposed.

In turn, the Conjugate Gradients algorithm sustained a performance of up to 2.8
TFLOPS for the 323 × 256 lattice and 3.9 TFLOPS for the 483 × 256 lattice. We also
see that for the 483 × 256 volume, on 32 nodes, the CG solver has a performance of
roughly 0.78× that of the Dslash, or roughly a 22% slowdown. This slowdown is due
partly to the heavily memory bandwidth bound vector-vector linear algebra in the solver
and to synchronization overheads incurred in global reduction operations (global sums)
performed across the MPI cluster. Although beyond the scope of this work, we expect
we could improve our solver performance using a variant of pipelined CG [15].

7 Related Work

There are several implementations of LQCD Dslash implementations in the literature,
many of them targeting novel architectures (of the time of their writing) such as GPUs.
Optimizing for the Xeon architecture is described by us in [5], whereas recent efforts to
optimize for BlueGene/Q architecture are presented in [10, 16]. GPU implementations
using CUDA are presented in [6,17], while OpenCL versions are in [18,19]. Autotuned
blocking schemes for Wilson Dslash have been investigated on GPUs in [20].

Historically the implementations on various architectures are too numerous to list.
We will content ourselves with mentioning the implementation of [21] on the QCDSP
supercomputer and of [22] on the BlueGene/L, since these contributions both won Gor-
don Bell prizes for cost effective supercomputing in 1998 and 2006.

Code generators for writing efficient low-level code are described in [23] and [24].
Reverse offload style communications are described in [13] for the Road Runner

Supercomputer, and in [25] for GPU applications.

8 Conclusion

We have detailed our approach to implementing the Wilson Dslash operator for Intel
Xeon Phi, and have presented performance results for both single and multi-node set-
tings. Our single node Dslash operator sustains ∼280 GFLOPS and over 300 GFLOPS
in single precision on Xeon Phi 5110P and 7110P devices respectively. Our multi-node
implementation has been run on up to 32 Xeon Phi devices and has been strong scaled
up to 5 TFLOPS for Wilson-Dslash, and up to 3.9 TFLOPS for the CG solver, both in
single precision, on a lattice of 483 × 256 sites.

We compared our single node results with performances from the QUDA library on
NVIDIA K20m GPUs. We ran QUDA in pure single precision mode to have like for like
tests. We found that our code on Xeon Phi had higher performance on the Dslash opera-
tor in single precision than the K20m, but that the performance in Conjugate Gradients
was similar between K20m and the Xeon Phi 5110P. The Xeon Phi 7110P system in
turn performed a little faster than both the 5110P and the K20m. We note, however, that
the QUDA library can gain additional performance on the GPUs than what is quoted
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here by employing 16-bit precision in mixed precision solvers. We are considering im-
plementing this approach as potential future work.

To achieve these performances required attention to expose parallelism on vector
instruction, SMT thread and core levels on a single KNC as well as the use of cache-
blocking techniques. To achieve the multi-node performances we used a reverse com-
munication proxy. In order to utilize fully the vector capabilities of the architecture
and to mimimize memory latency through software prefetching, we wrote a simple
code-generator. A notable outcome of our work is an infrastructure which could be re-
targeted to other vector formats. In particular, we sustained excellent performance on
SNB-EPs (≈ 120 GFLOPS single precision in the Dslash) simply by re-targetting the
code-generator to emit AVX intrinsics, and re-tuning our blocking factors. This demon-
strates a performance portability aspect of our infrastructure.

Our future work will include improving our blocking strategy, further optimization
of our code for multiple nodes, implementing other formulations of LQCD, and inves-
tigating the potential of a hybrid code using both the host CPU and the Xeon Phi(s).
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Abstract. Advanced application environments for seismic analysis help geosci-
entists to execute complex simulations to predict the behaviour of a geophysical
system and potential surface observations. At the same time data collected from
seismic stations must be processed comparing recorded signals with predictions.
The EU-funded project VERCE (http://verce.eu/) aims to enable specific
seismological use-cases and, on the basis of requirements elicited from the seis-
mology community, provide a service-oriented infrastructure to deal with such
challenges. In this paper we present VERCE’s architecture, in particular relating
to forward and inverse modelling of Earth models and how the, largely file-based,
HPC model can be combined with data streaming operations to enhance the scala-
bility of experiments. We posit that the integration of services and HPC resources
in an open, collaborative environment is an essential medium for the advancement
of sciences of critical importance, such as seismology.

1 Introduction

Today’s advanced seismology research aims at analysing the Earth’s structure, composi-
tion and properties, largely by building geophysical models able to simulate earthquake
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agreement number 283543.
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dynamics, from rupture to seismic radiation. Such research is essential for a multitude
of applications, for instance to predict the consequences of seismic phenomena. The
stakeholders for this kind of research activities are mainly government agencies inter-
ested in the management of national security aspects.

Seismology communities are typically focused on the following important topics:
first, to obtain as much information as possible about seismic events, collecting data
produced by seismic stations; second to build consistent geophysical wave propagation
models derived from such data. The latter allows us to understand both Earth’s surface
and mantle characteristics, as well as to generate realistic mathematical models that
are useful in estimating the effects of future seismic events. In order for this to be
realised, such geophysical models are typically compared against real measurements
obtained from seismic stations, in an iterative process. Such scientific computations
involve solving complex differential equations over potentially large sets of data, and
are therefore intractable, unless we rely on advanced, high-performance facilities, thus
creating the conditions for the scalability and sustainability of experimental runs.

To address the data-access issue, end-users must be provided with an adequate data
infrastructure, able to guarantee continuous availability of storage resources as well
as data management tools and metadata support. Such infrastructure must also ensure
that data access is effortless and transparent. EU funded projects such as EUDAT1 are
currently addressing some of these issues, exploring options and technologies within
the context of a collaborative, data-oriented network[1].

As a major contributor to the e-science environment of the European Plate Observing
System EPOS2, and in collaboration with other initiatives, such as EUDAT, VERCE
provides a service-oriented architecture delivering workflow tools and software ser-
vices, bringing HPC and HTC/data-intensive facilities and related scientific archives
under a single umbrella. VERCE is also actively following the progress of projects like
MAPPER3 and DRIHMS4, which deal with multi-scale applications (such as hydro-
meteorology) on European infrastructures, e.g. PRACE5 and EGI6. Although the scien-
tific problems differ, the infrastructural challenges faced by these projects are similar to
VERCE.

Focusing on the integration of the VERCE platform with HPC facilities, in this paper
we: (1) Present the VERCE project, its goals and the challenges it is designed to ad-
dress for the seismology community; (2) Present the proposed architecture, discussing
core design decisions mainly related to HPC integration and (3) Discuss the software
packages VERCE employs to meet its targets, including authentication and authorisa-
tion (AA), mechanisms for transparent job submission, integrating scientific solvers and
merging streaming and file-based computational models.

In the next section we present the workflow platform of choice and the scientific use-
cases that drive this ongoing effort, focusing on HPC-related scientific requirements.

1 http://eudat.eu
2 http://www.epos-eu.org
3 http://www.mapper-project.eu
4 http://www.drihms.eu
5 http://www.prace-ri.eu
6 http://www.egi.eu

http://eudat.eu
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In Section 3 we present the VERCE architecture, its core modules and components.
In Section 4 we discuss technologies involved and how these are orchestrated to-
wards addressing seismology computational challenges. Section 5 concludes this paper,
briefly discussing ongoing and future work.

2 Background and Rationale

The work of the modern scientist involves managing and working with large datasets,
typically distributed at remote sites, and accessible via different transfer protocols, se-
curity mechanisms, etc. Performing experiments and scientific analysis with these data
may generate more data, which in turn have to be managed, further analysed and fre-
quently be made available and shared within scientific communities, or more broadly
with the world. At the same time, scientists have access to increasingly powerful com-
puting facilities, e.g. PRACE and EGI, often away from their workplace, designed to
address different needs and computing requirements. In the majority of cases, the labo-
rious tasks of transferring and managing data and scientific codes is being orchestrated
manually by the scientist. We posit that the current state of affairs is hardly manage-
able and, more importantly, it hinders scientists from making full use of the data and
computing facilities they have at their disposal for scientific discovery.

Focusing on seismology, VERCE aims to provide a computation platform to the
modern scientist, enabling them to make use of data as well as computing resources in
a unified, efficient and tractable way. Further, in order to enhance the reproducibility
of the exploration of models and the analysis of observational and simulation data, we
require improvements in the automatic capture of relevant provenance information. This
provenance information will also be used to improve processing methods, including
making them more robust and efficient.

2.1 Dispel Scientific Workflows

VERCE addresses the above requirements by integrating HPC, data-intensive and stor-
age resources through a workflow-enabled software platform built around the Dispel
language. Dispel is a typed, streaming workflow specification language, one of the ma-
jor achievements of the ADMIRE project7[2,3].

At the core of Dispel modelling are logical units of computation referred to as pro-
cessing elements (PEs). PEs can be organised in packages according to their function-
ality and can be shared and made available throughout the VERCE platform. PEs can
be abstract or concrete (i.e. carrying associated implementations in conventional pro-
gramming languages) as well as they can be combined in composite PEs to express
arbitrarily complex functions. Workflows in Dispel are described by defining data flows
(streams) passing through PEs. Workflows are logical descriptions of the computation
to be carried out and are compiled, optimised and enacted by appropriate Dispel pro-
cessing services, also referred to as Dispel gateways.

Using such a workflow language potentially allows data-intensive engineers and sci-
entists to express scientific workflows at an abstraction layer closer to their cognitive

7 http://www.admire-project.eu

http://www.admire-project.eu
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level, thus focusing on the science rather than on complex technical issues. The VERCE
architecture comprises a number of distributed Dispel gateways (i.e. components able
to parse and enact Dispel workflows), each of which dealing with a number of known
local resources. Dispel gateways are connected in a network of peers, orchestrating the
deployment and execution of workflows in an efficient and tractable way.

VERCE innovates by combining the streaming model of Dispel with the file-based
model of modern HPC in order to provide seamless execution of seismology-related
workflows. In Section 4 we discuss some of the technologies and middleware integrated
in VERCE.

Related Workflow Systems. A number of workflow systems have been proposed and
are currently actively used, such as Pegasus8, Taverna9 and Kepler10. Such workflow
systems typically offer complete solutions for workflow processing, data and resource
management and monitoring, targeted at specific scientific communities. They come
with graphical workflow editors and science gateways. A review of workflow manage-
ment systems is outside the scope of this paper, however the interested reader can find
more information in [4, Chapter 2]. On the other hand, Dispel is a fine-grained workflow
specification language able to describe arbitrary workflows. It is currently supported by
OGSA-DAI, which acts as its data and execution engine, but it is also translatable to
other underlying execution engines and workflow systems, a direction we aim to ex-
plore within the lifetime of VERCE. Dispel is VERCE’s workflow language of choice
because of its stream-based design, thus providing maximum flexibility for addressing
the requirements of the seismological community.

2.2 Use Cases

Based on computing requirements, on the size and form of scientific data, consumed
and produced, and on current trends in seismology research, the development of the
VERCE platform is driven by the following two broad use-cases:

Forward Modelling and Inversion. Many workflows in seismology are centred
around the problem of simulating 3D wave propagation for earthquakes in Earth mod-
els. The forward modelling and inversion use-case entails a data-fitting procedure
of seismic observations by calculating complete 3D wavefields, comparing observa-
tions with synthetic seismograms, and iteratively updating Earth models through adjoin
techniques.

From a computational perspective, this use-case is characterised by: (1) the gener-
ation of synthetic seismograms as well as the inversion process use solvers (software
applications) that are computationally intensive and are thus most efficient when run on
HPC resources, e.g. PRACE. (2) Input data-sizes are typically smaller than in the cross-
correlation use-case, however, depending on the experiment, output data can range from

8 http://pegasus.isi.edu
9 http://www.taverna.org.uk

10 http://kepler-project.org

http://pegasus.isi.edu
http://www.taverna.org.uk
http://kepler-project.org
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Fig. 1. An overview of the Dispel workflow implemented in VERCE for the computation of syn-
thetic seismograms. The processing element responsible for HPC integration is emphasised.

tens of GBs to, potentially, tens of TBs, thus requiring efficient input/output (I/O) sup-
port. (3) Scientists typically need to interact during the execution of the workflow, when
the workflow would need to seemingly pause.

The forward modelling and inversion use-case is inherently HPC-centric, not least
because of current scientific practices. The technological requirements for addressing it
form the basis of the design presented in this paper.

Ambient Noise Cross-Correlation. The calculation of cross-correlation of ambient
noise, which is observed at a number of stations over arbitrary periods of time, consti-
tutes a second VERCE use-case. The computational requirements of this use-case can
be seen as primarily being data-intensive, due to the challenges in gathering and man-
aging multiple, potentially large, data traces as well as due to the desired integration
of the activity to local computational resources – therefore allowing for fine-grained
tweaking of the methods involved. This use-case is introduced for completeness and is
not within the scope of this paper.

In the remaining sections we focus on the forward modelling and inversion use-case,
and in particular on technology integration that allows for triggering component execu-
tion on arbitrary and remote HPC facilities from within Dispel streaming workflows.

2.3 Forward Modelling and Misfit Calculation

Figure 1 depicts an overview of the forward modelling and inversion use-case. This
part is representative of the complete use-case in that it combines data-intensive ele-
ments (in VERCE expressed in Dispel) with HPC computation. Dispel typically exe-
cutes on locally administered VERCE resources using a streaming model, i.e. without
generating files but rather pushing results along queues onto subsequent processing
elements11. Clearly, the presence of a job submission processing element implies the

11 In this context we use the term “processing element” loosely – each such processing element
may consist of a number of actual Dispel processing elements.
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de-serialisation of the stream into files. These files will form the input files for the pro-
cessing to take place at the HPC site. After the synthetics generation process has con-
cluded on the remote HPC site, the submission processing element will be responsible
for serialising output files and continuing further, in streaming mode.

3 Architecture Overview

The forward modelling and inversion use-case represents a complex workflow that re-
quires occasional human interaction based on which Earth models are improved. Many
of the steps are repetitive and can be automated. Pre-processing and post-processing
steps can take advantage of institutional resources of scientists or HTC resources, EGI,
in the case of big dataset. HPC resources from PRACE can be leveraged upon for
computation-intensive steps. The VERCE architecture (Figure 3) is designed so that
it achieves transparent coordination of all middleware components and applications of-
fered by existing e-Infrastructures and required by users. Exceeding technical details
are hidden from end-users. A science portal will be provided to handle complex au-
thentication and authorisation issues and varying working environments on different
e-Infrastructures – currently this is work in progress. In overview, Dispel gateways deal
with parsing Dispel workflows and expanding them into actual, enactable graphs. They
further orchestrate the execution of the workflow by forwarding parts of these graphs to
appropriate resources for deployment and execution. Dispel gateways are also respon-
sible for resolving and managing data and other resources required by the workflow
specifications. The management of locally known resources is achieved through ser-
vices such as OGSA-DAI, however the resolution and orchestration of foreign resources
can take place through negotiation between Dispel gateways.

Execution of simulation code on HPC machines is coordinated by the Dispel gateway,
which submits jobs using Globus (to LRZ SuperMUC machine) and UNICORE (to
CINECA PLX), through the JSAGA API12. Following submission, the HPC application

12 http://grid.in2p3.fr/jsaga

http://grid.in2p3.fr/jsaga
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codes (e.g. Specfem3D and SeisSol) are executed and output files are retrieved and
serialised before they are tunnelled back to the Dispel workflow for further processing.
It is important to highlight that these files, which mark the transitional stream/file points
in the workflow, will need to be stored (before serialisation) as close as possible to the
location Dispel processing takes place. Finally, when results of computation are made
available, these can be converted to files again and stored into appropriate VERCE data
archives, from where they can be accessed and pulled back for future computations, if
desired.

Before job execution can commence, input files, appropriate to the solver used, are
generated by the gateway, starting from a set of meshes and Earth-model properties
stored in the VERCE repository. The gateway, using appropriate processing elements
according to the solver of choice, assembles and forwards only input files and com-
mands for job execution to UNICORE and Globus, while the HPC application codes
are expected to have already been staged in the HPC.

Results produced from simulations can be considered as new datasets to be used by
other modelling applications or data analysis tools, allowing for further experimentation
and/or scientific replication and validation, as required.

3.1 Abstraction through the Use of Processing Elements

The Dispel gateway recognises processing elements (PEs) previously registered with the
system. Processing elements can be viewed as atomic, logical units for the execution
of individual tasks. For this discussion we only consider three of the most important
components for HPC integration (Figure 1): (1) Part of the first processing unit’s (pre-
processing) work is to produce input files for the simulation, starting with accessing
appropriate Earth models and meshes in relevant repositories; (2) The second, core HPC
PE (also analysed in Figure 3) is designed to submit jobs to external HPC resources (e.g.
to PLX), passing generated input files as arguments; (3) The third, part of the workflow
performs post-processing as well as stage-in and stage-out operations, retrieving output
files and optionally storing them to VERCE’s archive, before proceeding with additional
stream-based computations.

It is important to note that the components of Figure 1 are conceptual entities and
can be implemented and enacted in different ways.

Figure 3 shows the interaction between the core HPC PE and the job submission
middleware (UNICORE and Globus Toolkit) employed in the first VERCE prototype.
There are also other PEs, forming distributed programming libraries, each dealing with
a specific type of stream analysis task; however their compilation and management are
not within the scope of this paper.

3.2 Data Management

While offering long-term persistency and archiving capabilities is not within the scope
of VERCE – for such functionality we collaborate and investigate how best to integrate
our platform with other projects and initiatives, such as EUDAT and NERIES/EIDA13,

13 http://www.neries-eu.org

http://www.neries-eu.org
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Fig. 3. Schema of interaction between the Core HPC PE and middleware components

the federated data archive of the EPOS seismology community – mid-term persistency
and managing metadata pertaining to their scientific characteristics is a clear require-
ment. The solution currently under consideration within VERCE is a combination of
iRODS14, a distributed file management system, and a metadata store and management
service based on MonetDB15.

According to this design each VERCE scientific site maintains an iRODS store lo-
cated within its internal network as well as an installation of the MonetDB metadata
service. The VERCE iRODS sites can be interconnected and a number of replication
and other policies could be implemented in the near future through iRODS rules and
micro-services. By continuously monitoring its local iRODS store, the metadata ser-
vice will be extracting seismological metadata (such as station, geographical location,
channel, sampling rate, etc.) and indexing stored files against their corresponding meta-
data. Through the use of these technologies, the VERCE Dispel gateways will be able
to lookup and stream data based on searches against scientific metadata at minimal cost
to the researcher. At the same time, by replicating important scientific data across sites,
we ensure redundancy as well as proximity to computational resources.

An Example Scenario. As a means of providing further understanding with respect
to data handling and the size of transfers in the HPC use-case of VERCE, let us con-
sider a hypothetical scenario. A researcher has the task to generate synthetics, based on

14 https://www.irods.org
15 http://www.monetdb.org

https://www.irods.org
http://www.monetdb.org
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some Earth model. Consequently, the researcher has to calculate the misfit between the
generated synthetics and real data, a pivotal step for model tuning and improvement.

For generating synthetics for, say, 50 seismological events, the corresponding input
data (including the scientific model to be used, the event data themselves as well as
other relevant information) is of the order of tens to a few hundreds of MBs. After a
pre-processing phase, to take place on a local cluster in streaming fashion via Dispel,
this data would need to be serialised and transferred to an HPC site for the main task
of the generation of synthetics. The generated synthetics can range from hundreds of
MBs, in the case of 2D wave-fields, to hundreds of GBs, in the case of high-resolution
4D (3D in time) wave-fields.

For the final step, the generated data will need to be transferred to a cluster, where the
misfit calculation would take place. Supposing that the misfit will be calculated based
on 50 seismic stations during a time-window of 1hr, the additional data that would need
to be streamed from the VERCE data-management service to the cluster would be of the
order of a few tens of MBs. The outcome of this computation would be of a negligible
size, of the order of KBs, and it would be stored on the local data iRODS file-system,
allowing it to be replicated to other sites, not least the site from which the experiment
was initiated.

4 Technology Description

In this section we present and discuss software and middleware components currently
used in VERCE as well as our approach to interoperability and testing.

4.1 Applications

Each of VERCE’s software packages has first been proposed by VERCE partners as a
result of a prioritisation and analysis of the use-cases (introduced in Section 2.2), i.e.
pilot applications, data-management tools and specific data sets, and then validated in a
testing/monitoring campaign to spot and resolve possible issues relating to functionality
and performance.

Proper installation procedures have been identified on each contributed computa-
tional resource (i.e. HPC, Grid or private/institutional) of the VERCE testbed and for
each component. Compatibility and performance of the components have also been as-
sessed as part of this procedure. Highly scalable simulation codes such as Specfem3D
and SeisSol are found to be best compatible with HPC resources and have therefore
been deployed both on CINECA and LRZ HPC facilities, while analysis tools such as
ObsPy are better suited for institutional or privately-managed resources.

Specfem3D Specfem3D16 is one of the solvers used in forward and inverse simulations
to compute appropriate wavefields in two or three dimensions. In particular, the package
simulates seismic wave propagation at the local or regional scale based on the spectral-
element method (SEM). The SEM is a continuous Galerkin[5,6] technique which can

16 http://www.geodynamics.org/cig/software/specfem3d
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accurately handle very distorted mesh elements. The package, available under a GPL
license, is widely used within the seismological community and has won several awards.
All the software is written in Fortran2003 and employs parallel programming based on
the Message Passing Interface (MPI).

SeisSol SeisSol17 simulation software mimics seismic wave propagation in realistic
media with complex geometry. The code is able to incorporate complex geological mod-
els and accounts for a variety of geophysical processes affecting seismic wave propaga-
tion, such as strong material heterogeneities, viscoelastic attenuation and anisotropy.
The code is based on the ADER-Discontinuous Galerkin[7,8] method and has the
unique property of achieving arbitrarily high approximation orders for the solution of
the governing partial differential equations in space and time using three-dimensional
tetrahedral meshes. It is written in Fortran and, similar to Specfem3D, uses parallel
programming based on the Message Passing Interface (MPI).

ObsPy ObsPy18 is an open-source Python framework for processing seismological data
that includes typical processing routines, parsers for common file formats, etc.

4.2 The Middleware

While application environments, such as Specfem3D, are essential tools allowing to
perform advanced simulations, they do not include binding components to manage data
across resource groups, nor high-level APIs to perform job submission transparently
across platforms. In order to execute complex workflows transparently it is necessary to
introduce an additional software layer to our architecture. Behind interfaces and tools
exposed to any HTC or HPC infrastructure lies the grid middleware: a set of software
services that enable end-users to access distributed computing and data resources. Mid-
dleware tools, such as gLite, Globus Toolkit and UNICORE, allow geoscientists and
other researchers to execute jobs and to collect output scientific results.

Here we list the main middleware tools employed in VERCE.

– Globus Toolkit19 is a fundamental enabling technology for the “Grid” letting people
share computing power, databases, and other tools securely online across corporate,
institutional, and geographic boundaries without sacrificing local autonomy.

– gLite20, born as part of the EGEE Project, provides a framework, as an integrated
set of components, to build Grid applications and enable resource sharing.

– UNICORE621 (Uniform Interface to Computing Resources) offers a ready-to-run
Job submission system, including client and server software. UNICORE makes
distributed computing and data resources available in a seamless and secure way in
intranets and well as over the Internet.

17 http://www.geophysik.uni-muenchen.de/˜kaeser/SeisSol
18 https://github.com/obspy/obspy/wiki
19 http://www.globus.org/toolkit/
20 http://glite.cern.ch
21 http://www.unicore.eu
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– GridFTP22 (Grid File Transfer Protocol) The Globus GridFTP server and client
tools and libraries make up for a robust product suite designed to move large
amounts of data faster, more securely, and more reliably than standard FTP.

4.3 Interoperability Testing

Regarding VERCE’s HPC-related activities (addressing the forward simulation and in-
version use-case), the first interoperability tests executed by submitting jobs to UNI-
CORE and Globus using JSAGA APIs. In order to verify the middleware interoperabil-
ity, job submission tests were performed using a test Dispel gateway residing on Ed-
inburgh’s Data-Intensive Machine23, an official private VERCE resource. Sample jobs
were submitted to PLX and SuperMUC. Input files were transferred from the gateway
to HPC frontend nodes. The jobs were submitted to the UNICORE/Globus by using
JSAGA. The detailed procedures were described in the Dispel scripts. Finally, output
files were transferred back to the Dispel gateway via GridFTP before they were seri-
alised for further stream-based processing.

Specifically in the case of PLX, after job submission the job identifier is returned
from UNICORE to the gateway, in order for the gateway to be able to further retrieve
output files by concatenating the identifier with the PLX file system’s base path. Both
PLX and SuperMUC are provided with access to the CINECA/LRZ GPFS, where job
output files are stored. Once output files have been produced, the gateway finally moves
them to its local (or locally managed) working directory using GridFTP.

Authentication is performed through X509 certificates both for Globus and UNI-
CORE. This authentication process relies upon proxy certificates, since proxies are used
by default in Globus. As a consequence, the UNICORE Gateway has been re-configured
to support proxy mode so as to recognise the credentials.

Having designed and implemented the core functionality across the Dispel-execution
engine-middleware stack, we are now implementing more realistic and larger, in data
volume, test-cases for further testing.

5 Conclusions

At the end of the first year of the VERCE project, we are able to provide a concrete
proposal for a novel HPC platform for seismology applications and a first prototype
implementation. Thanks to VERCE’s platform, geoscientists will be able to execute
complex high-scale simulations of seismic events in a way which will improve our
knowledge about the Earth’s subsoil and predict effects and damages caused by earth-
quakes. This first prototype has been designed through extensive collaboration with a
diverse team of researchers, geoscientists and technologists, coming together to define
a service-oriented architecture able to offer tools for complex simulations execution as
well as transparent access to resources.

The testbed deployed is according to proposed methodology and is expected to fa-
cilitate the modelling of complex geophysical systems through a continuous loop of

22 http://www.globus.org/toolkit/data/gridftp
23 http://research.nesc.ac.uk/files/report.eps
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forward and inverse simulations. The methodology being addressed consists of a first
phase, where the seismic wave propagation is simulated, starting from the geophysi-
cal model, and onto a second phase where misfit calculation and subsequent inversion
leads to the improvement of models, iteratively. VERCE’s infrastructure facilitates this
closed-loop process by exploiting appropriate middleware tools. These tools allow for
jobs execution on remote HPC resources, collection of results and performing continu-
ous processing on data streams.

The design and development of the VERCE infrastructure is ongoing work. Having
specified and implemented a first prototype to perform the core desired functionality, we
are now actively working on additional required components. These include a scientific
gateway/portal for end-users to interact and submit their experiments, processes and
solutions to deliver a Dispel library of PEs for seismology tasks as well as integration
with data-oriented initiatives and projects in order to achieve sustainability in managing
data and meta-data.
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Abstract. Today’s high computational demands from engineering fields
and complex hardware development make it necessary to develop and
optimize new algorithms toward achieving high performance and good
scalability on the next generation of computers. The enormous gap be-
tween the high-performance capabilities of GPUs and the slow inter-
connect between them has made the development of numerical software
that is scalable across multiple GPUs extremely challenging. We describe
and analyze a successful methodology to address the challenges—starting
from our algorithm design, kernel optimization and tuning, to our pro-
gramming model—in the development of a scalable high-performance
generalized eigenvalue solver in the context of electronic structure calcu-
lations in materials science applications. We developed a set of leading
edge dense linear algebra algorithms, as part of a generalized eigensolver,
featuring fine grained memory aware kernels, a task based approach and
hybrid execution/scheduling. The goal of the new design is to increase
the computational intensity of the major compute kernels and to reduce
synchronization and data transfers between GPUs. We report the per-
formance impact on the generalized eigensolver when different fractions
of eigenvectors are needed. The algorithm described provides an enor-
mous performance boost compared to current GPU-based solutions, and
performance comparable to state-of-the-art distributed solutions, using
a single node with multiple GPUs.

1 Introduction

In the context of electronic structure problems in material science and chem-
istry, the solution of the generalized Hermitian-definite eigenvalue problem is
the most expensive task, dominating the entire computation [4, 20, 26]. In par-
allel electronic structure codes, many independent eigenvalue problems must be
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solved, allowing each problem to be solved independently on a different node.
In this work we are thus interested in dense eigensolvers, and in particular, for
generalized Hermitian-definite problems of the form

Ax = λBx, (1)

where A is a dense Hermitian matrix and B is Hermitian positive definite. Solv-
ing (1) requires the development of a number of routines. First, the matrix B
is decomposed using a Cholesky factorization into B = LLH , where H denotes
conjugate-transpose. The resulting L factors are used to transform (1) to a stan-
dard Hermitian eigenproblem Ãz = λz, where Ã = L−1AL−H . After solving the
standard Hermitian eigenproblem, the eigenvectorsX of the generalized problem
(1) are then computed by backsolving with the Cholesky factor, X = L−HZ. To
solve the standard Hermitian (symmetric) eigenproblem of the form Ãz = λz,
finding its eigenvalues Λ and eigenvectors Z such that Ã = ZΛZH, the standard
strategy follows three steps [1, 12, 24]. First, reduce the matrix to a tridiagonal
matrix T using an orthogonal transformation Q such that Ã = QTQH (called
the “reduction phase”). Note that when a two-sided orthogonal transformation
is applied to generate T , the eigenvalues of the tridiagonal matrix are the same
as those of the original matrix. Second, compute eigenpairs (Λ,E) of the tridiag-
onal matrix (called the “solution phase”). Third, back transform eigenvectors of
the tridiagonal matrix to eigenvectors of the original matrix, Z = QE (called the
“back transformation phase”). All of these steps are computationally expensive,
so we will develop an efficient multi-GPU implementation of each step.

2 Related Work

Solving the generalized eigenvalue problem is an active research field. Recently
many researchers have been interested in this area and have developed various
strategies, with a number of software implementations. The robust and conven-
tional software LAPACK [3] and ScaLAPACK [7] are for shared-memory and
distributed-memory systems, respectively. Recent work on symmetric eigenvalue
problems has concentrated on accelerating separate components of the solvers,
and in particular, the reduction to tridiagonal form, which is the most time con-
suming phase, and also the eigensolver. A new type of algorithm that challenges
the standard one-stage reduction algorithms has been introduced. The idea be-
hind this new technique is to split the reduction phase into two or more stages,
recasting expensive memory-bound operations that occur during the panel fac-
torization into compute-bound operations. One of the first uses of a two-stage
reduction occurred in the context of out-of-core solvers for generalized symmet-
ric eigenvalue problems [13]. Then, a multi-stage method was used to reduce
a matrix to tridiagonal, bidiagonal and Hessenberg forms [21]. Consequently,
a framework called Successive Band Reduction (SBR) was developed [5, 6]. A
multi-stage approach has also been applied to the Hessenberg reduction [18,19].
Tile algorithms have also recently seen a rekindled interest when applied to the
two-stage tridiagonal [15, 23] and bidiagonal reductions [22]. Their first stage is
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implemented using high performance kernels and asynchronous execution while
the second stage is implemented based on cache-aware kernels and a task coa-
lescing technique [15]. Recently, a distributed-memory eigensolver library called
ELPA [4] was developed for electronic structure codes. ELPA is similar to ScaLA-
PACK and does not support GPUs. It includes one-stage and two-stage tridiago-
nalizations, the corresponding eigenvector transformation, and a modified divide
and conquer routine that can compute the entire eigenspace or a portion of it.
These approaches, in contrast to our own, are not for hybrid GPU-CPU systems.

With the emergence of high-bandwidth, high-performance GPUs, memory-
bound and compute-bound operations can be accelerated by an order of
magnitude or more. Tomov et al. [29, 30] presented a hybrid CPU-GPU im-
plementation for the one stage reduction algorithms, which take advantage of
the high-bandwidth of the GPU by offloading the expensive Level 2 BLAS op-
erations to the GPU. Dong et al. [9] extended this to multi-GPUs. Haidar et
al. [16] developed a two-stage approach for multicore and a single GPU. The
main thrust of the work presented here is the extension of this two-stage ap-
proach to multi-GPUs.

3 Main Contributions

Besides the software development efforts that we investigate to accomplish an
efficient implementation, we highlight three main contributions related to the
algorithm’s design:

– Fine grained memory aware and computationally intense tasks.
Our approach to efficient hardware use and parallelism relies on splitting
the computation into tasks that either increase computational intensity or
reduce data movement. Two main issues should be taken into consideration
here. First, the task splitting and determination of granularity is essential for
obtaining high performance. Second, the data distribution among the CPUs
and GPUs should also be taken into consideration to minimize communica-
tion and achieve good performance.

– Hybrid multi CPU-GPU execution. Along with the computation split-
ting, a hybrid multi CPU-GPU implementation combined with task schedul-
ing is an indispensable ingredient for obtaining high performance algorithms.
We map computational tasks to the strengths of heterogeneous hardware
components and overlap computation on GPUs with computation on CPUs.

– A hierarchical multi-GPU communication model, which optimizes
communication for multi-GPUs and can be applied in general, beyond the
scope of the algorithms developed.

4 Hybrid Multi GPU-CPU Algorithm

In this section we describe our multi CPU-GPU algorithm, presenting a detailed
study to explain how we achieve good performance while dealing with a hetero-
geneous system. To make our description fruitfully interesting and clear we will
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also describe implementation issues and give performance results of each kernel’s
multi-GPU implementation. Before developing our kernels, we should pay atten-
tion to the communication schema that our algorithm will use, as communication
is an important component that affects any multi-GPU implementation.

4.1 Hierarchical Communication Model

As GPUs are well known for their high-performance capabilities and the rela-
tively slow interconnect between them, reducing communication or overlapping
communication with computation is critical in order to maximize the time GPUs
spend in compute-intensive kernels, and minimize the time spent only in com-
munication. To address the increase in communication when a large number
of GPUs are used together, we developed a hierarchical communication model.
Each PCIe switch connecting GPUs is viewed as a node in a distributed sys-
tem, with one GPU in each node assigned to be the master. Within each node,
GPUs communicate locally in a “free GPU-GPU mode” between the master
GPU and other GPUs; between two nodes, the master GPUs communicate to-
gether directly. This hierarchical communication model is easily adaptable to a
distributed environment, where communication between master GPUs of differ-
ent nodes should be done via the CPU using MPI.

4.2 Transformation from Generalized to Standard Eigenvalue

As described above, the transformation from a generalized to a standard
eigenvalue problem consists, first, in performing the multi-GPU Cholesky fac-
torization of B. We refer the reader to [31] for a detailed description of our
multi-GPU Cholesky implementation. Then, the resulting factor L is used to
compute Ã = L−1AL−H . This operation is equivalent to the xHEGST function
of the LAPACK library. We split this operation into three phases: (1) partially
compute a panel Ai (blue portion of Figure 1a), then (2) use it to update the
trailing matrix Ai+1:n (red and green portion) by a xHER2K, and finally (3)
continue the computation of the panel Ai (blue portion). Our multi-GPU algo-
rithm distributes the matrix A in a 1D column block cyclic distribution, thus
each GPU owns many blocks of A.

To optimize the code, phase 3 is delayed to the end of the computation, since
its final result is not needed by any of the subsequent steps i+1, i+2, . . . , while
the GPU that owns it also owns other blocks involved in the update phase 2,
so computing phase 3 at step i may delay the computation. To further reduce
the synchronization between steps, during the update phase 2, the GPU that
owns the next panel, Ai+1, will prioritize it and update it first, perform its
partial computation (phase 1), broadcast it to other GPUs, and then continue
the update of phase 2. In this way, while GPUs are updating (phase 2) at step
i, they will receive the next panel Ai+1 required to perform the next update
of step i + 1. Finally, once all updates are done, the GPUs will compute the
remaining phase 3 computation of their blocks independently, without requiring
any further communication.
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Fig. 1. (a) The multi-GPU xHEGST algorithm. (b) and (c) The ith step of the blocked
xTRSM. (d) the divide and conquer partitioning tree.

When the eigenvectors X are requested, the back transformation operation
X = L−HZ needs to be performed. This operation can be performed in a parallel
fashion where L−H is applied independently to each vector of Z. Thus, if we split
the matrix Z between the GPUs using a 1-D column block cyclic distribution,
as depicted in Figure 1c, while the stored factor L is in block rows as shown in
Figure 1b, then this operation can be performed independently by each GPU
as follows. Each block row of the matrix L is broadcast over the GPUs (e.g.,
the blue block of Figure 1b). Once received, each GPU perform two operations.
First, it computes Zi = L−H

ii Zi (red portion of Figure 1c), and then it updates
Z1:i−1 = Z1:i−1 − LH

i Zi (green portion). During these two operations the CPU
will broadcast the next Li+1 to all the GPUs, so as to overlap the copy and
the computation. The idea is to minimize the communication and overlap it as
much as possible. We represent in Figure 2a the speedup obtained over the 1-
GPU implementation by this multi-GPU implementation of this kernel when we
vary the matrix size from 2000 to 40000, and also as we increase the number
of GPUs from 2 to 8 GPUs. We see that this kernel asymptotically reaches
near-perfect scaling.

4.3 Hybrid Multi CPU-GPU Tridiagonal Reduction

Due to its computational complexity and data access patterns, the tridiagonal
reduction phase is the most challenging to develop, both algorithmically and
implementation-wise. There are two algorithmic approaches — the standard one-
stage approach from LAPACK [2], where block Householder transformations are
used to directly reduce the dense matrix to tridiagonal form, and a newer two-
stage (or more) approach, where block Householder transformations are used to
first reduce the matrix to band form, and a second, bulge chasing stage is used to
reduce the band matrix to tridiagonal [15]. The one-stage approach is well known
to be memory bound as it relies on symmetric matrix-vector multiplications (50%
of the flops).

The two-stage approach overcomes the memory-bound limitations of the one-
stage. The reduction to band is done very efficiently using Level 3 BLAS. In
particular, the dense matrix is first spread among the GPUs in a 1-D column
block-cyclic distribution. The panel that must be factored at each iteration is
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sent and factored on the CPU. The result is broadcast back to the GPUs and
used for their local updates. A look ahead techniques is used — that is, the next
panel to be factored is updated first and sent to the CPU for factorization while
the GPUs complete the rest of their updates. This allows us to overlap CPU and
GPU work. Moreover, all communication required during the update process is
performed in an efficient manner using our hierarchical model.

Figure 2b shows the performance and scalability of the multi-GPU reduction to
band. We see that this implementation of the two-stage approach provides good
scalability. For two and three GPUs the scalability is perfect, while for four GPUs
it approaches perfect scaling for a large matrix. For larger number of GPUs, it
would require larger matrices to be able to reach the asymptotic perfect behavior.
For example, if we split a matrix of size 20K over 8 GPUs, then each GPU will
hold a small portion of size 20K×2.5K, which is not enough to perform intensive
operations. The second stage that reduces the band matrix to tridiagonal is done
on the multicore host using a multi-threaded bulge chasing implementation. Fur-
ther detail can be found in Haidar et al. [14]. We observe that this multi-GPU im-
plementation of the reduction to tridiagonal provides a jump in the performance
compared to its one stagemulti-GPU counterpart, being approximately four times
faster than the one-stage approach.We will not detail more on this as the purpose
of this paper is the overall generalized eigensolver problem.
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Fig. 2. Speedup relative to one GPU for major components of generalized eigensolver

4.4 Flexible Multi-GPU Divide and Conquer Algorithm

Introduced by Cuppen [8], the divide and conquer (D&C) algorithm computes
the eigenvalues of the tridiagonal matrix T . Many serial and parallel Cuppen-
based eigensolver implementations for shared and distributed memory have been
proposed in the past [10, 11, 17, 25, 27, 28]. The overall D&C approach consists
in splitting the problem into two subproblems (son nodes) representing a rank-
one modification. Each of these subproblems is an independent problem without
any data dependencies with the other subproblems. This process is repeated
recursively, constructing a binary tree where the bottom nodes will have two
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independent sons of small size considered as two simple eigenvalue problems.
Then, on each parent node, merge the two subproblems (left and right son)
which are defined by a rank-one modification of a diagonal matrix, and proceed
to the next level in a bottom-up fashion.

To illustrate how our multi-GPU implementation is designed, let us describe
it for two subproblems. Let the matrix T of size n be split into two subproblems,
T1 of size n1 and T2 of size n2 = n−n1, as described in (2). Let the eigensolution

of those two sons be given by T1 = Ẽ1Λ̃1ẼT
1 and T2 = Ẽ2Λ̃2ẼT

2 , where (Λ̃i, Ẽi),
i = 1, 2 are the eigenvalues and eigenvectors pair of Ti. Assuming that (Ẽ0, Λ̃0)
are the eigenpairs solution of the system inside the bracket of (2), then Λ = Λ̃0

and E = ẼiẼ0 are the eigenpairs of T .

T =

(
T1 0
0 T2

)
+ ρvvT =

(
Ẽ1 0

0 Ẽ2

){(
Λ̃1 0

0 Λ̃2

)
+ ρuuT

}(
Ẽ1 0

0 Ẽ2

)T

=

(
Ẽ1 0

0 Ẽ2

)(
Ẽ0Λ̃0Ẽ0

T
)(Ẽ1 0

0 Ẽ2

)T

= EΛET

(2)

To find the eigensolution of each rank-one modified system M requires solving
its secular equation. This is a memory bound process that requires only O(n2)
operations, so in our implementation we keep this computation on the CPU
side, while the GPUs perform the multiplication of the intermediate eigenvector
matrices Ẽi.

The independent parallelism generated by the D&C approach allows us to
distribute each division over half of the GPUs recursively. For example, half of
the GPUs will compute the upper part of the eigenvectors (involvingE1), and the
rest the lower part (involving E2). This imposes a constraint on the number of
GPUs to be multiple of 2. The implementation could be generalized to deal with
any number of GPUs, but based on the way the eigenvectors are generated we
don’t expect this would give more improvement. We plot in Figure 2c the speedup
of this kernel for various matrix sizes when increasing the number of GPUs. When
the computing intensive kernels are performed on the GPUs, it reduces the time
to compute such expensive operations, and thus the time required to solve the
memory bound secular equation becomes dominant, so we can expect that the
performance of this kernel to have limited scalability. Nonetheless, the obtained
scalability remains very attractive. We also modified the algorithm such that
when only a portion of the eigenvectors are required, the multiplication is done
with only this portion, reducing the total amount of computation.

4.5 Back Transformation

In this section, we discuss the application of the Householder reflectors generated
from the two stages of the reduction to tridiagonal. The first stage reduces the
original Hermitian matrix Ã to a band matrix by applying a two-sided transfor-
mation to Ã such that Ã = Q1SQ

H
1 . Similarly, the second stage (bulge chasing)

reduces the band matrix S to tridiagonal by applying the transformation from
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Fig. 3. (a) Tiling of V1, (b) Blocking technique to apply V2, (c) Distribution of the
eigenvectors matrix that create independent fashion of applying Q2 which increase
locality per core, (d) Portion of the DAG showing the dependency of the V’s of V2

both the left and the right side to S such that S = Q2TQ
H
2 . Thus, when the

eigenvectors matrix Z of Ã are requested, the eigenvectors matrix E resulting
from the eigensolver needs to be updated from the left by the Householder re-
flectors generated during the reduction phase, according to

Z = Q1Q2E = (I − V1t1V
H
1 )(I − V2t2V

H
2 )E, (3)

where (V1, t1) and (V2, t2) represent the Householder reflectors generated during
the reduction stages one and two, respectively.

The application of the V2 reflectors is not as simple as the application of V1,
and requires special attention. We represent the V2 in Figure 3b. Note that these
reflectors represent the annihilation of the band matrix, and thus each is of length
nb, where nb is the bandwidth size. A naive implementation would take each
reflector and apply it to the matrix E. Such an implementation is memory bound,
relying on BLAS 2 operations and thus gives poor performance. However, if we
want to group them to take advantage of the efficiency of BLAS 3 operations, we
must pay attention to the overlap between them and that their application must
follow the specific dependency order of the bulge chasing procedure in which
they were created. Let us give an example that explain those issues. For sweep
i (e.g., the column at position S(i,i):S(i,i+nb)), its annihilation creates a set of
k Householder reflectors vki , each of length nb represented in column i of the
matrix V2 depicted in Figure 3b. Similarly, the ones related to sweep i + 1 are
those presented in column i+1. They are shifted one element down compared to
those of sweep i. After analyzing the dependencies of the bulge chasing procedure
as explained by the example above, we notice that we can group the reflectors
vki from sweep i with those from sweep i+1, i+2,..., i+ l to apply them together
using a blocked technique according to the diamond shape region as defined
in Figure 3b. While each of those diamonds is considered as one block, their
application needs to follow the dependency order. For example, applying the
green block 4 and the red block 5 of the V2’s in Figure 3b modifies the green
block row 4 and the red block row 5, respectively, of the eigenvector matrix E
drawn in Figure 3c, where we can easily observe the overlapped region. According
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to the chasing order, block 4 needs to be applied before block 5. We have drawn
a sample of those dependencies by the arrows in Figure 3b. For clarity, we also
represented them by the DAG in Figure 3d. A little effort studying the pattern of
dependencies of this DAG leads us to the conclusion that designing an algorithm
based on such schema provides a very limited number of parallel and pipelined
tasks. Despite all of those constraints, a nice feature to create efficiency is that,
if we design our parallelism based on the matrix E, where we split E by block
column over the number of cores/GPUs as shown in Figure 3c, then we can apply
each diamond block independently to each portion of E. Moreover, this way does
not require any data communication between GPUs. The overlap between each
application of V ’s as described above increase the cache reuse. For the CPUs,
we also define the size of the block of E in a way to fit more than one region of it
in the L2 cache level to increase locality. We implemented a new kernel to deal
with these diamonds to increase the cache reuse and overlap the communication
to the GPUs. These blocks are broadcast to the GPUs in a look ahead fashion,
meaning that when GPUs are using the block V m

2 to update their portion of E,
the CPU broadcasts the next V m+1

2 in a overlapped technique.
The application of V1 to the resulting matrix from above,G = (I − V2T2V

T
2 )E,

can be done easily. First, there is no overlap between the different V1’s. Second,
they can be blocked as shown in Figure 3a. Thus their application is comput-
ing intensive and involves efficient BLAS 3 kernels. Using the same parallelism
design, the V1 can be applied independently to each block column of Figure 3c,
which are now the block of G and thus the distribution remains the same. This
operation does not require any communication between GPUs or between the
previous kernel (apply V2) and the current kernel (apply V1). Similarly, each
block of V1’s is broadcast over the GPUs in a look ahead fashion. This im-
plementation is independent and very suitable for parallel and heterogeneous
implementation, especially when communication is expensive. Speedup results
for matrices raising from 2000 to 40000 when varying the number of GPUs are
presented in Figure 2d, showing a very good speedup is obtained.

5 Experimental Results

The eigensolver presented in this paper was tested on an experimental machine
offering a dual-socket six-core Intel Xeon 5675 running at 3.07 GHz, with 48
GB of main system memory and 8 NVIDIA Fermi M2090 GPUs. We tested
the distributed memory libraries on a tightly coupled computing cluster sys-
tem, offering nodes based on the dual-socket six-core Intel Xeon 5650 processor
architecture, running at 2.6 GHz, with 24 GB of main system memory per node.

5.1 Accuracy Analysis

We mention that the only difference, numerically, between our algorithm and the
LAPACK algorithm is that we use a two-stage algorithm for the reduction to
tridiagonal. The reduction to tridiagonal relies on the Householder elimination,
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which has been proved to be backward stable and accurate, and hence we expect
the same accuracy as LAPACK. Our implementation of the divide and conquer
is based on the main Cuppen algorithm and is exactly the same as the one
implemented in the LAPACK library. All of our experiments obtained the same
order of accuracy as that computed by the LAPACK solver, using the metrics
described in the LAPACK Users’ Guide [2].

5.2 Performance Scalability

We performed an extensive study with a large number of experimental tests to
give the reader as much information as possible. We computed the eigenpairs
of the generalized eigenvalue problem, varying the size of matrices from 2000 to
40000 and varying from 1 to 8 GPUs. Figure 4a shows the speedup obtained by
our hybrid multi-GPU symmetric generalized eigenvalue solver as compared to
its one GPU implementation. As expected, the speedup performance obtained
has a similar trend to the ones presented above in Figure 4 for each kernel of
the algorithm. Strong scalability is observed as, for a fixed matrix size, when we
increase the number of GPUs the time should decrease linearly. The results show
a very good scalability for our implementation on such an heterogeneous hybrid
system with a huge computing intensive component (8 GPUs) connected to it.
We can see that although some kernels of this algorithm are strictly multicore
CPU implementations (the bulge chasing and the secular equation solver), our
hybrid multi-GPU implementation provides a very attractive scalability. On four
GPUs, our approach is able to run three times faster than on one GPU, which is
considered to be very good scalability. On a larger number of GPUs, it requires
large matrices to be able to see the asymptotic scaling behavior.
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Leading Edge Multi-GPU Algorithms for Generalized Eigenproblems 77

5.3 Performance Results

We compare the performance of our hybrid multi-GPU eigensolver against the
optimized state-of-the-art numerical linear algebra library ScaLAPACK, and
the ELPA library, using both the one stage and the two stage reduction. We
ran tests for ELPA and ScaLAPACK for various problem sizes, while varying
the number of processors from 24 to 240. The results reported here are the best
results achieved. In our tests we found that both one stage and two stage ELPA
implementations show good scalability compared to ScaLAPACK; the required
time decreases three times when increasing the number of processors from 48 to
192. We also found that the two-stage approach of the ELPA solver was faster
than its one-stage approach for any number of nodes and any percentage of the
eigenvectors requested, and so we omit results of the one stage of ELPA from our
graphs. Figure 4b shows the time needed for all the solvers to find the solution
of the generalized eigenvalue problem for a matrix of size 20000. For ScaLA-
PACK and ELPA, we give results on four nodes, each dual-socket six-core (48
processors), and also on 16 nodes (192 processors), which have reasonable time
compared to our multi-GPU solver. These distributed and GPU-based systems
have comparable peak matrix-matrix multiply performance: 48 processors has
460 Gflop/s peak, compared to 500 Gflop/s using 12 cores plus one GPU, while
192 processors has 1.9 Tflop/s peak, compared to 1.6 Tflop/s using 12 cores plus
four GPUs. Comparing to our approach, we can see that, to solve the generalized
eigenvalue problem computing all (100%) of its eigenpairs, the time needed by
ScaLAPACK on 192 processors and by the ELPA implementation on 48 proces-
sors is very close to the time needed by our hybrid multi-GPU solver running
with only one GPU. Similarly, the time needed by the ELPA solver running on
192 processors is similar to the time needed by our multi-GPU solver running
on only four Fermi GPUs. This behavior has also been observed for other ma-
trices size, in particular, for a matrix of size 30000, the ELPA solver running
on 192 cores requires 327 seconds to find all of its eigenpairs, while our hybrid
multi-GPU solver running with four Fermi GPUs needs 314 seconds. These re-
sults show that with only a small numbers of devices, an efficient multi-GPU
implementation can achieve as much speed as one of the best solvers on 192
processors.

As many applications need only a portion of the eigenvectors, we also present
in Figure 4b the comparison with the ELPA solver when only 20% of the eigen-
vectors are needed. The trend shown here is again similar to the performance
shown when all the eigenpairs are computed. For example, for matrices of size
20000 and 30000, the ELPA solver running on 192 processors requires 63 seconds
and 218 seconds respectively, while our solver running on four GPUs requires
57 seconds and 174 seconds respectively. We note here that when a fraction of
the eigenvectors are computed, both our approach and the two stage ELPA are
significantly faster than the one stage approach implemented in either ELPA or
ScaLAPACK.
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5.4 Real Electronic Structure Application

We did preliminary experiments in the context of a real electronic structure ap-
plication. We performed a ground state computation for the Eu6C60 compound
with the density functional method. The density functional calculations was done
with a new prototype of a linearized augmented plane wave (LAPW) library [].
During each iteration a generalized eigenvalue problem of size 25383 in double
complex precision, requiring the 1335 eigenvectors with the lowest eigenvalues,
has to be solved. We note that this latter consists of 67% of the total itera-
tion time when solved on a distributed system and could be decreased down to
around 20% when solved with our multi-GPU implementations meaning that
the time per iteration could be speeded up 3 to 4 times.

The experiment has been done on a cluster of Intel XeonE5-2670 (SandyBridge)
2.6 GHz processors. The time required to perform each iteration using the ScaLa-
pack library is 787 and 263 seconds using 64 and 256 MPI processes, respectively.
Of that, 525 and 175 seconds, respectively, are spent solving the generalized eigen-
value problem (67% of the time per iteration). Using only one node (consisting of
16 processors of the same type) with 4 Nvidia K20 GPUs, we were able to reduce
the time of the generalized eigensolver to 145 seconds, which will provide a huge
boost. The total number of iterations needed depends on the compound and on
the mixer used, and usually it varies between 20 and 100 iterations.

6 Conclusions and Future Directions

We demonstrated that it is possible to develop efficient and scalable algorithms
for heterogeneous systems with an enormous gap between their computing power
and interconnection bandwidth. Our hybrid multi-CPU-GPU implementation
demonstrated very promising results in terms of performance as well as in terms
of scalability on heterogeneous architecture systems. It has been extensively
tested using different matrix types and many parallel configuration against other
well-known generalized symmetric eigenvalue solvers. The performance obtained
is very encouraging. These results show the impact of our work on applications,
especially the field of electronic structure computations where a large number
of dense generalized eigenvalue problem need to be solved in the solution of
Schrödinger equation, thus the choice of a suitable method is of great impor-
tance. We believe that these techniques will only increase in relevance for up-
coming architectures.We plan to further study the implementation of multi-GPU
algorithms in a distributed computing environment.
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Abstract. In this work, we discuss the porting to the GPU platform of
the latest production version of the Gyrokinetic Torodial Code (GTC),
which is a petascale fusion simulation code using particle-in-cell method.
New GPU parallel algorithms have been designed for the particle push
and shift operations. The GPU version of the GTC code was bench-
marked on up to 3072 nodes of the Tianhe-1A supercomputer, which
shows about 2x–3x overall speedup comparing NVIDIA M2050 GPUs to
Intel Xeon X5670 CPUs. Strong and weak scaling studies have been per-
formed using actual production simulation parameters, providing insights
into GTC’s scalability and bottlenecks on large GPU supercomputers.
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1 Introduction

The global gyrokinetic toroidal code (GTC) [1] is a massively parallel particle-in-
cell code for first-principles, integrated simulations of the burning plasma exper-
iments such as the International Thermonuclear Experimental Reactor (ITER)
[2], the crucial next step in the quest for the fusion energy. The GTC code has

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 81–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



82 X. Meng et al.

grown over the years from a single-developer code to a prominent code being
developed by an international collaboration with many users and contributors
from the magnetic fusion energy and high performance computing communities.
GTC is the key production code for the multi-institutional U.S. Department
of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC)
project, Gyrokinetic Simulation of Energetic Particle Turbulence and Transport
(GSEP) Center, and the National Special Research Program of China for ITER.
GTC is currently maintained and developed by an international team of core
developers who have the commit privilege, and receives contributions through
the proxies of core developers from collaborators worldwide [3].

The GPU version of the GTC code reported in this paper, GTC-GPU, has the
same physics capability and parallel scalability of the current production version
of GTC originally written in Fortran. GTC continuously pushes the frontiers of
both physics capabilities and high performance computing. At present, GTC is
the only fusion code capable of integrated simulations of key physical processes
that underlie the confinement properties of fusion plasmas, including micro-
turbulence [4–7], energetic particles instabilities [8–11], magnetohydrodynamic
modes [12], and radio-frequency heating and current drive.

GTC is the first fusion code to reach the teraflop in 2001 on the Seaborg
computer at NERSC and the petaflop in 2008 on the jaguar computer at ORNL
in production simulations, and to fully utilize the computing power provided by
CPU and GPU heterogeneous architecture on Tianhe-1A.

There have been some other recent works on porting PIC (particle-in-cell)
codes with simplified physics models to GPU for proof of principles. Decyk et
al. [13] discussed a new 2D PIC code with data structures optimized for GPU.
Burau et al. [14] discussed the PIConGPU code, a GPU PIC code developed
for fast-response simulations of laser-plasma interaction. Stanchev et al. [15]
focused on optimizing the particle-to-grid interpolation kernel. Rossinelli et al.
[16] focused on optimizing the grid-to-particle interpolation kernel. In contrast,
the GTC-GPU reported in this paper is a current production version and the
benchmark simulations use actual physics simula-tion parameters [6,7].

The most relevant to the current work is the work of Madduri et al. [17,18], who
discussed the porting of an earlier version of GTC to GPU. They concluded that
GPU was slower than CPU for their version of GTC, which only include kinetic
ions with adiabatic electrons. However, we use the latest version of GTC includ-
ing new important features for a realistic turbulence simulation, such as kinetic
electrons and general geometry. We also employ a set of realistic experiment pa-
rameters suitable for simulating plasma turbulence containing both kinetic ions
and kinetic electrons [6,7]. As a result, our version contains more routines, espe-
cially the computing-intensive module for the electron physics. We also designed
new GPU parallel algorithms for the PUSH and SHIFT operations, which are the
twomost dominant operations in our profiling.TheGTC-GPU shows a 2x–3x over-
all speedup comparing NVIDIAM2050 GPUs to Intel Xeon X5670 CPUs on up to
3072 nodes of the Tianhe-1A supercomputer. Preliminary test run of the GTC-
GPU on a small number of nodes of the Titan at ORNL shows a similar speedup.
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2 Experimental Platform: Tianhe-1A

All the benchmark runs in the following sections were performed on the Tianhe-1A
supercomputer. In this section, we introduce the Tianhe-1A supercomputer which
is a hybrid massively parallel processing (MPP) system with CPUs and GPUs.
Tianhe-1A is the host computer system of National Supercomputer Center in
Tianjin (NSCC-TJ).

The hardware of Tianhe-1A consists of five components: computing system,
service system, communication system, I/O storage system, monitoring and diag-
nostic system. Its software consists of operating system, compiling system, paral-
lel programming environment and the scientific visualization system. Tianhe-1A
includes 7168 computing nodes. Currently, each computing node is equipped with
two Intel Xeon X5670 CPUs (2.93 GHz, six-core) and one NVIDIA Tesla ”Fermi”
M2050 GPU (1.15 GHz, 448 CUDA cores). The GPU offers 3 GB GDDR5 mem-
ory on board, with the bus width of 384 bits and peak bandwidth of 148 GB/s.
The total memory of Tianhe-1A is 262 TB, and the disk capacity is 4 PB. All
the nodes are connected via a fat tree network for data exchange. This communi-
cation network is constructed by high-radix Network Routing Chips (NRC) and
high-speed Network Interface Chips (NIC). The theoretical peak performance of
Tianhe-1A was 4.7 PFlops, and its LINPACK test result reached 2.566 PFlops.
Moreover, the power dissipation at full load is 4.04 MW and the power efficiency
is about 635.1 MFlops/W, which was ranked the fourth highest according to the
Green 500 list released in 2010. The whole system power of Tianhe-1A is 4.04
MW with 7168 nodes. So the average power consumption per node is 564 W,
which has 2 CPUs and 1 GPU. Using the single CPU power 95 W and single
GPU power 200 W, we can then roughly estimate the per node power of using
only the CPU or the GPU by subtracting the unused processor power from the
total power data.

3 GPU Acceleration

To simulate electron turbulence, we need many subcycles to track the fast elec-
tron motion [6,7]. As a result, typically the electron push routine PUSHE takes
about 50–70% of the total time while electron shift routine SHIFTE takes about
10–20% of the total time. So those two routines were our focus in the GPU
porting so far. We used the CUDA C programming language for the GPU port
[19]. The strategy of incremental migration to GPU also allow physics users to
immediately utilize the new GPU acceleration while further upgrades of physics
capabilities and computing power are continuously implemented in the code.
This ensures that the GTC-GPU always remains as the current production ver-
sion shared by all developers and users.

3.1 Pushe

There are two time-consuming loops in PUSHE. The first loop gathers fields
at grid point to every electron’s positions (electric fields in electrostatic case
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and electromagnetic fields in electromagnetic case). The second loop updates
electrons’ positions based on the gathered fields. Those two loops were mapped
to two kernels in the CUDA version: gather fields and update gcpos.

The parallelization scheme and optimization of those two kernels are actually
very similar so we will focus on discussing the gather fields kernel below.

The field gathering loop is highly parallel: the calculations of every particle are
completely independent of other particles. Thus a straightforward one thread per
particle scheme was used to parallelize the loop. As a result, the CUDA porting
of the gather loop is fairly straightforward: just replace the loop statement over
all electrons by a thread index calculation and then put all the loop body into a
CUDA kernel, which won’t need much change itself.

 

Fig. 1. Field gathering code in the original CPU (left) and CUDA version using texture
prefetch (right)

 

Fig. 2. Reorganizing gradphi and phit arrays into a single array

In this initial CUDA version, kernel profiling showed that the bottleneck is in
the reading of fields, part of which is shown in Fig. 1. In this code segment, each
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particle gathers the gradphi and phit fields surrounding its hosting cells. As neigh-
boring particles in the particle array do not necessarily belong to the same cell,
this gathering operation is potentially highly uncoalesced, which may lead to a lot
of wastedmemory transactions on GPU [19]. Furthermore, the linear memory lay-
out of GPU’s L1 cache is not a good fit to the higher dimensional locality nature of
3D particle position. GPU has a special cache called texture which is optimized for
2D spatial locality. As a result, binding the gradphi and phit arrays to texture will
improve the performance by about 20%. However, if just doing this code change,
the texture cache hit rate turns out to be fairly low: about 8%. Analyzing the field
gathering code suggests that if both arrays can be prefetched to the texture cache,
the cache hit rate may be significantly increased. To achieve this, gradphi and phit
arrays are first reorganized into a single array (Fig. 2) so that the data needed for
a thread is laid out continuously in memory. Second, as each gathering operation
needs to load 6 floats in gradphi and 2 floats in phit, the reorganized array was
bound to a float4 texture. In this way, 2 float4 texture fetch to 2 float4 register
variables would be enough for all the data a field gathering operation needs. This
texture prefetch technique increased the texture cache hit rate from 8% to 35%,
which led to 3x kernel performance increase. The final kernel is memory-bound
and achieves about 65% of the peak memory band-width. It worth commenting
that, as the gather fields kernel is called many times every time gradphi and phit
are updated, the data reorganization overhead is negligible.

Another key optimization technique in PUSHE is minimizing CPU-GPU data
transfer. As a complicated plasma physics code, several dozen arrays are needed
for the PUSHE calculation. If all the arrays were transferred from CPU to GPU
at the beginning of PUSHE and back at the end, CPU-GPU data transfer time
would totally dominate the PUSHE time. To avoid this, careful analysis of the
data flow in PUSHE was performed. Based on the analysis, there are several
optimizations one can do to minimize CPU-GPU data transfers. First, for tem-
porary arrays that are used only inside PUSHE, they can be allocated, used and
deallocated directly on the GPU. Second, some temporary arrays in the CPU
version are used only within a single kernel. In this case, they can be replaced
by register variables, instead of explicitly allocated. Third, there are some ar-
rays whose values are initialized at simulation initialization time and will never
change during the whole simulation, e.g. arrays describing grid geometries. Thus
those arrays were declared as static variables in PUSHE and data are transferred
from CPU to GPU only when calling the routine for the first time. After those
optimizations, as can been seen in the next section, CPU-GPU data transfer
time will not be a significant fraction.

3.2 Shifte

SHIFTE contains both computation and MPI part. The computation part con-
tains two major steps:

1. Figure out which particles need to be transferred outside of the current MPI
process and then copying outgoing particles to separate send buffers.
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2. Fill in the ”holes” in the particle array left by outgoing particles so that
particles are always stored continuously in memory.

The two computational part is actually not very expensive on CPU: both steps
basically needs only a single O(N) transversal of the particle array. The opera-
tion itself has also nontrivial sequential part: only after all the previous outgoing
particles are processed, one can know where to put the next outgoing particle.
Thus it’s expected that the porting of SHIFTE to GPU is nontrivial and proba-
bly won’t see the significant kernel speedup as compared to PUSHE due to the
low compute intensity and nontrivial parallelism.

However, porting SHIFTE to GPU is important for the overall performance
of the GPU code. If SHIFTE stays on CPU, one needs to transfer all the particle
positions to CPU as we don’t know which particles are outgoing. This was ac-
tually our first implementation. It turns out that in this case data transfer will
be a significant overhead. On the other hand, if one can figure out the outgoing
particles on GPU, then only outgoing particles need to be transferred back to
CPU, which is typically a small fraction. Thus if SHIFTE was not ported to
GPU, it will be much slower than the CPU version. So the major purpose of
porting SHIFTE is really to get a GPU version that is not slower than the CPU
version so SHIFTE will not become a bottleneck.

Flagging which particles are outgoing is straightforward to do in parallel. One
can just assign one thread per particle for this calculation. After this step, a
flag array is produced whose elements will be one if the corresponding particle is
outgoing and zero otherwise. However, writing outgoing particles to a continuous
buffer is nontrivial to implement in parallel: the key difficulty is that each out-
going particle needs to know the number of outgoing particles are before itself,
which will be used as its output position in the send buffer. However, the number
of outgoing particles is determined during runtime. So the key is to figure out a
parallel algorithm for finding out the number of outgoing particles before each
outgoing particles. Scan is the usual parallel primitive to solve this problem [20].
If one performs an exclusive scan of the flagging array, the corresponding scan
result will be just the output positions in send buffer. This was used as the first
version in our GPU SHIFTE implementation. However, this version turns out to
be about 2x slower than the CPU version. Profiling shows that the bottleneck is
in the scan operations as expected. A parallel scan needs to traverse the particle
array many times [20]. So the GPU version turns out to be slower than the CPU
version since the CPU version only needs to traverse the array once.

To overcome this problem, we adapted the hierarchical scan solution to stream
compaction problem [21]. This approach can avoid the need to traverse the
particle array multiple times. The basic idea is dividing the operation into 3
steps:

1. First the ballot warp vote function is combined with the intrinsic integer
instruction popc to implement a very fast intra-warp scan routine. Then
the position array is divided to groups of 32 in size (the same size as a CUDA
warp). Next the intra-warp scan routine is applied to each group and it writes
the number of outgoing particles of each group into an outgoing count array.
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2. Performing a scan of the outgoing count array, writing the results to a
global offset array. The key now is to realize that the i-th element of the
global offset array now stores the number of outgoing particles before the
i-th group.

3. Applying the intra-warp scan routine to each group again to calculate the
intra-warp offset. Finally, adding the global offset to the intra-warp offset
would give the global output positions of each outgoing particles.

Note that in step two, as the global offset array is only 1/32 of the size of the
particle array, this scan will be much faster than our first scan-based implemen-
tation, which is the key for the higher performance. It is also worth mentioning
that as the outgoing particles are divided into left and right directions, these
steps need to be performed for both the left and right outgoing particles simul-
taneously. The hole filling part of SHIFTE is handled in a similar scan-based
way, so it won’t be discussed in detail here.

4 Results and Analysis

In this section, we present the performance of GTC on Tianhe-1A.

4.1 Medium Scale Benchmark Problem

We carried out the performance study using the typical collisionless trapped
electron (CTEM) turbulence [6,7] parameters in a production run for a medium
size tokamak, α = 250ρi, where α is the tokamak minor radius and ρi is the ion
gyroradius. There are in total 2 billion ions and 0.83 billion electrons for this
medium size problem.

For this benchmark, we launch 128 MPI processes on 128 nodes of Tianhe-1A.
In the CPU case, each MPI process launches 6 OpenMP threads to utilize all the
6 cores of a single CPU within a node. In the GPU case, each MPI process still
launches 6 OpenMP threads for the CPU computation while uses the M2050
within each node to accelerate the electron calculation.

Table 1 shows the total time (”loop”) and profile of different modules in GTC.
The first two columns show the time and fraction of the CPU version using 128
CPUs while the next two columns show the corresponding numbers for the 128
CPUs + 128 GPUs runs. The last column reports the overall speedup, as well as
speedup of the modules that has been ported to GPU. The GTC GPU version
gets about 3.1x speedup comparing 128 CPUs + 128 GPUs to 128 CPUs. The
results demonstrate that our GPU acceleration of GTC can deliver significant
application performance increases. The GPU accelerated routine PUSHE actu-
ally got about 8x speedup. It is just because of Amdahl’s law the overall speedup
is lower.

To understand in more details the GPU performance, Table 2 shows the pro-
file of the GPU PUSHE routine. In this table, ”h2d” refers to the CPU-GPU
transfer time; ”d2h” refers to the GPU-CPU transfer time; ”init” refers to mem-
ory allocation, free and initialization time; ”cpu” refers to computations that
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Table 1. Profile of the CPU and GPU version for 128 MPI processes run

128 CPUs (second) %
128 CPUs +
128 GPUs (second)

% Speedup

loop 522.25 100 168.28 100 3.1
field 0.63 0.12 0.66 0.39
ion 54.4 10.42 54.6 32.45
shifte 84.6 16.20 51.8 30.78 1.6
pushe 365.4 69.97 44 26.15 8.3
poisson 4.4 0.84 4.4 2.61
electron other 12 2.30 12 7.13
diagnosis 0.82 0.16 0.82 0.49

Table 2. Profile of the GPU version PUSHE for 128 MPI processes run

elapsed time (second) %

total 43.99 100
kernel 32.5 73.9
h2d 2.75 6.3
d2h 3.16 7.2
init 1.11 2.5
cpu 4.35 9.9
mpi 0.12 0.3

are still performed on CPU. It can be seen that about 74% of the PUSHE time
is spent in the kernel computations. This shows that PUSHE spends most of
its running time doing actual computations instead of communication and other
overheads. Within the kernel time, 50% of the time is spent in the gather fields
kernel and 36% of the time is spent in the update pos kernel. So those two kernels
will be the primary target for future optimizations. About 13.5% of the PUSHE
time is spent in CPU-GPU data transfer. This shows that our optimizations in
minimizing data transfer were successful and it is not a bottleneck of the GPU
implementation.

For SHIFTE, with the new hierarchical scan method, the GPU version per-
formance is about 1.6x of the CPU version. As our initial purpose of porting
SHIFTE is to make it not slower than the CPU version so we can avoid the
expensive data-transfer cost, this result exceeded our initial goal.

4.2 Strong Scaling Results

For the strong scaling study, we use the same medium size problem as in section
4.1, but vary the number of cores in the simulation.
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As Tianhe-1A has 2 CPUs and 1 GPU within each compute node, 2 sets of
strong scaling studies were performed. The first set uses 1 CPU and 1 GPU
within a node (1 CPU + 1 GPU) while the other set uses 2 CPUs and 1 GPU
within a node (2 CPUs + 1 GPU). We think both sets are interesting because
the first set is the typical way of discussing GPU acceleration result while the
second set would be the practical benefit that a Tianhe-1A user will get.

For both sets, the number of MPI processes launched is equal to the number
of nodes used. Six OpenMP threads were launched for the first set while twelve
OpenMP threads were launched for the second set.

 

Fig. 3. Performance of CPU and GPU GTC on Tianhe-1A. From bottom to top, the
lines correspond to each nodes use 1 CPU, 2 CPUs, 1 CPU + 1 GPU and 2 CPUs +
1 GPU

Fig. 3 shows the total time for those runs. The x-axis shows node number while
the y-axis shows billion electrons pushed per second. It is worth commenting that
the reason strong scaling experiment used up to 512 nodes is because weak scaling
is more relevant in practices than the strong scaling since we typically use more
cores for simulations of a larger problem size (i.e., roughly constant wall-clock
time for each simulation). For the modest problem size in the strong scaling plot
of Fig. 3, typically less than 512 nodes are used in the production runs. It can
be seen that for a fixed node count, if comparing the CPU version performance
in those two sets, going from 1 CPU to 2 CPUs in each node leads to about 1.5x
speedup. On the other hand, the differences in the GPU performance are much
smaller because most of the application time is spent on GPU so additional CPU
computation power won’t help much in improving overall performance.

Fig. 4 shows the GPU speedup factor in those two sets. One thing to notice is
that the speedup factor will decrease at large node counts: e.g. from 3.1x at 128
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Fig. 4. GTC GPU speedup on Tianhe-1A. The blue line is comparing 1 CPU + 1 GPU
to 1 CPU per node while the red line is comparing 2 CPUs + 1 GPU to 2 CPUs per
node.

Table 3. Profile of the CPU and GPU version for 512 MPI processes run

512 CPUs (second) %
512 CPUs +
512 GPUs (second)

% Speedup

loop 158.09 100 62.05 100 2.5
field 0.63 0.40 0.69 1.11
ion 16.3 10.31 16.2 26.11
shifte 31.7 20.05 17.5 28.20 1.8
pushe 94.3 59.65 12.5 20.15 7.5
poisson 4.9 3.10 4.9 7.90
electron other 10 6.33 10 16.12
diagnosis 0.26 0.16 0.26 0.42

nodes to 2.5x at 512 nodes for the 1 CPU + 1 GPU set. There are two possi-
bilities causing this phenomenon. First, as a strong scaling study, at large node
count the problem size for each MPI process will decrease. A smaller computa-
tional problem may lead to a lower GPU routine speedup. Second, the remaining
CPU part doesn’t scale well so the total time spent in GPU-accelerated routines
will decrease at a large node count. As a result, the GPU speedup factor also
decreases because of Amdahl’s law.

To find out which is the case, the profiling details of the 512 nodes case
are shown in Table 3. It can be seen that with the smaller problem per MPI
processes, the PUSHE speedup indeed decreases from 8.3x to 7.5x. However,
larger node also leads to more computation in SHIFTE and correspondingly
SHIFTE speedup increases from 1.6x to 1.8x. Those two effects slightly offset
each other. As a result, GPU acceleration in PUSHE + SHIFTE drops from 4.7x
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to 4.2x. On the other hand, the percentage of PUSHE + SHIFTE decreases from
86.3% to 80%. This is mainly because the Poisson and electron charge deposition
part do not scale as well as PUSHE. With those data, we can do two thought
experiments. First, if PUSHE + SHIFTE was still 86.3% of the total time and
GPU speedup is 4.2x, the overall GPU speedup would be 2.9x. Second, if GPU
speedup was still 4.7x and PUSHE + SHIFTE is 80% of the total time, the
overall GPU speedup would be 2.7x. This analysis shows that for strong scaling,
both reduced GPU acceleration and CPU scaling contribute to the reduced GPU
speedup at large node counts but the CPU scaling plays a bigger role.

Energy efficiency is one of the most important issues in current and future
supercomputer systems. So in addition to absolute performance, performance
per watt would also be an interesting metric. Using the method discussed in the
end of section 2, the performance per W of different runs can be estimated and
plotted in Fig. 5.

 

Fig. 5. Performance/W for the strong scaling runs

Fig.5 shows the interesting fact that while 2 CPUs + 1 GPU has the highest
performance, 1 CPU + 1 GPU actually has the highest energy efficiency. This is
easy to understand. The GPU is more energy efficient for GTC’s computations.
So using one more less energy-efficient CPU will decrease the overall energy
efficiency.

4.3 Weak Scaling Results

It is even more important to test the weak scaling of the GTC code, since more
cores are usually desired for a larger size problem in production simulation.



92 X. Meng et al.

For weak scaling study on Tianhe-1A, we still use the two sets of comparison
methods in the strong scaling study, i.e. comparing 1 CPU to 1 CPU + 1 GPU
and comparing 2 CPUs to 2 CPUs + 1 GPU.

 

Fig. 6. GTC weak scaling performance on Tianhe-1A

Fig. 6 shows the GTC performance in this weak scaling study while Fig. 7
shows the speedup factor. Fig. 6 shows that in the CPU code, using 2 CPUs
within a node will give a significant performance increase compared to using
just 1 CPU. However, for the GPU version, 2 CPUs does not give any significant
performance increase compared to the 1 CPU case. This is because most of the
computation is now in the GPU and the additional CPU power does not lead
to further performance gains. As a result, the speedup factor is lower in the
second comparison set as can be seen in Fig. 7. In either case, it can be seen
that using the GPU in each Tianhe-1A’s node, large scale GTC simulations can
get a 1.5–2x performance gain even at large node counts. This demonstrates the
advantage of using GPU for large scale fusion simulations on Tianhe-1A.

Fig.7 also shows that the GPU speedup decreases with increasing node count.
Similar to our analysis in the strong scaling case, Table 4 shows the detailed
profiling for the 1 CPU vs 1 GPU set at 3072 nodes. From the speedup column,
it can be seen that the GPU speedup factor is about the same for PUSHE, as
expected from a weak scaling study. The speedup factor for SHIFTE decreases
from 1.6x to 1.2x. This is primarily because MPI communication takes a larger
percentage of SHIFTE time at larger node count and thus the effect of GPU
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acceleration is smaller. The CPU profiling result shows that PUSHE + SHIFTE
decreases from 86% at 128 nodes to 61%, which leads to a lower GPU speedup
because of Amdahl’s law. Thus for weak scaling, CPU scaling is the main reason
for the reduced GPU speedup at a large node count.

 

Fig. 7. GTC weak scaling speedup on Tianhe-1A

Table 4. Profile of the CPU and GPU version for 3072 MPI processes run

3072 CPUs (second) %
3072 CPUs +
3072 GPUs (second)

% Speedup

loop 699.5 100 375.4 100 1.9
field 9.3 1.33 8.9 2.37
ion 79.5 11.37 79.3 21.12
shifte 67.3 9.62 55 14.65 1.2
pushe 359.5 51.39 44.2 11.77 8.1
poisson 53 7.58 53 14.12
electron other 98.3 14.05 102.8 27.38
diagnosis 32.6 4.66 32.2 8.58

Similar to the strong scaling case, we also plot the performance per watt of
the weak scaling runs in Fig.8.

Similar to the strong scaling case, Fig.8 also shows that 1 CPU + 1 GPU
would be the most energy efficient way to run GTC simulations.
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Fig. 8. Performance per Watt of the weak scaling runs

5 Conclusions and Discussions

As far as we know, this is the first work to demonstrate the advantage of GPU
for large-scale production fusion simulations. We showed that the texture cache
specific to the GPU architecture, combined with some data reorganization, is
particularly suitable for the data locality pattern of the PUSH operations, which
led to significant kernel speedup. We also presented new hierarchical scan-based
implementation of the SHIFT operation on GPU, which is faster than the CPU
version.

To further advance our understanding of the microphysics of burning plasma,
larger scale simulations will be needed whose computational requirements far ex-
ceed the capabilities of today’s petascale machines. This work shows that GPU
has the great potential to enable those next generation large scale fusion simu-
lations. Our experience with GTC-GPU demonstrates again the implications of
the large-scale heterogeneous cluster computing: both the CPU and GPU parts
need to get good performance and scaling in order to get good overall application
performance and scaling.

As for future development, we have seen that the primary reason for reduced
GPU speedup at large node counts is the CPU scaling. Thus further work is
needed to improve the performance and scaling of the other CPU part. Fur-
thermore, after electron part is ported to GPU, the next most time-consuming
module is ion, which will be our next porting target. Finally, with OpenACC
and CUDA Fortran becoming mature recently, we are also evaluating reporting
PUSHE using OpenACC and CUDA Fortran. As the main difficulty of porting to
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GPU is choosing the proper parallelization scheme and optimization techniques,
which are solved in this work, using OpenACC and CUDA Fortran will be just
applying those techniques with a different syntax. So we expect the performance
to be basically the same as the CUDA C version as reported in this paper.
However, OpenACC and CUDA Fortran should make the GPU code easier to
maintain as GTC’s CPU code is Fortran-based.
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Abstract. The increasing number of processing elements and decreas-
ing memory to core ratio in modern high-performance platforms makes
efficient strong scaling a key requirement for numerical algorithms. In
order to achieve efficient scalability on massively parallel systems scien-
tific software must evolve across the entire stack to exploit the multiple
levels of parallelism exposed in modern architectures. In this paper we
demonstrate the use of hybrid MPI/OpenMP parallelisation to optimise
parallel sparse matrix-vector multiplication in PETSc, a widely used sci-
entific library for the scalable solution of partial differential equations.
Using large matrices generated by Fluidity, an open source CFD appli-
cation code which uses PETSc as its linear solver engine, we evaluate the
effect of explicit communication overlap using task-based parallelism and
show how to further improve performance by explicitly load balancing
threads within MPI processes. We demonstrate a significant speedup over
the pure-MPI mode and efficient strong scaling of sparse matrix-vector
multiplication on Fujitsu PRIMEHPC FX10 and Cray XE6 systems.

Keywords: PETSc, Hybrid MPI/OpenMP, strong scaling, task-based
parallelism, hierarchical load balancing, sparse matrix-vector multiply.

1 Introduction

Recent development in High Performance Computing (HPC) architectures has
been driven by a clear trend towards greater numbers of lower power cores and
a decreasing memory to core ratio. Numerical algorithms and scientific software
have to adapt to these changes to efficiently utilise the available memory and
network bandwidth. Hybrid programming techniques, where shared memory pro-
gramming is combined with inter-node message passing, can be used to exploit
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the multiple levels of parallelism inherent in modern architectures in order to
achieve sustainable scalability on massively parallel systems.

In this paper we describe the addition of OpenMP thread parallelism to the
Portable Extensible Toolkit for Scientific Computation (PETSc) [5, 6]. PETSc is
a widely used library for the scalable solution of partial differential equations and
is often used as a key component of large scientific applications. Sparse matrix-
vector multiplication (spMVM) is by far the most computationally expensive
component of sparse iterative linear solvers [13]. Therefore we focus on optimis-
ing spMVM within PETSc using hybrid programming techniques and evaluate
strong scalability on large numbers of compute nodes. We demonstrate that us-
ing task-based parallelism to hide communication latency can provide significant
speedups over naive OpenMP parallelisation. Further, explicit thread-level load
balancing can be used to give additional increases in performance, resulting in
significantly improved scalability over pure-MPI implementations in the strong
scaling limit.

The matrices used for benchmarking our implementation are extracted from
the open source, general-purpose, multi-phase computational fluid dynamics
(CFD) code Fluidity [2]. Fluidity solves the Navier-Stokes equations and ac-
companying field equations on arbitrarily unstructured finite-element meshes.
It is used in areas including geophysical fluid dynamics, computational fluid
dynamics and ocean modelling [10].

1.1 Sparse Matrix-Vector Multiplication

PETSc offers a wide range of high-level components required for linear alge-
bra, such as linear and non-linear solvers as well as preconditioners. These are
based on a suite of parallel data structures which implement basic vector and
matrix operations. The most computationally expensive operation for solvers
and preconditioners alike is the multiplication of sparse matrices with an input
vector.

PETSc represents distributed MPI matrices by dividing them into diagonal
and off-diagonal parts, which on each process are stored as sequential matrices.
The diagonal sub-matrix hereby corresponds to the part of the input vector that
is stored locally by the process. As a consequence of this storage strategy, as
shown in Fig. 1, the matrix-vector multiplication is implemented in two phases:

– First, each process multiplies its diagonal sub-matrix with the local elements
of the input vector, while vector elements that reside off-process are gathered
into the local memory of the executing process.

– Off-diagonal matrix elements are then multiplied with the formerly remote
vector elements and added to the partial solution.

1.2 Related Work

Sparse matrix multiplication is one of the most heavily used kernels in scientific
computing and has therefore received attention from several groups [7, 9, 11, 15].
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(a) Diagonal matrix elements are multi-
plied with the local part of the vector
while remote vector elements are gath-
ered.
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(b) The off-diagonal sub-matrix is then
multiplied with a local copy of the gath-
ered vector elements and added to the
partial solution.

Fig. 1. Parallel sparse matrix-vector multiplication using 8 MPI processes

Multiple storage formats, optimisation strategies and even auto-tuning frame-
works exist to improve spMVM performance on a wide range of multi-core archi-
tectures [15]. On modern HPC architectures hybrid programming methods are
being investigated to better utilise the hierarchical hardware design by reducing
communication needs, memory consumption and improved load balance [11]. In
particular, task-based threading methods have been highlighted by several re-
searchers, where dedicated threads can be used to overlap MPI communication
with local work [11, 13, 14].

2 Hybrid MPI/OpenMP Parallelism

Multi-core processors are now ubiquitous in HPC and programmers are effec-
tively presented with two levels of parallelism: inside a compute node, cores
share a contiguous memory address space and they can exchange information
by directly manipulating this memory space; between nodes, distributed mem-
ory parallelism is most commonly implemented using explicit message passing
via MPI. Exposing and expressing both intra- and inter-node parallelism can be
achieved using a hybrid programming approach.

One motivation for moving away from MPI-only parallelised applications is
given by memory limitations. While the number of cores is steadily increasing
in modern HPC architectures, the memory available to each core is decreas-
ing [11]. By exploiting thread-level parallelism, the same number of cores can
be utilised within a single node while reducing the MPI memory footprint [4].
For scientific applications based on domain decomposition, reducing the MPI
process granularity also reduces data replication due to halos or ghost cells.

Performance gains may also be expected from using fewer MPI processes,
since it not only reduces communication overheads, but also improves the load
balance between individual processes [11, 13]. However, reducing process-level
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imbalance may have a negative effect on the load balance among threads, which
in turn can be compensated for by node-level scheduling strategies, as discussed
in Sec. 2.3.

2.1 NUMA Architecture

Non-Uniform Memory Access (NUMA) refers to multiprocessor systems whose
memory is divided into multiple memory nodes. This architecture was designed
to overcome the scalability limits of the symmetric multiprocessing (SMP) ar-
chitecture. However, this hierarchical memory model for multi-core processors
means that it takes longer for a process or thread to access some parts of the
memory than others.

It is therefore important to consider data locality in threaded applications,
since regular off-domain memory access can be detrimental to the performance
of already memory-bound applications. In order to minimise bus contention a
parallel first touch memory initialisation is often used on NUMA architectures to
bind data to the memory bank that is closest to the core subsequently using the
data block [11]. In addition, thread and process pinning is required to optimise
memory utilisation for all bandwidth-bound algorithms.

When multiplying sparse matrices a master-only approach is most often used
to parallelise the local computation steps using threads (see Sec. 1.1). However,
threaded spMVM across multiple NUMA domains requires random but frequent
off-domain memory access to fetch input vector elements. In order to avoid
the high-latencies associated with off-domain data fetch NUMA domains can
be treated as single address spaces connected by multiple MPI tasks within
a compute node. This approach restricts threads to accessing a single NUMA
domain as demonstrated in Sec. 4.1.

2.2 MPI-Communication Overlap

As described in Sec. 1.1, PETSc splits parallel spMVM into two phases in or-
der to allow the multiplication of the diagonal submatrix to be overlapped with
the MPI communication required to fetch off-core vector elements. Nevertheless,
Schubert et al. [13] showed that few MPI implementations provide truly asyn-
chronous communication and significant performance gains can be achieved by
using task-based threading, where a single thread is dedicated to actively per-
form the localisation of global vector elements. This approach not only overlaps
MPI transfer latencies with computation but also hides any sequential overhead
incurred from moving data to and from the required MPI buffer space.

Task-based threading stands in contrast to traditional vector-based threading,
where all threads share the computational load evenly. In order to utilise the task-
based variant the thread-parallel section needs to be lifted to enclose the vector
scatter-gather operation. This prohibits the use of OpenMP parallel for prag-
mas to distribute the local row-wise computation among threads and requires
the explicit computation of thread partition boundaries.
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2.3 Thread-Level Load Balance

Traditional vector-based threading with OpenMP divides the number of matrix
rows approximately evenly among threads by applying parallel for pragmas
to the outer loop. This, however, ignores the fact that individual rows may in-
cur varying amounts of computational work, creating a potential load imbalance
within individual thread groups. Instead, thread-level load balance may be im-
proved statically by dividing the number of non-zeros approximately equally
between threads, as pointed out by Williams et al. [15].

It is important to note that the matrix stencil does not change during the
solve. Thus, an explicit thread partitioning scheme may be computed after the
matrix has been assembled and cached with the matrix object. This turns the
load balance optimisation into a one-off cost, allowing, in principle, the use of
load balancing schemes of arbitrary complexity.

The method used in this paper starts with an initial greedy allocation, where
each worker thread receives a block of continuous rows. This is followed by an
iterative local diffusion algorithm, which further balances the number of non-
zeros allocated to each thread, This procedure balances the thread-level work
load and memory bandwidth requirement according to floating point operations
required for the solution.

3 Benchmark

The matrices used for benchmarking the hybrid MPI/OpenMP implementations
have been generated by Fluidity from a global baroclinic ocean simulation, which
is representative of a range of three-dimensional multi-scale oceanographic prob-
lems [10]. The unstructured mesh is based on two-dimensional high-resolution
coastline data that is extruded vertically using constant spacing. By changing
the vertical resolution of the extruded mesh the size of the problem can be scaled
linearly, allowing a controlled quasi-linear increase in work load for the extracted
matrices.

The benchmark matrices used in this work are pressure field solves extracted
after five timesteps. The resulting matrices are solved using the Conjugate Gra-
dient method with a Jacobi preconditioner and the number of iterations was
limited to 10, 000.

3.1 Cray XE6

One of the benchmarking systems used for the work presented here is HECToR, a
Cray XE6 based on the AMD Opteron 6200 Interlagos processor series and Crays
Gemini interconnect [1]. The Interlagos compute nodes are based on two AMD
Bulldozer processors, each with 16 cores at 2.3 GHz paired into two modules and
a peak memory bandwidth of 51.2 GB/s. Each module has its own associated
memory bank, resulting in four separate memory nodes per compute node [8].
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3.2 Fujitsu PRIMEHPC FX10

The second benchmarking system available to us is a 96-node Fujitsu PRIMEHPC
FX10 system [3]. The PRIMEHPC FX10 is a UMA (Uniform Memory Access)
architecture based on the SPARC64 IXfx processor. A single compute node has
16 cores at 1.848 GHz and a peak memory bandwidth of 85 GB/s.

4 Results

In this section we evaluate the parallel performance of the different hybrid sp-
MVM approaches detailed in Sec. 2. Since hybrid programming offers a complex
set of choices on how to utilise a given hardware set, we start our investigation
by analysing various process-to-thread ratios for fixed numbers of cores. This
provides insights into the resource utilisation of each algorithm and provides
an estimate for the best hybrid configuration to be used during the subsequent
strong scalability study on large numbers of compute nodes.

4.1 Hardware Utilisation

Figure 2 shows the performance of varying hybrid process-thread combinations
on the Cray XE6 and Fujitsu PRIMEHPC FX10 systems. The left-most entry of
the vector-based configuration constitutes the MPI-only baseline configuration.
OpenMP overheads have been verified to be negligible for the given problem size
using microbenchmarks [12].

On the XE6, using only a small number of compute nodes (Fig. 2a and 2b),
the task-based algorithms with and without explicit thread-level load balancing
perform best when running 8 threads wrapped by 4 MPI processes per node. This
correlates with NUMA alignment, where threads are used only inside individual
NUMA domains and MPI tasks connect separate memory nodes. A significant
performance reduction can then be observed with 16 and 32 threads per process,
which coincides with NUMA traffic being incurred due to fetching input vector
elements (see Sec. 2.1).

However, using 4096 cores (128 XE6 nodes, Fig. 2c), the task-based mode
without explicit load balancing seems to defy the slowdown due to NUMA traf-
fic when using 16 and 32 threads per process. We can conclude that the algorithm
is now bound by memory bandwidth rather than latency. In contrast, the thread-
balancing mode still experiences a latency slowdown, but exhibits superior per-
formance with a NUMA-aligned configuration. This is due to an imbalance in
vector elements required by each thread due to the explicit thread-balancing,
which aggravates the algorithm’s sensitivity to memory latency.

Furthermore, both task-basedmodes significantly outperform the vector-based
threading approach on 4096 cores, demonstrating the performance loss due to
MPI communication overheads. Although vector-based threading provides bet-
ter performance on small numbers of cores due to having an extra worker thread,
on large numbers of compute nodes the approach struggles to utilise the given
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Fig. 2. Matrix multiplication run times on a fixed number of cores with varying thread-
to-process ratios. The left most value represents a close approximation to MPI-only
performance. Native compilers were used on both architectures.
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memory bandwidth with an increasing number of threads. As shown in Fig. 2c,
performance is greatest with only two threads per process, indicating that the
algorithm’s performance is communication-bound.

On the PRIMEHPC FX10 system, we observe similar scaling properties and
resource limitations with an increasing number of processing cores for all three
algorithms. Although the test system used for this work was limited to 1536
cores, we can, therefore, infer an estimate of the the scaling behaviour of the
PRIMEHPC FX10 architecture for large scale systems.

The key difference to the XE6 is that PRIMEHPC FX10 is a UMA architec-
ture, and therefore does not incur memory latency penalties due to using mul-
tiple memory nodes per thread group. This can be observed in Fig. 2a where,
in contrast to the XE6, the task-based mode without thread balancing improves
performance steadily with increasing numbers of threads per node. However, the
same memory latency limitation on small numbers of cores affects the thread-
balancing mode.

On 1024 cores (64 PRIMEHPC FX10 nodes, Fig. 2b), the profiles exhibit
properties similar to the 4096-core XE6 results. The vector-based mode is limited
by inter-process communication and performs best with two threads per process,
while the overall best performance is achieved by the thread-balancing approach
using eight threads per process.

4.2 Strong Scaling

In this section we analyse the strong scalability of the described hybrid algo-
rithms on the Cray XE6 system and compare their performance to a pure-MPI
approach. All hybrid modes were run using four MPI processes per compute
node with eight threads each in order to prevent NUMA traffic due to input
vector elements (see Sec. 2.1).

The matrix used in Fig. 3 has 13,491,933 degrees-of-freedom (DoF) and 371,102,
769 non-zero elements and was generated by a parallel Fluidity simulation de-
composed into 1024 sub-domains. For the hybrid modes the number of MPI
processes used in the strong limit therefore matches the number of processes
used during the original decomposition. For more than 1024 cores, however,
the pure-MPI mode uses more processes than the matrix was originally opti-
mised for, resulting in a potential slowdown due to load imbalance. Therefore,
an equivalent matrix which has been optimised for 8192 MPI processes has also
been included in the benchmark (dashed line).

At the low end of the scaling curve no significant performance differences
can be noted. For more than 512 cores (16 XE6 nodes) the task-based hybrid
methods show a better scalability over the vector-based approach. The thread-
balancing implementation hereby performs best, maintaining a nearly constant
parallel efficiency of > 88% between 512 and 2048 cores, and even experiences
slightly super linear scaling between 1024 and 2048 cores.

On the same matrix, the pure-MPI performance decreases significantly faster
than the hybrid algorithms for more than 512 cores (16 XE6 nodes). The equiva-
lent MPI runs using a more finely decomposed matrix, on the other hand, closely
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match the performance of the task-based mode without thread-balancing up to
2048 cores. However, in the strong limit the thread-balancing mode outperforms
the optimised MPI runs.

Furthermore, between 2048 and 4096 cores (64 and 128 XE6 nodes) we observe
strong super linear scaling for both task-based methods. Since the final runtime
in the strong limit is below 4 seconds, we can deduce that scalability ceases at
this point due to a lack of computational work and that the super linear scaling
effects are due to favourable cache effects.
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Fig. 3. Strong scaling results for the pressure matrix on up to 256 XE6 nodes (8192
cores). All hybrid modes use 4 MPI ranks per node and 8 threads per rank.

Fig. 4 shows scalability on up to 32,768 cores (1024 XE6 nodes) when the
workload of the matrix multiplication is increased by a factor of 4 by changing
the vertical extrusion of the parent mesh (see Sec. 3). This matrix has 52,040,313
DoF and 1,462,610,289 non-zeros and is based on a 4096-domain partitioning.
The results follow the same general trend, with significant differences in per-
formance observable in the strong end of the scalability curve. The pure-MPI
performance starts to deteriorate earlier and the super linear scaling in the high
end is more pronounced for all approaches.
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Fig. 4. Strong scaling results for a larger pressure matrix on up to 1024 XE6 nodes
(32768 cores). All hybrid modes use 4 MPI ranks per node and 8 threads per rank.
Runs with less than 256 cores (8 XE6 nodes) have been omitted due to insufficient
memory per MPI process.

5 Summary and Discussion

In this paper we present an analysis of the scaling properties of sparse matrix-
vector multiplication using a hybrid MPI/OpenMP extension to the PETSc
library. We compare hybrid vector-based and task-based algorithms with a pure-
MPI variant using large matrices generated by Fluidity. We describe an extension
to the traditional task-based approach, where the load balance among threads
is optimised a-priori according to the number of non-zeros in each row.

The thread-balancing extension is shown to give superior performance when
scaled to large numbers of compute nodes on a Cray XE6 system and on mod-
erate numbers of nodes of a Fujitsu PRIMEHPC FX10 system. The algorithm
achieves this by improving the memory bandwidth utilisation within a given
compute node and by hiding MPI communication latency. This comes at the
cost of increased memory latency effects on small numbers of cores, since the
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algorithm creates an imbalance in input vector elements per thread. However,
once the main resource limitation of the algorithm shifts to memory bandwidth
the thread-balancing approach can improve performance significantly.

Furthermore, the thread-balancing approach enhances one of the fundamental
advantages of hybrid programming: By reducing the number of MPI processes
the inherent load imbalance among processes is reduced at the expense of load
imbalance among threads. This is desirable, however, since we can deal with the
thread imbalance explicitly by caching an optimised thread partitioning with
the matrix. As a result, this approach improves work load balance and memory
bandwidth utilisation at the compute node level in order to increase overall
performance.
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Abstract. MPI has been the de-facto programming model for scientific
parallel applications. However, it is hard to extract the maximum perfor-
mance for irregular data-driven applications using MPI. The Partitioned
Global Address Space (PGAS) programming models present an alterna-
tive approach to improve programmability. The lower overhead in one-
sided communication and the global view of data in PGAS models have
the potential to increase the performance at scale. In this study, we take
up ‘Concurrent Search’ kernel of Graph500 — a highly data driven irreg-
ular benchmark — and redesign it using both MPI and OpenSHMEM
constructs. We also implement load balancing in Graph500. Our perfor-
mance evaluations using MVAPICH2-X (Unified MPI+PGAS Commu-
nication Runtime over InfiniBand) indicate a 59% reduction in execution
time for the hybrid design, compared to the best performing MPI based
design at 8,192 cores.

Keywords: Graph500, MPI, OpenSHMEM, Hybrid.

1 Introduction

Most traditional High Performance Computing (HPC) applications and current
petascale applications are written using the Message Passing Interface (MPI)
programming model. For instance, all of the HPC best practice case studies
presented by the HPC Advisory Council [6] are MPI applications. However, it
can be very difficult to use MPI and maintain performance for applications with
irregular and dynamic communication patterns [1]. The emerging Partitioned
Global Address Space (PGAS) programming models, such as OpenSHMEM [14]
and Unified Parallel C (UPC) [23], present a flexible way for these applications
to express parallelism using one-sided communication semantics and a global
view of data. However, PGAS models are still emerging, and it is unlikely that
entire applications will be re-written with these models. Instead, it is more likely
that applications will continue to be written with MPI as the primary model,
but parts of them will be re-designed with newer models, resulting in hybrid
MPI+PGAS designs. Such designs can leverage the best features from each
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model. The Exascale roadmap identifies the hybrid model as the ‘practical’ way
of programming exascale systems [5].

The Graph500 [20] benchmark is designed to represent the subclass of data
intensive and irregular applications that use graph algorithm-based processing
methods. Many emerging application areas in bioinformatics and life sciences,
social networking, data mining, and security/intelligence rely on graph algorith-
mic methods. Earlier researchers [18,21] have indicated scalability limitations
of the MPI-based Graph500 implementations. This leads to a broad challenge
- Can a high performance and scalable Graph500 benchmark be designed using
MPI and PGAS models?

In this study, we perform detailed profiling and evaluation of Graph500 and
expose major performance bottlenecks, such as overhead due to MPI Test and
lack of computation-communication overlap. We redesign the Concurrent Search
kernel of Graph500 benchmark using MPI and OpenSHMEM constructs result-
ing in a ‘hybrid’ benchmark. We use OpenSHMEM one-sided data movement
and atomic routines, in addition to advanced MPI-3 features in our design. Fur-
ther, we enhance our design with load balancing. Performance evaluations using
MVAPICH2-X [13] (a unified MPI+PGAS communication runtime over Infini-
Band) shows reduction in Graph500 traversal time by 59%, compared to the
best performing MPI design at 8,192 cores. Further, the hybrid design performs
8 times better than the MPI design having the same communication pattern
and volume. Our scalability analysis reveals that the hybrid design demonstrates
good scaling (both weak and strong).

We also evaluate our hybrid design using separate communication runtimes
(GASNet [2] for OpenSHMEM and MVAPICH2-X for MPI), which emphasizes
the need for a unified communication runtime. To the best of our knowledge this
is the first hybrid design of Graph500 using MPI and OpenSHMEM.

The following statements detail the main contributions of this study:

1. Identifying major bottlenecks in the MPI-based implementation of Graph500
Concurrent Search kernel by detailed profiling and analysis

2. Identifying critical design challenges for efficient one-sided communication
with maximum computation-communication overlap and addressing them

3. Designing a scalable and high performance hybrid Graph500 benchmark with
MPI and OpenSHMEM constructs

4. Designing an efficient load balancing for Concurrent Search kernel using
PGAS constructs

5. In-depth performance evaluation and scalability analysis of the hybrid design

The rest of the paper is organized as follows. Section 2 provides a high level
overview of the Graph500 benchmark, OpenSHMEM and the MVAPICH2-X uni-
fied communication runtime. In Section 3, we discuss the MPI based Graph500
implementation and expose major bottlenecks. In Section 4, we discuss the de-
sign challenges and present the hybrid MPI+OpenSHMEM design of Graph500.
Section 5 presents the performance evaluations of the hybrid design. Finally, we
discuss our future work and conclude in Section 7.
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2 Background

2.1 Graph500 Benchmark

The Graph500 Benchmark [20] consists of three comprehensive benchmarks to
address application kernels: Concurrent Search, Single Source Shortest Path and
Maximal Independent Set. We focus on the Concurrent Search benchmark in
this study, which is fundamentally a Breadth First Search (BFS) traversal of the
graph. The Concurrent Search benchmark consists of three phases (termed, sub-
kernels, in the benchmark specification). The ‘Graph Construction’ sub-kernel
constructs graph in Compressed Sparse Row (CSR) format. The second sub-
kernel is the actual ‘Breadth-First-Search’. The final sub-kernel validates the
BFS traversal. The Graph500 problem size is represented using Scale and Edge
Factor. Scale is logarithm base two of the number of vertices; and, edge-factor
is the ratio of the graph’s edge count to its vertex count. Thus Scale = N and
and Edge factor = M indicates a graph with 2N vertices and 2N * M edges.

2.2 OpenSHMEM

SHMEM (SHared MEMory) [17] is a library-based approach to realize the PGAS
model and it offers one-sided, point-to-point communication operations, along
with collective and synchronization primitives. There are several implementa-
tions of the SHMEM model that are customized for different platforms. How-
ever, these implementations are not portable. OpenSHMEM [14] aims to create
a new, open specification to standardize the SHMEM model to achieve perfor-
mance, programmability, and portability.

2.3 MVAPICH2-X Unified Communication Runtime

MVAPICH2-X [13] provides a unified high-performance runtime that supports
both MPI and PGAS programming models on InfiniBand clusters. It enables
developers to port parts of large MPI applications that are suited for the PGAS
programming model. This minimizes the development overheads that have been
a substantial deterrent in porting MPI applications to PGAS models. The unified
runtime also delivers superior performance compared to using separate MPI
and PGAS libraries by optimizing use of network and memory resources [9,8].
MVAPICH2-X is derived from the popular MVAPICH2 library and inherits all
the features for performance and scalability of MPI communication.

3 Bottlenecks in Graph500 MPI Version

Graph500 provides four MPI based reference implementations: MPI Simple,
MPI CSR (Replicated Compressed Sparse Row), MPI CSC (Replicated Com-
pressed Sparse Column), and MPI OneSided. All of these implementations use
the level synchronized BFS traversal algorithm [18].

The MPI Simple implementation is listed in Algorithm 1. In this implemen-
tation, each MPI process maintains two queues, CurrQueue and NewQueue, and
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Algorithm 1. MPI Simple BFS Traversal

1: pred[root] ← 0, all done ← 0
2: Enqueue(CurrQueue, root)
3: {Procedure: HandleReceive}
4: if rcv count = 0 then
5: all done ← all done+ 1
6: else if received then
7: for each received edge (u,v) do
8: if visited[v] = 0 then
9: visited[v] ← 1, pred[v] ← u

10: Enqueue(NewQueue, v)
11: end if
12: end for
13: end if
14: {End Procedure}
15: while true do
16: while CurrQueue not empty do
17: for all vertex u in CurrQueue do
18: HandleReceive()
19: u ← Dequeue(CurrQueue)
20: owner ← find owner()
21: if owner = me then
22: visited[v] ← 1, pred[v] ← u
23: Enqueue(NewQueue, v)
24: else
25: Send (u,v) to owner
26: end if
27: end for
28: end while
29: Send empty messages to all others
30: while all done �= N − 1 do
31: HandleReceive()
32: end while
33: AllReduce NewQueue.length
34: if NewQueue is empty in all processes then
35: break
36: end if
37: Swap(CurrQueue, NewQueue)
38: NewQueue ← empty
39: all done ← 0
40: end while

two arrays — pred and visited— to store predecessor information and to track
whether or not each vertex has been visited. The vertices are evenly distributed
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among participating processes, and only the owner process has complete infor-
mation regarding adjacency list, visited array, and predecessor array for owned
nodes. Initially, the ‘root’ vertex is inserted into CurrQueue by the owner pro-
cess of ‘root’. An iteration of the main while loop (lines 15 to 40) corresponds
to a level in the BFS traversal. In each level, the adjacent vertices of all the
vertices in CurrQueue are discovered. Newly discovered edges are coalesced and
sent to the corresponding owner processes using MPI Send. Each process peri-
odically checks for incoming data using MPI Test / MPI Recv and processes it
(indicated as HandleReceive). Unvisited vertices in the incoming data packet are
added to NewQueue. After processing vertices in CurrQueue, every process sends
an empty message to all of the others to indicate end-of-level and waits until it
receives empty messages from all other processes. After this ‘implicit’ barrier, an
MPI AllReduce (sum) is performed over the size of NewQueue. A non-zero sum
indicates that there exists at least one process that has to process vertices in the
next level. In this case, NewQueue and CurrQueue are swapped and the loop is
repeated; otherwise, the algorithm ends.

Table 1. Time Spent in MPI Routines for MPI Simple Implementation

MPI Routine Total Time (us)

MPI GetCount 1.5

MPI IRecv 20.4

MPI ISend 109.0

MPI AllReduce 258.0

MPI Test 1100.0

Total BFS Time 2040.0

The following are the three main bottlenecks in this implementation.
Overhead in Send/Recv CommunicationModel:Even though non-blocking
MPI ISend and MPI IRecv are used, a lot of CPU cycles are consumed for the
actual communication. To analyze this, we profiled MPI calls in the MPI Simple
implementation for 128 processes (Scale=26). The results shown in Table 1 in-
dicate that more than 50% of total BFS time is spent in the MPI Test call.
Implicit Linear Barrier: The implicit barrier at the end of each level is linear
in nature. At a large scale, this linear barrier can cause significant overheads.
Lack of Overlap: Even though the MPI Simple implementation processes re-
ceived edges while MPI ISend/ MPI IRecv calls are in progress, the actual over-
lap of computation-communication is low. CPU cycles spent in the MPI com-
munication library reduce the effective computation-communication overlap.

The MPI CSR and MPI CSC versions employ slightly different algorithms.
In MPI CSR, each process holds the entire graph data as a bit array. Similarly
in MPI CSC, each process has information as to whether any vertex exists in
current level queue. These versions do not communicate during the level, but do
an MPI AllGather at the end of each level [18]. The MPI OneSided version uses
MPI one-sided operations for implementing BFS. The current implementation of
MPI OneSided exhibits poor performance and is excluded from our evaluations.
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Since the proposed hybrid design is based on MPI Simple, the implementation
details of the other versions are not discussed in detail. However, we compare
our proposed design with MPI Simple, MPI CSR, and MPI CSC versions.

4 Design and Implementation

Redesigning an MPI benchmark into a hybrid MPI+Open-SHMEM version is
not trivial. A common fallacy is that replacing MPI communication routines
with one-sided routines and converting the data into global arrays will just im-
prove the performance. However, in order to extract the best performance and
scalability, a meticulous design which can attain maximum communication com-
putation overlap and reduce communication overheads is imperative. We list the
challenges in designing an efficient and scalable hybrid Graph500 benchmark,
discuss how we overcome these challenges, and then present our design.

4.1 Design Challenges

Co-ordination between Sender and Receiver Processes: In one-sided
communication semantics, the receiver process is not involved in the data trans-
fer. So, how does the receiver process know whether the data packet has arrived?
Further, how does it make sure that the entire packet has arrived and when can
it start processing the data?
Co-ordination between Multiple Sender Processes: Given the irregular
nature of Graph500, how do multiple sender processes coordinate access to the
target data buffer while using one-sided operations? Keeping separate receive
buffers for each sender process or using locks will limit scalability [10].
Coalescing and Optimal Data Transfer Size: Since the underlying com-
munication operations are different for MPI send/receive and Remote Direct
Memory Access (RDMA) based one-sided semantics, the optimal coalescing size
needs to be determined for each.
Memory Scalability: While using one-sided operations for communication,
sufficient buffer space must be allocated for remote memory operations. If the
buffer requirement increases linearly with scale, the application will not scale.
Reusing buffer requires extra synchronization between the sender and receiver
processes and might incur additional overheads. Thus, optimal receive buffer size
has to be determined.
Synchronization at the End of Each Level: We discussed in the pre-
vious section that the linear barrier causes scalability limitations. Using an
MPI Barrier or shmem barrier (implemented using tree-based algorithms) can
improve scalability, but it limits the computation-communication overlap during
the barrier. Thus, it is critical to achieve synchronization without compromising
computation - communication overlap.
Load Imbalance: Because of the level synchronization algorithm, any skew in
the computation among processes results in a higher synchronization time. Thus,
it is imperative to analyze the load imbalance and reduce it as much as possible.
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4.2 Detailed Design

We keep the same level-synchronized BFS algorithm in our hybrid version. Thus,
the communication pattern and volume in both the MPI Simple and the Hybrid
versions are the same. We follow a flat execution model [4] for the hybrid design
i.e., MPI rank and OpenSHMEM rank of the hybrid program are kept the same.
Communication Using One-Sided Routines: In the Hybrid design, we
use OpenSHMEM one-sided routine (shmem put) for communication. During
initialization, every process allocates a globally shared buffer (allocated using
shmalloc) called receive buffer. Any process can read/write, from/to this
buffer using OpenSHMEM routines. The size of the receive buffer is calculated
based on the number of local edges that the process owns. Therefore the size
is not dependent on the system scale and does not impose scalability concerns.
Like the MPI Simple design, the hybrid design also employs coalescing of edges.
Co-ordination Using Fetch-Add Atomic Operation: We use the OpenSH-
MEM atomic fetch-add (shmem fadd) operation for coordinating between sender
and receiver, as well as between multiple senders. The shmem fadd atomically
updates (add) the remote data and the previous value is returned. Each process
maintains a globally shared variable receive index, for its receive buffer.
Whenever a remote process wants to write data to the receive buffer, it first
atomically fetch-adds the receive index with the write data size. After the ex-
ecution of shmem fadd, the remote process owns the region in receive buffer

and can safely write the data. Thus, an atomic fetch-add followed by a put op-
eration achieves synchronization between sender and receiver and also between
multiple senders and receiver. The receive index is reset at the end of each
level so that the receive buffer is reused at each level.

M Sz Data M

Head 
Marker

Tail 
Marker

Data Length

Data Packet

Fig. 1. Buffer Structure for Polling

Buffer Structure for Computation-Communication Overlap: Since the
receiver process is not notified when data arrives, we introduced the buffer struc-
ture shown in Figure 1; remote processes write into receive buffer in this for-
mat. The head and tail markers (M) indicate the beginning and end of the buffer,
and the size flag (Sz) indicates the data size. The receiver process can poll on the
head marker for incoming data. If the head marker is present, it will check whether
the tail marker is set at an offset indicated by data size. If both markers are set,
then the receiver can start processing the data. The markers are cleared after pro-
cessing so that they do not signal false data arrival in the next level.
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Level Synchronization Using Non-blocking Barrier: We use an MPI-3
non-blocking barrier for level synchronization in our hybrid design. This allows
each process to enter the barrier and still continue to receive and process edges.
Load Balancing: Processing of edge (u,v) includes updating the pred array,
adding into NewQueue, and updating the visited array if the vertex v has not
been visited yet. Data structures — predecessor array (pred), bitwise visited
array (visited), and NewQueue — are kept local to the owner process. There-
fore, for remote process to share the workload, it should first get the data block
for processing, and update the data structures in a mutually exclusive manner.
These dependencies limit the scope for load balancing in Graph500. As a result,
we restrict load balancing within a node. The shmem ptr routine in OpenSH-
MEM allows processes within a node to access globally shared memory by direct
memory loads and stores. We exploit this feature in OpenSHMEM to implement
load balancing. In our hybrid design, the pred, visited and NewQueue data
structures are allocated in shared memory.

M Sz Data

p_share_start

M M Sz

p_share_end

M

(a) Overloaded process exposes work

M
1

Sz Data M M Sz

p_share_end

Neighbor Process: 
cswap (M, M1),

update(p_share_start)

p_share_start

M

(b) One of the idle neighbor processes picks up data packet

M
3
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Post 
Data

M M
1

Sz

p_share_endp_share_start

M
2

Marker M2 to indicate 
data is ready for 
post processing

Marker M3 to indicate 
end of post data

MM

(c) Neighbor process puts back data for post processing

Fig. 2. Load Balancing

When a process identifies that it has more work than a predefined threshold,
it exposes a portion of its receive buffer. If the process that exposed work
becomes idle, it can re-acquire work from its shared region. The exposed region
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is identified using shared variables — p share start and p share stop. Idle
processes grab a portion of the exposed receive buffer in a mutually exclusive
manner. We considered two design alternatives for this — using OpenSHMEM
atomic routines and using shared memory mutex.

Figure 2 illustrates mutual exclusion using OpenSHMEM atomics. An idle
process does a compare-swap, shmem cswap, operation at the location indexed by
p share start, that conditionally swaps markers from head marker (M) to M1.
A successful operation indicates that the idle process has gotten the chunk, and
it atomically updates (using shmem add) p share start. Since OpenSHMEM
atomic routines are implemented over RDMA atomics, this design relies on the
Network Interface Controller for mutual exclusion. In the shared-memory mutex-
based design, every process exposes a mutex that is allocated in a globally shared
region. An idle process locks the corresponding mutex of an overloaded process
to grab a portion of its receive buffer.

The update operations in processing, which must be mutually exclusive with
those of owner processes, will further slow down the overloaded process. So, we
define processing as checking the visited array and removing all edge infor-
mation, that has already been visited. Only unvisited vertices are kept for post
processing by the owner process. This is indicated as ‘Post Data’ in Figure 2(c).
The end of post data is denoted by marker M2. After preparing the post data,
a special marker M3 is set at the beginning of the data packet to indicate data
is ready for post-processing. The owner process keeps track of shared work and
finally processes the post-data.

5 Experimental Evaluation

5.1 Experiment Setup

We used two clusters for performance evaluations.
Cluster A: This cluster (TACC Stampede [19]) is equipped with compute nodes
with Intel Sandybridge series of processors using Xeon dual eight-core sockets,
operating at 2.70GHz with 32GB RAM. Each node is equipped with MT4099
FDR ConnectX HCAs (54Gbps data rate) with PCI-Ex Gen3 interfaces. The
operating system used is CentOS release 6.3, with kernel version 2.6.32-279.el6
and OpenFabrics version 1.5.4.1. Even though this system has large number of
cores, we were able to gain access to only 8,192 cores for running experiments
for this paper.
Cluster B: This cluster consists of 144 compute nodes with Intel Westmere
series of processors using Xeon Dual quad-core processor nodes operating at
2.67GHz with 12GB RAM. Each node is equipped with MT26428 QDR Con-
nectX HCAs (32Gbps data rate) with PCI-Ex Gen2 interfaces. The operating
system used is Red Hat Enterprise Linux Server release 6.3 (Santiago), with
kernel version 2.6.32-71.el6 and OpenFabrics version 1.5.3-3.

We used Graph500 v2.1.4 in our experiment evaluations. We used OpenSH-
MEM (v1.0d) [14] over GASNet (v1.20.0) [2] and MVAPICH2-X OpenSHMEM
(v1.9a2) [13] as OpenSHMEM stacks. In all our Graph500 experiments, we kept
the Edge Factor as 16.
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Tuning Optimal Parameters: We tuned the optimal coalescing size for send-
ing edges in the MPI Simple and hybrid designs. Edges are represented as two
int64 t elements (16 bytes). A coalescing size of 256 indicates that the edge in-
formation is sent in 4,096byte (256*16) packets. We measured the BFS traversal
times for different coalescing sizes. The optimal coalescing size identified for both
MPI Simple and Hybrid is 1,024 (16KB), on Clusters A and B.

MPI CSR and MPI CSC versions are compute-intensive and rely on OpenMP
threads to exploit parallelism [18]. We tuned MPI CSR and MPI CSC config-
urations with respect to the number of processes per node and the number of
OpenMP threads per process. A configuration with eight processes per node and
two OpenMP threads per process performed best for ‘16-core per node’ Cluster
A. Similarly, configuration with four process per node and two OpenMP threads
per process performed best on ‘8-core per node’ Cluster B. We used these opti-
mal values for all of our experiments. The MPI Simple and Hybrid versions are
executed using one process per core configurations.

5.2 Performance Evaluation

Figure 3 presents the performance results of ‘Hybrid’ MPI+OpenSHMEM ver-
sions and compares our design with pure MPI based versions. These graphs
report the execution time for BFS traversal. We present results with 1,024 and
2,048 cores in Figures 3(a) and 3(b), respectively. These experiments were run on
Cluster A. It can be observed from the figure that the ‘MPI CSC’ and ‘MPI CSR’
versions perform better than the ‘MPI Simple’ version. But the ‘Hybrid’ version
outperforms all of the MPI versions. With 2,048 cores, the time taken by the
best performing MPI version (‘MPI CSR’) was 3.13 seconds, where as the hybrid
version took just 1.67 seconds. This is about 47% reduction in execution time.

The communication pattern and volume in ‘MPI Simple’ and ‘Hybrid’ ver-
sions are identical. It is the lower overhead, associated with one-sided communi-
cation calls in OpenSHMEM and efficient communication-computation overlap
in the hybrid design, that resulted in better performance. In effect, the ‘Hybrid’
design reduced the total execution time from 4.5 seconds to 1.67 seconds.
Performance Evaluation - Separate Runtimes vs. Unified Communi-
cation Runtime: In this section, we compare the performance of the Hybrid
design executing over separate runtimes for MPI and OpenSHMEM, versus a
unified communication runtime supporting both models.

Results are presented in Figure 4. The former is denoted as ‘Hybrid GASNet’
and the latter is denoted as ‘Hybrid MV2X’. The experiment was conducted on
Cluster B. We used a graph with scale = 26 for this experiment. The figure
demonstrates that the Hybrid MV2X version performs significantly better than
Hybrid GASNet. For 1,024 processes, Hybrid- GASNet took 22.8 seconds and
Hybrid MV2X took just 0.58 seconds. The difference in performance is due to
the following reasons: The OpenSHMEM implementation over GASNet lacks
efficient atomic routine implementation compared to MVAPICH2-X. The hybrid
design relies on the atomic fetch-add operation for acquiring a data region
at the destination process. For each data transfer, there exists a fetch-add
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operation. The second reason is the overhead caused by executing two runtimes
and extra network resource usage [8].

Interestingly, if the hybrid design is evaluated using separate runtimes, then
the observed performance is quite low. This could mislead researchers to draw
incorrect conclusions about the potential of hybrid designs. On the other hand, a
unified communication runtime enables a true comparison between programming
models, rather than comparing their runtimes. Note also, that at scale=26 as
shown in Figure 4 MPI Simple performs better than the MPI CSR andMPI CSC
versions unlike what is shown in Figure 3 for a larger graph.

5.3 Evaluation of Load Balancing

In Section 4.2, we discussed two design alternatives for load balancing - using
pthread mutex and using RDMA atomics. Our evaluations indicated similar per-
formance results for both alternatives. Further, the mutex based design blocks
on the lock; however if compare-swap fails, the process can proceed immediately.
Because of this, we chose the non-CPU intensive RDMA atomics based scheme
in our design. To measure the impact of load balancing in Graph500, we inserted
an MPI Barrier at the end of each level and measured the time for barrier at
each process. This barrier time represents the load imbalance.

We executed this modified benchmark on Cluster A and measured the to-
tal barrier time at each process in a node using HPCToolKit [7]. Figure 5(a)
presents these results. We can see that three of the processes take higher time,
while the other processes finish barrier almost immediately. This indicates that
those three processes have comparatively lesser work. We enabled the work shar-
ing and evaluated load imbalance using the same experiment. The results shown
in Figure 5(b) indicate that the work is more balanced now. However, even with
work sharing enabled, we observed very little improvement in overall perfor-
mance (Figure 8). To investigate this further, we measured the total amount of
work at each level. Figure 6 presents this data. The results indicate that the
amount of work imbalance is less and all the participating processes are busy
operating on their own data. Further, the dependency on the vertex owner for
processing a vertex and the higher cost for sharing work across nodes, limits the
scope for work sharing in Graph500.

5.4 Scalability Analysis

Weak scalability results are presented in Figure 7(b). In this experiment, we
kept a constant problem size per processor core as Scale=26 per 1,024 cores. As
discussed in Section 2, with every step increase in Scale, the problem size doubles.
Thus, we doubled the system size with every step in problem size. We can observe
that the hybrid version of Graph500 achieves better weak scaling results. Results
at larger scale indicate that the hybrid design imposes no overheads with increase
in system size.

Figure 8 demonstrates the BFS traversal time with 8,192 processor cores. At
this scale, the traversal time for MPI Simple, MPI CSC and MPI CSR versions
are 8.32, 2.83, and 2.68 seconds, respectively. Traversal time for the hybrid ver-
sion with and without work sharing is 1.10 and 1.12 seconds. Hybrid design



Hybrid MPI+OpenSHMEM Graph500 Benchmark 121

(a) Without Work Sharing

(b) With Work Sharing

Fig. 5. Effect of Work Sharing
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We present strong and weak scalability evaluation results and finally present the per-
formance results at 8,192 cores. These experiments were executed on Cluster A. Fig-
ure 7(a) depicts the strong scalability results. In this experiment, we kept the constant
problem size (Scale = 29) and varied the scale of the system from 1,024 cores to 8,192
cores. For each scale, we measured and reported the number of edge traversals per
second (TEPS). The performance results indicate that the hybrid design exhibits very
good strong scalability. For MPI versions, the performance does not increase much as
the system size increases because of higher communication overheads at larger scales.
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achieves around 59% reduction in BFS traversal time over the best performing
MPI version. As mentioned earlier, the communication volume and pattern is
exactly the same in both the MPI Simple and the hybrid designs. Thus, the hy-
brid design is able to reduce the overall execution time from 8.32 to 1.10 seconds,
which is about 8X improvement in performance.

6 Related Work

Dinan et.al proposed different hybrid program execution models [4]. Jose et.al
proposed a Unified Communication Runtime [10,8] in MVAPICH2-X for sup-
porting hybrid MPI+UPC and MPI+OpenSHMEM models. Studies [16,15] dis-
cuss converting MPI applications to PGAS models, but focus only on changing
the communication to one-sided semantics. Suzumura et.al studied Graph500
performance characteristics in detail [18]. Several algorithmic enhancements for
Graph500 were also proposed [22,21,10]. Work sharing in PGAS models also
have been studied [3,12], but these case studies did not have the dependency on
owner process data as in the Graph500 case.

7 Conclusion and Future Work

We presented a detailed analysis of existing MPI based Graph500 implementa-
tion and exposed critical bottlenecks and presented a scalable and high perfor-
mance design using MPI and OpenSHMEM constructs. Performance evaluations
using MVAPICH2-X Unified Runtime show a reduction in Graph500 traversal
time by 59%, compared to the best performing MPI design at 8,192 cores. Scal-
ability analysis indicates that the hybrid design demonstrates good strong and
weak scaling characteristics. At this scale, hybrid design performs 8X better than
the MPI design which has the same communication pattern and volume. Our
evaluations with a unified runtime and with separate runtimes highlight the need
for a unified communication runtime for hybrid programming models.

Our intention is not to compare MPI and PGAS models and declare that
one is better than the other. MPI also supports one-sided communication se-
mantics using MPI Put / MPI Get routines and enables shared memory access
using MPI Alloc mem. MPI-3 [11] has proposed several rich features and exten-
sions. The global shared address space abstraction provided by PGAS models
improves productivity. Our aim in this study is to show the potential benefits of
a hybrid programming model that combines the best features of both.

We plan to continue working along these directions. We plan to evaluate our
design at larger scale. We would also like to redesign real world MPI applications
using hybrid constructs and showcase the benefits. Further, we would like to
enhance our load balancing scheme and evaluate it with applications.

Acknowledgment. This work is supported in part by National Science Foun-
dation grants #OCI-0926691, #OCI-1148371 and #CCF-1213084. It used the
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Abstract. Aiming at a close examination of the OpenCL performance
myth, we study in this paper OpenCL implementations of several repre-
sentative 3D stencil computations. It is found that typical optimization
techniques such as array padding, plane sweeping and chunking give
similar performance boosts to the OpenCL implementations, as those
obtained in corresponding CUDA programs. The key to good perfor-
mance lies in maximizing the use of on-chip resources of a GPU, same
for both OpenCL and CUDA programming. In most cases, the achieved
FLOPS rates on NVIDIA’s Fermi and Kepler GPUs are fully compa-
rable between the two programming alternatives. For four typical 3D
stencil computations, the performance of the OpenCL implementations
is on average 9% and 2% faster than that of the CUDA counterparts
on GTX590 and Tesla K20, respectively. At the moment, the only clear
advantage of CUDA programming for stencil computations arises from
CUDA’s ability of using the read-only data cache on NVIDIA’s Kepler
GPUs. The skepticism about OpenCL’s GPU performance thus seems
unjustified for 3D stencil computations.

Keywords: GPU programming, OpenCL, CUDA, stencil computations.

1 Introduction

Despite being hardware neutral and cross-platform portable, the OpenCL [1] pro-
gramming standard has so far not enjoyed its expected popularity. There seems
to be a skepticism about OpenCL’s performance on particularly the NVIDIA
GPU architectures, where CUDA is currently the dominating standard of pro-
gramming. Although there has been some research (such as [2,3,4,5]) on the
worthiness of OpenCL in comparison with CUDA, we believe that more rigor-
ous comparisons are needed to fully investigate this subject.

This paper has thus chosen a specific domain of scientific computing, namely
stencil computations. These computations lie in the heart of many simulations
that involve structured computational meshes. The achieved efficiency of stencil
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computations closely reflects the quality of software implementation and opti-
mization, boiling down to whether the targeted hardware architecture is effec-
tively used. A thorough comparison between OpenCL and CUDA programming
for 3D stencil computations, in respect of both programmability and perfor-
mance on GPUs, can therefore tell us whether the prejudice against OpenCL
is justifiable. We will report numerical experiments done on NVIDIA’s Fermi
and Kepler architectures. In the same process, we also want to show how typical
performance optimization techniques can be implemented using OpenCL. This
can be useful for novice OpenCL programmers.

2 Stencil Computations

The computations involved in a stencil method are in form of repeatedly sweep-
ing through a structured computational mesh. During each sweep, calculation
at one mesh point depends on a fixed number of neighboring mesh points, which
form a computational stencil. Typical stencil shapes in 3D are e.g. 7-point, 13-
point, 19-point, and 27-point. The obtainable efficiency of a stencil computation
depends not only on the shape of the stencil, but also on the number of involved
input and output arrays, in addition to the number of floating-point operations.

We have chosen to look at the following four representative examples of 3D
stencil computations (the same as in [6]):

unew
i,j,k = αui,j,k + β (ui±1,j,k + ui,j±1,k + ui,j,k±1) , (7PT-1)

unew
i,j,k = αri,j,k + β (ui±1,j,k + ui,j±1,k + ui,j,k±1) , (7PT-2)

unew
i,j,k = α [ri,j,k + β (ui±1,j,k + ui,j±1,k + ui,j,k±1) (19PT)

+ (ui±1,j±1,k + ui±1,j,k±1 + ui,j±1,k±1)] ,

unew
i,j,k = ui,j,k + ri,j,k + (7PT-3)

α [(κi+1,j,k + κi,j,k) (ui+1,j,k − ui,j,k)

− (κi,j,k + κi−1,j,k) (ui,j,k − ui−1,j,k)

+ (κi,j+1,k + κi,j,k) (ui,j+1,k − ui,j,k)

− (κi,j,k + κi,j−1,k) (ui,j,k − ui,j−1,k)

+ (κi,j,k+1 + κi,j,k) (ui,j,k+1 − ui,j,k)

− (κi,j,k + κi,j,k−1) (ui,j,k − ui,j,k−1)] .

In all the above four stencil computations, α and β are scalar constants. More-
over, values of unew (output) and u (input) are assumed to be stored in two
separate 3D arrays. Note that 7PT-1 differs from 7PT-2 in that the latter needs
an additional input 3D array r. The 19PT stencil is often used to obtain better
accuracy than the 7-point stencils, at the cost of more floating-point operations
and a larger footprint of the stencil. The computations used in 7PT-3 typically
arise from solving a diffusion equation with a variable coefficient κ(x, y, z), whose
values are assumed to be stored in another 3D array. Table 1 gives a detailed
comparison of these stencil computations.
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Table 1. A detailed comparison of four 3D stencils

Stencil # reads,writes # operations In,out arrays

7PT-1 7,1 2(∗), 6(+) 1,1
7PT-2 7,1 2(∗), 6(+) 2,1
19PT 19,1 2(∗), 18(+) 2,1
7PT-3 15,1 7(∗), 10(+), 9(−) 3,1

3 OpenCL Implementation and Optimizations

3.1 Basic Concepts in OpenCL Programming

The OpenCL framework [1] is made up of three parts: platform model, execu-
tion model and memory model. The platform model contains a host and one
or several OpenCL devices, such as CPUs and GPUs. Each device has one or
several compute units, and each compute unit includes one or several process-
ing elements. An OpenCL program consists of two parts: a host program and
one or several kernels. The host program executes on the host and is similar to
a standard C program, apart from calling OpenCL APIs. The kernels execute
on the devices according to the configuration of NDRange, which is the index
space of the execution instance of the kernel code. The NDRange is in fact an
N -dimensional grid of work-items—the smallest execution entities. Several work-
items can be organized into a work-group, which is similar to a thread block in
CUDA. The memory model of an OpenCL device is abstracted into four levels:
global memory, constant memory, local memory and private memory. It should
be noticed that the local memory in OpenCL is different from CUDA’s local
memory, but plays a similar role as CUDA’s shared memory. Table 2 compares
the different concepts used in OpenCL and CUDA.

Table 2. Comparing the different concepts used in OpenCL and CUDA

OpenCL CUDA

Platform Model Hardware Model

CPU+OpenCL devices CPU+NVIDIA GPUs

Compute Units Streaming Multiprocessors (SMs)

Processing Elements CUDA cores

Execution Model Programming Model

NDRange grid index

work-group thread block

work-item thread

Memory Model Memory Model

global memory global memory

constant memory constant memory

local memory shared memory

private memory local memory
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3.2 Baseline OpenCL Implementation

Implementing an OpenCL kernel is very similar to CUDA programming. We will
show in the following a baseline OpenCL kernel implementation for 7PT-1.

__kernel void stencil(__global double * device_u,

__global double * device_u_new,

const double alpha, const double beta,

int n_x, int n_y)

{

int gid_x = get_global_id(0)+1;

int gid_y = get_global_id(1)+1;

int gid_z = get_global_id(2)+1;

__global double (*in)[n_y][n_x];

__global double (*out)[n_y][n_x];

in = (__global double (*)[n_y][n_x])device_u;

out = (__global double (*)[n_y][n_x])device_u_new;

out[gid_z][gid_y][gid_x]=(alpha*in[gid_z][gid_y][gid_x])+

beta*(in[gid_z][gid_y][gid_x-1]

+in[gid_z][gid_y][gid_x+1]

+in[gid_z][gid_y-1][gid_x]

+in[gid_z][gid_y+1][gid_x]

+in[gid_z-1][gid_y][gid_x]

+in[gid_z+1][gid_y][gid_x]);

}

In the above baseline implementation, device u and device u new are two
flattened 1D arrays living on the device. The two integers n x and n y contain
the x- and y-dimensions of the original 3D arrays, whose 3D images are recon-
structed as in and out inside the kernel. Each OpenCL work-item will invoke the
kernel to compute unew

i,j,k at a single mesh point, following the formula of 7PT-1.
The corresponding 3D index (i, j, k) is conveniently acquired through OpenCL’s
standard get global id function. The resemblance between the OpenCL ker-
nel and its CUDA counterpart is quite clear if we remember that an OpenCL
work-item is the same as a thread in CUDA.

3.3 Plane Sweeping in the z-Direction (OPT-1)

The OpenCL kernel of the baseline implementation lets each work-item com-
pute only a single value unew

i,j,k. If the z-dimension of an OpenCL work-group is
by convention chosen as 1, this baseline implementation offers no possibility of
data reuse in the z-direction. One approach to improving this inefficiency is to
adopt the technique of plane sweeping, see e.g. [7]. That is, the kernel computes
a column of points in the z-direction instead. A for-loop sweeping the z-direction
must thus be introduced into this enhanced kernel, in exactly the same way as
CUDA programming of this technique. Note that each iteration of this for-loop
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touches three xy-planes (bottom, middle, top). Data reuse arises between two
consecutive iterations, because some of the data on the middle- and top-planes of
the current iteration can be stored in the registers, thus reusable by the bottom-
and middle-planes of the next iteration. This type of data reuse will reduce
the amount of data loaded from the device’s global memory and the number of
accesses to the on-chip memory.

3.4 Sharing Data on the xy-Plane (OPT-2)

We notice so far that the neighboring work-items within an OpenCL work-group
formally load all their needed data from the device’s global memory, although
many data items on the xy-planes can be shared. In case the on-chip hardware
cache is large enough and properly working, the global memory bandwidth will
probably not be wasted. One approach to ensuring maximum use of the band-
width is to use OpenCL’s local memory, which is called on-chip shared memory
in NVIDIA terminology. That is, each work-item only explicitly loads ui,j,k into
OpenCL’s local memory, while expecting that the four neighbors will respec-
tively load the needed values of ui−1,j,k, ui+1,j,k, ui,j−1,k, and ui,j+1,k also into
the local memory.

To this purpose, the OpenCL kernel can add a new input argument local

double *xy plane, inside which each work-item of a work-group will store its
ui,j,k value that is loaded from the global memory. The size of the xy plane

array is prescribed in the host program, and this array is automatically allo-
cated in OpenCL’s local memory for each work-group, before the work-items
start invoking the kernel. More info about using OpenCL’s local memory can
be found in [8,9]. There are two things that need to be remembered by the pro-
grammer. First, the work-items lying on the boundary of a work-group need to
do additional loads from the global memory. Second, synchronization between
all the work-items of a work-group has to be explicitly enforced by calling the
barrier(CLK LOCAL MEM FENCE) function. In comparison with CUDA program-
ming, using OpenCL’s local memory closely resembles using CUDA’s shared
memory.

3.5 Chunking in the y-Direction (OPT-3)

Chunking [10] is a technique that can be used to improve data reuse on the
xy-plane. It follows the same principle behind plane sweeping in the z-direction.
That is, each OpenCL work-item can be allowed to compute more than one mesh
point on the xy-plane. However, letting each work-item compute several adja-
cent mesh points in the x-direction will destroy coalesced data loads that would
have been issued by consecutive single-mesh-point work-items in the x-direction.
Therefore, we consider chunking only in the y-direction. More specifically, each
work-item can be made responsible for two or four adjacent mesh points in the
y-direction.
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4 Performance Study

This section will study the performance benefits provided by the three optimiza-
tions described in the preceding text. The resulting different OpenCL imple-
mentations were run on two NVIDIA GPUs, one of the Fermi architecture, the
other of the Kepler architecture. The hardware specifications of the two GPUs
are listed in Table 3.

Table 3. Hardware specifications of two NVIDIA GPUs, where the numbers for
GTX590 are for one of its two GPU devices

GPU GeForce GTX590 Tesla K20

# SMs, SPs 16, 512 13, 2496

Architecture Fermi GF110 Kepler GK110

Compute capability 2.0 3.5

Clock (GHz) 1.26 0.71

Registers/SM 32768 65536

Local memory/SM 48 KB 48 KB

L1 Cache/SM 16 KB 16 KB

L2 Cache 768 KB 1280 KB

Peak DP rate 161.3 GFLOPs 1170 GFLOPs

Peak Bandwidth 165.9 GB/s 208 GB/s

Measured Bandwidth 142.94 GB/s 160.88 GB/s

Compiler CUDA 5.0 CUDA 5.0

It should be noted that we only used one of the two devices available in a
GTX590 GPU. It is also remarked that the L1 caches on the K20 GPU do not
cache the data that are loaded from the global memory. Instead, a read-only
data cache (48KB for each SM) has been introduced on the Kepler architecture,
replacing much of the role played by L1 on Fermi.

The size of all the 3D stencil computations was fixed at 2563, i.e., the total
number of mesh points was 2583 including the physical boundary points. More-
over, all the 3D arrays were padded in the x-direction, so that the actual array
dimension was 272×258×258. All the following performance measurements will
be in form of double-precision FLOPs rates, which were calculated based on the
time usages of 100 sweeps over the 3D mesh.

4.1 Tuning Work-Group Size

It is well known that the size of an OpenCL work-group, the same as a thread
block in CUDA, can have an impact on the achievable performance. We therefore
first tried a few typical sizes of the work-group, such as (16, 16, 1), (32, 8, 1), etc.,
for the baseline implementation of the four stencil computations. It was found
that, if the z-dimension of the work-group is kept as 1, the best-performing size
of an OpenCL work-group was (128, 4, 1) among our tests. This work-group size
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was thus used in all the subsequent numerical experiments, except for OPT-2. It
was also found that the performance of the baseline implementations would lose
about 2%∼14%, if the 3D arrays were not padded in the x-direction, especially
on the Fermi architecture.

4.2 Evaluating the Different Optimizations

Figure 1 shows the achieved GPU performance of different OpenCL implemen-
tations. It can be observed that OPT-1 and OPT-3 (chunk size as 2 in the
y-direction) improved the performance of the baseline implementation consid-
erably, for all the four types of 3D stencil computations. However, OPT-2 gave
rather modest performance benefits on K20, and had even a negative perfor-
mance impact on GTX590. This is because the L2 cache on K20 obviously has a
quite good caching effect (even though the L1 cache is reserved for register spills
and stack data), making the use of OpenCL’s local memory not very important.
On the Fermi architecture, the on-chip L1 cache implicitly ensures good data
sharing on the xy-plane between the neighboring work-items, thus making the
use of OpenCL’s local memory unnecessary on Fermi. In addition, if-test and
synchronization are introduced due to using local memory.

Fig. 1. Performance of different OpenCL implementations of four types of 3D stencil
computations, measured on GTX590 (left) and K20 (right)

In comparison with existing works on OpenCL programming of stencil compu-
tations, our best performance of 7PT-1 obtained on the GTX590 GPU (using one
of its two devices) was 55.5 GFLOPs. This is a considerable improvement over
the OpenCL performance reported in [11], which used automated OpenCL code
generation and time tiling optimization to achieve 28.7 GFLOPs on a GTX580
GPU for a similar 3D stencil computation that has 6 loads and 7 floating-point
operations. (It should be remarked that one device on a GTX590 GPU is less
powerful than a GTX580 GPU.) In [12], CUDA programming and on-chip tex-
ture memory were used, together with auto-tuning to find the best thread block
configuration. For an identical stencil computation as 7PT-1, the authors of [12]
obtained 55.2 GFLOPs on a GTX480 GPU, which is comparable with one device
on a GTX590 GPU.
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Fig. 2. A comparison between the achieved OpenCL and CUDA performance, obtained
on GTX590 (top) and K20 (bottom)

4.3 Comparing OpenCL and CUDA Implementations

To investigate the performance myth of OpenCL in comparison with CUDA,
we made matching baseline implementations in CUDA, together with imple-
menting the same optimization techniques. A comparison between the OpenCL
and CUDA performance obtained on GTX590 and K20, for all the four stencil
computations, is shown in Figure 2. It is clear from the figure that OpenCL
programming did not result in any inferior performance for the four representa-
tive stencil computations. The poorer CUDA performance associated with 19PT
and 7PT-3 on GTX590, when OPT-1 optimization was combined with OPT-3,
was due to the limit of maximum 63 registers that can be used by each CUDA
thread, causing considerable register spills of the CUDA implementations. An-
other comment is that we tried for each CUDA implementation quite a few
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different thread block sizes, and the achieved highest FLOPs rate is reported in
Figure 2. The experimental results show that the OpenCL implementations are,
on average, 9% and 2% faster than the CUDA counterparts on GTX590 and
K20, respectively. The performance differences between the two programming
models warrant further investigations in future. A last comment is that, using
either programming model, the K20 GPU does not seem to have too many
performance advantages over a single GTX590 GPU device. This is mainly due
to their comparable memory bandwidths, as shown in Table 3. In other words,
stencil computations depend much more on the memory bandwidth than on the
theoretical peak floating-point rate.

Fig. 3. A comparison between the achieved OpenCL and CUDA performance on K20,
where the second set of CUDA implementations utilized Kepler’s read-only data cache

We therefore state that the performance of OpenCL-programmed 3D stencil
computations is fully comparable with that of CUDA programming. This state-
ment assumes, of course, that same implementation and optimization strategies
are used by the two programming standards. On the K20 GPU, however, CUDA
programming has the possibility of using the newly introduced read-only data
cache on the Kepler architecture. This new on-chip resource is unfortunately
not touchable by the current OpenCL standard. If the read-only cache is used
properly, CUDA programming will again have an upper hand, as illustrated in
Figure 3. In this figure, CUDA-1 denotes best-performing CUDA implementa-
tions that did not use Kepler’s read-only data cache, whereas CUDA-2 indicates
that the read-only data cache was used.
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5 Concluding Remarks

In this paper, three widely used techniques for enhancing 3D stencil computa-
tions on GPUs have been implemented in OpenCL and compared with the CUDA
counterparts. There exist more similar performance-enhancing techniques. For
example, Nguyen et al. proposed in [13] 3.5-D blocking to exploit the spatial
and temporal data locality. A similar implementation was performed on 1D fi-
nite difference stencil computations in [14]. Yang et al. presented in [15] a hybrid
circular queue method to speedup stencil computations on GPUs, by balancing
the shared memory and register resources. Nevertheless, our findings show that
OpenCL programming does not present any particular difficulties for implement-
ing GPU code. Moreover, the OpenCL implementations have produced fully
comparable performance benefits as those obtained by CUDA programming. In
a way, our investigation has broken the skepticism about the OpenCL perfor-
mance for 3D stencil computations. The only obvious advantage of adopting
CUDA programming is associated with the read-only data cache on the Kepler
architecture, which is currently out of reach for OpenCL programming.

To realize the true values of OpenCL programming, i.e., hardware trans-
parency and cross-platform portability, extensive future work is needed to in-
vestigate the performance portability of OpenCL stencil code between different
GPUs, and eventually, between GPUs and CPUs. This type of investigation
will follow the same spirit of [4,5,16], but with the focus being firmly placed
on stencil computations. At the same time, automated code generation [11] and
library-based methods [17] can be good candidates for simplifying OpenCL pro-
gramming.
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Abstract. We study the performance portability of OpenCL across di-
verse architectures including NVIDIA GPU, Intel Ivy Bridge CPU, and
AMD Fusion APU. We present detailed performance analysis at assem-
bly level on three exemplar OpenCL benchmarks: SGEMM, SpMV, and
FFT. We also identify a number of tuning knobs that are critical to per-
formance portability, including threads-data mapping, data layout, tiling
size, data caching, and operation-specific factors. We further demonstrate
that proper tuning could improve the OpenCL portable performance
from the current 15% to a potential 67% of the state-of-the-art perfor-
mance on the Ivy Bridge CPU. Finally, we evaluate the current OpenCL
programming model, and propose a list of extensions that improve per-
formance portability.

1 Introduction

The recent development of OpenCL [2] provide an open, portable C-based pro-
gramming model for highly parallel processors. In contrast to NVIDIA’s
proprietary programming API CUDA [17], a primary goal of OpenCL is porta-
bility across a diverse set of computing devices including CPUs, GPUs, and
other accelerators [6]. Although the initial focus of OpenCL is to offer func-
tional portability, performance portability is a critical feature for it to be widely
adopted. However, it still remains unclear and lacks a systematic study on how
performance-portable OpenCL is across multicores and GPUs, given that it is
heavily influenced by a GPU-centric programming model, CUDA.

In this work, we study the performance portability of OpenCL programs
(SGEMM, SpMV, and FFT) across diverse architectures including NVIDIA
GPU, Intel Ivy Bridge CPU, and AMD Fusion CPU. The central questions
we would like to answer are: (1) what is the gap between the portable per-
formance of single-source OpenCL programs and the optimized performance of
architecture-specific programs? (2) How much of this gap could be closed by
certain tuning knobs that adapt OpenCL programs to diverse architectures?
And what are those tuning knobs? (3) How should the OpenCL programming
interface be extended to better incorporate these tuning knobs?

With these questions in mind, we make the following contributions in this
work. First, our study found that the portable performance of three OpenCL
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programs is poor, generally achieving a low percentage of peak performance
(7.5%–40% of peak GFLOPS and 1.4%-40.8% of peak bandwidth). Second, we
identify a list of tuning knobs including thread-data mapping, parallelism gran-
ularity, data layout transformation, data caching, and we demonstrate that they
could improve the OpenCL portable performance from the current 15% to a po-
tential 67% of the state-of-the-art performance. Third, we evaluate current Intel
and AMD OpenCL CPU compilers, particular on their features of vectorization,
multithreading, and thread aggregation. Fourth, we evaluate the OpenCL pro-
gramming interface and propose potential extensions on parallelism and data
abstractions for performance portability.

The rest of the paper is organized as follows. Section 2 describes our test
platform and selected benchmarks. Section 3 presents our experiment results on
the portable performance, as well as an evaluation of compiler quality. Section 4
identifies performance critical tuning knobs and demonstrates their performance
impacts. Section 5 evaluates the OpenCL programming interface, and proposes a
performance portable programming framework. Section 6 discusses related work.
Section 7 summarizes and describes future work.

2 Experiment Setup

2.1 Test Platform

Our test processors include NVIDIA Tesla C2050 (Fermi), Intel Core i5 3570K
CPU (Ivy Bridge), and AMD A8-3850 APU. Table 1 summarizes the specifica-
tions for these processors including the integrated GPUs. Our software platforms
use NVIVIA CUDA 4.2 for Ubuntu 12.04, AMD Catalyst 12.4 driver for OpenCL
1.2 and Ubuntu 12.04, and Intel SDK for OpenCL 1.1 and Windows 7.

Table 1. Processor specifications

Processor Cores Vector width Freq Peak LLC Bandwidth
(32 bits) (GHz) GFLOPS size (GB/s)

Fermi GPU 14 32 (ALUs) 1.15 1030.4 768 KB 144
APU CPU 4 4 2.9 92.8 4 MB 29.9
APU GPU 5 16×5 (VLIW) 0.6 480 256 KB 29.9

Ivy Bridge CPU 4 8 3.4 217.6 6 MB 25.6
Ivy Bridge GPU 16 8 1.15 166.4 6 MB 25.6

2.2 Benchmarks

We select three programs from the SHOC OpenCL benchmark suite [8] as our
case studies: Single Precision General Matrix Multiply (SGEMM), Sparse Matrix
Vector multiply (SpMV), and Fast Fourier Transform (FFT), which represent a
range of easy to difficult, but computationally important benchmarks. Table 2
summarizes their computation characteristics and performance bottlenecks.
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Table 2. Benchmark characteristics

Benchmarks Compute complexity Compute-to-memory ratio Bottleneck

SGEMM O(N3) O(N) Compute-limited
SpMV O(N) O(1) Bandwidth-limited
FFT O(NlogN) O(logN) Compute-limited

SGEMM is a sub-routine in the Basic Linear Algebra Subprograms (BLAS)
library, and its performance behaviors are representative of other level-3 matrix-
matrix operations [12]. The SHOC program is based on the implementation
developed by Volkov and Demmel [24]. The major improvement introduced by
them is to use a block-based algorithm and an improved loop order so that only
one input sub-matrix needs to be cached instead of two. Choosing an appropriate
block size is critical to the SGEMM performance.

The SHOC SpMV routine is adapted from the version developed by Bell and
Garland [4]. It is well known that SpMV is memory-bound, and a compact stor-
age format is critical to its performance. Bell and Garland experimented with a
number of compact formants and discovered the ELLPACK format [18] generally
performs best on GPUs. This format could guarantee continuous memory access
to matrix entries by adjacent threads and thus maximize the bandwidth utiliza-
tion. We will use the ELLPACK format and its column-major and row-major
variants for performance experiments.

The SHOC FFT routine is based on the version developed by Volkov and
Kazian [25]. The program is hard-coded for processing many 512-point FFTs.
The major optimization exploits the Cooley-Tukey algorithm [6] to decompose
a 512-point FFT to many 8-point FFTs and process them by individual threads
in registers, instead of processing a large 512-point FFT by many threads col-
lectively in the slower on-chip scratchpad memory. A vectorization-friendly data
layout and efficient twiddle factor calculation are critical performance factors.

3 OpenCL Portable Performance

In this section, we study the portable performance of the three OpenCL bench-
marks for a diverse set of processors. We will also investigate the causes of the
gap between the portable performance and optimized performance.

3.1 SGEMM

Figure 1a shows the nomalized SGEMM performance. The benchmark is not
tailored to any of our test processors, as it was originally written in CUDA for
NVIDIA G80/GT200 GPUs [24], and later ported to OpenCL in SHOC. Still, it
reaches 40% of the peak Tesla C2050 (Fermi) performance, which is much higher
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than that of other processors, but lower than the reported 60% for the previous
generation GT200 GPU [24]. Since the Fermi GPU significantly increases the
hardware resources of ALUs, registers and scratchpad memory, it may need a
larger sub-matrix size to achieve a higher GPU utilization.

The major inefficiency of the APU GPU (integrated) comes from the low
utilization of its VLIW ALUs. Our examination of the assembly code reveals that
only an average of 2.4 slots of the total 5 VLIW slots are used, and only 38% of
the total dynamic instructions are compute instructions, which together bound
the performance to 2.4

5 ×38% = 18.4%, close to our measured 14.6%. We also test
a SGEMM program in the AMD APP SDK, which achieves a performance of 329
GFLOPS, 68.5% of the peak, thanks to its customized vector operations. The
low performance of the APU CPU is mainly due to two factors: (1) the AMD
CPU compiler does not support vectorization, and (2) the expensive context
switching between threads at synchronization points.

The Intel CPU compiler does a better job on supporting vectorization and
thread aggregation (serialize threads to avoid unnecessary thread synchroniza-
tions), and thus achieves a higher percentage of the peak performance (13.5% vs.
7.5% for the AMD CPU compiler). The OpenCL program uses a column-major
data layout, which favors GPUs by preserving the inter-thread locality, instead
of the intra-thread locality favored by the CPUs. This is why the Ivy Bridge
CPU performance decreases for larger matrices, which demand better locality
to reduce the bandwidth requirement.

3.2 SpMV

We generate our random test sparse matrices of various sizes, with 1% non-zeros.
Figure 1b shows the SpMV performance and bandwidth utilization, which we
define as the ratio of the effective bandwidth to the peak bandwidth. The effective
bandwidth is calculated as

3×NumberNonzeros× 4Bytes

ProgramRuntime

where 3 is the number of reads for a matrix entry, a column index, and a vec-
tor entry, and 4 bytes is the size for a 32-bit floating point or integer value.
The performance is memory-latency-bound for small matrices, and gradually
becomes bandwidth-bound as the matrix size increases. Due to the random ac-
cess to vector entries, the bandwidth utilization is low on all processors. The
Ivy Bridge CPU performance is higher than the integrated GPU performance
for smaller matrices, mainly thanks to the L1–L2 cache. However, because of
the poor locality of the column-major data layout on the CPU, the CPU per-
formance drops as input matrix becomes too big to fit into the cache; the Ivy
Bridge integrated GPU performance is not affected, because the program uses
a GPU-friendly column-major data layout. The APU processor shows a similar
performance trend.
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3.3 FFT

We use 5Nlog2N (radix-2 FFT arithmetic complexity) as the number of flops for
a N-point FFT, as a convenient and normalized way to compare the performance
of different FFT algorithms, as suggested in the paper by Volkov and Kazian [25].
Figure 1c shows the normalized FFT performance. Both Tesla C2050 and APU
integrated GPU support native sin/cos instructions, which enables a speedup
of 2 − 8× over the program using software-emulated sin/cos calculations. The
program defines a data type for complex numbers and uses a array-of-structure
(AoS) layout with real and imaginary parts of complex numbers stored in an
interleaved way. In this SHOC FFT program, this interleaved layout is fine for
GPUs, but unfriendly for CPUs, because the CPU vectorization is at the but-
terfly level, instead of the 8-point-FFT level in the GPU case. Both AMD CPU
and Ivy Bridge CPU show low performance. The Intel OpenCL CPU compiler
chooses not to vectorize the code, because of the interleaved data layout, while
the AMD compiler does not support vectorization yet.
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3.4 Summary

For the three OpenCL benchmarks across multicores and GPUs, the portable
performance is generally low (7.5%–40% of peak GFLOPS and 1.4%-40.8% of
peak bandwidth). In addition to compiler support, we identified the major causes
of low performance, related to submatrix size, thread-data mapping, data layout,
and native sin/cos support. Next, we show how portable performance can be
significantly improved by tuning.

4 Performance Tuning

In this section, we will discuss the motivation and methodology of performance
tuning, and show it could significantly improve the portable performance.

4.1 Problem Statement

Multicores and GPUs have different architecture features and configurations, and
thus demand different program optimizations. However, current single-source
OpenCL programs lack the ability to adapt. A number of architecture features
impact programmers’ tuning decisions on thread-data mapping, data layout,
tiling size, and so on. These features include core types (complex ILP cores
vs. simple highly-threaded cores), vectorization style (explicit SIMD vs. implicit
SIMT [17]), core count, vector width, cache types (hardware vs. programmer-
managed), cache size (kilobytes vs. megabytes), and bandwidth. The goal of
performance tuning is to make the best choices to map a program to architecture
features.

4.2 Methodology

We adopt a systematic approach for performance tuning by summarizing all po-
tential program optimization aspects as tuning knobs, which form a high dimen-
sional optimization space. We explore this optimization space by experimenting
with the settings of these tuning knobs. Table 3 summarizes all the tuning knobs
and their settings for three benchmarks. In the following subsections, we will ex-
plain why these tuning knobs might be critical performance factors.

Tiling Size. Tiling is an effective technique used by block-based algorithms (e.g.
SGEMM) to increase the cache reuse and thus the compute-to-memory ratio for
bandwidth-limited programs. An optimal tiling size depends on multiple archi-
tecture features including bandwidth, cache size, core count, vector width, and
processor frequency. A perfect size will balance between the effective cache reuse
(large tiles preferred) and sufficient parallelism (small tiles preferred). GPUs usu-
ally prefer smaller tiling sizes because of limited on-chip scrachpad memory and
massively parallel hardware, while CPUs often prefer bigger tiling sizes because
of large cache and fewer hardware parallelism.
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Data Layout. Data layout plays an important role in program performance
optimization. GPU threads are lightweight and work in a tightly coupled, syn-
chronized fashion in thread groups. It is highly desirable for adjacent threads in
a group to access adjacent data in memory to maximize the bandwidth utiliza-
tion. As a result, GPUs usually favor column-major data layout for inter-thread
data locality. On the other hand, CPU threads are more independent and have
a larger working set. They usually favor row-major data layout for intra-thread
locality, and a column-major layout will result in inefficient strided memory
access. Both CPUs and GPUs favor the SoA layout for vectorized operations.
There are tricky exceptions where the AoS layout could be efficient on GPUs,
and the SHOC FFT benchmark is an example, as discussed in Section 3.3.

Caching and Prefetching. GPUs use programmer-managed scratchpad mem-
ory (as well as hardware L1 and L2 caches for post-Fermi GPUs) for data caching,
while CPUs use hardware-managed cache. For CPUs, OpenCL currently simply
treats arrays in scratchpad memory as the ones in external memory, in order
to ensure the program correctness. The extra loads and stores to such emu-
lated scrachpad memory for CPUs may have a performance penalty. However,
the prefetching effect of such loads can help the performance, as shown in Sec-
tion 4.3.

Thread Data Mapping. CPUs and GPUs have a two-level parallelism struc-
ture with cores and vector units. However, many applications show multiple
levels of parallelism (e.g. SGEMM has three levels of parallelism: sub-matrix,
row, and element). It is desirable to have the ability to flexibly map the cross-
level parallelism to the two-level architectures to maximize the hardware utiliza-
tion. Another option is to choose between blocked and interleaved thread-data
mapping. GPUs prefer interleaved mapping (adjacent data mapped to adjacent
threads) for intra-thread locality, while CPUs prefer blocked mapping (adja-
cent data are mapped to a single thread) for intra-thread locality, because CPU
threads are more independent and often have their own L1/L2 cache.

Operation-Specific Tuning. Different generations of CPUs and GPUs may
support a different set of hardware intrinsic instructions such as trigonometric,
logarithmic, and thread coordination (atomic, sync, fence, etc.) operations. To
avoid expensive software emulation, programs should try minimizing the use of
intrinsic functions for the architectures that do not support them.

4.3 Performance Tuning Results

In this section, we will present our performance tuning results. Although we use
the Intel CPU for experiments, we expect similar tuning benefits on other proces-
sors. To experiment with different optimizations, we port the baseline OpenCL
programs to OpenMP, so that we can control the mapping of parallelism to the
hardware, and if vectorization or multithreading is applied. For all experiments,
we use Intel Core i5 3570K CPU (Ivy Bridge) and Intel C++ Compiler XE
13.0, which supports both AVX vectorization and OpenMP multithreading. All
experiments are performed with single precision floating point arithmetic.
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Table 3. Tuning knobs and their settings for three benchmarks

Benchmark Tuning knob Setting

SGEMM Tile size 2× 2
......

128× 128
Data layout Row-major

Col-major
Prefetching/caching Enabled

Disabled

SpMV Thread-data mapping Interleaved
Blocked

Data layout Row-major
Col-major

FFT Share sin/cos calculations Enabled
Disabled

Data layout SoA
AoS

SGEMM Tiling size. Figure 2a compares the performance of the original
OpenCL program, the ported OpenMP program with tunable sub-matrix size,
and the Intel MKL 10.2 SGEMM routine. Our ported OpenMP program is auto-
vectorized by the Intel compiler using 8-wide AVX instructions on 32-bit floating
point numbers. An optimal sub-matrix size of 64×64 doubles the performance of
the original OpenCL program which has a hard-coded sub-matrix size of 16×16.

Caching and Prefetching. On the CPU, the use of scratchpad memory (which
caches one input sub-matrix) is emulated by external memory. We first thought
the extra copies to and from such emulated scrachpad memory would have a
performance penalty. However, it turns out it even provides a slight performance
improvement, most likely due to the prefetching effect of such extra load.

Data Layout. We experiment with both the column-major and row-major lay-
out. Although the column-major format introduces strided memory access and
is bad for cache performance, the two-dimensional block-based algorithm min-
imizes its performance penalty by caching the sub-matrices and making better
use of the cacheline data brought in by each strided access. With a sub-matrix
size of 16 × 16, a row of 16 32-bit values could use the entire cacheline of 64
KB brought in by a strided access. As a result, the row-major layout only offers
slight performance advantage over the column-major layout.

Comparing with the State-of-the-Art Performance. Our tuned performance is
is still low compared with the MKL routine (Figure 2a). By comparing their as-
sembly code, we find that the vectorized section of our ported OpenMP program
is not as efficient as that of the MLK routine, in that it requires two extra data
shuffling and replacement instructions per multiply-add.

SpMV Data Layout. We experiment with both the row-major and column-
major ELLPACK format. Using four threads and the row-major layout, we
achieve the best performance, which is 7.4× higher than that of the SHOC bench-
mark as shown in Figure 2b. Although SpMV is a memory-bound program, we
find that the performance scales well with the number of threads for large inputs.
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This is most likely because more threads are able to use the L1 and L2 caches in
more cores and thus reduce the bandwidth requirement. For small matrix sizes,
data layout and multithreading do not help with the performance, because the
program is memory-latency-bound and all data could fit into cache. Data layout
or multithreading starts to make a performance difference at the point where the
total matrix data and index size(2× 41943Nonzeros× 4Bytes/1024 = 327KB)
exceeds the 256 KB of L2 cache.

Thread Data Mapping. We experiment with interleaved and blocked thread-
row mapping schemes for one random matrix plus four matrices from a collection
of sparse matrices from various scientific and engineering applications, which is
also used in prior work by others [7,4]. The blocked mapping is always faster
than the interleaved mapping by 7% to 21% (Figure 2c).

Comparing with the State-of-the-Art Performance. The Intel MKL library
does not support ELLPACK. We test its SpMV routine in compressed sparse
row (CSR) format. It has a high startup cost for small matrices and is 33% slower
than our row-major ELLPACK program for the largest matrix (Figure 2b).

FFT Data Layout. We experiment with both the SoA and AoS layout. As
shown in Figure 2d, the ported program with the same AoS data layout achieves
comparable performance to that of the OpenCL FFT benchmark. The auto-
vectorized program by the Intel compiler even hurts the performance. However,
the SoA layout is suitable for vectorization and makes the program 2× faster
than the OpenCL benchmark.

Operation-Specific Tuning. Calculating twiddle factors consumes a consider-
able amount of compute time, as the Intel CPU does not have hardware arith-
metic for sin/cos functions. The Cooley-Tukey algorithm decomposes a 512-point
FFT to 8 64-point FFTs, which share the same set of twiddle factors. Based on
this observation, we further improve the program efficiency by cutting 8 times
of redundant twiddle factor calculations to one time per 8 64-point FFTs. This
speeds up the program by another 68% in addition to the data layout optimiza-
tion.

Comparing with the State-of-the-Art Performance Our tuned program is still
50% slower than the state-of-art FFTW library. There are two improvement
oppurtunities. First, we could speedup the twiddle factor calcuation by using
lookup tables and the symmetric property of sin/cos functions. Second, cur-
rently only half of the 8-wide AVX vector unit are utilized, limited by the four
concurrent butterflies in the radix-8 algorithm. A radix-16 algorithm will fully
utilize the vector unit. Another option is to vectorize over 8 FFTs rather than
over butterflies in a single FFT. This optition is used on the GPU, thanks to
convinient data shuffling provided by the crossbar interconnect of scrachpad
memory. On CPUs, however, this will involve major data shuffling overhead.

4.4 Summary

We have explored the performance optimization space formed by various tuning
knobs, and demonstrated a large room of performance tuning for three bench-
marks. Table 4 summarizes all the optimial setting of these tuning knobs for
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Fig. 2. Performance of SGEMM, SpMV, and FFT, with tuning knobs incorporated on
the Ivy Bridge CPU

Table 4. Summary of the optimal settings of tuning knobs for the Ivy Bridge CPU.
The improvement is compared with the baseline OpenCL programs.

Programs Optimal knob settings Improvement

SGEMM 64× 64 tile size 2×
Row-major layout Insignificant
Prefetching/caching Insignificant

Total 2×
SpMV Row-major (small input) Insignificant

Row-major (larger input) 6.2×
Blocked thread mapping 1.2×

Total 7.4×
FFT SoA layout 2.0×

Minimize expensive sin/cos 1.7×
Total 3.4×

Average Total 4.3×
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the Ivy Bridge CPU. On average, the optimized programs perform 4.3× faster.
Another major observation is that the same optimizations may have drastically
different performance impacts for different programs and input sizes. For ex-
ample, the SpMV performance is much more sensitive to the row-major layout
optimization than the SGEMM performance.

One primary goal of this paper is to investigate the gap between the “current”
portable performance of single-source OpenCL programs and the performance of
state-of-the-art programs with architecture-specific optimizations. We also want
to quantify how much of this gap could be closed by “potential” portable perfor-
mance, which is the performance achieved with our tuning knobs incorporated
(summarized in Table 4). Figure 3 shows the current and potential portable
performance of SGEMM, SpMV, and FFT on the Ivy Bridge CPU, normalized
against the performance of today’s state-of-the-art programs (the MKL SGEMM
routine, FFTW, and our ELLPACK SpMV routine, which outperforms the MKL
CSR SpMV routine). On average, by incorporating tuning knobs to program,
the OpenCL portable performance could be improved by more than 4×, from
15% to a 67% of the state-of-the-art performance.
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Fig. 3. Current and potential portable performance on the Ivy Bridge CPU. Perfor-
mance is normalized against the state-of-the-art performance results.

5 Programming Model Implications

In this section, we evaluate current OpenCL programming interface, and propose
extensions towards a performance-portable programming framework.

Although OpenCL provides functional portability across multicores and GPUs,
its performance portability is poor (Figure 3). We have demonstrated a set of
tuning knobs could significantly improve the portable performance. To incor-
porate these tuning knobs, however, the OpenCL programming interface needs
to be raised to a more abstract level. In particular, we propose the following
extensions.
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First, the mapping between threads and data is currently specified by pro-
grammers in a two-level parallelism hierarchy with work-items (threads) and
work-groups (groups of threads), where work-groups are mapped to cores and
work-items to vector lanes. This two-level parallelism model limits the possi-
bility to tune thread-data mapping across multiple levels of parallelism. The
current model also requires programmers to specify a fixed parallelism granular-
ity (the amount of work per work-item is fixed by the specified total number of
work-items, although the OpenCL runtime could select a work-group size if not
provided) and implies interleaved thread-data mapping, which is not favorable
to CPUs. To support tunable thread-data mapping, we propose the notion of
logical threads with more levels of parallelism hierarchy and logical dimensions,
so that they could be re-mapped and re-sized to match today’s two-level (core
and vector) processors in an adaptive way.

Second, OpenCL currently does not support any data layout abstraction
and requires programmers to specify a fixed data layout. However, multicores
and GPUs favor different data layout between row major and column major,
and between structure-of-arrays and array-of-structures. To solve this problem,
OpenCL needs to introduce some form of data abstraction, which decouples data
structure and content from the data layout, and allows programmers to write
generic code without specifying an architecture-specific layout. Examples of such
decoupling include layout specifiers in UPC [5] and data distributive directives
in HPF [15].

Third, OpenCL currently does not have an abstract way to use or not use
scrachpadmemory. Although OpenCL programs could explicitly manage scratch-
pad memory on GPUs, such programs do not naturally fit into CPUs with
hardware cache. As a result, the OpenCL compiler uses external memory as
an emulated scratchpad memory for CPUs, which may cause a performance
penalty. OpenCL needs to introduce a simple switch for using either programmer-
managed or hardware-managed cache, such as the cache directive in OpenACC [1].

A higher-level programming interface allows a larger tuning space, but is
still not sufficient. To support architecture-specific performance tuning, we need
to build a more intelligent compiler and runtime framework. As we have noted
previously, there is not a one-size-fit-all recipe on how to turn those tuning knobs,
and the same optimizations may show totally different performance impacts
for different programs and inputs. Therefore, such tuning should be analyzed
on a case-by-case basis and could potentially be guided by recently proposed
performance models [3,13,26]. Application-specific GPU performance autotuning
has also been recently explored with success [7,9,16]. These studies, as well as
ours in this paper, still require considerable manual work of programmers, and
we expect a higher-level programming interface with model-guided tuning will
be an important direction for future research.

6 Related Work

There have been quite a few studies on the portability of GPU programming
models [10,11,14,19,20,21,22,23]. However, the previous work focus mainly on
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architecture-specific optimizations for OpenCL programs. The contribution of
this work is a methodically designed performance portability study that covers
both compute-limited and bandwidth-limited benchmarks, systematically sum-
marizes common tuning knobs, and discusses their programming model impli-
cations.

MCUDA is one of the pioneering work to compile CUDA programs to a CPU
architecture [22]. The loop fission technique is used to convert explicitly syn-
chronized fine-grained parallel GPU programs to implicitly synchronized coarse-
grained multi-threaded CPU programs. Potential optimizations including data
layout transformation, optional use of shared memory, and flexible thread-data
mapping are not explored in the paper.

Du et al. [10] did an interesting study on portable performance of vendor-
specific SGEMM kernels across NVIDIA and ATI GPUs. Only compute-bound
dense matrix kernels and one tuning parameter (tiling size) are investigated in
their proposed autotuning infrastructure. Similar studies [19,23] explored other
tuning parameters including caching, vectorization, and thread block size. Seo
et al [20] also noticed the limited performance portability of OpenCL, but did
not further investigate its causes.

Shen et al. [21] showed properly tuned OpenCL programs could achieve com-
parable performance to OpenMP versions. Various tuning aspects including data
layouts and parallelism granularity are explored. Fang et al. [11] and Komatsu
et al. [14] respectively compare the performance of OpenCL and CUDA, and
reach a similar conclusion that the performance of OpenCL programs is compa-
rable to those of CUDA if optimized appropriately. Both studies call for future
autotuning research to adapt OpenCL programs to various processors.

7 Conclusions and Future Work

We have identified major tuning knobs for performance portable programming,
and demonstrated that they could improve the OpenCL portable performance
from the current 15% to a potential 67% of the state-of-the-art performance. We
also evaluated the current OpenCL compilers and programmingmodel, and made
a list of proposals towards a performance portable programming framework. We
believe these results will inform and inspire more thinkings on the design and
evolution of OpenCL and other emergining higher-level programming models.

Future directions of this work include: (1) study the performance portability
of irregular programs with data-dependent control flows and memory access
patterns, (2) investigate the feasibility of incorporating a performance model to
compiler or runtime for model-based tuning, and (3) extend this study to other
architectures such as Intel’s Xeon Phi and other emerging programming APIs
such as OpenACC.
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Abstract. We present a heuristics-based auto-tuner for sparse matrix-
vector multiplication (SpMV) on GPUs. For a given sparse matrix, our
framework delivers a high performance SpMV kernel which combines the
use of the most effective storage format and tuned parameters of the cor-
responding code targeting the underlying GPU architecture. 250 matrices
from 23 application areas are used to develop heuristics which prune the
auto-tuning search space. For performance evaluation, we use 59 matrices
from 12 application areas and different NVIDIA GPUs. The maximum
speedup of our framework delivered kernels over NVIDIA library kernels
is 7x. For most matrices, the performance of the kernels delivered by our
framework is within 1% of the kernels found using exhaustive search.
Compared to exhaustive search auto-tuning, our framework can be more
than one order of magnitude faster.

Keywords: SpMV, GPUs, Auto-tuning, sparse linear algebra, CUDA.

1 Introduction

Sparse matrix-vector multiplication (SpMV) operations dominate the perfor-
mance of numerous applications in scientific and engineering computing, finan-
cial and economic modeling, information retrieval, and others. SpMV operations
are performance bottleneck in iterative methods for solving large scale linear sys-
tems, eigenvalue problems, and least squares problems. In SpMV, the operation
y=A*x+y is performed, where A is a sparse matrix and x, y are dense vectors.
Vectors x and y provide the only opportunities for data reuse since elements of
matrix A are used only once. SpMV is a memory bound operation because of
the indirect and irregular memory accesses introduced by the special schemes
used to store sparse matrices and the low computational intensity caused by the
lack of data reuse.

With peak performance of more than 1Teraflop in double precision and peak
memory bandwidth in excess of 192 GB/s, GPUs are becoming ideal to use in
accelerating memory-intensive kernels like SpMV. In order to exploit the com-
puting potential of GPUs, programmers mostly use NVIDIA’s Compute Unified
Device Architecture (CUDA) parallel programming model and software platform
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(CUDA C and CUDA FORTRAN), C++ Accelerated Massive Parallelism (C++
AMP), OpenACC API, or the Open Compute Language (OpenCL) [1,2,3,4,5].
However, the time and effort required to program an optimized routine or an
application kernel(s) are significant [6].

Auto-tuning has been used extensively to automatically generate high per-
formance numerical libraries and applications’ kernels for single and multi-core
processors [7,8,9,10]. Like multi-core processors, GPUs offer complex and diverse
architectural features which require nontrivial optimization strategies that often
change from one chip generation to the next [6]. For SpMV, our recent study
and others show that different storage schemes achieve the best GPU perfor-
mance for different matrix sparsity patterns [11,12]. Moreover, selecting the best
storage scheme for a given matrix is often not a simple task. Hence, auto-tuning
SpMV requires automating both the selection of a storage scheme and code
optimizations that make the most of the underlying GPU.

Recent efforts to auto-tune SpMV on GPUs do not address automating the
selection of the best matrix storage scheme [13,14]. Code optimizations are lim-
ited to implementations using specific storage schemes which are effective only
for certain types of matrices [15]. Another drawback is the expensive use of
exhaustive search auto-tuning.

In this paper, we present a heuristics-based SpMV auto-tuning framework for
NVIDIA GPUs. Given a sparse matrix and a GPU, our framework chooses the
best storage scheme and selects values for parameters of the code of a corre-
sponding kernel to obtain best performance. We consider seven SpMV storage
schemes/kernels; diagonal, ELLPACK, coordinate, CSR, hybrid [16], Blocked
ELLPACK [17], and Blocked Transpose Jagged Diagonal [12]. SpMV kernels
and our framework are coded using CUDA 4.0.

To develop search space pruning heuristics, we conduct experiments using
250 matrices from the University of Florida sparse matrix collection [18]. The
matrices are from 23 application areas and span a wide spectrum of sparsity pat-
terns, matrix dimensions, and number of nonzeros. The heuristics are two types.
The first prunes the candidate storage schemes. Pruning decisions are made by
comparing computed values of sparse matrices characterization parameters to
threshold values that are determined empirically. The second type of heuristics
prunes the search space for parameter values of SpMV codes. The heuristics are
based on either matrix characteristics or the architecture features of the GPU
or both. These heuristics are developed through analysis and observations based
on experiments using the set of 250 matrices. For both types of heuristics, our
experimentation starts using a set of 50 matrices. Heuristics threshold values
are computed before the sample of matrices is incremented by 50 matrices and
the experiments are repeated to fine tune the computed threshold values. This
process is repeated until no change is detected in the computed threshold values
for three consecutive 50 matrices increments of the matrices sample size.

We use 59 other matrices and two GPUs to evaluate our framework. Executing
on the Fermi class Tesla M2070 and compared to exhaustive search, we speedup
auto-tuning by more than 10x for 19 matrices. The speedup is greater than 1.5x
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for all matrices. Performance of the delivered kernels is within 1% of exhaustive
search kernels for most matrices. The maximum speedup of delivered kernels over
the measured performance of NVIDIA library kernels is 7x. Executing on an older
generation GPU, the Tesla S1070, auto-tuning speedup is greater than 10x for
27 matrices. The speedup is greater than 1.50x for most matrices. Performance
of delivered kernels is within 1% of the performance of exhaustive search kernels
for 44 matrices and is within 6% for all matrices. Delivered kernels outperform
the measured performance of NVIDIA library kernels with up to 3.3x speedup.

2 Related Work

Auto-tuning SpMV for multicore processors and GPUs received considerable at-
tention in literature. Williams and co-workers developed a SpMV auto-tuning
framework for multi-core architectures [9]. Their auto-tuning framework uses
a combination of heuristics and exhaustive search to set the optimizations pa-
rameters. The optimizations were incorporated in the Optimized Sparse Kernel
Interface (OSKI) to form (pOSKI) [8,10]. On top of pOSKI, an MPI-layer was
built to support distributed-memory architectures forming MPI-pOSKI.

For GPUs, El-Zein and Rendell [13] tested the effect of different implementa-
tion options on the performance of SpMV using the CSR storage scheme. The
tested options use different memory types, different data types and different
assignments of rows to threads/thread blocks. Based on experiments using 735
matrices, El-Zein and Rendell proposed a two-level decision tree that attempts
to select the optimal CSR kernel implementation for a matrix. Performance
achieved by their module was within 6% of the performance of the best imple-
mentation.

Grewe and Lokhmotov [14] presented a framework consisting of a high level
representation for describing sparse matrix storage schemes and a compiler that
generates SpMV CUDA or OpenCL code. The framework allows for applying
several optimizations to the generated code. They evaluated their framework
using the 14 matrices in [9] and the storage schemes CSR, DIA, ELL, HYB [16],
blocked ELLPACK [17], and sliced ELLPACK [19]. Experimental results on an
NVIDIA Tesla S1070 and an ATI Radeon HD 5970 showed that the optimized
code has similar or better performance than manually-tuned code.

In order to achieve the best performance of the BELLPACK kernel, Choi and
co-workers proposed a framework that models the architectural features of GPUs
to automatically choose optimal blocking parameters [17]. Their framework was
capable of finding the best implementation with a median error of 15% when
compared to exhaustive search.

Guo and co-workers proposed an empirical performance model combined with
a partitioning framework that finds the most appropriate storage scheme for each
partition of a matrix for the best execution time of SpMV [15]. Their perfor-
mance model predicts the execution time of SpMV kernels ELL, CSR and HYB
on each partition based on the architectural features of a GPU and the charac-
teristics of the partition. The total estimated execution time is the summation of



154 W. Abu-Sufah and A. Abdel Karim

each partition estimated execution time. Their framework also auto-tunes CUDA
code parameters. The framework exhaustively searches parameters values dur-
ing the first iteration of a computation and uses the parameters with the best
performance for the remaining iterations. Their auto-tuning framework achieves
222%, 197% and 33% performance improvements over CSR (vector), ELL and
the HYB kernels on an NVIDIA’s GeForce GTX 295.

None of the auto-tuning SpMV approaches discussed above deal with au-
tomating the selection of the matrix storage scheme. The framework in this
paper automates both the selection of the storage scheme and the tuning of the
corresponding kernel’s parameters. Unlike the exhaustive search framework of
Guo and co-workers our framework uses heuristics to speed up auto-tuning.

3 Auto-tuning SpMV

3.1 The Search Space

Sparse matrices use special data structures that store only the nonzero elements
to eliminate redundant computations and storage. For SpMV, it is rarely obvious
which storage scheme is the most effective for a given matrix [12,16]. Hence it
is necessary to automate the process of selecting the best storage scheme for a
given matrix. Our study considers the following storage schemes/SpMV kernels
described in details elsewhere: DIA, ELLPACK, CSR (vector), COO, and HYB
[16], BELLPACK [17], and BTJAD [12].

DIA, ELLPACK and BELLPACK are optimized for matrices with structured
sparsity patterns. DIA is suited for matrices whose nonzero elements are concen-
trated along diagonals. ELLPACK is suited for matrices with nonzero elements
per row that do not deviate much from the average. BELLPACK works best for
matrices with dense block substructures. CSR and COO work best for highly
unstructured sparse matrices since the amount of storage is always proportional
to the number of nonzero elements. HYB stores rows of the matrix with close
number of nonzero elements per row using ELLPACK and the remaining rows
using COO. BTJAD is a blocked version of the Transpose Jagged Diagonal for-
mat (TJAD)[20]. In BTJAD, rows of the matrix are divided into blocks and
each block is stored using TJAD. The resulting rows are called transpose jagged
diagonals (TJDs). The main optimization made in BTJAD is the ability to load
and reuse x vector elements in registers.

We performed experiments that measure the performance of these kernels
and relate them to matrices characteristics using 250 matrices. These matri-
ces were selected to cover a wide spectrum of sparse matrices dimensions (tens
of thousands to millions), number of nonzero elements (hundreds of thousands
to tens of millions), variations in rows lengths (highly non-uniform to highly
uniform), and sparsity patterns (diagonal, dense sub-blocks, and random). Our
experiments show that neither CSR nor COO performs best for any subset of
the tested matrices. For any matrix BTJAD always outperforms CSR and HYB
always outperforms COO. When the number of rows per block is set to 1, the
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BTJAD storage scheme reduces to CSR with the source vector reordered for each
row and hence with coalesced accesses to the source vector. As the number of
rows per block (BLOCKYDIM) increases, the BTJAD storage scheme benefits
from register reuse. Consequently, BTJAD outperforms CSR for all matrices.
COO is known for its insensitivity to variations in row lengths. For matrices
with highly variable row lengths, HYB stores most of or the entire matrix using
COO achieving equivalent or better performance than COO. Based on these
conclusions, we exclude both CSR and COO from the search space.

In addition to the diverse matrix sparsity patterns, the complexity and vari-
ation in architectural features of GPUs make auto-tuning of kernels parameters
necessary. Table 1 lists the kernels parameters that are tuned by our framework.
In the table, the term ”kernel block size” refers to the number of threads per
thread block in the launched kernel, whereas the term ”matrix block size” refers
to the size of matrix blocks in BTJAD and BELLPACK. In BTJAD, either half
a warp or full warp is assigned per matrix block. In addition, each thread reuses
loaded elements of the source vector (x) in its registers. Hence, the number of
registers used to load these elements is a code parameter.

Table 1. Auto-tuned kernels parameters

Kernel
Kernel

Block Size

Number of
Launched
Threads

Threads
per Matrix

Block

Matrix
Block Size

Number of
x

Registers

DIA X

ELL X

HYB X X

BELLPACK X X

BTJAD X X X X X

3.2 Heuristics-Based Auto-tuning

Using heuristics, our framework first identifies the set of candidate storage
schemes for an input matrix. Then the framework tunes the parameters of the
kernels optimized for the candidate storage schemes and executed on a certain
GPU. To identify the best kernel, the framework uses a combination of timing of
the execution of each candidate kernel and heuristics to prune the search space
of kernel code parameters. Figure 1 shows an abstraction of the workflow of our
framework. A detailed discussion of the heuristics used by our framework can
be found in [21].

Pruning the Search Space of Storage Schemes. We develop heuristics
which use computed threshold values of matrix characterization parameters to
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Start

Read input matrix

Read relevant GPU specifications

Identify the set of candidate storage
 schemes for the input matrix

Idenitfy the set of implementations resulting 
from tuning the corresponding kernels parameters

Search implementations using a combination of
heuristics and experiments

Return best performing kernel

End

Fig. 1. An abstraction of the auto-tuning workflow

exclude a storage scheme. Threshold values are set based on analysis of exper-
imental results using our 250 matrices. We started our experiments by setting
the threshold values based on kernels’ performance and characterization param-
eters for a set of 50 matrices. Threshold values were then fine tuned based on
the kernels’ performance and characterization parameters after adding another
set of 50 matrices to the sample. When repeating this process three times by
adding 3 sets of 50 matrices each, we found that threshold values which were set
based on experimenting with the first 100 matrices needed no further tuning.
Therefore, our auto-tuner uses these threshold values which were obtained and
validated using our testing sample of 250 matrices. Figure 2 shows a flow chart
of how our heuristics prune the storage schemes search space.

Our experiments show that HYB produces the best performance for matrices
with highly non-uniform rows lengths. We considered the use of several different
parameters to identify matrices which are best stored using HYB. These pa-
rameters were formed using different statistical values of nonzero elements rows
lengths (i.e. average, standard deviation, coefficient of variation, and maximum).
In addition, we also considered the possibility of defining metrics which describe
how the matrix storage was divided into ELLPACK and COO. Of the different
parameters, we use the coefficient of variation of nonzero elements row lengths
to compare dispersion of row lengths for matrices with different average row
lengths. For a given matrix, this is computed by dividing the standard devia-
tion of nonzero elements row lengths by their average. Our experiments show
that this parameter distinguishes matrices where nonzero elements row lengths
largely deviate from the average since they have large standard deviation values
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relative to their average rows lengths. Our experiments also revealed that HYB
performs best for matrices with coefficients of variation greater than 20. Hence
our framework selects the HYB storage scheme for matrices with coefficient of
variation values greater than 20.

Start

Compute coefficient of variation of 
row lengths of the input matrix

Coefficient of 
variation>20

Compute DIA fill ratio of the input matrix

Compute ELL fill ratio of the input matrix

DIA fill 
ratio > 2.1

ELL fill 
ratio > 1.8

Prune HYB from the search space

End

Select HYB and prune all other storage schemes

Prune DIA from the search space

Prune ELL from the search space

No

No

No

Yes

Yes

Yes

Fig. 2. Using heuristics to prune storage schemes

The performance of DIA and ELLPACK deteriorates as the amount of re-
quired zero padding increases. In order to identify when to prune these storage
schemes we identified the fill ratio as the parameter that reflects the amount of
zero padding [16,22]. It is computed by dividing the number of stored elements
by the number of nonzero elements of the matrix. Higher fill ratios indicate more
explicitly stored zero elements and consequently lower suitability of the storage
format for the given matrix. Our experiments show that DIA does not produce
the best performance for any matrix with a DIA fill ratio greater than 2.1 and
ELL does not produce the best performance for any matrix with ELL fill ratio
greater than 1.8. We observed that for matrices with uniform row lengths HYB
stores most of or the entire matrix using ELL, achieving equivalent or lower
performance than ELL. Consequently for matrices with ELL fill ratios less than
1.8, we prune HYB.
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Pruning the Search Space of Kernels Parameters. For storage schemes
that are not pruned, we heuristically or analytically prune implementations that
are predicted not to produce the best performance. For DIA, ELL and HYB, we
prune thread block sizes that do not maximize the number of threads scheduled
per GPU streaming multiprocessor, SM. For BTJAD the matrix block size and
number of x registers affect the number of threads scheduled per SM [12]. Our
framework prunes all combinations of these parameters that yield a number of
scheduled threads per SM which is less than 1/4 of the allowed maximum since
our experiments show that they always produce worse performance than other
combinations.

For the COO portion of HYB and for BTJAD, the kernel should specify the
number of threads to be launched on kernel invocation. Our framework limits
the number of launched threads values to those with which the best performance
is always achieved based on observations from experiments using our set of 250
matrices.

In order to prune the search space of the blocking parameters values for BELL-
PACK, we introduce the computation of the BELLPACK fill ratio. BELLPACK
performance deteriorates for matrices that do not have dense block substruc-
tures. The fill ratio of BELLPACK is computed for each combination of the
blocking parameters, discussed in [17], for the given matrix. Based on our exper-
iments, our auto-tuner prunes all blocking parameters values that yield BELL-
PACK fill ratios larger than 3.

For BTJAD, we develop heuristics to prune the search space of the number
of assigned threads per matrix block (warp or half warp), registers used to load
x vector elements, and matrix block sizes. Tuning the number of x registers is
dependent on the number of nonzero elements in the formed TJDs. Assigning
a smaller number of registers means more kernel iterations are needed to load
the x vector elements and perform the multiplication. On the other hand, using
more registers to load elements from the x vector than required means that
some of the registers will not be used. Our framework starts with the smallest
number of registers in the search space, which is 2 registers, and continues the
search by increasing the number of registers in each implementation. The search
stops when performance decreases for two consecutive values for the number of
registers. Our code computes the maximum number of registers to be considered
for loading x elements, which is for the case when one block is scheduled per
SM, based on the total number of registers available in the GPU per SM, the
currently considered thread block size, and number of other registers used in the
kernel code. The total number of registers available in the GPU per SM is read
using the function cudaGetDeviceProperties; a part of the CUDA API. Using
the command ptxas, we find the fixed number of registers which is used in the
kernel code in addition to registers used to load x vector elements.

For matrices with large numbers of rows, our framework starts with the largest
matrix block size in the search space testing possible block sizes in descending
order. On the other hand, for matrices with small number of rows, the kernel
launches as many threads as needed by the matrix blocks. For such matrices our
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framework starts the search with the smallest matrix block size testing possible
block sizes in ascending order. In both cases, the framework stops the search
when performance decreases for two consecutive values of matrix block size.
This heuristic was verified empirically using our 250 matrices.

4 Performance Evaluation

4.1 Experimental Setup

To evaluate our framework we use 59 matrices, a Tesla S1070, and a Fermi class
Tesla M2070. We select these two systems in order to test and validate our auto-
tuner performance using different generations of NVIDIA GPUs (i.e. Tesla T10
of the S1070 and Tesla T20 of the M2070). The matrices are selected from 12
application areas to include a wide spectrum of sparsity patterns. In addition,
the matrices vary in their dimensions and number of nonzero elements. For each
matrix, we compare the GFLOP/s of the kernel delivered by our auto-tuning
framework and the highest GFLOP/s we measured for NVIDIA’s library kernels.
In both cases we measure the GFLOP/s as the average obtained over 1000 trials
or 3.0 seconds of execution time, whichever is less. The measured time does not
include time required to transfer data from the host to the device and back. For a
particular kernel and input matrix, the GFLOP/s is computed by dividing twice
the number of nonzero elements in the matrix by the measured execution time.
We also compare heuristic-based and exhaustive search auto-tuning in terms of
the GFLOP/s of the delivered kernels and the auto-tuning times.

4.2 Experimental Results

Speedup over NVIDIAs Library Best Performing Kernels. Our frame-
work delivers kernels that outperform NVIDIA’s library best performing kernels
for 36 and 40 matrices using the Tesla S1070 and the M2070, respectively. Fig-
ure 3 shows the speedup results for these matrices. Using the Tesla S1070, the
speedup ranges between 1.2x and 4.2x with an average of 2x. Using the M2070,
the speedup ranges between 1.2x and 7x with an average of 2.2x. For the major-
ity of these matrices, our auto-tuner chooses BTJAD and auto-tunes its kernel
presented in [12]. Our framework achieves speedup values greater than 2 when it
chooses and auto-tunes BTJAD. These results are very close to those reported
in [12] where a comparison between the BTJAD implementation found using
manual exhaustive search and NVIDIA’s kernels is provided. For 7 matrices,
our auto-tuner chooses BELLPACK and auto-tunes its kernel. For 2 matrices
(1 and 5), our auto-tuner chooses a storage scheme from the set discussed in
[16] and auto-tunes the corresponding NVIDIA kernel. For both matrices, it
achieves minor speedups by auto-tuning parameters of the best performing ker-
nel of NVIDIA’s library.

Executing on the M2070, the performance of both BTJAD and NVIDIA’s
library kernels improves. Depending on the distribution of nonzero elements in
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Fig. 3. The speedup achieved by our auto-tuner delivered kernels over the best per-
forming NVIDIA kernels

the input sparse matrix, BTJAD can benefit significantly from a larger register
file and shared memory. The M2070 has twice the number of registers and three
times the size of shared memory available on the S1070. This explains the greater
speedup values achieved using the M2070 for some matrices. For some other ma-
trices, the speedup using the S1070 is greater. This is because the improvement
in the performance of BTJAD is less compared to the improvement of the best
performing kernel of NVIDIA’s library when executing on the M2070.

For matrices not shown in Fig. 3, our auto-tuner chooses a storage scheme from
the set discussed by Bell and Garland in [16] and it auto-tunes the corresponding
NVIDIA kernel. The selected parameters values turn out to be identical to those
chosen by NVIDIA’s developers. This is why kernels delivered by the auto-tuner
for these matrices have identical performance to the best performing kernels in
NVIDIA’s library.

Performance Comparison to Exhaustive Search Auto-tuning. We com-
pare the performance of kernels delivered by heuristic-based and exhaustive
search auto-tuning. Figure 4 shows the distribution of the performance differ-
ences as % of the performance of the exhaustive search kernel for the 59 matrices.
The performance of heuristic-based kernels is always at least 93% of the perfor-
mance of the exhaustive search kernels. The performance of the kernels delivered
by our framework is at least 99% of the exhaustive search kernels for 37 and 44
matrices on the S1070 and M2070, respectively.
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Fig. 4. Histogram of the performance difference between the kernel delivered by our
auto-tuner and the kernel found using exhaustive search auto-tuning as % of the per-
formance of the exhaustive search kernel
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Fig. 5. Auto-tuning speedup due to using heuristics instead of exhaustive search

Auto-tuning Speedup. For an input matrix and a GPU, we define the auto-
tuning speedup as the ratio of the exhaustive search to the heuristics-based auto-
tuning times. For 46 matrices, Figure 5 shows that the auto-tuning speedup is 2x
for at least one of the GPUs. For the S1070 the speedup is greater than 50x for
18 matrices and greater than 10x for 27 matrices. The speedup is greater than
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4x for 39 matrices, and at least 2x for 42 matrices. The speedup is greater than
1.5x for all 59 matrices except 3. For the M2070 the speedup is greater than 90x
for 13 matrices and greater than 10x for 19 matrices. The speedup is at least 2x
for 28 matrices and greater than 1.5x for all 59 matrices. For some matrices, the
significant difference in auto-tuning speedup using the two GPUs is due to the
randomness in the way BTJAD heuristics prune its search space. For 3 matrices
and both GPUs, the auto-tuning speedup is more than ten thousand times. For
these matrices, our auto-tuning framework selects HYB. This leads to significant
savings in the search time because we avoid the very expensive consideration of
BELLPACK and BTJAD. Storing each of these matrices using blocked schemes
is very time-consuming.

5 Conclusions and Future Work

We presented a heuristics-based auto-tuning framework for SpMV on GPUs. Our
framework generates an optimized SpMV kernel for a given sparse matrix and
GPU by selecting the best storage scheme and automatically tuning parameters
of the corresponding kernel. The kernels considered by our framework are the
NVIIDIA’s library kernels, BELLPACK and the BTJAD kernels [17,12]. We
demonstrated the performance improvement of our framework delivered kernels
over NVIDIA’s library kernels using two different generations of NVIDIA GPU
architectures. Our framework delivers kernels with GFLOP/s very close to those
delivered by exhaustive search kernels. However, our framework reduces the auto-
tuning time significantly.

Pruning the BELLPACK storage scheme would speedup the auto-tuning pro-
cess significantly but this requires computing the fill ratio of the matrix which
is done after storing it using BELLPACK. Storing a matrix in the BELLPACK
format requires prohibitively long time for matrices with unstructured sparsity
patterns. Our future work includes investigating the validity of using an estima-
tion of the BELLPACK fill ratio based on sampling of the sparse matrix instead
of computing the exact fill ratio [22]. We also plan to investigate the possibil-
ity of integrating the model-driven framework proposed in [17] for choosing the
best blocking parameters when BELLPACK is selected. In addition, our future
work includes investigating the implementation and auto-tuning of SpMV using
multiple GPUs with MPI across GPUs.
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Abstract. There seems to be a lack of reliable thumb rules to estimate
the size and performance of clusters with respect to applications. Since
modern cluster architecture is based on multi-cores we follow a concept
derived by S. Williams et. al. for the analysis of such systems. The per-
formance is described by the dimensionless speed-up in dependence on
important hardware and application parameters. The hardware param-
eters are the number and the theoretical performance of each processing
unit and the bandwidth of the network. The application parameters are
the total number of operations performed on a number of bytes and the
total number of bytes communicated between the processing units. In
order to test our theoretical concept we apply our model to the scalar
product of vectors, matrix multiplication, Linpack and the TOP500-list.

Keywords: performance model, performance analysis, compute clus-
ters, roofline model.

1 Introduction

In the last century the methods of performance analysis of computers and their
networks have been developed with very sophisticated mathematical tools.

Within the framework we presented in earlier publications [1, 2, 3] some ade-
quate results in performance prediction by a classical stochastic approach. But
most applications in High Performance Computing (HPC) are straightforward
and the stochastic method seems not to be the appropriate tool. This seems to
be true for web applications [24] too.

Further it seems that a detailed analysis of systems is mostly a waist of time.
The performance of systems changes rapidly due to hardware development ren-
dering available analysis methods unpractical and slow to adapt. There is a
lack of reliable thumb rules to estimate the size and the performance of cluster
systems or server farms. The classical concepts developed for mainframes and
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c© Springer-Verlag Berlin Heidelberg 2013



166 H. Kredel et al.

time-sharing systems (as discussed for example in [1]) are not appropriate for
clusters with more than 100.000 cores or for very big server farms.

Considering all this, we propose a simple and transparent approach in an-
alyzing the performance by simple mathematics – inspired by the ideas of S.
Williams et al. [4] for the roofline model of multi-cores. In the roofline model an
upper bound for the performance is modeled by the maximum of the peak flop
rate, and the product of streaming memory bandwidth times the flop to byte
ratio. In our approach we describe the performance by the dimensionless speed-
up expressed with the help of the product of the measured network bandwidth
times the flop to exchanged bytes ratio. Compared to the laws of Amdahl [5] and
Gustafson [6], we try to incorporate important characteristics of the application
and the hardware. Further we can obtain very easily the scaling in the number
of cores, the problem size or the bandwidth of the internal network. With this
approach it could be possible to find a transparent and homogenous method of
modeling the whole cluster with all its elements – from cores and multi-cores to
nodes and regions of nodes.

Related work is discussed in Sect. 2 and the assumptions underlying our model
are described in Sect. 3. In Sect. 4 we present our performance model which
is based on ideas presented in [11, 10] and derive general equations for the
performance and for the speed-up. In Sect. 5 we take account of the parameters
of the applications and show how to apply the resulting equations to specific
applications. The application of our model to real systems is discussed in Sect. 6.
Finally Sect. 7 draws some conclusions.

2 Related Work

In the field of cluster and parallel computing there exists a lot of interesting
analysis related to our approach.

Hockney proposed some strategies to describe the performance of parallel
systems. In an earlier paper and book [7, 8] he classified vector and parallel ma-
chines by computing the overall performance depending on the vector lengths
n, n1/2, the computational force or intensity f , and some hardware character-
istics like the number of processors p, the single processor performance, and
the communication. In general our proposed methods are similar but they are
based directly on a cluster and multi-core architecture, not yet available in the
1980s. Furthermore Hockney focused on the discussion of benchmark runtimes
and performance. The concept of dimensionless parameters was not considered
at that time. A second and later work [9] searched for some analogies to Fluid
Dynamics in order to explain performance and computational similarity [9] by
introducing dimensionless parameters δ1−3 (comparable to theg Reynold Num-
ber). He picked up his earlier ideas on the performance based on computation
and communication phases and discussed the speed-up as a dimensionless vari-
able. In principle our argumentation is close to his guidelines, but there is a
big difference in the number of dimensionless parameters and the integration of
hardware and software characteristics.
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Numrich has built up some smart theories in performance analysis. The first
one [16] is based on an approach by Newtons classical mechanics. In an abstract
computational space, the actions of the software correspond to the masses and
the computational intensity corresponds to the forces of mechanics. The principle
of least action determines the dynamics by the shape of the potential function.
With the computational action S it is possible to derive a metric space for pro-
grams. But it seems not easy to integrate the architecture of a parallel system,
the complex application software and communication. Hence this approach is not
successful in order to describe the performance by one intuitive and dimension-
less parameter. Apart from the fact, that classical mechanics and performance of
modern computer systems must not follow the same laws stringently, one of the
most doubtful assumptions is the use of the energy conservation theorem, which
is true in physical time-invariant system but is not necessarily true in the world
of computer systems. We are not sure that a purely formal analogy is sufficient to
describe systems correctly. The other theory of Numrich is based on the dimen-
sion analysis [17] and the Pi-theorem of Buckingham [18]. The argumentation
seems to be very abstract and not close to practical experience, but nevertheless
they give useful hints for algorithm and hardware design. In addition one finds
some interesting examples and model validations. But in summary it seems far
from our goal to find simple thumb rules for cluster computing.

Luszczek and Dongarra [14] developed a very comprehensive model for the
Linpack in High Performance Computing (HPC) [12] without looking inside
the software. They use a simple polynomial of 3rd order in the matrix size n
for determining the runtime t. All parameters of the system are hidden in the
coefficients of this polynomial. Their values can be taken from experiments by
varying n and measuring the corresponding runtime. An explicit and simple
dependence on the number of processing elements, the computational intensity,
or the network bandwidth is not easy to extract, but it is an excellent work to
learn more about Linpack and ScaLApack [13].

Our earlier work [2, 3] used an elaborate stochastic approach which we can
now avoid. Moreover we now have a communication term of the application for
more realistic analysis. The earlier papers were focused on the performance of two
distributed clusters coupled by an InfiniBand network and the only application
was Linpack. The communication within the cluster was neglected completely
and there was no way to treat inhomogeneous systems.

3 Assumptions and Goals

In this section we will determine our goals and describe the necessary assump-
tions of our methodology. The goals or guidelines are

– simplicity and transparency in the modeling process,
– few and directly available parameters to describe the characteristics of hard-

ware and software of cluster systems,
– speed-up as a dimensionless metric in order to describe the dependencies on

the number of cluster elements and the problem size,
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– to find the size of a cluster which assures a reasonable or optimal runtime of
a given application,

– validation of our approach by some empirical experiments with standard
application.

We need to bear in mind that we cannot consider all hardware and communica-
tion topologies nor all application software parameters. Therefore we choose a
model with p processing elements or cores (called PUs), which have on the multi-
core level only one link to the communication network. There are no dependen-
cies between the computations on different PUs, the effects of synchronization
are neglected. Each PU is characterized by the theoretical performance which
is measured in floating point operations per second (flop), memory operations
remain out of consideration. The network is characterized by the bandwidth
only (measured in GBytes/sec), the effects of topologies are neglected, too. The
influence of the latency we have studied in earlier publications [2, 3] with a more
elaborate stochastic model, where it turned out, that the importance of this pa-
rameter is negligible for our purpose. Furthermore we want to avoid more free
parameters, although Numrich in his work [18] has shown how to hide latency in
a dimensionless parameter. We believe that latency is partly included in our ad-
ditive term for the communication time. The good qualitative agreement of our
results with the measured data is a confirmation for this strategy. Regarding the
application software we introduce three parameters, the number of operations,
the number of bytes used by the operations and the number of bytes exchanged
by the PUs, without any protocol overhead. The exchange parameter emphasizes
the difference between two earlier approaches [15, 11], since it allows to integrate
the communication on the level of the actual algorithm or application.

Our theory about the performance of cluster computing is very general and
includes heterogenous systems, too. This is important if we want to analyze
regions with different multi-core nodes. But in a first step we apply our meth-
ods only to homogenous clusters, the most common systems in use today. The
presented modeling ignores memory and cache behavior of the application code
which is an important aspect in the performance analysis of a cluster. But in a
first step we are regarding the cluster on the level of the nodes, as black boxes,
only. In a second and future step we want to include the analysis of multi-cores
in agreement with the approaches of [4]. Our approach is open for non-numerical
applications too, like data intensive computing [23] or Web-applications [24].

4 Modeling

According to the previous section we propose a model with p processing units
(PUs), connected by a network with a bandwidth bc [GByte/sec]. The theoretical

peak performance lpeakk=1,...,p of each PU is measured in [Gflops/sec], the applica-
tion is described by the total number of operations #op on #b bytes. In the
original setting of the roofline model there is also the theoretical performance
(in Gflop/sec) but instead of our network bandwidth, the memory bandwidth
(measured by Stream BW) is considered. The operations are distributed on the
PUs (k = 1, . . . , p) according to
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ok = ωk ·#op, dk = δk ·#b with

p∑
k=1

ωk =

p∑
k=1

δk = 1 (1)

The homogeneous case with ωk = 1/p, δk = 1/p as well as lpeakk = lpeak for
k = 1, . . . , p will be discussed in detail in Sect. 5. The primary performance
quantity of the system is the total time t to process the load (#op,#b). Derived
quantities are the performance1 l as a function of the number of PUs

l(p) =
#op

t
(2)

and the speed-up

S =
l(p)

l(1)
, (3)

which we want to express as a function of (#op,#b), (ωk, δk), and (lpeakk , bc). If
the k = 1, . . . , p PUs work sequentially, each with a time tk(ok, dk), it follows

t =

p∑
k=1

tk(ok, dk). (4)

We skip this rather uninteresting case and concentrate on parallel working PUs
only. Then, the total execution time tr for the operations is

tr = max{ t1(o1, d1), . . . , tn(op, dp) }. (5)

In addition, there is a communication time tc, which can be estimated by the
total number of bytes #x to be exchanged and the aggregate bandwidth bc
between the PUs,

tc � #x

bc
. (6)

This additive term is in agreement with a lot of approaches like Hockney [9] or
Numrich [18]. But in contrast to these works we have a different argumentation
for the latency – see Sect. 3. For the rest of this section let k = kmax be the
cluster element (PU), which determines the maximum of (5), then it follows

t � tr + tc = tk(ok, dk) +
#x

bc
. (7)

The time tk can be determined similar to (6),

tk � ok
lk

≥ ok

lpeakk

. (8)

1 We use l instead of P to avoid confusion with p.
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With (1) we get

t ≥ ωk · #op

lpeak
k

+ #x
bc

= ωk · #op

lpeak
k

·
(
1 +

lpeak
k

bc
· #b
ωk#op · #x

#b

)
. (9)

With this, the performance l is bounded by

l ≤ lpeakk

ωk
· xk

1 + xk
≤ lpeakk

ωk
, (10)

where we defined
xk = ωk · a

a∗
k
· r with

a = #op
#b , a∗k =

lpeak
k

bc
, r = #b

#x .
(11)

The performance behavior of the system “application plus hardware” is described
by a dimensionless parameter xk. Like other analysis we observe that the ratios
a
a∗ and r = #b

#x have an important influence on the behavior of the speed-up.

The parameter a is the computational force or intensity of the software [17] and
a∗ of the hardware. Only for a > a∗ we expect significant performance values,
but more important is r = #b

#x . Decreasing #x by a better algorithm increases r
and results in a higher speed-up. In the case #x = 0, no communication or all
communication is parallel, we get the ideal linear speed-up (see 14: if #x → 0
then r → ∞ and S → p). In principle our procedure is in agreement with the
dimension analysis by Hockney [9] and Numrich [18], but we try to avoid a lot of
theoretical overhead by using our variable x. Its derivation and meaning comes
from practice and it is calculated easily.

For the calculation of the speed-up we need the performance of the whole
application (#op,#b) on a single PU. Without loss of generality, we can choose
PU k = kmax of (5) and with ωk = 1 we receive for the speed-up

S =
lk(ωk < 1)

lk(ωk = 1)
=

1 + xk(ωk = 1)

1 + ωk · xk(ωk = 1)
, (12)

where xk = ωk · xk(ωk = 1) according to (11). We further factorize xk(ωk = 1)
in dimensionless parameters

xk(wk = 1) =
a

a∗k
r = a

bc

lpeakk

r = a · b0c

lpeakk

· bc
b0c

· r (13)

and define x̂k = a · (b0c/lpeakk ) and z = bc/b
0
c. b

0
c is an arbitrary reference band-

width. Since ωk ≤ 1 for all k = 1, . . . , p, we write ωk = ω(k, p)/p with ω(k, p) ≤ p
and for the speed-up follows

S =
1 + x̂k · r · z

1 + ω(k, p) · x̂k·r·z
p

. (14)

The speed-up (14) can be used to analyze both strong scaling (Amdahl) by fixing
the problem size n (so fixing a) and increasing the number of processing units p
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as well as weak scaling (Gustafson) by changing p to p+Δp and increasing the
problem size n (so increasing a). Both scalings can easily be observed in figures
1, 2 and 3.

In case of a homogenous cluster we have ω(k, p) = 1 and the index k in (10 -
14) can be omitted (x̂k = x̂ for all k). So the speed-up (14) becomes

S =
1 + x̂ · r · z
1 + x̂·r·z

p

. (15)

Hence we achieve our goal to describe the performance of the most modern
cluster systems by a 4-tuple of dimensionless parameters (x̂, r, z, p).

5 Application-Oriented Analysis of Speed-Up and
Performance

In the previous section we avoided to discuss a concrete application and we only
preferred to elaborate the dependence of the speed-up from performance lpeakk

(k = 1, . . . , p), bandwidth bc and the number p of PUs.
Now we try to discuss the application problem and for that reason we intro-

duce the problem size n. Examples for n are the dimension of vectors in a scalar
product or the dimension of matrices in linear equations. To characterize the cho-
sen application we need three variables: #op (number of operations), #b (number
of bytes required for the operations) and #x (number of bytes exchanged by the
PUs). We assume that #op and #b depend only on the problem size n (not on
p) and that means for the operational intensity a = #op/#b = a(n) and for the
dimensionless parameter x̂k = a(n)/a∗k. The constant a

∗
k is only defined by hard-

ware characteristics. High values of a(n) reflect operation-intensive applications
which are able to exploit the theoretical performance of the system.

If we analyze the product x̂k · r · z, the dependence on the number p of PUs
is concentrated in the ratio r = #b/#x. This parameter has a strong influence
on the speed-up, and depends only on problem size n and the number p of PUs.
But without any big loss of generality we can suggest

r(n, p) =
c(n)

d(p)
(16)

where nominator and denominator are monotone increasing functions, for exam-
ple polynomials or logarithmic terms. The details depend on the algorithm. We
will show this for some applications later.

For further discussion we analyze the performance also in the case of a ho-
mogenous cluster as follows

l ≤ lpeak

ω

x

1 + x
= p lpeak

x

x+ 1
, (17)

with (13) x = x̂ · z · r(n, p)/p. For better insight we define y = x̂ · z and the
performance results in

l ≤ p lpeak
x

x+ 1
= lpeaky · r(n, p)

1 + y r(n,p)
p

(18)
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We turn now to the determination of a lower and upper bound for the number p
of PUs in the given setting of a homogenous cluster. Such bounds are interesting
for the optimal sizing or using of parts of a cluster with maximal interconnect
bandwidth. For a given application at least p1/2 PUs are necessary to obtain
half of the maximal performance and using more than pmax PUs is a waste of
resources. In order to obtain a lower bound for the number of PUs we follow the
approach of Hockney [7, 9] for a half performance PU number, which we call
p1/2. We conclude from (18) with half of the (peak) performance

1

2
p lpeak = p1/2 l

peak x(p1/2)

1 + x(p1/2)
. (19)

This equation now fixes p1/2 by the new equation

y · r(n, p1/2) = p1/2 (20)

For an upper bound, i.e. the number of PUs at maximum performance pmax,
we need a little bit more algebra. If we determine pmax by the maximum of the
performance l in (18)

dl

dp
= lpeaky

d

dp

(
r(n, p)

1 + y r(n,p)
p

)
= 0 (21)

which results in

r′(pmax) + y
r2(pmax)

p2max

= 0 (22)

The further analysis depends strongly on the explicit form of r(n, p). Going back
to the assumption (16), which is true for the most applications, equation (22)
reduces to

p2max · d′(pmax) = y = x̂ · z · c(n) (23)

The choice of the interval [p1/2, pmax] is not canonical. Sometimes it seems better
to calculate a lower bound bigger than p1/2 (for example 0.9 pmax) and to set the
interval to [0.9 pmax, 1.1 pmax] – but we prefer Hockney’s classical argumentation.

6 Application to Scalar-Product, Matrix Multiplication,
Linpack and TOP500

Our more general discussions in Sect. 4 and 5 are theoretical and far from prac-
tice, if we do not test the results on real systems – as we have done already in
previous works [2, 15].

We use homogeneous clusters from the bwGRiD, described in detail in [19].
For example each of the two sites at the Universities of Heidelberg and Mannheim
consists of 140 nodes (8 cores per node) interconnected by InfiniBand. The only
important data of the hardware (for our modeling procedure) are

lpeak = 8 GFlop/sec for one core,
bc = 1.5 GByte/sec node-to-node,
b0c = 1.0 GByte/sec.

(24)
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The chosen examples in the following three sections reflect some relevant cases
of the general speed-up in (15) with assumption (18). An increasing speed-up
without saturation demonstrates section 6.2, while sections 6.1 and 6.3 show a
constant behavior in case of very big p-values (like Amdahl’s law).

6.1 The Scalar-Product of Vectors

A very simple and easy to explain example is the scalar-product of two vectors
u = (u1, . . . , un), v = (v1, . . . , vn) with n components (u, v) =

∑n
k=1 uk · vk

computed on p PUs. On each PU we store two sub-vectors of length n/p, compute
the the sub-product, store it in one PU and sum all sub-products finally. The
initial distribution of the vectors is ignored, only the data exchanged during
computation is counted by #x. The data are

#op = 2n− 1 � 2n if n � 1
#b = 2nw, #x = pw = 8p,

(25)

where w = 8 [Byte]. With (25) it follows for the operational intensity a =
#op
#b = 1

8 , a
∗ = 8/1.5, z = 3/2, r(n, p) = #b

#x = 2n
p and x = 6

128 · n
p . The index

k = 1, . . . , p from (11,13) can be omitted if we work with a homogenous cluster.
The speed-up results in

S =
1 + 3

64 · n
p

1 + 3
64 · n

p2

(26)

and shows no significantly high values for lower problem sizes n ≤ 500.000, see
Fig. 1. For every configuration of p PUs we measured 20 runtimes and canceled
the minimum and maximum. From the rest we computed the mean value tm
and the std-deviation s. In a second step we neglect values outside the interval
(tm − s, tm + s) and compute the final mean time-value, the speed-up and the
the error-limits.

This is an important example with a very low computational intensity a = 1/8
which is even independent from problem size n and only driven by the bandwidth
of the network. Calculating pmax by (22) we get pmax = 1

8

√
3n for the used

cluster, the broad behavior of S suggests an optimal region of PUs by the interval
[0.9 · pmax, 1.1 · pmax].

6.2 Analysis of Matrix-Matrix Multiplication

We look at the matrix multiplication An×n·Bn×n = Cn×n on a
√
p·√p processor-

grid of a homogenous cluster (ω(k, p) = 1 in (14)) and choose an algorithm with
a block-size of n√

p · n√
p . In order to calculate one block in C we need to transfer√

p − 1 blocks of A and B. Hence in summary we have to move 2(
√
p − 1) · p

matrix blocks. With (11, 13) our parameters are:

#op = 2n3 − n2 � 2n3,
#b = 2n2w,
#x = 2n2√p(1− 1√

p )w � 2n2w
√
p,

(27)
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Fig. 1. Theoretical and empirical speed-up for the scalar product with four different
problem sizes

a = #op
#b = n

w ,

r = #b
#x = 1√

p ,

x = a
a∗ rz = z

a∗w · n√
p .

(28)

With the values of the available clusters (24) we derive x = 1.5
8·8 · 1

8
1
2p · n√

p =
3

2048n
√
p, where the factor z = 1

8
1
2p represents the aggregate bandwidth. The

aggregate bandwidth depends on the used number of cores per node sharing
a single InfiniBand link. The factor 1/8 is for 8 cores per node, we also have
runs with 4 cores per node. Fig. 2 shows the speed-up in the case of matrix
multiplication.

According to (22) or (23) with d(p) = 1√
p we cannot find a real pmax, since

d′(p) < 0. The speed-up is increasing like
√
p and we observe a good agreement

with Numrich’s theory.

6.3 Analysis of Linpack

This section covers the solving of big linear equations Ax = b with Linpack -
it is a short summary of our earlier and detailed analysis [3, 10]. The problem
(matrix) size is n = 10.000, 20.000, 40.000. The relevant parameters of the
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Fig. 2. Speed-up for matrix-matrix multiplication on a homogenous cluster, compari-
son of theoretical and measured values for 4 different problem sizes n

software are
#op = 2

3n
3

#b = 2n2 · w
#x = 3α

(
1 + log2 p

12

)
n2 · w

(29)

w represents the number of bytes per word (w = 8 Byte). With this and by
(10-15) we are able to derive the dimensionless parameters

x̂ · z · r =
n

128

2

3α

1

1 + log2 p
12

(30)

which fix the performance or the speed-up with x̂ · z = (n/128) and ω = 1/p.

With the approximation of 1 + log2 p
12 ∼ 2, which is reasonable for p < 10.000,

and the value α = 1/3 we get for the speed-up

S =
1 + x̂ · r · z
1 + x̂·r·z

p

∼ 1 + n
128

1 + n
128·p

. (31)

This result shows a good agreement with empirical data, see Fig. 3, in regions
where we have measured data and for α = 1/3. Smaller values of α yield better
fits for low numbers of PUs p, which indicates that there is eventually a depen-
dence on p contained in α. We will have to investigate this for larger problem
sizes n.

From (20) and the above approximation for the logarithmic term follows

p1/2 =
y

3α
, (32)
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Fig. 3. Speed-up for Linpack solving Ax = b on a homogeneous cluster, comparison of
theoretical and measured values for three different problem sizes n

which gives a lower bound of p1/2 = n/128. For the upper bound we calcu-
late from (23) pmax = (24 · ln 2/128) · n = 24 ln(2)p1/2. Choosing n = 10.000
it follows that reasonable performance is possible for p in the region [80, 1300].
The maximum performance which can be achieved from (22) and the approxi-
mation for log2 p results in

lmax = lpeaky
r(n, pmax)

1 + αr(n,pmax)
8 ln 2

∼ lpeaky

3α

9

10
. (33)

It follows lmax = (n/128) · 8 · (9/10) = 560 GFlop/sec in the case n = 10.000.
But we must strictly remark that this value is outside the available number of
cores of bwGRiD. We measured 490 GFlop/sec for p = 1024 cores and so we did
not reach the saturation point pmax.

A detailed analysis shows a slowly decreasing behavior of the speed-up with
p > pmax, which is in agreement with Amdahl’s law.

6.4 Application to TOP500

Analyzing systems of the TOP500 [20] we have the difficulty that we do not
know the internal bandwidth, because this value is not presented in the list.
Instead we calculate an effective bandwidth from the given values. For Linpack

y = x̂ · z = a · bc
lpeak

=
#op

#b
· bc
lpeak

=
n

3w
· bc
lpeak

(34)

and from (33) follows with α = 1/3

lmax =
n · bc
3w

9

10
. (35)
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Note that lmax is independent from lpeak and the number of cores p. For the
TOP500 we know the matrix size n (= Nmax in the list) for the measured
maximum performance lmax (= Rmax in the list). From this we calculate an
effective bandwidth (with w = 8 Byte):

beffc =
Rmax

Nmax
· 3w · 10

9
. (36)

To verify this analysis we take the first 100 systems of the November 2011 and
2012 list and neglect all systems employing accelerator techniques and systems
where Nmax is missing. The results for beffc are shown in Figs. 4 and 5 in red dia-
monds. The effective bandwidth beffc correlates well with list rank. The values for
beffc are in a bandwidth range attainable with available interconnect technology.
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Fig. 4. Effective bandwidth beffc (diamonds, red line) and theoretical peak performance
lpeak (squares, blue line) against rank for selected TOP500 sites (November 2011)

To further check the accuracy of (35), we consider two examples of the Novem-
ber 2012 list. System number 19 is Hopper, NERSC, United States. Its Gem-
ini network allows a maximum bandwidth of 9.375 GByte/sec, but only 5.8
GByte/sec for MPI applications [21]. Our value of 6.1 GByte/sec for beffc is very
close to the real value. The K computer, RIKEN, Japan, is the number 3 sys-
tem. The Tofu network provides a bandwidth of 50 GByte/sec [22]. Assuming a
reduced bandwidth for MPI applications, our calculated beffc of 23.61 GByte/sec
is comparable. This indicates that (35) is a good thumb rule to estimate the
Linpack performance.

However, in general a direct comparison of beffc with the actual bandwidth of
a specific system is difficult. In our model we assume that the PUs are proces-
sor cores and that the bandwidth between each pair of PUs is bc. But TOP500
systems are predominantly multi-core systems where several cores share the in-
terconnect between the nodes. It depends on the application and the MPI library,
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Fig. 5. Effective bandwidth beffc (diamonds, red line) and theoretical peak performance
lpeak (squares, blue line) against rank for selected TOP500 sites (November 2012)

whether cores communicate simultaneously between nodes and how cores com-
municate with cores on the same node. For the bwGRiD cluster, which is also
a multi-core system, we found that 1/3 is a good value for the free parame-
ter α, but for other node architectures and interconnect topologies a different
α could be more suitable. It would be interesting to see how this observation
compares to the situation within a node between the cores with a given internal
communication bandwidth.

Figs. 4 and 5 also shows the theoretical performance of a single core calculated
from lpeak = Rpeek/pmax (blue squares), where pmax (= Cores in the list) is the
number of available cores in a system. The lack of a correlation of lpeak with
position in the list confirms that for Linpack type applications the actual value
for lpeak is unimportant for the maximum performance of a system. This means
that hardware and networking design, sizing, as well as the ability to adapt
the Linpack algorithms and the MPI implementations to the new hardware are
more important for a good Linpack performance than the advances in single core
performance.

7 Conclusions

The analysis of homogeneous cluster systems without any stochastic tools via a
variant of the roofline model has shown some simple and insightful results. We
have described performance and speed-up by a few dimensionless scaling vari-
ables, which summarize all important hardware and software characteristics like
the number of operations, amount of processed data, and amount of communi-
cated data. Preliminary stages of this approach are discussed in [10, 11].

In this paper we applied our model to important classes of applications with
different communication to computation ratios. Our speed-up formula (14) ex-
plicitly shows the dependence on the hardware (peak-performance of an PU
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lpeak, the interconnect bandwidth bc, the number of PUs p) and the application
(problem size n, operational intensity a(n) and the scaling behavior r(n, p)).
Using this model we estimated the optimal number of PUs for a given hardware
and application in the variable pmax.

A detailed analysis, which focuses on the original roofline model for (inho-
mogeneous) multi-core nodes, for inhomogeneous clusters and with asymmetric
load distribution will be considered in future investigations. In our approach
this amounts to a substitution lpeak −→ lpeaks(xm), where s(xm) describes the
characteristics of a multi-core CPU as a function of the dimensionless parameter
xm (similar to our parameter x above). In particular we will look at applications
like sparse matrix-vector operations and Fast-Fourier-Transform (FFT).

In summary we have the following new contributions:

1. Integration of hardware and software characteristics in 1-3 dimensionless
parameters.

2. Estimated predictions of the optimal size of a cluster for a given class of
applications.

3. Estimated predictions of the maximal performance for a given application
and system parameters.

4. The key performance indicator for a compute-cluster suitable to run TOP500
style applications has been identified to be the effective bandwidth.

Clearly it is not difficult to create more complex models. But do they offer more
and rapid insights? Our answer is: no.
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Abstract. Parallel file systems and MPI implementations aim to exploit
available hardware resources in order to achieve optimal performance.
Since performance is influenced by many hardware and software factors,
achieving optimal performance is a daunting task. For these reasons, op-
timized communication and I/O algorithms are still subject to research.
While complexity of collective MPI operations is discussed in literature
sometimes, theoretic assessment of the measurements is de facto non-
existent. Instead, conducted analysis is typically limited to performance
comparisons to previous algorithms.

However, observable performance is not only determined by the qual-
ity of an algorithm. At run-time performance could be degraded due
to unexpected implementation issues and triggered hardware and soft-
ware exceptions. By applying a model that resembles the system, sim-
ulation allows us to estimate the performance. With this approach, the
non-function requirement for performance of an implementation can be
validated and run-time inefficiencies can be localized.

In this paper we demonstrate how simulation can be applied to assess
observed performance of collective MPI calls and parallel IO. PIOsimHD,
an event-driven simulator, is applied to validate observed performance on
our 10 node cluster. The simulator replays recorded application activity
and point-to-point operations of collective operations. It also offers the
option to record trace files for visual comparison to recorded behavior.
With the innovative introspection into behavior, several bottlenecks in
system and implementation are localized.

Keywords: Simulation, MPI-IO, Performance evaluation.

1 Introduction

Parallel file systems and MPI implementations aim to achieve optimal perfor-
mance on all systems. The performance of communication and IO certainly
depends on the hardware characteristics – the specific hardware configuration
limits potential network throughput, computation power and available memory
bandwidth. The selection of the optimal algorithm depends on the hardware
characteristics, the network topology and application behavior. From a library’s
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point of view, optimization can be done based on the parameters provided by
the programmer. Typically, this includes the memory datatype, the communica-
tor, target/source rank (for all-to-one or one-to-all operations), and the actual
amount of data shipped with the call. Additionally, the process placement across
the hardware resources is important. Therefore, MPI implementations offer sev-
eral algorithms and they realize a rich variety of optimization strategies to gear
algorithms towards the given system.

This adaption leads to better exploitation of available hardware resources and,
ultimately, to better performance and thus application runtime. However, the
interplay of hardware optimizations such as caches, the software optimizations
offered by operating system and intermediate libraries result in complex behav-
ior which make the selection of an optimal algorithm hard. With OpenMPI,
MPICH2, MVAPICH2, this complexity also leads to a diverse landscape of open
source MPI implementations. Also, vendors and integrators offer their own pro-
prietary solution.

Up to now, effectiveness of alternative algorithms is mainly demonstrated
by comparing measured performance with performance of existing algorithms.
However, observable performance is not only determined by the quality of an
algorithm. At run-time performance could be degraded due to unexpected im-
plementation issues and triggered hardware and software exceptions. Visualizing
the real system activity helps analyzing the behavior and localizing regions that
require most of the execution time. However, determining whether recorded ac-
tivity is conducted optimally is not possible because it depends on platform and
optimizations.

In this paper we propose a simulation driven systematical validation of MPI-
IO performance. By applying a model that resembles the system, simulation
approximates performance and, thus estimates performance of algorithms. The
main contributions of the paper are 1) a performance study motivating inte-
grated performance testing of MPI and 2) a discussion of a feasible implementa-
tion of such an approach. Without the power of simulation, many performance
bottlenecks could not be found in our cluster.

This paper is organized as follows: In Section 2 an overview of the state-of-the-
art is presented. In Section 3 the benefits of simulation to evaluate performance
of MPI-IO implementations are described. A brief introduction to the simulator
and the underlying hardware and software models is given in Section 4. Several
experiments in Section 5 illustrate how theory aids to localize bottlenecks and
to check for correctness. While the model is developed manually, this process
could be automated to perform these steps automatically. Section 6 concludes
the paper.

2 State of the Art

Many algorithms were proposed to optimize collective communication. They
are either directly implemented in one of the MPI implementations, e.g. [1], or
provided as an external library such as STAR-MPI [2] or Magpie [3].
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To our knowledge, MPI libraries lack self-awareness. There is no implementa-
tion which takes the hardware characteristics into account while determining
an algorithm for collective communication or I/O. While middleware imple-
mentations ship with tests for functionality they do not automatically detect
hardware characteristics. Instead, a library is shipped with empirically chosen
defaults, which might be determined for a completely different system than the
system the library is deployed on. Tuning of these parameters is time consuming,
thus, the defaults might achieve only a fraction of theoretical performance. Many
of these parameters exist, for example, in OpenMPI, the Modular Component
Architecture (MCA) lists more than 250 parameters on a COST Beowulf cluster.

Although MPI implementations are not considering hardware characteristics,
they have become increasingly aware of the communication topology and try to
utilize shared-memory communication if possible which leads to SMP-aware col-
lective algorithms. For example, the CARTO framework of OpenMPI provides
topological information.

As algorithms must be handcrafted towards the system – for instance for a
BlueGene [4] – one major problem is to pick the best algorithm for a system.
Several approaches have been developed that assist in determining the best al-
gorithm and MPI configuration. The Abstract Data and Communication Library
(ADCL) [5] uses historic knowledge during the application run. ADCL assumes a
program performs operations iteratively – in the first few iterations ADCL eval-
uates a set of MPI functions to determine which one is best suited for the given
problem, then this function is applied to subsequent invocations. Compared to
ADCL, the Self-Tuned Adaptive Routines for MPI Collective Operations (STAR-
MPI) provides a rich set of MPI implementations for collective operations by
itself [2], for instance a set of 13 algorithms is supplied for MPI Alltoall().

For parallel I/O, the problem becomes even more complex since it depends
on communication. For example, non-contiguous operations and collective calls
have been defined in MPI-IO which lead to a classification of data access into four
levels [6]. These levels are characterized by two orthogonal aspects: contiguous
vs. non-contiguous data access, and independent vs. collective calls. Depending
on the level, a different set of optimizations can be thought of, for example,
two-phase I/O and multiphase-collective I/O [7] aim to improve collective non-
contiguous access. An adaptive approach is introduced in [8], which automati-
cally sets hints for collective I/O based on the access pattern, topology and the
characteristics of the underlying file system.

Typically, evaluation of improved algorithms is conducted by comparing per-
formance of existing algorithms with the new algorithm. This includes improve-
ments in the communication submodules of MPI, e.g., in Nemesis [9], or com-
pletely new MPI implementations such as OpenMPI[10]. Similarly, parallel I/O
research demonstrates improvements by comparing observed performance. In
most cases, a baseline of expected performance is not provided. This is mainly
due to the complexity of determining these baselines. There are a few excep-
tions to this general observation, but theoretic considerations are restricted to
simple cases. For example, in [11] upper bounds for performance are provided
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based on the component throughput and latency. In many cases, very coarse
estimates could be computed even for complex behavior, but these are not very
tight. Development of an adequate mathematical equation for complex behavior
is nontrivial. Simulation of the behavior is much easier.

There are many simulators for distributed systems, most focus on communi-
cation routines, for example, the Structural Simulation Toolkit (SST) [12], Log-
GOPSim [13] and Dimemas [14].

Some simulators can replay previously recorded MPI(-IO) activity inside the
virtual environment. For example, trace information is altered in [15], then an
MPI program replays the modified trace on the original machine, which auto-
matically enforces causality between dependencies among processors. While this
approach scales well, it is not possible to simulate other hardware configurations
or to gain insights into MPI. LogGOPSim is a simulator for a class of analytical
models of the logxP family [16]. It supports a simple network collision model.
Dimemas reads trace files and applies an analytical model to individual and
collective communication. Network collisions are modeled in an abstract way by
limiting the maximum throughput which can occur at a given time over a central
network infrastructure.

CODES [17] and PIOsimHD [18] target parallel I/O. Built on top of the Rens-
selaer Optimistic Simulation System (ROSS), CODES supports parallel discrete-
event simulation of queuing models. It has been successfully applied to study the
role of burst buffers in systems with 100k application processes and 120 PVFS
file servers. In contrast to the introduced systems, PIOsimHD covers parallel
I/O and allows replaying of recorded MPI traces on a high level of abstraction –
commands are implemented in the simulator to react on system conditions. The
event-driven nature of PIOsimHD allows localizing of network congestion and to
evaluate I/O optimization on client, server or disk side. For example, an analysis
of several I/O schedulers and collective I/O variants has been performed using
PIOsimHD in [19]. While simulation has been used to evaluate what-if scenar-
ios, to our knowledge it has not been used to systematically validate measured
MPI-IO performance in order to identify hidden bottlenecks. Instead, complex
simulation parameters are introduced and fitted to meet observations.

3 Using Simulation to Validate MPI-IO Performance

Simulation aids in validating MPI-IO performance in two ways: First, by com-
paring observed run-time and theoretical run-time estimate quantitatively, im-
plementation issues and unexpected bottlenecks can be identified. This is espe-
cially useful for validation of complex operations such as collective operations.
Second, a complex sequence of operations, such as the behavior of real applica-
tions, can be inspected visually and qualitatively compared to a simulated run of
the application. Therewith, unexpected behavior of individual operations can be
identified and assessed. For both scenarios, simulation parameters can be varied
to study the impact of certain hardware characteristics, for example by turning
off computation.
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We propose systematic validation of performance achieved with MPI-IO func-
tions using simulation. Imagine an MPI-IO implementation which does not only
run functional tests after installation but also performance benchmarks and as-
sesses the results. First, it could run simple point-to-point benchmarks and create
a system model. Then complex benchmarks could be run and their performance
could be assessed automatically for soundness. For example, a bi-directional mes-
sage transfer of a large message with MPI Sendrecv() should require the same
time as a unidirectional communication. The basic system model is of interest
for performance optimization by itself, as it illustrates expected communication
overhead. An administrator could compare these performance characteristics
with micro-benchmarks to ensure that the basic communication routines extract
the performance as anticipated.

This becomes more interesting for complex operations, as their performance
cannot be understood easily. If expected and observed performance diverge too
much, the system should raise a warning. Then the administrator has a starting
point for investigating performance degradation which could be due to MPI-
internal overhead, kernel, or external libraries. A result telling the administrator
MPI performance behaves as anticipated is valuable too, as it reduces the chance
to experience unexpected performance loss in production. Finally, by determin-
ing hardware characteristics at installation time, these values could be used at
run-time to determine well-suited collective algorithms without manual inter-
vention and ultimately allow a self-aware MPI implementation.

To conduct such a validation, it is mandatory for the simulation to mimic the
expected behavior of the experimental system. Thus, basic model parameters
should have similar characteristics as the real system. Since simulation should
help identifying inefficiencies, it is not constructive to mimic the real system
perfectly as we could not spot differences and thus unexpected behavior. In
both cases, it helps if activities of an application can be recorded and replayed
by the simulator because this reduces the effort to validate the execution. By
this means theoretically any MPI benchmark can be run and its results can be
easily compared to our expectations. For later analysis, it is also useful if the
simulator can create trace files which can be compared to real traces.

4 PIOsimHD

The goal of the sequential discrete event simulator PIOsimHD is to assist MPI-
IO research and to foster understanding of performance factors in clusters.
PIOsimHD performs a discrete event simulation and, if requested, stores the pro-
cessing as trace files. It can also read activity from recorded trace files. HDTrace
is an experimental tracing environment which also provides tools to instrument
existing applications and to record activity of PVFS and MPI internal commu-
nication. Simulation results can then be visualized by Sunshot, which enables
a comparison of the recorded process and file system activities and simulation
results.
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PIOsimHD offers a hardware model which reflects the common sense of a
cluster computer: Several compute resources (CPUs) are hosted on a node which
is connected to one or several networks via a network interface (NI). Arbitrary
network topologies can be created. On each node one I/O server can be placed,
each holding a cache layer which schedules operations, and an I/O-subsystem.

To cope with several levels of abstraction, a component can have several
implementations. Component implementations are parameterized with certain
characteristics. Usually, characteristics are provided in vendor specifications or
obtained by benchmarking the existing system. The level of detail of the cluster
hardware covers basic information describing an Ethernet based cluster. With
the amount of memory and number of CPUs, a node offers shared resources for
hosted processes. Each CPU processes a fixed number of instructions per second.
The memory is used for caching I/O on the server side.

The simulator permits the user to create arbitrary network graphs represent-
ing store-and-forward systems. Network edges have a latency and a transfer rate.
Network nodes have a maximum bandwidth to relay data. With the help of net-
work components, memory access of communication can be simulated which per-
mits modeling of local communication. A special node adds the local throughput
as an additional parameter, which is used when two direct neighboring compo-
nents of this network node exchange data. An example model of a dual-socket
node is given in Figure 1. In this figure, throughput and latency of all network
components are given as observed on our Intel Westmere cluster consisting of 10
nodes.

To utilize the network well, a network flow model was designed in which
messages are fragmented into packets of a maximum size, which flow from source
to target in a stream. When data is transferred from one component to another,
the transmission of incoming data flows is continued. The maximum number
of packets in flight for every stream is limited by the bandwidth-delay-product
of the given link. While many concepts can be found in real systems, the data
flow differs because this concept achieves the highest utilization of all network
components for all streams, and it does not throw packets away.

A hard-disk as an I/O-subsystem is modeled by a sequential transfer rate,
an average access time, track-to-track-seek time and RPM. Depending on the
distance to the last byte accessed within a file, a disk will either perform no seek,
will seek to the neighboring track or will apply the average access time. Access
to other files always enforces an average seek.

An abstract parallel file system defines the interaction between client and
server. The abstract model describes many parallel file systems because they
work similarly. Clients and servers interact in a similar fashion to the PVFS
model, but the concept is universal to most parallel file systems: File data is
partitioned among all servers as defined by a selectable distribution function. To
write data, a client requests a write operation from the server and then starts to
transfer all data. File sizes are updated once a write operation finishes. Metadata
operations are currently not considered since these depend on the specific file
system. More details can be found in [18].
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(b) Latency of edges.

Fig. 1. Network topology model for the working groups cluster. Throughput of intra-
socket communication is slightly higher

4.1 Experiments

During the validation of the simulator, several unexpected bottlenecks in hard-
ware and software could be identified. An excerpt of interesting results demon-
strating the benefit of validating the soundness of observed MPI-IO performance
is given in the following. Measurements are executed on our 10 node Ubuntu clus-
ter; interconnected via. Gigabit-Ethernet, each node is equipped with two In-
tel Xeon 5650 processors providing 12 cores for the experiments and 12GByte
of memory. Used software versions are: OpenMPI 1.5.3, MPICH2 1.3.1, and
Orangefs-2.8.3. The conducted validation is described in detail in [18].

To conduct complex validation runs, recorded activities are replayed in the
simulator. Thus the same sequence of compute, network and I/O activity is exe-
cuted. While a compute job takes the exact time as recorded in a validation run,
execution time of parallel I/O and communication is computed by the simulator
using the virtual file system and network models.

Parameterization. To parameterize the simulator for a validation run, the hard-
ware characteristics must be determined. Throughput and latencies for the net-
work links have been measured using MPI point-to-point operations (values are
annotated in Fig. 11). An HDD is characterized by a track-to-track seek time of
1.1ms, an average seek time of 9ms, a sequential transfer rate of 96MiB/s and
7200RPM. The hardware model uses the fast seek time for accesses to the same
file to an offset which is within a window of 1MiB to the last access.

Communication. Before analysis of collective results is conducted, a simple ex-
ample of a suboptimal point-to-point communication pattern is given. In this
experiment, each process exchanges a 100MiB message with Rank 0 by calling
MPI Sendrecv() – the whole experiment is repeated 9 times. The average mea-
sured time is plotted for a variable number of nodes and processes in Figure 2a

1 These values have been validated with network benchmarks such as Iperf. The issues
with the network are discussed in Section 4.1.
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(a) Time (b) Aggregated throughput

Fig. 2. Sequential data exchange of Rank0 and all other processes using
MPI Sendrecv() for several configurations and 100MiB messages

and the achieved throughput is illustrated in Figure 2b. It can be observed that
PIOsimHD approximates OpenMPI very well, but MPICH2 needs more time
than anticipated by simulation. Without a simulation tool, the performance
could be approximated manually, for example, using the following few consider-
ations: Since our network allows bi-directional communication, about 140MiB/s
can be achieved over the single node hosting Rank 0, this performance can be
seen for many configurations. However, already this simple pattern shows that
computation is not this simple. Due to shared memory intra-node communi-
cation, processes hosted by the same node achieve much higher throughput.
This can be observed in Figure 2b for OpenMPI and PIOsimHD. Thus, while
a manual computation of the expected throughput is possible, it is non-trivial.
By comparing simulation results with the results of MPICH2, the unexpected
slow-down become visible and could be subject for further investigation2.

Examples for collective communication are given in Figure 3. Experiments
with 10KiB message transfers are repeated 10,000 times and for larger messages
at least 9 times. Figures show the quartiles for the small messages to account for
deviation, and minimum and average values for larger messages (typically, the
slowest time is much higher than the average). In Figure 3a and Figure 3b it can
be seen that MPI Allgather() is well approximated by PIOsimHD, and thus ob-
served performance is consistent with our theoretic expectations. In comparison,
the intra-node algorithm of OpenMPI achieves a better performance for config-
urations with 2 nodes. For small messages, Figure 3a shows much better times
for configurations 4-8 and 8-16 than for other configurations. Without the simu-
lation result, one question might be whether this behavior is due to the system’s
characteristics. Since the simulator executes the exact same communication pat-
tern and results in similar performance, we can conclude the communication
algorithm changes and leads to this behavior3.

2 Actually, our version of MPICH2 extracted the same performance numbers as for
uni-directional communication.

3 Actually, the trace files can be inspected demonstrating correctness of this theory.
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Similarly, an analysis of MPI Allreduce() shows interesting behavior (see
Figure 3c). While the measurements of a single configuration fluctuate much
more, the simulation still recreates the overall pattern. The complexity of the
analysis can be observed for larger messages in Figure 3d. While OpenMPI shows
a completely different behavior than MPICH2, none of the algorithms is optimal
in all cases. In this example, PIOsimHD estimates better times than MPICH2,
which reasons should be analyzed further. Thanks to simulation, the impact
of certain factors can be studied. For example, the impact of computation has
been investigated – as it turns out, the required time only improves slightly when
recorded computation is not simulated.

Visual Inspection of Application Behavior. Finally, a run of our Jacobi PDE
solver is evaluated with the simulation. While the simulation recreates the over-
all pattern quite well (refer to [18]), communication in the final phase takes
longer than anticipated. Timelines of the cleanup phase are given in Figure 4.
Rank 0 receives selected lines of the PDE from all processes (users might inspect
them to validate the run). Several data transfers need 0.2ms although the sender
and receiver is ready. Since only 400KiB of data is transferred, a performance of
only 2MiB/s is achieved. This problem has been found by first comparing trace
profiles, then a visual inspection of the individual communications has been per-
formed. During the iterations, message exchange behaves as anticipated by the
simulation. Without theoretic considerations, an assessment of the performance
in terms of overall achieved time and the individual operations would be difficult.
However, estimating run-time for an complex application is cumbersome.

Parallel I/O. With Parabench [20] the four levels of access have been investi-
gated for several setups. Results for independent contiguous reads are given for
a variable number of clients and servers in Figure 5. In these experiments, each
client reads 100KiB (and 100MiB) records – a total of 1GiB of data is accessed
per client. Client records are distributed in round-robin over the logical file, i.e.
the first record of the file is accessed by Rank 0, then by Rank 1 and so forth. Data
is stored on tmpfs, thus there is no slow I/O device involved and performance is
expected to be limited by the network. The simulator approximates performance
for 100MiB records well as shown in Figure 5a. However, it overestimates per-
formance of 100KiB records significantly as illustrated in Figure 5b. Since the
model uses measured latency and bandwidth as characteristics, these hardware
factors cannot be the reason. A detailed analysis revealed timing effects in the
real system leading to congestion of individual servers while most servers are
idle. Once requests of multiple clients are pending on a single server, all clients
must wait for data stored on this server but since the server multiplexes the
NIC, data transfers of all responses take longer. With a slight variation in the
simulation characteristics, these effects can also be reproduced in-silicon.

One experiment was conducted that changed the packet size of the store-
and-forward network. The simulated network relays packets of 100KiB size; a
lower packet size of 10KiB can be chosen, which improves concurrency of the
components and the theoretic performance.
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(a) MPI Allgather(), 10KiB of data

(b) MPI Allgather(), 10MiB of data

(c) MPI Allreduce(), 10KiB of data

(d) MPI Allreduce(), 10MiB of data

Fig. 3. Simulation of inter-node collective communication for a variety of configurations
(# of nodes, # of processes)
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(a) Observed

(b) Simulated

Fig. 4. Final phase of a Jacobi PDE solver – traces of observation and simulation

During the validation of the Jacobi PDE, an inefficiency in the PVFS module
of MPI-IO could be identified and resolved. The PDE outputs the matrix diag-
onal for later inspection as a sequential 64KiB data block. Internally, a memory
datatype is used to address the matrix diagonal in one write call. However, the
write takes about 70ms while the simulator estimates 2ms4. Using HDTrace,
a detailed analysis of client and server activities has been made revealing that
PVFS split the 64KiB block into 512 bytes requests. The reason is the handling
of non-contiguous datatypes by ROMIO. Since ROMIO does not use an addi-
tional buffer to store data, every non-contiguous region in memory is normally
accessed with an individual operation. With ListIO, PVFS supports encapsulat-
ing to 64 non-contiguous operations in one request. Since the matrix diagonals
are 8 byte, 512byte requests are created. For the application, the problem could
be fixed by setting the undocumented hint romio pvfs2 listio write which en-
ables handling of memory and file datatypes in ROMIO. By setting the hint,
the average time for a single write is reduced to 3.4ms which is close to the
estimation.

A screenshot of the obtained traces for one iteration of a write phase are shown
in Figure 6. In the default operation, server and trove timeline show many small
operations. With the applied hint, one large write operation can be seen in the
timeline (the additional small write operation left updates the header of the file
in both cases).

4 The actual time depends on the current activity on the accessed servers.
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(a) 100MiB records (b) 100KiB records

Fig. 5. Performance of independent contiguous I/O with a variable number of clients
and servers Data is stored on tmpfs

(a) Default operation; details of one request are shown

(b) With supplied hint

Fig. 6. Screenshot of the PDE’s data exchange for one client and one server

Difficulties to Identify Causes of Performance Degradation. The intention of
performance analysis is not only to localize but to resolve the causes of poten-
tial performance degradation. However, as it turned out the identification of
triggered issues is non-trivial. We invested several month trying to localize the
general issues in our network stack and to identify and fix the performance is-
sue with PVFS. The latter issue could only be analyzed in detail thanks to the
detailed tracing mechanisms of HDTrace. The fix involved communication with
the developers, but also detailed code inspection of PVFS and MPI-IO.

Unfortunately, debugging of the network issue showed little success. As it
turned out, operations sometimes take much longer than expected (10 times the
average time, an overhead of about 0.2 s), and there was the network limitation
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of 67MiB/s. To identify the reason for the performance degradation, several
regulating knobs have been evaluated on our production system: TCP-tuning,
alternative MPI implementations (MPICH2 and OpenMPI), different Linux ker-
nel and also CentOS as an alternative distribution. Also, existing network tools
and benchmarks have been used to validate the observed performance.

The insight of all this effort is: Performance could only be improved a little
by testing many alternative sets of TCP-options. With newer kernel versions,
the throughput improved to 71MiB/s and finally with kernel 3.5 to 117MiB/s.
Interestingly, by using CentOS, the variance of network packets stabilizes and
throughput is good. As these issues disappeared by using newer kernels and an-
other distribution, a detailed analysis of involved libraries and kernel is required.

5 Summary and Conclusions

In this paper, we describe the benefit of using simulation for validating per-
formance of MPI-IO implementations. To estimate performance, the simulator
executes the activity of a parallel program on a virtual cluster with similar char-
acteristics as the experimental system. In many cases, a very good match to ob-
servations is achieved, which validate that system and implementation behavior
is consistent. However, an excerpt of experiments is given in which performance
gaps become visible. For example, observed performance of MPI Sendrecv()

and MPI Allreduce() fall behind the expectations which indicate a demand for
further investigation. Automatic performance assessment could be an integral
part in a test-suite – a simulator complements existing benchmarks by creating
run-time estimates. Shipped with MPI implementations, these tests would spot
unexpected performance inefficiencies directly. While we tried to identify the
causes of the network performance degradation in kernel, libraries and system
hardware, we did not succeed so far. Nevertheless, without systematic testing
we would be unaware of these inefficiencies, showing the necessity of automatic
tools and the involvement of developers.

Suboptimal behavior during parallel I/O has been investigated but it is much
more complex than collective I/O. For example, timing effects may overload
individual servers. Finally, a performance problem in an application could be
identified and with the help of advanced tracing of client and server behavior,
the reasons could be identified and fixed by applying an MPI hint. Overall,
the virtual laboratory of HDTrace allows us to identify inefficiencies and to
study behavior of communication and file system, to conduct research on new
algorithms, and to evaluate future systems. In the future, we will try to build
the envisioned system for automatic validation of MPI-IO behavior.

Acknowledgements. I want to thank the PVFS development team to help
resolving the performance degradation of writing the non-contiguous matrix di-
agonal.
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Abstract. The design of hardware for next-generation exascale com-
puting systems will require a deep understanding of how software op-
timizations impact hardware design trade-offs. In order to characterize
how co-tuning hardware and software parameters affects the performance
of combustion simulation codes, we created ExaSAT, a compiler-driven
static analysis and performance modeling framework. Our framework can
evaluate hundreds of hardware/software configurations in seconds, pro-
viding an essential speed advantage over simulators and dynamic analysis
techniques during the co-design process. Our analytic performance model
shows that advanced code transformations, such as cache blocking and
loop fusion, can have a significant impact on choices for cache and mem-
ory architecture. Our modeling helped us identify tuned configurations
that achieve a 90% reduction in memory traffic, which could significantly
improve performance and reduce energy consumption. These techniques
will also be useful for the development of advanced programming models
and runtimes, which must reason about these optimizations to deliver
better performance and energy efficiency.

1 Introduction

One of the challenges facing the scientific computing community is to ensure ap-
plications will perform well on future exascale machines years in advance of their
arrival. Meeting the extreme power and performance challenges of HPC system
design over the next decade requires a tightly coupled hardware/software co-
design process that optimizes both the application and the hardware to meet
target performance, power, and cost requirements [1]. Tuning software or hard-
ware in isolation is insufficient to reach the optimal balance of these design goals.
To this end, we require a capability to rapidly estimate the performance of sci-
entific applications in various potential hardware and software configurations.

We present the ExaSAT (Exascale Static Analysis Tool) framework, which
enables us to rapidly explore the effects of code optimizations on the perfor-
mance of a target application in the context of varying hardware parameters.
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Previous work includes cycle-accurate hardware simulators such as RAMP Gold
[2] and discrete event simulators such as SST [3], which produce more accurate
performance predictions than are feasible with static analysis but are more com-
putationally expensive. Dynamic binary instrumentation tools such as Pin [4]
can also be used to analyze the performance of a code by capturing events dur-
ing code execution, but are subject to the quirks of the x86 ISA and compiler.
In contrast, our framework provides a quantitative measure of application re-
quirements through static code analysis, allowing us to characterize the co-design
parameter space much more quickly than would be possible with simulators or
dynamic analysis alone. Aspen [5] is a recent notation based language for ana-
lytical modeling where the programmer inserts a description of the application’s
performance behavior into the code. ExaSAT automatically generates a per-
formance model directly from the source code without requiring programmer
intervention, allowing us to analyze larger codes more easily.

We applied our framework to two combustion proxy applications (CNS and
SMC) that were developed by the DOE Exascale Combustion Codesign Center
(ExaCT) [6] to provide a representative set of core computational kernels re-
quired for combustion simulation. The majority of stencil computations at the
heart of these codes are memory bandwidth bound on current architectures [7,8]
and are predicted to become even more so on future architectures as computa-
tional throughput is expected to increase faster than memory bandwidth [9,10].
Furthermore, data movement is expected to become an increasingly important
contributor to power consumption for exascale machines [11,12].

Because memory traffic is so critical, our analysis focuses on the effects of
software optimizations that are intended to reduce data movement between the
CPU and memory, rather than reducing the number of floating point operations.
We examine optimal cache blocking (or tiling) and loop fusion code transforma-
tions and their effect on hardware design trade-offs as they relate to application
performance for our combustion proxy applications. The software design space
is parameterized to expose many of the potential realizations of the application
and constituent kernels so that the best implementation can be selected. Apply-
ing our framework, we observe up to a 45% and 90% reduction in memory traffic
when we apply optimal tiling and aggressive loop fusion, respectively.

Hardware complexity has increased to the point that current compilers are no
longer able to automatically produce the code optimizations needed to achieve
optimal performance on every target architecture. This paper demonstrates the
impact of advanced code transformations that are beyond the capability of cur-
rent compilers to produce and provides guidance for the development of new
programming models and runtimes that will support these transformations. We
discuss the following contributions in this work:

– We designed and implemented a fast, flexible static analysis and performance
modeling framework and XML-based intermediate representation that can
be used to estimate the performance of stencil computations and help explore
trade-offs for co-design.
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– We utilized our framework to profile the characteristics and estimate the
performance of two combustion code variants: CNS and SMC, under a variety
of hardware and software configurations.

– We used this model to illustrate the impact of cache blocking and loop fusion
optimizations on hardware trade-offs, in particular how they affect cache size
and memory bandwidth requirements.

– Our framework provides the deep code analysis and modeling necessary for
future programming models and runtimes to reason about choices and make
adaptations without a costly combinatorial search.

– Our analysis serves as a key vehicle for communicating with our industry
partners for co-designing an exascale machine.

2 CNS and SMC Combustion Codes

To represent the characteristics of a range of combustion applications, we stud-
ied two proxy applications developed by the ExaCT project. The CNS code is a
simple proxy that integrates the compressible Navier-Stokes equations assuming
constant transport properties. It is intended to capture the computational char-
acteristics of the dynamical core of a combustion simulation. The SMC code is a
more advanced proxy for the direct numerical simulation combustion code S3D
[13], adding detailed models for chemical species diffusion and kinetics. SMC
contains the key elements of both the dynamical core and the chemical kinetics
components of S3D; however, it uses a simpler temporal integration algorithm
that does not include automatic error control. Both codes are based on the
high-accuracy solution of a system of PDEs of the form:

∂U

∂t
+∇ · F(U) = ∇ · D(U) + S .

HereU is a vector of unknowns, representing density, energy and three components
of momentum with an additional density for each chemical species, for a total of
5 + Ns unknowns where Ns is the number of species in the problem (1 for CNS).
The termsF ,D, andS correspond to hyperbolic transport, nonlinear diffusive pro-
cesses and chemical source terms, respectively. The dynamical core uses 8th-order
stencil operations to approximate spatial derivatives, converting the system into a
large collection of ordinary differential equations that are integrated using a third-
order, low-storage,TVDRunge-Kutta scheme [14,15]. The chemical source term is
a computationally intensive single-point physics routine that uses a large number
of computationally expensive transcendental function evaluations. Further details
on our approach will be presented in a forthcoming paper [16].

Figure 1 illustrates the most data-intensive stencil access pattern used in the
CNS and SMC codes. This stencil reads values four grid elements deep in both
directions of each of three dimensions; however, there are many other stencil
patterns in the code that read only a subset of the points shown. Our tool
separately analyzes each stencil access for every array in every loop to estimate
working sets and data movement.
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Fig. 1. 3D stencil access pattern in the SMC and CNS codes

Table 1 shows some computational properties of the codes studied. In addi-
tion to the ones shown, we also analyzed versions of the SMC code with 21,
71, and 107 chemical species, where the number of species varies with fuel type,
from hydrogen to methane to biofuels. The CNS code (which simulates dynamics
only) and the SMC dynamics codes have very different computational charac-
teristics compared with the SMC chemistry codes. In our analysis, we utilize the
bytes per flop (B/F) ratio, which represents the required number of bytes to be
transferred between the processor and off-chip memory divided by the required
number of floating point operations needed for a particular code. The division
and transcendental operations are weighted since they cost more than adds and
multiplies (see Section 4.2 for details).

An algorithm with a low B/F ratio will likely be computationally bound, while
one with a high B/F ratio will likely be memory bandwidth bound. The CNS
and SMC dynamics codes have a relatively high B/F ratio especially in a cache
constrained environment (up to 2.22). They exhibit a high degree of data reuse
both within and across loops, resulting in a lot of potential to reduce memory
traffic using the optimizations discussed in this work. In contrast, the chemistry
code is dominated by expensive floating point divisions and trancendental func-
tions with a relatively light memory access requirement, resulting in a much
lower B/F ratio. For the 53 species SMC code, the difference is roughly two
orders of magnitude (0.01 vs. 1.48, cache-constrained). We expect the dynamics
code to be bandwidth bound on most current and future architectures while the
chemistry code will remain compute bound.

Although this paper focuses mainly on memory traffic optimizations that im-
prove the performance of the dynamics codes, there are computational optimiza-
tions such as vectorization or pipelining that could help improve the throughput
of the chemistry codes. Furthermore, the disparity in arithmetic intensity be-
tween the dynamics and chemistry codes suggests that co-scheduling could have
each code utilize different parts of the processor simultaneously. Support for
such optimizations within a programming model and runtime will be explored
in future work.
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Table 1. CNS and SMC code characteristics (for 1, 9, and 53 chemical species). RK =
Runge-Kutta step. †Weighted flops. ‡Cache available to group of threads cooperating
on a working set.

CNS SMC Dynamics SMC Chemistry

Num. 3D spatial loops 14 27 1

Number of species 1 9 53 9 53

Adds 821 7005 30677 619 7923
Flops/point Muls 797 7871 34860 815 9432
per RK Divs 6 66 374 39 540

Trans 1 1 1 51 710

Resident 40 157 685 20 108
Arrays/RK Reads 92 557 2405 20 108

Writes 40 253 1045 9 53

Bytes/Flop† Unlimited $ 1.32 0.82 0.74 0.03 0.01

512 kB $‡ 2.22 1.25 1.48 0.03 0.01

3 Software Design Space

3.1 Cache Blocking

The first optimization, cache blocking, focuses on reducing capacity misses (see
[17] for more on 3C’s cache model) as a core sweeps through the problem’s itera-
tion space. Tiling the iteration sweep reduces the size of the working set required
to enable temporal reuse of data. If the working set is reduced to within the size
of available on-chip memory, capacity misses can be reduced or eliminated, thus
decreasing the necessary memory traffic between the CPU and DRAM.

The relationship between working set, cache size, and memory traffic can
sometimes cause unexpected performance effects. For example, many program-
mers may parallelize a triply nested loop by associating an OpenMP parallel

for pragma with the outermost loop (see Figure 2). This strategy yields the
coarsest grain parallelism, which minimizes the overhead of spawning and sync-
ing the resulting threads. However, parallelizing the middle loop instead reduces
the working set of each thread by a factor of four (the number of threads). If
the reduced working set now fits into the cache, then there may be a significant
performance benefit. There is a trade-off in this scenario between cache size,
memory bandwidth, and the costs of spawning and syncing threads.

Another trade-off for tiling is redundant ghost zone traffic that must be pulled
in for each block. The ghost zone consists of neighboring cells outside of the tile
that must be read due to the shape of the stencil access pattern (see Figure 1).
The left diagram in Figure 3 shows a single, unblocked tile with ghost zones on
the outside the tile. As the tile size is decreased (center and right diagrams), the
ghost zones overlap with neighboring blocks (indicated with deeper shading).

Previous work has shown the benefits of cache blocking stencil codes [8,7].
In this paper, we are interested more in illustrating the co-design trade-offs
that are exposed by software optimizations such as blocking, rather than the
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Fig. 2. Working sets that result from using OpenMP parallel for with the outermost
vs. middle loop with four threads. Each color/number indicates the subgrid updated
by a thread. Bold regions indicate the working set tile.
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Fig. 3. 2D representation of the cache blocking optimization in the X and Y dimen-
sions. Overlapping ghost zones are indicated by the deeper shading in the diagram.

raw performance benefits enabled. To this end, we developed a cache model to
estimate the level of data reuse given different configurations. For any particular
cache configuration, a blocking strategy may be chosen that balances the penalty
of capacity misses against the overhead of redundant ghost-cell traffic. This
optimization exposes a trade-off in hardware between cache size and memory
bandwidth explored further in Section 5.

3.2 Loop Fusion

The second optimization, loop fusion, focuses on eliminating the need to stream
arrays in and out of memory. While some compilers already implement fusion,
they tend to do so to enhance instruction level parallelism and to help hide
latency. In contrast, we apply loop fusion for the purpose of decreasing memory
traffic by reducing the number of times arrays are transferred to or from memory
[18].

Figure 4 shows an example of a loop fusion optimization. In Scenario 1, array
A must be streamed from memory twice compared to just once for Scenario 2.
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Fig. 4. Example of loop fusion code optimization

Also in Scenario 1, array B must be streamed to memory and back, while in
the fused case the array can be replaced with a temporary variable (so long as
B is not needed afterwards). Assuming cache bypassed writes, this optimization
reduces memory traffic from 5N to 2N , where N is the size of each array.

The trade-off for fusing loops is that the register and cache working sets grow,
potentially causing a reduction in performance if the working sets no longer fit
within on-chip memory. Loop fusion exposes a trade-off in the hardware involving
the balance of memory bandwidth with registers and cache size. Our framework
allows us to explore the impact of this transformation on memory traffic in the
context of varying on-chip memory capacities. We will explore a couple strategies
for applying loop fusion and their effects in Section 5.

4 Methodology

4.1 Framework and Toolchain

We developed a stencil-specific static analysis and performance modeling tool
to help estimate the performance of target codes on various potential hardware
platforms. Figure 5 illustrates our framework, which consists of roughly two
stages of analysis. The first stage, which is built on top of the ROSE compiler
[19], takes Fortran code as an input and extracts key characteristics about the
computation and data access patterns and stores them in an XML intermediate
representation (XML-IR). Data in the XML-IR include (but are not limited to)
the following:

– Loop nest structure, bounds, and strides
– Floating point operations
– Scalar accesses (number of reads and writes)
– Array accesses (number of reads and writes for each index)

The second stage (written in Python) combines the XML-IR with user-provided
problem parameters (e.g. box size, number of chemical species), machine pa-
rameters (e.g. computational throughput, cache size, memory bandwidth), and
software optimizations (e.g. loop transformations) to produce estimates of key
performance metrics such as working set sizes, DRAM traffic, B/F ratio, and ex-
ecution time. The resulting performance model can be executed within a script
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Fig. 5. ExaSAT Tool Chain

to rapidly explore parameter configurations, and it can additionally produce
spreadsheets, dependency graphs, and tables with additional details such as ar-
ray residency and access frequency, memory footprints, and state variable statis-
tics. When applied to the SMC proxy application, our framework can evaluate
roughly 900 hardware/software configurations per minute on a laptop. More
details will be provided in future work [20].

4.2 Hardware and Performance Model

We utilize a simple hardware model (shown in Figure 6) that abstracts the ma-
chine as a collection of parallel hardware cores with some parameterized on-chip
memory. Our hardware model exposes the following architectural parameters,
which were identified through discussion with industry participants in the DOE
Fast Forward program:

– Aggregate computational throughput
– Aggregate memory bandwidth
– Cache or scratchpad size
– Cache line and word sizes
– Cost of special functions (e.g. divisions or transcendentals)
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Fig. 6. Hardware model featuring the CPU with two levels of on-chip cache and sepa-
rate DRAM connected by a bus

The CPU model is agnostic to the number of cores, instead taking the ag-
gregate computational throughput as a model parameter. The memory model
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similarly utilizes a parameter specifying the aggregate bandwidth between the
CPU and the DRAM (i.e. the STREAM bandwidth) over the memory bus.
Figure 6 shows an example cache configuration with private L1 caches and a
partitioned, shared L2 cache. While there are many other possible on-chip mem-
ory configurations, we are mainly interested in the resulting bandwidth filtering
capability, which is primarily determined by the total amount of (non-inclusive)
on-chip memory per thread or group of cooperating threads. The performance
model focuses on aggregate performance of the machine rather than simulating
individual components and their interactions, It captures the costs of the com-
putational workload and data movement and the performance implications of
data reuse (or lack thereof).

The performance of an application is estimated in the following way: let α be
the aggregate computational throughput of the machine and β be the aggregate
memory bandwidth. Also, let C be the application’s total computational work
andD be the total necessary data movement between the CPU’s on-chip memory
and DRAM. Then the estimated running time is T = max(Tc, Td), where Tc =

C
α

is the CPU time and Td = D
β is the DRAM time. Our modeling framework is not

intended to provide exact performance predictions, but rather sets a performance
upper-bound in the spirit of the Roofline model [21].

Since some floating point operations such as divides and transcendentals can
take significantly longer to execute than adds and multiplies, our performance
model can weight these special operations according to their relative costs. For
this paper, we weighted the costs of these operations according to their non-
SIMD throughput on the Intel Sandy Bridge architecture [22,23]. The resulting
weighted flop count determines the estimated CPU time of the computation.
Figures 7(a) and 7(b) show the significance of weighting the floating point op-
erations by their cost. In the chemistry module of the SMC proxy application,
the CPU time is dominated by transcendentals, even though the transcendental
operation count is a small percentage of the total flops.

(a) (b)

Fig. 7. (a) Floating point instruction mix and (b) CPU Time (Tc) for the chemistry
part of the SMC code for 53 chemical species, assuming divides and trancendentals
take a relative factor of 39x and 125x longer than the adds and multiplies, respectively
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Fig. 8. Working set sizes to enable different levels of reuse for an example 7-point 3D
stencil. The block is swept in a triply nested loop with the X dimension swept in the
innermost loop and Z in the outermost.

Memory and Cache Model. In order to determine D, the total data move-
ment, our cache model captures the data reuse pattern that occurs with sten-
ciled array accesses. The on-chip memory is modeled as an ideal, fully-associative
cache with a least-recently used (LRU) replacement policy. Our model assumes
reuse of data will occur if the associated working set is small enough to fit in
on-chip memory. Actual cache behavior is likely to under-perform in compari-
son due to conflict misses and imperfect replacement, though our model should
capture the first-order behavior of a finite-cache memory system. Threads on
a chip may cooperate to gain the benefit of a larger aggregate memory space
in which to store a shared working set, possibly enabling larger block sizes and
reduced memory traffic; however, the costs of sharing data between the caches
on the chip are not included in our model. The amount of memory traffic re-
quired to execute a particular stencil loop is determined by the amount of the
on-chip memory available per group of threads collaborating on a working set.
Our model uses the specified cache size to 1) determine what temporal reuse of
data will occur as threads sweep through the grid and 2) estimate the resulting
cache miss traffic.

Figure 8 shows the working set sizes needed to enable reuse between cells,
pencils, and planes. If no on-chip memory is available, every array access in the
kernel requires data to be transferred from DRAM. If the cell working set (left)
fits in cache, then those values will remain in cache for reuse on the next cell
iteration. Similarly, if the pencil working set (middle) fits into cache, there will
be reuse between pencil sweeps, and so forth. Based on the shape of the stencil
access pattern, our model computes 1) the sizes of the working sets and 2) the
resulting memory traffic for each of the reuse cases. This information is then
combined with hardware and software parameters to determine the estimated
memory traffic and DRAM time required for each array in every loop in the
code.

If on-chip data movement is a concern, a conservative estimate can be made by
limiting the size of modeled on-chip memory to the size of the private L1 cache;
however, the resulting memory traffic estimates produced by our model will be
the total traffic between the L1 cache and the next level of on-chip memory
rather than the traffic between the CPU and DRAM. Our methodology could
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potentially be extended in future work to do a multi-level analysis that computes
bandwidth filtering and performance modeling at every level of cache.

Model Validation. Figure 9 shows the effect of tiling with three simple 7-point
stencil benchmark kernels on a single node of the NERSC “Hopper” Cray XE6
using 3843 data grids. Table 2 shows properties of the benchmarked machine.
We measured the execution time for 24 concurrent threads (1 thread per core)
with no software prefetch or cache bypass used. To first-order approximation,
the measured execution times correlate well with our model’s predictions with
respect to optimal execution times and block sizes. The model departs from
measurement for smaller blocks as the hardware prefetchers are no longer able
to hide load latencies for short stanza accesses. We also observe the effect of
the machine’s randomized cache replacement policy, which smooths the sharp
transition in the model at the point where the working set grows larger than the
cache and capacity misses begin to occur. Since static analysis does not resolve
system behavior to the same degree of precision as an event simulator in the
interest of speed and flexibility, our results are necessarily more comparative
than absolute in nature. That said, we believe valuable lessons can be learned
from examining the trade-offs exposed by our analysis framework in the co-design
parameter space.
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Fig. 9. Measured and modeled execution times for various blocking sizes for three
benchmark finite difference kernels

5 Results

Since the optimizations studied do not change the amount of computation (flops)
required, the B/F ratio can be used as a proxy metric for memory traffic (and
thus execution time) in memory bandwidth bound codes. In this context, the
B/F ratio is an indicator of relative code performance independent of a particular
machine’s specifications, and is useful when making comparisons between code
requirements and machine capabilities during the design process.
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Table 2. Properties of a NERSC Cray XE6 compute node [24]. All numbers given are
per node except cache, which are given per core. †Data cache.

One NERSC “Hopper” Node

CPUs Opteron 6172

Sockets / Cores 2 / 24

Peak Compute 201.6 Gflop/s

Priv. L1/L2 $ 64 kB†/ 512 kB

Shared L3 $ 1 MB / core

Mem. Interface DDR3-1333

Mem. Channels 8

Peak Mem. BW 72 GiB/s

STREAM BW ∼51 GiB/s

Peak B/F Ratio 0.38

5.1 Cache Blocking

Figure 10 shows the B/F ratio for the CNS proxy application for different block
sizes and on-chip cache sizes. In many cases there is insufficient cache to enable
the best reuse case outlined in Section 4.2. Blocking the iteration space reduces
the sizes of the working sets needed to enable reuse, but incurs the overhead
of pulling in additional ghost zones for the smaller blocks. This overhead is
illustrated by the unlimited cache case, where the B/F ratio increases as the
block size decreases. For a fixed block size, as the amount of cache is reduced,
more capacity misses occur, increasing the B/F ratio. For a fixed cache size, we
observe the minimum B/F ratio typically occurs at the largest block size whose
working sets still fit within cache. The multiple inflection points are due to the
code’s various loops having different working set sizes and reuse behaviors.
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Fig. 10. Byte to flop ratio for various block and cache sizes

Figure 11 shows that as chemical species are added to the simulation, the
memory traffic required per Runge-Kutta step increases across all block sizes.
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Fig. 11. Memory traffic per Runge-Kutta step as block size, cache size, and number
of chemical species are varied

Since the working set size increases with number of species, the optimal block size
for a fixed amount of cache decreases. In cases with a large number of chemical
species, augmenting the cache resources on the chip would reduce the blocking
overhead and ease memory bandwidth requirements.

5.2 Loop Fusion

We examined two variants of the loop fusion optimization: simple and aggressive.
We use the term stencil dependency to refer to a data dependency between loops
where data written by the first loop is read by the second in a stencil (non-point-
wise) access pattern. In the simple fusion case, only loopswith no stencil dependen-
cies are fused, while in the aggressive fusion case, all loops in the solver are fused.
Simple fusion can be applied withoutmajor changes to the loop bodies, but aggres-
sive fusion requires the introduction of temporary buffers and a staggered update
strategy to replace arrays with stencil dependencies. While our framework is able
to model the effects of cache blocking without any manual code modification, the
loop fusion transformations studied herewere implementedmanually using the de-
pendency graphs generatedby our tool for guidance. Analysis of the resulting fused
code was then handled by our framework.

Figure 12 shows the dependency graphs generated by our framework (simpli-
fied for clarity) corresponding to the different fusion cases for the CNS code. The
ovals correspond to loops in the solver, while rectangles represent data arrays.
The arrows show which arrays are read and written by each loop (dashed arrows
represent stencil dependencies).

Figure 13 shows the bandwidth filtering that results for the CNS code us-
ing various cache sizes and loop fusion strategies. For each point in the graph,
the cache blocking strategy was independently chosen to minimize the resulting
memory traffic in our model. The stair-step pattern observed with the simple
fusion scenario is a result of the transition between cell, pencil, and plane reuse
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Fig. 12. Dependency graph showing loop fusion optimizations

cases as explained in Section 4.2. As expected, increasing the cache size intro-
duces the opportunity to substantially reduce memory bandwidth requirements.
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Fig. 13. Bandwidth filtering diagram for the CNS code for different loop fusion strate-
gies

For small caches, there is typically only modest benefit from using loop fusion
because the larger fused working sets require smaller block sizes to fit into cache.
However, once the cache is large enough to fit the fused working sets, the benefits
can be dramatic. For the largest cache, a 6.7x reduction in B/F ratio can be
attained for the CNS code using the aggressive fusion strategy, but even with
only 128 kB of cache the traffic is reduced by 2.1x compared to the unfused
strategy.

5.3 Analysis

Given the size of the on-chip memory in our hardware configuration, we can
choose the best overall optimization strategy to minimize memory traffic. As a
result of applying the best combination of blocking and fusion strategies, the
realizable bandwidth filtering curve is the minimum across the curves shown in
Figure 13.

In some cases, making the trade-off of dedicating extra die area for cache can
lead to a substantial benefit in power and performance from reduced memory
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Fig. 14. Impact of software optimizations on the trade-off between cache size and
memory bandwidth for the CNS code

traffic and lower bandwidth requirements. The effect on this trade-off due to
software optimization is illustrated in Figure 14 for the CNS code. Tiling pro-
vides up to a 45% improvement versus the baseline unoptimized code at cache
capacities larger than 8 kB. Loop fusion has the potential to filter bandwidth
by as much as 90% compared to baseline, but it requires a cache larger than
64 kB. Similarly, Figure 15 shows the impact of the code optimizations on the
53 species SMC dynamics code. The stair-step pattern resulting from the tran-
sition between reuse cases is more prominent here due to the larger working
sets. The SMC code has a lower baseline B/F ratio compared with CNS due to
the arithmetic complexity of the code, but the minimum cache size for blocking
improvements is higher than CNS due to the increased amount of data handled.
Furthermore, several loops in the SMC code can be fused without large working
set penalties, improving performance even with small cache sizes. Tiling provides
up to a 39% improvement versus the baseline unoptimized code, while fusion can
reduce traffic by up to 60% versus baseline.

The lowered bandwidth requirements due to these optimizations could have
a significant beneficial impact on energy efficiency of future systems. However,
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Fig. 15. Impact of software optimizations on the trade-off between cache size and
memory bandwidth for the 53 species SMC dynamics code
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the larger cache sizes required could be difficult to implement without moving
towards a scratchpad memory implementation, such as the one used in the STI
Cell processor. Our results show that it is essential to consider both software op-
timizations and hardware design parameters simultaneously. These observations
would not have been apparent from benchmarking on fixed hardware alone.

6 Conclusions and Future Work

We developed a compiler-based framework that is able to automatically con-
struct performance models directly from source code and applied it to explore
trade-offs in the hardware design space using the CNS and SMC combustion
proxy applications. Using this approach, we demonstrate tuned hardware/
software configurations that achieve up to 45% and 90% reductions in compul-
sory memory traffic with the application of optimal data tiling and aggressive
loop fusion, respectively. We believe this kind of deep code analysis and perfor-
mance modeling demonstrates the importance for future advanced runtimes to
make dynamic adaptations in the context of changing computing environments
without a costly combinatorial search. Our analysis serves as a key vehicle for
communicating with our vendor partners for co-designing an exascale machine.

We wish to generalize our approach and make it practical to apply these
techniques to larger, more complex codes. Because the optimizations studied
here require significant code transformations, current compilers are unable to
perform them automatically. We are using the lessons learned here to guide
the development of programming models and frameworks that will enable the
automation of our code transformation and performance analysis techniques. For
example, we are exploring the use of functional semantics and annotations to
help reason about data flows and on-chip memory footprints. In summary, our
work demonstrates the utility of a co-design approach, which explores the design
space of software optimizations with parameterized hardware and offers deeper
insight into the future of application and machine design.
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Abstract. The Blue Gene/Q (BG/Q) system is the third generation in
the IBM Blue Gene line of massively parallel, energy efficient supercom-
puters that increases not only in size but also in complexity compared
to its Blue Gene predecessors. Consequently, gaining insight into the
intricate ways in which software and hardware are interacting requires
richer and more capable performance analysis methods in order to be
able to improve efficiency and scalability of applications that utilize this
advanced system.

The BG/Q predecessor, Blue Gene/P, suffered from incompletely im-
plemented hardware performance monitoring tools. To address these lim-
itations, an industry/academic collaboration was established early in
BG/Q’s development cycle to insure the delivery of effective performance
tools at the machine’s introduction. An extensive effort has been made to
extend the Performance API (PAPI) to support hardware performance
monitoring for the BG/Q platform. This paper provides detailed infor-
mation about five recently added PAPI components that allow hardware
performance counter monitoring of the 5D-Torus network, the I/O sys-
tem and the Compute Node Kernel in addition to the processing cores
on BG/Q.

Furthermore, we explore the impact of node mappings on the perfor-
mance of a parallel 3D-FFT kernel and use the new PAPI network com-
ponent to collect hardware performance counter data on the 5D-Torus
network. As a result, the network counters detected a large amount of
redundant inter-node communications, which we were able to completely
eliminate with the use of a customized node mapping.

1 Introduction

With the increasing scale and complexity of large computing systems the effort
of performance optimization and the responsibility of performance analysis tool
developers grows more and more. To be of value to the High Performance Com-
puting (HPC) community, performance analysis tools have to be customized
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as quickly as possible in order to support new processor generations as well as
changes in system designs.

The Blue Gene/Q (BG/Q) system is the third generation in the IBM Blue
Gene line of massively parallel, energy efficient supercomputers. BG/Q is capa-
ble of scaling to over a million processor cores while making the trade-off of lower
power consumption over raw processor speed [4]. BG/Q increases not only in size
but also in complexity compared to its Blue Gene predecessors. Consequently,
gaining insight into the intricate ways in which software and hardware are inter-
acting requires richer and more capable performance analysis methods in order
to be able to improve efficiency and scalability of applications that utilize this
advanced system.

Performance analysis tools for parallel applications running on large scale
computing systems typically rely on hardware performance counters to gather
performance relevant data from the system. The Performance API (PAPI) [3] has
provided consistent platform and operating system independent access to CPU
hardware performance counters for more than a decade. In order to provide
the very same consistency for BG/Q to the HPC community - and thanks to a
close collaboration with IBMs Performance Analysis team - an extensive effort
has been made to extend PAPI to support hardware performance monitoring
for the BG/Q platform. This customization of PAPI to support BG/Q also
includes a growing number of PAPI components to provide valuable performance
data that not only originates from the processing cores but also from compute
nodes and the system as a whole. More precisely, the additional components
allow hardware performance counter monitoring of the 5-dimensional (5D) Torus
network, the I/O system and the Compute Node Kernel in addition to the CPU
component.

This paper provides detailed information about the expansion of PAPI to sup-
port hardware performance monitoring for the BG/Q platform. It offers insight
into supported monitoring features. Furthermore, it will discuss performance
counter data of a parallel 3-dimensional Fast Fourier Transform (3D-FFT) com-
putation. We explore the impact of a variety of node mappings on the per-
formance of a 3D-FFT kernel and use the recently introduced PAPI network
component for BG/Q to collect hardware performance counter data on the 5D-
Torus network.

This paper is organized as follows. The next section provides a brief overview
of the BG/Q hardware architecture with focus on the features that are par-
ticularly relevant for this project. Section 3 goes into detail on how PAPI has
been expanded with five components to support hardware performance counter
monitoring on the BG/Q platform. Our case study is discussed in Section 4
which includes a short description of the implementation of the parallel 3D-FFT
algorithm with a two-dimensional data decomposition as well as results of the
experimental study. We conclude and summarize our work in Section 5.
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2 Overview of the Blue Gene/Q Architecture

2.1 Hardware Architecture

The BG/Q processor is an 18-core CPU of which 16 cores are used to perform
mathematical calculations. The 17th core is used for node control tasks such as
offloading I/O operations which ”talk” to Linux running on the I/O node. (Note,
the I/O nodes are separate from the compute nodes; so Linux is not actually
running on the 17th core.) The 18th core is a spare core which is used when
there are corrupt cores on the chip. The corrupt core is swapped and software
transparent. In the remainder of this paper we focus on the 17 usable cores only,
since there are really only 17 logical units available on the CPU.

The processor uses PowerPC A2 cores, operating at a moderate clock fre-
quency of 1.6 GHz and consuming a modest 55 watts at peak [6]. The Blue
Gene line has always been known for throughput and energy efficiency, a trend
which continues with the A2 architecture. Despite the low power consumption,
the chip delivers a very respectable 204 Gflops [6]. This is due to a combination
of features like the high core count, support for up to four threads per core,
and a quad floating-point unit. Compared to its Blue Gene predecessors, BG/Q
represents a big change in performance, thanks to a large rise in both core count
and clock frequency. The BG/Q chip delivers 15 times as many peak FLOPS as
its BG/P counterpart and 36 times as many as the original BG/L design (see
Table 1 for comparison).

Table 1. Brief summary of the three Blue Gene versions

Version Core Architecture Instruction Set Clock Speed Core Count Interconnect Peak Performance

BG/L PowerPC 440 32-bit 700 MHz 2 3D-Torus 5.6 Gigaflops
BG/P PowerPC 450 32-bit 850 MHz 4 3D-Torus 13.6 Gigaflops
BG/Q PowerPC A2 64-bit 1600 MHz 17 5D-Torus 204.8 Gigaflops

This PowerPC A2 core has a 64-bit instruction set compared to the 32-bit
chips used in the prior BG/L and BG/P supercomputers. The A2 architecture
has a 16 KB private L1 data cache and another 16 KB private L1 instruction
cache per core, as well as 32 MB of embedded dynamic random access memory
(eDRAM) acting as an L2 cache, and 8 GB (or 16 GB) of main memory [9]. The
L2 cache as well as the main memory are shared between the cores on the chip.

Every BG/Q processor has two DDR3 memory controllers, each interfacing
with eight slices of the L2 cache to handle their cache misses (one controller
for each half of the 16 compute cores on the chip) [1,10]. This is an important
feature that will be described in more detail in the discussion of the PAPI L2Unit
component in Section 3.2.

BG/Q peer-to-peer communication between compute nodes is performed over
a 5D-Torus network (note that BG/L and P feature a 3D-Torus). Each node
has 11 links and each link can simultaneously transmit and receive data at 2
GB/s for a total bandwidth of 44 GB/s. While 10 links connect the compute
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nodes, the 11th link provides connection to the I/O nodes. The I/O architecture
is significantly different from previous BG generations since it is separated from
the compute nodes and moved to independent I/O racks.

3 PAPI BG/Q Components

The general availability of PAPI for BG/Q is due to a cooperative effort of the
PAPI team and the IBM performance team. This joint effort started with careful
planning long before the BG/Q release, with the goal to design PAPI for Q as
well as to design the Blue Gene Performance Monitoring API (BGPM) according
to what is needed by PAPI and other HPC performance analysis tools, like e.g.
HPCToolkit [2] that heavily use PAPI under the covers.

In general, hardware performance event monitoring for BG/Q requires user
code instrumentation with either the native BGPM API or a tool like PAPI
which relies on BGPM. The following five sections talk about the five different
components that have been implemented in PAPI to allow users to monitor
hardware performance counters on the BG/Q architecture through the standard
Performance API interface.

3.1 Processor Unit Component

The PAPI PUnit component is handled as component 0 in PAPI - which is
the default CPU component. Each of the 17 usable A2 CPU cores has a local
Universal Performance Counting (UPC) module. Each of these modules pro-
vides 24 counters (14-bit) to sample A2 events, L1 cache related events, floating
point operations, etc. Each local UPC module is broken down into five inter-
nal sub-modules: functional unit (FU), execution unit (XU), integer unit (IU),
load/store unit (LSU) and memory management unit (MMU). These five in-
ternal sub-modules are easily identifiable through the event names. Table 2
shows an example selection of native PUnit events provided by the PAPI utility
papi_native_avail.

In addition to native events, a user can select predefined events (Presets) for
the PUnit component on BG/Q. Out of 108 possible predefined events, there are
currently 43 events available of which 15 are derived events made up of more
than one native event.

Overflow: Only the local UPC module, L2 and I/O UPC hardware support per-
formance monitor interrupts when a programmed counter overflows [1]. For that
reason, PAPI offers overflow support for only the PUnit, L2Unit, and IOUnit

components.

Fast versus Slow Overflow: Punit counters freeze on overflow until the over-
flow handling is complete. However, the L2Unit and IOUnit counters do not
freeze on overflow. The L2 and I/O counts will be stopped when the interrupt
is handled. The signal handler restarts L2 and I/O counting when done [1].

PUnit counters can detect a counter overflow and raise an interrupt within
approx. 4 cycles of the overflowing event. However, according to the BGPM
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Table 2. Small selection of PUnit events available on BG/Q

PUnit Event Description

PEVT_AXU_INSTR_COMMIT A valid AXU (non-load/store) instruction is in EX6, past the last flush point.
- AXU uCode sub-operations are also counted by PEVT_XU_COMMIT instead.

PEVT_IU_IL1_MISS A thread is waiting for a reload from the L2.
- Not when CI=1.
- Not when thread held off for a reload that another thread is waiting for.
- Still counts even if flush has occurred.

PEVT_IU_IL1_MISS_CYC Number of cycles a thread is waiting for a reload from the L2.
- Not when CI=1.
- Not when thread held off for a reload that another thread is waiting for.
- Still counts even if flush has occurred.

PEVT_IU_IL1_RELOADS_DROPPED Number of times a reload from the L2 is dropped, per thread
- Not when CI=1
- Does not count when not loading cache due to a back invalidate to that address

PEVT_XU_BR_COMMIT_CORE Number of Branches committed
PEVT_LSU_COMMIT_LD_MISSES Number of completed load commands that missed the L1 Data Cache.

- Microcoded instructions may be counted more than once.
- Does not count dcbt[st][ls][ep].
- Include larx.
- Does not includes cache-inhibited loads

PEVT_MMU_TLB_HIT_DIRECT_IERAT TLB hit direct entry (instruction, ind=0 entry hit for fetch)
PEVT_MMU_TLB_MISS_DIRECT_IERAT TLB miss direct entry (instruction, ind=0 entry missed for fetch)
... ...

documentation it takes up to approx. 800 cycles before the readable counter
value is updated. This latency does not affect the overflow detection, and so we
refer to a PUnit overflow as a ”Fast Overflow”.

The IOUnit and L2Unit take up to 800 processor cycles to accumulate an
event and detect an overflow. Hence, we refer to this as a ”Slow Overflow”, and
the program counters may alter up to 800 cycles or more after the event. This
delay is due to the distributed nature of the performance counters. The counters
are spread throughout the chip in multiple performance units. The hardware
design consolidates the counters into one memory space continually, however it
takes 800 cycles to visit all of the distributed units, hence the delay. The IO

and L2Units are not thread specific, so there is no basis to stop counting for a
single thread on overflow. However, the PUnit counters can be threaded, and the
hardware has the ability to arm the distributed counts and freeze on overflow.

Multiplexing: PAPI supports multiplexing for the BG/Q platform. BGPM
does not directly implement multiplexing of event sets. However, it does in-
directly support multiplexing by supporting a multiplexed event set type. A
multiplexed event set type will maintain sets of events which can be counted
simultaneously, while pushing conflicting events to other internal sets [1].

3.2 L2 Unit Component

The shared L2 cache on the BG/Q system is split into 16 separate slices. Each of
the 16 slices has a L2 UPC module that provides 16 counters with fixed events
that can be gathered separately or aggregated into 16 counters (depending on
the events chosen). Those 16 counters are node-wide, and cannot be isolated to
a single core or thread. As mentioned earlier, every BG/Q processor has two
DDR3 memory controllers, each interfacing with eight slices of the L2 cache to
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handle their cache misses (one controller for each half of the 16 compute cores
on the chip) [1,10]. The counting hardware can either keep the counts from each
slice separate, or combine the counts from each slice into single values (which
is the default). The combined counts are significantly important if a user wants
to sample on overflows. Actually, the separate slice counts are not particularly
interesting except for perhaps investigating cache imbalances because consecu-
tive memory lines are mapped to separate slices. The node-wide ”combined” or
”sliced” operation is selected by creating an event set from the ”combined” (de-
fault), or ”sliced” group of events. Hence a user cannot assign events from both
groups. Currently, there are 32 L2Unit events (16 events for the ”combined” and
”sliced” case, respectively) available on the BG/Q architecture.

Overflow: If L2Unit event overflow is desired, the overflow signal is ”slow” (see
the end of Section 3.1 for details that describe the difference between fast and
slow overflow). As mentioned before, PAPI supports overflow for PUnit events
as well as L2Unit and IOUnit events.

3.3 I/O Unit Component

The Message, PCIe, and DevBus modules - which are collectively referred to
as I/O modules - together provide 43 counters. These counters are node-wide
and cannot be isolated to any particular core or thread [1]. Note, the PCIe
module is only enabled on the I/O nodes but disabled on the compute nodes.
The counters for this specific I/O sub-module exist, however, there is currently
no BGPM support for the I/O nodes. Currently, there are 44 IOUnit events
available on the BG/Q architecture. The two I/O sub-modules - Message, and
DevBus - are transparently identifiable from the IOUnit event names.

Overflow: If IOUnit event overflow is desired, the overflow signal is ”slow” (see
the end of Section 3.1 for details that describe the difference between fast and
slow overflow).

3.4 Network Unit Component

The 5D-Torus network provides a local UPC network module with 66 counters
- each of the 11 links has six 64-bit-counters. As of right now, a PAPI user
cannot select which network link to attach to. Currently, all 11 network links
are attached and this is hard-coded in the PAPI NWUnit component. We are
considering options for supporting the other enumerations for network links as
well. We can easily change to attaching the ten torus links only and leave the I/O
link out. As for measuring the performance of an application’s communication,
both of the two configurations will work without limitations because the I/O
links are not used for sending packets to another compute node. However, if
users want to evaluate the I/O performance of an application, then they can do
this via the current network component as well. This would not be the case when
we use the torus links only. Currently, there are 31 NWUnit events available on
the BG/Q architecture.
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3.5 CNK Unit Component

By default a custom lightweight operating system called Compute Node Kernel
(CNK) is loaded on the compute nodes while I/O nodes run Linux OS [4]. The
CNK OS is the only kernel that runs on all the 16 compute cores. In general, on
Linux kernels the “/proc” file system is the usual access method for kernel counts.
Since CNK does not have a “/proc” filesystem, PAPI uses BGPM’s “virtual unit”
that has software counters collected by the kernel. The kernel counter values are
read via a system call that requests the data from the lightweight compute node
kernel. Also, there is a read operation to get the raw value since the system
has been booted. Currently, there are 29 CNKUnit events available on the BG/Q
architecture. Table 3 provides a small selection of CNKUnit events. The CNK
functionality is heavily used by tools that support sample-based profiling like
e.g. HPCToolkit [2]. Hence, with the CNKUnit Component, this is much easier
handled on BG/Q than it was on BG/P.

Table 3. Small selection of CNKUnit events, available on the BG/Q architecture

CNKUnit Event Description

PEVT_CNKNODE_MUINT Number of Message Unit non-fatal interrupts
PEVT_CNKNODE_NDINT Number of Network Device non-fatal interrupts
PEVT_CNKHWT_SYSCALL System Calls
PEVT_CNKHWT_FIT Fixed Interval Timer Interrupts
PEVT_CNKHWT_WATCHDOG Watchdog Timer Interrupts
PEVT_CNKHWT_PERFMON Performance Monitor interrupts
PEVT_CNKHWT_PROGRAM Program Interrupts
PEVT_CNKHWT_FPU FPU Unavailable Interrupts
... ...

4 Case Study: Parallel 3D-FFT on BG/Q

As a case study, we implemented a parallel 3D-FFT kernel and want to ex-
plore how well the communication performs on the BG/Q network. The Fast
Fourier Transforms (FFT) of multidimensional data are of particular importance
in a number of different scientific applications but they are often among the
most computationally expensive components. Parallel multidimensional FFTs
are communication intensive, which is why they often prevent the application
from scaling to a very large number of processors. A fundamental challenge of
such numerical algorithms is a design and implementation that efficiently uses
thousands of nodes. One important characteristics of BG/Q is the organization
of the compute nodes in a 5D-Torus network. We will explore that in order to
maintain application performance and scaling, the correct mapping of MPI tasks
onto the torus network is a critical factor.



220 H. McCraw et al.

4.1 Definition of the Fourier Transformation

We start the discussion with the definition and the conventions used for the
Fourier Transformation (FT) in this paper. Consider Ax,y,z as a three-dimensional
array of L×M ×N complex numbers with:

Ax,y,z ∈ C x ∈ Z ∀x, 0 ≤ x < L

y ∈ Z ∀y, 0 ≤ y < M

z ∈ Z ∀z, 0 ≤ z < N

The Fourier transformed array Ãu,v,w is computed using the following formula:

Ãu,v,w :=
L−1∑
x=0

M−1∑
y=0

N−1∑
z=0

Ax,y,z exp(−2πi
wz

N
)

︸ ︷︷ ︸
1st 1D FT along z

exp(−2πi
vy

M
)

︸ ︷︷ ︸
2nd 1D FT along y

exp(−2πi
ux

L
)

︸ ︷︷ ︸
3rd 1D FT along x

(1)

As shown by the under-braces, this computation can be performed in three
single stages. This is crucial for understanding the parallelization in the next
subsection. The first stage is the one-dimensional FT along the z dimension for
all (x, y) pairs. The second stage is a FT along the y dimension for all (x,w)
pairs, and the final stage is along the x dimension for all (v, w) pairs.

4.2 Parallelization

Many previous parallel 3D-FFT implementations have used a one-dimensional
virtual processor grid - i.e. only one dimension is distributed among the proces-
sors and the remaining dimensions are kept locally. This has the advantage that
one all-to-all communication is sufficient. However, for problem sizes of about
one hundred points or more per dimension, this approach cannot offer scala-
bility to several hundred or thousand processors as required for modern HPC
architectures. For this reason the developers of the IBMs Blue Matter applica-
tion have been promoting the use of a two-dimensional virtual processor grid for
FFTs in three dimensions [5]. This requires two all-to-all type communications,
as shown in Figure 1, which illustrates the parallelization of the 3D-FFT using
a two-dimensional decomposition of the data array A of size L ×M × N . The
compute tasks have been organized in a two-dimensional virtual processor grid
with Pc columns and Pr rows using the MPI Cartesian grid topology construct.
Each individual physical processor holds an L/Pr ×M/Pc ×N sized section of
A in its local memory. The entire 3D-FFT is performed in five steps as follows:

1. Each processor performs L/Pr ×M/Pc one-dimensional FFTs of size N
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Fig. 1. Computational steps of the 3D-FFT implementation using 2D-decomposition

2. An all-to-all communication is performed within each of the rows - marked
in the four main colors - of the virtual processor grid to redistribute the
data. At the end of the step, each processor holds an L/Pr×M×N/Pc sized
section of A. These are Pr independent all-to-all communications.

3. Each processor performs L/Pr ×N/Pc one-dimensional FFTs of size M .

4. A second set of Pc independent all-to-all communications is performed, this
time within the columns of the virtual processor grid. At the end of this
step, each processor holds a L×M/Pc ×N/Pr size section of A.

5. Each processor performs M/Pc ×N/Pr one-dimensional FFTs of size L

For more information on the parallelization, the reader is referred to [5,8].

4.3 Communication Network Topology

As mentioned before, the network topology for BG/Q is a 5D-Torus. Every node
is connected to its ten neighbor nodes through bidirectional links in the ±A, ±B,
±C, ±D, and ±E directions. This appears to be a significant change compared
to BG/Q predecessors, both of which feature a 3D-Torus. Here every node is
connected to its six neighbor nodes through bidirectional links in the ±A, ±B,
and ±C directions. To maintain application performance, an efficient mapping
of MPI tasks onto the torus network is a critical factor.

The default mapping is to place MPI ranks on the BG/Q system in ABCDET
order where the rightmost letter increments first, and where < A,B,C,D,E >
are the five torus coordinates and < T > ranges from 0 to N − 1, with N
being the number of ranks per node [7]. If the job uses the default mapping and
specifies one process per node, the following assignment results:
MPI rank 0 is assigned to coordinates < 0, 0, 0, 0, 0, 0 >
MPI rank 1 is assigned to coordinates < 0, 0, 0, 0, 1, 0 >
MPI rank 2 is assigned to coordinates < 0, 0, 0, 1, 0, 0 >
The mapping continues like this, first incrementing the E coordinate, then the
D coordinate, and so on, until all the processes are mapped. The user can choose
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a different mapping by specifying a different permutation of ABCDET or by
creating a customized map file.

4.4 Network Performance Counter Analysis

We ran our 3D-FFT kernel on a 512 node partition, utilizing half a rack on the
BG/Q system at Argonne National Laboratory, using all 16 compute cores per
node for each run. Table 4 summarizes the number of nodes that are available
in each of the five dimensions. Also the torus connectivity is shown for each
dimension, while 1 indicates torus connectivity for a particular dimension, 0
indicates none.

Table 4. Torus connectivity and number of nodes in each of the five dimensions for
a 512 node partition

A B C D E T

nodes 4 4 4 4 2 16

torus 1 1 1 1 1 -

For the 512 node partition, we have a total of 8,192 MPI tasks, and for the
virtual two-dimensional process grid, we chose 16 × 512, meaning that each
subgroup has 16 MPI tasks and we have 512 of those subgroups. Since we want
to know how well the communication performs on the 5D-Torus network, we
use the new PAPI network component to sample various network related events.
The number of packets sent from each node is shown in Figure 2 for a problem
size of 5123. This includes packets that originate as well as pass through the
current node. It is important to note, these are the numbers for only the all-to-
all communication within each subgroup (only first all-to-all), not including the
second all-to-all communication between the subgroups.

Fig. 2. Network counter data collected with PAPI. This event counts the number
of packets originating and passing through the current node for the first all-to-all
communication.
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The PAPI network counter data greatly helped to evaluate the communication
of the parallel 3D-FFT kernel as it clearly shows an unnecessary large number
of packets that cross a node if the default MPI task mapping is used. The
collected network data for a medium problem size of 5123 counts approx. 270,000
packets which originate from and pass through each single node. Note, the count
variation from node to node is due to the routing algorithm which may pass more
packets through some nodes but not others based on how congested alternative
routes are in the network. On the whole, we consider this number of packets for
such a fairly small problem size extremely high, which is also the cause of the
discovered network congestions. Without the network counter data, a user may
merely pursue with speculations about various reasons of the poor performance.
However, the data allows a much more concentrated analysis that assists with
taking more settled instead of speculative actions.

In order to resolve this type of network congestion, we examined a variety of
customized MPI task mappings, which heavily depend on the chosen 2D pro-
cessor grid of the parallel 3D-FFT implementation. For each experiment, the
network counter data distinctly indicated either a stationary or improved con-
gestion of the network. The analysis shows that the reason for the high numbers
is the placement of MPI tasks onto the network using the default mapping which
results in a lot of inter-node communications. It appears that even when using a
total of five dimensions for a torus network, the default mapping can still result
in severe performance degradations due to congestions. This stresses all the more
how critical the correct mapping of MPI tasks onto the torus network is, even
when we utilize a five-dimensional torus. The default mapping places each task
of a subgroup on a different node, as can be seen from Table 5(a) that summa-
rizes the default MPI task mapping on the 5D-Torus for one communicator.

Table 5. MPI task mappings on the 5D-Torus for the 512 node partition run, using
a 2D virtual processor grid 16 × 512. For simplicity, each table presents the mapping
of only one out of a total of 512 communicators.

(a) Default MPI-task mapping

rank A B C D E T

0 0 0 0 0 0 0
512 0 1 0 0 0 0
1,024 0 2 0 0 0 0
1,536 0 3 0 0 0 0
2,048 1 0 0 0 0 0
2,560 1 1 0 0 0 0
3,072 1 2 0 0 0 0
3,584 1 3 0 0 0 0
4,096 2 0 0 0 0 0
4,608 2 1 0 0 0 0
5,120 2 2 0 0 0 0
5,632 2 3 0 0 0 0
6,144 3 0 0 0 0 0
6,656 3 1 0 0 0 0
7,168 3 2 0 0 0 0
7,680 3 3 0 0 0 0

(b) Customized MPI-task mapping

rank A B C D E T

0 0 0 0 0 0 0
512 0 0 0 0 0 1
1,024 0 0 0 0 0 2
1,536 0 0 0 0 0 3
2,048 0 0 0 0 0 4
2,560 0 0 0 0 0 5
3,072 0 0 0 0 0 6
3,584 0 0 0 0 0 7
4,096 0 0 0 0 0 8
4,608 0 0 0 0 0 9
5,120 0 0 0 0 0 10
5,632 0 0 0 0 0 11
6,144 0 0 0 0 0 12
6,656 0 0 0 0 0 13
7,168 0 0 0 0 0 14
7,680 0 0 0 0 0 15
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The above mentioned network counter data analysis for various customized
mappings promotes a mapping that places all the tasks from one subgroup onto
the same node which significantly reduced the amount of communication. Ta-
ble 5(b) presents the optimum customized MPI task mapping on the 5D-Torus
for the same communicator as was used in Table 5(a). Since each subgroup has
16 MPI tasks, and since we have 16 compute cores per node, we can place one
entire subgroup on each node. By doing so, all the high numbers reported for the
network counter were reduced to zeroes, resulting in no inter-node communica-
tion at all. The results presented in Figure 3 show that the customized mapping
gives us a performance improvement of up to a factor of approx. 10 (depend-
ing on the problem size) for the first all-to-all. Note, there was no degradation
in performance for the second all-to-all with the customized mapping. For the
entire 3D-FFT kernel - which consists of three 1D-FFT computations and two
all-to-all communications - we see an improvement ranging from 10 to 18% for
various mid-size problems.

Fig. 3. Performance comparison for the first all-to-all communication using default and
customized mapping. The table at the bottom presents the performance improvement
of the customized mapping for each problem size and for the communication as well as
the entire 3D-FFT kernel respectively.

5 Conclusion

Performance analysis tools for parallel applications running on large scale com-
puting systems typically rely on hardware performance counters to gather per-
formance relevant data from the system. In order to allow the HPC community
to collect hardware performance counter data on IBM’s latest Blue Gene system
BG/Q, PAPI has been extended with five new components.

The PAPI customization for BG/Q accesses the BGPM interface under the
covers, allowing users and third-party programs to monitor and sample hardware
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performance counters in a traditional way using the default PAPI interface. The
recently added PAPI components allow hardware performance counter monitor-
ing not only for the processing units but also for the 5D-Torus network, the I/O
system, and the Compute Node Kernel.

As a case study for using hardware performance monitoring beyond the CPU
we implemented a parallel 3D-FFT kernel and instrumented it with PAPI for com-
munication evaluation on the BG/Q system at ArgonneNational Laboratory. The
collected network counter data considerably helped evaluating the communication
for the 5D-torus partition as well as made us look deeper into where tasks are lo-
cated by default on the 5D network, and how to improve the task location based
on the algorithm’s features.With the default mapping of MPI tasks onto the torus
network, the network counters detected a large amount of redundant inter-node
communications. By employing a custom mapping, we were able to eliminate the
unnecessary communication and achieve more than a ten-fold bettering for the
all-to-all communication which consequently leads to up to 18% performance im-
provement for the entire 3D-FFT kernel on 8,192 cores.
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Abstract. Achieving good application performance on a modern compute clus-
ter of multi-core, multi-socket, NUMA-aware systems can be challenging. In 
this paper, we use VASP, a popular ab-initio quantum-mechanical MD simula-
tion software, to investigate the various levels of the software, hardware, and 
network tuning that boosts performance on a Dell PowerEdge R815 HPC clus-
ter with AMD “Interlagos” and “Abu-Dhabi” processors. We implement code 
changes with the free software stack that supports FMA and AVX CPU  
instructions on the Bulldozer/Piledriver architecture. We analyze the MPI 
communications by profiling, compare the scalability performance of different 
interconnects, and discuss various MPI tuning parameters show effects of the 
advanced features that are crucial to the scalability performance of InfiniBand, 
including MXM and SRQ, which optimize the network resources for MPI 
communications. We investigate the importance of the MPI process placement, 
and introduce a process allocation tool that facilitates the affinity grouping on a 
multicore architecture. 

Keywords: Performance, Multi-Level Tuning, VASP, AMD Bulldozer, Infini-
Band, MPI. 

1 Introduction 

High-performance computing (HPC) simulations are typically carried out on high-
performance computing clusters, as they require an effective compute resource that 
can handle complex and parallel simulations. HPC clusters are scalable performance 
compute solutions based on industry standard hardware connected by a private system 
high speed network. The main benefits of clusters are affordability, flexibility, availa-
bility, high-performance, and scalability. A cluster uses the aggregated power of 
compute server nodes to form a high-performance solution for parallel applications. 
When more compute power is needed, it can be achieved simply by adding more 
server nodes to the cluster. 
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Fig. 1. An Example of HPC System Architecture with System Nodes of NUMA Architecture - 
Demonstrating that the Difference between Intra-Node Latency and Inter-Node Latency can 
Affect Application Performance 

The architecture of HPC clusters (that is, multi-core, multi-processor based HPC 
servers with high-speed interconnects) has a great influence on the overall application 
performance and productivity. The cluster interconnect is very critical for delivering 
efficiency and scalability for the applications, as it needs to handle the networking 
requirements of each CPU core without imposing additional networking overhead.  

In a multi-core, multi-socket HPC server-based cluster, the driving factors of per-
formance and scalability for HPC simulations have shifted from the frequency and 
cache size per core to the memory and interconnect latency and throughput.  

In a clustered environment, multiple servers are connected via the cluster intercon-
nect. This architecture typically imposes higher latency for communication between 
compute cores located on different nodes or servers.  A high-latency interconnect can 
dramatically reduce the efficiency of the compute cluster and will make the solution 
ineffective for HPC simulations. This concern drove the notion that gathering as many 
compute elements onto a single board (SMP) is a better solution than using the cluster 
interconnect for critical data transfers between the application’s processes.  

With the increased availability of low-latency interconnect solutions such as Infi-
niBand [1], the penalty of inter-node latency compared to the intra-node latency has 
decreased, making the architecture the leading solution for HPC applications. The 
InfiniBand Architecture (IBA) [1] is an industry-standard fabric designed to provide 
high bandwidth/low-latency computing, scalability to ten-thousand nodes and mul-
tiple CPU cores per server platform, and efficient utilization of compute processing 
resources. InfiniBand adapters and switches deliver 56Gb/s bandwidth today and are 
expected to deliver 100Gb/s by 2014. This high-performance bandwidth is matched 
with ultra-low application latency of nearly 1 μsec to enable efficient scale-out of 
compute systems.  

For intra-node and inter-node communications, PCI-Express (PCIe) and AMD 
HyperTransport (HT) have become the technologies that are being used to connect 
between CPUs, as well as between CPU and memory. Fig. 1 illustrates the overall 
system architecture of NUMA nodes interconnected over a network to form a cluster. 
The latency between the CPU cores within the NUMA node is the intra-node latency, 
and the latency across the nodes is the inter-node latency. 

Even with the low-latency interconnect solutions that eliminate most of the intra-
node and inter-node latencies to make parallel computing effective, there are still 
steps required to make the multi-core, NUMA-aware compute cluster run efficiently. 
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3 Selecting the Best Method for Tuning 

Before tuning for the best application performance, one should understand how time 
is spent during the application runtime. One way to learn more about how the runtime 
is spent is to use performance analyzing tools or profiling tools. By tackling the big-
gest time consumers determined by a profiling tool on the application, it is then easy 
to identify the proper direction to tune. It yields the most benefit by tuning those 
components for which the application spends the most time, resulting in a large run-
time reduction for the application. 

Fig. 2 describes the overall compute time and the MPI time of the Pure Hydrogen 
benchmark. As more nodes are used, the overall compute time is reduced, since more 
cores are used for the parallel computations. It also means that by optimizing for the 
CPU performance at a small node count, it yields a greater time difference. On the 
other hand, the MPI time (that is, communication time) stays nearly constant for the 
higher node, higher CPU core counts. This can be explained by understanding how 
VASP works, and also by the MPI profiling, which will be explained later. 

4 Tuning by Selecting the Right CPU Cores  

To understand the AMD Bulldozer module concept for making maximal use of avail-
able resources, we must first analyze the CPU architecture of the AMD Interlagos 
CPU.  
 

 

Fig. 3. AMD Opteron™ 6200 Series Processor (“Interlagos”) 

As depicted in Fig. 3, the Interlagos processor is composed of two die. Each die is 
composed of eight “Bulldozer” modules. The two Bulldozer cores inside an Interlagos 
processor contain 16 CPU cores. Two of the neighboring cores share a 256-bit Float-
ing Point Unit (FPU) within a module. The module divisions are transparent to shared 
hardware, operating systems, or applications. 

When a lightly threaded workload sends half the “Bulldozer” modules into C6 
sleep state, but also requests max performance, AMD Turbo Core technology can 
increase clock speeds by up to 1 GHz+ across half the cores.  
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to the correct CPU cores, thereby allowing the most optimal process placement to 
CPU cores. 

6 Tuning of Software Stack 

The third element in tuning the AMD Opteron architecture is to tune the compilation 
of the software stack and to link with the software library that takes advantage of the 
AMD Opteron architecture.  

The main target for VASP simulations are clusters based on the x86 architecture, 
preferably with a fast interconnect. For these systems, the commercially available 
Intel compilers and Intel Math Kernel library are an obvious choice for obtaining 
good performance by using SIMD instructions on modern processors. By default, 
VASP contains build instructions for these systems. For AMD based systems, this is 
not an obvious choice. For the first time, support has been implemented for the free 
software stack (of Open64 compilers, ACML, and MVAPICH2) that can deliver 
comparable or better application performance for the AMD Bulldozer architecture 
with the support of the FMA instructions and AVX CPU extensions available on the 
Open64 compiler. While VASP is written in FORTRAN 90 and uses modern features 
like module procedures and interface blocks, some changes are required to these inter-
face blocks, and lower optimization levels are required in order for some routines to 
be compiled with the Open64 compiler. The code changes for the aforementioned 
interface blocks of certain modules to support Open64 are then ported back to the 
original VASP code base. VASP users can access and acquire the code changes from 
the developers at the University of Vienna upon request and from the HPC Advisory 
Council [10]. The free software stack consists of Open64 Compiler 4.5.2, ACML 
5.2.0, and MVAPICH2 1.8.1. The commercial software stack consists of Intel Compi-
ler 13.0, MKL 11.0, and Intel MPI 4 Update 3. 

Some of the VASP code is modified so that it can be compiled by the Open64 
compilers. The advantage of using Open64 compilers is that they contain CPU opti-
mization extensions suitable for the Bulldozer and Piledriver architectures available in 
the AMD Opteron 6200 “Interlagos” and Opteron 6300 “Abu Dhabi” series. The 
AVX and FMA instruction sets and the compiler flags “-march=bdver1 -mavx -
mfma”, were used to enable such processor extension on the Bulldozer architecture. 
Likewise, for the AMD Opteron 6300 “Abu Dhabi” series, it supports using AVX and 
FMA instruction sets with the compiler flags “-march=bdver2 -mavx -mfma” to ena-
ble such processor extensions for the Piledriver architecture. 

Fig. 8 shows the Pure Hydrogen dataset being used to compare between the com-
mercial and open source stacks. The VASP performance illustrates that the open 
source MVAPICH2 MPI, Open64 compiler, and ACML libraries are able to achieve 
comparable performance in most cases. However, it is assumed that improved per-
formance can be expected with additional compiler optimizations, some of which 
were tuned to enable the open64 port to be compiled. Besides the optimization, addi-
tional tuning can be handled by using the latest development tools (such as Open64 
and ACML) that support AMD “Interlagos” and “Abu Dhabi” CPU architecture. 
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network, MXM extends the management of the networking I/O channels into the 
communication libraries and offers the ability to optimize the implementation of the 
memory allocations and usage. MXM takes ownership of both the implementation of 
one-sided and two-sided communications. 

The MXM interface includes the function calls for send/receive operations. The 
API provides the complete set of communication calls related to communication algo-
rithms, and includes the interconnect management and usage of the available offload-
ing and accelerations. 

Fig 12. shows that MXM is implemented as part of the co-design architecture for 
exascale systems. The design of MXM was previously described and validated by 
using micro-benchmarks that demonstrate great reduction in latency in both MPI and 
SHMEM [12]. In this paper, we deploy MXM in Open MPI on VASP, which trans-
lates the latency reduction into application performance gain. 

By comparing between un-tuned Open MPI, SRQ-enabled Open MPI, and MXM-
enabled Open MPI, we have observed that the MXM run at 8 nodes delivers up to 
47% higher job productivity than the un-tuned Open MPI run at 8 nodes. MXM also 
drives about 19% higher job productivity than the SRQ-enabled Open MPI at 8 nodes. 
Processor binding with “dell_affinity.exe” is used when comparing all three cases. 
The comparison is shown in Fig. 11. 

The flags enabled for the MXM-enabled Open MPI run are as follows: “--mca 
mtl mxm --mca btl_openib_free_list_num 8192 --mca 
btl_openib_free_list_inc 1024 --mca mpi_preconnect_mpi 1 
--mca btl_openib_flags 9” 

11 Summary and Future Plans 

The steps in achieving good application performance on a modern compute cluster of 
multi-core, multi-socket, NUMA-aware systems can be performed by first using pro-
filing tools to systematically analyze the time used for each component involved. 
Then, begin by tuning at each level within the software, hardware, and networking 
that enables the best interaction between the software applications and the system 
hardware by extending the interconnect capabilities into the software communication 
algorithms.  

By determining what takes the most time in runtime, whether in compute or net-
work communications, we can then decide to tune the area that would be most profit-
able. The first approach is to tune by profiling the amount of time an application runs. 
Then, understand and exploit the CPU architecture that yields the best application 
performance, such as CPU core selection, MPI process placement based on locality, 
and tuning of the software stack to use different compiler and math libraries.  

We have investigated and shown the importance of the MPI process placement. By 
correctly placing the MPI processes on the core in Bulldozer core pairs, it allows the 
active core to run at a higher frequency, which translates into 42% better performance 
than running with both cores in a Bulldozer core pair package, and 30% better  
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performance than running the same number of cores in all the CPU cores on the first 
two sockets of a 4-socket system.  

We have introduced a tool to facilitate the allocation of MPI processes into affinity 
grouping to take advantage of multicore CPU architecture that is available in the 
AMD “Interlagos” processors. The tool ensures proper process allocation support in 
all flavors of MPI implementations on the Dell systems, which shows a 26% better 
performance than using a process placement that has not taken into account the actual 
process number enumeration that takes place in the BIOS. 

We have analyzed and implemented code changes to the code of VASP, which has 
been developed and used predominately on the commercial software stack to support 
the free software stack. The change in software stack delivers a comparable applica-
tion performance with the AMD Bulldozer architecture with the support of the FMA 
instructions and AVX CPU extensions in the software stack. We expect additional 
performance gain when enabling additional compiler optimizations that were turned 
off, and when tuning using the latest development tools (such as Open64 and ACML) 
that support AMD “Interlagos” and “Abu-Dhabi” architecture. 

We analyzed the MPI communications by profiling, and we discovered that heavy 
MPI collective communication occurs during the runtime of VASP. We have also 
determined that a low latency and high bandwidth network communication is required 
to make VASP scalable, which explains why InfiniBand would benefit for VASP over 
other network interconnects. 

We compared the scalability performance of various high speed network intercon-
nects, and we were able to see that the effect of deploying a low latency network in-
terconnect such as the QDR InfiniBand improves application performance by over 
186% against 40GbE, by over five times compared to 10GbE, and by over 8 times 
versus 1GbE on 8 nodes (256 processes). Ethernet does not scale and becomes ineffi-
cient to run beyond two nodes. 

We have discussed various MPI tuning parameters that are crucial to the scalability 
performance of InfiniBand interconnect, including features such as Mellanox Messag-
ing (MXM) and Shared Reduced Queue (SRQ), which optimize the network resource 
for MPI communications. SRQ can provide improvement of 24% over the un-tuned 
run for VASP running at 8 nodes. In addition, by deploying MXM, the reliable mes-
saging acceleration optimized for Mellanox Host Channel Adapter (HCA), we are 
able to show a 47% performance improvement compared to a baseline run with Open 
MPI at 8 nodes. 

We plan to extend the testing to include the Abu Dhabi testing and compiler opti-
mization for the new machine architecture, so as to take advantage of the new proces-
sor extensions, and to publish our results in future papers. 
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Offload Compiler Runtime  
for the Intel® Xeon Phi™ Coprocessor* 

Chris J. Newburn, Rajiv Deodhar, Serguei Dmitriev, Ravi Murty,  
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Intel Corporation 

Abstract. The Intel® Xeon Phi™ coprocessor platform enables offload of 
computation from a host processor to a coprocessor that is a fully-functional In-
tel® Architecture CPU.  This paper presents the C/C++ and Fortran compiler 
offload runtime for that coprocessor.  The paper addresses why offload to a co-
processor is useful, how it is specified, and what the conditions for the profita-
bility of offload are.  It also serves as a guide to potential third-party develop-
ers of offload runtimes, such as a gcc-based offload compiler, ports of existing 
commercial offloading compilers to Intel® Xeon Phi™ coprocessor such as 
CAPS®, and third-party offload library vendors that Intel is working with, such 
as NAG® and MAGMA®.  It describes the software architecture and design of 
the offload compiler runtime.  It enumerates the key performance features for 
this heterogeneous computing stack, related to initialization, data movement 
and invocation.  Finally, it evaluates the performance impact of those features 
for a set of directed micro-benchmarks and larger workloads.  

Keywords: multicore, heterogeneous, coprocessor, offload, compiler, runtime, 
acceleration. 

1 Introducing Offload for a Fully-Capable Compilation Target 

This paper describes the runtime infrastructure and performance features of the of-
fload runtime for the Intel® Xeon Phi™ coprocessor.  This section covers the archi-
tecture, offload execution model, suitability criteria for offload, and contributions. 

There has been a long-standing interest in using many power-efficient and more 
memory- and I/O-bandwidth-capable GPUs and CPUs to efficiently accelerate computa-
tion [20,5,26]. Taking advantage of such architectures has often depended on largely 
rewriting user codes.  Intel has taken a different approach: make the coprocessor compi-
lation target very similar to the host, incrementally extend existing programming models 
for parallelism to take advantage of that coprocessor, and leverage the host when single-
thread performance is important, e.g. for I/O.  This paper describes one way of doing 
that: through offload of computation from a host CPU to a fully-capable Intel® Architec-
ture processor that enables higher levels of thread and SIMD parallelism and bandwidth 
for data-parallel workloads than the Intel® Xeon® processor line.  It also offers greater 
power efficiency: it won Green 500 at SC12 [6]. The first product in that family is  

                                                           
* For more complete information about compiler optimizations, see Intel’s Optimization Notice 

at http://software.intel.com/en-us/articles/optimization-notice 
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codenamed Knights Corner [10].  It is a coprocessor in a PCIe [2] card form factor. One 
or more cards may connect to host chips that may be part of a larger cluster, as shown in 
Figure 1.   

 

Fig. 1. Intel Xeon Phi™ coprocessor system architecture. MPI ranks may execute on subsets of 
host cores, and computation may be offloaded to the coprocessors from those ranks, or ranks 
may be distributed across the host and coprocessor (not shown). 

1.1 Execution Models 

This platform supports several execution models, as shown in Figure 2.  Applications 
may use the different execution models in different phases, or use a mix of execution 
models concurrently.  And in the symmetric message passing interfaces [7,8, 13] 
programming model, ranks may run on a heterogeneous set of nodes, concurrently 
mixing execution on hosts and coprocessors.  In hybrid [25] execution, MPI ranks on 
the host or coprocessor are threaded with OpenMP [22].   

- When applications have more than a nominal serial fraction, they are best executed in 
host mode, on a general-purpose CPU that has a higher clock speed and a more ag-
gressive micro-architecture, e.g., an Intel® Xeon® processor (left).   

- When applications are highly parallel, with many threads and either highly-SIMD-
vectorized code [24] or that demand very high bandwidth to the memory system, na-
tive execution on an Intel Xeon Phi™ coprocessor may offer higher performance and 
greater power efficiency (middle or right).  

- The highly-parallel phases of the application may be offloaded from the Intel® 
Xeon® host processor to the Intel®Xeon Phi™ coprocessor (middle).  In this mode, 
shown in Figure 1, input data and code are sent to the coprocessor from the host, and 
output data is sent back to the host when offloaded computation completes.  Execu-
tion may be concurrent on host and coprocessor. 

Users may choose to use the offload model instead of native execution because that’s 
higher performing, or for other reasons, such as minimizing complexity or fitting into 
memory.  For example, it may be easier to make an Intel® Math Kernel Library [12] 
call that transparently results in offload to a coprocessor than to heterogeneously mix 
MPI ranks on hosts and coprocessors.  If the working set [4] fits in the memory on 
the coprocessor (up to 8GB initially), but the entirety of the memory footprint does 
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not, it may be necessary to explicitly manage memory locality by partitioning work 
into computational subtasks that are offloaded to the coprocessor.   

1.2 Suitability for Offload 

Offloading incurs overhead costs for initialization, marshaling and transferring data, and 
invocation.  These costs vary in their significance.  Thus offload may or may not pro-
vide a speedup, even if native execution would result in a speedup, as shown in Section 
5.  There are two important metrics for evaluating the profitability of offload: host-side 
throughput and response time (latency).  Host-side throughput improves if there is a 
reduction in host-side work that exceeds the host-side overhead of offloading it.  Re-
sponse time improves if the reduction in host-side work exceeds the sum of host-side 
overhead and the time spent waiting for the coprocessor. The latency formulation ac-
counts for overheads on both the host and coprocessor.  Response time and throughput 
speedups will be identical in the case of single-threaded workloads doing synchronous 
offload.  Offload profitability depends on a mix of the following factors: 

- Application characteristics: Applications must have a high ratio of computation to 
communication (sending code and input data, invocation, and returning output data) 
for the offloaded portion.  Offload communication overheads can be hidden if code 
is structured to overlap them with computation, or if data is reused across offloads.  

- Offload runtime: Offload profitability depends on the efficiency of the host- and 
coprocessor-side runtimes in marshaling and moving data and invoking code . 

- Performance on the coprocessor and system: It must benefit from the highly-parallel 
hardware (SIMD width, threads, and high bandwidth) of the Intel® Xeon Phi™ co-
processor.  For example, a serial application that is I/O intensive is unlikely to be a 
good candidate for that coprocessor.   

 

 
Fig. 2. Execution models: host-only, offload from host to coprocessor and native on coprocessor 
only 
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The paper shows examples of workloads with high and with low computation to 
communication ratios, as well as good and poor native speedups.  It focuses on com-
piler runtime implementation and performance issues related to reducing offload 
overheads on the host and coprocessor.  The performance is evaluated on a few 
workloads and several directed tests that are in the form of micro- benchmarks.   

1.3 Contributions and Scope 

The contributions of the paper are as follows.  This is the first known description of a 
production offload compiler and offload runtime software infrastructure for a widely-
deployed commercial coprocessor that is as capable as the host CPU.  This is the first 
published description of the Intel® Xeon Phi™ coprocessor offload runtime software 
architecture.  It enumerates issues that matter most to offload compiler runtime per-
formance, describes the solutions to those performance issues, and evaluates their 
impact on both micro-benchmarks and customer workloads. 

There are several other issues of potential interest which are out of scope for this 
paper. One is a detailed description of the offload programming models described 
here, and an assessment of their ease of use, performance and productivity relative to 
other programming models such as CUDA® [20] or OpenACC® [21] or hand-coded 
assembly.  Another is a comparison of our OpenMP 4.0 TR1 [23] implementation 
with the #pragma offload approach.  Another is techniques for evaluating and 
improving the suitability of parallelized code for Intel® Many-Integrated Core, which 
is documented online [11].  This paper does not delve into the details of the non-
compiler runtime components and their performance.  The paper’s focus on the of-
fload runtime leaves aside micro-architecture-specific issues related to code genera-
tion, like vectorization and prefetching.  Finally, issues related to sharing the virtual 
address space between the host and coprocessor [29] are not covered in this paper. 

2 Software Architecture 

The Intel® Xeon Phi™ coprocessor software architecture is shown in Figure 3.  
There are essentially four layers in the software stack: offload tool runtimes, user-
level offload libraries, a low-level communication layer that’s split between user-level 
libraries and kernel drivers, and the operating system.  There is a host-side and co-
processor-side component for each.  Everything below the offload runtimes is part of 
the Intel® Manycore Platform Software Stack (MPSS).  

This paper focuses on the compiler offload runtime of the Intel® Composer XE 
2013 compiler, but there are several other tool offload runtimes listed in Section 3. 
Intel provides a user-level offload library, called the Intel® Coprocessor Offload In-
frastructure (COI) [15].  This library provides services to create coprocessor-side 
processes, create FIFO pipelines between the host and coprocessor, move code and 
data, invoke code (functions) on the coprocessor, manage memory buffers that span 
the host and coprocessor, enumerate available resources, etc.  Offload runtime im-
plementations aren’t strictly required to use COI, but doing so can relieve developers 
of significant implementation complexity and tuning effort, and it provides portability  
 



 Offload Compiler Runtime for the Intel® Xeon Phi™ Coprocessor 243 

 

Fig. 3. Intel® Xeon Phi™ coprocessor software architecture  

to other host OSes such as Microsoft® Windows™.  This paper discusses COI’s 
APIs, but the paper covers implementation and performance optimizations only for 
the compiler runtime, not other lower-level runtimes like COI and SCIF [15, 28].   

Finally, the host and coprocessor have separate operating systems.  The snapshot 
of supported host OSes at the time of evaluation includes RHEL [27] 6.0 kernel 
2.6.32-71 and 6.1 kernel 2.6.32-131 and SLES 11 SP1 kernel 2.6.32.12-0.7 [31]. The 
coprocessor OS is a stock Linux kernel 2.6.34.11 with few architecture-specific mod-
ifications.  Using a standard OS eases restrictions on what code is offloaded, enables 
building third-party software and eliminates the need for many proprietary services.   

3 Programming Models 

A brief background on programming models is provided here, for context.  This is 
not the focus of this paper.  Offload is accomplished by runtimes which implement: 

- language pragmas, e.g. #pragma omp target data device(1) map() used by 
various compilers, e.g. from Intel [9] and CAPS [3], and #pragma offload, an Intel-
specific extension (see Figure 4) 

- language keywords, e.g. the _Cilk_shared keyword used by the Intel compiler [9,29] 
or language constructs used by CUDA [20] or OpenCL [16] such as Intel® SDK for 
OpenCL Applications XE for the coprocessor [14] 

- library calls, e.g. Intel® Math Kernel Library (MKL) [12], MAGMA [17,1] or NAG 
[19] calls that divide work across the host and coprocessor 

There are also third-party preprocessors that use cost models to evaluate when and 
how to make use of those tools [26]. 

This paper focuses on a preliminary version of a proposed but not yet ratified 
#pragma omp offload extension to the OpenMP 4.0 standard [23] implemented by the 
Intel compiler.  An extended version of this paper [18] also covers an Intel-proprietary 
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set of directives, based on #pragma offload. Single-threaded code that uses var-
ious offload constructs is illustrated in Figure 4. This code shows how the host syn-
chronously invokes work on the coprocessors, as though DGEMM were invoked on 
the host with the Intel® Math Kernel Library.  See Section 4 for details.   

In general, the programmer has to explicitly specify what to do using the offload 
pragmas. But in some cases, there is a default, for ease of programming.  In the #prag-
ma omp case, data transfer of variables to and from the coprocessor for offloaded code 
is explicitly named with map(to:…), map(from:…) and map(tofrom:…) 
clauses, but the map(tofrom:…) clause is implicitly used for all variables that are not 
explicitly named but are visible in the scope of a construct during compilation.  The 
coprocessor offload target is specified like device(1).  

The offload compiler runtime doesn’t manage parallelism.  It’s the programmer’s 
responsibility to enable and expose vectorization and the compiler’s responsibility to 
extract it, to take advantage of SIMD parallelism.  It’s the programmer’s responsibili-
ty to take advantage of thread parallelism. There are two approaches to using hard-
ware threads: using MPI to parallelize across ranks, or using a threading runtime like 
pthreads, OpenMP [22] or Threading Building Blocks [32] to create and parallelize 
across a team of threads.  These threading runtimes execute natively on the coproces-
sor.  The offload runtime’s only interaction with threading runtimes is to set up envi-
ronment variables they need, e.g. for CPU affinities. By default, the offload runtime 
sets the CPU affinity mask to allow threading runtimes to execute across all coproces-
sor threads except those that are used by system software. 

4 Offload Compiler Runtime Design 

Offload compiler runtime performance matters when the act of offloading is on the 
critical path.  Offload can sometimes be taken off of the critical path with extra cod-
ing effort. But in the general case, offload compiler runtime performance can be criti-
cal to the profitability of offload, as shown by the data below. This section outlines 
the key compiler runtime (not COI) performance features that impact performance. 

4.1 Overview 

The left of Figure 4shows the host-side code for an offload example, and the right of 
the figure shows the corresponding sequence of compiler offload runtime actions.  
When the coprocessor is booted, before execution of the application ever begins, a 
COI daemon is created (not shown), which handles process creation.  Compiler of-
fload runtime initialization discovers the coprocessor and establishes a connection to 
the COI daemon, which creates a coprocessor-side process that corresponds to the 
host-side process and that has appropriate environmental settings.  At appropriate 
times, code that is embedded in the host-side binary is extracted, moved and invoked, 
and memory management is begun.  

When data transfers or invocations are specified by the programmer, they trigger 
specific actions that are executed by the compiler offload runtime and its supporting 
libraries.  Data must be allocated, marshaled, efficiently transferred, unmarshaled and 
deallocated as necessary. The addresses of coprocessor-side functions must be looked 
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up and they must have their stack frames set up and be invoked with appropriate pa-
rameters, once data transfer dependencies are satisfied.  

The COI daemon and the host-side COI infrastructure robustly handle planned and 
unexpected process termination and error handling on the host and coprocessor.  

In the following sections, we focus on each of the performance-critical cases. 

4.2 Initialization 

The OFFLOAD_INIT environment variable controls whether initialization happens at 
program startup (on_start), on first use for each device (on_offload, the default), or 
for all devices at the first offload to any device (on_offload_all).   

The first step of initialization is to evaluate the conditions for offload.  The compi-
ler offload runtime checks for the presence of the COI software stack and the availa-
bility of Intel® Xeon Phi™ coprocessors in the system: it gets the count of “engines” 
(coprocessors) that are currently available.  If all offload conditions are satisfied, the 
compiler offload runtime creates a process on the coprocessor with COIProcessCrea-
teFromFile that corresponds to the host process; creates, marshals and moves code 
and data; and the startup image that is part of the compiler offload runtime that is 
loaded from disk performs initialization there.   

The coprocessor side of the application consists of only those parts of code and  
data which are marked by the user for offloading.  These parts include all routines 
defined with the target attribute, regions of code following offload pragmas, and va-
riables with static storage which are defined with the target attribute. All other code 
and data variables are filtered out. The offload compiler statically generates the co-
processor code and data segments, and embeds it in the host-side binary executable.  
These get loaded onto the coprocessor at process creation time using COIProces-
sLoadLibraryFromMemory. Additional coprocessor-side code may be available in 
dependent shared libraries, and these dependencies are detected, resolved, and copied 
to the coprocessor by COI.   

The compiler offload runtime needs the coprocessor-side address for all variables 
marked with the target mirror attribute, in order to know where to transfer data.  
The address is transferred from the coprocessor to the host during initialization and it 
is used throughout the execution for transferring data between CPU and coprocessor.  
This early transfer of the address for heap and static data avoids the need to DMA 
from the host into a temporary buffer on the coprocessor, and to rely on coprocessor-
side code to copy the data to the final destination. 

4.3 Invocation  

If the offload initialization conditions are not met, there is no invocation of the copro-
cessor. If the user has mandated the use of offload, e.g. with the device(1) clause, 
then the runtime produces an error.  In the absence of such a mandate, a host version 
of the offloaded region is executed on the host instead of using offload.     

Each host thread that has offload pragmas has a corresponding coprocessor-side 
thread, linked by a data object called a COIPipeline.  This object facilitates ordered 
invocation with a FIFO command queue.  That thread and pipeline span multiple 
transactions between the host and coprocessor, enabling offloaded code to preserve 
thread-local variable values, OpenMP teams, etc. from one offload to another. 
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Fig. 4. Code example illustrating the use of OpenMP offload extensions in discussion for 
OpenMP 4.0 RC2 

 

Host-side source code Corresponding offload runtime actions 
Only highlighted actions are on coprocessor

double A[SIZE], B[SIZE], C[SIZE];

void f() {
int transa, transb, N;
double alpha, beta;
double *A,* B,,*C;

A = malloc(..);
B=malloc(..)

// Define a data region and allocate 
// memory for A, B and C on the 
// coprocessor
#pragma omp target data device(0)\

map ( alloc : A[0:length], \
B[0:length], C[0:length]  ) {

// Xfer the data to the coprocessor
#pragma omp target update \

device(0)  to (A[0:length], \
B[0:length]

// Perform the computation 
#pragma omp target device(0) \
map ( to : transa, transb, N, alpha, \
beta) 

{dgemm(&transa, &transb, &N, \
&N, &N, &alpha, A, &N, B, &N, \
&beta, C, &N);

}

// Transfer the result from the 
//   coprocessor
#pragma omp target update \

device(0) from ( C[0:length] )

// End of data region
}

// Coprocessor initialization, on demand by default
if ((count = COIEngineGetCount()) <= 0) 

// fatal error if target unavailable
eng = COIEngineGetHandle(0)

COIProcessLoadLibraryFromMemory(proc,codegen_image)

pipe = COIPipelineCreate()
/

/ transfer variable mapping info not shown
// Buffer allocation, same for B, C
bufAcpu = COIBufferCreateFromMemory(A,bufAsize)
bufAmic = COIBufferCreate(bufAsize) 
COIBufferAddReference(bufAmic)  

/ Separate data transfer since >30KB; same for B
COIBufferCopy(bufAmic, bufAcpu, bufAsize
                        0, 0,  NULL)    // no input dependencies

//Start dgemm on the coprocessor
// pack misc_data with name of function calling dgemm
memcpy(misc_data, nameOfFunctionCallingDgemm)

COIPipelineRunFunction(misc_data,
                               thunk,  // offload function in runtime
                               0, 0, // no buffers
                               0, 0, // no dependecies
                               &runEvent)

// Transfer results from coprocessor to CPU
COIBufferCopy(bufCcpu, bufCMic, bufCsize,
                        &runEvent, 1, // input dependencies
                        &outEventC)  //  completion event

COIBufferReleaseReference(bufAmic) 
// Destroy buffer for A, same for B, C
COIBufferDestroy(bufAcpu)
COIBufferDestroy(bufAmic)
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Each offloaded region following an offload pragma is outlined by the compiler into 
a separate routine having a unique name.  The routine’s name and address compose a 
unique entry which is added to a compiler-generated function lookup table. 

Function invocation uses indirection, through a thread-safe, coprocessor-side 
thunk.  An invocation helper function is used to invoke coprocessor code that is 
shared across pipelines.  COIProcessGetFunctionHandles is used by the host to get a 
handle for the thunk.  The host puts a string with the coprocessor-side function name 
in a “misc_data” buffer, and uses COIPipelineRunFunction for function invocation.  
Its function arguments include a handle for that thunk, a pointer to misc_data, input 
buffers, and dependence objects. The resolution of those dependencies, e.g. move-
ment of data down to the co-processor, as checked by COIPipelineRunFunction, gates 
the invocation of the thunk.  The thunk extracts the coprocessor function name string 
from misc_data, looks it up in a function address table, and invokes the outlined func-
tion.  The compiler-generated outlined function is responsible for demarshaling the 
data passed during invocation and executing the offloaded region on the coprocessor. 

4.4 Memory Management 

In the example in Figure 4, a buffer object is created on the host by COIBufferCrea-
teFromMemory. This function creates a corresponding buffer on the coprocessor, and 
the transfer is accomplished with COIBufferCopy.  Having distinct host and copro-
cessor buffers, rather than sharing across the PCIe aperture, protects from subsequent 
modification of the host buffer that could lead to data races. 

Coprocessor-side data may be global/static, on the heap, or on the stack.  The han-
dling is different for each case.  For global/static data, the addresses are already fixed 
at code generation time, and a mapping table is created upon initialization that the 
compiler offload runtime uses to set up direct DMAs between host and coprocessor 
with the correct physical addresses.  For heap data, a host-coprocessor address map-
ping is established and communicated at runtime.  In both cases, extra copies through 
temporary buffers are not necessarily required, and data is persisted as needed.   

Each offload invocation creates and destroys its own coprocessor-side stack frame.  
Coprocessor-side interrupts that occur between invocations use, and hence clobber, 
the user stack.  Because of this, data from the stack frame of one offload function 
may not persist until the next such invocation.  The host-side data that falls within the 
invoker’s scope gets moved and copied onto the coprocessor-side stack upon each 
invocation and copied back after completion.  The programming interface can hide 
that, thereby emulating persistence, but keeping large variables on the stack isn’t rec-
ommended for performance reasons.  Therefore, use of stack variables for offload is 
less efficient than using heap or global variables. 

Heap data introduces some special issues: allocation and alignment.  #pragma 
omp allocates and frees data on coprocessor on the outermost #pragma omp region.  
Data inside nested constructs are implicitly tracked and are ignored if they are also 
specified in the map clause.  To synchronize variables between host and coprocessor 
inside a #pragma omp data construct use the #pragma omp update con-
struct.  COI uses a reference counting scheme to manage data persistence, which 
explains the use of COIBufferAddReference and COIBufferRelease-Reference. 
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Handling of multiple coprocessors is generally outside the scope of this paper, but 
it should be noted that the offload runtime supports more than one coprocessor using 
the target clause.  It is entirely the user’s responsibility to synchronize data across 
different coprocessors, unlike the transparent abstraction offered by MYO [29]. 

Fortran arrays use dope vectors to describe the number and size of dimensions.  
This extra 72 or more bytes of metadata must be included in data transfers. At present, 
with #pragma omp directives, only contiguous data transfers are supported, al-
though the base languages permit writing array-slice expression with arbitrary strides.   

Table 1. Platform configuration parameters 

Host SNB-EP (2 sockets) 2.6 GHz, Intel®   Xeon® E5-2670,  
Crown Pass Platform 

Coprocessor Pre-production Intel® Xeon Phi™ coprocessor,  
61 4-thread cores, 1.09GHz, 5.5GTransfers/s, 8GB (all apps fit) 

Host OS RHEL 6.2, kernel 2.6.32-220.el6.x86_64  
Compiler  Composer XE Beta 
MPSS 2.1.3653-8, kernel 2.6.34.11 

5 Performance Evaluation 

When there are multiple architectural families available, like Intel® Xeon® proces-
sors and Intel® Xeon Phi™ coprocessors, developers must make a choice as to which 
is most suitable. The Intel® Xeon Phi™ product family is an extension of the Intel® 
Xeon® processor family, with different design objectives.  A careful consideration of 
how application characteristics map onto each platform helps direct users to perform a 
theoretical or empirical analysis of the app, to optimize accordingly.   

Performance of offload runtime features is evaluated in two ways: at the directed 
test level and at the workload level.  Directed tests measure the impact of a particular 
feature in isolation; workloads measure the impact of that feature in the context of a 
workload. Evaluation at the workload level focuses on overall overheads and profita-
bility. We first evaluate overall profitability, and then deep-dive into the impact of 
specific features. The evaluations below were based on the #pragma offload 
form of directives, on the platforms described in Table 1. The performance of the 
#pragma omp form is materially identical. 

5.1 Offload Profitability 

Table 2 provides a summary characterization of a few workloads, and the numerical 
analysis below is based on that data only, vs. being a general characterization of cus-
tomer code.  The workloads were selected to span a variety of application domains.  
They came from customers, and are meaningfully representative to them.  Some 
workload names are occluded in deference to customers.  The first row of data shows 
the overall speedup attained using the coprocessor with the offload runtime, relative 
to host-only execution.  Workloads in this paper use OpenMP, but not MPI. 

 



 Offload Compiler Runtime for the Intel® Xeon Phi™ Coprocessor 249 

Table 2. Offload performance and overheads for workloads 

Workload 
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Speedup (x): offload vs. host only 2.03 1.56 2.31 1.40 1.54 1.32 6.92 

Compute % of total execution  97.7 44.3 72.9 97.3 94.5 95.3 99.4 

Host offload overhead (x), with 
(top) & without (bottom) init 

0.21 1.77 0.44 0.03 0.02 0.06 0.00 

0.18 1.60 0.25 0.01 0.01 0.05 0.00 
Computation/communication 
ratio 

5.42 0.62 3.99 68.6 90.1 19.7 1640 

 
The percentage of total execution time that is offloaded computation varies from 

44% to 99%.  The overhead for moving data and invocation varies from being neg-
ligible to being a 1.77x multiple of the computation time.  Coprocessor-side over-
heads were measured but are not shown, since they are negligible. The ratio of com-
putation to communication ranges from 0.62x to 1640x.  It was generally over 4x, 
except for the convolution case, whose scaling across threads and SIMD elements on 
the coprocessor allows the computation speedup to outweigh the overheads.   

Black Scholes, which has the highest computation to communication ratio, the 
highest offload fraction, and the lowest overheads, is the big performance winner at 
6.92x speedup of a dual-socket Sandy Bridge.  Recall that the offload speedup de-
pends on several factors, so it is sometimes but not always highest when the computa-
tion to communication ratio is high.  To illustrate that point, there was temporary 
compiler regression in which the coprocessor execution time shot up, and the speedup 
for Adaptive Sparse Grid fell to parity between host only and offload.   

The impact of communication and offload overheads can be partially hidden with 
the use of asynchronous invocation.  Using the asynchronous form of #pragma 
offload (see [18]) benefitted SHOC [30] Triad by 1.65x (3.16/1.91), as shown by 
comparing the two columns at the right of Table 3. That speedup didn’t come from 
reducing the offload overhead, which was only a 1.11x (8.51/7.67) improvement; it 
was from overlapping computation with communication, only some of which 
(0.96/0.72=1.33x) can be captured by the available runtime stats. 
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Table 3. Offload performance and overheads and native performance for SHOC 
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Speedup 
with of-
fload (top) 
and native 
only 

0.30 0.45 3.30 3.25 0.81 0.44 0.20 0.20 0.95 1.03 0.25 0.21 0.07 0.07 1.91 3.16 

3.33 5.13 4.47 3.88 1.94 1.20 4.14 4.25 1.40 1.37 4.29 0.71 0.80 0.62 NA NA 

% execu-
tion time 
in offload 

3.58 3.62 33.0 59.1 19.3 0.26 37.3 19.0 7.53 6.92 68.0 17.4 8.22 6.91 3.4 5.8 

Host of-
fload 
overhead, 
with  & 
without 
init 

13.9 14.8 1.08 0.34 2.42 17.1 0.92 2.42 9.75 9.45 0.19 3.66 6.09 6.99 8.51 7.67 

1.20 1.09 0.13 0.07 0.52 0.54 0.41 0.48 4.96 3.09 0.02 2.47 1.60 1.54 1.39 1.04 

Computa-
tion: 
communi-
cation 

0.83 0.92 7.74 14.0 1.92 1.85 2.46 2.10 0.20 0.32 56.9 0.40 0.63 0.65 0.72 0.96 

 
Offload runtime and application performance tends to improve with tuning.  For 

example, allocation and initialization time, which depend on the amount of memory 
to be initialized, was reduced from several seconds down to between 0.25 and 2.5s for 
the workloads in this paper.  As shown in the SHOC [30] data, allocation and initiali-
zation costs are still significant for small kernels.  Further efforts to hide those costs 
is expected to bring them down. 

5.2 Runtime Performance Feature Impact 

As mentioned above, the performance of the offload runtime in initialization, data 
transfer, and invocation can determine whether offload is profitable.  This section 
analyzes the most important offload compiler runtime performance features: transfer 
avoidance, copy avoidance and page size.   
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Fig. 5. DMA performance, as a function of payload size, for host to coprocessor transfers. For 
the baseline, the destination memory location is known. The other curve shows the cost of an 
extra copy. 

When data can be persisted, there may be no need to transfer data at all.  Consider 
the case of a temporary variable that is only written to on the coprocessor side, is 
never used on the host side, but that is needed by several offloaded functions.  If that 
variable is static, it never needs to be copied back and forth across the PCIe, but if it 
lives on the stack of an enclosing function, it must be copied in and updates must be 
copied back to the host in each function.  Notice, in Tables 2 and 3, that the ratio of 
computation to communication can be low enough that eliminating communication 
can significantly impact performance. 

The cost of an extra copy is shown in Figure 5, where the median speedup from 
copy avoidance is 2.6x and the mean ratio is 3.9x.  The baseline curve is for transfers 
whose destination address is already known to the host, that use 2MB pages and that 
otherwise meet the optimal conditions.   

When large amounts of data must be transferred between the host and coprocessor, 
the hardware DMA (direct memory access) engine is used.  We describe three cases 
where a direct transfer without extra copies to the final destination may be impossible.   

The first case is mutual misalignment between host and coprocessor offsets of ad-
dresses within a cache line.  For example, there is mutual misalignment when the 
modulus of differences in global/static addresses isn’t 0, or when a host address is an 
odd multiple of 32, and there is a #pragma offload with an align clause value 
of 64.  This is important because mutual alignment within a 64B cache line enables a 
direct DMA into the destination, whereas mutual misalignment within a 64-byte 
cache line on the initial production member of the Intel® Xeon Phi™ product family 
isn’t supported by the DMA engine.  Without mutual alignment, an extra buffer copy 
is necessary, incurring the costs quantified below.  Static data can have mutual misa-
lignment within a cache line. By default, the alignment within a cache line of the  
coprocessor-side heap data is set to match that of the host-side data.   
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In the second case, data that is resident on the stack has to be copied from a pinned 
DMA buffer onto the coprocessor’s stack.  In the third case, when the destination 
physical address is not known to the host prior to the DMA, there is a DMA to a  
temporary buffer, followed by a copy to the address which is already known to the 
coprocessor code.  The compiler offload runtime avoids that copy by sending the 
coprocessor variable memory locations at initialization.  

The overall median improvement of 2MB vs. 4KB pages for several customer 
work-loads is 1.051x and the average is 3.20x.  Almost all of those workloads bene-
fitted from large pages, whose use is enabled by the offload runtime environment 
variable. The average gain for using large pages in DMA transfers is only 1.064x.  
See [18] for more detail. 

6 Summary and Conclusions 

We demonstrated the potential for making offload to the Intel® Xeon Phi™ coprocessor 
profitable.  We showed sample workloads with speedups over a dual-socket Intel® 
Xeon® E5-2670, codenamed Sandy Bridge, in the 1.3x to 6.9x range as customer-
relevant examples that span different application domains.  But offload is not always 
profitable, as the SHOC data showed.  The paper explores what can enhance or inhibit 
offload speedup.  First, where response time is of concern, there must be a speedup from 
native execution on only the coprocessor, relative to execution on the host.  This is based 
on the performance of the code on coprocessor and system, such as whether it’s highly 
threaded, and either uses SIMD well or its bandwidth demand exceeds what’s available 
on the host.  Second, the ratio of computation to communication must generally be high.  
In the workloads evaluated, that ratio ranged from 4x to 1640x for all but one case.  This 
depends on characteristics of the application, and how it is structured for offload.  For 
example, a simple restructuring of SHOC Triad to use of asynchronous offload boosted 
performance.  Third, the offload runtime overheads must be small relative to the compu-
tation.  This depends on the offload runtime implementation. 

Runtime offload overheads ranged from negligible to a factor of 1.77x of the actual 
computation time, on sample workloads for which offload is profitable.  These over-
heads are important to performance; an optimized implementation of the offload 
compiler runtime is a key aspect of platform performance for offloaded apps.  This 
paper highlights the key facets of the offload compiler runtime implementation which 
impact performance, describes those performance features, and evaluates their per-
formance.  The performance impact of the offload compiler runtime performance 
features range from a few percent for page size, up to a mean across payload sizes of 
3.9x for incurring an extra copy in cases of stack residency, DMA mutual misalign-
ment, or an unknown DMA destination address.  

This paper provides the first description of the Intel® Xeon Phi™ coprocessor 
software architecture, and serves as a guide both to end users wanting to evaluate 
whether offload is likely to be profitable, and to third-party implementers of hetero-
geneous runtimes for Intel® Xeon Phi™ coprocessors and potentially other targets 
seeking guidance in design principles and in what’s most important to optimize.  

The authors would like to acknowledge many contributors to this paper, who in-
clude implementers of the tools and system software described herein, and the many 
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applications engineers who tuned and measured performance on customer codes. We 
thank the customers who shared their workload examples, and reviewers who helped 
improve the presentation of the material. 

References 

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., 
Luszczek, P., Tomov, S.: Numerical Linear Algebra on Emerging Architectures: The 
PLASMA and MAGMA Projects SciDAC 2009: Scientific Discovery through Advanced 
Computing, San Diego, California. Journal of Physics: Conference Series, vol. 180, p. 
012037. IOP Publishing (2009) 

2. Budruk, R., Anderson, D., Shanley, T.: PCI Express System Architecture, 1st edn., 1120 
pages (2003) ISBN 978-0-321-15630-3 

3. CAPS, http://www.caps-entreprise.com/technology/hmpp 
4. Denning, P.J., Schwartz, S.C.: Properties of the Working-Set model. Communications of 

the ACM 15, 191–198 (1972) 
5. Donaldson, A.F., Dolinsky, U., Richards, A., Russell, G.: Automatic offloading of C++ for 

the Cell BE Processor: A case study using offload. In: Proceedings of the 2010 Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems, pp. 901–906 
(2010) 

6. Green 500: The Green500 List (November 2012), http://www.green500.org 
7. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the 

Message Passing Interface, 2nd edn. MIT Press, Cambridge (1999) 
8. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-

Passing Interface. MIT Press, Cambridge (1999) 
9. Intel® C/C++ compiler, http://www.intel.com/Software/Products 

10. Intel® Many Integrated Core,  
http://www.intel.com/content/www/us/en/architecture-and-
technology/many-integrated-core/intel-many-integrated-core-
architecture.html 

11. Intel® Many Integrated Core SW development pages,  
http://software.intel.com/mic-developer 

12. Intel® Math Kernel Library, http://www.intel.com/Software/Products 
13. Intel® Message Passing Interface,  

http://software.intel.com/en-us/intel-mpi-library/ 
14. Intel® OpenCL for Intel® Xeon PhiTM Coprocessor,  

http://software.intel.com/en-us/vcsource/tools/opencl-sdk-xe 
15. Jeffers, J., Reinders, J.: Intel® Xeon PhiTM Coprocessor High Performance Programming. 

Morgan Kaufmann (2013) 
16. Khronos, http://www.khronos.org/opencl/ 
17. MAGMA, http://icl.cs.utk.edu/magma/ 
18. Newburn, C., Deodhar, R., Dmitriev, S., Murty, R., Narayanaswamy, R., Wiegert, J., 

Chin-chilla, F., McGuire, R.: Offlad Runtime for the Intel® Xeon PhiTM Coprocessor, 
http://software.intel.com/en-us/articles/ 
offload-runtime-for-the-intelr-xeon-phitm-coprocessor 

19. Numerical Algorithms Group, Ltd., http://www.nag.com/ 
 
 



254 C.J. Newburn et al. 

20. NVIDIA CUDA reference manual, version 5.0 (October 2012),  
http://docs.nvidia.com/cuda/pdf/CUDA_Toolkit_ 
Reference_Manual.pdf 

21. OpenACC, http://www.openacc-standard.org/ 
22. OpenMP (March 2013),  

http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf 
23. OpenMP (November 2012),  

http://www.openmp.org/mp-documents/TR1_167.pdf 
24. Patterson, D., Hennessey, J.: Computer Organization and Design: the Hard-ware/Software 

Interface, 2nd edn., p. 751. Morgan Kaufmann Publishers, Inc., San Fran (1998) 
25. Rabenseifner, R., Hager, G., Jost, G., Keller, R.: Hybrid MPI and openMP parallel pro-

gramming. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. 
LNCS, vol. 4192, p. 11. Springer, Heidelberg (2006) 

26. Ravi, N., Yang, Y., Bao, T., Chakradhar, S.: Apricot: An optimizing compiler and produc-
tivity tool for x86-compatible many-core coprocessors. In: Proc. of the 26th ACM Interna-
tional Conference on Supercomputing, pp. 47–58. ACM, New York (2012) 

27. Redhat, http://www.redhat.com/products/enterprise-linux/ 
28. Reinders, J., http://parallelbook.com/blogs/james 
29. Saha, B., Zhou, X., Chen, H., Gao, Y., Yan, S., Rajagopalan, M., Fang, J., Zhang, P., Ro-

nen, R., Mendelson, A.: Programming model for a heterogeneous x86 platform. SIGPLAN 
Not. 44(6), 431–440 (2009) 

30. SHOC 1.1.1 manual,  
http://ft.ornl.gov/doku/_media/shoc/shoc-manual-1.1.1.pdf 

31. SUSE, https://www.suse.com/promo/sle11.html 
32. Threading Building Blocks, http://threadingbuildingblocks.org 



Fork-Join and Data-Driven Execution Models

on Multi-core Architectures:
Case Study of the FMM

Abdelhalim Amer1, Naoya Maruyama2, Miquel Pericàs1, Kenjiro Taura3,
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Abstract. Extracting maximum performance of multi-core architectures
is a difficult task primarily due to bandwidth limitations of the memory
subsystem and its complex hierarchy. In this work, we study the im-
plications of fork-join and data-driven execution models on this type of
architecture at the level of task parallelism. For this purpose, we use a
highly optimized fork-join based implementation of the FMM and extend
it to a data-driven implementation using a distributed task scheduling
approach. This study exposes some limitations of the conventional fork-
join implementation in terms of synchronization overheads. We find that
these are not negligible and their elimination by the data-driven method,
with a careful data locality strategy, was beneficial. Experimental evalua-
tion of both methods on state-of-the-art multi-socket multi-core architec-
tures showed up to 22% speed-ups of the data-driven approach compared
to the original method. We demonstrate that a data-driven execution of
FMM not only improves performance by avoiding global synchronization
overheads but also reduces the memory-bandwidth pressure caused by
memory-intensive computations.

1 Introduction

Hardware manufacturers now focus on multi-core and many-core technologies as
a way to increase performance and make use of the continually increasing num-
ber of transistors. The multi-core road-map provides a slowly increasing num-
ber of processing units with each new generation, while maintaining high single
thread performance thanks to their sophisticated control logic, out-of-order exe-
cution, and their complex memory hierarchy. However, this architectural design
leads to unprecedented programming difficulties to extract their potential due
mainly to its memory subsystem. Non Uniform Memory Access (NUMA), mem-
ory bandwidth limitations, and complex memory hierarchies are key properties
that hinder programmer productivity.

In order to exploit parallel architectures, different execution models can be
adopted. In a fork-join model, independent tasks run concurrently while task
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dependencies are ensured by global synchronization barriers. Data-driven (also
called data-flow) models have been proposed in order to avoid global synchroniza-
tions and improve resources exploitation. However, proponents of the fork-join
model argue that data-flow models have worse memory behavior. As a result,
fork-join and data-driven methods have their trade-offs, and the achievable per-
formance will depend both on the algorithm and the target architecture.

In the present work, we study these execution models on state-of-the-art multi-
core architectures by using the Fast Multipole Method (FMM). We choose the
FMM, given its wide usage in many scientific domains such as astrophysics[1],
electrodynamics[2], and fluid dynamics[3]. Furthermore, FMMs are composed
of heterogeneous computations following a complex execution flow. Moreover,
we rely on one of the fastest FMM codes and its highly tuned OpenMP fork-
join parallel implementation [4][5]. To implement a data-driven execution, there
are many runtime schedulers or programming models which have the ability to
express task dependencies and perform an asynchronous execution. StarPU[6],
OmpSs[7], and Quark[8] are examples of such tools. However, we choose to imple-
ment our data-driven FMM using the lightweight thread library MassiveThreads
[9]. The low overhead, flexibility, and load-balancing mechanism of this library let
us implement an efficient fine-grain data-driven FMM which uses a distributed
scheduling approach.

We summarize our contributions and findings as follows:

– We implement a novel thread-based data-driven FMM by using a source
centric approach and efficiently managing the task dependencies using a
distributed scheduling approach. We further reduce data movements by ex-
ploiting the tree nature of the FMM data-structures and using sub-tree based
working sets per thread.

– We perform an in-depth analysis of the original implementation which reveals
that at large scale the often neglected stages at smaller scale consume more
time than the usually compute intensive ones.

– Our evaluation on state-of-the art x86 multi-core architectures, showed that
the data locality issues of the data-driven execution are not significant, and
when eliminating the synchronization overheads, this method achieved up
to 22% speed-ups over the original implementation.

– We also found that the data-driven approach can reduce localized high mem-
ory bandwidth stress by spreading the memory traffic along the execution.
Moreover, we prove that the memory bound nature of one of the kernels
is not only due to its low arithmetic intensity but also bound by remote
memory transfers and a non-unit-stride memory access pattern.

The rest of the paper is organized as follows: Section 2 introduces the Kernel
Independent FMM and its different computational stages. Then, we discuss our
data-driven implementation in Section 3. We describe the configuration of our
tests and the details of the target multi-core machines in Section 4. In Section
5, we evaluate and analyze both execution models on the target machines. In
Section 6, we discuss related work and we conclude in Section 7.
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2 The Fast Multipole Method

Nbody problems can be encountered in many disciplines such as mathematical
physics, machine learning, approximation theory, etc. The problem is how to
efficiently evaluate pairwise interactions between N bodies. It can be formally
described as follows:

f(xi) =

N∑
j=1

K(xi, yj)s(yj), i = [1..N ] (1)

where f(xi) is the potential at the target xi resulting from the sources yj , s the
source density, and K the interaction kernel. A direct computation results in a
O(N2) complexity which makes it very expensive for large problem sizes. First
attempts towards a faster method brings the complexity to O(NLogN) like the
Barnes-Hut method[10]. The FMM was proposed as an even faster solution that
uses a rapidly convergent method achieving a O(N) complexity [11].

Most of FMMs rely on analytic expansions to evaluate pairwise interactions.
Analytical expansions are problem dependent, not always available, and difficult
to build. In this work we use the Kernel-Independent FMM (KIFMM) developed
by Ying et al. which relies only on kernel evaluations, thus enabling FMMs to
a wider range of engineering and scientific problems [12][13]. In KIFMM, the
domain is represented by an octree of cells, where interaction lists are built for
each cell following Greengard notation [14], namely: U-list, V-list, W-list, and
X-list. The KIFMM implements the force evaluation through the following large
stages: U-list, Upward, V-list, X-list, W-list, and Downward. These stages are
synchronized by global barriers, are embarrassingly parallel, and traverse the
tree cells independently (for the list computations) or level-by-level (Upward
and Downward). We distinguish two independent flows of computation: the near
field direct evaluation represented by the U-list computation, and the far-field
approximation starting from the Upward stage, computing V-list, W-list, and
X-list stages and finishing by the Downward stage. We note that the W-list and
X-list computations are negligible for a uniform distribution of bodies.

3 Data-Driven Implementation

In this section we discuss the implementation of our data-driven solution. That
is, the flow of execution goes from the sources to the targets where the far-field
and direct evaluation computations are merged into a single flow by starting the
Upward and the direct evaluation at the same time.

3.1 From Target Centric to Source Centric

In KIFMM, the data structures are built from a target centric point of view, thus
these data structures need to be rebuilt from a source centric view to enable a
data-driven execution. Although in theory if a cell A interacts with cell B, B
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will interact with A whether symmetrically (U and V lists) or dually (W and X
lists), in practice it depends on how a cell’s neighbors are determined. Indeed,
a cell’s interaction lists are only built around a neighborhood, and in KIFMM
this neighborhood does not ensure bidirectional interactions between two cells. In
order to maintain a correct behavior of the algorithm in a data-driven execution,
we compute these lists from a source point of view.

3.2 Thread-Based Data-Driven Implementation

The dependencies in the data-driven execution can be seen as a producer-
consumer synchronization problem as shown in the simplified FMM far-field
computation task dependency graph in Figure 1.(a). In our implementation,
each task is aware of the tasks that depend on it and may trigger their execution
upon termination. Moreover, the task dependencies are satisfied using a combi-
nation of recursive calls and atomic counters. For instance, an atomic counter
is used at the Down task dependency in Figure 1.(a) which is updated by other
Down tasks or V tasks. In the following we give an example on how a V-list task
is executed for a source cell (src) after it was called by an Up task:

void* V (src){

for(trg in Vlist(src)) //Compute the contribution of src

{ to all the target cells that

compute_V(trg,src); depend on it

trg.down_counter++; //Atomic incrementation of

the synchronization counter

/* Test if all dependencies are satisfied */

if(trg.down_counter = nb_input_depend(trg))

create_task(Down, trg); //Start Down computation.

}

}

}

This pseudo-code shows the V-list and Downward computation tasks (V and Down
resp.) and the target’s synchronization counter (trg.down counter) between
them. In the Massivethreads library, tasks are embedded in lightweight threads
scheduled to be executed by workers. Each worker is an OS-thread and has a
private queue of ready tasks which is managed by a LIFO (Last In First Out)
scheduler and a FIFO (First In First Out) work stealing policy between workers
is adopted. As a result, the Down task will be executed first and the V task
goes at the front of the worker’s ready queue. We note that the creation of
tasks is incremental and done at the worker level, while the first created tasks,
which are situated at the back of the ready queue, may be stolen by other
workers ensuring good load-balancing. Since each worker is scheduling the tasks
to be executed independently from the others and uses a private task queue, this
method results in a distributed scheduling scheme avoiding a centralized scheduler
that will constitute a potential bottleneck. We note that, being oblivious of which
stage in KIFMM, contributions from many cells may be reduced at a target
cell. While this is naturally serialized in the original target approach, in our
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source approach, we serialize these updates by using the locks provided by the
lightweight thread library.

(a)

Loop, Bottom-Up

Recursive, Top-Down

1 2 4 5

5

1 2 3 4

3

1 2 3 4

5

1 2 3 4

5

(b)

Fig. 1. (a) Simplified FMM far-field computation task dependencies. (b) Simple exam-
ple of the Upward tasks executed by two workers: white for the first worker and gray
for a second worker. The numbering shows a possible task execution order.

3.3 Effects of the Data-Driven FMM on Data Locality

The dependency between a V and a Down task, as described in Section 3.2,
corresponds to a read after write hazard and results in temporal data reuse.
Such data reuse can be observed along the paths going from sources to targets.
However assessing the spatial data reuse is more subtle since it depends on how
the tasks are scheduled. First, one may implement the task graph of Figure 1.(a)
by traversing the leaf boxes and spawning the Upward and V-list tasks. This
method requires synchronization counters where each Upward task atomically
increments its parent’s counter upon termination, and triggers the Upward task
of its parent if it is the last child. In addition, workers will likely access non-
contiguous cells in the tree. Indeed, the serial code to create all the leaf tasks is
also considered as a task which will be preempted and put in the worker ’s ready
queue. A second worker will steal that task and create the second leaf task and
so on. As a result, the workers will access randomly the data as shown by the
upper part of Figure 1.(b).

To overcome this issue, we use a top-down recursive algorithm to spawn the
tasks as shown in the lower part of Figure 1.(b). In this approach, the work
stealing happens in the upper levels of the tree and results in a sub-tree working-
set per worker, thus, ensuring a better spatial and temporal locality and avoiding
additional synchronization variables.

4 Test-Bed Configuration

We choose to follow the same input problems as in [4]. That is, we simulate the
evaluation of a single step with 4 million bodies following two distributions: a unit
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cube uniform and an elliptical non-uniform distribution. As for the interaction
kernel we use the Laplace kernel. For each target machine, we manually tune
the maximum number of bodies per cell parameter. We only consider double-
precision computation because of its higher pressure on the memory subsystem
and the document space limitations. As for the target architectures, we select
representatives of NUMA multi-core architectures, with a 2 socket Intel Sandy-
Bridge-EP, a 4 socket Intel Nehalem-EX, and a 4 socket 8 NUMA-nodes AMD
Magny-Cours with their detailed specifications given in Table 1.

Table 1. Target machine specifications. We report the memory bandwidth as the
maximum value achieved by the Stream benchmark [15].

Sandy-Bridge-EP Nehalem-EX Magny-Cours

Processor Xeon E5-2620 Xeon X7550 Opteron 6172
CPU Frequency (Ghz) 2.0 2.0 2.1
# Sockets 2 4 4
# NUMA-Nodes 2 4 8
#Cores/NUMA-Nodes 6 8 6
L3 Cache size (MB) 15 18 6-1
Memory BW (MB/s) 52590.4 68827.3 74720.4
Compiler GCC 4.4.6 ICC 11.1 GCC 4.4.5

5 Performance Evaluation

In this section we will conduct a performance analysis of the original KIFMM
design approach as described in [4] and [5]. However we do not consider the inter-
mediate and advanced tuning techniques introduced in [5], as these techniques
can also be adapted for a data-driven execution. Our methodology is guided by
the high-level knowledge of the application and also relying on hardware per-
formance monitoring tools. For the latter purpose, we use the Vampir tool-set
[16][17] combined with native hardware counters accessible through the PAPI
library [18]. In addition, we use the VTune tool to report memory-bandwidth
measurements on the Sandy-Bridge-EP machine [19].

5.1 FMM Stages at Large Scale

It is well known in the FMM literature that the U-list and V-list computations
dominate the serial execution time. However, after parallelization, not all of the
stages scale in the same way, and the dominant stages at larger scale may differ.
To verify our assumptions, we run strong scaling simulations using the original
implementation on the Magny-Cours machine and we report the percentage of
execution time taken by each stage as shown in Figure 2. These results were
reported using high resolution timers without tracing the execution in order to
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avoid unnecessary overheads. We observe that although the U-list stage takes
the longest time when running sequentially, at full concurrency it takes the
smallest amount of time while the opposite is observed for the other stages.
In the following section, we shed light on the reasons behind this disparity in
parallel efficiency of the stages while performing a deep comparative analysis of
both FMM implementations on the target machines.
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(b) Elliptical distribution

Fig. 2. Percentage of execution time for each stage on a the Magny-Cours machine for
uniform and elliptical distributions

5.2 Comparative Analysis

To decrease the negative effects of NUMA in the data-driven execution, we use
the numactl command to interleave the memory allocation on the NUMA-nodes
where there exists a MassiveThreads worker. For both implementations, the OS-
threads are scattered across the sockets and bound to the cores to optimize the
memory bandwidth. Figure 3 shows the strong scaling of each implementation
on each machine using both distributions and indicates an overall better scaling
of the data-driven execution. However we observe that both implementations
exhibit very limited speed-ups after using more than half the cores. In particular,
the Magny-Cours machine has the worst scaling likely due to a smaller last level
cache. Also, for the elliptical distribution, there is a 22%, 18%, and 10% speed-
up of the data-driven execution over fork-join when using half of the cores on
the Sandy-Bridge-EP, Nehalem-EX, and Magny-Cours machine, respectively. To
better understand this scaling disparity, a deeper analysis of the latter case is
performed as it showed the greatest gap between the two methods.

We record statistics for each stage and also for the total force evaluation as
shown in Table 2. The computation times do not include scheduling and syn-
chronization overheads thus, the differences between the methods are only due
to data movements. We used native counters rather than PAPI preset counters
which were not enough to gather the information of interest. Native counters are
machine dependent, thus we follow the guidelines of the hardware manufacturers
to derive our metrics for the Magny-Cours [20] and the Sandy-Bridge-EP [21]
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(a) Sandy-Bridge-EP
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(b) Nehalem-EX
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(c) Magny-Cours
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(d) Sandy-Bridge-EP
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(e) Nehalem-EX
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(f) Magny-Cours

Fig. 3. Strong scaling of the OpenMP fork-join (OMP) and the data-driven (DD)
implementations for uniform (a,b,c) and elliptical (d,e,f) distributions. To better ap-
preciate the scaling results we added a linear scaling plot.

machines. However, to the best of our knowledge, similar guidelines are not avail-
able for the Nehalem-EX machine, thus we do not report its memory-bandwidth
measurements.

We can observe that the data-driven computation time is close to that of the
original implementation, indicating that the synchronization overheads eliminated
by our method did not detrimentally affect the data locality. In this experiment
we observed improvements of 14%, 17.3%, and 14% resp. for the data-driven
which deviate slightly from the above mentioned speed-ups due likely to tracing
overheads and operating system noise.

We notice that our method ensures a better locality for the Upward computa-
tions, which hides the slower V-list execution time. In order to verify the locality
benefit of using sub-tree based working-sets, a similar approach was implemented
for the Upward stage using the fork-join model by manually partitioning the tree
among the threads. The results, as reported in the last row of Table 2, show that
the computation runs faster at the cost of a very large synchronization overhead.
We also observe that most of the synchronization overheads stem from the X-list
and W-list computations. This is not surprising since these computations exhibit
the highest variation in the work per cell and results in high load-imbalance. An
attempt to fix this by means of a dynamic or a guided OpenMP scheduler re-
sulted in worsening the data locality and increasing the OpenMP scheduling
overhead leading to a longer execution time. This validates our strategy which
achieves a better trade-off between locality and synchronization overhead.



Fork-Join and Data-Driven Execution Models on Multi-core Architectures 263

Table 2. Computation time (without scheduling and synchronization overheads),
OpenMP synchronization overhead, average bandwidth consumption, and relative com-
putation time of the data-driven execution per machine for the elliptical distribution
running on half the cores. Note that important information is highlighted. Abbrevi-
ations: DD (Data-Driven), SB (Sandy-Bridge-EP), NH (Nehalem-EX), MC (Magny-
Cours), and N/A (Not Available).

Comput. Time(s) Sync. Overhead(%) Bandwidth(GB/s) DD Relative Time(%)

SB NH MC SB NH MC SB NH MC SB NH MC

U-list 27 30.5 38.5 7 14.8 14 0.1 N/A 0.4 -2.96 -2.30 -11.69
Upward 9.56 15.7 43.2 1.2 0.2 7.36 1.2 N/A 0.68 -4.60 17.20 44.44
V-list 13.42 24.7 36.7 1.8 8 1.34 6 N/A 6.8 -8.05 -10.12 -32.15
W-list 7.3 8.05 10.67 56.7 62 61 0.1 N/A 0.2 0.00 -4.60 -7.78
X-list 7 7.96 15 29.4 25.5 24 0.1 N/A 0.38 -2.86 -3.27 23.00
Downward 5.9 14.9 51.9 2.1 0.2 1.9 1.8 N/A 0.4 0.00 -0.54 1.54

Total OpenMP 70.18 101.8 195.9 15.6 18.8 15 1.3 N/A 1.8 -3.59 -1.19 3.22
Data-Driven 72.7 103 190 0 0 0 2.7 N/A 4.4
Upward static 9.32 13.4 18.58 55 24.5 45.3

For a uniform distribution, we observed less synchronization overheads, a
worse data locality, and more bandwidth consumption, due to a larger V-list
computation, which reduces the effectiveness of the data-driven execution.

5.3 Analysis of the Memory Bandwidth Consumption

According to the memory bandwidth measurements of Table 2, most of the mem-
ory traffic comes from the V-list stage which is known to be memory bound. The
memory behavior of this computation can be explained as follows: V-list target-
source interactions can be seen as a sparse matrix pattern with high spatial
locality and temporal reuse regions at the diagonal [5]. These regions are limited
(roughly half of the total sources for a uniform distribution) while the rest of
the sources are streamed in a non-unit-stride fashion. In addition to the source
cells, V-list uses translation vectors, which are also accessed in a non-unit-stride
pattern, and further increases the working-set size. We conclude that the V-
list bandwidth is consumed by streaming a large working-set following mostly
a non unit-stride memory access pattern. Furthermore, reading the sources and
translation vectors in a NUMA-aware fashion is not guaranteed.

The data-driven execution of FMM resulted in a homogeneous memory band-
width consumption rather than concentrated only in the V-list computation.
Thus, on a machine with a low memory bandwidth, this execution model will
help reduce localized high memory traffic and the performance may improve as
long as the overall data locality is not severely hindered. However, for our target
machines this was not observed when comparing the V-list bandwidth in Table
2 with the Stream bandwidth in Table 1 for each machine. The limited scaling
of V-list can be explained by the Roofline model [22]. We draw the Roofline plot
for the the Sandy-Bridge-EP machine along with the performance achieved by U
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and V-list computations at full concurrency in Figure 4. V-list has a low arith-
metic intensity, as opposed to the compute bound U-list, a mixture of unit-stride
and non-unit-stride memory accesses, and also local and remote DRAM accesses.
Hence, V-list is partially affected by each memory ceiling in the Roofline plot
which explains the limited achievable bandwidth and the performance.
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Fig. 4. Roofline of the Sandy-Bridge-EP machine. The NUMA memory ceiling was
obtained using the Stream benchmark with only remote accesses, which was then aug-
mented with 64 bytes strided accesses to plot the stride ceiling. We use SSE vector in-
structions and do not exploit AVX instructions which halves the computational power.
The arithmetic intensity of the computations were derived from machine counters.

6 Related Work

Data-driven execution of FMM is not novel. Yokota et al. [23] proposed a data-
driven execution of FMM in order to overcome load-balancing issues. Agullo
et al. proposed to pipeline the FMM computations on heterogeneous architec-
tures over a runtime [24]. Pericàs et al. implemented a data-driven execution
of ExaFMM, a fast open-source FMM [25]. Although these works used a data-
driven approach to implement the FMM, their objectives were to load-balance
the work among the computational units. Our work also achieves this goal, pro-
poses a novel distributed scheduling scheme, and further presents an in-depth
comparison with a fork-join execution model. Using also the MassiveThreads li-
brary, Taura et al. described parallel recursions as an alternative to parallel loops
for implementing ExaFMM [26]. Our methodology can be applied to this work
in order to evaluate the implications of using recursions to implement task par-
allelism. Towards understanding the performance of multi-core machines, some
authors used stencil-computation and sparse matrix-vector multiplication ker-
nels and optimized them for state-of-the-art multi-core architectures[27] [28].
These works use small kernels as benchmarks while going deeper in architec-
tural details in order to get insight into performance trade-offs. In our work, we
use FMM, a sizable algorithm which uses multiple kernels, as a benchmark to
get insight into the performance of different execution models.
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7 Conclusion and Future Work

In this work, we study multi-core architectures’ performance given a fork-join
and a data-driven execution models. We implemented a data-driven execution of
the FMM using a distributed scheduling approach and observed improvements
of up to 22% in execution time as compared to the fork-join approach. We
concluded that for an algorithm such as a FMM, a data-driven execution is
more suitable on our target machines as trading-off the inferior data locality by
removing the synchronization overheads was beneficial. The benefit of the data-
driven execution grows at scale reaching the best speed-ups with half of the cores,
after which both methods are limited by the scalability of the memory intensive
kernel. This kernel is not limited by the memory bandwidth in our experiments,
but it is rather a combination of low arithmetic intensity and a sparse NUMA
pattern that reduces the achievable bandwidth. This work can be extended to
analyze the effects of task-coarsening and adapting the advanced optimizations
applied to the original OpenMP implementation [5]. Our preliminary attempts
in task-coarsening, by aggregating the work of leaf siblings in the tree, resulted
in an average 5% speed-up, which encourages pursuing this direction.
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16. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The Vampir Performance Analysis Tool-Set. In: Resch, M.,
Keller, R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance
Computing, pp. 139–155. Springer, Heidelberg (2008)
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Abstract. We present a high-performance C++ library for high but
fixed precision (128 to 512 bit) integer arithmetic and symbolic polyno-
mial computations. While the large integer and polynomial computation
parts of the library can be used independently optimized kernels for sym-
bolic polynomials with large integer coefficients are provided. The ker-
nels were manually optimized in assembly language for the x86-64 and
power64 architectures. Our main target application is high-temperature
series expansions which requires inner products of large vectors of poly-
nomials with large integer coefficients. For this purpose we implemented
a tunable hybrid CPU/GPU inner product function using OpenMP and
NVIDIA CUDA with inline PTX assembly. This way we make optimal
use of today’s and upcoming hybrid supercomputers and attain 49% of
the peak performance of the current NVIDIA Kepler GPU. Compared
to a pure CPU solution using the GNU Multiple Precision Arithmetic
Library (GMP) we gain a speedup of 13x for a pure CPU inner product
and 38x using a GPU accelerator.

1 Introduction

High precision integers and symbolic polynomials play an important role in many
fields of science. Most notably the basis of modern cryptographic systems like
the RSA algorithm [1] rely on high precision integer arithmetic. Here we present
a library which we developed with one particular application from statistical
and quantum physics in mind. Specifically we target high-temperature series
expansions [2], which require symbolic polynomials in multiple variables with
arbitrary precise coefficients. These coefficients can be represented as integers
whose maximal value can be determined before the actual calculation and do not
exceed 512 bits. The computational hot spot of the method are inner products of
large vectors of such symbolic polynomials. Since this method is computationally
expensive and offers multiple levels of high parallelism, we require optimized
kernels for these operations to make optimal use of today’s supercomputers and
not waste valuable resources.

Many multiple precision libraries, like the popular GNU Multiple Precision
Arithmetic Library (GMP) [3] or the Number Theory Library (NTL) [4], provide
an arbitrary precise integer class, which is dynamic in size and optimized to cover
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a wide range of integer sizes up to several thousand bits. Since the size of the
integers in our application ranges only from 128 bit to 512 bit and the maximal
size is known beforehand, the dynamic size poses a significant overhead and
much more optimized implementations are possible. The Number Theory Library
(NTL) also offers a polynomial class with large integer coefficients. However, it
does not support multivariate polynomials.

While the existing libraries may be optimized for common CPU architectures,
current trends in supercomputing require applications to exploit massively multi-
threaded GPU accelerators to benefit from their enormous computational capac-
ity. Previous studies successfully explored polynomial multiplications on GPUs
using FFT methods [5,6,7]. Here we are interested in the inner product of vectors
of polynomials, which offers an additional level of parallelism. In order to meet
the special requirements of the GPU on the memory layout the different compo-
nents (vector, polynomial, high precision integer) need to be closely connected
in order to interleave them for efficient parallel kernels. As this close connection
is almost impossible if one of the components is provided by an external library,
we decided to develop our own library to achieve best interoperability and not
be restricted by external design decisions. While maintaining this high interop-
erability, the high precision integer part and the symbolic polynomial part of the
library are designed in such a way that they can also be used independently. In
the following sections we will show key features and implementation decisions of
these components and benchmark the library against a GMP solution.

2 Large Integers

The library provides a template class integer<n> to represent signed integers
with a fixed size of 128 ≤ n ≤ 512 bits. We implemented all standard integer
operations starting from basic arithmetic operations, comparison operations to
bit operations, like bit-shift or bit-wise logical operations. This way objects of
the class can be used like the regular C++ type int in most cases. In addition to
these standard integer operations we also provide a multiply-add function and
an extended multiplication which doubles the number of bits when two integers
of the same size get multiplied.

The data of the integer is stored in an array of 64 bit unsigned integer seg-
ments, where we use a standard two-complement representation of the number.
Due to the fixed size of the integer, we are able to allocate the memory for
the data on the stack. This way we save expensive heap allocations without
implementing a manual memory pool management. For the basic arithmetic op-
erations like addition and multiplication we use standard schoolbook algorithms,
since the integers are too small for Toom [8] or FFT based approaches like the
Schönhage-Strassen algorithm [9]. An exception is the 256 bit multiplication on
the GPU where we use the Karatsuba algorithm [10] as we will explain later.
We implemented the schoolbook algorithms in optimized assembly code to make
optimal use of the hardware features that are not accessible from C++, like the
carry addition adcq or the 64 bit multiplication mulq which calculates the low
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and high 64 bit part of the product on the x86-64 architecture. Low-level pro-
gramming methods for high-precision integer arithmetic and assembly tips can
be found in the famous book “The Art of Assembly Language” [11]. Since writing
assembly code can result in very long error-prone code, we generate many parts
of the assembly code with the C++ preprocessor using the BOOST_PP library.

3 Polynomials

The second part of the library is a template class

polynomial<CoeffType, Structure<N>, Var0, Var1, Var2, Var3>

for symbolic polynomials in 1 to 4 variables

p(x, y, z, w) =
∑
i,j,k,l

cijkl · xiyjzkwl (1)

having either a “dense” (i, j, k, l ≤ N) or a “triangular” (i+j+k+ l ≤ N) struc-
ture. The truncation order N is fixed at compile time. The coefficients cijkl of
the polynomial may have any C++ type supporting basic arithmetic operations.
The polynomial itself supports additions, subtractions and multiplications with
other polynomials or monomials. We also provide a special multiplication func-
tion returning a polynomial with truncation order 2N , such that no terms are
dropped. It is also possible to mix and match polynomials having different sets
of variables. The coefficients will be automatically mapped to the corresponding
symbols during compile time. All operations call free hook functions with default
implementations for all coefficient types. These functions may be overloaded by
the user to provide optimized implementations for specific coefficient types. The
user may for example add a specialized implementation for float using Stream-
ing SIMD Extension intrinsics without touching the polynomial class itself. In
addition to the general default implementations of the operations the library
provides optimized routines for large integer coefficients integer<n>.

4 Optimized Inner Product

Since the hot spots of our main target application are inner products of large
vectors with symbolic polynomials as components, where the coefficients of the
polynomials are large integers, we implemented an optimized inner product func-
tion for this special case. All polynomials of the vector are assumed to have the
same structure, the same truncation order N and the same integer<n> type
as coefficients. The inner product will result in a polynomial of twice the order
of the original polynomials with coefficients of twice the width (integer<2n>)
of the original coefficients. To employ today’s supercomputers as efficiently as
possible the inner product is a hybrid CPU/GPU implementation, where the
inner product is split into a part calculated on the CPU and a part calculated
on the GPU. The ratio of these two parts can be set when building the library.
It is also possible to deactivate the GPU part completely and compile a pure
CPU version.
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4.1 CPU Implementation

On the CPU we perform the inner product by element-wise polynomial-
polynomial multiplications using the implementation of the polynomial. This
operation is easily parallelized using OpenMP by splitting and distributing equal-
sized chunks of the vectors among the available threads. Since all polynomials
are of the same structure the work is well balanced between the threads.

The multiplication of two polynomials itself seems well suited for a SIMD
implementation processing multiple coefficients in parallel. However, this is not
advisable for large integers on current x86-64 architectures, even if the operations
on the large integers are entirely independent. Using the Streaming SIMD Ex-
tensions (SSE) all kernels need to be based on 32 bit integer operations instead
of 64 bit operations which are available for the sequential implementation. This
reduction of segment size increases the number of required multiply instructions
for a large integer multiplication by a factor of 4. The current SSE instruction
set only supports an integer SIMD multiplication for two pairs of 32 bit num-
bers, each yielding a 64 bit result. Thus a SIMD implementation using SSE will
be two times slower than our serial version using 64 bit integers. Note that we
also neglected the carry bit propagation of the required additions. While the
sequential version benefits from the hardware support for carry bit propagation,
an SSE implementation needs to handle the carry manually.

The upcoming AVX2 instruction set will feature integer SIMD operations with
twice the vector width of SSE. However, it will neither support 64 bit integer
multiplications nor carry bit propagation. Therefore it will be at most as fast as
our sequential version.

4.2 GPU Implementation

While on the CPU a SIMD approach is not promising, the highly parallel struc-
ture of the problem is well suited for GPU accelerators. In a nutshell GPUs
offer a hybrid between SIMD and massively multithreaded execution, where the
GPU schedules thousands of threads in so called warps. A warp is a group of
usually 32 threads which are executed in a lockstep manner. We implemented the
inner product in NVIDIA CUDA to exploit this powerful architecture. Our tar-
get hardware is the NVIDIA Tesla K20X. We perform element-wise polynomial
multiplications where each thread calculates one coefficient

cIJKL =
∑
i,j,k,l

aijkl · bI−i,J−j,K−k,L−l (2)

of the product polynomials, where aijkl, bi′j′k′l′ are the coefficients of the polyno-
mials to be multiplied. Once all coefficients are calculated we perform a reduction
over the result vector to obtain the final result of the inner product. This way
we avoid race conditions and minimize the number of synchronization points.
However, this method leads to a load inbalance since the number of terms in
the sum (2) depends on the orders I, J,K, L of the resulting coefficient. To over-
come this problem we set up an execution plan before the actual calculation.
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Fig. 1. (a) Number of contributions to each coefficient of the resulting polynomial (red
line) sorted and split into tasks. (b) Load balancing of the tasks over the warps.

Therefore we determine the number of terms of each coefficient of the product
polynomial, sort them according to this number and assemble groups of 32 coef-
ficients. Starting with the most expensive group the groups get scheduled on the
available warps balancing the work among them (Fig. 1). Note that by sorting
the coefficients we also minimize the work-load difference within a warp, such
that the threads within the warp idle as little as possible until the other threads
finished their lockstep calculation.

Once the inner_product function is called the vectors to be multiplied are
copied asynchronously from the host to the device. We store the data in the
texture memory to take advantage of the texture cache which is optimized for
2D access. The intermediate results, i.e. the vector of the product polynomials, is
written to the global memory. At this point we change the memory layout from
the usual Array (vector) of Array (polynomial) of Structures (large integer) to
an Array of Structures of Arrays where the data segments of the large integer
coefficients are interleaved within the polynomial (Fig. 2), such that the least
significant segments of all coefficients are contiguous in memory followed by
the next more significant segments. This memory layout allows for an efficient
coalesced access during the reduction at the end of the calculation. Once the
reduction is completed the result is transferred from the device memory back to
the host using the regular memory layout.

Like for the SSE approach on the CPU our kernels on the GPU rely on 32
bit unsigned integer arithmetic. However, on the GPU we were able to bene-
fit from hard-wired addition with carry (addc.cc) and multiply-add with carry
(madc.cc) operations using NVIDIA parallel thread execution (PTX) inline as-
sembly. Contrary to the CPU where we used only schoolbook algorithms, we
employ the Karatsuba algorithm [10] for the 256 bit integer multiplication on
the GPU. Even though the method does not require less operations than the
schoolbook algorithm it is advantageous on the GPU, because it uses less mul-
tiplications and more additions on the 32 bit segments, which have a 5 times
higher throughput on the NVIDIA Kepler [12].
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(b) Memory layout - GPU

Fig. 2. Memory layout of a vector of polynomials with large integer coefficients. Each
coefficient cijkl consists of 64 bit segments s. On the CPU the coefficients are stored
in nested arrays. Each coefficient is stored contiguously. For the intermediate results
on the GPU, the coefficients are stored in an interleaved way grouping the segments
according to their significance. This assures coalesced memory access. Note that on
the GPU we will have segments of only 32 bit width, which doubles the number of
segments compared to the 64 bit CPU version.

5 Benchmarks

5.1 Simple Integer Operations

We benchmarked the large integer part of the library on an Intel Sandy Bridge
node and a Power7 node. We compared against the commonly used GNU Mul-
tiple Precision Arithmetic Library (GMP) version 5.1.1. The system configura-
tion and compilation information is given in table 1. The libraries were tested
and validated by the GMP benchmark. Comparing the achieved GMPbench
scores to reference values on the GMP web page [3] for slightly different systems
shows good agreement. The benchmarks and the VLI library were compiled with
-O2 -m64. Comparing the performance of simple addition and multiplication op-
erations (Tab. 2) our implementation for fixed size integers is between 10% and

Table 1. Benchmark system configuration

Sandy Bridge
CPU Intel Xeon E5-2670 (16 physical cores, 2.6 GHz)
Compiler GCC 4.7.1
GMP compile flags -O2 -fomit-frame-pointer -m64 -march=corei7

GMPbench 0.2 score 41580 (multiply), 1245 (full score/Ghz)

Power7
CPU Power7 720 Express (8 physical cores, 3.0 GHz)
Compiler GCC 4.7.1
GMP compile flags -O3 -m64 -mtune=power7

GMPbench 0.2 score 26040 (multiply), 670 (full score/Ghz)
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320% faster for the addition and up to 150% faster for the multiplication. We
obtain larger speed-ups for the addition of small high precision integers, since
the overhead to manage the dynamic integer size in GMP is approximately in-
dependent of the integer size. Since our integer library is stack based we do not
need expensive calls to malloc like GMP, which will give an additional speedup
for the inner product, where multiple allocations are necessary.

Table 2. Performance of the GNU Multiple Precision Arithmetic Library and the VLI
library for addition (+) and multiplication (×) in 106 large integer operations/s. Mean
and standard deviation from 100 runs.

Power7 SandyBridge

op. Performance [106 op/s] Speed-Up Performance [106 op/s] Speed-Up
GMP VLI GMP VLI

128 bit + 58.2 ±1.3 107 ±1.4 ×1.8 96.9 ±0.1 405 ±0.3 ×4.2
192 bit + 61.1 ±1.2 79.4 ±2.9 ×1.3 94.1 ±0.0 268 ±0.2 ×2.8
256 bit + 59.2 ±1.4 66.7 ±1.7 ×1.1 94.1 ±0.0 143 ±0.1 ×1.5
320 bit + 53.5 ±1.1 59.7 ±1.0 ×1.0 86.7 ±0.1 97.0 ±0.1 ×1.1
384 bit + 51.7 ±0.9 64.6 ±1.6 ×1.2 84.5 ±0.0 122 ±0.1 ×1.4
448 bit + 54.7 ±1.2 56.7 ±1.1 ×1.0 86.5 ±0.1 114 ±0.1 ×1.3
512 bit + 52.5 ±1.0 50.0 ±3.3 ×1.0 82.2 ±0.0 106 ±0.1 ×1.3

128 bit × 31.2 ±0.4 103 ±2.7 ×3.3 81.9 ±0.1 126 ±0.1 ×1.5
192 bit × 18.6 ±2.4 61.4 ±1.0 ×3.3 37.1 ±0.1 94.1 ±0.1 ×2.5
256 bit × 16.0 ±2.2 34.9 ±0.5 ×2.2 30.1 ±0.1 54.6 ±0.0 ×1.8

5.2 Optimized Inner Product

The benchmarks for the inner product were again performed on the Intel Sandy
Bridge node for the pure CPU version of the inner product. The GPU bench-
marks were performed on Todi, a Cray XK7 with NVIDIA Tesla K20X GPUs
and AMD Opteron CPUs, at the Swiss Center for Scientific Computing (CSCS).
The test cases are inner products of two vectors of dimension 4096 with “dense”
and “triangular” polynomials of order 1 to 14 with 128 and 256 bit integer coef-
ficients. Since the inner product will double the order of the polynomial and the
width of the large integer coefficients, the test cases will result in polynomials of
order 2 to 28 with 256 and 512 bit integer coefficients, respectively.

CPU Implementation. Figures 3a and 3b show the performance behavior of
the inner product for polynomials with 128 bit integer coefficients for different
truncation orders. Let us first focus on the pure CPU based inner products, which
are represented by dashed lines. The naive implementation using the GNU Mul-
tiple Precision Arithmetic Library (GMP) and OpenMP performs rather poorly
reaching 0.1 · 109 large integer operations per second for any polynomial type.
As suggested before a major reason for the poor performance is the dynamic
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Table 3. VTune Performance profile of the inner product using GMP on Intel Sandy
Bridge for polynomials of order 10 in three variables.

Function Time [%]

__gmp_default_reallocate 34
__gmp_default_allocate 14
vli::detail::inner_product_cpu 10
__gmpz_add 10
__gmpz_mul 9
__gmpn_mul_2 7
__gmpz_realloc 3
__gmpz_init 3
__gmpn_add_n 2
__gmpn_sub_n 2

memory management of GMP. A VTune profile analysis (Tab. 3) reveals ap-
proximately 50% of the execution time is spent in memory allocation.

Using our optimized CPU based inner product, we reach a limit of 1.6 · 109
large integer OP/s for “dense” polynomials in two and three variables for al-
most any order. The performance of the optimized inner product for univariate
polynomials remains below this limit and grows slowly with the order of the
polynomial, because the amount of work per thread is too low and the computa-
tion is dominated by spawning the OpenMP threads. The performance behavior
of the “triangular” polynomials is similar (Fig. 3b), however the upper limit de-
pends on the number of variables of the polynomial. We achieve 1.1 · 109 large
integer OP/s for polynomials in two symbolic variables, and only 0.9 · 109 large
integer OP/s for three symbolic variables. This difference is due to the more
complex index calculations required to map the “triangular” structure to the
linear memory layout. In conclusion we managed to gain a speed-up of 13x for
“dense” polynomials and up to 10x for “triangular” polynomials using our CPU
based optimized inner product and large integer functions.

GPU Implementation. Using the optimized inner product only on GPUs
yields an even higher performance (Fig. 3, solid lines). Note that the perfor-
mance estimate includes the time needed for the data transfer between the host
and the device. For very low orders as well as for univariate polynomials, the
GPU is outperformed by the CPU implementation, since these calculations do
not offer enough parallelism to saturate the available number of threads on the
GPU. The performance, however, increases with increasing order until it reaches
a plateau at 4.6 · 109 large integer OP/s for a 7th order “dense” polynomial in
three variables (Fig. 3a). This increase is mainly due to the growing number
of coefficients which allow us to employ more threads and eases the load bal-
ancing as discussed in the previous section. Beyond 13th order the performance
decreases again, since the texture memory cache is saturated and the number
of cache misses increases. For polynomials in two variables this threshold is not



VLI – A Library for High Precision Integer and Polynomial Arithmetic 275

 0

 1

 2

 3

 4

 5

 6

 7

 2  4  6  8  10  12  14

10
9  L

ar
ge

 in
te

ge
r 

O
P

/s

Order

P(x)cpu
P(x,y)cpu

P(x,y,z)cpu
gmp

P(x)gpu
P(x,y)gpu

P(x,y,z)gpu

(a) “dense”, 128 bit

 0

 1

 2

 3

 4

 5

 6

 7

 2  4  6  8  10  12  14

10
9  L

ar
ge

 in
te

ge
r 

O
P

/s

Order

P(x)cpu
P(x,y)cpu

P(x,y,z)cpu
gmp

P(x)gpu
P(x,y)gpu

P(x,y,z)gpu

(b) “triangular”, 128 bit

 0

 1

 2

 3

 2  4  6  8  10  12  14

10
9  L

ar
ge

 in
te

ge
r 

O
P

/s

Order

P(x)cpu
P(x,y)cpu

P(x,y,z)cpu
gmp

P(x)gpu
P(x,y)gpu

P(x,y,z)gpu

(c) “dense”, 256 bit

 0

 1

 2

 3

 2  4  6  8  10  12  14

10
9  L

ar
ge

 in
te

ge
r 

O
P

/s

Order

P(x)cpu
P(x,y)cpu

P(x,y,z)cpu
gmp

P(x)gpu
P(x,y)gpu

P(x,y,z)gpu

(d) “triangular”, 256 bit

Fig. 3. Comparison of the inner product with and without GPU accelerator. Inner
product of “dense” polynomials (a and c) and “triangular” polynomials (b and d) up
to 3 variables, with 128 bit (a and b) and 256 bit (c and d) coefficients. Size of the
vector 4096. GMP gives similar results independent of the polynomial structure.

reached within our benchmark. The performance of the inner product for “trian-
gular” polynomials increases less with increasing order in general, as the number
of coefficients grows slower and the calculation of the memory location is more
complex than for “dense” polynomials. Compared to the naive GMP solution we
achieve speed-ups of up to 38x and 33x for “dense” and “triangular” polynomi-
als, respectively. This corresponds to an additional speed-up of 3x with respect
to our pure CPU inner product on the Sandy Bridge node.

The performance profile of the inner product for polynomials with 256 bit
integer coefficients (Fig. 3c and 3d) is very similar to the 128 bit version. Since
the 256 bit integer multiplication requires approximately four times the number
of operations of the 128 bit integer multiplication, one would expect at most 1/4
of the large integer operation performance of the 128 bit operation. However,
the number of large integer operations per second is only reduced by a factor of
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approximately 2/5. The reason for this non-linear behavior is twofold. First, the
load of the data is only twice as expensive for the 256 bit operation, since during
the operation all data is kept in registers and each number needs to be loaded
only once per large integer multiplication. This is true for the CPU and the GPU.
The second reason is architecture dependent. The CPU can employ instruction
level parallelism techniques more effectively, since the 256 bit multiplication
contains more independent operations than the corresponding 128 bit version.
On the GPU we profit from the Karatsuba algorithm for 256 bit multiplications
trading slow 32 bit integer multiplications for additions, which have a much
higher throughput on the GPU. Thus the additional operations can be executed
in a more efficient way.

5.3 Efficiency of the Optimized Inner Product

To estimate the efficiency of our GPU kernel we computed the number of 32 bit
integer operations per second (IOP/s) for the inner product with 128 bit integer
coefficients. We only considered the instructions of the polynomial-polynomial
multiplication and neglect the reduction at the end of the inner product. Since
to our knowledge there exist neither benchmarks nor official peak values for the
integer performance of the NVIDIA Kepler GK110, we calculate a theoretical
limit based on the instruction throughput of the 32 bit integer multiply-add
(madc) instruction [12] which is used almost exclusively in our multiplication
kernel. The theoretical maximum of the NVIDIA Tesla K20X is given by

nSMX · f · μ · r = 14 SMX · 732 · 106 cycle

s
· 32 instr

SMX · cycle · 2 IOP

instr

= 655GIOP/s , (3)

where nSMX is the number of streaming multiprocessors (SMX), f denotes the
clock frequency, μ is the instruction throughput of the madc instruction and
r is the number of integer operations per instruction. Since GPUs are opti-
mized for single precision floating point arithmetic, the theoretical integer per-
formance of the NVIDIA Tesla K20X is just 655 GIOP/s, which is far less than
the floating point performance of 3.95 TFLOP/s. The maximal performance of
our implementation of 4.6 · 109 large integer OP/s in figure 3 corresponds to
4.6 · 109OP/s · 32 instr/OP · 2 IOP/instr = 294GIOP/s (32 bit). This number
includes the time needed to transfer the data between the CPU memory and the
GPU memory. In an independent measurement we determine the pure kernel
performance to be 319 GIOP/s. We therefore reach 49% of the theoretical peak
performance of the NVIDIA Tesla K20X.

6 Summary and Outlook

We presented a C++ library for efficient fixed high precision integers up to
512 bits and polynomials in 1 to 4 symbolic variables with an optimized inner
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product function. The purely CPU based high precision integer part of the library
outperforms the GNU Multiple Precision Arithmetic Library (GMP) by a factor
up to 4.2x for the integer addition and 2.5x for the integer multiplication. The
optimized hybrid CPU-GPU inner product function for vectors of polynomials
with high precision integer coefficients in pure CPU mode showed an excellent
speed-up factor of up to 13x compared to a naive solution using GMP and
OpenMP. Using a single NVIDIA Tesla K20X we were able to push this speed-
up factor to 38x. While the library was originally intended as a special purpose
library for high-temperature series expansions, its modular design offers a high
flexibility and renders the library also interesting to other applications in science
and engineering.

We would like to extend the large integer class to allow for sizes up to 2048 bits,
which will make it more attractive to cryptography applications. The polynomial
part of the library should allow for more complex structures, like individual
truncation orders for each symbolic variable, and could be extended to support
lazy evaluation. Until now the hybrid inner product function requires the library
user to specify the ratio that is used to split the vectors to be multiplied between
GPU and CPU when building the library. In future versions we would like to
provide a tool to generate a look-up table based on a small benchmark to select
the appropriate ratio automatically. Beside the optimized kernels for the x86-64,
power64 and Kepler architectures we would also like to explore the new Intel
Xeon Phi SIMD architecture, which supports carry propagation natively and
might be a better candidate for integer arithmetic than current GPUs.

The library is released under the Boost Software License and available at
http://www.comp-phys.org/vli/.
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Abstract. We describe a toolchain that provides a fully automated com-
pilation pathway from a finite element domain-specific language to low-
level code for multicore and GPGPU platforms. We demonstrate that
the generated code exceeds the performance of the best available alterna-
tives, without requiring manual tuning or modification of the generated
code. The toolchain can easily be integrated with existing finite element
solvers, providing a means to add performance portable methods without
having to rebuild an entire complex implementation from scratch.

1 Introduction

FEniCS [1] is a toolchain that is widely used by scientists and engineers for devel-
oping finite element models. The models are specified in the Unified Form Lan-
guage (UFL), a domain-specific language for writing finite element variational
forms. UFL forms are translated into C++ code conforming to the Unified Form-
Assembly Code (UFC) specification by the FEniCS Form Compiler (FFC), then
just-in-time (JIT) compiled and linked back into the DOLFIN finite element li-
brary, where they are executed. This mechanism provides rapid prototyping and
development of finite element solvers that execute with high performance on
CPU architectures, but does not presently provide performance-portable code
for accelerators and heterogeneous architectures. Given the current prevalence
of multi- and many-core architectures, it is desirable to find an alternative inter-
mediate representation that provides good performance on these architectures.
We propose PyOP2 as a suitable representation for this purpose.

PyOP2 [2] is a framework for performance-portable parallel computations on
unstructured meshes. PyOP2 code consists of data declarations to identify the
entities of a mesh, and kernels, which define a portion of code that is executed
for every mesh entity. Finite element computations consist of executing the same
assembly function for every element of a mesh and naturally fit into the PyOP2
model.

We have extended the FEniCS Form Compiler (FFC) to be able to generate
PyOP2 kernels instead of UFC code. The software stack that performs the trans-
lation from UFL forms to target-specific code is shown in Figure 1. The UFL
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library performs preprocessing of the variational forms which are then translated
into PyOP2 kernels. These local assembly kernels are further translated into a
target-specific implementation and are scheduled accordingly by the PyOP2 run-
time when parallel loops are executed. PyOP2 organizes the data structures such
that the required data is passed to each invocation of the assembly kernel.

Unified Form Language (UFL)

FEniCS Form Compiler (FFC)

PyOP2 high-level interface (API)

runtime code generation/scheduling

GPU (+MPI)CPU (+MPI) Future arch.

Problem definition in finite ele-
ment weak form

Local assembly kernels and data
dependencies

Parallel loops over kernels with
access descriptors

Explicitly parallel hardware-
specific implementation

Fig. 1. Overview of the UFL/PyOP2 tool chain

To demonstrate the performance-portability achieved by the toolchain, a single-
source implementation of a finite element solver for an advection-diffusion prob-
lem has been benchmarked on CPU and GPU targets and compared against a
DOLFIN implementation of the same problem. The generated implementation
has been integrated into Fluidity [3], a computational fluid dynamics package
written in Fortran 90, which demonstrates how the toolchain can be integrated
into existing complex finite element codes.

The work in this paper builds on our preliminary experimental work presented
in [2], which showed the feasibility of generating code for multiple platforms from
the UFL source, by demonstrating the C and CUDA backends with structured
meshes. The specific contributions of this paper are:

– We present experimental results using the toolchain’s CUDA, OpenMP and
MPI backends using unstructured meshes, which provide a much more rep-
resentative benchmark than in our previous work.

– We demonstrate that the performance provided by the toolchain exceeds the
best available alternatives by benchmarking an advection-diffusion problem
using our toolchain, the FEniCS toolchain, and Fluidity’s built-in advection-
diffusion solver.

We begin by briefly introducing the computations performed in implementations
of the finite element method in Section 2, then describe in detail the abstraction
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layers in Section 3. We give an exposition of the experiments performed using
this framework in Section 4. We discuss related work in Section 5 and conclude
in Section 6.

2 The Finite Element Method

A partial differential equation has the general form:

L(u) = q (1)

In order to solve this equation with the finite element method, the weak form
of the equation is derived by multiplying both sides by a test function v and
replacing the exact solution u with the numerical solution uδ, then integrating
over the entire domain [4]. This gives:∫

Ω

vL(uδ) dX =

∫
Ω

vq dX (2)

The discretized solution uδ is represented as a combination of a finite num-
ber of basis functions that span the computational domain. The choice of basis
functions affects the accuracy and stability of the computed solution, and the
optimal choice varies depending on the equation being solved. It is common for
finite element solvers to only implement a small set of different types of basis
functions.

The computational domain is divided up into the elements that form the
mesh. For each element, integrals are evaluated to produce a local matrix and
vector. Terms from the local matrix and vector are added to form a sparse global
matrix and vector that are indexed by the global degrees of freedom (i, j and k
in the diagram). After all elements have been assembled, the global matrix and
vector form a linear system of equations to be solved. An overview of the flow
of data in this process is given in Figure 2.

In practice, the system of linear equations is usually solved using an iterative
method, such as the Conjugate Gradient or GMRES method. Most finite element
programs rely on an external library such as PETSc [5] for this purpose.

3 Multilayered Abstractions for PDEs

3.1 The Unified Form Language

UFL is an embedded Domain-Specific Language (eDSL) implemented as a
Python library, which allows the weak forms of PDEs to be expressed in near-
mathematical notation. The library performs preprocessing and (if necessary)
automatic differentiation of the forms in order to convert them into tensor con-
tractions on the basis functions and coefficients. A tensor contraction expression
has a simple correspondence to a loop nest that iterates over the indices in the
expression, and can be algorithmically generated. The automatic generation of
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Fig. 2. Computations in the finite element solution of a partial differential equation
(PDE). A local matrix and vector are produced for every mesh element, and their
terms are added into the global matrix and vector. The global matrix and vector form
a system of linear equations.

low-level code facilitates rapid development and allows generation of variants
that provide hardware-aware performance. Examples of the different represen-
tations include the quadrature- and tensor-representations available in FFC [6]
and the symbolic factorisation used in Excafé [7].

In order to exemplify UFL, we will consider the Helmholtz equation (3) and
its weak form (4):

∇2u+ λu = −f (3)∫
Ω

∇v · ∇u− λvu dX =

∫
Ω

vf dX (4)

The UFL code for expressing this weak form is given in Figure 3. In the example,
the basis functions are chosen as order 1 Lagrange functions, but a wide range
of basis functions are available in UFL. As can be seen from the example, the
use of UFL code does not prescribe any data structures or algorithms used to
evaluate the forms - it provides the user with the means to declare the forms to be
evaluated. This enables code transformations to be made that optimize the code
for a specific architecture - for example, data layouts that attempt to maximize
coalescing of memory accesses on GPUs can be used, and the evaluation kernel
can be generated with code that stages unstructured data into shared memory
in order to maximize performance.

A translation of the left-hand side of the weak form of the Helmholtz equation
(a in Figure 3) into a local assembly kernel is shown in Figure 4. This kernel is
executed for every element in the mesh to produce the local matrices which are
returned in A, which is a fully-parallel loop.
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P = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(P)

u = TrialFunction(P)

f = Coefficient(P)

a = ( dot(grad(v),grad(u)) - lambda*v*u )*dx

L = v*f*dx

Fig. 3. The weak form of the Helmholtz equation written in UFL, discretized with
order 1 Lagrange basis functions on a triangular mesh

void helmholtz(double A[3][3] ,

double x[3][2]) {

for (uint j = 0; j < 3; j++)

for (uint k = 0; k < 3; k++)

for (uint ip = 0; ip < 3; ip++)

for (uint d = 0; d < 2; d++)

A[j][k] +=

(dCG1[d][ip][j]*dCG1[d][ip][k]

- lambda*CG1[ip][j]*CG1[ip][k])

* W[ip]*detJ;

}

Fig. 4. The local element kernel helmholtz for assembling a Helmholtz matrix, omit-
ting the declaration of finite element linear basis functions CG1 and their derivatives
dCG1, quadrature weights W and the computation of the Jacobian determinant detJ

from the local coordinates x for brevity

3.2 The PyOP2 Framework

PyOP2 is an implementation of the OP2 paradigm for parallel unstructured
mesh applications [8]. Unstructured meshes are a popular and efficient choice
for computational science and engineering applications on complex geometries.
Unlike structured meshes, the mesh topology is defined through explicit con-
nectivity information between entities of the mesh. Finite element methods are
commonly used with unstructured meshes to resolve complex geometries with a
high level of accuracy.

Data Model. PyOP2 allows the definition of mesh data structures using prim-
itives provided as part of the API, where the user is freed - in fact prevented
- from having to define the low-level representation of this data. Mesh entities
are represented as sets and connectivity relationships between the sets, called
mappings. For the unstructured two-dimensional triangular mesh in Figure 5,
vertex and cell entities are declared in PyOP2 as:
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Fig. 5. An unstructured mesh consisting of nine vertices and nine cells

ncells = 9

nvertices = 9

cells = op2.Set(ncells)

vertices = op2.Set(nvertices )

The connectivity between cells and vertices is given by a mapping associating
three incident vertices with any cell:

map_data = [ [0,1,2], [1,3,2], ...]

cell_vertex = op2.Map(cells , vertices , 3, map_data)

Mesh data in OP2 is associated with a set. The coordinate field defined on the
set of vertices uses two floats to represent the coordinates of each vertex:

coord_data = [ [0.,0.], [.5,.5], [.5,-.25], ... ]

coords = op2.Dat(vertices , 2, coord_data , float)

Execution Model. Computations are specified as kernels that are executed in
parallel for all elements of a given set, which we refer to as the iteration set. The
order in which set elements are visited is determined by the PyOP2 runtime and
cannot be specified by the user. This allows the runtime system freedom in the
scheduling of the execution.

A kernel defines computations for a single element of the iteration set. The
following example kernel launched over the set of cells computes the coordinates
of the midpoint m of each cell given the coordinates x of its incident vertices:

midpoint = op2.Kernel("""

void midpoint (double m[2], double *x[2]) {

m[0] = (x[0][0] + x[1][0] + x[2][0]) / 3.0;

m[1] = (x[0][1] + x[1][1] + x[2][1]) / 3.0;

}

""", "midpoint ")

Note that the kernel code is a multi-line string with the kernel definition in C.
Support for kernel declarations in a subset of Python is ongoing work.

In a parallel loop the kernel is called for each element of the iteration set
with the appropriate input data passed in. Data defined on the iteration set is
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accessed directly, whereas data defined on another set is accessed indirectly via
a mapping.

Our midpoint computation kernel requires two arguments: the midpoint of the
cell, and the vector of vertex coordinates. The midpoint dataset can be defined
as two floats per cell:

midpoints = op2.Dat(cells , 2, [0.]*2* ncells , float)

The following parallel loop executes the midpoint kernel over the iteration set
cells with midpoints as a directly accessed argument via the identity map and
coords indirectly accessed via the cell_vertex mapping. Access descriptors spec-
ify the arguments as write-only and read-only respectively.

op2.par_loop ( midpoint , cells ,

midpoints (op2.IdentityMap , op2.WRITE),

coords(cell_vertex , op2.READ) )

Implementation. PyOP2 provides an API for the implementation of target-
specific backends. At present, backends for sequential C code, C with OpenMP,
and CUDA code are fully supported. An OpenCL backend is a work-in-progress
at the time of writing. PyOP2 also supports MPI with the sequential backend,
and overlaps communication and computation where possible. MPI with other
backends is also in progress.

The runtime system is responsible for the efficient scheduling of kernels and
marshalling/staging data for each iteration of the set. Prior to kernel invocation,
a plan for its execution is generated. A plan consists of a set of partitions and
a renumbering of the maps used to access datasets so that they can be staged
into shared memory. The partitions are appropriately sized so that they can fit
within a certain level of the cache hierarchy - for example, the shared memory
in CUDA. During execution, the data is staged into shared memory before the
user’s kernel is invoked for all the set elements in the partition. The partitions
are colored so that adjacent partitions have different colors in order to avoid
race conditions. Coloring is also done within a partition, in order to prevent
interference between the threads executing on a partition.

In common with most finite element toolchains, PyOP2 does not perform
linear algebra operations natively but makes use of a linear algebra library. An
API for interfaces to linear algebra libraries is provided. At present, PETSc [5]
and CUSP [9] are supported.

4 Experiments

In order to demonstrate the performance portability of the UFL-FFC-PyOP2
toolchain, we benchmark an implementation of an advection-diffusion solver. The
entire code that is required to solve the advection-diffusion equation is given in
Figure 6. This test problem models the movement of a tracer species through a
simulation velocity field over time, accounting for both how the tracer is carried
by the flow (advection) and how it becomes dispersed over time (diffusion).
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The specified variational forms implement a finite element spatial discretisation,
with an Euler method for advancing the advection term in time and a Theta
scheme for the diffusion term.

The toolchain-generated code is tested with the sequential, CUDA, MPI and
OpenMP backends. We also benchmark DOLFIN, as it is known to generate
performant CPU codes and can run in parallel using MPI, and Fluidity’s built-
in advection-diffusion solver, which also supports MPI parallelism. In order
to demonstrate integration of the toolchain into existing finite element codes
with little overhead and interoperation with the existing data structures, our
toolchain-generated code is run from within Fluidity. It runs in an embed-
ded Python interpreter via a thin interface layer that wraps Fluidity’s native
data structures in NumPy arrays which are suitable for initialising PyOP2 data
structures.

Experiments were performed on a machine with 2 6-core Intel Xeon X5650
(Westmere-EP, 2.66GHz with 12MB of L3 cache) with 16GB of RAM and a Tesla
M2050 GPU. Software used included RHEL6.3, the CUDA toolkit version 5.0.35
for the CUDA code and the Intel compiler version 11.1.073 for the CPU code.
PETSc 3.3 was used for linear algebra with Fluidity, DOLFIN, and PyOP2 on
CPU, and CUSP 0.3.1 was used with the CUDA backend. All meshes are fully
unstructured and are numbered using a Hilbert space-filling curve numbering to
improve locality.

Table 1 shows the execution times for each implementation and mesh. The
speedup relative to the sequential Fluidity implementation is given in Figure
7. It can be seen that the PyOP2 generated code compares favourably with
the DOLFIN and Fluidity implementations running on 12 cores. The MPI and
CUDA implementations exceed the performance of DOLFIN and Fluidity for the
largest mesh sizes. Note that the simulation speed is constrained by the available
bandwidth rather than computational throughput of the target machines.

t=state.scalar_fields["Tracer"]

u=state.vector_fields["Velocity"]

p=TrialFunction(t)

q=TestFunction(t)

M=p*q*dx

D=M-0.5*d

adv_rhs = (q*t+dt*dot(grad(q),u)*t)*dx

d=-dt*diffusivity*dot(grad(q),grad(p))*dx

diff_rhs=action(M+0.5*d,t)

solve(M == adv_rhs , t)

solve(D == diff_rhs , t)

Fig. 6. Advection-diffusion UFL implementation. The advection and diffusion terms
are split, with advection solved first.
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Table 1. Execution times of each version of the solver and each mesh size. Mesh sizes
are specified as the number of elements. Times given in seconds.

Mesh Fluidity PyOP2 Dolfin Dolfin Fluidity PyOP2 PyOP2 PyOP2
Seq Seq MPI MPI CUDA MPI OpenMP

201712 121.0 46.0 50.2 7.6 16.1 8.2 11.8 15.1
252013 147.8 55.0 59.2 9.0 19.4 8.8 14.3 20.2
302618 181.0 63.3 73.9 12.0 23.0 16. 16.1 22.1
353054 202.3 75.5 79.6 13.8 26.4 18.2 16.4 26.9
402863 231.4 85.3 98.3 17.5 30.8 20.4 21.6 27.6
454182 263.4 95.3 144.9 26.7 36.2 27.6 22.7 36.6
503852 291.5 108.5 150.1 37.3 39.3 28.8 30.1 45.1
553962 321.2 118.5 128.6 30.2 45.0 32.1 32.2 46.4
604454 362.4 128.6 238.9 59.6 50.5 36.7 35.5 48.9
655224 394.2 148.3 276.0 70.2 55.6 38.8 44.2 63.4
705120 413.1 151.4 172.2 40.6 62.2 32.8 42.7 56.5
755413 440.6 163.9 199.5 52.1 67.3 36.9 45.6 68.1
806110 469.3 177.3 239.9 67.2 71.0 43.5 53.1 75.0

5 Related Work

The OP2 C/Fortran implementation [8] shares many design decisions with
PyOP2. The main difference between these implementations is that OP2 uses
static code translation to generate the kernels whereas PyOP2 uses just-in-time
code generation. OP2 is being used to port the Rolls-Royce HYDRA CFD code,
a Fortran 77 application, such that it can exploit clusters of GPUs and multicore
CPUs.

The DOLFIN Problem Solving Environment (PSE) [10,1] provides an envi-
ronment for the rapid development of finite element solvers from within Python.
Portions of the toolchain used by DOLFIN are used in our work, in particular
UFL and FFC. However, the branch of FFC used in this work supports the gen-
eration of PyOP2 code, as well as code that conforms to the UFC specification
required by DOLFIN. Parallel execution using MPI and OpenMP is supported
by DOLFIN, but GPU architectures are not presently supported for finite ele-
ment assembly.

Nektar++ [11] is a C++ library for implementing finite element methods that
allows one of several different assembly algorithms to be chosen from. The key
insight of experimental work done with Nektar++ is that the optimal choice of
algorithm, even on the same machine, varies depending on the problem parame-
ters [12]. Nektar++ currently targets only CPU architectures. However, it may
be expected that the optimal implementation for a given set of parameters will
vary with the target architecture.

Liszt [13] is a DSL for unstructured mesh applications that is embedded in
Scala. From the programmer’s point of view, Liszt differs from PyOP2 in making
a distinction between different classes of mesh entities. Cells, edges, vertices
etc. have distinct types, whereas in PyOP2 all mesh entities are represented as
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Fig. 7. Speedup of each implementation relative to the Fluidity sequential implemen-
tation, which is chosen as a baseline because it is the slowest. All executions (apart
from DOLFIN and PyOP2 Sequential) running on 12 cores.

sets. Liszt has been used to implement solvers for the Euler, Navier-Stokes and
Shallow Water equations, and a finite element solver for the Laplace equation.

6 Conclusions and Further Work

The toolchain we have presented allows the generation of performance-portable
finite element solvers from a single UFL source. Since the input language is the
same as that used by the DOLFIN solver from the FEniCS toolchain, a wide
range of finite element models can be run with high performance on the CPU
and GPU architectures supported by PyOP2.

The power of the code generation approach is that it allows us to explore
alternative code generation schemes. We plan to look at hybrid CPU/GPU ex-
ecution, improved communication overlap, intra-kernel vectorization and warp-
wide parallelization, and variants of local vs. global assembly. The key in each
case is to adapt the implementation to the application context and the hardware
capabilities.
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Abstract. Achieving fair resource sharing is rapidly becoming an es-
sential requirement in cluster computing systems. Although many fair
scheduling algorithms have been proposed in recent decades, controlling
resource sharing among jobs on servers remains a challenging problem
that, if not handled well, may result in chaotic resource contention and
service-level agreement violation of jobs. To address this problem, we
propose a resource container–based job management approach for fair
resource sharing. In our approach, we first design and implement a gen-
eral container-based job management module, providing lightweight and
fine-grained resource allocation and isolation for job execution. With this
module, we propose a resource-aware management scheme to enable fair
resource sharing in job scheduling and dispatching. We conduct experi-
ments by implementing the proposed module and applying the scheme
on TCluster, a self-developed cluster computing system of a worldwide
top Internet corporation. Results show that our approach performs well
in guaranteeing fair resource sharing with negligible overhead.

1 Introduction

Unlike past decades when batch job submission prevailed, today various types of
jobs are being deployed simultaneously by using cluster computing systems. Each
job usually has a specific service-level agreement (SLA), which can be mapped to
resource requirements such as CPU, memory, or I/O bandwidth. How to fairly
partition and share such resources among running jobs in a cluster, is key to
guaranteeing SLAs.

Many job-scheduling algorithms based on fair strategies have been proposed
in recent decades [9, 15, 19, 25, 26, 28]; they determine which job should be
scheduled to run according to the job’s resource requirements and the avail-
able quota of job owners. Controlling resource sharing among running jobs on
servers remains a challenge, however; and if not handled well, chaotic resource
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contention and SLA violation of jobs may result. Two popular approaches for
resource sharing are process-level sharing and virtual machine (VM)-level shar-
ing. In a process-level approach, it is difficult to track and control the resources
used by programs with multiple processes or with a newly spawned process
while running. Moreover, fine-granularity isolation of important resources such
as the CPU and network bandwidth cannot be guaranteed [10]. The VM-level
approach [16] relies on various virtualization technologies such as XEN [11],
VMware [8], and KVM [4]. It typically runs programs inside a VM configured
with the required resources. Although the VM-level approach provides good
resource-isolation, it usually incurs high overhead for controlling, setting up,
and running programs [25], especially in the case of small short-lived programs.

In this paper we propose to use a resource container to build a job manage-
ment approach for fair resource sharing on cluster computing systems. Resource
containers are based on OS-level virtualization that has been popularized in
recent decades; examples are LRP [10], VServer [25], OpenVZ [7], and Linux
Container (LXC) [5]. Resource containers partition the resources of a single op-
erating system into isolated groups and can give programs the illusion of running
on a separate machine. By running instructions native to the core CPU without
any special interpretation mechanisms, resource containers introduce little or no
overhead. Moreover, modern container technology such as LXC can provide fine-
grained resource partitioning, for example, assigning half a CPU to a program.
The features of low cost and fine-grained partitioning make resource containers
particularly suitable for job execution in cluster computing systems, in which
each server hosts a homogeneous operating system. Furthermore, recent con-
tainer technologies such as LXC provide good support for resource management
of multiprocess programs.

The contributions of our paper are twofold:

– We propose a general container-based job management module (CJMM) as
the kernel of our fair resource sharing approach, providing resource isolation
and a sharing mechanism for running jobs on one server.

– Based on CJMM, we present a resource-aware management scheme, includ-
ing resource-aware job scheduling and dispatching, that enables fair resource
sharing on cluster computers.

We note that our resource-aware management scheme provides only a framework
for implementing resource fairness using the proposed module. The job schedul-
ing and dispatching algorithms can be chosen as needed and thus are not the
focus of this paper. As the underlying container technology, we use LXC, which
is a recent implementation of OS-level virtualization and has been included in
the mainstream Linux kernel. Several other container technologies (e.g., OpenVZ
and VServer) are also popular and have performance comparable to that of LXC.
However, they all require customized Linux kernels. Moreover, issues of security,
stability, and maintenance make them less competitive, compared to LXC, in
production environments. The proposed module and scheme are implemented
on TCluster, a self-developed cluster computing system of a worldwide top In-
ternet corporation. Experiment results show that our approach performs well in
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enabling fair resource sharing among running jobs. Also, the proposed scheme
helps improve the resource utilization of the whole cluster.

The rest of this paper is organized as follows.We introduce related work in Sec-
tion 2. The detailed design and implementation of the job management module
are discussed in Section 3. We present the resource-aware management scheme
in Section 4. In Section 5 we present our experimental results. We conclude in
Section 6 with a brief look at future work.

2 Related Work

This section briefly discusses related work in two areas: fair scheduling algorithms
and resource containers.

2.1 Fair Scheduling Algorithms

Fair job scheduling is an important research problem for cluster computing sys-
tems. One approach to fair scheduling is lottery and stride scheduling [26], pro-
posed by Waldspurger, using both random and deterministic manner to allocate
resource for jobs. In [25], Soltesz et al. proposed using a hierarchical token bucket
to assign quotas among jobs in order to achieve fairness. Recently, with the pop-
ularization of Hadoop, some simple yet effective fair scheduling algorithms based
on a round-robin approach have been proposed [9, 28]. Isard et al. proposed a
fair scheduling named Quincy [19] for the Microsoft Dryad cluster by modeling
the scheduling as a network flow problem. For multiple resources cases, Ghodsi
et al. proposed a dominant resource fairness (DRF) scheduling algorithm [15].
However, all these algorithms focus only on how to determine a fair order of jobs
running in a cluster. They do not provide a mechanism for controlling resource
sharing of running jobs on servers.

2.2 Resource Containers

The concept of resource containers was first proposed by Gaurav Banga et
al. [10]. Similar concepts on non-Linux system are Solaris Zone and FreeBSD
Jail. Early resource containers on Linux systems are OpenVZ, VServer, and
FreeVPS. Most of these technologies require customized Linux kernels, however,
and thus are unacceptable in many product scenarios, especially for large corpo-
rations. On the other hand, LXC has been combined into the mainstream Linux
kernel; and, different from traditional machine-level virtualization, LXC requires
neither instruction-level emulation nor just-in-time compilation.

The building block of LXC’s resource sharing is the cgroup framework and
various subsystems [2, 22]. The cgroup framework allows LXC to track, control,
and audit the resources used by process groups. Subsystems in current main-
stream Linux kernels, such as cpu, cpuset, cpuacct, memory, and net cls, enable
LXC to support sharing and accounting on such resources. For resource isolation,
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LXC employs the kernel namespace [6] and the pivot_root system call. Addi-
tionally, the LXC toolkit provides a liblxc library and a series of userspace
tools for container management. Given the advantages and the popularity of
LXC, we use it as the underlying container technology in this paper.

3 Container-Based Job Management

In this section we describe the design and implementation of the container-based
job management module (CJMM).

3.1 Design of Job Management Module

The architecture of a typical cluster computing system can be separated into two
parts: a central manager that responsible for global control, and an execution
engine that is responsible for running and managing jobs on cluster servers. The
CJMM is plugged into the execution engine, taking over the job execution, re-
source provisioning, and isolation. More specifically, the execution engine passes
the job information to our job management module. The module then creates a
container, assigns resources, and starts the job inside it. A handler of the run-
ning job (e.g., the PID) will be returned to the execution engine for monitoring
and controlling. Each job runs in its own container, unaware of jobs in other
containers.

The CJMM consists of two components: JobManager exposes a simple, high-
level, container-based job management interface to the execution engine; and
Container represents the data structure and operations of a real container.

JobManager. JobManager starts jobs and manages their containers. Job’s data
(e.g., executing function and arguments) is passed in via a JobPtr object when
starting. The PID of the job is stored and returned for monitoring and control.
While the configuration of a container (CPU shares, memory limits, etc.), is
stored in a ContainerConf object.

In addition, JobManager assigns and accounts for the resource usage on the
server. When a job is being started, JobManager checks whether the required
resource can be allocated according to the available amount. If allocatable, a
container is created and the required resources are deducted from the available
amount; they will be returned when the job finishes. Otherwise, the request is
declined. The resource requirement is stored in a ResInfo entity, an example of
which is “resinfo.cpus = 0.5; resinfo.memory = 3GB...”.

Container. The Container represents the data structure and the operations of
a real container. For the sake of extensibility, Container is designed as a virtual
class. Two key operations of Container are task execution and resource usage
information retrieval. The execution command of a job will be passed to the real
container’s executing API via RunTask method. Real-time resource usage infor-
mation can be obtained via GetUsage. We have designed a class LXCContainer
inherited from Container using the LXC technology.
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3.2 Implementation Issues

We have implemented a prototype of the job management module using C++
based on the LXC 0.7.2. In this version, the low-level control of programs outside
their containers is obscured. And the LXC toolkit has no direct method to obtain
the real-time resource usage. Next we describe our solutions to these two issues,
including the job-startup mechanism and resource usage information retrieval
for a container.

Job-Startup Mechanism. LXC’s application execution mode allows starting
a program in a container through the lxc-execute command. However, because
of the hierarchical PID namespace, the PID of a running program in a container
is usually different from that outside. Neither the LXC userspace tools nor the
open API of liblxc provides a direct way to get the outer-layer PID. Moreover,
in LXC’s application mode, a process called lxc-init will be started with PID
1, acting as the parent of all other processes in the container. As a result, the
ending signal and exit code of a job cannot be captured by the execution engine,
which is undesirable for the JobManager.

To handle these problems, we hacked the program-starting mechanism of
LXC’s application mode in the LXCContainer as in Figure 1. We directly use the
lxc_handler structure in LXC’s source code as well as the open API of liblxc.
We first replace lxc-init with a function executing the job’s commands directly
(e.g., func), which makes the job itself the root process of a container. Then we
store a pointer of the function in the lxc_handler and invoke the lxc_spawn

method in liblxc’s open API, which will set up a container and start the job
finally. The job’s PID in the top-level namespace is stored in the lxc_handler

and passed to the execution engine.

Usage Information Retrieval. We use the statistical functions of subsystems
with the cgroup framework to obtain real-time usage information of containers.

For CPU usage, we employ the subsystem cpuacct, which accumulates the
CPU time of all tasks in a group in cpuacct.usage. Given a timing period, we
can calculate the real-time CPU usage of a container by dividing its CPU time
by the elapsed time. For simplicity, we let the timing period be the time between
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the most recent two calls of the GetUsagemethod. For memory usage, we employ
the memory subsystem, and access the memory.usage in bytes to obtain memory
usage of all tasks in a group.

4 Resource-Aware Management Scheme

Based on the CJMM, we propose a management scheme and show its application
on the TCluster system.

4.1 TCluster

TCluster is a typical cluster computing system for job processing and cluster
resource management (Figure 2), which consists of four main modules: a Cli-
entInterface for submitting jobs, a scheduler for scheduling jobs, a dispatcher
for assigning jobs to servers, and an executor for running jobs on each server.
Using a process-level isolation and job-number based scheduling, the original
TCluster is not resource-aware and is unable to conduct SLA-guaranteed job
processing. To remedy this situation, we apply our resource-aware management
scheme on TCluster.

4.2 Resource-Aware Scheme on TCluster

Our proposed scheme consists of a resource-aware scheduler, a resource-aware
dispatcher, and a container-based execution engine, which can be applied on any
cluster computing system.

Resource-Aware Scheduler. The resource-aware scheduler employs the re-
quired resources of each job as a key metric while scheduling. We require users
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to declare the resource requirements for their submitted jobs and then employ
the DRF scheduling algorithm in TCluster’s scheduler, which works well in
multiresource scenarios. This renders TCluster’s scheduler able to generate fair
scheduling results in terms of multiple resources (e.g., both CPU and memory).

Resource-Aware Dispatcher. The resource-aware dispatcher tries to find
a good match between jobs’ required resources and the available resources on
servers in assignment. We use a simple matching policy as blow among various
candidates (e.g., [12–14, 17, 18, 21, 23, 24, 27]).

Let
−−→
Rreq = {x1, x2, . . . , xi} be the required resources for a job, where xi is

the amount of the ith resource. Also let
−→
Rk = {y1, y2, . . . , yi} be the available

resources on server k. Both xi and yi are normalized values. We then find the
server m with the minimum Euclidean distance (Affinity Number) of

−−→
Rreq and−→

Rk for the given job. This simple policy works well in scenarios where short-lived
jobs dominate and the scale of cluster is large (e.g., over 5,000 servers), reducing
both computation complexity (e.g. the backfilling with online bin-packing [20])
and resource fragments .

Container-Based Execution Engine. We modified the executor of TCluster
by merging the JobManager class, taking over the job execution, and providing
resource guarantees and isolation. The executor reports the available resources
to the dispatcher in each heartbeat to facilitate the resource-aware assignment.

Additionally, resource requirements of each job is expressed using XML
and passed via the ClientInterface. An example is like “cpu num=0.5; mem-
ory=0.5GB”.

5 Performance Evaluation

In this section we evaluate our approach via experiments. The OS used on each
server is SUSE Linux Enterprise 11-sp1 with kernel version of 2.6.32.29-x86 64.
The version of the LXC toolkit used is 0.7.2.

To evaluate resource sharing, isolation, and utilization performance, we set
up a cluster consisting of six servers on the same rack and connected with 1G
Ethernet, and deploy TCluster on them. Each server is equipped with four Intel
3 GHz Xeon CPUs and 2 GB memory. One server hosts the ClientInterface, the
scheduler, and the dispatcher, and the other five servers run the container-based
executor. Here we focus on the CPU and memory resources. To see the CPU, we
employ two CPU-intensive programs: “loop-singleproc” and “loop-multiproc”.
Both programs repeatedly execute some increment instruction (e.g.,“i++”) with
single and multiple process respectively. And we increase the number of processes
in “loop-multiproc” gradually (i.e., 3, 4, 5, 6, 7, 10, 12, and 24). For each version
of TCluster, one job of “loop-multiproc” and three jobs of “loop-singleproc” are
submitted simultaneously. In the modified TCluster, the CPU resource ratio set
to the “loop-multiproc” job, and the other three “loop-singleproc” jobs is 8:4:2:1.
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Fig. 3. CPU usage of each job in TCluster (ratio 8:4:2:1)

For memory testing, we use a memory-intensive program that continuously al-
locates and touches memory.

In the overhead evaluation, we use an experimental IBM x3550 server. The
server is equipped with a quad-core Xeon E5504 2 GHz CPU and 15 GB memory.
We use GeekBench [3] and UnixBench [1] to evaluate the performance of CPU,
memory, disk I/O, and system operations.

5.1 Resource Sharing and Isolation

Figure 3(a) shows that the “loop-multiproc” job consumes a significant portion of
CPU, indicating that the original TCluster cannot ensure sharing and isolation
of CPU resource among jobs. While in the modified container-based TCluster,
the CPU times of the four jobs are approximately in accordance with the preset
ratio of 8:4:2:1 (Figure 3(b)), which means the container-based approach helps
guarantee fair sharing of the CPU.

Since no memory control mechanism was in original TCluster, we only eval-
uate the modified TCluster with the memory-intensive benchmark. We first set
the memory limit of the job to 500 MB with unlimited swap space, and then
limit the total space of swap and memory to 700 MB. In both cases the used
physical memory never exceed 500 MB (Figure 4(a) and Figure 4(b)). In former
the job can still obtain the memory since the swap space is unlimited, while
in latter the amount of used swap and physical memory drops to zero quickly
once the limit is reached. The reason is that in the memory subsystem, a default
out-of-memory (OOM) behavior is to kill the programs.

Next we show with our approach, the famous “forking attack” can be allevi-
ated. We implement a program called “bomb,” which keeps the forking process
using a nonpaused and infinite loop. We submit “bomb” to both versions of
TCluster, and establish SSH sessions to the server on which the “bomb” job is
assigned to see the isolation effect. On the original TCluster, when the “bomb”
begins running, the SSH session quickly becomes unresponsive. On the modified
TCluster with memory limit of 200 MB and a total limit for swap and memory
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Fig. 4. Memory usage of the experimental job in modified TCluster
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Fig. 5. Memory usage of bomb job and process number in system

of 300 MB, both memory usage and process number are well controlled (Fig-
ure 5(a) and Figure 5(b)), and the SSH session is completely responsive. The
reason is that the default OOM killer of the memory subsystem keeps killing the
processes forked by “bomb” and releases system resource.

5.2 Resource Utilization

Here we compare the resource utilization under the FF, RF in original TCluster
and affinity number-based best-fit (ANBF) in our resource-aware scheme, de-
scribed in Section 4.2.

The total available resources (CPU (cores) and memory (MB)) of the experi-
mental cluster are shown in Table 1. For each server, we reserve 0.2 CPU for the
executor process itself. The workload we use consists of a series of production
jobs with different resource requirements (Table 2).
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Table 1. Available resources of clus-
ter

Server ID CPU(s) Memory

1 3.8 1847
2 3.8 1851
3 3.8 1858
4 3.8 1859
5 3.8 1855

Table 2. Information of experi-
mental jobs

Job ID CPU(s) Memory

1 1.2 1000
2 2.5 900
3 2.5 1200
4 3.0 800
5 3.0 1500
6 0.7 300
7 1.0 600
8 1.7 800
9 1.1 900
10 0.5 800

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e 

re
so

ur
ce

 u
til

iz
at

io
n

server ID

 First-Fit
 Random-Fit
 ANBF

Fig. 6. Average resource utilization of
each server with different policy
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Fig. 7. CPU and memory overhead
(Higher score is better)

We submit all ten jobs to the modified TCluster with FF, RF, and ANBF,
and the available resources of each server is shown in Table 3. And the status
of submitted jobs in TCluster with each assignment policy is: FF {running 8,
pending Jobs (8,9)}, RF {running 9, pending Job (9)}, ANBF {running 10, no
pending}. This result indicates that with our resource-aware scheme, TCluster
can produce fewer resource fragments and thus improve resource utilization. We
also calculate the average resource utilization of each server with avg util =
0.5 ∗ cpu util + 0.5 ∗mem util, and the results are shown in Figure 6. We can
see that in most cases, our approach with the ANBF policy can produce higher
resource utilization on cluster servers (over 85%).

5.3 Overhead

First we analyze the overhead of CPU and memory. From Figure 7 we see no
noticeable disparity between the two versions of TCluster. Hence our LXC-based
approach has negligible overhead for CPU or memory-intensive programs. Then
we observe the disk I/O overhead by comparing the data from UnixBench. From
Table 4 (higher score is better) we can see that our approach causes at most
1.78% degradation compared with that of the original TCluster. Finally we
observe the overhead on microsystem through UnixBench as well. The observed
items and scores are shown in Table 5. The modified TCluster incurs minor
overheads in almost all items except the process creation and the pipe-based
context switching.
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Table 3. Free resources on each server

Server ID
First-Fit Random-Fit ANBF

CPU(s) Mem(MB) CPU(s) Mem(MB) CPU(s) Mem(MB)

1 1.9 547 1.6 247 0.3 47
2 0.3 351 0.2 51 0.9 51
3 1.8 658 0.8 358 0.3 258
4 0.3 259 1.1 359 0.1 59
5 0.8 355 0.3 255 0.2 55

Table 4. Disk I/O overhead

Original
TCluster

Modified
TCluster

Gain

File Copy
1024 buf-
size 2000
maxblocks

766476.3 761287.11
-
0.68%

File Copy
256 buf-
size 500
maxblocks

226551.2 222517.2
-
1.78%

File Copy
4096 buf-
size 8000
maxblocks

1609916.21606169
-
0.23%

Table 5. System operation overhead

Original
TCluster

Modified
TCluster

Gain

Pipe Through-
put

1642770.81646751.10.24%

System Call
Overhead

2771390 2771562.90.01%

Process Cre-
ation

14374.9 13785
-
4.10%

Pipe-based
Context
Switching

259403.2 226531.7
-
12.67%

Shell Scripts
(1 concurrent)

6270.2 6345.1 1.19%

Shell Scripts
(8 concurrent)

2153.7 2171 0.80%

6 Conclusion and Future Work

Although many fair scheduling algorithms have been proposed for cluster com-
puting systems, few suitable mechanisms exist that control resource sharing
among jobs on servers. To address this problem, we introduced a container-based
job management approach. We first designed and implemented the CJMM to
control the resource sharing and isolation for jobs on servers. Based on CJMM,
we then proposed a resource-aware management scheme to enable fair resource
sharing. We experimented with our approach on TCluster, a self-developed clus-
ter computing system for a worldwide top Internet corporation. Results show
that our approach performs well in providing fair resource sharing at a very low
overhead, as well as a higher resource utilization of above 85%. An adaptive and
automatic reconfiguration mechanisms and strategies will be our future work.
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Abstract. This paper proposes a heuristic to improve the analysis of
supercomputers error logs. The heuristic is able to estimate the error
on the measurement induced by the clustering process of error events
and consequently drive the analysis. The goal is to reduce errors induced
by the clustering and be able to estimate how much they affect the
measurements. The heuristic is validated against 40 synthetic datasets,
for different systems ranging from 16k to 256k nodes under different
failure assumptions. We show that i) to accurately analyze the complex
failure behavior of large computing systems, multiple time windows need
to be adopted at the granularity of node subsystems, e.g. memory and
I/O, and ii) for large systems, the classical single time window analysis
can overestimate the MTBF by more than 150%, while the proposed
heuristic can decrease the measurement error of one order of magnitude.

1 Introduction

As we walk our way towards the exascale era we prepare to face new challenges
imposed by the need of the simultaneous use and control of hundreds of thou-
sands or even millions of processing, storage, and networking elements. As the
number of components becomes bigger and software more complex, the frequency
and the propagation of failures poses a serious threat for applications to make
progress, requiring new fault tolerant and failure avoidance solutions at scale.
In this perspective, operational data (e.g., system logs) are going to play a key
role to derive novel failure containment [1] and prediction [2, 3] techniques, since
they allow to study failure happening during the operational phase. Therefore,
the success of next generation of computing systems will deeply rely on how well
we are able to understand and analyze current operational data.

A fundamental step for sifting system logs is to accurately group events related
to the same cause1,i.e., the same fault/error. In facts, failure events happening
close in time may correspond to different manifestation of the same fault/error
on the system, i.e., as the effects of a single fault propagate through a system,

1 In this paper grouping, clustering and coalescence are used interchangeably.
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different error detectors are triggered resulting in multiple logged events. Clearly,
the accurate grouping of events is crucial to accurately evaluate even simple
metrics such as the MTBF [4, 5].

A widely adopted heuristic [2, 6–14] consists in selecting a fixed time window
and to group the events that manifest close in time (within the time window) into
a unique ”tuple” [15, 7]. However, the identification of a proper coalescence time
window becomes tricky when analyzing logs of several thousands of nodes due to
the overlapping of independent events and disparities in the failure dynamics. For
instance independent events happening close in time might be grouped together
by mistake and accounted as a single failure, or multiple events due to the same
cause erroneusly grouped as independent. As a consequence, with the number
of heterogeneous computing cores (e.g., hybrid nodes equipped with CPU and
GPGPUs) approaching to the million, the analysis performed with a single time
window approach will result inaccurate, i.e., one size does not fit all.

This paper proposes a heuristic to improve the analysis of supercomputers
error logs. The heuristic is based on the use of multiple time windows selected
at the granularity of single node subsystems. The goal of the heuristic is to to
reduce, if not eliminate, errors induced by imperfections of the event cluster-
ing process on the final measurements such as the MTBF and other metrics
evaluated by analyzing error logs.

The heuristic, referred as MTW (multiple time windows) operates in three
main steps at four different level of granularity, respectively, i.e., subsystem,
node, nodes involved in the same job, and system. It uses information from both
failure logs and workload logs. In each step the coalescence process is tuned (i.e.,
coalescence time windows are selected) in order to minimize the error on the
final measuremnets, and, at the end of the analysis, the herurisic is capable of
providing an estimate of overall error on the measuremnts accumulated during
the analysis.

The MTW heuristic is compared with the standard single time windows ap-
proach and extensively validated over a variety of 40 synthetic datasets generated
using a model-based log generator tool [4]2. Datasets are generated with respect
to different settings and assumptions and they are made publicly available3. The
systems considered in this study range from 16384 to 262144 nodes, totaling 6GB
of failure data for a total of 1,966,080 nodes, collected during a simulated period
of 6 months and under different failure assumptions on failure rates, failure and
recovery distributions and on spatial failure propagation patterns. To the best of
our knowledge this is the first work i) proposing a time-based heuristic tailored
able to take into account the measurement error to drive the analysis, and ii)
performing a validation campaign using such a large dataset.

The key findings of this study are: (i) the estimation of coalescence mistakes
makes it possible to express the error caused by the time coalescence process as

2 The log generator in [4] has been extended to be able to generate workload logs
along with failure logs. Details on the extension are not described here due to space
limitation.

3 www.catellodimartino.it

www.catellodimartino.it


304 C. Di Martino

two linear functions of the selected time window; (ii) a more accurate coales-
cence can be achieved by analyzing the data starting at the granularity of single
node subsystems, and can reduce the error on the measurement of one order of
magnitude, i.e., from 70% to 7% in the average; and (iii) with reference of the
worst case (higher failure rate and spatial failure propagations) simulated for
262144 nodes, the MTBF is overestimated of more than 150% if employing the
commonly adopted single time window, while the proposed MTW heuristic can
limit the error to the 22%.

The rest of the paper is organized as it follows. Section 2 presents the state
of the art and discuss about the limitation of current time based coalescence ap-
proaches. Section 3 presents a preliminary set of experiments tailored to provide
some basis to the formulation of the MTW heuristic, discussed in section 4. Sec-
tion 5 presents the case studies. Finally section 6 concludes the paper discussing
future improvements.

2 Related Work

The analysis of supercomputer logs usually accounts three consecutive steps: i)
data filtering [10, 6, 16, 8], concerning the removal of log events not related to
failures, ii) data coalescence, concerning the grouping of redundant or equivalent
failure events, and iii) data analysis, concerning the evaluation of measurements.
Clearly, the quality of the final analysis is tied to the goodness of the former
phases [4, 7, 8, 17].
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Fig. 1. Example of wrong grouping: (a) truncations and (c) collisions with respect to
optimal grouping (b)
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The Coalescence process aims to group events manifesting presumably due to
a unique failure. This process is sensitive to bad grouping referred as truncations
and collisions. A truncation occurs when the time between two or more events
caused by a single failure is greater than the clustering time (i.e., the used time
window), thus causing the events to be split into multiple tuples (Figure 1.(a)).
A collision occurs when two independent failures occur close enough in time such
that their events overlap and they are erroneously combined into a single tuple
(Figure 1.(c)).

An early work in [7] proposes a heuristic for the selection of a single coalescence
time window. The work shows that the number of tuples (i.e., a collection of
events that happens close in time) of a given log is a monotonically decreasing
function of the time window, with a characteristic “L” shaped curve. This work
was proposed for past Tandem systems and assumes that all events due to a same
cause manifest close in time. Therefore, the point corresponding to the “knee”
of the curve is suggested as a suitable time window able to group all the related
events with negligible rate of collisions and truncation, i.e., all the events due
to the same fault are clustered together for time windows greater than the time
indicated by the knee. However, recent work [4, 17] demonstrate that the rate of
collisions is expected to be sensibly larger in modern supercomputers due to the
interleaving of uncorrelated events and spatial failure propagations. Despite this
results, the knee rule and the single time window technique still constitute the
baseline of may work in the field on large-scale systems. The common trend is to
use given values for time windows, such as 5min [6–10], 20min [18, 19, 5], 60min
[11] and without conducting any tuning (such as, the knee rule) or validation.

New emerging technique are based on content-based coalescence and on the
extraction and processing of signals from logs. Content-based coalescence tech-
niques are emerging recently [20–22, 17] and are based on the grouping of events
by looking at the specific contents of log messages. For instance [17] and [22]
apply the lift data mining operator to find frequent event patterns starting from
log content, hence isolating accidental patterns.

Another direction of analyzing logs is given in [3] where authors investigate
the use of singnal processing techiques for analyzing error logs in real time and
to predict future occurrence of failures. Despite the promising results of all these
new techniques, time (and spatial) coalescence techniques are still the most used
in the field [6, 23, 7–10, 18, 11, 2, 24], due to the simplicity of the underlying
algorithms. Spatial coalescence of data is often used jointly with temporal coales-
cence to describe failure propagations among machines in the case of large-scale
systems [8, 6].

3 Coalescence and Measurement Error Relationship

The effectiveness of time based coalescence has been proved to depend on several
factors [4, 17, 8]. In order to develop a better coalescence heuristic, in this section
we discuss a set of preliminary tests conceived to identify how truncations and
collisions are tied to the error on MTBF estimation obtained after the analysis.
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To this aim, we use a model based tool presented in [4] to generate several
synthetic supercomputer logs, i.e., artificial logs containing failure dynamics for
which the ground truth is know. The ground truth represents the actual failure
process of the system being analyzed (the objective reality), which may not
correspond to the presumed failure process reconstructed by coalescing the logs.
Synthetic logs are similar to the format of real system logs: each entry contains
a time stamp, the system component/node that wrote the entry, and the error
message. The synthetic logs are generated along with so-colled oracle logs storing
the ground truth on what generated in the syntethic logs. They contains detailed
information about every single failure affecting the system, including its start
time, end time, type, and the set of system resources involved (e.g., nodes and
subsystems). The assessment is performed by running real coalescence algorithm
(e.g., the MTW and the fixed time window technique) on the synthetic dataset
and comparing the results obtained from the analysis of synthetic logs (e.g,
estimated MTBF ) against the real dynamics present in the oracle log (e.g.,
the real simulated MTBF). An example of synthetic and related oracle logs is
shown in tables 1 and 2. The generation of both synthetic and oracle logs is
parameterized with respect to a number of aspects such as, the number of nodes
in the system, the workload, the failure type and propagation patterns, allowing
sensitivity studies and to evaluate how such aspects impact on the accuracy of
the results achieved when using a specific data analysis technique.

Table 1. Example of synthetic logs

Time NodeID Subsys Message
11/22/11 19:06:41 191 IO IO Error no. 1
11/22/11 19:06:41 212 IO IO Error no. 1
11/22/11 19:06:41 212 IO IO Error no. 2
11/22/11 19:06:41 191 IO IO Error no. 2
11/22/11 19:06:41 195 IO IO Error no. 1
11/22/11 19:06:41 195 IO IO Error no. 2
11/22/11 19:06:41 212 IO IO Error no. 3
11/22/11 19:06:43 195 SW SW Error no. 1
11/22/11 19:06:43 192 IO IO Error no. 1
11/22/11 19:06:46 192 IO IO Error no. 2
11/22/11 19:06:46 191 IO IO Error no. 3
11/22/11 19:06:49 195 SW SW Error no. 2
11/22/11 19:07:01 195 SW SW Error no. 3
11/22/11 19:07:02 161 NET NET Error no. 1
11/22/11 19:07:03 195 IO IO Error no. 3
11/22/11 19:07:09 195 IO IO Error no. 4
11/22/11 19:07:09 161 NET NET Error no. 2
11/22/11 19:07:09 195 SW SW Error no. 4
11/22/11 19:07:47 161 NET NET Error no. 3
...
12/17/11 23:22:39 297 PROC CPU Error no. 1
12/17/11 23:22:42 297 MEM MEM Error no. 1
12/17/11 23:22:43 297 MEM MEM Error no. 2
12/17/11 23:22:49 297 MEM MEM Error no. 3

For this preliminary experiments we used the public synthetic datasets4, con-
sisting in 24 synthetic log files obtained by simulating the behavior of an hypo-
thetic supercomputer composed by 1024 to 32768 nodes under different failure

4 The dataset is available on www.catellodimartino.it

www.catellodimartino.it
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Table 2. Example of Oracle log

Failure Start Time NodeID Type of Failure Events Duration Signature
11/22/11 19:06:39 191 IO PROPAGATION(192,212,195)+SW(195) 112 124.332 75829788
11/22/11 19:07:02 161 NET 9 154.8 35924727
12/17/11 23:22:39 297 PROC+MEMORY 20 143.85 71162829

assumptions on the failure rate and processed workload. The dataset consists
in log files mimicking the content of Linux syslog, reporting timestamp, Id of
the node that generate an event, facility responsible for the event (e.g., kernel,
network cards) and a text message. The datasets encompass two case studies,
both ranging between 1024 and 32768 nodes: 1) logs generated according to sim-
plistic failure assumptions (i.e., exponential and no failure propagations), and 2)
logs generated according to more realistic failure assumptions (e.g., lognormal
and weibull distributions, spatial failure propagations) to evaluate how system-
representative aspects impact on the quality of the coalescence. More details on
the dataset can be found in [4].

In this preliminary study we opted to analyze the following response vari-
ables: (i) MTBFerr: the error on the MTBF estimate, defined as MTBFerr =
(MTBFest −MTBFreal)/MTBFreal, where MTBFest is the MTBF estimated
from the coalesced log as the average distance between failures in the coalesced
data; (ii) trunc%: the percentage of truncations with respect to F , defined as
trunc% = 100 · number of truncations/F ; (iv) coll%: the percentage of trunca-
tions with respect to F , defined as coll% = 100 · num collisions/F . F : the real
number of failures; MTBFreal: the real MTBF of the simulated failure.

Figure 2 shows a subset of the results concerning the sensitivity analysis con-
ducted for the sliding algorithm (fixed time window is slided) introduced in
section 2 with respect to the time window W . This is a mandatory step when
adopting the classical time based coalescence with the knee rule to drive the
selection of the time window W. The upper part of the figure reports the tuple
count (the ”L” shaped curve used by the knee heuristic to select the time win-
dow), whereas the lower part reports MTBFerr, coll% and trunc% as a function
of W . First, it can be noted that there is a value W ∗ for the time window
for which the sum of coll% and trunc% is minimum and MTBFerr tends to 0
(that is, the point where the coll% curve crosses the trunc% curve). Interestingly,
this point corresponds to the last knee of the tuple count curve, and the same
observation repeats for all the performed experiments, showcasing the effective-
ness of the knee rule in selecting good time windows for the considered case
study.However, it is worth noting that in this case, the knee rule ”as it is” will
chose as time window the point just after the first knee (a time window shorter
that W ∗), therefore causing several truncation errors in the coalesced data.

Figure 2.(b) shows the same phenomenon in the case of more complex logs,
generated with several different failure inter-arrival distributions, and consid-
ering failure propagations and a increased failure rate (ten times). Recall that
in this case study 1 only exponential failure dynamics with big inter-arrival are
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Fig. 2. Sensitivity analysis for the sliding algorithm: (a) case study 32768 nodes, failure
rate 1E-9 fps, simple(hardware) failures, NO propagations, (b) case study 32768 nodes,
failure rate 5 E-9, Complete(ALL) failures, Complete propagations

present in the dataset and that failure propagations have not been simulated. In
case 2 we notice from the tuple count curve (Figure 2.(a)) that only one knee
is visible, not corresponding to the optimal window, despite several simulated
failure dynamics: this is due to the presence of several events accidentally over-
lapping (e.g., concurrent failures on different nodes), which cause a smoother
knee in the tuple count curve, making it difficult to clearly identify the right
time window, differently from the former case.

Figures 2.(a) and (b) also show an interesting phenomenon related to the
MTBFerr which interestingly shows to be correlated with the collisions and
truncations. In particular, if W ∗ is the optimal window (identified by the vertical
arrow in Figures 2.(a) and (b)), we can note that:

MTBFerr =

{ −mtrunc% · (W −W ∗) + trunc%|W=W∗ for W ≤ W ∗,(1)
mcoll% · (1 + σ) · (W −W ∗) + coll%|W=W∗ for W ≥ W ∗.(2)

where mtrunc% and mcoll% are the angular coefficient of the linear approximation
of trunc% and coll% around W ∗, respectively5, and sigma is an real number ≥ 0.

5 The sharp knee on the trunc% in figure 2.(a) can be approximated with (i) a discon-
tinuity in W ∗ so that limW→W∗+ trunc% = coll%|W=W∗ , and with a linear behavior
in (0,W ∗).
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/*   STEP 3   */ 
19. For each Job Ti  
20.      Fetch the failure data using job start and stop time and  
           the list of nodes in Ti 
21.      If any node is present 
22.          Perform spatial coalescence  
23.          Ti Failure Data � Spatial Coalescence all nodes in Ti       
24.          For each Failure F in Ti Failure Data 
24.              Evaluate CItrunc%, CIcoll%, MTBFerr 
25.          End For 
26.          Evaluate CItrunc%, CIcoll%, MTBFerrfor job Ji 
27.       End If 
28. End For 
29. For Each failure Fi in the whole dataset 
30.      System Failure Data � spatial coalescence all Fi 
31.          Evaluate CItrunc%, CIcoll%, MTBFerrfor System failure data 
32. End For 

 /*   STEP 1   */ 
1.  For each subsystem S of the node j 
2.      Find Optimal Time window WSj 
3.      For each W=1s, 20s,...  3600s and W≠WSj*  
4.            Evaluate trunc%and coll% 
5.      End for 
6.  End for 

/*   STEP 2   */ 
10. For each node j in the failure data 
11.      For each W in [minj, WSJ, maxjWSJ] 
12.          Evaluate CItrunc% and Cicoll% 
13.          Use CItrunc% and CIcoll% to estimate MTBFerr (W) 
13.          Find the WNJ: MTBFerr(WNJ)  is min 
14.      end for 
15.     Coalesce node data for using WNJ as time window 
16         Node J Failure Data �Coalesce(WNJ) of all Sj in J Failure Data 
17.     Node J MTBFerr � MTBFerr(WNJ)  
18.  End for 

Fig. 3. The Multiple Time Window Algorithm

4 The Proposed Solution

The observations provided in section 3 allow us to conclude that:

– the knee rules is useful but its application can be tricky for large systems due
the presence of complex failure propagations and overlapping which should
be isolated and analyzed separately;

– estimating the probability of truncations and collisions would allow to esti-
mate the expected error on measurements, which is useful to allows to opti-
mally tune W to the point such that trunc% = coll%, i.e., the point where
MTBFerr = 0, and to correctly interpret and weight the results.

Starting from these observations we propose the multiple time heuristic (MTW)
which pseudo code is showed in showed in Figure 3. The algorithm operates in
3 steps.

Step1. Analysis of failure data from single node subsystems and assessment of
truncation and collisions probabilities.

For each subsystem Sj of the node j, a suitable time windowWSj is determined
using the knee rule. Using the identified time window WSj the truncations and
collisions in the data if coalescing the data of Sj with time windowsW �= WSj are
evaluated as (i) truncSj%: the percentage of truncations with respect to FWSj ,
defined as trunc% = 100·num of truncations/FWSj ; (ii) coll%: the percentage of
truncations with respect to FWSj , defined as coll% = 100 ·num collisions/FWSj .
FWSj is the number of failures for Sj when coalescing with WSj .

Step2. Analysis of failure data corresponding to a node and selection of the node
coalescence time window

The coalescence time windows identified at the end of Step1 may still not be
good enough for coalescing the failure behavior of a single node. For instance, a
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node may require two time windows, due to its subsystems failing close in time,
but independently and with different dynamics.

Therefore, for each node j in the failure data, calling NSj the number of
tuples obtained with the time window WSj for the subsystem S and Nj =∑NSj

j , we calculate the following corruption indices CItrunc and CIcoll (line 12 of
Figure 4):

CItrunc =
∑
j

NSj

Nj

[
trunc%Sj

]
forW = min

j
WSj , ...max

j
WSj (3)

CIcoll =
∑
j

NSj

Nj

[
coll%Sj

]
forW = min

j
WSj , ...max

j
WSj (4)

The corruption indices in equation (3) and (4) evaluates a sum of the percentages
of collisions and truncations weighted by the the total number of tuples of each
subsystem over the total number of tuples in the node. The objective is to
take into account the contribution brought by each subsystem to the overall
truncations and collisions in the node failure data for time windows �= WSj . The
results are then used in equation (2) to identify (i) the time window causing the
smallest error in the node dataset and (ii) to estimate the residual error on the
measurements.

Let us consider an example. Let us assume that in node j two different sub-
systems S1 and S2 fail almost concurrently. Due to the different nature of S1

and S2 they manifest different failure dynamics requiring different time windows
WS1 and WS2 identified with the knee rule. When coalescing all the data of the
node, we must chose a time window WNj to coalesce the failure data of the two
failed subsystems. In order to reduce the number of truncations and collisions,
we compute the collisions and truncations that we would have in S1 and S2
when using the time window ranging from WS1 and WS2. We then weight the so
computed collisions and truncations percentages by the total number of tuples
each subsystem is responsible for, divided by the total number of tuples, to take
into account the real contribution brought to the failure data of node j by S1

and S2 failure data, respectively. The result in CI will encompass the total num-
ber of collisions and truncations due to the disparities in the subsystem failure
dynamics, when coalescing the node j with a single time window.

Step3. spatial coalescence. The objective of this step is to perform the spatial
coalescence considering first the nodes executing the same job and then all the
nodes in the system. For this step, workload logs are required to gather informa-
tion of the IDs of the nodes executing the same job. The objective is to analyze
spatial propagations of failures and to estimate the error in the analysis due to
the accumulation of the error of present in the data coalesced for each node.
This step shares the same principles of the former and start analyzing the data
first at the level of the job and then at the level of the system. The objective,
as for the first step, is to reduce the granularity of the system to decrease the
possibility of accidental overlapping in the data.
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For each job, the heuristic extracts subset of the failure data containing only
the participating nodes. Then for each subset of failure data, it evaluates corrup-
tion indices (equations (3) and (4) ) and the estimation of measurement error as
weighted sum of the indices and error estimation computed at the end of step
2. At the end of the analysis the two computed indices are used to weight the
results and understand the confidence of the measurements. To this aim, con-
fidence intervals are computed concerning the estimation of measurement error
and delivered together with the final coalesced dataset.

5 Validation

The proposed solution is validated against several logs generated using the tool
in [4]. In particular, the proposed solution required to extend the log genera-
tor in [4] in order to make it able to generate also workload log as needed by
the approach. The assumed format for the workload log is compliant with the
standard workload log format6.

In order to assess what are the parameters that influence the effectiveness
of the proposed solution, synthetic logs are generated in this study following a
rigorous experimental plan chosen according to a full factorial design of experi-
ments. The factors of the study describe the system while the response variables
identify how well the coalescence is able to reconstruct the ground truth. The
goal is to test the hypothesis that the response variables (e.g., error on the mea-
surements when using a specific coalescence technique) depends on the levels of
the explanatory factors. We choose to factorize the dataset with respect to i)
size of the system (number of nodes), ii) type of failures, iii) presence of spa-
tial failure propagations, iv) failure rates. The synthetic experimental plan is
reported in table 3. Factors levels are chosen to represent the size of the system,
assumed to range from 16384 up to 262144 nodes and limit situations, such as
presence or absence of spatial propagations, high or low failure rate, in order to
reduce the number of experiments to run, while still be able to generate enough
heterogeneous data point to test the hypothesis. A total of 40 logs, totaling 6GB
of filtered failure data for 1,966,080 nodes are generated during a simulated pe-
riod of 6 months per dataset. In the following the effectiveness of the proposed
solution is assessed and compared with the standard time based coalescence
adopting the knee rule and single time window (see section 2). The comparison
is carried out by i) comparing the error caused on the MTBF measurement by
the two techniqyes, ii) by analyzing the percentage of truncations, collisions, and
iii) by assessing the error on the MTBF estimation provided by the MTW. In the
following experiment we refer to the metrics used in section 3 for the preliminary
experiments.

Figure 4 shows the error caused by the the MTW and the knee coalescence
heuristics. Recall MTBFerr = (MTBFest−MTBFreal)/MTBFreal and is com-
puted as the mean of the time intervals between consecutive failures in the coa-
lesced data. All the plots are reported against increasing size of the systems.

6 http://www.cs.huji.ac.il/labs/parallel/workload/swf.html

http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
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Table 3. Synthetic plan of experiments

Factors
System Size 16384 32768 131072 262144
Failure Rate

Failure Type

Spatial Propagation

Simple (2 Exponential dynamics)

NO

Levels

FR 5*FR

YES

Complex (several dynamics 
including Weibull, Lognormal 

and Exponential failure 
distributions)

65536

Figure 4.(a) shows the effectiveness of the two heuristics for low exponential
failure distributions with low failure rate and no spatial propagations. In this
case both the techniques perform equally and the error is bound to 3% and 5%
for MTW and the knee heuristic, respectively. This is due to the low failure rate
simulated and to the absence of spatial failure propagations. i.e., despite the high
number of simulated nodes, the probability of having concurrent independent
failures (i.e., accidental collisions) during the observed period is negligible, as
shown in in Figure 5.(a), reporting the collisions, truncations caused by the two
techniques. The small error still present in the MTBF is in both the heuristic
is mainly due to the disparity in the simulated failure dynamics and time to
recovers, and in the truncations caused still caused by the knee rule (see section
3), which in part affects also the MTW.

Figure 4.(b) shows the experiments performed with an increased failure rate
(5 times). In this case, the probability of having accidental collisions is higher, as
shown in Figure 5.(b). The higher percentage of collisions causes longer tuples
since several consecutive failures are merged and accounted as one longer failure.
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MTBFerr Vs. Number of nodes 
���� ����

Fig. 4. MTBF error committed by the KNEE and MTW heuristics for systems ranging
from 16384 to 262144 nodes in the case of: exponential failure dynamics with low and
failure rates, with no spatial failure propagations (a)(b), and complex failure dynam-
ics (mixed exponential, lognormal and weibull) with spatial failure propagations (c).
Simulated MTTR are about 60s and 500s depending on the type of failure.
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Fig. 5. trunc%, coll% and MTBFerr caused by the MTW and knee heuristics for
systems ranging from 16384 to 262144 nodes in the case of: exponential failure dynamics
with low (a)(b) and high (c) failure rates, with no spatial propagations (a), and with
spatial propagations (b)(c). MTBFerr refers to the value computed in step 3 of the
MTW (line 31 Figure 3).

This in turn causes an overestimation of the MTBF in both the techniques when
increasing the size of the system. The overestimation is a dangerous mistake,
since it causes the system to be presumed as more reliable than it really is,
underestimating the risk of potential failures. In this case, the MTW heuristic
shows less sensitivity to the increased failure rate. In this case, the MTBFerr

is kept less than 10.8% for 262144 nodes for the MTW while the knee heuristic
is not able to go lower than 28%. This is due to the analysis performed at the
granularity of the single node subsystems using the estimation of MTBFerr

as feedback to drive the selection of the time windows. In particular, this last
feature allow to solve the higher amount of truncations caused by of the knee
(see section 3), as showed in Figure 4(a)-(c). In addition, it is worth noting that
the prediction of the MTBF error delivered by MTW (Figure 4.(b)) shows to
be valuable in weighting the results. In this case, using equation 2, the MTW is
able to estimate to be committing an error of 8% on the results while actually
overestimating the MTBF by 10.8%. In addition, the results delivered by the
MTW for the MTBFerr can be further analyzed by interpreting the CIcoll%
and CItrunc% indices. For instance, indices are valuable in identifying situations
in which a low error is due to aliasing of truncations and collisions (high values
for the indices means).

Figures 4.(c) and 5.(c) reports the MTBF, collision truncation errors evalu-
ated when generating logs taking into account complex failure dynamics, failure
propagations between nodes and higher failure rates. In this case logs show to
be more complex and difficult to analyze. More collisions and truncations are
caused than in the former simpler scenario, impacting negatively on MTBF for
both the knee technique and MTW. For instance, the classic time coalescence
approach shows to not be able to scale with the system and the complexity of
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failures, causing an error on the MTBF estimate as high as 150% (Figure 5.(c)).
The MTW seems to be less vulnerable to the simulated scenario, however caus-
ing as much as 30% of truncations and collisions when analyzing the data from
262144 nodes. In this case, the error on the MTBF (Figure 4.(c)) is bigger than
in the former cases (22%)and interestingly, one order of magnitude lower than for
the knee rule. Also in this case, the MTBFerr estimated by MTW (about 27%)
is helpful in weighting the results, i.e., warning that the provided measurements
could be affected by an error as high as 27%.

6 Conclusions

This paper presented a heuristic for the temporal analysis of event logs of super-
computers. The approach is to be able to drive the analysis taking into account
the error committed on the final measurements. The approach has been validated
against 40 different synthetic logs generated for a variety of scenarios ranging
from smaller systems of 16384 nodes to large supercomputers of 262144 nodes
Experiments have been conducted for different extreme-cases failure assump-
tions and results have been compared with those obtained by using the standard
single time window coalescence heuristic.

MTW showed to be promising in reducing the MTBF error by i) reducing
the impact of collisions and truncations on the data analyzing the logs starting
from the single node subsystems, and ii) using an estimation of the MTBF error
on the measurement to drive the analysis. In difficult situations such as for the
largest system analyzed in this study, the approach showed to be more still
sensitive to collisions in the data, however reducing the error on the MTBF of
one order of magnitude if compared with standard time based coalescence. In
particular, results allows to conclude that when dealing with sporadic failures
for which the MTBF is >> than MTTR both the two tested heuristics perform
fairly the same. With reference to the used datasets, for large system and high
failure rates, the standard time coalescence fails in delivering confident results
causing an error reaching the 150%, while the MTW is able to avoid most of
the accidental collisions. Even in the case of higher committed error, the indices
computed by the MTW are valuable to weight the final results, therefore adding
an extra level of introspection to the measurements. To the best of our knowledge,
this is the first work proposing an approach to analyze supercomputer logs able
to estimate the error caused on the final measurement, such as for the MTBF.
Future work will consider augmenting the proposed MTW heuristic with data
mining and machine learning techniques [17, 3] that showed to be effective in
further reducing the impact of accidental collisions.

References

1. Guermouche, A., Ropars, T., Snir, M., Cappello, F.: Hydee: Failure containment
without event logging for large scale send-deterministic mpi applications. In: 2012
IEEE 26th International on Parallel Distributed Processing Symposium (IPDPS),
pp. 1216–1227 (May 2012)



One Size Does Not Fit All 315

2. Fu, S., Xu, C.: Exploring event correlation for failure prediction in coalitions of
clusters. In: SC 2007: Proc. of the 2007 ACM/IEEE Conference on Supercomput-
ing, pp. 1–12. ACM (2007)

3. Gainaru, A., Cappello, F., Snir, M., Kramer, W.: Fault prediction under the mi-
croscope: a closer look into hpc systems. In: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC
2012, pp. 77:1–77:11. IEEE Computer Society Press, Los Alamitos (2012)

4. Di Martino, C., Cinque, M., Cotroneo, D.: Assessing time coalescence techniques
for the analysis of supercomputer logs. In: IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012), pp. 1–12 (2012)

5. Buckley, M.F., Siewiorek, D.P.: A comparative analysis of event tupling schemes.
In: FTCS 1996: Proc. of the The Twenty-Sixth Annual Int. Symp. on Fault-
Tolerant Computing (FTCS 1996), p. 294. IEEE Computer Society, Washington,
DC (1996)

6. Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., Sahoo, R.: Bluegene/l failure
analysis and prediction models. In: Int. Conference on Dependable Systems and
Networks, DSN 2006, pp. 425–434 (2006)

7. Hansen, J., Siewiorek, D.: Models for time coalescence in event logs. In: Twenty-
Second Int. Symp. on Fault-Tolerant Computing, FTCS-22, Digest of Papers,
pp. 221–227 (July 1992)

8. Oliner, A., Stearley, J.: What supercomputers say: A study of five system logs. In:
37th Annual IEEE/IFIP Int. Conference on Dependable Systems and Networks,
DSN 2007, pp. 575–584 (June 2007)

9. Sahoo, R.K., Sivasubramaniam, A., Squillante, M.S., Zhang, Y.: Failure data anal-
ysis of a large-scale heterogeneous server environment. In: DSN 2004: Proc. of the
2004 Int. Conference on Dependable Systems and Networks, p. 772. IEEE Com-
puter Society, Washington, DC (2004)

10. Liang, Y., Sivasubramaniam, A., Moreira, J.: Filtering failure logs for a bluegene/l
prototype. In: DSN 2005: Proc. of the 2005 Int. Conference on Dependable Systems
and Networks, pp. 476–485. IEEE Computer Society, Washington, DC (2005)
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Abstract. IBM’s Blue Gene supercomputer has evolved through three genera-
tions from the original Blue Gene/L to P to Q. A higher level of integration has 
enabled greater single-core performance, and a larger concurrency per compute 
node. Although these changes have brought with them a higher overall system 
peak-performance, no study has examined in detail the evolution of perfor-
mance across system generations. In this work we make two significant contri-
butions – that of providing a comparative performance analysis across Blue 
Gene generations using a consistent set of tests, and also in providing a vali-
dated performance model of the NEK-Bone proxy application. The combination 
of empirical analysis and the predictive performance model enable us to not on-
ly directly compare measured performance but also allow for a comparison of 
system configurations that cannot currently be measured. We provide insights 
into how the changing characteristics of Blue Gene have impacted on the appli-
cation performance, as well as what future systems may be able to achieve. 

Keywords: High Performance Computing, Performance Evaluation, Perfor-
mance Modeling, Massively Parallel Processing. 

1 Introduction 

Since its introduction in 2004 IBM Blue Gene® has seen some of the largest systems 
deployed for High Performance Computing applications. Its approach has always 
been to provide leading overall system performance through extreme levels of paral-
lelism but with modest single-core performance. Blue Gene has also achieved leading 
levels of energy efficiency placing each generation at the top of the Green500 [1]. 

                                                           
* Work done while at IBM T. J. Watson Research Center. 
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In 1999 IBM was in the process of developing two massively parallel computing 
technologies known at that time as Blue Gene [2] and Blue Light [3]. They had similar  
3-D system topologies but had very different processor core designs and physical 
packaging. Blue Gene soon became known as Blue Gene/C and later as Cyclops64 [4] 
and subsequent systems have been produced [5]. Blue Light became known as Blue 
Gene/L (BG/L) – the first in the series of systems that we are concerned with here. 

A direct precursor to BG/L was the QCDOC system that was designed and imple-
mented with a 6-D nearest neighbor network for QCD calculations [6,7]. This system 
was deployed at Columbia University and Edinburgh University. A 128-node BG/L 
prototype that used early silicon was also produced in 2003 [8]. 

To date there have been three generations of Blue Gene systems which have ap-
peared at various scales throughout the world. Each successive generation has seen 
substantial gains in performance capabilities from increases in both levels of concur-
rency and in single-core performance. BG/L was the first [9], available in 2004, that 
used a dual-core processing node with a 3-D torus network for data transfer. The 
quad-core based BG/P was introduced in 2007 [10] and retained the 3-D system to-
pology. The latest Blue Gene, BG/Q, was introduced in 2011 [11], having 16 applica-
tion cores per node with a 5-D system topology [12]. 

In this work we provide a unique perspective on the evolution of Blue Gene 
through a performance analysis that examines sub-system characteristics, including 
memory and communication performance, as well as application level performance. 
The approach that we take combines both empirical analysis as well as predictive 
performance models that enable system configurations that cannot be measured to be 
analyzed and compared. We chose the NEK-Bone application as a vehicle to compare 
application performance. This, a proxy application, has been recently developed with-
in the DOE CESAR (Center for Exascale Simulation of Advanced Reactors) co-
design center [13] and represents a significant part of the NEK5000 CFD spectral 
element application [14]. At the core of NEK-Bone is a Conjugate Gradient (CG) 
solver that is a key component in many large-scale scientific applications.  

The main contributions of this work are: 

• a side-by-side performance comparison of all three generations of Blue Gene using 
a common set of tests, 

• the development and validation of a performance model of NEK-Bone that can be 
used to accurately predict performance at scales unavailable for measurement, and 

• an analysis of the relative performance of the Blue Genes on NEK-Bone using a 
combination of empirical analysis and performance modeling. 

The model for NEK-Bone not only validates the observed performance across the 
existing three generations of Blue Gene but can also be used gain insights into the 
design of possible future systems.  

The rest of the paper is organized as follows. In Section 2 we provide an overview 
of the three generations of Blue Gene as well as a comparison of their architectural 
characteristics. An empirical analysis of each system’s memory, communication, 
collectives, and O/S noise characteristics is given in Section 3. An overview of NEK-
Bone along with its performance model is described in Section 4. A comparison of the 
application performance on the three Blue Genes is provided in Section 5. Conclu-
sions from this work are discussed in Section 6.  
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2 Blue Gene Systems 

The IBM Blue Gene line of massively parallel supercomputers has been designed 
from the outset to be highly power efficient, scalable, reliable, with highly dense 
packaging. An overview of each of the three generations is given below and a sum-
mary of their architectural characteristics is listed in Table 1. Each of the systems has 
similar packaging: a single compute-card is comprised of 32 compute-nodes, 16 com-
pute-cards compose a mid-plane, and two mid-planes compose a single-rack. 
 
Blue Gene/L: The first generation, BG/L, used a compute-node ASIC that incorpo-
rated two embedded PowerPC 440 cores, 4 MB EDRAM as an on-chip cache and 
multiple networks. Each core is capable of two double-precision fused multiply-adds 
(four flops per cycle), and at 700 MHz each compute-node has a peak performance of 
5.6 Gflops. A compute-node has a modest main memory of either 512 MB or 1 GB. 
The integrated 3-D (XYZ) torus network for inter-node data transfers has six commu-
nication links, each running at a peak of 175+175 MB/s (send+receive). An indepen-
dent collective network has 3 ports per compute-node, with each running at 350+350 
MB/s. The largest installed BG/L system at LLNL consists of 104 racks (106,496 
nodes), with a peak performance of 598 Tflops.  
 

Blue Gene/P: The second generation, BG/P, saw an increase in the number of cores 
in each compute-node to four and used the PowerPC 450 with a 850MHz clock rate 
that still issued two fused multiply-adds per cycle. The node peak-performance in-
creased to 13.6 Gflops as did the on-chip cache to 8 MB. Each node has two memory 
controllers and can support either 2 or 4 GB of main memory. BG/P retained BG/L’s 
3-D network topology and separate collective network but both had higher communi-
cation speeds. The peak link speed of the 3-D torus network increased to 425+425 
MB/s and the collective network link speed increased to 850+850 MB/s. The largest 
installed system at Juelich has 72 racks with a peak performance of 1.003 Pflops.  
 

Blue Gene/Q: The third and latest generation, BG/Q, has further increased the core 
count per compute-node to 18. Though each core is identical in its functionality, only 
17 are used to increase manufacturing yield. 16 cores are available to applications 
with the 17th dedicated to running a light weight OS. Each of the PowerPC A2 cores 
can support four threads using 4-way Simultaneous Multi-Threading (SMT) and each 
can issue at most one instruction, integer or floating-point, per cycle. Each core con-
tains a quad floating-point processing unit (QPU) that can perform up to four double-
precision fused multiply-adds per cycle, resulting in a peak-performance of 204.8 
Gflops per node. The on-chip L2 cache increased to 32 MB, and is shared by all 
cores. Each node has 16 GB of main memory. BG/Q’s system network has a 5-D 
(ABCDE) toroidal topology and an increased peak link speed of 2+2 GB/s for an 
aggregate of 20+20 GB/s bandwidth from a node. The fifth (E) dimension is always 
two wide, and contained within a compute-card to minimize wiring. In addition, the 
function of the two earlier generations collective network has been integrated into the 
torus network. A BG/Q rack is water-cooled unlike BG/L and BG/P that are air-
cooled. The largest system at LLNL has 96 racks and a peak of 20 Pflops. 
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Table 1. Summary of Blue Gene Architectural Characteristcs 

System Blue Gene/L Blue Gene/P Blue Gene/Q Year of Introduction 2004 2007 2011 Largest system (Racks) 104 (LLNL) 72 (Juelich) 96 (LLNL)  Largest system  (nodes) 106,496 73,728 98,304 Largest system (Peak Pf/s) 0.6 1 20 
Processor core        type PowerPC 440 PowerPC 450 PowerPC A2     Clock speed (GHz) 0.7 0.85 1.6     Threads 1 1 4     Flops/cycle 4 4 8     Peak performance (Gf/s) 2.8 3.4 12.8     L1 cache I+D 32KB+32KB 32KB+32KB 16KB+16KB     L2 shared cache 4MB 8MB 32MB 
Node        Cores 2 4 16     Peak performance (Gf/s) 5.6 13.6 204.8     Memory (GB) 0.5 - 1 2 - 4 16     Memory channels per node 1 2 2     Memory speed DDR-350 DDR2-425 DDR3-1333     Peak memory bandwidth (GB/s) 5.6 13.6 42.6 
System Network        Topology 3D torus 3D torus 5D torus     Peak link speed (GB/s) 0.175 + 0.175 0.425 + 0.425 2.00 + 2.00     Aggregate bandwidth (GB/s) 1.03 +1.03 2.55 + 2.55 20.0 + 20.0     Topology of largest system 104×32×32 72×32×32 16×16×16×12×2 
Collective Network        Type Independent Independent Integrated in torus     Collective latency (72 racks) 6.0 µs 5.0 µs 6.0 µs     Collective bandwidth (per-port) 0.325 + 0.325 0.850 + 0.850 2.0 + 2.0 

3 Performance Evolution of Sub-systems 

Our approach, prior to the analysis of application performance on any system, is to 
use microbenchmarks to examine separately important system characteristics that 
have a direct impact on performance. Here we examine the: memory bandwidth, OS 
noise, point-to-point and collective communication, and network congestion. 

Three Blue Gene systems available at IBM T.J. Watson Research Center were used 
to obtain all empirical data. Each system contained either 16K or 32K cores. The 
BG/L system consisted of 16 racks, the BG/P had four, and the BG/Q consisted of a 
single rack. Their configurations, compiler and software driver/MPI versions are 
listed in Table 2. Note that the process allocation ordering on BG/L and BG/P are in 
terms of their X, Y and Z dimensions and on BG/Q in terms of its 5-D network la-
beled as A, B, C, D and E. In all cases processes are packed within a node. 

3.1 Memory Performance 

The memory bandwidth of each node was examined using the MPI version of the 
STREAM benchmark [16].  The  achieved  aggregate memory  bandwidth is shown in 
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Table 2. Configurations of the test systems 

 BG/L BG/P BG/Q Racks 16 4 1 Nodes 16K 4K 1K Cores 32K 16K 16K Memory / Node (GB) 1 4 16 Network Topolgy 32×32×16 16×16×16 8×4×4×4×2 Min. node allocation 512 32 32 Allocation ordering TXYZ TXYZ ABCDET Driver/MPI verions V1R3_300 V1R4M2_200 V1R1M1 Compiler versions XLC 9.0 XLF 11.1 XLC 9.0 XLF 11.1 XLC 12.1 XLF 14.1 
 
Fig. 1(a) when varying the number of cores used per node. The maximum bandwidth 
observed for a single node is 2.1 GB/s, 9.7 GB/s and 27.8 GB/s for a BG/L, BG/P and 
BG/Q node respectively. It can be seen that the aggregate bandwidth generally in-
creases with the core-count but achieves a maximum when using fewer cores than the 
maximum available. The same data is presented in Fig. 1(b) but in terms of memory 
bandwidth per-core. The per-core bandwidth on BG/Q shows a consistent perfor-
mance up to 6 cores before it degrades to 43% of its peak. Interestingly, the per-core 
bandwidth on BG/P exceeds that of BG/Q when using over 11 cores per node. 

           
                  (a) aggregate bandwidth          (b) per-core bandwidth 

Fig. 1. Memory Bandwidth (STREAM) 

3.2 Operating System Noise 

The impact of the OS on each core was examined using P-SNAP [15]. This uses a 
fixed-work-quantum approach in which a single computation with known expected 
run-time (e.g. 1ms) is repeatedly measured. The computation is measured for several 
million iterations and the actual time taken to complete each is recorded. The observa-
tions were found to be highly consistent across all nodes within each system with an 
average slow-down of 0.035%, 0.06%, and 0.01% on BG/L, BG/P and BG/Q respec-
tively. All systems exhibit levels of noise that are much lower than on other com-
modity-based supercomputers. In particular the virtually zero level of noise on BG/Q 
is achieved through the dedication of its 17th core to offload OS activities. 
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3.3 Point-to-Point Communication Performance 

The MPI point-to-point performance is shown in Fig. 2 between a pair of processors 
on adjacent nodes. The message latency in Fig. 2(a) and bandwidth is shown in Fig. 
2(b). The small message latency is comparable across the three systems at 2.5μs, 
2.7μs, 2.4μs and the large message bandwidth is 0.154GB/s, 0.374GB/s, 1.77GB/s on 
BG/L, BG/P and BG/Q respectively. Note that nodes that are adjacent in the E dimen-
sion on BG/Q (node 0 and 1 in this case) can use both ±E communication channels 
and hence achieve double bandwidth compared to communication with other nodes. 
 

           
             (a) message latency                        (b) message bandwidth 

Fig. 2. Unidirectional MPI point-to-point performance 

The MPI point-to-point performance was also measured from core 0 in the first al-
located node to core 0 in each of the other nodes in each system. This test exposes the 
topology of each system’s network and results in the interesting curves in Fig 3. On 
BG/L the latency varies from a minimum of 2.48μs to 5.45μs in a saw-tooth wave-
form at a high frequency of width 32 (the number of nodes in a row on the test sys-
tem), and low frequency of 1024 (the number of nodes in an XY plane). Similarly on 
BG/P the waveform reflects the 16 node row size, and 256 XY plane size with a la-
tency that varies between 2.68μs and 3.83μs. The 5-D topology of BG/Q results in a 
more consistent latency of between 2.35μs and 2.68μs. The per-hop latency is approx-
imately 100ns, 60ns and 30ns on BG/L, BG/P and BG/Q respectively. 

 

Fig. 3. 0-byte latency from node 0 to all others (first 1024 nodes shown)  
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3.4 Collective Performance 

MPI_barrier and MPI_allreduce (1-word) performance is shown in Fig. 4 using all 
cores in a node. Note that the minimum node count for BG/L and BG/P is that of the 
minimum allocation size. A software collective is used when using less than the allo-
cated number of nodes on these systems rather than the hardware collective network 
and hence results in much larger times. Barrier is slightly faster than allreduce on all 
systems. When using 1,024 nodes the time for allreduce is similar across the three 
systems at 6.4μs, 5.6μs, 5.4μs on BG/L, BG/P and BG/Q respectively. 
 

           
                      (a) Barrier                           (b) Allreduce 

Fig. 4. Performance of collectives on the three systems 

3.5 Communication Pattern Performance 

The shift communication pattern was used to analyze the performance of each system’s 
network. In this each processor Pi sends a message to Pi+d for all processor-cores i at a 
logical shift distance d apart. This is measured for a range of distances, d=1..n, where n 
is the number of processes. A different communication pattern results for each shift 
distance. Such patterns closely correspond to those that occur in regular dense grid 
applications when exchanging boundary data between sub-grids.  

Several effects contribute to the bandwidth observed for the shift pattern as shown 
in Fig. 5. The mapping of the logical communication pattern onto the physical net-
work results in different degrees of network contention that varies across machines 
due to their different network configurations (Table 2). Thus each pattern results in a 
different network contention and in different bandwidths which can be clearly seen 
for the large message (1MB) case. The peak bandwidth, when there is no contention 
in the network, corresponds to the single point-to-point peak of each system. The 
maximum contention corresponds to halve of the maximum topology dimension size 
in each of the system – this is 16 for BG/L (half of both the X and Y dimensions), 
eight for BG/P, and four for BG/Q (half of the A dimension). The achieved communi-
cation bandwidth shown in Fig. 5 is approximately equal to the peak divided by the   
contention in the network. BG/Q’s higher dimensional torus network results in the 
lower contention factors and hence a smaller range between the max and min com-
pared with BG/L and BG/P. It is also interesting to note that the observed bandwidth 
for small messages also undergoes similar contention as for large messages on BG/L 
and BG/P. But on BG/Q the same bandwidth is achieved no matter the contention.  
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        (a) BG/L 

 
         (b) BG/P 

 
         (c) BG/Q 

Fig. 5. Observed bandwidth per direction for the shift communication (one processor per node) 

4 Case Study: NEK-Bone 

4.1 Overview of NEK-Bone 

NEK-Bone is a proxy application developed as part of the CESAR (Center for Exas-
cale Simulation of Advanced Reactors) co-design center [13]. This mini-app was 
chosen to be modeled and studied based on our performance modeling methodology 
[17], in order to allow the creation of a validated model to analyze multiple architec-
tures. While NEK-Bone is a stripped down version of the full NEK5000 developed at 
Argonne National Laboratory, it resembles the basic structure of the full code and 
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uses exactly the same communication substrate as the full application. At the heart of 
NEK-Bone is a Conjugate Gradient (CG) solver that uses a simplified pre-
conditioner. The problem size can be configured in terms of the polynomial degree, 
the number of MPI processes, and the number of elements per process. 

4.2 Performance Model of NEK-Bone 

The normal mode of operation of NEK-Bone is that of weak-scaling in which the glob-
al problem size grows with the processor count and the size per processor remains 
constant. The main data structure processed is determined by two parameters: L that 
controls the polynomial degree of the calculation, and N the number of elements as-
signed to each MPI rank or process. The size of each element is L3, and the problem 
size per process is N.L3. The total number of processes consists of a logical 3-D ar-
rangement of PX×Py×Pz. On a single process there are NX×Ny×Nz (=N) elements. The 
arrangement of elements in a single process is kept as close to a cube as possible.  

The main inter-process communication in NEK-Bone consists of boundary  
exchanges between logically adjacent processor-cores using NEK’s jl gather-scatter 
routines. The boundaries consist of a single layer of cells of the local volume that is 
communicated in all three dimensions. Note that the majority of the communication 
traffic takes place with processors that are at a logical distance of  ±1 (for X dimension 
boundary exchanges), ± PX (for Y), and ± PX*Py (for Z). There are also communica-
tions with diagonally neighboring processors in 3-D that results in a total of 26  
communications from a processor to its neighbors. A total of 6 surface (a plane of grid-
points), 12 edge (a line of grid-points), and 8 corner communications result.  

The performance model reflects the processing that is contained within an iteration 
of NEK-Bone’s CG-solver: local computation, boundary communications between 
processors, and three one-word allreduce collective communications. The model does 
not predict the number of CG iterations but rather predicts the time for an iteration. 
The overview of the model is as follows: 

 

The compute time is given by Tcompute=N.Telem(Ppernode), where the time per element, 
Telem(Ppernode), is measured on a single node of a system while varying the number of 
cores per node, Ppernode, from 1 to the maximum. The collective time is given by  
Tcollective(P)=3.Tallreduce(P) where the Tallreduce(P) is the measured time for an 
MPI_Allreduce of size one word on P processor-cores. The boundary communication 
time is taken to be the summation of the 26 boundary communication times: 

Tboundary (P, N ) = L Si( ) + Ci .Si / B Si( )( )
i =1

26

  

where L(Si) and B(Si) are the effective latency and bandwidth across the system net-
work for a message of size Si, and Ci is the maximum contention across a communica-
tion channel in the network for communication i. The shift microbenchmark was used 
to determine the effective latency and bandwidth. The contention factors are deter-
mined by the number of inter-node communications that are done by the cores in a 
node in each of the communication stages. This is determined by the number of cores 
per node and by the logical arrangement of processes at a particular scale.   

Titer = Tcompute P,N( ) + Tcollective (P) + Tboundary (P,N)
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Table 3. Values for Telem input to theNEK-Bone performance model 

Telem (μs) BG/L BG/P BG/Q 
(SMT1) 

BG/Q 
(SMT2)

BG/Q 
(SMT4)1 process/node 227 224 220 2 process/node 250 227 223 2614 process/node 231 226 270 3848 process/node 232 282 39816 process/node 240 292 41432 process/node   309 45064 process/node 545

4.3 Validation of NEK-Bone Model 

The values for Tcollective(P), L(Si) and B(Si) were presented in Fig. 4 and 5 respectively. 
NEK-Bone was run varying the polynomial degree (L=8,10,12) and the number of 
elements (N=1,2,4,8,16,32) per core. In addition the number of threads per core was 
varied (SMT=1,2,4) on BG/Q. The time per element, Telem(Ppernode), Table 3, was 
measured on a single node, assigning 32 elements to each processor-core and using 
between one and the maximum number of cores, and on BG/Q varying the SMT level.  

A sub-set of the measured and modeled performance of NEK-Bone is shown in  
Fig. 6(a-c) for L=10, and N between 1 and 16. The performance model captures the full 
behavior of the code’s performance with high accuracy. The mean absolute percentage 
prediction errors were 5.4%, 4.2%, and 2.9% on BG/L, BG/P, and BG/Q respectively. 

 

           
                        (a) BG/L                      (b) BG/P 
 

           
       (c) BG/Q                      (d) BG/Q with SMT=1,2,4 

Fig. 6. Measured and modeled performance of NEK-BONE (L=10)  
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Also shown in Fig. 6(d) is a comparison showing the use of BG/Q’s Simultaneous 
Multi-Threading (SMT) that supports up to four threads. For this comparison the num-
ber of elements per thread was kept constant at 8. The iteration time increases only 
slightly between the use of SMT=1 and SMT=2 even though twice the amount of work 
is being done. The iteration time increases by just over 2x when using SMT=4 even 
though quadruple of the amount of work is done.  

5 Performance Analysis 

We compare the iteration time of NEK-Bone’s CG solver across the three generations 
of Blue Gene in Fig. 7(a). In this analysis a combination of both empirical data, up to 
the size of the test systems, and modeled data is used allowing comparisons to be 
made at larger scales. The problem size per node is fixed at 64 by varying N per 
process on each system (N=32 on BG/L, N=16 on BG/P, N=4,2,1 on BG/Q using 
SMT=1,2,4 respectively). This allows for a direct comparison on a node-to-node basis 
across systems. L was fixed at 10. It can be seen that there is some variation in the 
iteration time on BG/L, especially at large node counts, corresponding to differences 
in the amount of network contention at certain scales. For the same reason, the itera-
tion time on BG/P also increases at large scales. However the iteration time on BG/Q 
increases only slightly due to the lower contention in its higher dimensional torus. 

The relative performance between BG/P and BG/Q to BG/L is shown in Fig 7(b) 
and contains the same scaling effects as the raw data in Fig. 7(a). The improved per-
formance on BG/P compared to BG/L peaks at 2.8x but decreases to 1.8x at 256K 
nodes. The improved performance on BG/Q compared to BG/P varies between 6x and 
8.5x using one thread per core. When using SMT2 or SMT4 the performance increas-
es to ~16x and ~20x respectively. This performance comparison shows that the use of 
SMT on BG/Q is beneficial and whose impact persists at large-scale.  

6 Related Work 

This work is a first performance comparison of the three generations of IBM’s Blue 
Gene. As far as the authors are aware there is currently no other published analysis of 
Blue Gene systems other than detailed descriptions of their architecture and peak 
capabilities. This includes [18,19]. Microbenchmarks for analyzing communication 
performance are widespread in terms of point-to-point messaging and collective 
communication. Such analysis is often coupled with application performance under 
varying configurations but often lacks modeling or simulation that assists in relating 
the performance of architectural characteristics to the observed application perfor-
mance. Recent work on the empirical analysis of large-scale systems includes clusters 
using Intel processors [20], Cray systems [21], and system comparisons [21,23]. 

There are a number other works that use modeling approaches similar to our own 
[22,24] including that in use for the exploration of extreme scale systems e.g. [25]. 
Many of these approaches are often limited in their predictive accuracy, and have not 
been through an extensive validation process on current systems. In addition a number 
of simulators are in development, e.g. [27-28] that promise high accuracy for large-
scale systems but often require high runtime or large resources to provide predictions.  
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             (a) Iteration time                           (b) Relative performance 

Fig. 7. Performance comparison of NEK-Bone across Blue Genes 

7 Conclusions 

The Blue Gene series of systems has seen a tremendous growth in processing capabil-
ity that has resulted in significant increases in achievable performance. In this work 
we have analyzed all three generations: BG/L, BG/P and BG/Q using a set of micro-
benchmarks to analyze individual characteristics of each system, and the NEK-Bone 
application using a combination of both empirical analysis and performance model-
ing. Our analysis has shown that there has been significant improvement in each gen-
eration especially in terms of their processing and communication capabilities though 
the latency for collective and point-to-point communication has only reduced slightly. 

In particular the peak processing capabilities of a node has substantially increased 
from 5.6GF/s to 204.8 GF/s from BG/L to BG/Q, and the achievable inter-node com-
munication bandwidth has risen from 154MB/s to 1.75GB/s for a single point-to-point 
communication while at the same time the number of communication channels from 
each node has increased from 6 (3-D torus) to 10 (5-D torus). Our analysis of NEK-
Bone has shown a similar improvement of processing capabilities by a factor of 1.8x 
from BG/L to BG/P, and by a factor of 20x from BG/L to BG/Q.  

The model for NEK-Bone not only validates the observed performance across the 
existing Blue Gene generations but also is being actively used to provide insights into 
the design of possible future systems. 
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Abstract. Nowadays, HPC systems emerge in a great variety including com-
modity processors with attached accelerators which promise to improve the per-
formance per watt ratio. These heterogeneous architectures often get far more
complex to employ. Therefore, a hardware purchase decision should not only take
capital expenses and operational costs such as power consumption into account,
but also manpower. In this work, we take a look at the total cost of ownership
(TCO) that includes costs for administration and programming effort. From that,
we compute the costs per program run which can be used as a comparison metric
for a purchase decision. In a case study, we evaluate our approach on two real-
world simulation applications on Intel Xeon architectures, NVIDIA GPUs and
Intel Xeon Phis by using different programming models: OpenCL, OpenACC,
OpenMP and Intel’s Language Extensions for Offload.

Keywords: TCO, heterogeneous architectures, GPU, Intel Xeon Phi, program-
ming effort, OpenCL, OpenACC, OpenMP, Intel LEO, energy efficiency.

1 Introduction

On the way to exascale computing, the HPC community is aiming at increasing system
performance while keeping a tight rein on its power consumption. To this end, perfor-
mance per watt has become a common metric to compare different hardware architec-
tures and nowadays heterogeneous HPC systems – combining commodity processors
with accelerators – are in front of this efficiency comparison [1].

However, relying solely on the (HPL) performance per watt evaluation and a low
energy bill is not advisable for hardware purchase decision making in university com-
puting centers. Especially, their needs concerning the applications should signify for
the assessment since they influence power consumption and performance. In this case,
comparing comprehensively total costs of ownership (TCO) of different systems is an
appropriate approach. While TCO calculations comprise numerous parameters such as
acquisition and operational costs, the manpower costs for programmers are often not
taken into account. The programming effort that is needed to port a code to and fully
exploit the desirable hardware may significantly differ depending on the complexity of
a (heterogeneous) architecture and of its programming model.

In this paper, we make a first approach to quantify these total costs including the pro-
gramming effort for different hardware architectures and programming models. Thereby,

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 330–342, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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we want to investigate the question whether it is preferable to buy accelerators. Assum-
ing a given fixed one-time budget and a homogeneous application scenario, we com-
pute the cost per program execution for several hardware architectures and use it as
a comparison metric. We illustrate our approach in a case study based on our experi-
ence at RWTH Aachen University. We look at Intel Sandy Bridge servers and compare
them to nodes with an attached NVIDIA Fermi GPU or Intel Phi coprocessor. Our case
study considers two real-world simulation codes from the fields of engineering and bio-
medicine that serve as a basis for values in programming effort, performance and power
consumption. We show results for the following programming approaches: OpenMP on
Intel servers, a combination of OpenMP and Intel’s Language Extensions for Offload
(LEO) on Intel’s Xeon Phi and OpenCL and OpenACC on NVIDIA’s Fermi GPU.

The paper is structured as follows: Sect. 2 covers related work. In Sect. 3, we explain
our TCO perspective and introduce the cost per program run as comparison metrics be-
tween system types. In the case study in Sect. 4, we investigate whether the accelerators
effort pays off. Finally, we summarize our findings in Sect. 5.

2 Related Work

In data center total ownership costs, different metrics were established. Carlyle [2] looks
at node hour cost for comparison of community centers with cloud computing services,
while Turner and Seader [3] propose a combination of cost per square foot and cost
per watt due to recent power and cooling considerations. Applying cost per watt, Pat-
terson et al [4] compare different data center density designs while only giving some
major cost deltas. In contrast, we compute absolute total ownership costs including
comprehensive capital and operational expenses (called “True TCO” by Koomey [5])
and further compare different system types by the metric “cost per program run” given a
fixed investment and system lifetime. Basing on our attempt to estimate the TCO of the
RWTH Aachen University’s HPC equipment in [6], we additionally quantify manpower
costs for operating and programming different compute nodes. While administration
effort is considered in few TCO calculations (e.g. [5]), programming effort is rarely
investigated as a quantified TCO aspect for computing centers. Kuck [7] elaborates on
productivity issues in HPC that also include development effort and defines TCO as the
sum of total cost of purchase (TCP), total cost of operation and maintenance (TCOM)
and total cost of applications development (TCAD). However, his approach misses to
quantify TCO in real numbers. Simultaneously, software estimation models are aware
of development and maintenance effort while not putting hardware costs into the equa-
tion [8]. The emergence of accelerators in high-performance technical computing in-
creases the TCO complexity and makes a fair comparison to nodes with commodity
processors challenging. In previous works [9,10], we have seen the importance of de-
velopment productivity especially on (GPU) accelerators, also dependent on the used
programming model and the kind of application. CAPS’ case study pamphlet [11] gives
a short overview of the economics of GPU code migration and draws the conclusion that
GPUs are worthwhile when gathering at least a two-fold speedup. Besides a carefully
investigated TCO calculation of Intel servers and an NVIDIA Fermi GPU, we will also
take a look at the just recently released Intel Xeon Phi.
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3 Total Cost of Ownership

“Total cost of ownership represents the cost to the owner to purchase/build, operate
and maintain a data center” [12] and comprises numerous parameters such as capital
expenses, energy and maintenance costs. Defining and quantifying all parameters is a
challenging task that we have just started to tackle with respect to the RWTH’s high-
performance computing center. Our focus is to include administration and especially
programming efforts for novel heterogeneous architectures into the TCO calculation.
In the following, we divide TCO in one-time and annual costs and differ between per-
node and per-node-type costs that arise for each compute device or just once for each
system type, respectively. Table 2 gives an overview of all components. For modeling
these TCO parameters, a spreadsheet is publicly available on our webpage [13].

3.1 One-Time Costs

One-time costs comprise the initial expenses for hardware, building and infrastructure,
but also for manpower. Concerning hardware costs, we look at computing facilities,
whereby costs for storage and networking can be included into the infrastructure com-
ponent. Manpower costs arise for the installation of an operation system (OS), the
environment setup and for developing or porting user applications that leverage the
investigated architecture kind. They may differ highly depending on the system type,
ease of use of the programming language, availability of tools and the base knowledge
of the employees. The latter makes it also challenging for fair comparisons and is an
issue that should be further addressed in future. All together, we define the one-time
costs Cot by

Cot = CA · n+ CB

where CA is the sum of all one-time costs per node, CB the sum of all one-time costs
per node type and n is the number of nodes that can be bought by a given investment I .

3.2 Annual Costs

Annual costs aggregate expenses for maintaining the hardware, the OS, the software
environment and the user applications, but energy costs got the most attention in recent
exascale discussions. To this end, we have to keep in mind that power consumption
rises with performance and that in an accelerator machine the host processor also uses
energy. The costs per anno Cpa are given with CC the sum over all annual costs per
node, CD the sum over all annual costs per node type and n the number of nodes:

Cpa = CC · n+ CD

Combining both cost types, we define the total cost of ownership as a function of the
number of nodes n and the lifetime τ of the system:

TCO(n, τ) = Cot + Cpa · τ = (CA + CC · τ) · n+ CB + CD · τ (1)

Given a fixed budget I and lifetime τ (which is between 3-6 years in most HPC centers),
we can compute the number of nodes n by solving (2) for n.

Investment I = TCO(n, τ) (2)
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3.3 Costs per Program Run

On the basis of the TCO (1) for each architecture type, we investigate a comparison
metric that further takes the gained application performance or rather the parallel run-
time into account. As a starting point, we assume that just one application runs all the
time. Thus, we can compute the number of application executions for each system type
nex and the costs per program run Cppr for n nodes by:

Cppr(n, τ) =
TCO(n, τ)

nex(τ) · n with nex(τ) =
k · τ
tpar

Here, τ is the system’s lifetime, tpar is the parallel runtime of the application and k
denotes the system usage rate in percent. The latter is introduced to account for addi-
tional scheduling times, maintenance periods or unreliability of the system. The costs
per program run Cppr can serve as comparison metric for different architecture types.

One interesting aspect for comparison is the break-even point with respect to invest-
ment, i.e. what investment is needed so that one system type (and programming model)
is beneficial over another (given a fixed lifetime). We can derive it by looking for zeros
in the difference for costs per program run of two system types X and Y:

CpprX(nX , τ)− CpprY (nY , τ) = 0 (3)

Using (2), we can extract n as a function of I and substitute it into the equation above.
Then, we get as break-even point Ibe:

Ibe =
nexY (CAX + CCXτ)(CBY + CDY τ)− nexX(CAY + CCY τ)(CBX + CDXτ)

nexY (CAX + CCXτ)− nexX(CAY + CCY τ)
(4)

4 Case Study on Accelerators for Technical Computing

Today’s hype for accelerators motivates us to evaluate their benefit (or “pain”) compared
to Intel servers from a TCO perspective.

4.1 Real-World Applications

For the integration of manpower efforts, performance and power consumption into the
TCO calculation, we look at two different real-world simulation codes since results
simply based on benchmarks like HPL can be misleading. We chose kernels from these
software packages that are generally suitable for accelerators, while keeping in mind
that many applications are not. The kernels are small enough so that we could imple-
ment different versions with acceptable effort.

Neuromagnetic Inverse Problem. The application NINA comes from the field of bio-
medicine, or more precisely, magnetoencephalography. The arising neuromagnetic in-
verse problem deals with the reconstruction of focal activity in the brain and can be
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solved by means of a p-norm minimization. For this unconstrained nonlinear optimiza-
tion problem, the software package of Bücker et al [14] employs first- and second-order
derivatives with automatic differentiation. It is implemented primarily in MATLAB,
whereas the objective function, its first- and second-order derivatives are written in C to
enable parallel computing. We parallelized these three kernels that include the computa-
tions of matrix-vector products using a matrix of dimensions 128×512000. The kernels
account for ∼ 100 kernel code lines and 90 % of the whole application’s runtime.

Simulation of Bevel Gear Cutting. The engineering application KegelSpan [15], writ-
ten in Fortran and developed by the Laboratory for Machine Tools and Production Engi-
neering (WZL) at RWTH Aachen University, is a 3D simulation software for the bevel
gear cutting process and applied in the automotive industry. It aims at minimizing the
number of expensive tool changes in the bevel gears manufacturing process by enabling
a detailed tool load and wear analysis. For the optimization of manufacturing param-
eters, the intersection of tool and gear is computed repeatedly where each run iterates
million to billion times. Although this part is the biggest hotspot in the KegelSpan
package, it only accounts for approx. 25 % of the serial runtime. Since its industry cos-
tumers have had GPU hardware at their disposal anyway, we still started accelerating
this kernel [9] (∼ 150 lines in serial code) using the portable OpenCL. However, for
our TCO calculations, we will assume that this module accounts for 90 % of the whole
application runtime to illustrate our statements and not be restricted by Amdahl’s law.

4.2 TCO Components

The following numbers and assumptions about the TCO components are based on our
experience at the Center for Computing and Communication at RWTH Aachen Univer-
sity. Here, one possible scenario may belong to our integrative hosting activities that
allow other RWTH members to integrate their HPC equipment into our cluster environ-
ment. We assume that an RWTH professor with a certain budget wants to buy compute
nodes to accelerate his one research application (i.e. given an homogeneous application
landscape). At the computing center, we want to give the professor an estimation which
architecture is worth to be purchased by taking also programming effort into account.

System Types. We start by gathering results for single compute nodes and assume that
results can be extrapolated to a cluster amount using (2). Furthermore, investigations
that include network communication across nodes and the associated programming ef-
fort (e.g. MPI) are left for future work. The different system types (ST) are running
Scientific Linux 6.3 and are given as follows:

ST1: As an X86 base, we take an Intel Sandy Bridge server which has widely been
accepted as a cost-efficient architecture for compute services. It contains two-socket
Intel Xeon E5-2650 CPUs running at 2.00 GHz with a total of 16 cores and 32 GB
memory.

ST2: This accelerator architecture contains an NVIDIA Tesla C2050 (Fermi) GPU with
ECC enabled. The host system consists of a 4-core Intel Westmere processor (Xeon
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Table 1. Programming effort (in man-days) and kernel speedup w.r.t. the serial versions of NINA
and KegelSpan. The power consumption (in watt) is taken from the whole system during the
kernel execution.

OMP-simp/ST1 OMP-vec/ST1 OCL/ST2 OpenACC/ST2 LEO/ST3

N
IN

A Effort 1 5 7 4 6
Speedup 6.58 7.56 9.92 3.09 11.33
Power 191.99 200.56 284.09 293.23 277.65

K
eg

el
Sp

an

Effort 0.5 3.5 5 1.5 4.5
Speedup 15.47 22.55 46.65 47.02 44.16
Power 166.17 155.03 249.64 227.36 230.87

E5620@2.40 GHz) with 12 GB of memory. Since we did not have access to an up-to-
date NVIDIA Kepler GPU at time of writing, it will be subject of future investigations.

ST3: The second accelerator type comprises an Intel MIC coprocessor – an Intel Xeon
Phi 5110P with 60 cores running at 1.053 GHz and 8 GB memory. For sound compar-
isons, we just assume that this machine has the same host configuration as the NVIDIA
GPU system. We adapted accordingly hardware prices and power consumption, but
took the real-measured kernel runtimes and speedups since the host processor does not
significantly contribute to these results. In real life, the host system equals ST1 and it
contains two Intel Phis of the given type. As it is an early machine, not all settings
(especially concerning energy) may be optimally configured yet.

Programming Effort. In previous works [9,10], we investigated the impact of devel-
opment effort in accelerating code regions and expressed it by the number of lines
of kernel code added or modified. Now, we try to quantify this effort in man-days
(see Tab. 1) for inclusion into real-cost calculations and thereby put them into per-
spective on our way towards improving future purchase decisions. Therefore, we mea-
sured the development time of the first parallel version for both applications. It includes
time for programming, debugging and analysis and therefore is also dependent on the
available tools supporting the programming model. Efforts are based on a moderately-
experienced programmer who already knows details on the hardware architecture and
the programming paradigm. For the following implementations, we could directly apply
some code lessons learned during the first implementation. Therefore, we added some
approximated time to the real-measured one to be able to compute costs independently.
The development days in Tab. 1 correspond to each best-effort version. We developed
five parallel variants of each kernel. We started with a simple OpenMP version (OMP-
simp) by applying OpenMP directives to the original serial code. The OMP-vec ver-
sion includes code restructuring for (auto-)vectorization and further parallelization with
OpenMP. Programming an accelerator puts much more restrictions on programmability.
In the case of a GPU, the number of threads has to be very high to overcome latencies,
and the brand-new Intel Xeon Phi only performs well if many threads execute highly-
vectorized code. For GPUs, we tuned the application with OpenCL (OCL) by reducing
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data transfers and using (if applicable) GPU on-chip memory, pinned memory, asyn-
chronous execution and more. In the OpenACC version, we used directives to offload
code regions to the GPU and tried to get the code as close as possible to the OpenCL
version. For the Xeon Phi, we combined OpenMP with Intel’s LEO while decreasing
data transfers, applying data asynchronous movement and focusing on vectorization and
vector alignment. Additional code changes must be applied to overcome small nearly-
serial parts that were not an issue for tens of threads but became one for hundreds. Our
GPU and Phi versions perform the compute-intensive kernels on the accelerator while
the host does not contribute to performance gains. However, we will deal with estima-
tions for full heterogeneous versions in Sect. 4.3. Going into depth in Tab. 1, we see that
restructuring code for vectorization is time consuming. Especially for Xeon Phi, that is
said to be easily programmable, the development effort rises as vectorization is really
important to get performance. However, assuming that a highly-vectorized code ver-
sion does already exist for the host, the denoted programming effort can be decreased.
Furthermore, low-level GPU code development needs more manpower than paralleliza-
tion on CPUs (OMP-simp, OMP-vec). Only directive-based GPU programming (with
OpenACC) may decrease this effort.

Performance. The reported performance results include data transfers between host
and device, kernel execution times and the overhead introduced by the need to adapt
the data structure. The speedups shown refer to the kernel runtimes, but we use whole
application speedups for the TCO calculation. For comparisons, the speedup values are
given with respect to the serial version measured on ST1. However, in the following
examinations, we compare appropriately performance to the OMP-simp version which
uses all cores of the hardware. OpenMP (ST1) and Xeon Phi (ST3) results are gathered
using the Intel compiler 13.0.1. We started 16 threads on ST1 and 177 and 118 threads
on Xeon Phi (ST3) for NINA and KegelSpan best-effort results, respectively. OpenCL
(ST2) relies on CUDA toolkit 5.0 and OpenACC (ST2) on the PGI compiler 12.9 1 that
uses CUDA toolkit 4.1. Optimization flags are used as well (e.g. -O3 or fastmath). For
both codes, the kernel speedups we can achieve on any accelerator are about 2-4x rela-
tive to the baseline OMP-simp implementation on ST1. While most performance results
are as expected, we notice that NINA’s OpenACC performance is rather disappointing.
The reason probably lies in not yet fully-implemented OpenACC features in the PGI
compiler (more details in [10]) which might be tackled in future compiler releases.

RWTH One-Time Costs. Diving into Tab. 2, the TCO components are listed based
on the RWTH environment and with respect to the NINA application. Considering the
hardware purchase, we use list prices for current generation servers and workstations,
kindly provided by the company Bull in January 2013. For evaluations of TCO calcula-
tions with numbers from other sources, we provide the editable TCO spreadsheet [13].
In order to estimate the infrastructure costs for housing the compute devices, we ex-
press the actual one-time building costs as annual costs of 200,000e [6] over 4 years
of system lifetime. Breaking down this total annual cost per node, we divide it by a

1 Recent PGI compiler versions (13.1 - 13.3) were not used due to a compiler problem that
evokes a performance loss in our case.



Accelerators for Technical Computing: Is It Worth the Pain? A TCO Perspective 337

Table 2. One-time and annual costs in e for the NINA application

one-time costs Cot annual costs Cpa
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ST1 OMP-simp 7,137 0 0 0 286 300 33 78 317 0 0 0
ST1 OMP-vec 7,137 0 0 0 1,429 300 33 78 322 0 0 0
ST2 OCL 7,713 0 0 0 2,000 324 49 78 421 0 0 0
ST2 OpenACC 7,713 0 0 0 1,143 324 49 78 506 0 0 0
ST3 LEO 9,644 0 0 0 1,714 405 49 78 465 0 0 0︸ ︷︷ ︸
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︸ ︷︷ ︸
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︸ ︷︷ ︸
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total of 1.6 MW of energy consumption, which today is the limiting factor for housing
machinery in this building [6], and multiply it by the maximum power consumption
of each compute node. The initial administration effort for integrating and installing
novel (accelerator) systems is high: The staff must first get to know the systems, estab-
lish operating concepts, integrate it into the existing batch scheduler, install new drivers
and software and may make sure that further maintenance updates can be easily rolled
out to all nodes of a system type simultaneously. If we set up a TCO calculation for a
single system, such an effort would never pay off. On the other hand, it seems that uni-
versity computing centers cannot avoid investigating the usability of recent accelerator
architectures due to increasing power bills. Since our administration staff has already
gained experiences in the past, we assume no extra one-time charges for new installa-
tions in our calculations. While transferring the programming effort that we explained
previously into manpower costs, we assume the cost of one day of a full time employee
(FTE) at 285.71e in accordance to funding guidelines of the German Science Founda-
tion [16] and the the European Commission’s CORDIS [17].

RWTH Annual Costs. The annual costs per node include hardware maintenance that is
provided by the vendor (Bull) and accounts for 5 % of the purchasing costs. At RWTH
Aachen University, 4 administrative FTEs are running the whole compute cluster [6]
and 75 % of the manpower accounts for annual maintenance. We quantify the admin-
istration effort per node by dividing the 180,000e manpower costs [16] by the total
number of nodes in our cluster (roughly 2,300) and get approximately 78e per any
kind of compute node. There is no significant additional effort per node type since
a generic approach to roll out software was established during the first installation.
Furthermore, we do not have any additional software or compiler costs as we buy the
licenses anyway for the whole cluster (e.g. Intel or PGI compiler) or the software is
free of charge (e.g. CUDA toolkit). Energy costs are dependent on the hardware, the
running application, the power usage effectiveness (PUE) of the computing center and
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Table 3. Costs per program run Cppr given an investment of 250,000e and a lifetime of 4 years
& break-even points Ibe in investment (see (4)) w.r.t. OMP-simp for NINA and KegelSpan.

OMP-simp OMP-vec OCL OpenACC LEO
N

IN
A

#nodes 24.84 24.69 22.14 21.57 18.21
tpar[s] 106.87 98.92 86.10 176.72 81.01
nex 944,265 1,020,119 1,172,090 571,034 1,245,711
Cppr[e] 0.01066 0.00993 0.00963 0.02030 0.01102
Ibe[e] 15,989 17,058 - -

K
eg

el
Sp

an

#nodes 25.46 25.53 22.96 23.12 18.61
tpar[s] 158.42 140.13 119.48 119.33 120.57
nex 637,027 720,150 844,632 845,708 836,993
Cppr[e] 0.01542 0.01360 0.01289 0.01279 0.01605
Ibe[e] 7,231 7,787 1,809 -

the regional electricity cost. Here, we pay roughly 0.15e / kWh and have an estimated
PUE of 1.5 [6]. The power usage measurements were done using a Raritan Dominion
PX power distribution unit on ST1 and ST2. Since ST3 is an artificial construction, we
recorded the power consumption of the Xeon Phi during the kernel run and added the
appropriate host consumption from ST2. In general, we further differ between the power
consumption of the application kernel (compare Tab. 1) and the rest of the application
that mostly runs sequentially. Finally, we set the costs for application maintenance to
0e since the investigated kernels are quite small. However, one should keep in mind
that this effort may increase especially for bigger codes when the chosen programming
paradigm is verbose or when a lot of code restructuring is needed.

Doing the math, we compute the number of nodes that can be bought with a sample
investment of 250,000e, the number of executions nex (assuming the application runs
24/7 with a cluster usage rate of 80 %) and finally the costs per program run (Tab. 3).

4.3 Results

Based on our previous calculations, we interpret the results and perform a what-if anal-
ysis with focus on programming effort.

For both codes, NINA and KegelSpan, a simple OpenMP parallelization did not cost
a lot of effort and thus increased the TCO only slightly while speeding up the compute-
intensive kernels considerably. In order to investigate the cost/performance ratio of the
accelerators, we take this simple OpenMP version as the baseline. Figures 1 and 2
present graphs over the varied amount of budget which show the difference in cost per
program run relative to the OMP-simp version in percentages. A negative percentage
means that the given system type is x% cheaper than the OMP-simp version and vice
versa. We added results for estimated hybrid OpenCL ( OCL-hyb) and Xeon Phi ( LEO-
hyb) solutions. The numbers on the right hand side of the figures express the limiting
values for infinitely-big investments.
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Fig. 2. KegelSpan’s cost per program run in
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NINA. For the NINA software package (Fig. 1), the OMP-vec version is already worth-
while given an investment of 15,989e or more (see Tab. 3). If more budget is available
(at least 17,000e), GPU accelerators and OpenCL become profitable. For the estimated
OpenCL-hybrid solution, the initial programming effort would also pay off. On the
other hand, the low programming effort of the OpenACC version does not make up for
its slowness and we would pay roughly 90 % more than the OMP-simp version costs
per program run with an infinite investment. Looking at Intel’s Xeon Phi accelerator,
it is surprising that it cannot beat the simple OpenMP version when taking the total
ownership costs into account (the limit amounts to ∼ 3%). However, compared to the
OpenCL version, its programming effort is lower and the performance a bit better. The
power consumptions plays a role, but the higher hardware purchase costs have the main
impact on the TCO. For the new NVIDIA Kepler GPU, we would probably see a sim-
ilar picture. The estimated LEO-hyb version would become at least advantageous over
the OMP-simp version given a budget of 83,000e or more.

KegelSpan. For KegelSpan, Fig. 2 illustrates a profitable OMP-vec version like for
NINA. In contrast, the OpenACC accelerator version is already beneficial over the
OpenMP simple host version given an investment of 1,800e (see Tab. 3). This is due
to low programming effort and the good performance. The other GPU accelerator ver-
sions are profitable as well while our estimated OCL-hyb is only slightly more beneficial
than the OpenACC and the OCL version. In contrast, the Xeon Phi accelerator does not
pay off. Even our hybrid estimation would run into a positive percentage of 1.3 for
infinitely-big investment.

What-If Analysis. Taking the data discussed as foundation, we perform a “what-if”
analysis by varying certain components of the TCO calculation.

First, we look at the impact of Amdahl’s law on the KegelSpan application. We plot
the break-even points in investment Ibe (compare (4)) as a function of the kernel portion
in Fig. 3. It illustrates that bigger kernel portions – and thereby higher performance –
results in lower investment needed to compensate the higher initial expenses over the
OMP-simp version. The OMP-vec version pays off for small kernel portions from a
moderate investment on. On the contrary, the GPU variants need a kernel portion around
75 % to be beneficial at all. Then, the OpenACC version can require a lower budget than
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Fig. 3. Break-even points in investment over OMP-simp as function of KegelSpan’s kernel portion

the OMP-vec version to be advantageous, whereas the OpenCL versions are roughly at
the same level for big kernel portions. The Phi coprocessor variants even need 92 %
kernel portions to be beneficial, i.e. the performance pays off the hardware costs. To
this end, we see that the comparison of system types and programming models is also
effected by Amdahl’s law and that our results cannot be taken as absolute statements.

Both of our investigated kernels were moderately small. The question with bigger
codes is how the higher programming effort influences the results. Given the TCO and
break-even formulas, we can derive that the increase of kernel code means a propor-
tional increase of the needed minimal investment to make a program run beneficial.

The introduced hybrid estimations assumed a certain programming effort given the
optimal performance based on vectorized host and accelerator speedups. Now, we turn
round the perspective and investigate whether and when a hybrid implementation would
be worthwhile. Taking (3), we solve it for the development effort and thereby get the
desired break-even point in man-days. We anticipate that a hybrid OpenCL implemen-
tation may need up to 146 and 162 man-days, respectively for NINA and KegelSpan, to
still be beneficial over the OMP-simp version. In contrast, development may only take
up to 28 man-days for a heterogeneous NINA Phi solution, but a hybrid Phi implemen-
tation for KegelSpan would never pay off. The latter may be canceled out by a more
efficient host system.

5 Conclusion

In the context of one case study at RWTH Aachen University, we examined the benefit
of accelerators in technical computing. Based on total ownership costs (TCO), we com-
pared costs per program run for specific applications on an Intel server, NVIDIA Fermi
GPU and Intel Xeon Phi coprocessor while putting human effort into the equation.

Taking a simple OpenMP version as baseline, we find that most GPU Fermi solu-
tions pay off additional manpower efforts. Furthermore, OpenACC GPU results illus-
trated that the ratio of performance per development time and power consumption is
interesting: Low programming effort, but low performance is expensive (see NINA ap-
plication), whereas a combination with good performance rocks (compare KegelSpan
results). On the other hand, results gathered on Intel’s Xeon Phi were surprisingly disap-
pointing. Here, the system acquisition costs were mainly responsible for the non cost-
efficient result. Additionally, it took quite some effort to create solutions with good
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performance due to vectorization tuning, despite that the Xeon Phi is said to be eas-
ily programmable. However, if highly-vectorized host implementations are available as
baseline, this picture will improve (a déjà vu for elder vector computer users). Gener-
ally, host systems are usually less expensive, require less power and need less manpower
so that the accelerators’ performance has to compensate these three aspects. A perspec-
tive based just on performance per watt is limited.

Furthermore, our TCO model (available at [13]) allows projecting the feasibility of
considered solutions such as hybrid implementations. For instance, our results show that
the according effort does not always pay off (depending on hardware and performance).

In future, we will include additional programming paradigms like the upcoming
OpenMP 4.0 features and new architectures like NVIDIA’s Kepler GPU. We will fur-
ther take network communication (MPI) into account to balance cost efficiency versus
real-time constraints. Since we have assumed a homogeneous application landscape so
far, future examinations will look at the impact of mixed job executions. We also want
to turn our TCO analysis of experimentally-gathered data into an analytical model with
predictive powers. Performance models that can predict the parallel runtime from the
single-core code performance do already exist. Given the recent interest in reducing
machine power envelopes, the existing power consumption models will hopefully get
enhanced in the near future. Additionally, a reliable model to estimate the manpower
efforts is also essential in order to improve the quality of the TCO interpretations. We
started measuring the amount of effort that our students put into program development
during their practical trainings in order to obtain baseline data as a first step to modeling
programming productivity.
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Abstract. While the amount of data used by today’s high-performance
computing (HPC) codes is huge, HPC users have not broadly adopted
data compression techniques, apparently because of a fear that compres-
sion will either unacceptably degrade data quality or that compression
will be too slow to be worth the effort. In this paper, we examine the
effects of three lossy compression methods (GRIB2 encoding, GRIB2
using JPEG2000 and LZMA, and the commercial Samplify APAX al-
gorithm) on decompressed data quality, compression ratio, and process-
ing time. A careful evaluation of selected lossy and lossless compression
methods is conducted, assessing their influence on data quality, storage
requirements and performance. The differences between input and de-
coded datasets are described and compared for the GRIB2 and APAX
compression methods. Performance is measured using the compressed
file sizes and the time spent on compression and decompression. Test
data consists both of 9 synthetic data exposing compression behavior
and 123 climate variables output from a climate model. The benefits of
lossy compression for HPC systems are described and are related to our
findings on data quality.

Keywords: Data Compression, GRIB2, JPEG2000, APAX.

1 Introduction

Climate science is a notorius producer of big data. More than 100 climate
variables are typically used in modern climate models, a number that cannot
meaningfully be reduced, and the simulated time spans are often decades. Data
presented in scientific publications must be archived for at least ten years. Con-
sequently, large climate computing facilities like the German Climate Computing
Center make significant investments in storage systems. Despite the amount of
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climate data to be stored and transfered, climate scientists have been reluctant
to use data compression to reduce dataset volumes. It seems the scientists have
vague fears that lossless compression would be too slow to be worthwhile and
that lossy compression would unacceptably reduce the quality of the data.

In our previous paper [4], we showed that the slowest lossless compression
algorithms actually achieve the best compression. In this paper we measure the
effects of two lossy compression algorithms on climate variable quality while also
considering lossy compression’s benefits in reducing HPC system bottlenecks.

This paper is structured as follows: First, related work and the lossy compres-
sion algorithms used are described. We then discuss signal quality requirements
of climate scientists and describe the different synthetic and climate variables
that are used to evaluate lossy compression. We summarize the metrics to quan-
tify differences in precision. Then our test setup is described. After summarizing
our findings, we use two distinct approaches to analyze the results. First, the pro-
cessing speeds of the competing algorithms is characterized. Second, approaches
to obtaining acceptable climate variable quality are described. Finally, future
research directions are considered.

2 Related Work

Lossless compression can be profitably used if the costs for compression and
decompression are less than the costs of bandwidth and storage. For example,
lossless-compressed tarballs are regularly used for source code exchange, and the
SLDC [3] algorithm increases both tape drive bandwidth and capacity. However,
lossless compression algorithms developed for ASCII text do not compress binary
datasets, such as most HPC datasets, very well. In contrast, a small number
of targeted algorithms have been developed to compress floating-point HPC
data. Current research into compression of scientific data generally takes one of
two approaches: Either the performance of available algorithms is evaluated on
specific scientific datasets as Woodring et al. [11] have done when they applied
JPEG2000 compression to climate data, or new lossy algorithms are developed
that have specific features and/or perform well for specific kinds of data.

An example for such new lossy algorithms is isabela, invented by Lakshmi-
narasimhan et al. [6], [7]. Another example is the recent sengcom algorithm [9],
which has strong similarities to the GRIB2/JPEG2000 compression described
below. Some algorithms take the multidimensionality of scientific datasets into
account, such as the work by Lindstrom and Isenburg [8]. Iverson et al. [5] are ex-
ploiting data locality on unstructured grids, especially for geo-sciences. Our own
last endeavor at lossless scientific data compression [4] handled diverse multidi-
mensional datasets. MAFISC uses the standard lossless compression algorithm
LZMA as a compression back-end after the MAFISC front-end transforms the
data in a reversible way.

2.1 Lossy Compression in GRIB2

GRIB2 [2] is a format defined by the World Meteorological Organization that
is based on self-describing messages using standardized values to identify basic
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properties of the data. Examples for such properties are grid types, intended
meaning of the data, and data encoding formats.

As a file format standard, the GRIB2 format itself does not specify how the
data is encoded, only how the encoded data should be interpreted. This leaves
a number of decisions to the authors of programs producing GRIB2 data.

GRIB data formats are based on fixed point (integer) representation that
includes a conversion from the floating point representation that causes a loss
of precision. The quantization parameters are selected by the encoding software
according to a user choice and are kept in the header of the encoded data. In
most cases, the user specifies how many bits of precision should be retained. The
encoding software then scans the input data for its value range and adjusts the
quantization accordingly. In this way, the user controls both signal quality and
file size, resulting in lossy compression.

As provided in current implementations, GRIB2 quantization is time-adaptive
since it is performed for each timeslice and elevation level seperately. The result-
ing quantization error places a tight upper bound on the maximum error. Finally,
the quantized GRIB2 integer result can be further compressed by JPEG2000 [1]
in its lossless mode.

2.2 APAX

Figure 1 presents a block diagram of the Samplify APplication AXceleration
(APAX) Encoder. The APAX algorithm encodes sequential blocks of input data
elements with user-selected block size between 64 and 16,384. The signal monitor
tracks the input dataset’s center frequency. The attenuator multiplies each input
sample by a floating-point value that, in fixed-rate mode, varies from block to
block under the control of an adaptive control loop that converges to the user’s
target compression ratio. The redundancy remover generates derivatives of the
attenuated data series and determines which of the derivatives encodes using
the fewest bits. The bit packer encodes groups of 4 successive samples using a
joint exponent encoder (JEE). JEE exploits the fact that block floating-point
exponents are highly correlated. Additional APAX details are described in [10].

The APAX encoder uses a software tool called the APAX profiler that pro-
vides information about the compressibility of input datasets, and recommends

Fig. 1. APAX block diagram
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a compression setting that delivers high-quality decompressed samples. Figure 2
illustrates the APAX profiler output on climate variable ustrl. The upper left
window displays the rate-distortion graph for the input signal being profiled.
The profiler suggests a Recommended Operating Point (ROP) where the cor-
relation between the original data x and the APAX-decoded data y is 0.99999
(“five nines”). The upper right window displays metrics comparing input x(i),
decoded output y(i), and residual or difference d(i) = x(i)− y(i). The lower left
window compares the input spectrum to the residual spectrum and quantifies the
spectral margin at the ROP. The lower right window histograms the residuals
and calculates the 2 · σ (95.5%) signal-to-residual margin.

2.3 Comparing GRIB2 and APAX Control

We notice that GRIB2 and APAX are controlled in fundamentally different ways.
GRIB2 users must choose the quantization level N, and whether or when to use
JPEG2000. GRIB2 parameter choices directly affect the quality of decoded cli-
mate variables and the speed with which they are encoded and decoded. The
APAX Profiler visually displays the rate-distortion curve on the climate variable
being profiled and recommends a compression ratio, helping users in their deci-
sion process. Once the user has chosen the compression ratio, that setting is again
accessed as APAX encodes that climate variable. The Profiler’s default ROP en-
sures consistent signal quality while allowing sophisticated users to modify the
ROP and to visualize and measure the new ROP’s effect on signal quality.

3 Quantifying the Uncertainty

3.1 Scientific Requirements

To determine appropriate climate data signal quality requirements, one must
understand that climate data will be used in two ways:

– The data is analyzed or visualized for evaluating long-term effects, such as
variations in average, variance, frequency, or locality of events.

– Data may also be used to drive another model (or to keep checkpoints).

In the first case, good quality data will not introduce any significant statistical
variation. No new effects should be created that were not present in the original
data, and no previously visible effects should vanish. To be safe, the maximum
error (worst-case scenario) should be monitored in addition to its standard de-
viation to check whether the error is still guaranteed to be below the required
threshold. The second case cannot be evaluated as easily, because climate sys-
tems are inherently chaotic. A small change in the input data may either vanish
completely or can lead to a completely different state a year later. It is impos-
sible to consistently predict whether an error in the input data caused by lossy
compression would cause different simulation effects than a random error would
not have caused.
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Fig. 2. APAX profiler window

In both cases, errors should not be locally correlated because such correlated
errors can give rise to false positives (much in the way that overcompressed JPEG
images exhibit block edges that were not present in the original image). When
decompressed data drives a climate simulation, locally correlated errors are much
more likely to drive the simulation into a state that would not have been reached
with uncorrelated errors. In the case of checkpoints, lossy compression is usually
not an option, since their goal is to allow a precise restart after a crash. Thus
our signal quality metrics will measure both average and worst-case differences
between the input and the decompressed datasets, as the compression ratio is
varied over a range from 24/32 (75%) to 8/32 (25%).

3.2 Approach

Description of Test Cases. We have tested the the GRIB2 and APAX
compressors using 9 synthetic datasets and with 123 climate output variables
generated from the ECHAM climate model from the Max-Planck-Institute for
Meteorology. The synthetic files are as follows:

bandlim lowpass 1D, lowpass filtered random data.
bandlim narrow 1D, bandpass filtered random data.
random 3D random data, flat distribution in the intervall [-1,1].
random offset 3D random data with an offset of 1 added.
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random correlated 3D random data with 90% correlation to the mean of the
three previously generated neighbours.

fractal 3D hierarchically generated data with fractal dimensionality. 2D slices
resemble a mountaneous height field.

integrated 3D random data, integrated twice in all directions. Very smooth.

sines orthogonal 3D cube with one sine per axis in superposition.

sines random 3D cube with 100 sines of random direction and frequency in
superposition.

All the 3D test cases were generated with 257×257×257 grid points, producing
NetCDF files with 68MB of data. The climate model output consisted of 123
different variables, covering one month at a sample frequency of six hours (124
timesteps). The longitude/latitude grid covers the entire earth with 192 × 96
grid cells and 47 height levels. Some variables are expressed as 2080 spectral
coefficients. The entire climate dataset contained 4.4GB of data.

Description of Error Metrics. Let us consider the characteristics of the
residual signals r(i) generated by GRIB2 and APAX encoding. Since lossy com-
pression always generates non-zero residuals r(i), we should first describe the
preferred characteristics of residuals. First, the magnitude of r(i) should be as
small as possible, in both a relative sense (minimize r(i)/x(i)) and also in an ab-
solute, peak error sense (minimize r(i)). Second, residuals should be zero-mean,
i.e. E[r] = 0.0. Third, residuals should be spectrally white, i.e. the residual’s
power spectral density psd(r) should be flat from DC to Nyquist (half the sam-
pling rate). Fourth, residuals should be uncorrelated with the signal from which
they are generated. Point three and four are generally not met by lossy com-
pression algorithms, including APAX and GRIB2. Both GRIB2 and APAX nor-
malize floating-point input values and then quantize them to integers, so both
algorithms generate residuals with similar characteristics. However, the residual
characteristics are not identical, since APAX can change the quantization from
block to block.

In the order in which climate dataset values are stored in memory, the stan-
dard deviation of residuals, std(r), provides a direct metric of signal quality.
When the residuals are spectrally white, std(r) is proportional to psd(r). We
calculated the signal-to-residual ratio (SRR), in bits, as given in Equation 1.
Since compression users are concerned both with average and worst-case signal
quality, we also measured the largest residual magnitude max(abs(r)), and com-
pare it to the range of input values, max(x)–min(x), calculating our peak error
metric, in bits, as given in Equation 2.

SRR = log2

(
std(x)

std(r)

)
(1)

PrecisionBits = log2

(
max(x) −min(x)

2 ·max(abs(r))

)
(2)
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In cases where a particular climate variable contains so little numerical variation
that the decoded signal is identical to the original signal, it is possible to have an
“infinite” SRR. These cases are especially likely at lower compression ratios such
as N = 24 (75%). In such cases, the residual samples are all zero and both SRR
and PrecisionBits are infinite. To avoid calculations using such infinite values,
we limit the maximum SRR and PrecisionBits to 50 bits.

4 Evaluation

4.1 Speed

Test Setup. Compression and decompression performance tests were run on
GRIB2 and APAX using a 48-core Magny-Cours node with 128GiB of memory
and 1.9GHz clock frequency. Since the objective was to measure the performance
of the algorithms and not the performance of the disks, all input files were first
copied to a RAM-disk. The compression/decompression was then performed
with both the input and the output file on the RAM-disk and measured using
the time utility. The measured GRIB2 times are the sum of the system and
user times reported by time. Timing measurements were automated using a
shell script for all measurements. APAX performance was measured using in-
process timers measuring only the compression from memory buffer to memory
buffer, while the GRIB2 measurements encompas the entire process, including
startup times, filesystem calls and library overhead. Thus, the timings are not
comparable between GRIB2 and APAX.

Results. Figure 3 compares the performance of the different algorithms. Each
point quantifies the performance of one algorithm on one file. Each algorithm
is represented using a colored, shaped icon. The x-axis represents compression
throughput (sec/GB), while the y-axis represents compression factor.

It is interesting to see that the external LZMA compression of GRIB2 files
tends to be faster than the builtin JPEG2000 compression, which performs as
slow as MAFISC in many cases. MAFISC exhibits the slowest processing times
on some files. Figure 3 illustrates a roughly linear correlation between the com-
pressability of a file and the time it takes to be encoded by GRIB2. Generally, we
see a strong correlation between compressability and speed, the only exception
to this is APAX, its speed solely depends on data characteristics and, to a minor
degree, target compression ratio. Unfortunately, this is not visible in the graph-
ics. Only the LZMA utility may take considerably more time on some files than
for other files with similar compressability, with the LZMA based MAFISC com-
pression this shows even more clearly. APAX throughput is about 152MB/sec
(6.58 sec/GB) for compression and 209MB/sec (4.79 sec/GB) for decompres-
sion, measured from memory buffer to memory buffer, all other measurements
include filesystem access to a Ramdisk as well. These averages are calculated
from total uncompressed size and total processing time.
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Fig. 3. Comparison of algorithm throughput (sec/GB) vs. achieved compression.
Note that the measurement conditions for APAX were not the same as for the other
methods.

It is clear that APAX and GRIB2 are the fastest algorithms in the field. GRIB2
and APAX have comparable compression and decompression throughput, and
even though GRIB2 performs fewer calculations, APAX appears to be the faster
of the two.

4.2 Compression

Apart from the compression time, the plot in Figure 3 also reveals the compres-
sion ratio of the files. It is clear that a lot of the redundancy of the data remains
in the GRIB2 encoded files. This is demonstrated by strong additional lossless
compression that can be achieved using JPEG2000 or LZMA. As shown in Fig-
ure 3, the additional lossless compression benefits from JPEG2000 and LZMA
are achieved at the expense of slower processing speed. Both JPEG2000 and
LZMA add between 100 and 500 s/GB to the GRIB2 encoding time for N = 16,
in most cases, however, LZMA takes less time than JPEG2000 compression.

Figure 4 compares the compression ratio of GRIB2/JPEG2000,
GRIB2/LZMA and GRIB2/JPEG2000/LZMA The files were sorted ac-
cording to their GRIB2/LZMA compression, the GRIB2 quality was set to 22
bits, but the results for other sizes are comparable. Figure 4 is interesting for a
number of reasons:
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– Neither JPEG2000 nor LZMA can be said to be better than the other, each
significantly outperforms the other on a large number of files.

– Whether JPEG2000 or LZMA provides more compression is strongly corre-
lated with the LZMA compressability.

– Even though the JPEG2000 output is next to incompressible for most files,
in some cases, LZMA applied on GRIB2/JPEG2000 output still has a very
strong effect. These are data sets, where a number of timeslices/height levels
are identical or differ only by an offset and a factor. In these cases, the
JPEG2000 output is identical because its input is identical. LZMA finds
these repeated regions in the file and achieves additional compression.

Fig. 4. Compression factor of lossless algorithms on GRIB2 data for 22 bits

4.3 Errors

In this analysis we compare the loss in precision of compressed values between
APAX and GRIB for 8 bits (4 : 1) and 24 bits (1.33 : 1) precision. Since LZMA,
MAFISC and JPEG2000 are lossless, these algorithms do not alter the quality
of the compressed data.

Figure 5a illustrates the SRR average signal quality metric for each of the 132
datasets. Larger SRR values indicate better decompressed signal quality. Visu-
ally, Figure 5a demonstrates that APAX SRR values generally exceed GRIB2
SRR values, with a few exceptions. Figure 5b illustrates the PrecisionBits peak
error metric, measured under the same conditions as Figure 5a’s SRR metric.
Larger PrecisionBits values indicate better decompressed signal quality. Visu-
ally, Figure 5b demonstrates that APAX PrecisionBits values generally exceed
GRIB2 values, with a few exceptions.
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(a) Signal-to-Residual Ratios

(b) PrecisionBits

Fig. 5. Comparison of GRIB and APAX at N=8 and N=24

Table 1 compares the resulting signal quality on 10 climate files, when com-
paring GRIB2 quantization at 22 bits followed by JPEG2000 encoding of the
GRIB2 output, to APAX at the equivalent compression ratio. For instance, while
GRIB2 compression of the climate variable alcov achieves a compression ratio
of 68.75% (22/32), JPEG2000 further compresses the 22-bit GRIB2 values to a
compression ratio of 64%. APAX was directed to achieve the same compression
ratio (64%) as GRIB2/JPEG2000, and the quality of both results was compared.
Unfortunately APAX could not be instructed to operate at a compression ratio
of less than 2.9% on the alsom file, so the following considerations do not take
this file into account.
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Table 1. GRIB2/JPEG2000 and APAX Signal Quality Metrics at the same compres-
sion ratios. N=22 for GRIB2/JPEG2000 files.

SRR PrecisionBits
file rel. size APAX GRIB2/JPEG 2000 APAX GRIB2/JPEG2000

trads 65.4% 20.7 20.8 20.3 21.1
aclcov 64% 23.2 22.1 21.0 21.0
trafl 56.5% 20.8 21.4 20.4 22.0

trflwac 53.2% 21.5 20.9 20.2 21.8
soflwac 35.8% 21.0 22.0 18.7 22.0
wsmx 29.3% 23.7 21.6 21.8 21.8
ahfllac 28% 21.7 19.0 21.1 21.7
vdisgw 22.9% 24.6 19.6 22.9 21.9
srad0d 22.6% 13.5 21.6 12.2 21.3
alsom 2.9%/1.9% lossless 22.8 lossless 21.5

Looking at the SRR metric, each of the two compression methods achieves
lower errors for some files than the other. This changes, however, if the maximal
error is taken into account, which is used for the PrecisionBits metric. With
this metric, APAX only has an advantage over GRIB2/JPEG2000 on one of
nine files, for the rest it achieves at most the same precision level. This one file,
however, is a file on which GRIB2/LZMA results in output only half as big as
the GRIB2/JPEG2000 result.

In addition to comparing GRIB2 and APAX signal quality at the same com-
pression ratio, we also examined compression ratio at comparable SRR quality
levels. Using APAX’s fixed quality mode, APAX compression ratios vary from
dataset to dataset, because APAX encodes the most compressible derivative
from among three alternatives, for each input block. With a fixed quality of
SRR=14 bits, APAX averaged 1.6x more compression than GRIB2 with N=16
(wich yields SRR values around 15 bits). For certain files, GRIB2 compression
is improved by as much as 60:1 by JPEG2000 post-processing, and by as much
as 3000:1 by LZMA post-processing.

5 Analysis of the Differences

APAX appears to be the fastest algorithm. GRIB2 can be fast as well, but how
fast it actually is depends heavily on its precision parameter: N = 8, 16 or 24
bits yields much better performance than any other setting for obvious reasons.
Even though GRIB2 is the simpler algorithm, APAX appears to be faster; we
believe that this is due to the fact that GRIB2 has to scan the input data twice
(once to compute the data range and once to do the conversion) while APAX is
a single pass algorithm, which leads to better cache usage. The GRIB2 encoder
available from the Max-Planck-Institute for Meteorology is said to be a much
more optimized encoder than the WMO GRIB2 encoder we used in this paper,
but time did not allow us to verify these claims.
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Comparing these two fast algorithms at the same compression level without
LZMA or JPEG2000 post-processing, we find that APAX signal quality ex-
ceeded GRIB2 signal quality for more than 85% of all variables in our dataset.
At N = 24 / 16 / 8, APAX SRR signal quality averages 7 / 11 / 8 bits better
than GRIB2, respectively. In some cases, however, GRIB2 generates better SRR
and PrecisionBits metrics than APAX on the least compressible datasets that
exhibit very few repeated values, including the datasets random, random offset,
sines orthogonal, lsp, st and az0w. Since APAX needs more control bits than
GRIB2 to describe what the encoder has done, these bits are consequently not
available to encode the data itself, and which provide no benefit when all alter-
natives are equally bad. So, even if GRIB2 were as fast or faster than APAX, in
this speed class APAX is the better encoding for most climate variables due to
its supperior compression or data quality.

If execution speed is not as much of a concern, the GRIB2/JPEG2000 and
GRIB2/LZMA combinations come into play. While neither can outperform the
other on the majority of variables, both profit from the tight error guarantees of
the GRIB2 format, indicated by their better PrecisionBits results compared to
APAX, and for most variables one combination clearly outperforms the other.
So, while it is clear, that one of these combinations should be used when good
compression is more important than speed, the decision which of the two to use
should be made on a per variable basis.

6 Compression Use Cases and Benefits for HPC

The most easily obtained benefit from lossy compression of climate datasets
is a significant reduction in disk file size and a corresponding increase in disk
bandwidth. Compared to lossless compression, both GRIB2 and APAX lossy
compression can achieve significantly higher compression ratios with acceptable
quality, as described in Section 4. Both GRIB2 and APAX are fast enough
to saturate typical filesystems, in HPC settings with high throughput parallel
filesystems, several cores might be neccessary, though. For archiving applications
where processing speed is not critical, the combination of GRIB2 and JPEG2000
provides slightly better signal quality than APAX and is thus the preferred
solution.

As climate simulation resolution improves, and as HPC core counts continue
to increase, lossy compression could also be used to reduce other system bot-
tlenecks, including PCIe, Infiniband and Ethernet links for data exchange, and
DDR memory bottlenecks that store increasingly large climate datasets. In these
cases, compression performance (sec/GB) becomes critical. Bus and networks
speeds can reach 56Gbps (FDR Infiniband), while sustained HPC server DDR3
memory throughput now achieves 5GB/sec. If lossy compression could be used,
simulations could complete faster as if they were using faster network and mem-
ory. As HPC core counts have increased, overall core utilization has decreased
(sometimes to below 20% of peak MIPS), so significant CPU cycles could be used
for compressing and decompressing datasets in DDR memory. This, of course,
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would require a very tight coupling between the simulation code and the com-
pression/decompression code.

Climate scientists will have to trade off where such in situ compression would
add the most benefits while maintaining climate simulation results. Due to the
statistical nature of climate research, input and output datasets could proba-
bly be lossy compressed. For intermediate climate simulation results, climate
scientists will want to carefully monitor the numerical stability and consistency
of results as they evaluate compression’s artifacts. Most intermediate results
will likely require lossless handling. However, even lossless compression schemes
might accelerate simulations if they are fast and applied to the more compressible
variables.

7 Summary and Future Work

We have compared GRIB2 (with and without optional JPEG2000 and LZMA
post-processors) and the APAX lossy compression algorithms on synthetic and
climate datasets. At equivalent compression ratios, APAX signal quality exceeds
GRIB2 signal quality for most climate variables. On some climate datasets,
GRIB2 compression ratios are improved by 60x (JPEG2000) to 3800x (LZMA).
GRIB2 and APAX processing speeds are comparable to each other, and both are
at least 10x faster, and often 100x faster, than when GRIB2 includes JPEG2000
or LZMA post-processing. In the future, we plan to investigate how much APAX
compression would be improved by JPEG2000 and LZMA post-processing. We
also plan to involve climate scientists in quantifying the acceleration in “time
to results” that the fast GRIB2 and APAX algorithms could provide and ana-
lyze the required precision, by increasing HPC memory and disk capacity and
bandwidth.
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Abstract. Design of modern multiprocessor computer systems has become in-
creasingly complex and renders the performance of scientific parallel applications
highly sensitive to process and thread scheduling. In particular, the Non-Uniform
Memory Access (NUMA), a frequent architecture solution, demands knowledge
of the hardware details as well as skills that are normally beyond the average
user in order to minimise memory access penalties and achieve good application
performance. This situation is further complicated by the increasing use of mod-
ern heterogeneous systems involving both CPUs and accelerators, where process
proximity to the accelerator strongly determines performance.

In this paper, we use a purpose-built, simple to use and extensible software li-
brary called TAPS (Topologically-Aware Process/Thread Scheduling) to evaluate
the effect of topology-aware process placement on energy and runtime perfor-
mance. Our evaluation used a suite of benchmarks and real-world applications
showing that even simple placement schemes can provide not only a significant
increase in runtime performance but also considerable energy savings (20% is
typical but can be higher). Runtime and energy evaluations were carried out on a
variety of multicore NUMA systems as well as on a heterogeneous system with
graphic cards and a computer cluster with multicore NUMA nodes and Infini-
Band interconnect.

Keywords: energy-efficient software, affinity mapping, hardware locality, pro-
cess and thread placement, multi-core processing.

1 Introduction

The increasing complexity of modern High Performance Computing (HPC) systems
pose a serious challenge to the performance and scalability of scientific parallel appli-
cations. The typical combination of multicore processors and Non-Uniform Memory
Architecture (NUMA) renders applications susceptible to memory access latency and
highly sensitive to the placement of processes and threads on the cores. This situation on
multicore systems extends to the performance of parallel applications on clusters and is
exacerbated by the fact that modern systems are increasingly heterogeneous, including
conventional heavy-weight cores, light-weight cores and accelerators.

Operating system (OS) process and thread schedulers function around different crite-
ria than those favoured by scientific computing, with fairness and responsiveness being
very important features. Furthermore, scheduling policies may even have negative ef-
fect on application performance, for example due to thread migration. As a result, the

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 357–371, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



358 A. Solernou et al.

task of optimising parallel applications is left to the developers. Conventionally, perfor-
mance tuning on NUMA systems is addressed in two different ways: by managing the
affinity of threads or processes [1,2] or by restructuring the parallel code to adjust the
locality of the data [3]. These options demand an intimate knowledge of both the mem-
ory access patterns (or communication patterns) of the application and the underlying
hardware architecture. Even then, process or thread contention limit the effectiveness
of affinity mapping or restructuring and hence the application performance and scala-
bility [4,5]. Although techniques based on code or application analysis (memory access
patterns or communication patterns) may render very optimal placements, they are well
beyond the skills of average parallel application developers.

In this paper, we use a purpose-built, simple and extensible library to evaluate the
effect of topology-aware process and thread placement on runtime performance and
energy consumption. The library, referred to as TAPS (Topologically Aware Process/
Thread Scheduling), offers a robust yet simple mechanism for application developers
to control the placement of threads and processes on multicore and distributed sys-
tems at the application level. The library is aware of the underlying hardware topology
and enables the choice between a completely automatic process/thread placement or a
guided one. TAPS is designed to co-exist with other libraries and thus can make use of
additional techniques and has very negligible performance or operational overheads.

Our evaluation study presented in this paper uses a suite of benchmarks and two
real-world, industry-strength applications on a representative range of HPC architec-
tures. As mentioned before, we cover two important metrics: runtime performance and
overall energy consumption. The latter is a growing concern in the context of mod-
ern high performance computing domain. Our results show that even simple binding
schemes (offered by the TAPS library, in our case) can offer significant runtime and
energy performance benefits over the code that leaves placement to the OS. The results
were obtained on a number of multicore NUMA systems, on a heterogeneous system
with graphic cards (GPUs) and on a compute cluster with multicore NUMA nodes and
InfiniBand interconnect.

The rest of the paper is organised as follows. In Section 2 we present the details
of the TAPS library, followed by Section 3, where we discuss the techniques we used
for energy profiling of applications. This is then followed by Section 4, where we out-
line the details of our experimental evaluation covering benchmarks and platforms. We
present and discuss our results in Section 5 and we cover similar and related work in
Section 6. We then conclude the paper in Section 7 sharing some of our experience and
outlining directions for further work.

2 The TAPS Library

The TAPS library is a simple yet extensible general-purpose scheduling library, de-
signed to leverage the topological information of the underlying hardware for facilitat-
ing the control of process and thread affinity in parallel applications. The key principle
of the TAPS library is to provide a high level of abstraction while providing a better
control of affinity mapping to parallel application developers.
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TAPS is built on top of the topology-aware HWLOC [6,7] library, which provides a
portable abstraction of the hierarchical topology of modern architectures. While using
HWLOC directly demands some expertise in controlling the affinity mapping, TAPS
provides an extra abstraction layer, exposing the powerful features of the HWLOC in
a form that is very easy to use by software developers. This abstraction is delivered by
two different modes supported by TAPS: manual and automatic.

In the manual mode, library expects the affinity mapping to be supplied explicitly.
This can be either given by the user or by another application. For example, it is fea-
sible to obtain an optimal mapping through aggressive code analysis and tracing (such
as data locality or communication patterns). Alternatively, the developer may have in-
depth knowledge of the application behaviour and hence be able to provide an optimal
mapping. Thus the manual mode is suitable for interfacing TAPS with other analysis
tools — a robust means for extending the capability of TAPS.

In the absence of any analysis tools or explicit mappings, the TAPS library performs
automatic placement. For this, it uses the topology information from HWLOC to map
instances to cores, resulting in the same functionality as tools such as taskset and
cpuset. However, unlike these tools, the placement is automatic, thus eliminating any
user involvement, and scales from single node to a multi-node cluster in a transparent
fashion. In automatic mode, TAPS does not perform any code analysis to establish
the data locality, memory access patterns or communication patterns. Instead, process
ranks and thread identifiers are extracted automatically and they are further handled as
depending on the nature of the application: MPI, OpenMP, or hybrid (any combination
of MPI and/or OpenMP with GPU).

If the application uses only heavy-weight CPU cores, TAPS follows two differ-
ent ways to bind processes (or threads) to cores: uniform distribution and biased (or
lumped) distribution. The uniform distribution assigns processes to cores evenly across
the system, balancing the load as evenly as possible. In the case of lumped distribution,
processes/threads are bound to cores as close to each other as possible. These mappings
are derived based on information obtain through HWLOC such as number of processors
in a node, total number of cores per processor and memory banks per processor. While
the uniform distribution is obtained through modulo mapping, the lumped distribution
is derived through in-order mapping. In both the cases, the mappings to logical cores
(especially when hyper-threaded), can be controlled at will at runtime. Obviously, on a
fully occupied system (when the number of threads or processes match the core count),
there is no difference between both binding schemes. If the application uses GPUs, the
TAPS mapping is biased towards the processor closer to the GPU. The library assumes
one GPU per process, and the process is bound to the nearest die to the GPU. In the
case of threaded MPI, the process is able to spawn threads which are then mapped to
the cores of the same die.

All these complex details are abstracted from the user using a simple function call
to TAPS (taps bind()) at the beginning of the application. When TAPS is not used,
the assigning of processes or threads to cores can be arbitrary and may not necessarily
live closer to the GPU and hence may incur transfers through interconnects. The TAPS
can be optionally customised by specifying the GPU to be used, The effect of calling
to taps bind() is achieving a ”static” affinity mapping, which is persistent for the
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instances for the entire run of the application. The static mapping is simple but fits the
reality of a large number of scientific applications adequately, in which heap memory
data is allocated once and accessed repeatedly. Nevertheless, if an application demands
a ”dynamic” affinity mapping, either because data size changes or the number of parallel
instances changes, binding can be redone at any stage in the code, with the affinity
control prescribed entirely by the programmer. Hence the performance overheads due
to re-binding is entirely dependent on the optimality of the new binding scheme.

3 Energy Profiling

The energy consumption of an application is the sum of energy consumption of dif-
ferent components in the system, such as memory, processors, data paths and so on.
By integrating the instantaneous power profile of the system over the duration of the
execution, it is possible to estimate the energy consumption of an application. To be
more precise, the approximate energy consumption is the integrated value of the power
profile less the idle energy of the system. The idle energy is simply the idle power value
integrated over the duration of the execution.

The instantaneous power profile of a system is measured by using a number of power
sensors. Power sensors are inserted between the power source and the concerned com-
puter system, as shown in Figure 1. When profiling clusters, this arrangement is re-
peated for each node/switch.

Fig. 1. A simple configuration for monitoring the energy consumption of systems

To facilitate the profiling, we used the EMPACK software [8], which provides nec-
essary API functionalities to profile the energy consumption at code block level. The
EMPACK triggers on and off appropriate sensors prior and after to executing a code
block and posts the line conditions to a central data collection server. Upon comple-
tion, the library estimates the energy consumption as discussed before. In doing this,
the software assumes that the idle power of the system is time invariant and the system
suffers no perturbations from other processes during the execution of the concerned ap-
plication. If the system has more than one power supply, the energy values are integrated
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over multiple supplies as needed. Although this type of configuration can only provide
overall power measurements, it has the advantage of simplicity and non-intrusiveness,
thus allowing for measurements on ”real-world”, non-dedicated systems.

4 Evaluation

The performance and energy measurements reported in this paper were obtained on
a number of representative NUMA-based HPC platforms. Table 1 gives the technical
specifications of these systems, along with the details of the compilers employed. In
addition to these platforms, we also used a part of a cluster — Arcus, consisting of
two chassis of two nodes each, and each node with two CPUs and 16 physical cores
and 64GB of RAM. Separate measurements were taken on this cluster for the compute
nodes and for the Infiniband network during the execution.

Table 1. Details of the systems on which the experiments were conducted

t2wn7 zen skyray broomway arcus nodes
Processor Model AMD Intel Xeon AMD Opteron Intel Xeon Intel Xeon

Intelagos HarperTown Magny Cours SandyBridge SandyBridge
6276 5650 6128 E52680 E52650

Mother-board Dell Supermicro Supermicro Intel Dell
(0VKT0M) (X8DTG-QF) (H8DG6/H8DGi) (S2600CP) (0HYFFG)

Clock Speed 2.3-2.6 GHZ 1.6-2.8GHz 2.0-2.6GHz 2.7 GHz 2.0GHz
Number of Processors 4 2 2 2 2×4
Cores per Processor 16 6 8 8 8
Total Physical Cores 64 12 16 16 16×4
Linux kernel version 3.5.2 2.6.35 3.2.0 2.6.32 2.6.32
RAM Size 128 GB 24 GB 12 GB 64 GB 64 GB
L1/L2 Cache 16 KB / 8×2 MB 32 KB / 256 KB 64 KB / 512 KB 32 KB/ 256 KB 32 KB/ 256 KB
L3 Cache 2×8 MB 12 MB 2×6MB 20 MB 20 MB
Compilers Open64 4.5.1-1 Intel Compilers Open64 4.5.1-1 Intel Compilers Intel Compilers

(AMD patch) Version 12.0.4 (AMD patch) Version 13.0.1 12.1.6
Compiler flags -O3 -march=auto -O3 -xSSE4.2 -ip -O3 -march=auto -O3 -xAVX -ip -O3 -xAVX -ip

-fPIC -mcmodel=medium -fPIC -mcmodel=medium -mcmodel=medium

We used two different groups of scientific benchmarks for our evaluation. The first
software group (evaluated on all systems but the cluster) was the NAS Parallel Bench-
mark suite [9] (version 3.3), a set of synthetic benchmarks designed for testing HPC
systems. We used a subset of the NAS suite, chosen with different memory access char-
acteristics, different compute-to-communication ratios and sufficiently long but feasible
runtimes. A summary of the benchmarks used is given in Table 2, along with the asso-
ciated problem sizes (benchmark Class C). The choice of problem sizes was such that
the resolution for measurement was sufficient and the capacity of the systems tested
was not exceeded. There are three implementation variants (OpenMP, MPI and hybrid
threaded MPI, MultiZone or MZ) and they were used independently. The second soft-
ware group (evaluated on all systems and the cluster) was two independent real-world,
industry-level applications:

– AirFoil: A computational fluid dynamics benchmark, which is a part of an open
source library for unstructured grid computations called OP2 [10]. This MPI
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Table 2. Details of the NAS benchmarks used in the paper. Note that the problem size for class
C for the MPI and OpenMP (1623) is different from the hybrid implementation.

Benchmark Description Grid Size Parallelism
MG Multigrid benchmark, long- and short-distance 5123 MPI, OpenMP

communication, memory intensive
CG Conjugate Gradient, irregular memory 1.5 · 105 MPI, OpenMP

access and communication
FT Discrete 3D fast Fourier transform, 5123 MPI, OpenMP

all-to-all communication 5123 MPI, OpenMP
BT Block tridiagonal solution benchmark 1623 - 480 × 320 × 28 (*) MPI, OpenMP and Hybrid
LU Lower-Upper Gauss-Seidel solver 480 × 320 × 28 Hybrid
SP Scalar Penta-diagonal solver 480 × 320 × 28 Hybrid

benchmark simulates the two-dimensional inviscid flow over an airfoil and each
MPI process utilises multiple threads — either OpenMP threads on a multicore
system or CUDA threads on GPU cards.

– Gromacs: An industrial strength computational molecular dynamics code [11], with
a very large world-wide user community base. Gromacs is an MPI-based applica-
tion, with the option of OpenMP multithreaded processes (proven to be very bene-
ficial to scaling over slow networks) and processes accelerated via GPU computing.
We have simulated the molecular systems that are provided with the Scalalife Val-
idation Suite [12]. It is interesting to note that, with the same considerations put
forward by this paper, Gromacs has its own process affinity control. This provides
an additional route to verify our findings; the performance and energy footprint of
the code instrumented with TAPS but with no own affinity control is benchmarked
against Gromacs with its own affinity control. Unlike TAPS, the affinity control im-
plemented in Gromacs is relatively simple and application specific (it corresponds
to the TAPS lumped together scheme), so it is not adequate for MPI process control
when GPU acceleration is involved, a feature that TAPS covers.

The last application is heavily employed in the Life Sciences, e.g. for screening new
drugs and targets, while seeking a reduction in the associated side-effects and toxicity.
These tasks are routinely associated with very large numbers of similar simulations,
which perform virtual drug screening and de-novo drug design. Therefore, another rea-
son for choosing Gromacs was its green computing relevance; any performance and
power advantage demonstrated in a single run is amplified tens or hundred of times in
such a series of simulations.

5 Results

The overall parameter space of our experimental evaluation cover different benchmarks
on different systems with several types of parallelism on a varying number of cores.
As a result, the overall result space is considerably large to present here in raw form.
For this reason, we use some of them to highlight the benefits of TAPS, the lessons
learnt and to perform sample analysis but summarise all the results in a condensed
form in Tables 3 and 4 and Figures 5 and 6. The summary presented here are only
for for fully occupied systems — a most common use scenario. It is noticeable that
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majority of the benchmarks benefit from TAPS. In presenting the results, we use the
legend captions TAPS-du and TAPS-lt to mean the uniform and lumped distributions
of processes or threads in TAPS, respectively. Whenever we use the Gromacs-specific
binding, we denote this by GMX-binding.

5.1 Evaluation on Multicore Systems

Figures 2 and 3 show the runtime and energy performance of the Gromacs applica-
tion on the Broomway system, simulating a 40,000 atom lipid bilayer system bench-
mark [13], with the maximum number of processes or threads matched that of the
available physical cores. In Figure 2(a), we show the variation of execution time of the
pure MPI variant of Gromacs against the number of processes. Regardless of the bind-
ing scheme (none, uniform, grouped) runtime decreases as expected with the number of
processes. The binding offers better performance (by over 20% at full occupancy) than
the runs without any binding. The energy counterpart of the scaling results is shown
in Figure 2(b), which provides the variation of energy consumption against the number
of processes. The general trend is intuitive: faster executions (using a larger number of
cores) are associated with a lower energy consumption. The energy savings even on a
fully occupied system due to process binding is rather remarkable and exceeds 20%.
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Fig. 2. The variation of runtime (a) and energy consumption (b) of the pure MPI version of Gro-
macs with the number of processes on the Bromway system. Both performance improvements
and energy savings are assocated with TAPS binding.

Figures 3(a) and 3(b) depict similar trends as in Figure 2 but for the pure OpenMP
variant of Gromacs. Again, the scaling of the threaded application is good, and faster
execution correlates with lower energy consumption. Moreover, binding of threads to
specific cores is beneficial and leads to both faster execution (over 30% faster on a
fully occupied system) and lower energy consumption (again, by over 30%), all com-
pared with the unbound runs. In addition to depicting typical application behaviour,
Figures 2 and 3 also validate TAPS; indeed, TAPS is demonstrated to have the same
effect (through the lumped binding scheme) as the Gromacs native binding.
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Fig. 3. The variation of runtime (a) and energy consumption (b) of the pure threaded version of
Gromacs with the number of threads on the Bromway system. Both performance improvements
and energy savings are assocated with TAPS binding.

The results depicted in Figures 2 and 3 are typical across all cases, with the same
trends reproduced (with few exceptions) across all benchmarks on all platforms. Indeed,
in Tables 3 and 4, we present the relative runtime and energy consumption gains against
the no-placement scheme. While the Table 3 shows the gains for the OpenMP and MPI
variants of the NAS benchmarks, Table 4 shows the same for the MultiZone (hybrid)
version of NAS benchmarks and hybrid version of the applications (for a limited set of
platforms). The relative gains are shown for a fully occupied system (which constitutes
the typical run scenario). The ratios are taken for the mean values measured with the
original benchmark (without any placement) and those measured with the instrumented
code; ratios greater than unity indicate an advantage from TAPS and values less than
unity indicate the loss in performance or energy consumption.

Table 3. The ratio between the respective measurements (runtime t and energy e) on the original
NAS benchmarks and the TAPS instrumented versions runtime. Shown are the ratios for both
the MPI and OpenMP variants of the code and indicates a benefit (value greater than unity) from
using the automatic TAPS placement in most cases.

broomway zen t2wn7 skyray

BT CG FT MG BT CG FT MG BT CG FT MG BT CG FT MG

MPI
t 1.47 1.91 1.53 1.73 1.07 0.87 0.84 0.85 1.09 0.69 0.67 0.41 1.07 1.01 0.99 0.99

e 1.31 1.61 1.32 1.47 1.03 0.81 0.79 0.73 1.15 0.84 0.80 0.55 1.07 1.01 0.99 0.99

OMP
t 1.42 1.40 1.35 1.15 1.31 1.21 1.05 1.07 1.37 1.16 0.61 0.80 1.02 1.14 1.01 1.09

e 1.26 1.27 1.21 1.09 1.16 1.08 1.11 1.09 1.29 1.23 0.78 0.99 1.02 1.09 1.00 1.09

The exact gains in performance and energy vary depending on the platform and
benchmark. For example, considering the Table 3, it is evident that the overall gains
on the Broomway system is considerably higher than that on the Skyray platform.
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Table 4. Relative gain in time t and energy e from TAPS in the hybrid MPI/OpenMP benchmarks.
We used one process per socket, each spawned as many threads as cores available per socket.

broomway skyray t2wn7

BT LU SP gromacs airfoil BT LU SP gromacs airfoil airfoil

t 1.324 1.330 1.450 1.439 1.431 1.115 1.058 1.139 1.036 1.010 1.061

e 1.218 1.208 1.347 1.430 1.376 1.096 1.044 1.135 1.014 1.185 1.100

Broomway is a 16-core machine with hyper-threading enabled, resulting in 32 cores
for possible bindings. With the fact that our benchmarks (both for MPI OpenMP) used
only 16 physical instances, the original (unbound) version has a higher probability for
imbalance and migration as the system sees 16 free (albeit logical) cores. When us-
ing TAPS, this probability and chances for runtime migrations are eliminated and thus
bringing in a noticeable stability for the application, resulting in runtime improvement
and energy savings and hence higher relative gains. On the other hand, on the Skyray
platform, there are no free cores when all 16 single cores are fully occupied and hence
reduced chances for migration and imbalance. Although using TAPS may reduce these
effects somewhat further, the gains are not good as on the Broomway platform.

The gains on the Zen platform is somewhat mixed, with BT and OpenMP showing
gains and the rest showing a loss in performance and energy consumption. Despite the
fact that Zen is a 12 core machine with hyper-threading (additional 12 logical cores),
the MPI benchmarks are unable to make use of all cores due to the nature of the bench-
marks. The BT benchmark can only utilise square number of processes (12, 22, . . . , n2)
while all other benchmarks demand number of processes to be power-of-two value. This
limits the full occupancy for BT benchmark to be nine processes and eight for the rest.
Given the architecture of the CPU (six physical cores, with two Level-3 cahes shared
by groups of three cores), all the benchmarks could only run under the lumped-together
scheme but this leads to a substantial imbalance to the benchmarks with eight processes.

In terms of MultiZone/Hybrid versions, as can be observed from the tables, binding
always brings benefits and in particular the gains are significant for the Broomway
platform (for the reasons discussed above).

It is a general belief that the faster an application is executed, the lower the energy
consumption associated is and this is indeed confirmed by many of our measurements.
However, this is not always the case, as illustrated in Figure 4. The variation of runtime
of the pure MPI variant of the MG NAS benchmark with the number of processes on
Broomway is shown. The number of processes is from one to full system occupancy,
and poor scaling is observed beyond half the number of physical cores available. Re-
gardless of the poor scaling, the full occupancy offers faster runtime than the single
process. Nevertheless, the variation of energy with the number of processes indicates
that full occupancy has an energy footprint higher than a single process. It is worth
noticing that the minimum of energy consumption corresponds to a number of pro-
cesses equal to half the total number of cores, and equally distributed across sockets.
Whichever number of processes is used, using TAPS proves to be always beneficial,
even with this “difficult” benchmark.
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Fig. 4. The variation of runtime (a) and energy consumption (b) of the pure MPI version of the
NAS MG benchmark with the number of processes, showing poor scaling beyond half the number
of physical cores of the system and sub-optimal energy consumption at full occupancy. TAPS
binding still has a beneficial effect.

To investigate the behaviour even further, we analysed the NAS-MG MPI application
on the Broomway platform using Paraver [14], a flexible tracer able to capture both
the hardware events and the MPI calls. When using eight processes (Figure 4), we
observed that TAPS-lt suffers substantial L3-related cache misses compared to TAPS-
du (8.5 × 105 vs. 4.9 × 105 on the most important computation phase) due to the
limited size of the L3 cache memory and the synchronised access of the processes.
When comparing TAPS-du from eight to 16 processes, one can see that the amount of
L3 cache misses per process is very similar, but this means that the total amount of
failures is doubled for the 16 processes run, and hence the speedup is flat from 8 to 16
but the amount of energy is almost doubled.

Furthermore, when the system is fully occupied (with 16 processes), the original
version (where TAPS is not used) spends around 23% (of its 15 seconds) on commu-
nication compared to 8% (of the ∼8 seconds) of TAPS counterparts. Hence, besides an
increased amount of L3 cache misses, the non-TAPS run shows an important imbalance
amongst processes which is reflected in the performance/energy plots.

5.2 Evaluation on Heterogeneous Systems

When TAPS is used against two GPU accelerated applications (AirFoil and Gromacs)
on Zen, the results are somewhat mixed. The AirFoil benchmark did not benefit from
TAPS placement regardless of the number of GPUs were used. As mentioned before,
the MPI-CUDA version of AirFoil benchmark uses one GPU per process and in our case
we limited this up to two processes. The computation phase is entirely carried out on the
GPU without any support from CPU and data exchanges are only for exchanging the
halo cells of the partitioned mesh. Although the TAPS library bound the processes to the
CPU cores next to the GPUs (i.e. avoiding them being lumped together), we did not see
any benefits. Our interpretation is that although communication is carried on explicitly



The Effect of Topology-Aware Process and Thread Placement 367

 0

 100

 200

 300

 400

 500

 600

gly-water

interface-growth

lipid-bilayer

m
em

brane-prot

snap

ex
ec

ut
io

n 
tim

e 
(s

)

noTAPS - 1GPU
noTAPS - 2GPU

TAPS - 1GPU
TAPS - 2GPU

(a)

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

gly-water

interface-growth

lipid-bilayer

m
em

brane-prot

snap

en
er

gy
 (

J)

noTAPS - 1GPU
noTAPS - 2GPU

TAPS - 1GPU
TAPS - 2GPU

(b)

Fig. 5. The variation of runtime (a) and energy consumption (b) of the pure GPU accelerated
version of Gromacs using one and two cards. Both performance improvements and energy savings
are associated with TAPS binding. The performance increase on two cards is between 13% and
28%, while the energy savings are between 10% and 24%.

on the CPU side, this is only for the data exchanges between the GPUs and hence the
exact location of the process in the CPU core does not matter. Instead, the results would
have been different if the CPU processes were to take part in computation.

However, for the Gromacs benchmark, we did see noticeable differences in perfor-
mance and energy consumption due to TAPS. Here, both CPUs and GPUs are used
throughout the calculation phase in an overlapped fashion: GPU calculating the non-
bonded forces while the bonded forces calculations are carried on the host. The Fig-
ure 5 shows Gromacs simulations for five different molecular systems (labelled on the
horizontal axis), each with one or two MPI processes, each process using a GPU and
six CPU-bound threads. When TAPS is not used, using two GPUs brings performance
benefits but no energy benefits. However, using TAPS we observe a consistent gain in
energy (up to 24% savings) and runtime (up to 28% reduction) for all the benchmarks.
Although not presented here, another molecular system (known as virion), was too large
to run on a single card, but showed an improvement of the 11% in performance (over
2089 seconds) and 7.5% in energy (over 7.8×105J) when using TAPS. When processes
are bound to a core next to the GPU, message passing is streamlined to the specific GPU
without using the interconnect between processors, which brings performance benefits
and energy savings.

5.3 Evaluation on Clusters

Finally, we present the effects of placement on the cluster. As discussed in the previ-
ous Section, we measured the energy consumption of every compute node and switch
associated with the computation. However, the resolution of the sensors was too low
to capture the instantaneous power variations of the switch and the overall energy con-
sumption was underestimated. Therefore, we only report the energy consumption of the
nodes, with the observation that this dominates the total energy consumption associated
with the runs. Figure 6 shows the variation of runtime and energy performance with
the number of cluster nodes used to run the Gromacs bilayer benchmark. The general
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trend is that there is good scaling and runtime decreases as expected but the energy con-
sumption does not. Nevertheless, the binding provides at least 10% of energy savings
across nodes. Another observation is the benefit of TAPS-based automatic binding (us-
ing no familiarity of the application code) matches the native binding from Gromacs;
this validates TAPS yet again.
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Fig. 6. The variation of runtime (a) and energy consumption (b) of the pure MPI version of Gro-
macs on a cluster with the number of compute nodes

6 Related Work

There exists a large body of work in affinity mapping or process placement. In [15],
Kruskal and Snir formulated the placement problem for performance improvement as
a multicommodity flow problem. Several vendors provide specialised libraries capable
of performing process placement based on ranking of processes (for example based on
[2]). The MPIPP framework uses the execution profile to schedule MPI processes in
different parts of the cluster [16]. Pellegrini et. al. provided a graph-based partitioning
algorithm [17] for mapping processes. Jeannot et. al. then improved this further with a
tree-based algorithm called TreeMatch [1] where they accounted the hierarchical mem-
ory structures encountered in the NUMA setup (relied on HWLOC as we do). In [18]
Su et. al. provide a runtime system for optimal thread placement in NUMA systems
based on the data-locality analysis. Most of these are entirely concerned on runtime
performance and it was taken granted that energy consumption is directly related to
runtime performance. In [19], Su et. al. consider the similar problem to ours and de-
veloped a model for optimal placement of threads entirely based on memory accesses;
and evaluated the model-based mapping on energy and runtime.

In contrast, our work is aimed at evaluating the impact of topology-aware placement
on runtime and energy consumption. For this, we used a simple purpose-built library,
TAPS, designed with portability and ease-of-use in mind and therefore expected to ac-
commodate any of the above techniques, including the user specifying the placements.
When none supplied, the library uses the topological information for providing two
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automatic placement schemes - uniform and lumped distribution schemes. The library
does not perform any in-depth analysis on memory access patterns, locality or commu-
nication patterns.

With respect to energy measurement and profiling, despite the need for power/energy
measurement tools, only few frameworks provide capability towards capturing total en-
ergy consumption of systems. These include PowerPack [20] and EMPPACK [8]. The
former provides detailed, fine-grained measurements at component level covering all
system components such as memory, processor, disks, network interface and so on.
However, adopting this framework for ad-hoc use may not always be practically fea-
sible. The latter overcomes this by providing a simple framework for capturing total
system energy. Both of these frameworks scale from single node to clusters and by far
the most complete tools. Using the proprietary instrumentation facility from hardware
vendors is another way to obtain energy measurements. For example, IBM PowerExec-
utive Toolkit in IBM systems (such as BlueGene/Q/L) provides a means to obtain en-
ergy measurements to systems. However, measuring the energy at the application level,
especially using API is a challenging task and to our knowledge only the EMPPACK
framework supports it. Other efforts include component level monitoring (e.g. [21]) and
estimation techniques such as based on simulations [22,23] or analysis of power profile-
based estimation techniques [24,25]. Simulation techniques rely on energy models con-
structed at the design phase of systems or components. The estimation techniques rely
on performance logs and thus require direct measurement of performance. These tech-
niques fail to scale across application types, across systems and at times beyond com-
ponent level and therefore not very reliable as direct measurement-based techniques.

7 Conclusions

In this paper, we evaluated the impact of topology-aware process and thread placement
on runtime performance and energy footprint of parallel applications on modern HPC
systems. For this, we designed a simple yet extensible topology-aware scheduling li-
brary called TAPS. Using TAPS as a vehicle for topology-aware placement of processes
and threads, we analysed the impact on runtime performance and energy consumption.
Using a suite of parallel benchmarks and applications on a number of HPC systems
(including a distributed system), we demonstrated increased performance and reduced
energy footprint from process and thread scheduling in most cases. The energy savings
of up to 20% in the case of Gromacs on a cluster are particularly noteworthy, as this
molecular dynamic code is routinely run hundreds of time within a single drug study.
Also, our evaluation include a few “difficult” cases, in which scaling up to full occu-
pancy of a multicore system is poor and, although placements (through TAPS) may not
bring any runtime benefits, they still bring notable energy savings. It is interesting to
notice that in the same cases, energy savings are not directly linked to runtimes; full sys-
tem occupancy (the common practice) is not optimal from the point of view of energy
usage. The runtime benefits and energy savings varied considerably across platforms,
but SandyBridge-EP showed remarkable benefits.

We see our work, including the TAPS, as a platform for further evaluation and de-
velopment of different placement schemes. Given its simplicity of use and the very
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small associated re-programming overhead, the clear overall benefits (especially in en-
ergy savings) from process and thread scheduling commend TAPS as a powerful tool.
Nevertheless, the library is over-simplistic in that it both assumes a static data and pro-
cess/thread configuration and ignores the memory access patterns. While reflecting the
reality of many scientific applications, a static data configuration (data is created once
and does not vary in size) cannot lead to a universally optimal binding scheme. More im-
portantly, while leaving developers the possibility to guide the binding, a tool like TAPS
should nevertheless offer insight into the memory access and communication patterns
at runtime. As outlined in Section 6, a range of intensive analysis techniques exist to
enable deriving optimal placements. In our future work, we intend to enhance the TAPS
with these techniques and evaluate the relative benefits of a dynamic, analysis-informed
placements against the existing static placements.
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Abstract. The metric, Power Usage Effectiveness (PUE), has been successful 
in improving energy efficiency of data centers, but it is not perfect.  One chal-
lenge is that PUE does not account for the power distribution and cooling losses 
inside IT equipment.  This is particularly problematic in the HPC (high per-
formance computing) space where system suppliers are moving cooling and 
power subsystems into or out of the cluster.  This paper proposes two new me-
trics: ITUE (IT-power usage effectiveness), similar to PUE but “inside” the IT 
and TUE (total-power usage effectiveness), which combines the two for a total 
efficiency picture.  We conclude with a demonstration of the method, and a 
case study of measurements at ORNL's Jaguar system. TUE provides a ratio of 
total energy, (internal and external support energy uses) and the specific energy 
used in the HPC.  TUE can also be a means for comparing HPC site to HPC 
site. 

Keywords: HPC, energy-efficiency, metrics, data center. 

1 Introduction 

This Whitepaper is a collaborative effort of the Metrics team of the Energy Efficient 
HPC Working Group (EEHPC WG).  It reviews successes and issues with Power 
Usage Effectiveness (PUE) and explores some of the gaps in the metric.  It disas-
sembles the metric, applies the same simple logic to the IT, and then to the whole; 
including the IT and Infrastructure.  This methodology is shown to produce two new 
metrics, with the higher level metric being a combination of PUE and IT-power usage 
effectiveness (ITUE) yielding total-power usage effectiveness (TUE).  These new 
metrics can be used to understand the entire energy use from the utility to the silicon. 
It can model the entire energy stack and allow exploration of how trade-offs in the 
infrastructure or the IT can help change the total efficiency.  Previously that total 
efficiency could neither be measured nor trended without these proposed metrics. 
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2 Background 

Power Usage Effectiveness (PUE), introduced in a paper by Malone and Belady [1], 
provides a simple metric that is used to give comparative results between data centers 
or of a single data center over time.  The metric provides a simple way to understand 
the energy consumed by the infrastructure for a given IT load.  In 2007 the Uptime 
Institute reported the average enterprise data center PUE was around 2.5. [2] This 
meant that the data center used 2.5X the energy needed to run the IT equipment by 
itself.  The extra energy was used for cooling, lighting, maintaining standby power 
generation, and power conversion losses. 

The Green Grid has written a number of White Papers since the original work 
[3,4].  Most recently The Green Grid, DOE, EPA, ASHRAE and others produced a 
white paper that represents a consensus definition including how and where to meas-
ure the metric [5].  PUE is defined as:                                               1  

The metric has progressed in maturity and its widespread use has been responsible for 
the energy efficiency focus and resulting progress in energy efficiency of data center 
infrastructure since its definition.  Admittedly it is at a very high level, a fine-grained 
evaluation of each term and components of the terms can be found in [6]. 

3 The Challenge 

PUE, while very successful in driving energy efficiency of the infrastructure for data 
centers, is not perfect. Its advantages are its simplicity, both the math and the concept.  
However, it is not the be-all and end-all metric for data centers.  That metric would 
entail computational performance and energy: a ``miles per gallon'' metric for data 
centers. A much improved metric would be a Data Center Productivity Index (DCPI). 
This would be the useful work divided by the total facility energy (DCPI=Useful 
Work/Total Facility Energy). Useful work is difficult to define since there are many 
diverse computational tasks, so today there is no definition of such a metric.  An 
exception might exist in the HPC world where more common benchmarks and appli-
cations tend to exist. One such benchmark is LINPACK metric [5].  It is not an ap-
plication but simply solves a dense system of linear equations.  This benchmark gen-
erally represents only a small fraction of actual applications, but it is commonly run in 
most HPC systems, and is used for Top500 [6] and Green500 rankings.  As stated it 
is a poor indicator of all but a very few workload types and therefore not really an 
indicator of an individual clusters productivity, but it is widely run as a benchmark. 
The EEHPC WG is concurrently working on how to measure energy consistently and 
appropriately for HPC benchmarks. With definition of a Productivity Index type of 
metric still well in the future, there are still other metrics which can be defined. There 
are two specific issues with PUE that need to be understood when using it. This paper 
proposes a methodology to address one of them. 
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One issue with PUE comes from its focus on the infrastructure.  Consider a given 
data center with a known PUE.  Assume that data center then goes through a refresh 
and upgrades their old IT equipment with new more efficient equipment.  The new 
will likely provide more compute capability and possibly use less energy (IT manu-
facturers continue to reduce energy use at part-loads and idle, providing an overall 
reduction in IT energy).  One interesting result here is that, if the infrastructure is left 
alone and runs just as it did before the new equipment was brought in, the PUE will 
go up. While this may be troubling to some, it actually is a non-issue. First, anytime 
new IT equipment is brought in, the infrastructure should be reviewed for needed 
changes and efficiency opportunities, this is more of an operational issue than a me-
tric issue.   The fact that the PUE went up is an indication that the infrastructure 
energy use did not scale with the IT load.  Second, and more importantly, PUE is an 
infrastructure measure, to trend changes in the infrastructure over time, not to trend 
changes in the IT equipment.  Changing the IT equipment is changing the baseline. 

The second issue, the subject of this paper, is that of shifting cooling or power 
conversion loss.  By definition, everything outside the IT is infrastructure, and every-
thing inside is IT.  As in the paragraph above, if the IT load and IT equipment  
remains fixed and you are only tracking your own data center energy efficiency over 
time, PUE can be used to guide facility operational or infrastructure efficiency im-
provements. The difficulty comes when infrastructure loads are moved from inside to 
outside the box (or vice versa).  To illustrate this point consider three data centers 
with identical workloads and numbers of servers.  Consider a data center (data center 
(a)) using free cooling, moving outdoor air into the building with building level fans.  
Then the IT level fans (considered as part of the “IT energy” in PUE) will move that 
cool air through the IT equipment.  Now consider the neighboring data center (b).  It 
has a different configuration with no building fans and using only the fans in the IT 
equipment to move the air (ramping up existing IT fans or using larger fans in the IT 
equipment). In this case the infrastructure load goes down, and the IT load goes up.  
The PUE will drop in this case.  At the third data center (c) fans were removed from 
the IT equipment altogether and only the building fans provide air movement.  Data 
center (c) will have the lowest IT load and a higher infrastructure load. Because of 
this, it will have the worst PUE of the three.  In order of PUE, (b) is likely the lowest, 
then (a), then (c).  Can we conclude that (b) is the best design and that (c) is the 
worst?  Not at all.  In fact PUE should not be used for this type of conclusion.  The 
only valid way to determine the most energy efficient design would be to measure 
total energy, and we can do this because we started with identical output as an as-
sumption.  With the reality that all data centers are different in the number of servers 
and workloads, how would one compare the increasingly common case of infrastruc-
ture (cooling or power conversion or both) moving across the IT boundary? 

4 Metric Proposal 

ITUE is proposed as a possible solution. ITUE is intended to be a “PUE-type” metric 
for the IT equipment rather than for the data center.  PUE is total energy divided by 
IT energy, analogously, ITUE is defined as total IT energy divided by computational 
energy. 
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                                           2  

As PUE identifies the infrastructure burden on the IT equipment, ITUE would identi-
fy the same for computing.  Data centers have cooling devices, UPS, and PDUs, and 
other systems supporting the IT equipment.  Similarly, IT equipment has internal 
fans, power supplies, and voltage regulators (VRs), etc..  The compute components 
can be defined as the CPU, memory, and storage, etc. The math and structure of PUE 
and ITUE are the same. 

Now, these two metrics can be combined.                                                               3  

TUE is the total energy into the data center divided by the total energy to the compu-
tational components inside the IT equipment.  Figure 1 illustrates the differences 
between PUE, ITUE, and TUE.  Note that in equation 4, “IT” represents the IT 
equipment or everything inside the server or cluster.  In equation 5 however, “IT” 
represents only the compute components (CPU, memory, fabric) but not cooling, 
power supplies or voltage regulators.  Those (cooling, power supplies, and voltage 
regulators) are part of “IT” in equation 4.  The definition of “a” through “i” in Equa-
tions 4 -6 come from Figure 1. 

              4  

                           5  

                                              6  

Additionally, the IT equipment list in PUE would necessarily include the network 
switches, I/O subsystem, and storage.  ITUE and TUE should also be extended to 
cover the full spectrum of the IT equipment in the data center.  The graphics and 
coverage in this paper are compute centric primarily for simplicities sake and not to 
exclude anything in the IT suite of equipment. 

Now that we have defined TUE as a function of the well understood PUE and the 
new ITUE we can apply it. Recall the comparisons of data centers (a), (b), and (c).  
The first (a) had fans in both the room and in the IT equipment.  The second (b) had 
fans only in the IT.  And the third (c) only had fans in the room, not in the IT equip-
ment.  While we cannot yet determine which uses the least energy, it is easy to see 
that our PUE fan energy accounting problem (where PUEb<<PUEa<<PUEc) can be 
resolved.  The mathematics of TUE do not favor one over the other as all the fans are 
in the numerator in all three cases.  We would expect that all three TUEs to be much 
closer to each other than their respective PUEs, but more importantly, we can now use 
TUE to measure all three and to determine which data center and IT combination is 
actually the most energy efficient. 
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Fig. 1. Schematic of the combined Data Center and IT Equipment 

Another possible methodology for developing greater use and understanding of the 
metric could be the analogous historical development of PUE.  [5] describes a good / 
better / best scheme; the simplest way to get a number is to use the readout of the UPS 
output power as the IT inlet power.  For a data center with no better way to get IT 
inlet, this is at least “good”.  “Better” is using the PDU output as IT input, with 
“best” being direct measure of the IT energy.  Similarly, a good / better / best ap-
proach to ITUE may help in its eventual adoption.  The “good” may be as simple as 
the energy leaving the PSU minus the fan energy for the denominator, with the PSU 
“in” (wall socket energy) as the numerator.  “Best” would be direct measurement of 
component level energy consumption. 

This good-better-best approach certainly applies to measurement of the value of “i” 
in Fig 1.  While many manufacturers now measure these values and they have be-
come critical to node and system level power management, the energy use at the 
component level is at best “available with a little work” depending on the suppliers 
manageability interface.  Over time it will become more readily available for two 
reasons.  First, if it is asked for by a growing community looking at ITUE and TUE, 
the eco-system will respond.  This has happened already for the measurements 
needed for PUE.  Second, as we proceed towards hard power limits in the exascale 
timeframe, the ability of the HPC applications to become energy aware can only hap-
pen with this data more fully exposed. 

PUE’s strict definition is the total annual energy divided by the IT annual energy.  
This is done to ensure any seasonal impacts are included in the number.  Measuring 
PUE during the winter at a data center with extensive free cooling could skew that 
value significantly.  Similarly, TUE and ITUE are defined as annual values as well.  
It may be beneficial and informative for an individual site to calculate the min or max 
values of these to help characterize their system (e.g. winter vs summer PUE), but for 
all three metrics they should only be reported as annual numbers. 

The true value of ITUE is likely in the discussions around more advanced and more 
integrated infrastructure solutions.  Difficulties with the simple concept of PUE come 
about when the line between infrastructure and IT are not clear. For example, many large  
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supercomputers come with an integrated cooling system. Some components of these 
systems would generally be part of a data center room infrastructure in a more standard 
situation, but in these large specialized systems the standard IT servers, storage, and net-
work are also not as easily split between infrastructure and IT.  TUE and ITUE used 
with PUE, can be useful in being able to compare different data centers. 

5 Demonstration of the Metrics 

Consider a data center with a PUE of 1.6.  For this example assume that the data 
center infrastructure efficiency is independent of the specifics of the IT and its partic-
ular efficiency.  Compare this to a similar second data center, each having the same 
number of servers.  The output of each data center will be assumed equal. Data cen-
ter (a) (PUE = 1.6) has servers with standard or low first-cost components, particular-
ly the fans, power supplies, and voltage regulators.  The new data center (b) servers 
have high efficiency power supplies and fans.  The physical infrastructure of data 
center (b) is identical to (a).  From earlier discussions we know that the PUE of data 
center (b) would be lower, which has been a valid criticism of the PUE metric. 

A detailed platform design model [7] shows that data center (a) uses servers with a 
power draw of 330 W, while data center (b) servers draw only 266 W as shown in 
Table 1. Recall that PUEa = 1.6 = Power+Cooling+IT/IT. If we assume 10,000 servers 
in the space, the IT load is 3.30 MW, and the data center infrastructure uses 1.98 MW.  
The new data center's PUE (with identical infrastructure) with an IT load of 2.66 MW 
is PUE=1.74.  (The new data center could have some turn-down efficiency, but we 
assume not for the method’s demonstrations).  From this perspective, it looks like 
high efficiency components are a bad idea because the PUE is worse. 

Table 1. Server power use by platform and component 

 a)  Low Eff (W) b) High Eff (W) 
Total Platform 330 266 
PSU 58 18 
VRs 56 38 
Fan 18 12 
Processor, Memory, Other 198 198 

The platforms were analyzed using the model of [7], and fan power, PSU losses, 
and board level conversion losses were identified.  All other loads are considered 
compute power or “IT”; including the processors, memory, storage, network cards, 
etc…So for the low efficiency servers in data center (a) we have: 18 58 56 198198 1.67                                             8  

And for the high efficiency servers in (b) 12 18 38 198198 1.34                                             9  
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The efficient platform has the lower ITUEa of 1.34. It carries a 34% “overhead” for 
power and cooling losses versus 67% for the lower efficiency version (ITUEb=1.67). 

From here, a higher level comparison of the two data centers using TUE can be 
made. Table 2 shows that for total efficiency, data center (b) with the high efficiency 
IT equipment is more efficient.  TUEb at 2.33 is better than TUEa at 2.67, even 
though PUE originally had indicated the opposite.  Additionally, with our earlier 
premise that output from both data centers is the same, the efficiency of the two is 
related directly to the one with the lower energy, and as expected TUEb (higher effi-
ciency) correlates with the lower total site power number of 4.64 MW.  If the infra-
structure can scale with the IT load, the actual PUE can similarly be used to calculate 
TUE. 

Table 2. Power and efficiency numbers of example data centers 

 a)  Low Eff  b) High Eff  
Total Platform 3.31 MW 2.67 MW 
Infrastructure 1.99 MW 1.99 MW 
Total Site Power 5.3 MW 4.66 MW 
PUE 1.6 1.74 
ITUE 1.67 1.34 
TUE 2.67 2.33 

6 Case Study Using ITUE 

In this section we apply these concepts to the Jaguar system at Oak Ridge National 
Laboratory. 

6.1 The Jaguar Supercomputer 

The Jaguar system [8] consists of 200 Cray XT5 cabinets. Each cabinet contains three 
backplanes, a blower for air cooling, a power supply unit, and twenty-four blades. 
There are 4,672 compute blades and 128 service blades in Jaguar. A compute blade 
consists of four compute nodes, each having two six-core 2.6 GHz AMD Opteron 
processors. Two 4 GB DDR2 memory modules are connected to each processor. A 
compute blade also has a mezzanine card to support Cray's SeaStar2+ interconnect 
between nodes. A service blade consists of two nodes, a mezzanine card, and two PCI 
risers connecting to an external file system.  

Jaguar uses both air and liquid to cool the system. Jaguar's liquid-cooling system 
uses both water and refrigerant R-134a. Cool air is blown vertically through a cabinet 
from bottom to top by a single axial turbofan. As the heat reaches the top of the cabi-
net, it boils the refrigerant which absorbs the heat through a change of phase from 
liquid to gas. The gas is converted back to liquid by the chilled-water heat exchanger 
inside a pumping unit where the water absorbs the heat and dissipates it externally. 
There are 48 external liquid-cooling units (denoted as XDPs) used for Jaguar. 
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6.2 Energy Efficiency Analysis 

The site distributes 13.8kV power to the Computer Science Building (CSB) in which 
Jaguar is located. Transformers at the CSB convert the power to 480 Vac, and switch-
boards (MSB) feed the power to Jaguar cabinets. The switchboards also provide 480 Vac 
connections to 48 XDPs. Inside a cabinet, the power supply unit (PSU) converts the 480 
Vac power into 52 Vdc and deliver it to the blades. Each blade has an intermediate bus 
converter (IBC) that converts the 52 Vdc power into 12 Vdc. This power then traverses 
the blade and reaches the point of load (POL) next to the compute components (such as 
processors, memory modules, and mezzanine cards). The POL further converts the 12 
Vdc power into 1.3 Vdc for the processors, and 1.8 Vdc for the memory. 

 

Fig. 2. Power monitoring capabilities for Jaguar 

Figure 2 depicts the Jaguar power delivery network inside of a cabinet. Orange 
boxes represent compute components. Brown boxes indicate where the electrical 
power can be monitored. For Jaguar, there are two locations where we can monitor 
the power: One is at the output of the switchboard, and the other is at the output of the 
power supply unit. Apparently, the power monitoring capabilities of the Cray XT5 are 
limited. Power can only be monitored at the cabinet level --- not at the blade level. 
For January 2011, the average aggregate output power from the switchboards and 
from the cabinet power supply units are 5,259.56 kW and 4,209.90 kW, respectively. 

To calculate Jaguar's ITUE for January 2011, the efficiency ratings of IBC and 
POL are needed. In fact, the best way is to be able to monitor the power draw at the 
outputs of IBCs and POLs. Unfortunately, Jaguar does not provide this monitoring 
capability. The next best way is to get the efficiency ratings from vendors. Vendors 
often have this data but consider them proprietary. As a result, we examine HPC sys-
tems from other vendors’ public information. This is because the vendors are more  
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likely to use similar state-of-the-art packaging technologies for their systems. Following 
the methodologies around the JUGENE supercomputer [9] and the K supercomputer 
[10], we determine that the IBCs and POLs in Jaguar have the combined efficiency of 
84%.  The Cray blowers were estimated to carry a 7% penalty as reported in [11]. 

We calculate the Jaguar ITUE as follows. Since the average power attributed for com-
pute is 4,209.90 kW x 84% = 3,536.32 kW, the metric value can be calculated as 5259.56 
/ 3536.32 = 1.49. That is, for every kW supplied for computing, there is additional 0.49 
kW supplied for cooling and lost in power distribution. Using our estimate of ITUE = 
1.49 and the PUE of the CSB as 1.25, the Jaguar TUE = ITUEJ x PUECSB = 1.86. 

7 Challenges and Future Work 

Similar issues still exist in ITUE and TUE as do in PUE.  These simply need to be 
understood and dealt with.  For example, when more efficient IT equipment is in-
stalled in a data center and nothing else is done, PUE will go up (the denominator 
went down more than the numerator).  Similarly if new lower power CPUs or 
DIMMs were installed in a server, ITUE (and TUE) will go up (again, the denomina-
tor went down more than the numerator). 

A complicating factor of PUE and ITUE is temperature.  The temperature at 
which the data center, as well as the IT components, operates at can significantly 
affect both values pushing one up and perhaps the other one down.  The ability for 
the data center operator to pick the right temperatures is advantageous in the pursuit 
of overall highest efficiency (minimize TUE).  Because of this, PUE or ITUE  
methods should not specify a temperature.  However, the temperatures must be con-
sistent.  Measuring PUE at a given data center configuration with a certain tempera-
ture, then measuring ITUE at a different configuration and IT inlet temperature would 
render the TUE value invalid.  Reporting temperatures during which PUE, ITUE, and 
TUE were measured would be beneficial in others understanding of the overall ther-
mal management strategy of the data center and IT equipment. 

Another issue is defining more precisely what is considered to be a compute load 
versus support or infrastructure loads.  Certainly CPU, memory, memory controller, 
MIC or GPU processors are all compute.  Fans, pumps, PSUs, VRs are all infrastruc-
ture.  But what of disk drives?  Solid state disk drives would seem to be compute, 
but much of a standard disk drive is spinning the disk.  For consistency we suggest 
all storage be considered compute.  Status lights are infrastructure.  Baseboard or 
motherboard controllers are infrastructure.  Using the data center level analog, the 
base-board controller would be the same as the building control system. 

Long term, being able to measure ITUE, at least in large scale HPC systems may 
be a useful capability to build into the equipment, but for now the development of the 
concept will give us a tool with which to extend the PUE concept to the IT equipment 
and then to the combined infrastructure and IT installation. 

A good estimate of Jaguar's TUE (1.86) and ITUE (1.49) is now published.  Ja-
guar has been decommissioned and replaced by Titan.  Work to define these values 
for that system are ongoing  The intention is to continue this line of work, add further 
refinements and begin to do comparisons with other HPC sites to be able to measure 
the true efficiency of the site and cluster together. 
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8 Conclusions 

The Energy Efficient High Performance Working Group has proposed two new me-
trics to improve the tracking and comparison of energy efficiency in data centers.  
PUE has been as successful as it has because of its simplicity.  ITUE has been devel-
oped as a direct analog of PUE; PUE for the server.  While this value is of interest 
the true richness comes when multiplied by PUE to get TUE for the data center.  This 
metric surpasses the value of PUE as it now includes the IT support inefficiencies that 
PUE left out. 

ITUE and TUE and their measurement capability will take time to develop (as did 
PUE), but their use can drive greater efficiency and clearer comparisons in the data 
center. 
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Abstract. iDataCool is an HPC architecture jointly developed by the
University of Regensburg and the IBM Research and Development Lab
Böblingen. It is based on IBM’s iDataPlex platform, whose air-cooling
solution was replaced by a custom water-cooling solution that allows
for cooling water temperatures of 70◦C/158◦F. The system is coupled
to an adsorption chiller by InvenSor that operates efficiently at these
temperatures. Thus a significant portion of the energy spent on HPC
can be recovered in the form of chilled water, which can then be used to
cool other parts of the computing center. We describe the architecture of
iDataCool and present benchmarks of the cooling performance and the
energy (reuse) efficiency.

1 Introduction

According to a 2012 IDC study [1], the worldwide costs for power and cooling of
IT equipment now exceed 25 billion US-$ per year and are comparable with the
costs for new hardware. For this obvious financial reason, but also because of
the impact on the environment, energy efficiency has become a very important
concern in the IT industry. The problem can be addressed in two ways. First,
every effort should be made to reduce the energy consumed by the equipment.
Second, some of the energy could be reused. In this paper we will address both
of these points, concentrating on the cooling part in “power and cooling”. We
present an innovative liquid-cooling solution for a high-performance computing
(HPC) system that allows for free cooling year-round and energy reuse in the
form of chilled-water generation.

A discussion of various aspects of liquid cooling with focus on high coolant
temperatures can be found in Refs. [2,3]. For the following discussion, we assume
that the cooling medium is water and define what we mean by “warm water”
and “hot water”. We consider water to be warm if its temperature is higher
than the wet-bulb temperature of the ambient air even on hot days so that free
cooling is always possible. In typical climates this means about 40◦C/104◦F.
Free cooling year-round drastically reduces the cooling costs since chillers are
no longer needed. Even some possibilities for energy reuse exist, e.g., the warm
water could drive an underfloor heating system. We consider water to be hot if
it opens up more possibilities for energy reuse, e.g., if it is hot enough to drive
a radiator-based heating system or an adsorption chiller. This means at least
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Fig. 1. Left: Original air-cooled iDataPlex dx360 M3 compute node. The power supply
unit (not shown) is attached to the compute node on the top left. Right: iDataCool
compute node with new water-cooling solution, consisting of a copper pipeline, copper
heat sinks for processors and memory, and aluminum heat bridges. Armaflex thermal
insulation is used to prevent heat from escaping into the environment.

65◦C/149◦F. Sustaining such cooling-water temperatures in a large system that
is running in stable production mode over long periods of time is a real problem,
which we claim to have solved in the project iDataCool described in this paper.
The main innovation of iDataCool is the design of a low-cost processor heat sink
that minimizes the temperature difference between cooling water and processor
and allows for cooling-water temperatures of up to 70◦C/158◦F.

In the project described in this paper, the infrastructure conditions at the
installation site are such that reusing energy for heating purposes is not an
option. Therefore the hot water was used to drive an adsorption chiller that
generates chilled water. This is another innovation of iDataCool, which is of
potential interest for computing centers in hot climates.

Related projects with similar goals (i.e., hot-water cooling) are Aquasar [4]
and CoolMUC [5]. Both of these are somewhat smaller in scale and run at
somewhat lower temperatures. There are also a number of projects that allow
for warm-water cooling as defined above, e.g., [6,7,8,9].

2 iDataCool Architecture

Before presenting our liquid-cooling solution we briefly describe the iDataCool
HPC cluster, which is based on the IBM System x iDataPlex architecture [10]. It
consists of three racks with 72 compute nodes each. A compute node is equipped
with either two four-core Intel Xeon E5630 (44 in total) or two six-core In-
tel Xeon E5645 (388 in total) Westmere processors organized as a distributed
shared memory system. Each node contains 24 GB of memory arranged in six
4 GB DDR3 dual in-line memory modules. The main interconnect network of
iDataCool is based on QDR Infiniband, arranged in a hybrid ring/tree topology.
Switched Gigabit Ethernet is used for disk I/O, system booting via NFS, and
job scheduling. Every compute node is monitored and controlled by a dedicated
baseboard management controller (BMC).
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Water Inlet

Water Outlet

Fig. 2. Design of the iDataCool heat sink. The top part, which is attached to the
processor package, is shown from both sides.

The air-cooling components of the original iDataPlex system were completely
removed and replaced by a custom water-cooling solution, shown in Fig. 1, which
was developed in a joint effort of the University of Regensburg and the IBM
Research and Development Lab Böblingen and manufactured and installed in the
machine shop of the Regensburg Physics Department. The main design drivers of
the water-cooling solution were the possibility of hot-water cooling and low cost.
Let us focus on the first point for now. CPUs can tolerate a certain maximum
chip temperature, which depends on the specific chip used. Thus, to enable high
cooling-water temperatures, the temperature difference between the compute
cores and the water should be minimized. The heat transfer path can be divided
into two segments. First, the heat is transferred from the cores to the package
surface. Second, the heat is transferred from the package surface to the cooling
water via thermal interface material and a heat sink. We have no control over the
first segment but can optimize the second one, in particular through the design
of the processor heat sink, which is shown in Fig. 2. Its design parameters were
as follows.

– Minimize the temperature difference between coolant and processor package.
This was achieved by bringing the coolant very close to the package and
by using a material with high thermal conductivity, i.e., copper. (For the
thermal interface material between heat sink and processor package we used
Shin-Etsu X23-7783D.)

– Efficient thermal transport. This was achieved by the design shown in Fig. 2,
which provides a sufficiently large interface area for heat transfer and creates
turbulent flow.
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– Low pressure drop. The channels shown in Fig. 2 are not microchannels but
1 mm wide. At a typical flow rate of 0.6 l/min the pressure drop is less than
0.1 bar.

– Low cost. The design shown in Fig. 2 is very simple and can be manufactured
inexpensively with standard tools since the channels are rather wide. Using
an O-ring and screws is simpler and more leak-proof than using glue.

The processor heat sinks are hard-soldered to a copper pipeline that provides the
water flow. Other heat-critical components on the board are thermally coupled to
the pipeline via copper or aluminum heat bridges and thermal interface material.
These components include memory modules, Infiniband daughter card, chip set,
voltage regulators, and several other chips. All of these components can tolerate
higher temperatures than the processors. Different materials and designs are
used to satisfy the cooling needs of these parts. E.g., the memory modules are
cooled via copper heat bridges clamped to aluminum bars which embrace the
cooling pipeline. Thus the memory modules can easily be replaced in the field.
Proper mounting (including thermal interface material) and alignment of all
components of the cooling solution is crucial for a high cooling performance.

Heat dissipation into the environment of the compute node is reduced using
Armaflex thermal insulation. The only components of iDataCool that are still
air-cooled are the power supply units and the network switches.

Only a minor modification of the node chassis was required to connect the
cooling pipeline, via inexpensive standard water connectors, to a rack-level mani-
fold. The nodes are connected to the manifold in a parallel fashion. The manifold
is designed using the Tichelmann principle to ensure that the distance covered
by the water flow, and therefore the pressure drop, is equal for all nodes. Thus
the water flow rates balance themselves automatically. The manifold is attached
to the backside of each rack. Armaflex thermal insulation reduces the dissipation
of heat from the pipes into the computing center.

An important issue is the cost of the liquid-cooling solution. All components
are made from standard materials (copper, aluminum, plastic) and were designed
such that the manufacturing process is simple, and thus inexpensive. There are
only six soldering joints per node (two at each heat sink, and one each at the in-
and outlet), and the bending of the copper pipe can be automated by a properly
designed tool. The mounting of the liquid-cooling solution (including applica-
tion of thermal interface material) was somewhat time-consuming, but on an
industrial scale this process could also be automated. For us the total cost of the
liquid-cooling solution was about 120 Euro per node (excluding external infras-
tructure). While this is more expensive than an air-cooled solution, it is a small
fraction of the overall cost and can be amortized quickly by the savings from
free cooling and energy reuse. On an industrial scale the costs would probably
be even lower.

Our sensing and monitoring facilities are described at the beginning of Sect. 4.



iDataCool: HPC with Hot-Water Cooling and Energy Reuse 387

iD
ataC

ool

Buffer

W
ork

C
ool

R
ecool

C
luster
G

PU

iD
ataC

ool

iD
ataC

ool

 

(5)

Dry Recooler

(3)
(4)

CoolTrans
(2)

Central Cooling

Adsorption Chiller

(1)

Fig. 3. Liquid-cooling installation consisting of central cooling circuit (1), primary
cooling circuit (2), rack cooling circuit (3), driving circuit (4), and recooling circuit (5)

3 Infrastructure

iDataCool is installed in the computing center of Regensburg University, which
was entirely air-cooled before. The liquid-cooling infrastructure for iDataCool
was prepared in 2011 and completed in 2012. Since the spring of 2012 the waste
heat of iDataCool drives an adsorption chiller (LTC 09 by InvenSor), which in
turn generates chilled water. The LTC 09 is a so-called low-temperature chiller
that works efficiently already at driving temperatures of around 65◦C/149◦F,
see the efficiency curves in the data sheet [11]. The cooling performance of the
chiller is balanced against the cooling needs of a small-sized GPU cluster that is
cooled by the LTC 09. The GPU cluster has a peak power consumption of 12kW.
The equipment of the GPU cluster is housed in a closed cabinet and cooled by
air. The air is cooled by an air-water heat exchanger (Knürr CoolLoop [12]) that
transfers the heat inside the cabinet to the water circuit.

Fig. 3 shows a schematic overview of the liquid-cooling installation. It consists
of five water circuits. Each circuit is driven by a dedicated pump that keeps the
water flow at a constant rate. Energy losses to the environment are reduced by
thermal insulation of the hot parts of the plumbing. Special additives are used
to minimize the risk of corrosion. In the following we discuss the details of the
five circuits.

– The computing center is connected to the university’s central cooling cir-
cuit (1) which delivers chilled water at temperatures around 8◦C/46◦F.

– The primary cooling circuit (2) is continuously chilled by the adsorption
chiller and picks up heat from the GPU cluster. In addition, the primary
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circuit can be used as an additional cooler for the iDataCool cluster, see the
dotted lines in the figure. (A dry recooler would also suit this purpose.) If
the water temperature exceeds 20◦C/68◦F the primary circuit is supported
by the central cooling circuit (1), to which it is connected via a commercial
heat exchanger that works autonomously (Knürr CoolTrans [13]).

– The iDataCool cluster is cooled by the rack cooling circuit (3) with hot water
at outlet temperatures of up to 70◦C/158◦F. The waste heat of iDataCool
is supplied to the driving circuit of the adsorption chiller (4) via a heat
exchanger. Transfer of excess heat to the primary cooling circuit (2) allows
us to keep the rack inlet temperature constant (even under change of load on
the cluster). The heat transfer to primary and driving circuit is continuously
regulated by a 3-way valve. The valve is automatically operated by a PID
controller that determines the rack inlet temperature.

– The adsorption chiller is driven by the driving circuit (4). Temperature fluc-
tuations in the driving circuit due to the operational characteristics of the
chiller are smoothed by a buffer tank with a capacity of 800 liters. Due
to proper thermal insulation there is virtually no temperature loss at the
interface to the rack cooling circuit.

– The recooling circuit (5) connects to a fan-driven dry recooler that is located
outside the computing center. The fans are controlled automatically by the
adsorption chiller with the fan speed optimized for energy-efficient operation
of the chiller. Evaporative cooling is possible in principle but has not been
implemented in our setup. Freezing of the external recooling circuit is avoided
by an admixture of ethylene glycol.1

The standard use case of the adsorption chiller is rather different from our setup.
Normally the chiller drives an air-conditioning system, i.e., one specifies the
desired temperature of the chilled water, and the chiller then absorbs as much
heat as necessary from the driving circuit to deliver the required cooling power.
In our case we want the chiller to absorb the heat from the rack circuit and
to deliver as much cooling power as possible. To see how this works we now
discuss in some detail the behavior of our system. The chiller is characterized
by its cooling capacity Pmax

c , which is the maximum amount of heat per unit
time it can remove from the cooling circuit, and by its coefficient of performance,
defined as

COP =
power Pc removed from cooling circuit

power P abs
d absorbed from driving circuit

.

All of these quantities depend (among other parameters) on the temperature T
in the driving circuit [11]. Now assume that the 3-way valve in Fig. 3 completely
shuts off the additional cooling path and that we turn on the iDataCool clus-
ter with an initial water temperature of, say, 20◦C/68◦F. At T < 55◦C/131◦F

1 Since driving and recooling circuit are connected in the chiller, we also have glycol
in the driving circuit. This is the reason for the heat exchanger between rack and
driving circuit.
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the adsorption chiller is in standby mode and thus absorbs no heat from the
cluster. As a result, the temperature in the rack circuit increases until it goes
above 55◦C/131◦F and the chiller turns on.2 What happens then depends on the
temperature dependence of the function Pmax

d (T ) = Pmax
c (T )/COP(T ), which is

the maximum power that can be removed from the driving circuit of the chiller.
This function depends on the parameters of the chiller. A certain power Pd is
transferred from the rack circuit to the driving circuit. If Pmax

d (T ) < Pd the
temperature keeps going up. If Pmax

d (T ) intersects Pd at some T = Teq, the
system settles into equilibrium at that temperature. If Pd is larger than the
maximum of Pmax

d (T ), we have to employ the additional cooling mechanism
via the 3-way valve to remove the rest of the heat and to keep the rack cir-
cuit at a well-defined temperature. The parameters of our system are such that
for T = 60 . . . 70◦C/140 . . .158◦F the value of Pmax

d (T ) is almost equal to, but
slightly smaller than, the power transferred from the rack circuit to the driving
circuit at maximum load of the cluster. Thus the system is almost in equilibrium
and only a very small amount of additional cooling is necessary.

Our setup also solves two redundancy issues: (i) Should the adsorption chiller
fail to absorb all the heat from the iDataCool cluster, additional cooling is pro-
vided by the primary cooling circuit, which may be supported by the central
cooling circuit. (ii) Should the adsorption chiller fail to provide enough cooling
power to the GPU cluster, again the central cooling circuit comes to the rescue.

4 Measurements

In this section we present a number of measurements and benchmarks performed
on the iDataCool system. We first describe our sensing and monitoring facilities.
The liquid-cooling installation is constantly monitored, and relevant system pa-
rameters are logged electronically. On the node level, we read out the individual
processor core temperatures from chip-internal sensors, we estimate the water
in- and outlet temperature of each node using the original air-flow temperature
sensors (which we attached to the copper pipe), and we monitor the DC power
consumption of each node. On the cluster level, we measure the in- and outlet
temperature and the AC power consumption of the 3-rack installation. Our in-
strumentation also allows us to determine the combined AC power consumption
of the iDataCool cluster, the GPU cluster, water pumps, the adsorption chiller,
and the dry recooler. To determine the flow rates in the different water circuits
we use various kinds of flow meters. As for the accuracy of our equipment, we
estimate the node-level temperature sensors to be accurate to about 1◦C/2◦F,
while the cluster-level temperature sensors, which are in direct contact with the
water, are specified to have an accuracy of 0.2◦C/0.4◦F. The ultrasonic flow me-
ter for the rack cooling circuit is specified to have an accuracy of 1%, while the
flow meters for the other circuits are much simpler and only about 10% accurate.

2 In our system the thermal contact between rack circuit and driving circuit is very
good so that the driving temperature T equals the outlet temperature of the rack.
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Fig. 4. (a) Core temperatures of 13 compute nodes under stress and (b) core temper-
ature distribution of the cluster in production mode. In both plots only six-core E5645
processors are included. The vertical error bars in (a) are the standard deviations after
averaging over time and nodes.

When plotting quantities as a function of the cooling-water temperature we
have the choice of using the rack inlet or outlet temperature. We chose the
outlet temperature Tout since this is the quantity of interest for energy reuse
purposes. The difference between inlet and outlet temperature can be controlled
by adjusting the water flow rate and is about 5◦C/9◦F in our system.3 For
constant rack inlet temperature, Tout fluctuates slightly depending on the load
of the cluster and on the control parameters. In the figures, the horizontal error
bars in the Tout direction reflect these fluctuations in time.

Some of our measurements [those presented in Figs. 4(a), 5(a), and 6(a)] were
taken on a subset of 13 randomly selected nodes (six-core E5645 processors at
2.4 GHz with Turbo Boost disabled) running a well-defined load (the standard
stress tool [14]). The other measurements were taken on the whole iDataCool
system running in production mode, i.e., various jobs of different sizes and with
different computing and communication requirements are scheduled and exe-
cuted by the batch queueing system.

In Fig. 4(a) we show the average compute core temperature as a function of
the outlet temperature. The average difference between core and water temper-
ature increases slightly, from 15◦C/59◦F to 17.5◦C/63.5◦F, over the range of
temperatures considered. The error bars are rather large, indicating a large vari-
ation between nodes. A histogram of core temperatures for Tout = 67◦C/153◦F
is shown in Fig. 4(b). The solid line is a Gaussian fit centered at 84◦C/183◦F
with σ = 2.8◦C/5.0◦F. The small bump at the low end of the histogram is due

3 At constant water flow rate this temperature difference decreases somewhat with the
outlet temperature since the system is not perfectly insulated from the environment.
At higher temperatures more heat is lost to the air.
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Fig. 5. (a) Node power consumption of 13 compute nodes under stress and (b) node
power distribution of the cluster in production mode. In both plots only six-core E5645
processors are included.

to idle nodes that have a much lower core temperature. Our interpretation of the
large spread visible in Fig. 4(b) is that it is mainly due to the first segment of
the heat transfer path described in Sect. 2, over which we have no control, while
we can control the second part very carefully. Nevertheless, this spread is a real
problem if we aim, with energy reuse in mind, for a high outlet temperature.
The cores throttle at about 100◦C/212◦F,4 so the outlet temperature is limited
by the core with the largest difference between core and outlet temperature. In
our system this largest difference is below 30◦C/54◦F so that we can safely run
at Tout ≤ 70◦C/158◦F. If we desired higher temperatures we could sort out the
“bad” chips and run them at lower temperature in a separate system. The high
end of the histogram in Fig. 4(b) indicates that we could perhaps gain another
5◦C/9◦F in this way.

The power consumption per node also shows large fluctuations. In Fig. 5(a)
we present the DC power consumption of 13 nodes vs. their average core tem-
perature. To quantify the spread we measure the DC power on most six-core
nodes for various temperatures, interpolate to 80◦C/176◦F, and then construct
a histogram of the interpolated node power, see Fig. 5(b). The solid line is a
Gaussian fit centered at 206W with σ = 5.4W. We see that the individual CPUs
vary greatly in their power consumption even for the same coolant temperature.
We again attribute most of these variations to the manufacturing process of the
chips, not to our liquid-cooling solution.

With higher cooling-water temperatures the power consumption of the nodes
increases, which has a negative effect on the total energy reuse efficiency of
the system. To quantify this effect we plot in Fig. 6(a) the relative average
increase of the node power consumption, which is about 7% when going from

4 Note that there are other processors that throttle already at much lower tempera-
tures. Such processors are obviously not suitable for cooling with hot water.
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Fig. 6. (a) Relative node power increase for 13 nodes with six-core E5645 processors
and (b) COP of adsorption chiller. The vertical error bars in (a) are the standard
deviations after averaging over nodes, while the vertical error bars in (b) reflect the
10% accuracy of the flow meters.

49◦C/120◦F to 70◦C/158◦F. This should be compared to the efficiency gain
of the adsorption chiller, which is quantified by the COP defined in Sect. 3
and shown in Fig. 6(b). The temperature in the last plot starts at 57◦C/135◦F
since the adsorption chiller is in standby mode for lower temperatures. When
going from 57◦C/135◦F to 70◦C/158◦F the COP increases by 90%, while the
node power consumption increases by only 5%. Thus the energy reuse efficiency
dramatically improves when running at higher temperatures.

In Fig. 7(a) we show the fraction of the electric power delivered to the cluster
that is transferred to the water in the rack circuit. We observe that this frac-
tion drastically decreases with temperature. The reason for this decrease is the
imperfect thermal insulation of the iDataCool racks from the environment.5 A
higher temperature difference between rack and air implies that more energy is
lost to the air. The lesson from this figure is that in future hot-water cooling
designs serious attention should be paid to the thermal insulation of the rack
already in the early planning stages. In Fig. 7(b) we show the fraction of electric
power that is transferred to the driving circuit of the adsorption chiller, i.e.,
Pd/Pelectric, as a function of the coolant temperature in the rack circuit.6 The
increase shows that higher coolant temperatures in the rack circuit lead to a

5 We did make serious insulation efforts, but since we retrofitted an existing system
we were limited in what we could do.

6 The energy balance in the rack circuit is Pr = Pd + Padd + Ploss, where Pr = heat-
in-water × Pelectric, Padd is the additional cooling power from the primary cooling
circuit, and Ploss is the heat per unit time that is lost to the environment due to
imperfect thermal insulation of the plumbing. Padd is small at high temperatures,
see Sect. 3. The fact that the numbers in Fig. 7(b) are significantly lower than those
in Fig. 7(a) thus implies that for our system Ploss is rather large.
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Fig. 7. (a) Heat-in-water fraction and (b) transferred power. The vertical error bars
in (a) combine temporal fluctuations of the inlet- and outlet coolant temperatures and
the flow, while the vertical error bars in (b) reflect the 10% accuracy of the flow meters.

better utilization of the chiller, i.e., for our system the increase of the chiller
effectiveness with Tout outweighs the reduced heat in water.

We do not show plots of the fraction of energy reused (or, equivalently, of the
energy reuse efficiency) since the cooling capacity of our chiller is not high enough
to convert all heat from the iDataCool system to chilled water. The fraction of
energy that could be reused (e.g., by adding another chiller) can be computed
by multiplying the numbers in Figs. 6(b) and 7(a) and is on the order of 25%
for T = 60 . . . 70◦C/140. . . 158◦F. With better thermal insulation this fraction
could increase by almost a factor of two at T = 70◦C/158◦F, see Fig. 7(a).

5 Conclusions

We have demonstrated that, by employing a sophisticated but low-cost water-
cooling solution, it is possible to cool a large compute cluster in stable production
mode with water outlet temperatures of up to 70◦C/158◦F. At such tempera-
tures a significant fraction of the energy consumed by the cluster can be reused.
In the iDataCool system the waste heat from the cluster drives an adsorption
chiller that operates efficiently above 65◦C/149◦F. The minor increase in power
consumption of the nodes due to the higher temperature is more than offset by
the dramatic increase in the COP of the chiller.

The main problem of the iDataCool system is the imperfect thermal insula-
tion, which leads to a serious loss of heat to the environment and decreases the
amount of energy that can be reused. In future designs this problem should be
attacked from the very start. Our numbers indicate that with better thermal
insulation almost 50% of the energy can be recovered in the form of chilled wa-
ter. Of course, other opportunities for energy reuse exist where an even higher
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fraction of the energy can be recovered, e.g., by heating. However, at some sites
heating may not be an option or not necessary at all, in which case the gener-
ation of chilled water, which can be used to cool other parts of the computing
center, is an attractive possibility.

Finally, an important issue is the effect of high water temperatures on the
reliability of electronic components, and in general on the long-term stability of
the system. iDataCool gives us a unique opportunity to study this issue (except
for hard disks since the iDataCool nodes are diskless). We cannot predict the
future, but after more than one year of cooling with hot water we have not yet
observed any negative effects.
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Abstract. With the rate of computing power growing much faster than
that of storage I/O access, parallel applications suffer more from I/O
latency. I/O prefetching is effective in hiding I/O latency. However, ex-
isting I/O prefetching techniques are conservative and their effective-
ness is limited. Recently, a more aggressive prefetching approach named
pre-execution prefetching [19] has been proposed. In this paper, we first
identify the drawback of this pre-execution prefetching approach, and
then propose a new method to overcome the drawback by scheduling
the I/O operations between the main thread and the prefetching thread.
By careful I/O scheduling, our approach further extends the computa-
tion and I/O concurrency and avoids the I/O competition within one
process. The results of extensive experiments, including experiments on
real-life applications such as big matrix manipulation and Hill encryp-
tion, demonstrate the benefits of the proposed approach.

1 Introduction

Parallel applications execution suffers from large latency of I/O accesses. The
poor I/O performance has been attributed as a critical cause of the low sustained
performance of parallel systems ([1], [2]). In order to improve I/O performance
numerous works have been conducted. However, their effectiveness and practi-
cability are limited by their inherent drawbacks.

A remarkable advancement in I/O parallelism ([5], [6], [7], [18]) has been
achieved. However, this advancement in I/O parallelism is accompanied with
a much more expeditious development of parallel processing both on hardware
and software, so it is still not capable of reducing the I/O latency effectively.
The Adaptable IO System (ADIOS) ([22], [23]) and non-blocking I/O [21] can
gain a high I/O performance improvement but they require application modifi-
cation ([21], [24]). The effectiveness of collective I/O and data sieving ([8], [9])
is application dependent. Due to the inherent nature of applications, there are
still many small I/O requests that cannot be eliminated [19]. Studies [3] and
[4] use data compression scheme to reduce the amount of I/O traffic. However,
limited by the data condensability, compression rate and extra overhead on the
system management, the exploitation of data compression approach in practice
is restricted. Traditional prefetching strategies ([10], [11], [12], [13], [14], [15],
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[16], [17]) are conservative and most cannot guarantee the prefetching accuracy
and timeliness.

Considering computing power is plenty but data access is the bottleneck and
most of existing I/O prefetching techniques are conservative and their effec-
tiveness is limited, Chen et al. [19] proposed a pre-execution I/O prefetching
approach. Pre-execution I/O prefetching approach is promising in reducing I/O
access latency and it can convert original applications to prefetching version au-
tomatically. Following this direction, in order to overcome the limitation due to
read after write (RAW) dependency and further extend the computation and I/O
concurrency, Zhao et al. [20] proposed a parallel pre-execution prefetching (PPP)
approach. However, both [19] and [20] do not pay attention to the relationship
among the I/O accesses conducted by diverse threads. And they failed to fur-
ther extend the I/O and computation concurrency by carefully coordinating the
I/O accesses. Our work aims to resolve this issue by developing a new approach
named pre-execution prefetching with inter-thread I/O scheduling (PPIS). With
PPIS we extend the computation and I/O concurrency while avoiding the I/O
competition caused by multiple concurrent I/O operations requested by the main
thread and prefetching thread in one process.

The rest of the paper is organized as follows. Section 2 describes the motivation
of this work. Section 3 presents PPIS. Section 4 details the experiment designs
and results. Section 5 concludes this paper and states our future work.

2 Motivation

In [19], Chen et al. proposed a pre-execution prefetching approach (PP). The
basic idea is to pre-execute a portion of code on each process to identify future
I/O references, and then fetch the data closer to CPU in advance in order to
overlap the computation and I/O access.

PP approach aims to overlap the computation and I/O access by creating
a pre-execution prefetching thread (PT) to work with the main thread (MT)
in parallel. However, a portion of I/O accesses requested by PT may be over-
lapped with MT’s I/O accesses when MT has I/O operations such as writes and
those reads that cannot be conducted by PT early enough. In other words, this
portion of pre-executed I/O accesses fails to be hidden by computation. This
issue will result in a series of adverse effects. First, it diminishes the degree of
the parallelism between computation and I/O, which affects the effectiveness
of pre-execution prefetching. Second, the I/O resource competition between the
simultaneous I/O accesses of MT and PT can delay MT’s I/O access, which
goes against the purpose of pre-execution prefetching to accelerate the execu-
tion of the original program. Third and most importantly, PP does not take
into account the global I/O network and file system source competition. Simply
launching more concurrent I/O requests within local process will result in high
I/O competition even I/O congestion in the whole system, and end up over-
whelming the network and the file system, which not just limits the scalability
of the pre-execution prefetching, but makes the prefetcher counter-productive as
well.
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Figure 1 illustrates an application scenario and shows how it runs under nor-
mal execution mode and PP mode, where the size of each operated segment
represents time duration. This application scenario is typical in real applications
such as big matrix manipulation and big file encryption where the process in
normal execution mode sequentially processes a large volume of data. For each
piece of data, data reading, computation, and writing are executed in sequence.
Under PP execution mode, the process contains two threads, MT and PT. Since
I/O access is the focus of PT and in this scenario dominates PT’s execution time,
we can safely ignore the time incurred by computation conducted by PT in Fig.
1. As under PP mode, PT is designed to do data prefetching as fast as possible,
I/O overlap between PT and MT is easy to occur. The scenario in Fig. 1 shows
that under PP mode, a high portion of I/O accesses of PT overlaps with that
of MT. They are R2 overlapping with R1 and R4 overlapping with W1. Only
the I/O operation R3 is successfully overlapped with the computation of MT.
In this scenario, the computation and I/O access concurrency achieved by PP
is much limited. Worse, the I/O overlap between MT and PT results in the I/O
resource competition, which makes the I/O access latency (R1 , R2 , W1 and R4)
longer, and then delays the normal execution of MT. When the impact induced
by prefetching operations conducted by other processes is taken into account the
outcome will be even worse. In case hundreds of processes are employed for a
large computing job, which is common for high-performance computing applica-
tions, doubled number of concurrent I/O accesses induced by PP can even cause
I/O congestion.

Fig. 1. Hiding I/O Latency with PP and PPIS
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Fig. 2. I/O Workflow of PP Fig. 3. I/O Workflow of PPIS

3 Pre-execution Prefetching with Inter-thread I/O
Scheduling

3.1 Description

We propose a new approach, pre-execution prefetching with inter-thread I/O
scheduling (PPIS), to further improve the pre-execution prefetching strategy.
The benefit of our approach is twofold. First, we extend the degree of compu-
tation and I/O concurrency of a parallel application, and further hide the I/O
latency. Second, we improve the scalability of the pre-execution prefetching by
avoiding multiple concurrent I/O operations conducted within each process.

In PPIS, we assign a higher priority to MT’s I/O accesses to make sure they
gain the maximal system I/O resources. Concretely, only when MT is not per-
forming I/O operation can PT launch an I/O operation. In case MT needs to per-
form I/O operations while at this moment PT is still doing I/O prefetching, we
suspend PT’s prefetching and record its current prefetching status information,
for example the identifier of the block that has just been completely prefetched.
After MT finishes its I/O access, MT notifies PT to continue prefetching. By
scheduling the I/O accesses of MT and PT in a coordinate manner, PPIS can
maximize the parallelism of I/O access and computation, and meanwhile avoid
the I/O competition within one process. Figure 2 and Fig. 3 show the I/O work-
flow of threads when both MT and PT are conducting I/O operation under PP
and PPIS scenarios respectively.

The advantages of PPIS over PP are illustrated in Fig. 1, which compares how
PPIS and PP progress in the scenario mentioned in Sect. 2. In this ideal case,
PPIS maximizes PT’s I/O access and MT’s computation concurrency. More-
over, it avoids the I/O competition between the two threads, which not only
optimizes the completion time of MT’s I/O access, but also avoids the potential
I/O congestion caused by PP when the number of concurrent processes is large.
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3.2 Implementation

Software Stack. We employ MPI protocol and its parallel API to actualize the
execution of parallel applications. In order to implement PT co-working with MT
within each process, we adopt the POSIX Threads (Pthreads) multi-threaded
programming standard. We conduct the parallel file system access through the
ROMIO MPI-IO implementation in Open MPI. Figure 4 shows the software
stack to implement our approach.

Fig. 4. Software Stack (Module inside the dashed line box
represents the experiment environment used in Sect. 4)

Fig. 5. Threads I/O Related Behavior of PPIS

Threads I/O Related Behavior to Implement I/O Scheduling. We em-
ploy a condition variable and Pthreads inter-thread message passing mechanism
to accomplish the inter-thread I/O scheduling. The condition variable is used
as a flag managed by MT. Initially the flag is set as unlocked. When MT starts
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performing I/O access it first locks the flag. Locked flag indicates that PT can-
not launch any I/O accesses. Otherwise, the prefetching is allowed. When PT
encounters a read function, it has to check the flag’s status first. If the flag is
locked, then PT goes into the suspend status. When MT finishes its I/O access
it unlocks the flag and sends a notification to wake up and allow PT to prefetch
data into cache. Figure 5 shows the I/O related behavior of each thread in PPIS.

3.3 Analysis

Optimal Analysis. PP introduces extra I/O accesses over normal execution.
In the worst scenario, all MT and PT I/O accesses collide and result in I/O
congestion. Then the original application execution can be delayed infinitely.
By introducing I/O scheduling PPIS not only avoids this issue but also further
extends the degree of I/O access and computation concurrency of a parallel
program. In this section we analyze the optimal speedup achieved by PPIS over
normal execution.

Table 1. Notations

NC the number of segments of computation in the original application

NW the number of segments of write operation in the original application

NR the number of segments of read operation in the original application

TNormal the total execution time of the application under normal execution

TPPIS the total execution time of the application under PPIS mode

TTH OP SN MO

The execution time of a certain operation (TH: thread; OP:
operation; SN: serial number; Mode: execution mode (e.g.,
TMT R i Normal refers to the execution time of MT’s ith segment
of read under normal execution mode))

NTH OP MO

The number of segments of a certain operation (e.g., NPT R PPIS

refers to the number of segments of read conducted by PT under
PPIS mode)

The total execution time of the program under a certain mode is actually
MT’s execution time, so

TMode =

NMT R Mode∑
i=1

TMT R i Mode +

NMT W Mode∑
j=1

TMT W j Mode

+

NMT C Mode∑
k=1

TMT C k Mode. (1)

Here, Mode ∈ {Normal, PP, PPIS}. Under normal execution mode MT con-
ducts all the operations exactly identical to how the original application does.
And under PPIS all write and computation operations are conducted by MT with
the same progress time as those under normal execution mode assuming the I/O
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accesses of other processes in the system are not disturbed by the prefetching.
Thus,

TNormal =

NR∑
i=1

TMT R i Normal+

NW∑
j=1

TMT W j Normal+

NC∑
k=1

TMT C k Normal. (2)

TPPIS =

NMT R PPIS∑
i=1

TMT R i PPIS +

NW∑
j=1

TMT W j Normal +

NC∑
k=1

TMT C k Normal.

(3)
In the optimal case, all the data to be read in the application is prefetched by
PT with completely overlapping with the computation of MT, then,

TPPIS =

NW∑
j=1

TMT W j Normal +

NC∑
k=1

TMT C k Normal. (4)

The speedup achieved by PPIS over the normal execution mode is:

Speedup(PPIS/Normal)

= TNormal/TPPIS

=

∑NR

i=1 TMT R i Normal +
∑NW

j=1 TMT W j Normal +
∑NC

k=1 TMT C k Normal∑NW

j=1 TMT W j Normal +
∑NC

k=1 TMT C k Normal

<=

∑NR

i=1 TMT R i Normal +
∑NC

k=1 TMT C k Normal∑NC

k=1 TMT C k Normal

. (5)

To hide all the read latency by computation, there must be

NR∑
i=1

TMT R i Normal <

NC∑
k=1

TMT C k Normal. (6)

With

lim

NC∑
k=1

TMT C k Normal =

NR∑
i=1

TMT R i Normal. (7)

So,

SpeedupPPIS/Normal <= 2

NC∑
k=1

TMT C k Normal/

NC∑
k=1

TMT C k Normal = 2. (8)

Namely,
max{Speedup(PPIS/Normal)} = 2. (9)

So, in the optimal scenario, PPIS can hide all the read latency suffered by an
application and achieve 50% total execution time reduction of that application
over normal execution.
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Cost. Over the existing pre-execution prefetching approach, in which I/O re-
lated operations conducted by PT do not involve communication with other
processes in general [19], PPIS requires an inter-thread I/O scheduling, which is
quite light-weight in cost. Throughout the implementation of the I/O schedul-
ing, only a condition variable and several inter-thread messages are added to
the existing pre-execution prefetching implementation. Also, the messages are
thread control messages with no additional data transported, which are quite
small in size. Thus, the overhead caused by I/O scheduling is negligible, espe-
cially, when it is compared to the huge workload of parallel applications. The
cost does not impact the effectiveness of PPIS, which is also verified by the
performance improvement achieved by PPIS as shown in Sect. 4.

Correctness. First, the existing pre-execution prefetching approach can guar-
antee the correctness of the original program. Second, the I/O scheduling be-
tween PT and MT only deals with the prefetching time of PT, so it does not
affect the logical behavior and accuracy of MT. Thus, the MT in a program
running with and without PPIS will logically behave identically. In summary,
PPIS does not affect the correctness of the original program.

Thread Safety. First, only one global variable is added on top of PP to im-
plement PPIS. Since only MT has the access to write it, there is no concur-
rent read/write by multiple threads on this global variable. Thus, no additional
thread safety risk is induced to the existing pre-execution prefetching. Second,
by introducing a prefetching file pointer as a hidden file offset pointer within the
non-transparent MPI file handle object in order to track the prefetching thread
file offset, the thread safety can be guaranteed naturally by PP [19]. Therefore,
PPIS is thread-safe.

4 Experiment

Our experiments were conducted on a 66-node 528 processors Linux-based clus-
ter. Each compute node has 16 GB of RAM and 2 CPU sockets, each with
quad-core Intel Xeon 2.66GHz CPU. Depending on the number of processes in
experiment, we used the subset of this cluster with size ranging from 1 to 16
compute nodes. We dynamically assign the buffer size as demand in each node,
which can be large enough for our experiments as each node has 16 GB of RAM.
Software environment refers to the dashed line box in Fig. 4.

4.1 Design

We evaluated the benefits of our approach on big matrix searching operation and
Hill encryption application respectively. The former was tested under the system
with light I/O workload. The later was tested under the system with light and
heavy I/O workload, respectively. For the light I/O workload, only our experi-
ment benchmark accessed the disk in the system. To achieve a heavy workload
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environment, we conducted multiple simultaneous large file I/O operations in
the system. We evaluated the results with three metrics, total execution time,
aggregate sustained bandwidth and I/O latency, which are the most important
performance metrics in practice.

Experiment #1: Big Matrix Searching. Big matrix searching is the fun-
damental operation of many real parallel applications. In this experiment we
conducted searches in a big integer matrix, which is 4GB in size, to find its top
30 maximum items. The matrix was split into 4 sub-matrices with equal size to
process in sequence.

Experiment #2: Hill Encryption. Hill encryption is a real application to
encrypt data with Hill cipher, in which the key is a matrix. When the plaintext
data is large it will be partitioned into smaller chunks, and then these chunks are
encrypted in sequence. In this experiment we encrypted a big file of 6GB with
the key matrix size was set as 100 by 100. First, we tested the case in which the
chunk size is 2GB. Then we further tested the I/O latency reduction achieved
by PPIS over normal execution mode under different chunk sizes.

4.2 Results

Experiment #1. Figure 6 shows the total execution time results. The exe-
cution time under the PPIS mode is reduced in all the cases showed in Fig.6
compared to normal execution and PP, respectively. Over normal execution and
PP the maximal reduction is 28.6% and 28.2% when the number of processes is
16 and 64, respectively. As a reference, Fig. 6 also shows the application’s exe-
cution time under the theoretically optimal scenario, in which the I/O latency
would be completely masked. The computation dominates the whole applica-
tion when the number of processes is small (e.g., 1 and 2). Thus, even if a large
amount of I/O latency was hidden by PPIS the reduction percentage of the whole
application execution time is quite marginal. For large applications which run

Fig. 6. Execution Time Fig. 7. I/O Latency
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tens of days or even months, the reduction of the execution time is significant
as the amount of I/O time being hidden would constitute tens of hours of the
applications. When the number of the processes is large the computing workload
assigned to each process is quite low, which limits the amount of I/O latency
hidden by computation. Thus, high execution time reduction percentage under
PPIS mode can be achieved with moderate number of parallelisms as observed
in [20]. In Fig. 6, when the number of processes exceeds 16 and 32 respectively,
the execution time under the PP mode starts to increase. With the number of
processes is 64, it is even larger than that of the normal execution. PPIS, on
the other hand, can achieve execution time reduction compared to the other two
modes in all the cases.

Figure 7 shows the corresponding results of I/O latency during the whole exe-
cution of the application. In most of cases, a considerable I/O latency reduction
percentage has been achieved by PPIS over the other two modes with the max-
imal reduction being 75.1% over normal execution mode when the number of
processes is 1 and 54.3% over PP mode when the number of processes is 4. Most
importantly, the PPIS outperforms the normal and PP modes for all process sizes
being evaluated while the normal and PP modes outperform/underperform over
one another at certain process sizes being evaluated.

Fig. 8. Execution Time (light I/O) Fig. 9. Execution Time (heavy I/O)

Experiment #2. Figure 8 and Fig. 9 show the execution time of the Hill
encryption with the chunk size is 2GB. Likewise, PPIS achieves execution time
reduction in all cases shown in the figures compared to normal execution and PP,
respectively. Under the light workload system, the best execution time reduction
achieved by PPIS is 47.4% and 54.6% over normal execution and PP with the
number of processes is 32 and 64, respectively. Under the heavy workload system,
the corresponding results turn out to be 27.6% and 24.0% with the number of
processes is 16 and 64, respectively. Besides, better scalability was achieved by
PPIS compared to PP in both circumstances.

Figure 10 and Fig. 11 show the I/O latency during the whole encryption pro-
cess. Quite high I/O latency reduction percentage acquired by PPIS is observed
with the maximal reduction being 67.0% over normal execution and 62.9% over
PP under the number of processes being 1 and 32, respectively.
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Fig. 10. I/O Latency (light I/O) Fig. 11. I/O Latency (heavy I/O)

Figure 12 shows the I/O latency reduction achieved by PPIS over normal exe-
cution mode under light I/O workload as the chunk size changes. In some cases,
the I/O latency reduction is close to 100%. It demonstrates that in these cases
PPIS can almost hide the entire I/O latency of the Hill encryption application
by scheduling the pre-executed I/O operation to strictly overlap with computa-
tion. When the number of process is larger than or equal to 32, the reduction
drops. The reason is that the computation workload assigned to each process is
too small to hide all the I/O latency.

Fig. 12. I/O Latency Reduction

In experiments #1 and #2 when the number of processes is larger such as
128 or 256 the advantage of PPIS in terms of scalability is more remarkable.
For instance, the execution time reduction achieved by PPIS compared to PP
for 256 processes under the heavy I/O workload system in Experiment #2 is
42.1%. It is larger than those under the number of processes being 128 and
64, which are 31% and 24.0%, respectively. The effectiveness of PPIS under
heavy workload system also indicates that PPIS benefits the application, which
is running simultaneously with other multiple applications in the system as well.
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5 Conclusion and Future Work

Parallel applications continue to suffer from I/O latency. In this study, by propos-
ing PPIS approach, we enhanced the existing pre-execution prefetching strategy
to further hide I/O latency. Meanwhile, the new pre-execution prefetching ap-
proach is more scalable. The main contribution of this study is that we employed
the active scheduling or careful coordination on the normal and pre-executed
I/O accesses to maximum the overlap between the pre-executed I/O accesses
and computation, which is the first work to the best of our knowledge in this
research direction. Compared to the existing pre-execution prefetching approach
PPIS extends the degree of computation and I/O concurrency, and also avoids
the I/O congestion caused by multiple I/O operations requested by one pro-
cess synchronously. The extensive evaluation results, including one from Hill
encryption as a real-life application, have verified that the proposed approach
has more potential and better scalability to hide I/O access delay than the ex-
isting approach. In order to further decrease or avoid impact on all processes in
system introduced by prefetching our future work is to schedule the normal and
pre-executed I/O accesses in inter-process level.
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Abstract. File systems as well as I/O libraries offer interfaces which can
be used to interact with them, albeit on different levels of abstraction.
While an interface’s syntax simply describes the available operations, its
semantics determine how these operations behave and which assumptions
developers can make about them. There are several different interface
standards in existence, some of them dating back decades and having
been designed for local file systems. Examples are the POSIX standard
for file system interfaces and the MPI-I/O standard for MPI-based I/O.

Most file systems implement a POSIX-compliant interface to improve
portability. While the syntactical part of the interface is usually not
modified in any way, the semantics are often relaxed to reach maximum
performance. However, this can lead to subtly different behavior on dif-
ferent file systems, which in turn can cause application misbehavior that
is hard to track down.

On the other hand, providing only fixed semantics also makes it very
hard to achieve optimal performance for different use cases. An additional
problem is the fact that the underlying file system does not have any
information about the semantics offered in higher levels of the I/O stack.
While currently available interfaces do not allow application developers
to influence the I/O semantics, applications could benefit greatly from
the possibility of being able to adapt the I/O semantics at runtime.

The work we present in this paper includes the design of our semantics-
aware I/O interface and a prototypical file system developed to support
the interface’s features. Using the proposed I/O interface, application
developers can specify their applications’ I/O behavior by providing se-
mantical information. The general goal is an interface where developers
can specify what operations should do and how they should behave –
leaving the actual realization and possible optimizations to the under-
lying file system. Due to the unique requirements of the proposed I/O
interface, the file system prototype is designed from scratch. However, it
uses suitable existing technologies to keep the implementation overhead
low.

The new I/O interface and file system prototype are evaluated using
parallel metadata benchmarks. Using a single metadata server, they de-
liver a sustained performance of up to 50,000 lookup and 20,000 create
operations per second, which is comparable to – and in some cases, better
than – other well-established parallel distributed file systems.
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1 Introduction

High performance computing is an increasingly important tool for scientific com-
puting. It is used to conduct large-scale computations and simulations of complex
systems from basically all branches of the natural and technical sciences, such as
meteorology, climatology, particle physics, biology, medicine and computational
fluid dynamics. These computations and simulations are usually realized in the
form of parallel applications. They use threads, message passing or a combination
of both to distribute and speed up the computational work across a supercom-
puter. Additionally, high performance computing is invaluable in analyzing the
large amounts of data produced by such applications.

An important aspect is high performance I/O, because storing and retrieving
such large amounts of data can greatly affect the overall performance of these
applications. A common access pattern produced by these applications involves
many parallel processes, each performing non-overlapping access to a shared file.

File systems provide an abstraction layer between the applications and the
actual storage hardware, such that application developers do not have to worry
about the organizational layout or technology of the underlying storage hard-
ware. Distributed file systems usually stripe data across several storage devices
to improve both storage capacity as well as throughput. Parallel file systems
allow multiple clients to access the same data simultaneously. Consequently,
most file systems used in high performance computing are parallel distributed
file systems. Two of the most widely-used file systems today are Lustre [3] and
GPFS [17].

Parallel distributed file systems provide one or more I/O interfaces which can
be used to access data within the file system. Additional interfaces are available
in the form of libraries. Popular choices include POSIX, MPI-I/O, NetCDF
and HDF5. Almost all the I/O interfaces found in high performance computing
today offer simple byte- or element-oriented access to data and thus do not have
any a priori information about what kind of accesses the applications perform.
Even though there are some notable exceptions such as ADIOS or NetCDF,
even the more advanced I/O interfaces do not offer support to specify additional
semantical information about the applications’ behavior and requirements. Due
to this lack of knowledge about application behavior, optimizations are often
based on heuristic assumptions which may or may not reflect the actual behavior.

While the I/O interface defines which I/O operations are available, the I/O
semantics describe and define the behavior of these operations. Usually each
I/O interface is accompanied by a set of I/O semantics, tailored to this specific
interface. The POSIX I/O semantics are probably the most widely-used seman-
tics, even in high performance computing. However, due to being designed for
traditional local file systems, they impose unnecessary restrictions on today’s
parallel distributed file systems. One of these restrictions are the very strict con-
sistency requirements which can lead to performance bottlenecks in distributed
environments.

Performing I/O efficiently is becoming an increasingly important problem.
While CPU speed and HDD capacity continue to increase by roughly a factor
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of 1,000 every 10 years [26,25], the speed of HDDs grows much slower: Early
HDDs in 1989 delivered about 0,5MB/s, while current HDDs manage around
150MB/s [24]. This corresponds to a 300-fold increase of throughput over the
last (almost) 25 years. Even newer technologies such as SSDs only offer through-
puts of around 600MB/s, resulting in a total speedup of 1,200. For comparison,
over the same period of time, the computational power increased by a factor of
1,000,000.

There are several ways to compensate for this fact: Increasing the efficiency of
I/O, using novel storage technologies or simply buying more storage hardware.
The JULEA project aims to increase the efficiency of I/O by providing a new
semantics-aware I/O interface which should allow applications to make the most
of the available storage hardware. It allows specifying the semantics of I/O op-
erations at runtime and supports batch operations to increase performance. The
overall goal is to allow the application developer to specify the desired behavior
and leave the actual realization to the I/O system.

This paper is structured as follows: The current state of the art with regards
to I/O interfaces and semantics is presented in Section 2. In Section 3, the design
of our new semantics-aware I/O interface is elaborated. A preliminary evaluation
is given in Section 4. Our design is then compared with other related work in
Section 5, followed by a conclusion and some ideas for future work in Section 6.

2 State of the Art

Currently, I/O systems have a strongly layered concept. One major problem with
this approach is the fact that the lower layers do not have any information about
the upper ones. Due to this, each layer has to perform its own optimizations to
be able to use the I/O system’s full potential. An example of such an I/O stack
can be seen in Figure 1a. The different interfaces such as ADIOS, MPI-I/O and
POSIX will be explained below. While the upper layers usually provide more
comfort and abstraction, the performance yield might be lower. Therefore, the
lower, more difficult-to-use layers are often used directly to harness the I/O
system’s full potential.

An additional problem is the fact that it is currently not possible to hand
semantical information down through the I/O stack. To ease the development
of codes in need of high performance I/O it would be very beneficial to provide
easy-to-use interfaces that still provide adequate performance.

2.1 I/O Interfaces

Each I/O interface is usually accompanied by its own set of I/O semantics, which
are tailored specifically to this interface. A description of the most common I/O
interfaces and their corresponding semantics follows.

The POSIX I/O interface has been originally designed for use in local file
systems. Its first formal specification dates back to 1988, when it was included in
POSIX.1. Asynchronous/synchronous I/O was added in POSIX.1b from 1993.
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(b) JULEA I/O layers

Fig. 1. Comparison of traditional and JULEA I/O stacks

This interface is very widely used, even in parallel distributed file systems, and
thus provides excellent portability.

The original interface did not offer ways to specify semantical information
about the accesses or the data. A feature added in POSIX.1-2001 is called
posix fadvise() and allows announcing the pattern which will be used to
access the data. However, this does not change the semantics of any fol-
lowing I/O operations. It typically used to increase the readahead window
(POSIX FADV SEQUENTIAL), disable readahead (POSIX FADV RANDOM), or to pop-
ulate (POSIX FADV WILLNEED) and free (POSIX FADV DONTNEED) the cache.

The MPI-I/O interface was introduced in the MPI-2.0 standard in 1997 [11]
and offers support for parallel I/O. It provides an I/O middleware which ab-
stracts from the actual underlying file system – the popular ROMIO implemen-
tation uses the so-called ADIO layer which includes support and optimizations
for POSIX, NFS, OrangeFS and many others. The MPI-I/O interface uses the
existing MPI infrastructure of MPI datatypes to access data within files.

The actual interface looks very much like the POSIX interface using file han-
dles to access files. MPI-I/O offers support for different file access modes, which
can be specified at file-open time. The MPI standard specifies several access
modes [12]. However, the only to access modes which can be considered seman-
tical information are MPI MODE UNIQUE OPEN and MPI MODE SEQUENTIAL as these
give information about how the file is going to be accessed.

ADIOS [10] provides a high-level I/O interface that abstracts from the usual
byte- or element-oriented access as found in POSIX or MPI-I/O. It outsources
the actual I/O configuration into an external XML file which can be used to
describe which data structures should be accessed and to automatically generate
C or Fortran code. Due to this automatically generated code, the application
developer does not need to directly interact with the underlying I/O middleware
or file system.
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There are a number of other I/O interfaces like SIONlib [5], NetCDF [15] and
HDF5 [21] which focus on solving performance problems or offering additional
features such as annotated data storage. As they also do not offer semantical
information to be specified, they are only mentioned briefly here.

2.2 I/O Semantics

In the following, the most common I/O semantics are presented and potential
shortcomings are highlighted.

POSIX I/O features very strict consistency requirements. For example, write
operations have to be atomic and have to be visible to other clients immediately
after the system call returns. While this might be relatively easy to support
in local file systems, it can pose a serious bottleneck in parallel distributed file
systems, because it effectively prohibits client-side caching from being used and
requires additional locking. The semantics can only be changed in a very limited
fashion. For example, the strictatime, relatime and noatime options change
the file system’s behavior regarding the last access timestamp, which can have
an impact on performance. Additional options for async and sync are also avail-
able. However, all of these options can only be specified on a per-mount basis
and have to be fixed at mount time – that is, they can not be modified by users
under normal circumstances.

The NFS protocol provides close-to-open cache consistency by default, which
implies that changes performed by a client are only written back to the server
when the client closes the modified file. However, NFS offers limited support
for changing this behavior: By mounting NFS using the cto or nocto options
close-to-open cache coherence semantics can be switched on or off respectively.
Additionally, the async and sync options can be used to modify the behavior of
write operations: While async causes writes to only be propagated to the server
when necessary1, sync will cause system calls to only return when the data has
been flushed to the server. Additional mount options are available to modify the
caching behavior of attributes and directory entries. However, as in the POSIX
case, these options can only be specified at mount time by the administrator.

MPI-I/O’s consistency requirements are less strict than those defined by
POSIX [19,4]. By default, MPI-I/O guarantees that non-overlapping write op-
erations will be handled correctly and that changes are immediately visible only
to the writing process itself. Other processes first have to synchronize their view
of the file to see the changes. For use-cases requiring stricter consistency seman-
tics, MPI-I/O offers the so-called atomic mode. The atomic mode specifies that
changes will be visible to all process within the same communicator instantly.
This can be difficult to achieve, because MPI-I/O allows non-contiguous oper-
ations and parallel distributed file systems can stripe single write operations
over multiple servers [16,8]. However, apart from the configurable atomic mode,
MPI-I/O does not offer any other means of changing the semantics. MPI-I/O

1 Possible reasons include memory pressure and (un)locking, synchronizing or closing
a file.
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implementations are free to offer so-called hints, which are mainly used to con-
trol things like buffer sizes and participating processes. However, because hints
are optional, different implementations are free to ignore them [20].

3 Design

As previously shown, the interfaces and semantics currently used for distributed
file systems are suboptimal because they are either not well-adapted for the
requirements and demands found in high performance computing today or do
not allow fine-grained semantical information to be specified [14,18,22]. In this
paper, we demonstrate a new I/O interface as well as a file system prototype
called JULEA. It has been implemented from scratch to be suited specifically
for the requirements found in high performance computing.

3.1 Layers

The intended general architecture of the JULEA I/O stack is illustrated in Fig-
ure 1b and features less layers than the traditional one in Figure 1a. This allows
concentrating all optimizations into a single layer, reducing the implementation
and runtime overhead. An important design goal is to remove the duplication
of functionality found in the traditional I/O stack. For example, path lookup
should only be performed on the uppermost layer. This can be achieved by elim-
inating the underlying POSIX file systems and using a suitable object store,
which allows objects to be accessed directly using a unique ID. JULEA sup-
ports multiple storage backends such as existing POSIX file systems as well as
object stores. This allows JULEA to always use the best-suited backend while
maintaining compatibility with a wide range of software environments. For the
metadata part, we decided to use an existing NoSQL database system called
MongoDB [1]. The only remaining deficiency is MongoDB’s dependency on an
underlying POSIX file system, which we are currently investigating.

3.2 File System Namespace

Traditional file systems allow deeply-nested directory structures. To avoid the
overhead caused by this, only a restricted, relatively flat hierarchical namespace
is supported. While our approach might be unsuited for a general purpose file
system, we explicitly focus on specific use-cases that are commonly found in high
performance computing.

It is divided into stores, collections, and items. Each store can contain multiple
collections which in turn can contain multiple items. Additionally, items feature
a very reduced set of metadata. For example, unimportant information like the
time of the last access has been omitted. The goal of these changes is to minimize
the overhead during normal file system operation. For example, in traditional
POSIX file systems, each component of the potentially deeply-nested path has
to be checked for each access. This requires reading its associated metadata,
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checking permissions, etc., which usually happens sequentially. Additionally, in
distributed file systems these operations can be very costly if many (relatively
small) network messages are involved.

3.3 Interface

The interface has been designed from scratch to offer simplicity of use while still
meeting the requirements of high performance and semantics-awareness. Two
major features are the ability to specify semantical information and to batch
operations.

It is possible to specify additional information equivalent to the coarse-grained
statement “this is a checkpoint” or the more fine-grained “this operation re-
quires strict consistency semantics”. This allows the file system to tune oper-
ations for specific applications by itself. Additionally, it is possible to emulate
well-established semantics as well as mixing different semantics within one ap-
plication.

All accesses to the file systems are done via so-called batches. Each batch can
consist of multiple operations. For example, multiple items can be created or
different offsets within an item can be accessed in one batch. It is also possible
to combine different kinds of operations within one batch. For example, one
batch might create a collection and several items within it, and write data to
each one. Because the file system has knowledge about all operations within one
batch, more elaborate optimizations can be performed. The advantages of this
approach will be evaluated in Section 4.

The pseudo code found in Listing 1.1 shows an example of how the interface
generally works. A new batch using the POSIX semantics (line 1) as well as
a store, collection and item are created (lines 2–4). Afterwards, the collection
is added to the store (line 6) and the item is added to the collection (line 7).
Additionally, some data is written to the item (line 8). Finally, the batch is
executed (line 10) which in turn executes all three operations with the given
semantics.

Listing 1.1. JULEA pseudo code

1 batch = new Batch(POSIX_SEMANTICS );

2 store = new Store("test");

3 collection = new Collection ("test");

4 item = new Item("test");

5
6 batch.add(store.add(collection ));

7 batch.add(collection .add(item));

8 batch.add(item.write (...));

9
10 batch.execute ();
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3.4 Semantics

The JULEA interface allows many aspects of the semantics of file system op-
erations to be changed at runtime on a per-batch basis. Several key areas of
the semantics have been identified as important to provide opportunities for
optimizations. Support for atomicity, concurrency, consistency, persistency and
safety has already been designed, while possible data manipulation and security
aspects are still in the planning stage.

Other ideas include prompting the file system to store multiple copies of file
data and metadata, and to compress or encrypt it on-the-fly. The security policy
could be changed depending on the file system environment, enabling or disabling
more strict permission checks.

Detailed information about the different semantics together with possible con-
figurations is given in the following list.

– Atomicity: The atomicity semantics can be used to specify whether accesses
should be atomic, that is, whether it is possible for clients to see intermediate
states of operations. For example, a single write operation spanning two
servers might have already reached one of them but not the other. If atomic
accesses are enabled, other clients will be unable to see this inconsistent
state.

– Concurrency: The concurrency semantics can be used to specify whether
concurrent accesses will take place and, if so, how they will look like. This
can be used to enable or disable locking as needed.

– Consistency: The consistency semantics can be used to specify if and when
clients will see modifications performed by other clients. This can be used
to enable client-side read caching whenever possible.

– Persistency: The persistency semantics can be used to specify if and when
data must be written to persistent storage. This can be used to enable client-
side write caching whenever possible. For example, temporary data can be
cached more aggressively and does not necessarily need to be written to
persistent storage at all. This can be especially advantageous when different
levels of storage such as node-local SSDs are available.

– Safety: The safety semantics can be used to specify how safely data should
be handled. For example, this can be used to disable waiting for the server’s
acknowledgment when sending unimportant data. On the other hand, it can
be used to make sure that important data will survive a system failure by
flushing it to the storage devices immediately.

– Templates: Semantics templates can be used to provide templates for spe-
cific use-cases. For example, it can be used to to mimic the current POSIX
semantics as closely as possible, and to tune the semantics for application
input or output, which can be handled differently.

3.5 Architecture

JULEA provides a user-space library which can be linked to applications, al-
lowing them to use the JULEA I/O interface. Additionally, a user-space dae-
mon handles storing the file data on the I/O servers. The library communicates
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with both the JULEA daemons and the MongoDB servers running on the data
and metadata servers, respectively. By providing all functionality in user-space,
JULEA is largely independent of the used operating system and kernel, and can
be easily ported to new software environments.

Operations within one batch are aggregated and sent to the appropriate dae-
mons in as few messages as possible to decrease network overhead. There are
also plans to reorder and merge operations, which can help to further increase
efficiency. The semantics specified for each batch are used to internally modify
the behavior of I/O operations. While most of this semantical information is only
needed by the client, it can also be transferred to the daemons when necessary.

For example, the safety semantics are always sent to the daemons, which
can use this information to avoid sending back unneeded replies to the clients.
The atomicity and concurrency semantics can be used to decide whether lock-
ing is necessary. Traditional interfaces do not have access to such information
and therefore have to make pessimistic assumptions, which might force them to
always handle the worst-case scenario. Since application developers know the ac-
cess patterns of their applications, they can easily specify such information. This
can be very beneficial, because lockless access to shared files can improve per-
formance dramatically. The additional semantical information can also be used
to reduce locking overhead on the metadata servers by making sure that specific
metadata such as the file size and modification time are only stored explicitly
for non-parallel workloads. Since highly parallel workloads would cause meta-
data update storms, such information is better computed on-the-fly whenever it
is needed in these cases.

4 Evaluation

Our prototype was built to provide a reference implementation of our new I/O
interface. It has built-in support for tracing client and server activities in var-
ious formats such as OTF [7] and HDTrace [13]. This can be used to visualize
the inner workings and can be very helpful when debugging errors or searching
for performance issues. To evaluate the benefits of our implementation we have
extended the fileop benchmark – which is part of IOzone [27] – to support MPI
and to also use the native interfaces of OrangeFS and JULEA. Only the most in-
teresting metadata-heavy operations (mkdir, rmdir, create, stat and delete)
were benchmarked. All results are averaged over at least five runs.

Figure 2 shows results for Lustre, OrangeFS and JULEA2. fileop was config-
ured to run with a varying number of MPI processes on 1–5 nodes with up to
12 processes per node, each process working in its own directory/collection. Or-
angeFS and JULEA were tested using their native interfaces, while the POSIX
interface was used for Lustre. All file systems were configured to provide one
data and metadata server, and used their default configuration – apart from Or-
angeFS, where TroveSyncMeta was set to no to disable synchronous metadata
operations. OrangeFS and JULEA were run on dual-socket machines with two

2 Note the logarithmic y-axis and different scaling for each of the subfigures.
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Fig. 2. Comparison of Lustre, OrangeFS and JULEA metadata performance

Intel Xeon X5650 processors and 12GB of main memory each. Due to different
operating system requirements, Lustre was run on single-socket machines with
one Intel Xeon E31275 processor and 16GB of main memory each. The evalua-
tion was carried out using the ldiskfs backend for Lustre, an underlying ext4

file system for OrangeFS and JULEA, and MongoDB 2.2.2 for JULEA. All data
was stored on 7,200RPM HDDs.

The results for Luste are shown in Figure 2a. It is interesting to note that
the performance of all operations except for stat does not improve if more
than 1 or 2 client processes per node are used. For these operations, there is
practically no performance difference for the configurations using 1–12 processes.
However, performance does increase when processes are distributed across more
client nodes. Using 60 client processes, the mkdir and rmdir operations reach a
maximum of around 4,000 and 5,000 operations per second, while the create and
delete operations reach approximately 9,500 and 7,500 operations per second.
stat scales well up to 36–48 client processes, where the curve begins to flatten,
reaching a maximum of roughly 48,000 operations per second.
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Figure 2b shows the results for OrangeFS. The mkdir, rmdir, create and
delete operations deliver 20–30 operations per second when using a single client
process. Increasing the number of processes does not significantly improve the
results, resulting in a maximum performance of 75–100 operations per second
when using 60 client processes. The stat operation performs significantly better
with 750 operations per second when using a single client process. It also scales
well up to 12 processes, where the curve flattens, reaching a maximum of 13,000
operations per second when using 24–60 processes.

The results for JULEA using individual operations is shown in Figure 2c.
The mkdir and create operations deliver 2,000 and 2,500 operations per second
using only a single client process. They scale well up to 12 and 24 processes
respectively, where they reach their maximum performance of 9,000 and 25,000
operations per second. Increasing the number of processes further causes the
performance to drop to around 50%. The stat operation starts out with 3,500
operations per second, reaches its maximum of 50,000 operations per second
when using 24 processes and stays at this level when further increasing the
number of processes. The rmdir and delete operations show suspiciously high
performance of up to 3,400,000 operations per second, which might be caused by
the MongoDB query returning before the actual remove operation has finished.
However, this initial assumption still has to be investigated.

Figure 2d shows the results for JULEA using batches to aggregate opera-
tions. The mkdir operation provides only slightly better performance than in
the previous case, peaking at 10,000 operations per second. However, fewer client
processes are required to reach maximum performance, with only two processes
needed to obtain 9,000 operations per second. The create operation performs
significantly better, starting at 18,500 operations per second and reaching a
maximum of 75,000 operations per second with 24 client processes. While per-
formance drops to 20–25% when using 36 processes and more, it is still faster
by a factor of 2 when compared to using individual operations. status behaves
exactly the same as in the previous case. The rmdir and delete operations now
deliver more realistic performance numbers. However, both operations reach a
maximum with 6 client processes, dropping steadily after that. As already noted,
both operations still have to be investigated more closely. Especially the delete
operation’s steep drop from 6–24 processes warrants a closer examination.

Overall, JULEA provides metadata performance comparable to other estab-
lished parallel distributed file systems. More investigation and tweaking of the
MongoDB configuration will be required to eliminate the performance drop-
off with larger amounts of client processes. We are currently also working on
supporting sharded configurations of MongoDB which we expect to increase
performance even further.

5 Related Work

MosaStore [2] is a versatile storage system which is configurable at applica-
tion deployment time and thus allows application-specific optimizations. This
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approach is similar to the JULEA approach, however, MosaStore provides a
storage system bound to specific applications instead of a globally shared one.
Additionally, the storage system can not be reconfigured at runtime and keeps
the traditional POSIX I/O interface.

The authors present a configurable security approach in [6] which allows using
scavenged storage systems consisting of unused workstation hardware in trusted,
partially trusted and untrusted environments in a secure way. While JULEA does
not use scavenged storage hardware, the cited work shows that configurable se-
curity can be achieved with relatively low overhead. This could also be supported
in JULEA to cater to different security requirements.

A new file system approach is presented in [9] that eliminates the current
need for many small accesses to get the metadata of all path components during
path lookup. By using the hashed file path to directly look up the related data
and metadata, this can be reduced to only require one read operation per file
access. While this can significantly increase small file performance, renaming
of parent directories causes all child hashes to change which might lead to a
lot of computational overhead. The JULEA interface does not use hashed path
lookups for this reason, but implements a relatively flat namespace to reduce
lookup overhead.

CAPFS [23] introduces a new content-addressable file store that allows users
to define data consistency semantics at runtime. While providing a client-side
plug-in API allows users to implement their own consistency policies, CAPFS is
limited to tuning the consistency of file data and keeps the traditional POSIX
interface. Additionally, the consistency semantics can only be changed on a per-
file basis.

6 Conclusions and Future Work

In this paper, we have presented the design and implementation of our novel
semantics-aware I/O interface and prototypical file system. It provides an inter-
face and semantics suited for high performance computing, and aims to reduce
redundant functionalities currently found within the I/O stack. Unlike similar
approaches, JULEA allows fine-grained specification of the I/O semantics re-
quired by the application on a per-operation basis. By merely specifying the
I/O requirements and leaving the realization and potential optimizations to the
underlying file system, the I/O system can be tailored better to the actual hard-
ware, improving efficiency. Additional features like the batching of operations
allow further optimizations and provide potential for experimenting with other
novel ideas regarding the handling of I/O.

One such idea, which fits naturally into the concept of batches, but is more
oriented towards programming efficiency, is to implement transaction support.
This would allow the application developer to specify how errors should be han-
dled. For example, the file system could be told to automatically revert to the
previous state in case of an error, making error handling and subsequent cleanup
tremendously more easy.
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Additional evaluations focusing on other aspects of the file system such as data
performance and the influence of different semantics on a number of use-cases
have already been planned and will follow soon. Early benchmarks suggest that
shared file access can especially benefit from being able to specify semantical
information about the access patterns. In some cases, the strict atomicity and
consistency requirements enforced by the traditional POSIX semantics can cause
performance drops of a factor of 100 and more. To evaluate the potential benefits
with realistic use-cases we also plan to port an existing numerical application to
the JULEA I/O interface in the future.
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Abstract. Performance analysis and optimization of high-performance
I/O systems is a daunting task. Mainly, this is due to the overwhelm-
ingly complex interplay of internal processes while executing application
programs. Unfortunately, there is a lack of monitoring tools to reduce
this complexity to a bearable level. For these reasons, the project Scal-
able I/O for Extreme Performance (SIOX) aims to provide a versatile
environment for recording system activities and learning from this in-
formation. While still under development, SIOX will ultimately assist in
locating and diagnosing performance problems and automatically sug-
gest and apply performance optimizations.

The SIOX knowledge path is concerned with the analysis and uti-
lization of data describing the cause-and-effect chain recorded via the
monitoring path. In this paper, we present our refined modular design
of the knowledge path. This includes a description of logical components
and their interfaces, details about extracting, storing and retrieving ab-
stract activity patterns, a concept for tying knowledge to these patterns,
and the integration of machine learning. Each of these tasks is illustrated
through examples. The feasibility of our design is further demonstrated
with an internal component for anomaly detection, permitting intelligent
monitoring to limit the SIOX system’s impact on system resources.

Keywords: Parallel I/O, Machine Learning, Self-Optimization.

1 Introduction

While processor performance has been blessed with continual growth according
to Moore’s Law for decades now, performance increases of persistent storage
media fall short of this by several orders of magnitude. To bridge this gap, I/O
systems for high-performance computing (HPC) in particular have had to grow
horizontally, requiring ever more layers of management infrastructure to control
the ensuing complexity. Diagnosing such a system has become a task to chal-
lenge even experts. Parametrizing it for optimum performance requires intimate
knowledge of every component, its optimization parameters and strategies and
the interplay emerging when dozens to tens of thousands of them are combined.
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The vision of autonomous computing, as laid out by Kephart and Chess [1],
promised to curb this complexity by marshalling the system itself to share into
the effort. The SIOX Project [2] was initiated to realize that vision with re-
spect to self-optimizing HPC-I/O systems. Continually monitoring performance
and overhead, an I/O system instrumented for SIOX will autonomously detect
problems and infer advantageous settings such as MPI hints, RAID stripe sizes
and possible interactions between them. By adjusting its own level of reflexive
activity to the situation, it will secure a net positive impact on overall efficiency.

This paper illustrates the structure of and techniques used in the knowledge
processing sub-system enabling SIOX to achieve these goals.

In Section 2, we survey some other approaches to the problem, highlighting
the differences to SIOX. We briefly outline the SIOX design with some definitions
and an overview of the components involved in Section 3. Our main focus lies
on Section 4, where we introduce the SIOX knowledge path, its modules and the
concepts realized in its operation. Section 5 describes how the knowledge path
can use modules for intelligent monitoring, before we conclude with a summary
and some thoughts on future work in Section 6.

2 Related Work

Early approaches to system self-management relied on the direct classification
of system state or behaviour to automatically diagnose problems or even enact
optimization policies.

A typical proponent is the work of Madhyastha and Reed [3], comparing
classification of I/O access patterns by feed-forward neural networks and by
hidden Markov models. As results, higher level application I/O patterns are
inferred and looked up in a table to determine the file system policy to set for
the next accesses. The table, however, has to be supplied by an administrator
implementing his heuristics.

Later approaches are marked by schemes to persist their results. Holding these
in a database, problem analysis benefits from past diagnostic efforts, possibly
even applying known repair actions to recognized problems. Here, we can divide
systems according to whether they observe system state, recording metrics, or
behaviour, tracing program execution.

Of those relying on program traces, Modani et al. [4] employ the call stacks
reported by system failures as a search index to classify presumptive root causes.

Magpie, a system by Barham et al. [5], traces events under Windows, merg-
ing them according to pre-defined schemas specifying event relationships. Their
causal chains are reconstructed, attributed to external requests via temporal
joins over the event stream and clustered into models for the various types of
workload observed. Deviations will point to anomalies deserving human
attention.

Yuan et al. [6] combine system state and system behavior to identify the
root causes of recurring problems. Tracing the system calls generated under
Windows XP, they use support vector machines to classify the event sequences.
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A presumptive root cause is identified, leaving the sequence – if flagged by a
human as accurately diagnosed – available as eventual new training case for the
classifier. The root cause description may include repair instructions, which, in
some cases can be applied automatically.

Of the systems focussing on system metrics, Cluebox by Sandeed et al. [7]
analyses logs for anomalies, pointing out the system counters most likely involved
in the problem by principal feature analysis, ranking by decision trees and subse-
quent clustering.Expected latencies can now be predicted for new loads, detect-
ing not only anomalies but also the counters most significantly deviating from
par. No direct tracing or causal inference are needed, but once again, only hints
for administrators are produced.

Cohen et al. [8] build on their previous work on metric attribution, identifying
the low-level system metrics most significant for given classes of high-level system
states using Tree-Augmented Bayesian Networks [9]. They collect system state
information and combine the attributed metrics into signatures, clustering those
belonging to the same problem class into syndromes.

In Fa, Duan et al. [10] define a system’s base state by service level objectives;
compliance constitutes health, violation failure. A robust data base of failure
signatures is constructed from periodically sampled system metrics. New data
is first classified against failure data annotated by a human, then, if necessary,
against data clusters from healthy system states.

The one thing all of these systems have in common is the need for human
intervention to benefit from the results, to apply the solutions to the problems
identified or prepare the automated responses that some of the authors hint at.

While the work on invasive programming by Bungartz et al. (e.g. [11]) aims
to automatically acquire and release resources according to the system’s current
requirements and capabilities, and can thus be regarded targeted at a similar
problem as SIOX, it is mainly concerned with resource management. In contrast,
SIOX will enable the existent management mechanisms to adapt their parame-
ters to the system’s current state and workload. As its scope is also limited to
the I/O subsystem, the results of SIOX and invasive programming may very well
complement each other in any system implementations.

3 The SIOX Approach

In comparison to described related work, SIOX covers full HPC I/O systems and
aims to be applicable at all granularities and portable to platforms and across
middleware and file systems, in a flexible and extensible hierarchy accommodat-
ing both bespoke heuristics and generic machine learning modules.

Under SIOX, a system will collect information on I/O activities on all instru-
mented levels, as well as relevant system information and metrics. An example
I/O stack and the integration of SIOX is sketched in Figure 1, a scenario for
potential activities is illustrated in Figure 2.
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Fig. 1. Integration of SIOX into a traditional I/O-stack

Continuous intelligent monitoring, possibly adapting to problem type, will
detect more than mere service level violations; instead, locally diverse anomaly
conditions will be able to trigger fully automated (and learned) responses rather
than provide mere pointers for human intervention. For this, SIOX combines
on-line monitoring with off-line learning, joining state- to behaviour-based at-
tributes and comparison to signatures as well as to a base-line. The recorded
information will be analysed off-line to create and update a knowledge base
holding optimized parameter suggestions for common or critical situations. Dur-
ing on-line operations, these parameters may be queried and used as pre-defined
responses whenever such a situation occurs. Furthermore, the choice of responses
to every situation is diverse, ranging from a mere log-level adjudication and de-
tailed reports to facilitate human administration right to automated optimiza-
tions and problem solution strategies.

To cover the enormous multitude of possible hardware and software compo-
nents that may be part of today’s HPC system, SIOX takes an abstract view,
as first suggested by Kunkel and Ludwig [12]. By virtue of this I/O path model
(IOPm), a minimal set of components making up the system can be determined
and classified according to their functionality, such as cache, block storage, net-
work or an address translation of objects. A model graph of the system can
be constructed covering the minimal cause-and-effect chain from application to
storage device. Components may need to be represented by more than one of
these elements, but this scheme warrants that any and all can be described by
a very limited set of generic categories.
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Fig. 2. Activity timelines of two processes and four file system servers – one system
metric is provided for the entity executing process Y. Details for server activity and
intermediate high-level I/O libraries are omitted.

3.1 Definitions

The literature on computer systems is extensive, with many terms being used
ambiguously. We therefore define some terms we will refer to in the following:

Component. A hardware or software entity, such as a network switch, a hard
disk drive, an application or a library.

Entity. A logical subunit of a component aware of SIOX, using SIOX interfaces
or reporting monitoring data to it. Its extent is defined according to its
functionality, such as a software layer in a library or a cache in a server.

Activity. A single, elementary operation on a single entity, possibly bundled
with parameters, attributes and metrics pertaining to it. For example, an
HDF5 write(), ATAPI read(), POSIX fadvise() or setting an MPI hint.

System Information. The state of a component and the whole system, de-
pending on the hardware characteristics and executed activities. It consists
of dynamic information describing the system state, e.g., utilization of the
components, and static information about hardware and software, such as
device types, available resources and performance characteristics.

Metric. A measurable or derivable quantity describing an aspect of the system,
a component, an entity or an activity on any of the former, such as the
number of Bytes written per second. An Activity Metric is a metric tied
at report time to a specific activity, such as the execution time of a call. A
System Metric is a metric that cannot be accurately assigned to a single
activity, though usually influenced by them.

System Statistics. Data derived or regularly sampled from system metrics.
Some system metrics can only be measured periodically, either because the
system only provides the difference over that interval, or because the value
changes so fast that recording every variation would prove prohibitive. Ex-
amples are network and disk throughput and CPU utilization.

Pattern. A set of activities linked by closeness in executing entity, time or
causal relation. Also, a formal representation of such a set like a regular
expression.



Towards Self-optimization in HPC I/O 427

�������
	
���

���������	
������������
��
������		�	

�������
��
��
�����������

�������	
��
���������	
����		
	�	���
��������	

�������
	
�
��
������

����	�	�
������		�	
��
�������	

�������
������ ��!
��

����	
����	�	
��
�����������	

��������
����

��������
���	����
��
����
�����		
�������	


������
������

���������	
�������	


������	
��
�����������	

"�#�������

����

��
��

$##���
���
��

%�&�
��

'����(��&

������
����
��
�����

�����������	
	������	
�����

������	

Fig. 3. The main components of the SIOX system and their cardinality. Monitoring
data moves along the orange path; the knowledge path is shown in violet.

Situation. The current system state as observable by SIOX, including activities
being executed and system metrics.

History. A limited record of recent situations, including a sliding window of
previous activities and observed performance statistics.

Optimization Strategy. A scheme detailing how operations are executed by
an entity, while not altering its functionality; e.g., a cache strategy. The
strategies supported, if any, depend on the individual entity. The parameters
for an optimization strategy, once chosen, influence operational performance
according to the system’s characteristics.Optimization is the choice of and
selection of parameters for one or more optimization strategies.

Log-Level. The level of detail of its history an entity reports to SIOX. A higher
log-level will supply more details but also require more system resources.

Response. Actions that may be taken upon certain situations occurring; they
may also depend on the history. Typical examples are re-configuring an opti-
mization or adjusting the log-level, both of which may also cascade through
the entity’s dependencies.

3.2 Components of the SIOX System

As first detailed in Wiedemann et al. [2], the SIOX system will be comprised of
five primary components as shown in Figure 3:

1. The sioxlib linked to every component instrumented to work with SIOX.
2. One SIOX daemon per compute node. It acquires system information and

aggregates and pre-processes activity logs, performance data and metrics. In
a hierarchical set-up, additional daemons may serve as concentrator nodes
to allow for scalability (see Section 4.4).
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Fig. 4. SIOX modules involved in the knowledge path

3. A transaction system to collect, revise and concentrate the data submitted.
4. A data warehouse for long-time archiving of the monitoring data.
5. A knowledge base to hold the system information, as well as knowledge ex-

tracted from the data warehouse by off-line machine learning processes.

4 The SIOX Knowledge Path

The SIOX knowledge path (see Figure 3) begins at the data warehouse, holding
representations of every activity logged, its parameters and the activity metrics
that resulted from executing it. Off-line machine learning processes generalize
activity sequences with comparable characteristics into patterns and potential
responses to them (see Section 4.2). The results are stored in the knowledge
base, together with records on system statistics for heuristics to assess observed
vs. potential behaviour. A tree-shaped hierarchy of concentrator nodes connects
knowledge base and entities to maintain full scalability (see Section 4.4). For ev-
ery entity, the knowledge base will also hold information about the patterns most
likely to occur there, those most likely to allow for effective optimizations, and
those most warranting further investigation. Based on this, every entity will keep
a local cache, updated regularly, of the patterns most crucial to its operation;
this will conserve bandwidth and vastly improve response time. During oper-
ations, entities will match the cached patterns against situational and historic
information to optimize their behaviour and control logging (see Section 5).

4.1 Modules and Interfaces

To allow for maximum flexibility while maintaining manageability, the SIOX
knowledge path is built on a modular design. Not only does this permit us to
replace a module with another implementation even after starting sioxlib, but
many modules also allow concurrent loading of multiple plug-ins, all of which
might excel at different jobs. Of the modules involved in the knowledge path
(shown in Figure 4), two take lead roles: KOptimizer and KAnomalyDecision.
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KOptimizer directs various plug-ins implementing the KOptimizerPlugin in-
terface, observing the entity’s recent activity history and injecting a response
if a relevant pattern occurs. Each of these plug-ins may be tailored to optimize
certain aspects of the entity’s operation, specializing on certain heuristics for a
group of activities or a class of patterns; details are given in Section 4.2.

KAnomaly orchestrates various KAnomalyPlugin implementations, each of
which will monitor the entity’s operational metrics or activities to detect excep-
tional (good or bad) performance (see Section 5). For example, a plug-in might
compare an activity’s execution time with a model of system characteristics
to estimate its performance. Should any of these report anomalous behaviour,
the entity’s log-level will be adjusted and relevant parts of the history will be
dispatched along the monitoring path.

Plug-ins that implement one of the interfaces KAssessor, KPredictor or
KEfficiency are basic building blocks performing evaluations on activities and
higher granularities. They differ in the scope of information used for evaluation,
as described in Section 4.3. By our modular design, an KOptimizerPlugin may
use any evaluator, easing development and maintainability significantly.

The decision which, if any, pattern matches a given sequence of activities best
will be delegated to KPatternCmp. Therewith, each plug-in can have its own
matching rule, to rely on only certain activities, such as file I/O. KSystem man-
ages an entity’s knowledge about general system characteristics, such as neigh-
bourhood topology and hardware specifications, accessing the knowledge base
via KSystemFetcher. Likewise, KPattern administers the entity’s local cache of
patterns and responses regularly, updated via KPatternFetcher.

MHistory provides access to an entity’s sliding history. Certain events, such
as a new activity being entered into the history or the history reaching capacity,
will trigger callback functions previously registered. The latter follow the form
laid down in the MHistoryCB interface. Plug-ins for KAnomaly and KOptimizer

will subscribe and automatically be called when the situation changes.
The statistical performance monitor for system metrics, encapsulated in

MStatistics, performs regular updates on system statistics as supplied by the
module MMetric and delivers the information to MHistory. To provide the met-
rics themselves, it in turn may interface various tools such as PAPI-C, or use
existing plug-ins from Munin1.

4.2 From Observation to Pattern and Response

The modules responsible for pattern creation and processing come in pairs of an
off-line machine learning plug-in (OMLP) and an on-line module implementing
KAnomalyPlugin and/or KOptimizerPlugin.

The OMLP will employ data mining algorithms to extract interesting (read:
having performed exceptionally badly or well) sequences of activities and their
pertinent metric data from the data warehouse, cluster them and create a pat-
tern representation of the set selected. It may simply concatenate the symbols

1 http://munin-monitoring.org/

http://munin-monitoring.org/
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open(a, ”F”) read(a, 1024) open(b, ”B”) write(b, 1024) read(a, 2MiB) write(b, 2MiB) close(a) close(b)

(a) Observed activities (timing information omitted)

pattern advice

Sr()Sr()Sr() seq & willneed(size)

O(ext=”nc”) willneed(0, 20KiB)

O(ext=”dat”) noReuse & random

Rw(size < 4K){5} noReuse & random

(b) Table for an fadvise() plug-in

pattern buffer-size

O() 4MiB

W(size < 2KiB){5} 1MiB

W(size < 4MiB) W(size < 4MiB) 20MiB

W(size ≥ 100MiB) direct-write

(c) Table for a write-behind plug-in

Fig. 5. Exemplary patterns including key/value pairs in brackets and responses for
two optimization plug-ins. Usage of symbols and key/value pairs are the responsibility
of OMLP and the plug-ins.

representing the single activities and collect any additional attributes in a list of
key-value pairs. It may first transform the sequence of activities, merging sub-
sequences into single symbols or filtering some, deriving new attributes from the
original ones in the process. As this process will run off-line, it does not influence
a production system.

The result, in any case, will be a table of symbol strings in a form resembling
regular expressions, and their attributes as key-value pairs attached to each
symbol. Responses will be encoded as key-value pairs and appended to its list.
This table will be personal to the OMLP and its on-line plug-ins, stored in the
knowledge base and propagated to entities as applicable.

Figure 5 has some illustrative examples: In (a), activities observed at file level
are shown; in (b) and (c), patterns and responses are listed for two plug-ins. One
controls fadvise() while the other manages the size for a write-behind buffer
(assuming such controls exist for the deployed parallel file system). Both plug-ins
filter observed activities and translate them into symbols and relevant attributes.
Timings are not given but are part of the attributes observed. The first plug-in
converts sequential accesses to the symbols Sr and Sw for read and write, respec-
tively. Whenever three sequential reads are observed, Line 1 in its table encodes
the response seq and willneed(size) which translates to a FADV SEQUENTIAL of
the total file and an FADV WILLNEEDwhich pre-fetches the same amount of data as
previously accessed. This plug-in also allows usage of the file extension to restrict
matching patterns. The write-behind plug-in could use ranges to match defined
file sizes, and prioritize patterns further down in the table. It dynamically adapts
to the record size. When a file is first opened, Line 1 sets a default buffer size of
4MiB; for 5 small write accesses, Line 2 reduces the buffer size. While these are
simple examples, they demonstrate the power of the concept.

A plug-in registers a function with the KOptimizer or KAnomaly modules for
these entities, to be invoked in a pre-defined order whenever a defined condition
is met, for example, when new activity or metric is reported. It then compares
current situation and history to its table, finds the best matches – if any – and
decides which of those with attached responses will see them enacted.
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Any entity or higher-order sub-system may employ many of these plug-in
pairs, each working in turn on its own pattern table and each implement-
ing a different specialization or heuristic. A simple pair concerned only with
MPI File open() and optimizing them by setting appropriate hints is just as
possible as a general catch-all pair, forming actual regular expressions over the
set of all activity types possible at this entity. This allows for quick implemen-
tation of highly specialized heuristics as well as for classical machine learning
algorithms which will even determine activities and attributes of interest.

4.3 Assessing Activities

To ease assessing system performance, we decided to employ three distinct basic
function classes. Though each can operate on activities, patterns, components
and other granularities right up to the whole system itself, usually utilizing in-
formation generated by its more specific variants, we will concentrate on activity
evaluators to demonstrate the concepts.

Assessors resort to the local situation and history to evaluate a completed
activity’s perceived performance impact, returning a performance metric.
Example: A very simple model for file access or data transfer, computes an
estimate for a device’s transfer rate:

fassess(Device, Job) =
Time(Job)

Size(Job)

Predictors forecast an incomplete action’s performance given the current situ-
ation and history. Its return value has to be comparable to an assessor’s, thus
following the same rules. Predictors’ main usage is to estimate the benefit
of possible responses for optimization plug-ins.
Example: The most simple and important one, the historical predictor, is an
extrapolation of all assessments of the pattern’s previous occurrences under
comparable system states and loads.

Efficiency evaluators relate the action’s actual performance as given by an
assessor to the best performance possible on the given system and may take
present conditions into account, e.g. faults in hardware. They compute a real
number from the interval [0; 1], but use additional information about the
pattern’s performance distribution to return one of {−1; 0;+1}, signifying
exceptionally bad, reasonable and exceptionally good performance, respec-
tively.
Example:

fefficiency =

⎧⎪⎨
⎪⎩
+1 if 0.9 < eff

0 if 0.2 ≤ eff ≤ 0.9

−1 if eff < 0.2
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with

eff =
fassess(Device, Job)

SequentialTransferRate(Device)
,

which will classify any observed transfer rate estimated at more than 90% or
less than 20% of the maximum as exceptional, but more complex functions
with more than three value ranges are well possible.

Like their base-level cousins, higher-order evaluators may compute simple
weighted averages of their component activities’ results, or follow any more so-
phisticated scheme.

4.4 Scalable Data Transport

To allow for the degree of scalability required in high-performance computing,
SIOX implements a hierarchical subdivision schemewhere daemons can act as con-
centrators, collecting, forwarding and disseminating data as needed. An example
topology is illustrated in Figure 6. Daemons cache the information most impor-
tant to a compute node, observing the local stream of activities as reported via
the sioxlib and choosing and enacting any responses suggested by the knowl-
edge available to them. They also keep a sliding history window of the activities,
performance data and system statistics for each of their assigned entities.

Concentrators are similar but also function as local executive for the sub-
tree of nodes assigned to them, just with more complex patterns combined of
their child nodes’ patterns. Additionally, each of the concentrators can deploy
KAnomaly and KOptimizer plugins that operate on data generated by multiple
entities and evaluate patterns spanning them.

Fig. 6. Scalable data transport. SIOX-aware applications run on several compute nodes
and fetch information from the knowledge base. Intermediate nodes in the graph cache
fetched information to increase scalability.

5 Intelligent Monitoring

Every entity needs to determine which data about the current or past activities to
report along the monitoring path, how much of the history to retain and and for
how long, which system statistics to collect, at what interval to sample them and
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what additional derived metrics to compute. As transferring all reported activity
over the network and into the transaction database has a huge performance
impact, it is imperative to restrict the logging to exceptional behaviour. For SIOX
to provide detailed logs on anomalies while remaining unobtrusive otherwise, it
must be able to react to developments in system stability – quickly, sensitive
to developments spanning whole sub-systems, and with a fine local granularity.
Our scheme for intelligent monitoring allows for three ways to influence logging:

– A user can control logging on each component to manually correct situations
for which the history window is not sufficient or for bootstrapping the system.

– Neighbouring entities such as the local daemon may request a change in
log-level to propagate alerts and allow pattern analysis across components.

– Most importantly, the various KAnomalyPlugin implementations may flag
anomalies, influencing log-levels in the process. Of course, a plug-in detecting
a return to normal behaviour will use the same mechanism to give the all-
clear and decrease the log-level again.

As described in Section 4.1, the KAnomaly module permits implementations of
KAnomalyPlugin to register as callback functions, calling them in a pre-defined
order whenever a new activity is reported. Each of them may inspect current
activity, situation and history to decide whether they constitute an anomaly,
i.e., unusually good or bad system performance.

A typical example would be a system metric entering exceptional range,
though defining these often is anything but trivial. A low processor load, for
instance, may signify either a balanced system coping well with its workload, or
a severe unbalance, leaving some components idling and others congested.

Should any plug-in flag the current state, it will cause the history to be dis-
patched along the monitoring path for later analysis. Additionally, it may adjust
local log-levels, which may even be propagated to other entities.

The usual fate of the data thus recorded is to serve as a lesson to SIOX. Dis-
tilled into patterns (see Section 4.2) bearing the response “raise log-level” – the
other typical example for anomaly detection – it will alert SIOX whenever the
conditions leading up to the error are observed. This greatly benefits the anal-
ysis of recurring failures, as every instance provides some valuable new insights
into the problem’s preconditions and, ultimately, cause. In this sense, SIOX will
intelligently direct its own analytical efforts where they are needed most.

6 Conclusion and Future Work

Our vision for the SIOX project is a system that will collect and analyse activity
patterns and performance metrics in order to assess current and possible system
performance, locate and diagnose problems and suggest solutions and improve-
ments. In this paper, we have described the design of and information flow along
the SIOX knowledge path. We have shown its logical layout and how its modules
interact to perform their various tasks. Examples for our approach to knowledge
representation have been given to demonstrate its applicability and a scheme for
intelligent logging presented.
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Opportunities for future work abound. Different platforms pose different prob-
lems even though SIOX is designed to be portable to all major operating and
file systems. In the consortium, we are currently working on a first prototype
for GPFS and MPI-IO which will rely on simple plug-ins. However, the various
modules imaginable for pattern creation and matching, for anomaly detection
and optimization as well as the machine learning algorithms offer a rich field for
researchers and system administrators alike.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),
41–50 (2003)

2. Wiedemann, M.C., Kunkel, J.M., Zimmer, M., Ludwig, T., Resch, M., Bönisch, T.,
Wang, X., Chut, A., Aguilera, A., Nagel, W.E., Kluge, M., Mickler, H.: Towards I/O
Analysis of HPC Systems and a Generic Architecture to Collect Access Patterns.
Computer Science - Research and Development 1, 1–11 (2012)

3. Madhyastha, T.M., Reed, D.A.: Learning to Classify Parallel Input/Output Access
Patterns. IEEE Transactions on Parallel and Distributed Systems 13(8), 802–813
(2002)

4. Modani, N., Gupta, R., Lohman, G., Syeda-Mahmood, T., Mignet, L.: Automat-
ically Identifying Known Software Problems. In: 2007 IEEE 23rd International
Conference on Data Engineering Workshop, pp. 433–441 (April 2007)

5. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for Request Extrac-
tion and Workload Modelling. In: Proceedings of the 6th Symposium on Opearting
Systems Design and Implementation, vol. 6, pp. 259–272 (2004)

6. Yuan, C., Lao, N., Wen, J.-R., Li, J., Zhang, Z., Wang, Y.-M., Ma, W.-Y.: Au-
tomated Known Problem Diagnosis with Event Traces. In: Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, Eu-
roSys 2006, pp. 375–388. ACM, New York (2006)

7. Sandeep, S.R., Swapna, M., Niranjan, T., Susarla, S., Nandi, S.: CLUEBOX: a
Performance Log Analyzer for Automated Troubleshooting. In: Proceedings of the
First USENIX Conference on Analysis of System Logs, WASL 2008. USENIX As-
sociation, Berkeley (2008)

8. Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., Fox, A.: Captur-
ing, Indexing, Clustering, and Retrieving System History. SIGOPS Oper. Syst.
Rev. 39(5), 105–118 (2005)

9. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.S.: Correlating Instru-
mentation Data to System States: a Building Block for Automated Diagnosis and
Control. In: Proceedings of the 6th Conference on Symposium onOpearting Systems
Design & Implementation, OSDI 2004, vol. 6. USENIXAssociation, Berkeley (2004)

10. Duan, S.S., Babu, Munagala, K.: Fa: A System for Automating Failure Diagnosis.
In: IEEE 25th International Conference on Data Engineering, ICDE 2009, March
29-April 2, pp. 1012–1023 (2009)

11. Bader, M., Bungartz, H.J., Gerndt, M., Hollmann, A., Weidendorfer, J.: Invasive
programming as a concept for HPC. In: Proc. of the 10th IASTED Int. Conf. on
Parallel and Distr. Comp. and Netw., PDCN (2011)

12. Kunkel, J., Ludwig, T.: IOPm – Modeling the I/O Path with a Functional Rep-
resentation of Parallel File System and Hardware Architecture. In: PDP 2012,
Munich Network Management Team. IEEE (2012)



Using GPFS to Manage

NVRAM-Based Storage Cache

Salem El Sayed1, Stephan Graf1, Michael Hennecke2,
Dirk Pleiter1, Georg Schwarz1, Heiko Schick3, and Michael Stephan1

1 JSC, Forschungszentrum Jülich, 52425 Jülich, Germany
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Abstract. I/O performance of large-scale HPC systems grows at a sig-
nificantly slower rate than compute performance. In this article we inves-
tigate architectural options and technologies for a tiered storage system
to mitigate this problem. Using GPFS and flash memory cards a proto-
type is implemented and evaluated. We compare performance numbers
obtained by running synthetic benchmarks on a petascale BlueGene/Q
system connected to our prototype. Based on these results an assessment
of the architecture and technology is performed.

1 Introduction

For very large high-performance computing (HPC) systems it has become a
major challenge to maintain a reasonable balance of compute performance and
performance of the I/O sub-system. In practice, this gap is growing and systems
are moving away from Amdahl’s rule of thumb for a balanced performance ratio,
namely a bit of I/O per second for each instruction per second (see [1] for an
updated version). Bandwidth is only one metric which describes the capability
of an I/O sub-system. Additionally, capacity and access rates, i.e. number of I/O
requests per second which can be served, have to be taken into account. While
today’s technology allows to build high capacity storage systems, reaching high
access rates is even more challenging than improving the bandwidth.

These trends of technology are increasingly in conflict with application de-
mands in computational sciences, in particular as these are becoming more I/O
intensive [2]. Using traditional technologies these trends are not expected to re-
verse. Therefore, the design of the I/O sub-system will be a key issue which
needs to be addressed for future exascale architectures.

Today, storage systems attached to HPC facilities typically comprise an ag-
gregation of spinning disks. These are hosted in external file servers which are
connected via a commodity network to the compute system. This design has the
advantage that it allows to integrate a huge number of disks and to ensure the
availability of multiple data paths for resilience.

The extensive use of disks is largely driven by costs. Disk technology has
improved dramatically over a long period of time in terms of capacity versus
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Fig. 1. Read and write bandwidth averaged over 120 s as a function of time. The left
pane shows the measurements on a single BlueGene/P I/O node while the right pane
shows the results from all 600 I/O nodes of the JUGENE system.

costs. Bandwidth per disk and access rates, however, increase at a much slower
rate (see, e.g., [3]) than compute performance. High bandwidth can thus only
be achieved by increasing the number of disks within a single I/O sub-system,
with load being suitably distributed. For HPC systems meanwhile the number
of disks started to be mainly determined by bandwidth and not by capacity
requirements. Scaling of disks is, however, limited by cost and power budget as
well as the exponentially increasing risk of failures and data corruption. Using
todays disk technology to meet exascale bandwidth requirements of 60TByte/s
[4] would exceed the currently mandated power budget of 20MW, Whereas
satisfying exascale bandwidth with flash memory and satisfying exascale capacity
with a disk tier is possible at an “affordable” power consumption.

To meet future demands it is therefore necessary to consider other non-volatile
storage technologies and explore new designs for the I/O sub-system architec-
ture. Promising opportunities arise from storage devices based on flash memory.
Compared to disk technologies they feature order(s) of magnitude higher band-
width and access rates. The main disadvantage is the poor capacity versus costs
ratio, but device capacity is slowly increasing.

In this article we explore an architecture where we integrate flash memory
devices into IBM’s† General Parallel File System (GPFS†) to implement an
intermediate layer between compute nodes and disk-based file servers. GPFS’s
Information Lifecycle Management (ILM) [5] is used to manage the tiered storage
such that this additional complexity is hidden from the user. The key feature of
GPFS which we exploit is the option to define groups for different kind of storage
devices, known as GPFS storage pools. Furthermore, the GPFS policy engine
is used to manage the available storage and handle data movement between
different storage pools.

This approach is motivated by the observation that applications running on
HPC systems as they are operated at Jülich Supercomputing Centre (JSC)
tend to start bursts of I/O operations.1 In Fig. 1 we show the read and write

1 Such behaviour has also been reported elsewhere in the literature, see, e.g., [6].
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bandwidth measured on JSC’s petascale BlueGene/P† facility JUGENE. On
each I/O node the bandwidth has been determined from the GPFS counters
which have been retrieved every 120 s.

If we assume an intermediate storage layer being available providing a much
higher I/O bandwidth to the compute nodes (but an unchanged bandwidth to-
wards the external storage) it is possible to reduce the time needed for I/O.
Alternatively, it is also possible to lower the total power consumption by pro-
viding the original bandwidth through flash, and reduce the bandwidth of the
disk storage. This requires mechanisms to stage data kept in the external storage
system before it is read by the application, as well as to cache data generated by
the application before it is written to the external storage. All I/O operations re-
lated to staging are supposed to be executed asynchronously with respect to the
application. The fast intermediate storage layer can also be used for out-of-core
computations where data is temporarily moved out of main memory. Another
use case is check-pointing. In both cases we assume the intermediate storage
layer to be large enough to hold all data such that migration of the data to the
external storage is avoided.

The key contributions of this paper are:

1. We designed and implemented a tiered storage system where non-volatile
flash memory is used to realize a fast cache layer and where resources and
data transfer are managed by GPFS ILM features.

2. We provide results for synthetic benchmarks which were executed on a petas-
cale BlueGene/Q system connected to the small-scale prototype storage clus-
ter. We compare results obtained using different flash memory cards.

3. Finally, we perform a performance and usability analysis for such a tiered
storage architecture.We use I/O statistics collected on a BlueGene/P system
as input for a simple model for using the system as a fast write cache.

2 Related Work

In recent years a number of papers have been published which investigate the
use of fast storage technologies for staging I/O data, as well as different software
architectures to manage such a tiered storage architecture.

In [7] part of the nodes’ volatile main memory is used to create a temporary
parallel file system. The performance of their RAMDISK nominally increases at
the same rate as the number of nodes used by the application is increased. The
authors implemented their own mechanisms to stage the data before a job starts
and after the job completed. Data staging is controlled by a scheduler which is
coupled to the systems resource manager (here SLURM).

The DataStager architecture [8, 9] uses the local volatile memory to keep
buffers needed to implement asynchronous write operations. No file system is
used to manage the buffer space, instead a concept of data objects is introduced
which are created under application control. After being notified, DataStager
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processes running on separate nodes manage the data transport, i.e. data trans-
port is server directed and data is pulled whenever sufficient resources are
available.

To overcome power and cost constrains of DRAM based staging, in [10] the
use of NVRAM is advocated. Here a future node design scenario is evaluated
comprising Active NVRAM, i.e. NVRAM plus a low-power compute element.
The latter allows for asynchronous processing of data chunks committed by the
application. Final data may be flushed to external disk storage. Data transport
and resource management is thus largely controlled by the application.

3 Background

NAND flash memory belongs to the class of non-volatile memory technologies.
Here we only consider Single-Level Cell (SLC) NAND flash, which features the
highest number of write cycles. SLC flash chips currently have an endurance of
up to O(100,000) erase/write cycles. At device level the problem of failing mem-
ory chips is significantly mitigated by wear-leveling and RAID. A large number
of write cycles is critical when using flash memory devices for HPC systems.
The advantage of flash memory devices with respect to standard disks are sig-
nificantly higher bandwidth and orders of magnitude higher I/O operation rates
due to significantly lower access latencies, at much lower power consumption.

GPFS is a flexible, scalable parallel file system architecture which allows to
distribute both data and metadata. The smallest building block, a Network
Shared Disk (NSD), which can be any storage device, is dedicated for data only,
metadata only, or both. In this work we exploit several features of GPFS. First,
we make use of storage pools which allows to group storage elements. Pools are
traditionally used to handle different types or usage modes of disks (and tapes).
In the context of tiered storage this feature can be used to group the flash storage
into one and the slower disk storage into another pool. Second, a policy engine
provides the means to let GPFS manage the placement of new files and staging
of files. This engine is controlled by a simple set of rules.

4 GPFS-Based Staging

In this paper we investigate a setup where flash memory cards are integrated
into a persistent GPFS instance. GPFS features are used (1) to steer initial file
placement, (2) to manage migration from flash to external, disk-based storage,
and (3) to stage files from external storage to flash memory. The user therefore
continues to access a standard file system.

We organise external disk storage and flash memory into a disk and flash

pool, respectively. Then we use the GPFS policy engine to manage automatic
data staging. In Fig. 2 we show our policy rules with the parameters defined in
Table 1. These rules control when the GPFS events listed in Table 1 are thrown,
the numerical values should be set according to operational characteristics of an
HPC system’s workload. Files are created in the storage pool flash as long as
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RULE SET POOL ’flash’ LIMIT(fmax)

RULE SET POOL ’disk’

RULE MIGRATE

FROM POOL ’flash’

THRESHOLD(fstart,fstop)
WEIGHT(CURRENT_TIMESTAMP-ACCESS_TIME)

TO POOL ’disk’

Fig. 2. The GPFS policy rules for the target file system defines the placement and
migration rule for the files’ data blocks

filling does not exceed the threshold fmax. When filling exceeds fmax the second
rule applies which allows files to be created in the pool disk. This fall-back
mechanism is foreseen to avoid writes failing when the pool flash is full but
there is free space in the storage pool disk.

The third rule manages migration of data from the pool flash to disk. If the
filling of the pool flash exceeds the threshold fstart the event lowDiskSpace is
thrown, and automatic data migration is initiated. Migration stops once filling
of pool flash drops below the limit fstop (where fstop < fstart). For GPFS
to decide which files to migrate first, a weight factor is assigned to each file,
which we have chosen such that least recently accessed files are migrated first.
Migration is controlled by a callback function which is bound to the events
lowDiskSpace and noDiskSpace. At any time these events occur, the installed
policy rule for the according file system are re-evaluated. The GPFS parameter
noSpaceEventInterval defines at which intervals the events lowDiskSpace and
noDiscSpace may occur (it defaults to 120 seconds).

Finally, to steer staging of files to flash memory we propose the implementa-
tion of a prefetch mechanism which is either triggered by the user application or
the system’s resource manager (like in [7]). Technically this can be realized by
using the command mmchattr -P flash <filename>. To avoid this file being
automatically moved back to the pool disk, the last access time has to be up-
dated, too. A possible way to achieve this is to create a library which will offer a
function like prefetch(<filename>). This library also has to ensure that only
one rank of the application is in charge.

Table 1. Policy rule parameters and the values used in this paper

Parameter Description Value Event

fmax Maximal filling (in percent) 90 noDiskSpace

fstart Filling limit which starts migration (in percent) 30 lowDiskSpace

fstop Filling limit which stops migration (in percent) 5 –
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The optimal choice of the parameters fstart, fstop and fmax depends on how
the system is used. For larger values of fmax the probability of files being opened
for writing in the slow disk pool reduces. Large values for fstart and fstop may
cause migration to start too late or finish too early and thus increase the risk
of the pool flash becoming full. On the other hand, small values would lead to
early migration which could have bad effects on read performance in case the
application tries to access the data for reading after migration.

5 Test Setup

5.1 Prototype Configuration

Our prototype I/O system JUNIORS (JUliche Novel IO Research System) con-
sists of IBM x3650 M3 servers with two hex-core Intel Xeon X5650 CPUs (run-
ning at 2.67GHz) and 48GBytes DDR3 main memory. For the tests reported
here we use up to 6 nodes. Each node is equipped with 2 flash memory cards
either from Fusion-io† or Texas Memory Systems† (TMS). The most important
performance parameters of these devices as reported by the corresponding vendor
have been collected in Table 2. Note that these numbers only give an indication
of the achievable performance. Each node is equipped with 2 dual-port 10-GbE
adapters. The number of ports has been chosen such that the nodes nominal
bandwidth to the flash memory and the network is roughly balanced. Channel
bonding is applied to reduce the number of logical network interfaces per node.

The Ethernet network connects the prototype I/O system to the peta-scale
BlueGene/Q system JUQUEEN and the peta-scale disk storage system JUST.
To use the massively parallel compute system for generating load, we mount our
experimental GPFS file system on the BlueGene/Q I/O nodes. For an overview
of the prototype system and the Ethernet interconnect see Fig. 3 (left pane).

On each node we installed the operating system RHEL6.1 (64bit) and GPFS
version 3.5.0.7. For the Fusion-io ioDrive Duo we used the driver/utility soft-
ware version 3.1.5 including the firmware v7.0.0 revision 107322. For the TMS
RamSan-70 cards we used the driver/utility software version 3.6.0.11.

To monitor data flow within the system we designed a simple monitoring
infrastructure consisting of different sensors as shown in Fig. 3 (right pane). The
tools netstat and iostat are used to sense the data flow between node and
network as well as through the Linux† block layer, respectively. Vendor specific

Table 2. Manufacturer hardware specification of the flash memory cards2

Fusion-io ioDrive Duo SLC† TMS RamSan-70†

Capacity 320 GByte 450 GByte

Read/write bandwidth [GByte/s] 1.5 / 1.5 1.25 / 0.9

Read/write IOPS 261,000 / 262,000 300,000 / 220,000

2 For the RamSan-70 we report the performance numbers for 4 kBytes block size.
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Fig. 3. The left pane shows a schematic view of the I/O prototype system and the
network through which it is connected to a compute system as well as a storage system.
The right pane illustrates the data flow monitoring infrastructure.

tools are used to sense the amount of data written (read) to (from) the flash
memory device. GPFS statistics is collected using the mmpmon facility.

5.2 Benchmark Definitions

To test the performance we used three different benchmarks. For network band-
width measurements we used the micro-benchmark nsdperf, a tool which is
part of GPFS. It allows to define a set of server and clients and then generate
the network traffic which real write and read operations would cause, without
actually performing any disk I/O.

For sequential I/O bandwidth measurements we used the SIONlib [11] bench-
mark tool partest, which generates a load which is similar to what one would
expect from HPC applications. These often perform task-local I/O where each
job rank creates it’s own file. If the number of ranks is large then the time needed
to handle file system metadata will become large. This is a software effect which
is not mitigated by using faster storage devices like flash memory cards. SIONlib
is a parallel I/O library that addresses this problem by transparently mapping a
large number of task-local files onto a small number of physical files. To bench-
mark our setup we run this test repeatedly using 32,768 processes, distributed
over 512 BlueGene/Q nodes. During each iteration 2TBytes of data is written
in total.

To measure bandwidth as well as I/O operation (IOP) rates we furthermore
use the synthetic benchmark tool IOR [12] to generate a parallel I/O workload.
It is highly configurable and supports various interfaces and access patterns
and thus allows mimicking the I/O workload of different applications. We used
512 BlueGene/Q nodes with one task per node which all performed random
I/O operations on task-local files opened via the POSIX interface, with the flag
O DIRECT set to minimize caching effects. In total 128GBytes are written and
read using transfers of size 4 kBytes.



442 S. El Sayed et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  50  100  150  200  250  300  350

B
an

dw
id

th
 [

G
B

/s
]

Time [s]

Fusion−IO monitoring
network recieved

network send
iostat read

iostat write
flashcard read

flashcard write

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  100  200  300  400  500  600

B
an

dw
id

th
 [

G
B

/s
]

Time [s]

TMS Ramsan monitoring
network recieved

network send
iostat read

iostat write
flashcard read

flashcard write

Fig. 4. Read and write bandwidth as a function of time for the SIONlib benchmark
using flash memory cards from Fusion-io (left) or TMS (right). Both figures shows the
I/O monitoring of one JUNIORS node (2 flash cards).

6 Evaluation

We start the performance evaluation by testing the network bandwidth between
the JUQUEEN system, where the load is generated, and the prototype I/O
system JUNIORS using nsdperf. For these tests we used 16 Blue Gene/Q IO
nodes as clients and 2 JUNIORS nodes as servers. We found a bandwidth of
8.1GByte/s for emulated writes and 9.7 for reads. Comparing these results with
the nominal parameters of the flash cards listed in Table 2 indicates that our
network provides sufficient bandwidth to balance the bandwidth to 2 flash cards
per node.

For the following benchmarks each JUNIORS server was configured as an
NSD server within a GPFS file system which was mounted by JUQUEEN I/O
nodes. Using 16 clients we measured the I/O bandwidth for sequential access
using partest. The observed read bandwidth is 12.5Gbyte/s using 4 JUNIORS
server and 8 Fusion-io flash cards, slightly more than we would expect from the
vendors’ specifications. However, a significant different behaviour is observed for
writing where we observe a drop of the performance of more than 40% from 6.5
to 3.7GByte/s after a short period of writing. To investigate the cause for this
behaviour we analyse the data flow information from our monitoring system.
The sensor values collected on 1 out of 4 nodes is plotted in Fig. 4 (left pane).
The benchmark first performs a write and then a read cycle. We first notice that
the amount of data passing the network device is consistent with the amount of
data transferred over the operating systems block device layer. At the beginning
of the initial write cycle the amount of data received via the network agrees with
the amount of data written to the flash card. However, after 67 s of writing we
observe a drop in the bandwidth of received data while at the same time the flash
card reports read operations. We observe that the amount of data passing the
block device layer towards the processor remains zero. Furthermore, the amount
of data written to the flash card agrees with the amount of data received via the
network plus the amount of data read from the flash cards. We therefore conclude
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that the drop in write performance is caused by read and write operations from
and to the flash card initiated by the flash card driver.

Let us now consider the performance obtained when using the flash cards
from TMS. Here we used 2 JUNIORS servers with 2 flash cards each. We ob-
serve a read (write) bandwidth of 5.7 (3.2) GByte/s. This corresponds to 114%
(90%) of the read (write) bandwidth one would naively expect from the vendor’s
performance specification. As can be seen from Fig. 4 the write bandwidth is
sustained during the whole test.

Next, we evaluated the I/O operation (IOPS) rate which we can obtain on
our prototype for a random access pattern generated by IOR. We again used the
setup with 2 JUNIORS servers and 4 TMS cards. For comparison we repeated
the benchmark run using the large-capacity storage system JUST, where about
5,000 disks are added to a single GPFS file system. In Table 3 the mean IOPS
values for read and write are listed. We observe the IOPS rate on our prototype
I/O system to be significantly higher than on the standard, disk-based storage
system. For a fair comparison it has to be taken into account that the storage
system JUST has been optimized for streaming I/O with disks organized into
RAID6 arrays, with large stripes of 4MBytes. Furthermore, the prototype and
compute system are slightly closer in terms of network hops. The results on the
prototype are an order of magnitude smaller than one would naively expect from
the vendor’s specification (see Table 2). These numbers we could only reproduce
when performing local raw flash device access without a file system.

In the final step we defined two storage pools in the GPFS file system. For
the pool flash we used 4 TMS cards in 2 JUNIORS nodes. the pool disk was
implemented with 6 Fusion-io cards in 3 other servers, because there were no
disks in the JUNIORS cluster. These pools were all configured as dataOnly, while
a third pool on yet another flash disk is used for metadata. The GPFS policy
placement and a migration rule are defined as shown in Fig. 2 and Table 1. To
evaluate the setup we use the SIONlib benchmark partest, which uses POSIX
I/O routines, as well as the IOR benchmark, which we configured such that
MPI-IO is used, to create 1.5TBytes of data.

In Fig. 5 we show the data throughput at the different sensors for the different
benchmarks as a function of time. For the two different benchmarks no significant
differences are observed. We obtained similar results for IOR using the POSIX
instead of the MPI-IO interface. The SIONlib benchmark starts with a write
cycle followed by a read cycle, which here starts and ends about 500 s and 800 s
after starting the test, respectively. Initially all data is placed in pool flash.
After 260 s GPFS started the migration process. There is only a small impact

Table 3. IOPS comparison between two JUNIORS nodes using 4 TMS RamSan-70
cards and the classical scratch file system using about 5,000 disks

storage system write IOPS (mean) read IOPS (mean)

JUNIORS 52234 122123

JUST 20456 69712
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Fig. 5. Read and write bandwidth (per node) as a function of time for the SIONlib
benchmark using the POSIX interface (left) and the IOR benchmark using the MPI-IO
interface (right)

seen on the I/O performance. After the benchmark run ended it took up to 17
minutes to finish the migration.

7 Performance Analysis

To assess the potential of this architecture being used exclusively as a write cache,
it is instructive to consider a simple model. Let us denote the time required to
perform the computations and (synchronous) I/O operations by tcomp and tio,
respectively, and assume tcomp > tio. While the application is computing, data
can be staged between disk and flash pool. Therefore, it is reasonable to choose
the bandwidth between the compute system and the staging area y = tcomp/tio
times larger than between staging area and the external storage. As a result the
time for I/O should reduce by a factor 1/y and therefore the overall execution
time should reduce by a factor (tcomp + tio/y)/(tcomp + tio) = (y+ 1/y)/(y+ 1).
In this simple model the performance gain for the overall system would be up
to 17% for y = 1+

√
2. Since the storage subsystem accounts only for a fraction

of the overall costs, this could significantly improve overall cost efficiency.
To investigate this further we implemented a simple simulation model as

shown in Fig. 6. The model mimics the GPFS policy rules used for the JU-
NIORS prototype. The behaviour is controlled by the policy parameters fstart,
fstop and fmax as well as a set of bandwidth parameters. For each data path a
different bandwidth parameter is foreseen. The bandwidth along the data path
connecting processing device and pool flash as well as the pools flash and disk

may change when data migration is started, like it is observed for our prototype.
All bandwidth parameters are chosen such that the performance of our proto-
type is resembled. Note that the bandwidth is assumed not to depend on I/O
patterns. This is a simplification, as sustainable bandwidth for a disk-based sys-
tem depends heavily on the I/O request sizes. One big advantage of flash storage
is that it can sustain close to peak bandwidth for much small I/O request sizes
(and file system block sizes). From the JUGENE I/O statistics (see Fig. 1) we
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flash

Processor

disk

SManager

Fig. 6. Schematic view on the simulation model consisting of a processing device, a
storage manager and 2 storage pools, flash and disk

extract the amount of data written and the time between write operations. With
the additional pool flash disabled the execution times obtained from the model
and the real execution times agree within 10%. When enabling the write cache,
the simulated execution time reduces at a 1% level. This result is consistent with
above model analysis as for the monitored time period tcomp/tio � 300, i.e. the
system was not used by applications which are I/O bound. This we consider
typical for current HPC systems since the performance penalty when executing
a significant amount of I/O operations is large.

8 Discussion and Conclusions

In this paper we evaluated the functionality and performance of an I/O proto-
type system comprising flash memory cards in addition to a disk pool. We could
demonstrate that the system is capable of sustaining high write and read band-
width to and from the flash cards using a massively-parallel BlueGene/Q system
to generate the load. Taking into account that in standard user operation mode
I/O operations occur in bursts we investigated how such an I/O architecture
could be used to realise a tiered storage system where flash memory is used for
staging data. We demonstrated how such a system can be managed using the
policy rule mechanism of GPFS.

Our results indicate that for loads extracted from current I/O statistics some
gain is to be expected just using the architecture as a write cache. The statistics
are however biased as I/O bound applications are hardly using the system for
performance reasons. Transferring data sequentially using large blocks does not
meet the requirements of many scientific applications. A performance assessment
of the proposed prefetching mechanism from disk to flash could not be carried out
in the scope of this paper. It requires extensions to workflow managers and other
software tools which make it easy for the user to provide information which files
will be accessed for reading before or while executing a job (see RAMDISK [7]
for a possible solution).

The considered hierarchical storage system comprising non-volatile memory
has an even higher potential for performance improvements when the applica-
tion’s I/O performance is mainly limited by the rate at which read and write
requests can be performed. For our prototype system we show that a high IOPS
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rate can be achieved. We therefore expect our tiered storage system, e.g., to be
particular efficient when being used for multi-pass analysis applications perform-
ing a large number of small random I/O operations.
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and Jülich Supercomputing Centre (JSC) which was partly supported by the EU
grant 261557 (PRACE-1IP). We would like to thank all members of this project,
in particular H. El-Harake, W. Homberg and O. Mextorf, for their contributions.

References

[1] Gray, J., Shenoy, P.: Rules of Thumb in Data Engineering, pp. 3–10 (2000)
[2] Bell, G., Gray, J., Szalay, A.: Petascale computational systems. Computer 39(1),

110–112 (2006)
[3] Hitachi, https://www1.hgst.com/hdd/technolo/overview/

storagetechchart.html (accessed: January 26, 2013)
[4] Stevens, R., White, A., et al. (2010), http://www.exascale.org/mediawiki/

images/d/db/planningforexascaleapps-steven.pdf

(accessed: January 26, 2013)
[5] Mueller-Wicke, D., Mueller, C.: TSM for Space Management for UNIX – GPFS

Integration (2010)
[6] Miller, E.L., Katz, R.H.: Input/output Behavior of Supercomputing Applications.

In: SC 1991, pp. 567–576. ACM, New York (1991)
[7] Wickberg, T., Carothers, C.: The RAMDISK Storage Accelerator: a Method of

Accelerating I/O Performance on HPC Systems using RAMDISKs. In: ROSS 2012,
pp. 5:1–5:8. ACM, New York (2012)

[8] Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., Zheng, F.:
DataStager: Scalable Data Staging Services for Petascale Applications. In: HPDC
2009, pp. 39–48. ACM, New York (2009)

[9] Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., Zheng, F.:
DataStager: Scalable Data Staging Services for Petascale Applications. Cluster
Computing 13(3), 277–290 (2010)

[10] Kannan, S., Gavrilovska, A., Schwan, K., Milojicic, D., Talwar, V.: Using active
NVRAM for I/O staging. In: PDAC 2011, pp. 15–22. ACM, New York (2011)

[11] Frings, W., Wolf, F., Petkov, V.: Scalable Massively Parallel I/O to Task-local
Files. In: SC 2009, pp. 17:1–17:11. ACM, New York (2009)

[12] Borrill, J., Oliker, L., Shalf, J., Shan, H.: Investigation of Leading HPC I/O
Performance Using a Scientific-application Derived Benchmark. In: SC 2007,
pp. 10:1–10:12. ACM, New York (2007)

† IBM, Blue Gene and GPFS are trademarks of IBM in USA and/or other countries.
Linux is a registered trademark of Linus Torvalds in the USA, other countries, or
both. RamSan and Texas Memory Systems are registered trademarks of Texas Mem-
ory Systems, an IBM Company. Fusion-io, ioDrive, ioDrive2 Duo, ioDrive Duo are
trademarks or registered trademarks of Fusion-io, Inc.

https://www1.hgst.com/hdd/technolo/overview/storagetechchart.html
https://www1.hgst.com/hdd/technolo/overview/storagetechchart.html
http://www.exascale.org/mediawiki/images/d/db/planningforexascaleapps-steven.pdf
http://www.exascale.org/mediawiki/images/d/db/planningforexascaleapps-steven.pdf


VM-MAD: A Cloud/Cluster Software
for Service-Oriented Academic Environments

Tyanko Aleksiev2, Simon Barkow-Oesterreicher1, Peter Kunszt3,
Sergio Maffioletti2, Riccardo Murri2, and Christian Panse1

1 Functional Genomics Center Zürich
ETH Zürich / Universität Zürich

Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
cp@fgcz.ethz.ch, simon.barkow@fgcz.uzh.ch

2 Grid Computing Competence Center
Universität Zürich

Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
{tyanko.alexiev,riccardo.murri}@gmail.com,

sergio.maffioletti@gc3.uzh.ch
3 SystemsX, ETH Zürich

Clausiusstrasse 45, CH-8006 Zürich, Switzerland
peter.kunszt@systemsx.ch

Abstract. The availability of powerful computing hardware in IaaS

clouds makes cloud computing attractive also for computational work-
loads that were up to now almost exclusively run on HPC clusters.

In this paper we present the VM-MAD Orchestrator software: an open
source framework for cloudbursting Linux-based HPC clusters into IaaS

clouds but also computational grids. The Orchestrator is completely
modular, allowing flexible configurations of cloudbursting policies. It can
be used with any batch system or cloud infrastructure, dynamically ex-
tending the cluster when needed. A distinctive feature of our framework
is that the policies can be tested and tuned in a simulation mode based
on historical or synthetic cluster accounting data.

In the paper we also describe how the VM-MAD Orchestrator was used
in a production environment at the Functional Genomics Center Zurich
to speed up the analysis of mass spectrometry-based protein data by
cloudbursting to the Amazon Elastic Compute Cloud. The advantages
of this hybrid system are shown with a large evaluation run using about
hundred large Elastic Compute Cloud (EC2) nodes.

1 Introduction

Recent years have seen great advances in virtualization technologies, to the point
that it is now possible to run computationally-heavy workloads on completely
virtualized infrastructures. Starting with Amazon EC2, commodity on-demand
virtualized compute infrastructures1 have become affordable to anyone. They
1 Commonly referred to as “Infrastructure-as-a-Service (IaaS) clouds”.
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include virtualized compute and storage hardware, dedicated networking and a
software stack entirely under control of the end-user.

Therefore, the use of virtualized computational infrastructures has become
very appealing to smaller research groups: it is now possible to access large
computational resources without the need to buy and maintain a corresponding
hardware infrastructure.

Today, emerging computational disciplines (e.g., Bioinformatics, Medical in-
formatics) are showing usage patterns that do not fit well in the traditional
High-Performance Computing (HPC) model of few individual jobs making use
of the entire infrastructure through massively parallel programming. Their model
is to submit a very large number of small jobs in bursts to analyze the relevant
data, and then post-process the results to get a statistical overview or model
prediction. Their need for computational resources in terms of CPU hours is
similar to the massively parallel HPC use-cases but without the need for low-
latency networks for MPI communication. HPC resource providers, who need to
support such user communities with transient “peak” workloads, cannot afford
to plan the infrastructure for peak usage, as it would be underutilized for most
of the time. At the same time, they do not want to see a negative impact on the
traditional HPC cluster users either. Therefore, exploitation of cloudbursting to
IaaS clouds for HPC is interesting also to small and mid-sized facilities.

The term “cloudbursting” describes the ability of a local computational re-
source facility to dynamically add virtual machine instances from IaaS providers
to their local resource, extending it in size elastically as needed. Cloudbursting
improves application throughput and response time as seen by the user. It is
an efficient technique for dynamic HPC resources expansion and peak workload
offloading.

Cloudbursting also allows to add cluster nodes to the local resource that
extends it with new abilities to the benefit of the users. For example, it is possible
to extend the local cluster with virtual nodes enabling Hadoop workloads, or
special GPU workloads that are not supported locally.

In this paper we present the Virtual Machines Management and Advanced
Deployment (VM-MAD) Orchestrator software: an open source framework for
cloudbursting Linux-based HPC clusters into IaaS clouds. The VM-MAD Orches-
trator is completely modular, allowing flexible configurations of cloudbursting
policies in the Python programming language. It can be used with any batch-
queuing cluster system or cloud infrastructure, dynamically extending the cluster
when needed. The policies can be tested and tuned by using the VM-MAD Or-
chestrator in simulation mode, based on historical or synthetic cluster accounting
data.

The paper is organized as follows. We first discuss the design goals of the
VM-MAD Orchestrator and the architecture we devised to implement them
(Section 2). In section 3 we take a more in-depth look at the implementa-
tion and discuss how cloudbursting policies are configured in VM-MAD. As a
real-world use case example, we report on the usage of the VM-MAD Orches-
trator to run some special ensemble jobs on the bioinformatics cluster at the
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Functional Genomics Center Zurich (Section 4). Finally, we survey similar and
concurrently-developed solutions (Section 5) and outline some conclusions and
possible future developments (Section 6).

1.1 List of Acronyms

API Application Programming Interface
CPU Central Processing Unit
EC2 Elastic Compute Cloud
ECU EC2 Compute Unit
ETHZ Eidgenössische Technische Hochschule Zürich, Swiss Federal

Institute of Technology Zurich
FGCZ Functional Genomics Center Zurich
HPC High-Performance Computing
IaaS Infrastructure-as-a-Service
IBM International Business Machines
LSF Load Sharing Facility (a batch-queuing system)
SMSCG Swiss Multi-Science Computational Grid
UZH University of Zurich
VM Virtual Machine
VM-MAD Virtual Machines Management and Advanced Deployment

(the project described in this paper)
VPN Virtual Private Network

2 Overall Design and Architecture

The stated goal of the VM-MAD project was to build a stable software service
that could be used on existing production-grade HPC cluster infrastructures
to dynamically add computing power during peak loads, and to automatically
revert to using only local processing facilities when the “rush hour” is over. This
elastic “cloudbursting” feature should have as little impact as possible on the
current usage patterns of HPC clusters; ideally, nothing should change in the
HPC users’ experience but the system would automatically launch cloud-based
Virtual Machines (VMs) and schedule jobs that would otherwise not be possible
or take too much time or resources out of the cluster.

2.1 Implementation Requirements

Early in the development process, we realized that achieving these goals entails
dealing with large heterogeneity.

First of all, we would need to accommodate different batch-queuing systems,
even if we are restricting ourselves to the HPC clusters in use at the University
of Zurich (UZH) and the Eidgenössische Technische Hochschule Zürich (ETHZ).
While they all share the same workflow and interaction models, details of the
submission Application Programming Interface (API) vary greatly. This ruled
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out the possibility of implementing the VM-MAD cloudbursting software as an
extension package for a particular batch system implementation. Instead we
decided to interact with the batch system via the available command-line tools.

The second very important consideration was the actual definition of what is
meant by “peak load”, i.e., under what conditions the computing power should be
extended using VM instances from the cloud, and what kinds of jobs can be run
on the elastic part of the infrastructure. Defining peak load is a subtle matter
of local policy. Any choice of a domain-specific language would have constrained
the range of supported policies and therefore limited the applicability of the
VM-MAD cloudbursting system. We chose instead to allow the definition of the
local policy as a set of functions written in the Python programming language
[17]: now a decision can be taken on the basis of all the data available to the
cloudbursting software (see details in Section 3).

Finally, the “cloud” ecosystem is currently very dynamic. For our software to
be useful even just in the next few years, it needs to be able to interface to
different IaaS cloud infrastructures.

Based on these requirements we opted for a completely modular architec-
ture: the VM-MAD software is a framework for building cloudbursting scripts,
perfectly adapted to the peculiarities of each HPC installation. It is not a ready-
made add-on for a particular product that a systems administrator can deploy
with just a few touches to a configuration file.2

2.2 Architecture Overview

Our solution to the “cloudbursting” problem, as outlined in the previous sections,
is to build a tool which can be run as an add-on to existing batch systems. Our
“Orchestrator” software implements the additional services needed to link the
batch system with an elastic IaaS infrastructure. It’ runs in the background3

and performs the following tasks:

a. Monitor the jobs queued in the batch system, and select those that could
run on a cloud-based VMs;

b. Start and shut down VM instances;
c. Add and remove VMs compute nodes to and from the cluster.

It is very important to remark that points a. and b. involve taking decisions
according to configurable policies and metrics. The cluster system administrator
is responsible for these policies and metrics.

Figure 1 shows the interaction of the software components involved in a cloud-
bursting scenario under control of a VM-MAD Orchestrator.

2 This is similar to the current situation for the HPC scheduling softwares: low-
maintenance schedulers are also limited in configurability and functionality, while
those that are flexible enough to implement complex policies are often custom-built
or have a rich and detailed configuration language.

3 It is a “daemon” in the UNIX terminology.
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Fig. 1. Interaction of parts in a cloudbursting scenario. (0) The Orchestrator monitors
the batch system state and determines when a new compute node is needed. (1) A
new VM is started. (2) The VM connects back to the batch system network via VPN.
(3) The VM is added to the cluster as a compute node. (4) The batch system can now
start jobs on the VM.

(0) The Orchestrator monitors the batch system state and determines that —by
the local policy definition— a new compute node is needed. (For example,
the number of queued jobs that could be executed in a cloud-based VM
exceeds a certain threshold.)

(1) The Orchestrator consults the cloud state and the local policy, and deter-
mines that the current set of cloud-based resources is insufficient. It therefore
contacts the cloud provider via its network API and starts a new VM.

(2) The new VM connects back to the batch system network via a VPN. This
requires that the VM image has been previously prepared by the cluster sys-
tems administrator: it should contain a the portion of the cluster execution
environment that is necessary for running jobs destined to the cloud and the
preconfigured VPN software to connect back to the “home” network.

(3) The Orchestrator adds the new VM to the cluster as a compute node, re-
configuring the batch system scheduler on the fly. All properties of this node
are registered with the scheduler and jobs requesting those properties can
be scheduled on the new cloud-based nodes.

(4) The batch system scheduler can now start jobs on the VM. It should be
noted that the Orchestrator has a passive role with regards to scheduling
computational jobs in the cloud: all it does is to start new VMs that sat-
isfy the job requirements, and lets the batch system scheduler use those for
actually running a job.

(5) When the Orchestrator detects that the amount of cloud-based resources
exceeds the current needs (as defined by local policy), it shuts down the
unneeded VMs.

3 Implementation Overview

The VM-MAD cloudbursting framework is implemented as a library package
written in the Python [17] programming language. The code is written in an
object-oriented style; the basic components of the framework are Python classes.
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The Orchestrator object is the core of the framework: it implements the main
loop and performs housekeeping of the shared data structures. The Orchestrator
is a singleton: only one single instance should be monitoring a given batch system.
An Orchestrator instance must be adapted to the cluster setup by initializing it
with a SchedInfo and a Provider instance.

SchedInfo objects are responsible for interacting with the batch system sched-
uler, especially for gathering information about the running/queued jobs and the
available compute nodes. New batch-queuing systems can be supported by cre-
ating an appropriate SchedInfo subclass.

Provider objects are responsible for interacting with a remote IaaS cloud sys-
tem and starting/stopping virtual machines.

The cloudbursting policy is defined by subclassing the Orchestrator object
and overriding well-defined methods that decide whether a job is a candidate for
cloud execution, or what type of virtual machine should be started.

It should be noted that this simple component architecture allows a great
deal of flexibility: for instance, a Provider instance needs not interface to a cloud
provider, but can also request nodes from a peer cluster or Grid infrastructure.4
Likewise, the SchedInfo component does not need to read information from a live
batch system: the standard VM-MAD software distribution includes components
for replaying job information from a batch system accounting file, which can
be used for simulating the effect of cloudbursting policies over historical data,
see section 4.3. It also includes components to generate random workloads to be
used for testing of the system and available infrastructure.

3.1 Policy Definition

“Orchestrator policies” are criteria that govern decisions on whether:

1. a given job can run on cloud-based virtualized hardware;
2. a new VMs should be started to extend the current virtualized computational

resource pool;
3. a running VMs should be stopped, shrinking the current virtualized resource

pool.

For each of these decisions, a method is provided in the Orchestrator class that
should return a True/False value based on the evaluation of available data.
Systems administrators should override the default implementation to implement
their chosen criteria.

Example: Policy on Jobs Eligible to Run on Virtualized Hardware.
The decision whether a certain job can run on cloud-based resources is taken by
the is_cloud_candidate method. This method is called once for each new job

4 This has actually been done in the course of the VM-MAD benchmarks, by starting
VMs [14,3] on the Swiss Multi-Science Computational Grid (SMSCG) [18] computa-
tional grid infrastructure.
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that appears in the batch system queues and returns True if that job is eligible
for cloudbursting. The default implementation always returns False, so that no
job accidentally triggers the spawning of cloud-based VMs.

For example, the following code would implement a policy where only jobs
that have been submitted to a special “cloud” queue trigger cloudbursting of
compute resources:

1 def is_cloud_candidate(self, job):
2 return (job.queue == ’cloud.q’)

The job record passed as argument to the is_cloud_candidate method con-
tains all the information that the batch system scheduler provides via its queue-
listing command (e.g., qstat on Sun/Oracle Grid Engine).

Example: Policy on Starting New Compute Resources. The decision on
whether new cloud-based resources should be requested is taken by the is_new
_vm_needed method. This method is called at each iteration of the Orchestra-
tor’s main loop. It has access to all the internal data structures, in particular
the list of jobs eligible to run on cloud-based hardware (self.candidates) and
the list of cloud-based VMs that have already been started by the Orchestrator
(self.vms). By default, this method always returns False, so that cloud-based
VMs are never spawned; this is a safety measure to avoid that non-configured
Orchestrators start spawning VMs: since usage of cloud-based resources usually
comes at a cost, it is entirely the administrator’s task to decide when and how
to initiate cloudbursting.

For example, the following code implements a policy where new cloud-based
VMs are started if the number of queued candidate jobs is greater than double
the number of VMs required to run them:

1 def is_new_vm_needed(self):
2 if len(self.candidates) > 2*len(self.vms):
3 return True
4 else:
5 return False

Example: Policy on Stopping Cloud-Based Compute Resources. At
every iteration of the Orchestrator’s main loop, a decision will also be taken
on whether an idle VM (i.e., one that is not currently running any job) should
be stopped. Since booting a cloud-based VM can take up to a few minutes’
time, and many cloud infrastructure bill usage in hourly increments, it makes
sense to try to re-use already-started VMs instead of starting new ones. The
can_vm_be_stopped method is there exactly for this purpose: change the de-
fault Orchestrator behavior, which is to stop a VM as soon as it turns idle.

For example, the following code implements a policy where a VM is allowed
to be idle for 10 minutes before it is stopped by the Orchestrator:
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vmmad.simul.OrchestratorSimulation

time_interval : int
startup_delay
output_ le
max_idle
starting_time
writer
cluster_size

stop_vm()
new_vm()
is_cloud_candidate()
can_vm_be_stopped()
update_vm_status()
time()
start_vm()
update_job_status()
is_new_vm_needed()
before()

vmmad.orchestrator.Orchestrator

max_vms
jobs : dict
max_delta : int
vm_start_timeout : int
last_update : int
batchsys
cycle : int
chkpt le : NoneType
vms
cloud
candidates : set

vm_is_ready()
is_new_vm_needed()
run()
after()
is_cloud_candidate()
can_vm_be_stopped()
update_job_status()
time()
new_vm()
before()

vmmad.demo.fgcz.DemoOrchestrator

can_vm_be_stopped()
is_new_vm_needed()
is_cloud_candidate()

vmmad.webapp.OrchestratorWebApp

ready()
status()

��������	�
�����
��	�����	���	����	�
���

�

��������	�
�����	����	�
���

����������
������������������
��	������

��������	�
�����
��	��������	��

�
��

����
��	�
���
�������
�����	��� ��
��������� ����	��� ��

����������
������������������
��	������

��������	�
�����
��	���!��� ��	��

�
��������

����������
��	�
���

����������
������������������
��	������

��������	�
������"�
��#������	�
���


��������	��� ��
�
������	��� ��
�

����������
������������������
��	������

Fig. 2. Left: UML class diagram of the Orchestrator and its derived
classes. The root of the hierarchy is the vmmad.orchestrator.Orchestrator
class, which implements the main daemon loop and the core infrastruc-
ture for the VM-MAD functionality. Two derived classes are shown: the
vmmad.simul.OrchestratorSimulation class is used to simulate running the VM-MAD
software on historical accounting data; the vmmad.demo.fgcz.DemoOrchestrator
is a an actual implementation of the VM-MAD Orchestrator for use on the
FGCZ cluster. Note that vmmad.demo.fgcz.DemoOrchestrator derives from
vmmad.orchestrator.Orchestrator through vmmad.webapp.OrchestratorWebApp,
which implements a web interface for Orchestrator status reporting. Right: UML class
diagram of the cloud interface classes. The root class vmmad.provider.NodeProvider
defines the programming interface to which other classes must conform. Classes in the
vmmad.provider.libcloud package implement interfaces to different IaaS cloud stacks
using the Apache LibCloud library. The vmmad.provider.gc3pie.SmscgProvider
draws nodes from clusters participating in the SMSCG computational grid infrastruc-
ture; it is an example of how VM-MAD can be interfaced to non-cloud infrastructures.

vmmad.orchestrator.Orchestrator
vmmad.simul.OrchestratorSimulation
vmmad.demo.fgcz.DemoOrchestrator
vmmad.demo.fgcz.DemoOrchestrator
vmmad.orchestrator.Orchestrator
vmmad.webapp.OrchestratorWebApp
vmmad.provider.NodeProvider
vmmad.provider.libcloud
vmmad.provider.gc3pie.SmscgProvider
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1 def can_vm_be_stopped(self, vm):
2 TIMEOUT = 10*60 # 10 minutes
3 if vm.last_idle > TIMEOUT:
4 return True
5 else:
6 return False

4 Application and Testing

For testing we have chosen an area we have a lot of expertise in. Identifying
proteins in a biological sample with the help of large computer systems is a
common application in the life sciences which behaviour is well studied so that
we have enough experience with all parameters and configuration details, e.g.
memory consumption, input-output, and stability.

4.1 Test Case: Analyzing Mass Spectrometric Related Protein Data

The processing of mass spectrometry data can be challenging as it involves sev-
eral computationally demanding algorithmic steps. Examples are the peptide
spectrum assignment of mass spectrometry data to identify proteins in a bio-
logical sample, as well as the detection and identification of post-translational
modifications of proteins. Both tasks can be computed simultaneously and can
easily occupy hundreds of Central Processing Units (CPUs) for several days.

With every new mass spectrometer, the amount of measured data increases
and the local computing infrastructures would need to be extended accordingly.
However, these computing resources are only needed for a short period of time.
The computation demand varies widely with the actual measurement type and
the corresponding data set size. To be able to meet also larger use-cases, the
available local cluster would need to be very large and powerful, but then it
would be mostly under-utilized. Therefore such large use-cases are not feasible
as currently the capacity cannot be extended on demand.

Large-scale so-called “shotgun experiments” with complex samples from, e.g.,
human or fruit fly involve about ten thousand proteins. The peptide spectrum
matches for our test were computed with the SEQUEST and OMSSA search
algorithm [9,10]. To benchmark the VM-MAD Orchestrator, we have run the
search on both the local HPC cluster facility at the UZH, as well as on the
Amazon EC2 Cloud computing resources in the Amazon region US-East. To
avoid denial of service like failures on the cloud system, e.g., during file server
and authentication operations we started our virtual machines in a staggered
manner with a delay of 60 seconds. In order to avoid problems like hanging
processes, that might be caused by a high latency of the network connection
(e.g. for accessing a network filesystem), each of our compute jobs is responsible
for dealing with its own input and output data.
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Fig. 3. Overview of the benchmark. On the utilization graph each horizontal line in-
dicates the start and end of each job. The graph shows that the lines for the two jobs
runs on the cloud (green) have almost the same length (we cannot distinguish 2 green
branches) while the running times on the cluster nodes (red and blue) differ more sig-
nificantly (the two repetitions are clearly distinguishable). This can be explained by
the variable queue status of the cluster nodes because of other users using the cluster
at the same time. Also, it takes much longer to run through all jobs on the limited
FGCZ cluster (blue). The lines in the lower part of the graphic show the total number
of concurrently running jobs. The squares on those lines indicate the maxima on the
respective system.

4.2 Effectiveness: Benchmark of a Real World Data Set

As a test data set we used a large scale proteomics Drosophila (fruit fly) exper-
iment [4] consisting of 1800 (LC)-MS/MS runs, having a peptide mass window
of 3 Dalton, and 8474960 tandem mass spectra. We identified 498000 redundant
peptides, 72281 distinct peptides, and 9124 proteins using the peptide spectrum
match parameters as described in [4]. The data input volume is approximately
0.3TB split into 1800 jobs. The whole experiment data and the graphics are
included in the cloudUtil R-package [16]. In our benchmark we compare three
compute systems: the small cluster at the FGCZ consisting of around 100 CPUs,
a larger system as part of the Schroedinger cluster of the UZH, and a virtual clus-
ter on Amazon EC2. For benchmarking we recorded network bandwidth, CPU
performance (compute time) and robustness on all systems. An overview of the
experiment and a relative comparison of each compute job can be seen in the
utilization plot on Figure 3.

The box plots [5] in Figure 4 show a comparison of the run time and the
network throughput on three compute systems having two repetitions. One EC2
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Fig. 4. Comparison run time and copy input I/O – The box plots [5] display the job
run time distributions of the two repetitions of all three compute systems (left) and
the copy I/O network throughput (right).

Compute Unit (ECU) provides the equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor. The FGCZ cluster is based on Intel Xeon
CPU E5450 3.0GHz and the UZH cluster is based on Intel Xeon CPU 5500.

4.3 Simulation of LRMS Accounting Data

For demonstrating the effectiveness of the Orchestrator software and to study
the behavior of the Orchestrator policies for different hardware scenarios (i.e.
number of nodes) and different accounting data we have implemented a simula-
tion mode policy. If this policy is used the Orchestrator takes the batch-system
accounting information and the cloud configuration file as input. The accounting
file of the LRMS contains the ordered start time-stamps of every compute job
and its corresponding run time. The configuration parameters are the time step
argument (in seconds), the start time of the simulation, the maximum number
of available hosts. Instead of orchestrating real nodes the Orchestrator writes
all decisions about starting or stopping virtual machines to an output file. The
visualization in Figure 5 shows the simulated state of the LRMS queue and the
status of the VMs over time for different simulation runs. In particular, the plot
on the bottom of Figure 5 displays the output of the following command line:

simul.py −−time−interval 30 −−start−time ’2008−12−16␣02:13:50␣CET’ \
−−max−vms 512 −−cluster−size 100 −−csv−file accounting.csv

The simulation mode can also be used for determining the optimal number of
compute nodes for a given task; see. e.g., Figure 5.

5 Related Work

Cloudbursting, as a compute model where local resources elastically allocate
cloud instances for improving application throughput/response time, was first
proposed by Amazon’s Jeff Barr [7]. There is a variety of different mechanisms for
cloudbursting an on-premise computational cluster to an external cloud provider:
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Fig. 5. The graphics show the simulation of 10 days of FGCZ batch cluster accounting
data. The vertical axis showing the number of hosts/jobs is log10-scaled. The colored
lines have the following meaning: (red) pending jobs; (green) running jobs; (blue) avail-
able nodes to the cluster (100 plus VMs); (grey) idle VMs. The upper simulation run
corresponds to the FGCZ setup of 100 CPUs. For the simulation depicted in the lower
graphic we added on demand up to 40 and 1024 VMs. For the computation we have sub-
mitted the described proteomics data set. It can be seen that with increasing number
of VMs the overall compute time can be reduced to several days.

the most common derives from the HTCondor glide-in model [8] that is used
to add a machine running on an external provider to an existing HTCondor
pool. HTCondor glide-in configures a remote resource such that it reports to
and joins the local HTCondor pool. This is the technology used for example by
CycleComputing.com.

Inspired by this model, workload management systems that do support cloud-
bursting, like Sun/Oracle Grid Engine [19], Moab [13], or the HTCondor Cloud-
Scheduler [6], allow to start a pre-configured virtual instance, that can reside
on an external cloud provider, and let it join the pool of resources they control.
While VM-MAD takes an open approach in providing cloudbursting capabilities
that could be adapted to virtually any workload management system thanks to
its plug-in based approach, Grid Engine and Moab do provide a vendor-specific
solution based on policies and configurations that cannot be applied nor ported
to other similar systems.
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Another approach in supporting cloudbursting is provided by the Multi-
Cluster [12] solution from IBM’s Platform Computing. An existing on-premise
Load Sharing Facility (LSF)-controlled cluster could be extended by starting an
entire LSF cluster on a cloud provider and use Multi-Cluster to federate them
The main limitation of these approaches is the lack of an automatic system to
start and control an LSF cluster on a cloud provider.

In terms of cloudbursting out of applications, Software-as-a-Service solutions
make use of IaaS clouds to assure their workloads are scaled properly. An exam-
ple in the life science domain is the Galaxy CloudMan project [1,2]. Here the
Galaxy portal makes use of cloud resources to extend the support for selected
computational workflows. The CloudMan system, that is tightly coupled to the
Galaxy portal, provides a pre-selected set of tools and services as well as the
possibility of deploying own software tools and integrate them through a web
interface. While Galaxy targets the sequencing community, with ProteoCloud
[15], there exists also a cloud computing pipeline for proteomics applications
but it does not feature automatic cloudburst functionality.

In contrast to the these specialized frameworks, our approach is not limited to
life-science applications. Any community-specific portal that is already capable
of using on-premise computational clusters could seamlessly profit from clouds
by deploying the VM-MAD Orchestrator.

An example of cloudbursting from an on-premise cloud infrastructure to an
external provider is brought by the Seagull project [11]. Seagull dynamically
decides which running applications can be moved from the on-premise cloud
infrastructure to the configured external provider, using an Intelligent Place-
ment module based on a placement algorithm that picks those applications to
move that free up the most units of local resources relative to their cost of
running in the cloud using a pre-defined cost function. To reduce cloudburst-
ing latency (due to the copying of the disk image corresponding to the selected
running application), Seagull performs pre-copying by transferring an incremen-
tal snapshot of a virtual machine’s disk-state to the cloud. Seagull focuses on
cloud-to-cloud cloudbursting features, whereas VM-MAD allows to cloudburst a
batch-controlled computational cluster; Seagull takes autonomous decisions on
what running applications to migrate live; on the other hand, VM-MAD has a
simple policy module to determine whether to launch new appliances on the
connected cloud provider.

6 Conclusions and Future Work

In this work we have described the architecture, the implementation, and an ap-
plication use case of the Orchestrator cloudbursting software framework devel-
oped by the the VM-MAD project. The Orchestrator allows an existing compute
cluster to be extended, burst into the cloud based on a highly configurable set
of local policies. We have successfully extended local clusters with Amazon EC2
instances. In the future we also want to run Hadoop applications on the virtual
part of the cluster, enabling MapReduce applications for our local users. Also,
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connecting to non-public clouds, e.g., in-house OpenStack IaaS is possible, as
well as to extend to other batch cluster systems.

The Orchestrator is a modular framework that can be interfaced with any
batch-queuing system and IaaS cloud infrastructure. An interesting consequence
of this modularity is that the Orchestrator can also be run in simulation mode, to
allow testing cloudbursting policies against historical accounting data and eval-
uate the most cost-effective one. We will try to optimize the usage of historical
data in the future to suggest good predefined policies to system administrators.

As a test and benchmark, we have used the VM-MAD Orchestrator for re-
processing a large set of proteomics data; the performance data collected show
that commercial IaaS clouds can already deliver computational and network
performance comparable to what is offered by a small in-house cluster, and are
thus suitable for offloading peak computational workloads. We will also use the
same concept with other workloads, like computational chemistry and structural
biology, but also in the domains of geography and finance.
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Abstract. Many potential users hesitate to use HPC resources due to
sometimes complex procedures that are necessary to get access. Further-
more, HPC providers need up-to-date identity information to make cor-
rect access control decisions. Federated identity management addresses
both issues by enforcing access control based on the users’ familiar ac-
counts at their home organizations. SAML-based federations consisting
of home organizations and web-services are already established, but the
integration of non web-based services such as HPC resources is not trivial
due to the absence of a browser as a user client or missing trust between
web-portals and HPC resources. In this paper, we propose a concept that
enables non web-based services to join SAML-based federations. From
the service’s point-of-view, our approach is transparent and appears to
be a local LDAP directory. From the federations point-of-view, our ap-
proach can be integrated like an ordinary SAML service provider. Due
to this separation of concerns, integration effort is considerably reduced.
Furthermore, we will show how our approach can be extended to enable
federated access to semi-trusted web-portals.

1 Introduction

The demand of many scientific communities for grid, cluster or high performance
computing (HPC) resources in general is growing. However, many potential users
hesitate to use existing computing resources due to complex registration pro-
cesses to get access to the resources. Many HPC facilities require the users to
physically identify themselves at the facility to create a new user account with
additional credentials to be memorized. Furthermore, to access grid resources
the users often have to manage cryptographic certificates instead of being able
to use their “standard” accounts. From a different perspective, a major drawback
of current access management approaches is potentially stale identity informa-
tion at the HPC provider. For instance, consider an affiliate of a university that
created an account (or a certificate) to access HPC resources. If the affiliate loses
it’s affiliation it might also lose the right to access the HPC resources. However,
since the created service-local account (or the certificate) might be independent
of the home-organizational account at the university, the former affiliate is still
able to access the resources.

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 462–473, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The concept of federated identity management can be used to couple home-
organizational and service-local accounts and to enable users to access HPC
resources via their approved account at their (trusted) home organization. As the
authentication of users is performed by the identity provider component hosted
by the home organization, users can use their already established credentials in a
single sign-on (SSO) fashion. Furthermore, the authorization decision of the HPC
provider can be based on assertions issued by the home organization, allowing
for active checking whether the user still has the properties required to access
the service. For web-based services, federations based on the Security Assertion
Markup Language (SAML) standard [Hug2005] are already well established.
Integrating HPC resources with these existing federations would benefit both
the users in terms of usability and the service providers being relieved from the
overhead of managing identity data.

In this paper, we show how existing operational non web-based services can
be connected to established SAML federations. Our main focus lies on mini-
mizing the integration effort with existing service deployments and the usability
from a user’s perspective. We pursuit a separation of concerns approach: from
a service provider perspective our approach can be used like a common local
Lightweight Directory Access Protocol (LDAP) server, from the SAML federa-
tion’s perspective our approach cannot be distinguished from an ordinary SAML
service provider (see Figure 1). Thus, given that LDAP servers already are preva-
lent components for local user management [Li2011], integration effort is con-
siderably reduced. Furthermore, we introduce a concept to federate access to
semi-trusted web portals, i.e., web portals that must not get access to long-term
user credentials. Our approach neither requires the user to manage certificates
nor does it require a trusted proxy certificate store.

Our approach allows the following setup to manage user accounts and ac-
cess rights: The home organization manages the user’s home organizational ac-
count by maintaining the user’s identity data and setting authorization tokens
as appropriate. For instance, a university might only allow a subset of per-
sons to use HPC resources by setting an authorization token HPCflag to true.
The service provider manages a service-local account for each user that contains
service-local authorization tokens and service specific attributes such as the users
home-directory. For instance, some HPC facilities require users to describe their
intended use of the service and use this description to approve the user for certain
resources by setting the according authorization tokens. These service-local au-
thorization tokens are additionally utilized to the authorization tokens provided
by the user’s home organization to make an authorization decision. Thus, both
the account managed by the home organization and the service-local account
managed by the service provider have an impact on the authorization decision.

The contributions of this paper are:

– An concept to federate access to arbitrary operational services that
rely on a generic LDAP interface for user authentication and authorization.

– A concept to federate access to semi-trusted web portals that can
be used to access HPC resources.
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Fig. 1. Separation of concerns

– An evaluation of the proposed concept in terms of ease of integration and
usability.

The paper is structured as follows: First, we present related work in Section 2
and define our trust model(s) in Section 3. We introduce preliminary work in
Section 4, present our advanced contributions in Section 5 and show how web-
portals can be integrated in Section 6. Finally, the concepts are evaluated in
Section 7 and the paper is concluded in Section 8.

2 Related Work

Many previous proposals focused on integrating GridShib1 to federate access
to grid portals. GridShib enables user authorization based on attributes issued
by the home organization of the user [Bar2006] [Gri2007]. However, authentica-
tion on the grid itself is still based on certificates that have to be maintained.
GridShib is already used within TeraGrid [Bas2010] and the UK National Grid
Service [Spe2006] to federate access to grid web portals. Both approaches uti-
lize MyProxy[Nov2001] repositories to store and retrieve the users’ (proxy) cer-
tificates that are necessary to submit jobs to the grids on behalf of the user.
In contrast to our approach, users still have to go through (complex) certifi-
cate registration procedures and have to upload the certificate to the MyProxy
repository manually. In [Wan2009] [Mur2011] enhancements that automatically
generate and manage certificates after the user authenticated to the web portal
in a federated manner via SAML are proposed. However, a potential attacker
that compromises either a home organization or the central MyProxy repository
can get access to credentials that yield access to the grid. Our approach does not
need a central credential repository and only has to rely on the trustworthiness of
the users’ home organizations. Furthermore, contrasting to the introduced con-
tributions, we show how to federate access via web portals and console access
(e.g., via SSH).

Similar to our work, Project Moonshot2 also has the aim to federate access to
non web-based services. However, Project Moonshot focusses on integrating the
services in eduroam[Mil2008] federations. The use of SAML to retrieve attributes

1 http://gridshib.globus.org/
2 http://project-moonshot.org

http://gridshib.globus.org/
http://project-moonshot.org
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on users from the home organizations is optional and additionally requires an
established SAML federation besides the eduroam federation. Furthermore to
federate SSH services, both modified SSH clients and modified SSH servers are
needed. Project Moonshot aims at establishing those modified software compo-
nents as “standard” components of major operating systems. Until this hap-
pens, however, integrating the approach into operational services is hard. Our
approach only requires an established SAML federation. No modified SSH server
is necessary and modified SSH clients are optional.

We presented preliminary work to this paper in [Koe2012] under the name
FACIUS. While FACIUS also enables non web-based services to join SAML
federations, it was limited to services supporting the pluggable authentication
module interface. The concepts in this paper extend previous work by allowing to
federate arbitrary services based on an LDAP facade that can be used like a local
LDAP directory and by addressing the case of federating access to semi-trusted
web portals.

3 Trust Model

Traditional service clients (e.g., an SSH client) implement user authentication
against the service provider rather than the home organization. Thus, unmodified
clients inherently send the users password to the service provider which uses the
password, for instance, to authenticate the user against an LDAP server. User
passwords can be used to impersonate users, steal data or make unauthorized
use of ressources and are therefore highly sensitive. As service providers are not
entirely trusted in all scenarios, we differentiate between two trust models:

Home Org. 

      User             Password 

Assertions 

Service Provider 

Fig. 2. Utilization of the home-
organizational password in the full
trust model

Home Org. 

      User             

Service Provider 
(untrusted – may not  
view user passwords) 

Password 

Assertions 

Fig. 3. Utilization of the home-
organizational password in the lim-
ited trust model

– Full Trust: The service providers are trusted in the sense that they are
treated as if they are part of the home-organization. In particular, service
providers may view user passwords. Our approach leverages that and en-
ables the users to log on to a service provider via the password of the home
organizational account using traditional, unmodified service clients. A high
level overview of the password utilization in the full trust model is shown in
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Figure 2. The user client sends the users password to the service provider
in the same way it would in the unfederated case. The service provider then
uses the password to authenticate the user against the home organization
and retrieves Assertions that contain both authorization tokens and identity
information in return.

– Limited Trust: The service providers are untrusted in the sense that they
may not be able to observe user passwords (which would enable them to
impersonate users). However, they may still access the user’s identity infor-
mation and authorization tokens that are issued by the home-organization.
Should a limited trust model be assumed for a given scenario, unmodified
service clients can still be used if the user authenticates by other means than
the home organizational password (e.g., via challenge response public-key au-
thentication or a service provider specific password). To authenticate via the
home organizational password in the limited trust model, however, modified
service clients are necessary that pass the password to the home organization
instead of the service provider. A high level overview of the password utiliza-
tion in the full trust model is shown in Figure 3. The modified service client
passes the user’s password to the home organization and forwards the issued
Assertions to the service provider to allow for an authorization decision.

Thus, while our approach can also be applied in the limited trust model, it offers
a higher user convenience in the full trust model. A use-case for the full trust
model is the bwIDM project from which this work originated. In this project,
both the identity providers and the service providers, are hosted by regionally
connected universities of the state of Baden-Württemberg (Germany) that trust
each other in handling user credentials, but have distinct identity management
systems.

4 The FACIUS Approach

The FACIUS approach enables users to get federated access to non web-based
services. It focusses on SAML federations and therefore makes extensive use of
several SAML profiles [Hug2005] that constitute use-cases defined within the
SAML standard. SAML profiles are already implemented in conventional soft-
ware like Shibboleth3 or simpleSAMLphp4. The profiles FACIUS relies on are:

– WebSSO: A profile that allows users to get federated service access via their
web-browser that makes active use of HTTP-redirects.

– Enhanced Client or Proxy (ECP): A profile that can be implemented
to federate access via clients that do not offer the features of a web-browser.

– AssertionQuery: A profile to enable services to query the home organiza-
tion for assertions on users in an offline fashion, i.e., without user participa-
tion. In particular, this profile can be used to request up-to-date assertions to

3 http://shibboleth.net/
4 http://simplesamlphp.org/

http://shibboleth.net/
http://simplesamlphp.org/
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decide whether a user that authenticated via credentials not known the home
organization such as deployed SSH-publickeys still fulfills the conditions to
use the service or not.

FACIUS allows users to register for a local account at the service by authen-
ticating at a registration web-application and accepting policies of the service
provider such as acceptable-use-policies. The authentication is performed in a
federated manner via the WebSSO profile. The established local account con-
tains service specific information such as the UID or the home-directory of the
user.

The ECP profile is used to enable the users to log on in a federated manner
using non web-based service clients (e.g., an SSH client). The AssertionQuery
profile can be used by the service provider to retrieve up-to-date assertions for
users authenticating via credentials that are not known to the home organi-
zation (e.g., deployed SSH-publickeys) and for deprovisioning purposes, i.e., to
check whether a local account can be deleted because of a user not being au-
thorized to use the service anymore. FACIUS implements the main parts of the
ECP/AssertionQuery logic in a pluggable authentication module (PAM) that
constitutes a prevalent interface on UNIX systems. In this paper we will extend
the approach to be integratable with an even bigger variety of services that are
LDAP compatible and show how the logic can be implemented in an LDAP
facade, i.e., a component that provides an LDAP interface.

5 LDAP Facade

The LDAP facade we propose in this paper integrates the FACIUS logic including
the web registration application and offers a generic LDAP interface to services
that should be federated. The LDAP facade constitutes a single component
that needs to be installed at the service provider. It makes use of the local
accounts that have been previously established during the user registration at
the registration web-application. Services can use the LDAP interface like a
traditional LDAP server. The general login process with an unmodified service
client is depicted in Figure 4. To enable a secure login via the users’ home
organizational passwords in the limited trust model, a modified service client is
needed (cf. Figure 5).

Using an unmodified client (cf. Figure 4), the user enters her/his username
and password at the client (e.g., an SSH client) which passes the credentials to
the login node of the service provider (e.g., an SSH server) (1). The login node
then authenticates the user against the LDAP interface of the LDAP facade
in an ordinary fashion via LDAP bind (2). The LDAP facade uses the passed
credentials to authenticate against the identity provider component (IdP) of the
home organization of the user on behalf of the user and retrieves assertions on the
user via the SAML ECP profile (3). Based on these assertions, an authorization
decision can be made, the local account data of the user can be retrieved (4)
and the decision along with the account data can be passed to the login node
(5) which grants access to the user.
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Fig. 5. Login via home organizational
password in the limited trust model

While this process is considered secure in the full trust model, passing the user
credentials to the service provider violates the limited trust model. However, an
unmodified service client can still be used in the limited trust model if the user
is authenticated by the service provider rather than the home organization. This
can be done either by authenticating via challenge response (e.g., via a public
SSH-key that has been deployed during the registration) or via a password that
is service provider specific and set during the registration of the local account.
In case the user authenticates to the service provider, to retrieve recent user
attributes from the home organization, the AssertionQuery profile of SAML is
utilized in step 3 in Figure 4.

To enable users to use the passwords of their home organization account to
authenticate in the limited trust model, they have to use a modified client
(cf. Figure 5). A modified client can execute the ECP logic itself and retrieves
a SAML authentication request from the SAML-SP (1). The password is then
send to the home organization (2), which issues assertions that are passed to
the login node (e.g., an SSH server) together with the username (3). To enable
this without modifying the login node, the assertions can be wrapped into the
expected password if the login node supports long passwords. The login node
then performs an ordinary LDAP bind with the LDAP facade and passes the
username as well as the wrapped assertions (4). The LDAP facade authenticates
the user by passing the assertions to the SAML-SP that decrypts and verifies
them (5). Based on the contained attributes, the LDAP facade makes an au-
thorization decision, retrieves the local user account (6) and passes the decision
along with the account data to the login node (7).

6 Integration of Web-Portals

Federating access to web portals that act as a proxy between the user and
the HPC resources has to be further investigated, as in many cases the HPC
computing resources do not trust portals entirely. This can be due to the complex
and potentially error prone structure of the portal code or due to third parties
being able to integrate custom code into the portal. To limit the impact of
a compromised portal, as of now, short-lived credentials (e.g., self-signed, fast
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expiring certificates) are issued by users and passed to the portal. These short-
lived credentials assert that the user successfully authenticated her-/himself at
a specific point in time and can be used by the portal to access the computing
resources if this point in time is not past longer than a certain timespan. However,
using self-signed certificates as short lived credentials requires the user to manage
certificates or delegate this task to a trusted party (cf. MyProxy [Nov2001]).
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SAML-SP 

Assertion-
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Fig. 6. Login via web-portal

Instead of requiring the user to sign short-lived credentials, our approach
enables secure web-portal access by relying on SAML assertions that contain
a timestamp and that are signed by the IdP. Thus, assertions that assert a
successful authentication of the user at the IdP constitute short-lived credentials.
Therefore, HPC access via portals can be federated using SAML as depicted
in Figure 6: First, the user is authenticated via an ordinary SAML-WebSSO
login, i.e., when accessing the portal, the user is redirected to her/his IdP to
authenticate and is then redirected back to the SP carrying assertions issued by
the IdP asserting the successful authentication (1). After the Assertion-Extractor
extracted and decrypted the assertions from the SAML response of the IdP (2),
the decrypted assertions can be used as short-lived credential to authenticate to
the computing resources (3). This can be done without modifying the Login-Node
(e.g. an SSH server) by wrapping the assertions into the submitted password. To
verify the passed credentials, the Login-Node performs an LDAP bind against
the LDAP facade using the transmitted username and password (4). In turn,
the LDAP facade extracts the assertion from the password and passes it to the
Assertion-Validator (5) which checks if the assertion’s timestamp is up-to-date
and verifies the IdP’s signature. If the assertion could be successfully validated,
the LDAP facade retrieves the local state of the user (6), signals the Login-Node
that the user has been successfully authenticated and passes the local state (7).
Finally, the Login-Node grants access to the local account of the user that has
been extracted from the local state. The computing resources can itself use the
conveyed assertions to access other computing resources on behalf of the user.
Thus, even job-traveling can be realized (as long as the assertion is deemed
up-to-date).

Using this concept to federate semi-trusted web portals, only the patterned
components in Figure 6 need be implemented. It is not necessary to adapt ex-
isting SAML-IdPs or SAML-SPs that support the WebSSO SAML profile. Fur-
thermore, the Login-Node of the computing resources (e.g., the SSH server) does
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not have to be adapted if it supports authentication against an LDAP directory
and allows for long passwords.

7 Evaluation

Regarding deployability, our approach does not require any software adaption
on login nodes of the service provider that can authenticate users against a
common LDAP server. In some cases, a service local identity management system
such as an LDAP server that contains local accounts may already exist. There
are two ways to seamlessly integrate the LDAP facade:

– by migrating all contents of the existing LDAP directory into the underly-
ing database of the LDAP-Facade where the local user accounts are stored
(see Figure 7). In our current implementation this database is an LDAP
directory itself which facilitates migration. The LDAP facade is capable of
distinguishing whether an account is linked to a home organization account
or not.

– by linking the LDAP facade to the existing LDAP server via LDAP proxying
(see Figure 8). For instance, with OpenLDAP this is possible using the slapd-
meta backend5. Thus, users that do not exist in the existing LDAP directory
are automatically authenticated against the LDAP facade. For LDAP servers
that do not support this functionality, an OpenLDAP server can be set up
that acts as a proxy for both, the LDAP-Facade and the existing LDAP.

In both cases, offering federated access to resources is completely transparent for
the login nodes of the service provider and no additional software components
are required.
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Local 
Accounts 

Fig. 7. Integration of the LDAP facade via
account migration

LDAP 
Facade 

Existing 
LDAP 

Login Node 

Local 
Accounts 

Fig. 8. Integration of the LDAP facade via
LDAP proxying

From the federations point-of-view, the service provider can be integrated into
the federation in an ordinary fashion. Home organizations of the federation do
not have to adapt their identity provider components and only have to support
the WebSSO, ECP and AssertionQuery profiles as defined in the SAML stan-
dard. For instance, identity providers using the Shibboleth framework support
all three of them. From a user’s perspective, it is possible to use familiar, unmod-
ified service clients in most cases, as Table 1 illustrates. The only exception is the

5 http://linux.die.net/man/5/slapd-meta

http://linux.die.net/man/5/slapd-meta
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case of user logon via password of the home organization using non web-based
clients. If federation partners are not trustworthy enough to receive user pass-
words of the home organization (limited trust model), clients that traditionally
transmit credentials to the service provider rather than the home organization
have to be modified to enable a secure logon.

Table 1. Login scenarios supported by unmodified service clients

Full trust Limited trust

Login via home org. password (non web-client) � mod. client needed

Login via home org. password (web-portal) � �
Login via service spec. password. � �
Login via public-key challenge-response � �

To deploy our approach also for semi-trusted web-portals, the Assertion-
Extractor component needs to be deployed by the web-portal to extract the
authentication assertions from the result of the WebSSO login and use them to
authenticate to the service provider on behalf of the user. The service provider
itself, however, does not need to be adapted, as the necessary logic to validate
the passed assertions can be integrated into the LDAP facade.

We used the LDAP facade to federate access to the Large Store Data Facility
(bwLSDF)6, a file storage service for the universities of the state of Baden-
Württemberg. The requirement to also support users that are not members of a
university was satisfied by integrating the LDAP facade via LDAP proxying (see
Figure 8). Thus, besides supporting users that register via the web-application
in a federative manner, service-local user accounts that are not connected to
any home organization can also be created in an LDAP server by the bwLSDF
administrators. As the members of the bwIDM federation in which bwLSDF
participates as a service provider are trusted, neither the login node (an IBM
Scale Out Network Attached Storage7 in this case) nor the user clients needed
to be modified to federate access via the LDAP facade. Each university can
individually manage which users may access bwLSDF via authorization tokens
in the home- organizational user accounts. For instance, guest users are not
allowed to use the service. Fine grained authorization tokens can be issued by
bwLSDF in the service-local accounts to manage user groups and their access
rights.

Regarding provisioning of local accounts, our concepts allow services to
offer a registration process that is highly usable compared to some traditional
registration workflows for HPC resources. For instance, if a service provider
trusts the home organization of a user to have correctly identified the user, users
do not have to identify themselves locally to get a local account at the service.
Thus, all that is necessary to get a local account at a service from the perspective
of the user is to log on to the web-registration application (using their familiar

6 http://www.bw-grid.de/bwservices/bwlsdf/
7 http://www-03.ibm.com/systems/de/storage/network/sonas/

http://www.bw-grid.de/bwservices/bwlsdf/
http://www-03.ibm.com/systems/de/storage/network/sonas/
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home credentials). To deprovision stale accounts once they are no longer needed
due to users losing the access rights to the service, our approach enables service
providers to query the home organization for up-to-date assertions on the users’
attributes in regular intervals without user-interaction.

With regards to legal aspects, the web-registration application enables ser-
vice providers to request the user’s consent to certain policies before a local
account is created. Furthermore, with regards to privacy laws, it is possible for
the identity provider component of the home organization to request the user’s
consent before releasing user specific data to the service provider. For instance,
this can be accomplished by using plugins like uApprove8 for Shibboleth identity
providers.

In terms of maintenance effort, we relied upon existing frameworks such
as ApacheDS9, the OpenSAML library10, Shibboleth and simpleSAMLphp to
implement the LDAP facade. The complex SAML logic to build SAML requests
and validate SAML responses as well as the implementation of the LDAP proto-
col and the backend data store is not part of the custom code of our approach.
As the existing frameworks are already maintained independently, only our light
weighted custom code has to be monitored and maintained.

While we feel that usability is enhanced considerably with the omission of user
certificates, some features of (grid-)middleware in operation that rely on certifi-
cates cannot be used anymore. For instance, using the Globus framework11, job-
traveling between multiple sites and third-party copy, i.e., moving data between
sites directly, require a short lived certificate to enable a site to pass jobs/data
to another site on behalf of the user. However, to our knowledge, in small sized
HPC facilities these features might be rarely used, making our approach espe-
cially attractive for this type of HPC resources. Furthermore, job-traveling and
third-party copy can be supported by our approach similarly to web-portal ac-
cess by using the (short-lived) assertions of the home organizations as a token
that can be passed between multiple sites.

8 Conclusion

In this paper, we proposed a concept to seamlessly join non web-based services
that rely on intra-organizational LDAP servers into SAML federations. Further-
more, we showed how the concept can be extended to allow users to access these
services via semi-trusted web-portals. The concepts have been evaluated to be
highly integratable into existing service deployments and reach a high degree of
usability, as users do not need modified clients to access the service in most use-
cases. We are already using the concepts to federate access to storage resources
within the bwLSDF and bwIDM projects and plan to apply it on the Tier-3
HPC infrastructure of the state of Baden-Württemberg.

8 http://www.switch.ch/aai/support/tools/uApprove.html
9 http://directory.apache.org/apacheds/

10 http://www.opensaml.org/
11 http://www.globus.org/

http://www.switch.ch/aai/support/tools/uApprove.html
http://directory.apache.org/apacheds/
http://www.opensaml.org/
http://www.globus.org/
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