Chapter 8
Fundamental Concepts of Finite Element
Method (FEM)

8.1 Introduction

In the previous Chaps. 3-5 the governing continuum balance equations in form of
partial differential equations (PDE’s) have been derived for a wide range of flow,
mass and heat transport processes in porous and fractured media. Their solution
under given IC’s and BC’s, such as described in Chap. 6, requires appropriate
and efficient mathematical methods, which can be firstly grouped into analytical
and numerical methods. There is a family of powerful analytical methods (e.g.,
Fourier and Laplace transformation, complex variable techniques, Green’s func-
tions, perturbation methods, power series), which are capable of solving a certain
number of problems in an exact way. However, exact analytical solutions are often
only attainable for elementary linear (or quasi-linear) problems on simple (regular)
geometries. Very few analytical solutions exist for nonlinear problems with regions
of regular geometry, however, these are usually approximate solutions in terms
of an infinite series or some transcendental functions that can be evaluated only
approximately. If exact analytical solutions are available on idealized problems
they are often advantageous in comparison to numerical results for purposes of
verification and estimation of errors arising in the alternative numerical methods.
Problems involving irregular geometry, materials with variation in properties,
nonlinear relationships and/or complex BC’s are intractable by analytical methods
and numerical methods must be used in general. They allow the solution for a broad
range of problems. The key feature of any numerical method is in the approximate
solution of the basic PDE’s via spatial and temporal discretizations, in which the
solution variables, which are basically continuous functions of space and time, are
obtained by discrete values, defined at specific points in space and time (Fig. 8.1). In
doing this approximation, the governing PDE’s are replaced by a number (often, a
very large number) of linear (or linearized) algebraic equations, which can be easily
solved via computers. As a consequence of the numerical approximation, errors are
naturally inherent in the solution and the big challenge of numerical methods is
to minimize these numerical errors and find best accurate, convergent and stable
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Fig. 8.1 Example of 2D domain discretized by finite differences and finite elements

solutions by using efficient, general and robust strategies of approximation. It is
important to ensure that the approximation satisfies certain important properties of
the exact solution, e.g., conservativity, boundedness and consistency (see Sect. 1.2.2
for further discussion).

We can classify the numerical methods as follows:

¢ Finite difference method (FDM)

e Method of characteristics (MOC)
¢ Finite element method (FEM)

¢ Finite volume method (FVM)

* Boundary element method (BEM)
¢ Meshless method (MLM)

* Spectral element method (SEM)

These methods are closely related. The FDM is the classic numerical approach,
e.g., [168]. It is conceptually straightforward and had a high popularity in past.
FDM approximates the differential form of the basic PDE in a difference form
and is usually restricted to simple (rectangular) geometries and BC’s. The specific
advantage of FDM lies in the use of regular grids on which the approximation can
be most efficiently performed. The development of finite-difference approximations
is commonly done by either Taylor series expansion or curve-fitting technique.

The MOC as a traditional solution method [165,184] is only applicable to PDE of
hyperbolic type, i.e., for advection-dominated transport processes. It is based on the
concept of trajectories (or characteristics) on which a large number mathematical
particles are tracked. While mainly 1D and partly 2D unsteady flow processes
could be successfully modeled, the method is rather cumbersome when extended
to multidimensional problems, dealing with complex BC’s and nonlinearities.

The basic ideas underlying the FEM have a long history. Ritz [445] and
Galerkin [181] presented variational integral formulations of a PDE and
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approximate solutions based on their minimization. Pioneering work of FEM in
the modern form that we know today dates back to the early 1940s given by
Hrenikoff [264] and Courant [104]. First applications were done for aero structures
in the late 1950s [525]. Clough [88] coined the term finite element method at that
time. The power of FEM was quickly recognized and the first textbook on FEM
appeared in the mid-1960s by Zienkiewicz and Cheung [589], which boosted the
development of FEM in many fields of sciences and engineering lasting up to now.
First applications of FEM for porous-media problems were given by Zienkiewicz
and Cheung [589], Pinder and Gray [421] and Huyakorn and Pinder [280]. Since
then, the FEM has become one of the basic tools for numerical analysis in structural
mechanics, fluid dynamics, heat transfer and numerical mathematics (for literature
review see Sect. 1.3 with Table 1.3).

Today, the FEM represents a collection of theory-rich techniques and is based
on the weak (or variational) formulation of the governing initial-boundary-value
problem. This theoretical foundation on weak formulation is quite distinct from
FDM. The weak formulation is an integral approach, which is a natural and
an adequate approach of a continuum balance statement. FEM subdivides the
continuum in a finite number of elements, for which the balance statements are
discretely applied. The resultant algorithm of the FEM can be universally expressed
as a matrix statement with all formation processes on a generic master element. The
generic master element statement is then assembled into a global matrix statement.
BC’s can be brought directly into the generic master element providing accurate
expressions of surface integrals for the PDE global domain boundary on which
any flux-type BC is applicable. The FEM is essentially geometry-free. In principle,
FEM can be applied to domains of arbitrary shape and with quite arbitrary BC’s.
FEM by its nature leads to unstructured meshes (Fig.8.1). Most complex types
of geometries can be simply handled. These features make the FEM a general,
systematic, very powerful and highly flexible numerical method, which is superior
to the other numerical methods.

There is a wide variety of methods called finite volume methods (FVM’s), e.g.,
[83, 162]. Sometimes they are termed as control volume methods or previously,
integrated FDM. FVM is usually also based on weak formulations of the basic
problem similar to FEM, however, the approximation of the balance terms relies
on evaluation of surface integrals, where boundary fluxes are developed via finite
differences. In this process, the conservation is enforced across the surfaces of
the adjoining control volume. It allows the construction of cost-effective schemes
for both structured and unstructured grids. It has been demonstrated [209] that the
FVM is inherently a FEM if using low-order elements (basically linear). It can be
shown [83, 165] that FVM can be formulated from either FDM or FEM. Identical
discrete schemes result for FVM and FEM [284] if using low-order approximations
and equivalent meshing via control volumes and elements, respectively. However,
serious problems with FVM can arise when cross-derivatives (such as anisotropic
problems, e.g., associated with the hydrodynamic dispersion tensor Dy, (3.184))
appear in the governing PDE. Commonly, diffusive/conductive gradient terms are
approximated in FVM by using a two-point flux approximation (TPFA) scheme
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applied to two adjacent cell values. But, TPFA is insufficient to express diffusive
fluxes, where off-diagonal values in an anisotropic diffusion/conduction tensor
exist (cf. Chap.7). To circumvent this drawback multi-point flux approximation
(MPFA) can be used [412], which, however, requires a nonlinear evaluation making
FVM rather cumbersome and potentially less accurate. Moreover, higher-order
approximations and complex geometries on arbitrarily unstructured meshing can
lead to further difficulties in FVM.

The BEM is based on boundary integral equations in which only the boundaries
of a domain are used to obtain approximate solutions, e.g., [54,350]. It reduces the
solution of the problem to one dimension less than the original problem (e.g., a 3D
problem is solved by a 2D approximation), however, the resulting matrix systems are
full, whereas the other numerical methods generally result in sparse matrices. The
most serious aspect with BEM is that a fundamental solution (free space Green’s
function) of the PDE must be available, which commonly requires linear equations
with constant coefficients (i.e., homogeneous materials). Thus, the application of
BEM is limited to special problems.

For all numerical methods mentioned so far mesh configurations are required
consisting of elements, cells or control volumes formed by connecting nodal
points in a predefined manner. Unlikely, various methods have been developed
which depend on finite number of points rather than meshes. They are called
meshless methods (MLM’s), finite point methods (FPM’s) or element free Galerkin
(EFG) methods, e.g., [44,352]. Although most of the meshless methods have high
computational cost as compared to FEM, they provide advantages for a certain class
of problems such as moving boundaries, phase transformation, crack propagation
and large deformation in solids as well as modeling of multiscale phenomena. The
major advantage of MLM is the elimination of the need for mesh generation, which
can be itself a difficult task. However, MLM’s are not (yet) sophisticated enough
for application in a general context. They often require background cells to improve
numerical stability and accuracy so that in current practice, MLM’s have shown not
to be truly mesh-free.

The idea of MLM’s has been adopted and modified in the so-called eXtended
FEM (XFEM), e.g., [172]. It tries to combine the advantages of FEM and MLM,
while alleviating existing drawbacks of MLM. In the XFEM singularities, material
discontinuities, high gradients and other non-smooth properties can be described by
an extended set of discontinuous basis functions without the need of local remeshing
or alignment of the discontinuity (e.g., fractures) to edges or faces of a finite element
mesh as usually necessary in standard FEM. However, XFEM is commonly prone
to ill-conditioning of the resulting matrix systems, often in a drastic extent, so that
standard solution techniques (e.g., preconditioned iterative solvers) are most likely
to fail. It is an active field of research to improve the XFEM (e.g., using stable
XFEM [17]) for finding more tractable approaches in practical applications.

The SEM represents a combination of the classic spectral method and FEM, e.g.,
[151,196,334]. It can generate solutions of very high accuracy with relatively few
terms in the approximate solution, provided that the exact solution is sufficiently
smooth (but possibly steep). In contrast to the standard FEM, the unknown
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coefficients in the approximate solution must not be identified with nodal unknowns.
Instead, in SEM formulations the approximate functions are built by Fourier series,
Legendre polynomials or Chebyshev polynomials. The main advantage of SEM
relies on the exponential convergence property as soon as smooth solutions are
involved. For instance, doubling the mesh resolution reduces the numerical error
by two orders of magnitude, not by a mere factor of 4 as in standard numerical
methods (FEM, FDM, FVM) with second-order algebraic convergence. But, the
main drawback of SEM is its inability to handle complex geometries and material
discontinuities (even though effort is current to overcome these difficulties, e.g.,
[413]). It significantly limits the applicability of SEM. Furthermore, SEM has shown
insufficently effective for solving linear problems [83].

8.2 Basic Model Equations and Prototypical PDE’s

The basic continuum equations of the variable-density flow, mass and heat transport
in porous and fractured media have been developed and fully expressed in Chaps. 3
and 4. They have been summarized in Table 3.7 for general variably saturated porous
media, in Table 3.9 for fully saturated porous media (groundwater), in Table 3.10
for 2D unconfined aquifers and in Table 3.11 for 2D confined aquifers. Additionally,
Tables 4.5—-4.7 list the equations for variable-density flow, mass and heat transport of
discrete features. A typical set of these coupled governing PDE’s can be expressed
in the following compact form:

e 9)
ot

n.a_pa.(q.qu)—V-fd—b—}—d:O convective form  (8.1)

+ V- (f- fd) -b =0 divergence form
L(¢) =
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where L£(¢) denotes the PDE system written in terms of the state variable ¢ =
o(x,1). It is expressed on the (physical) domain 2, with the bounding closure
I', lying on D—dimensional Euclidean space :%i”, and for time ¢ starting at, and
proceeding from some initial time #. For the solution, appropriate BC’s are required
on the entirety of I" and IC’s on §2 U I" are necessary as described in Chap. 6. In
(8.1) the following vector and matrix definitions are used:
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n= "s S, + g%, esMg, espc + (1— s)p“ch ,

c=1T1, esNg, espc+ (1—¢e)p’c’| (8.2)

where f* and f¢ are the advective and dispersive (diffusive) flux tensors, respec-
tively, which are expressed in terms of functions derived from the state variable ¢.
Note that in (8.2) [...| symbolizes diagonal matrices, cf. (2.22).

The coupled system of PDE’s (8.1) has to be solved for ¢ via FEM. Due to
its nonlinearity and complexity specific treatments are necessary in dependence
on the underlying problem class, e.g., variable-density flow, unsaturated porous
media, chemical reaction systems, fracture modeling, heat exchange. It is useful to
discuss the FEM solutions for each problem class in a separate manner. However, for
introducing the FEM and explaining the principal solution steps it is convenient to
start with a simpler PDE written for a scalar state variable ¢, which is representative
for all of the flow and transport processes under consideration. An appropriate
prototypical PDE is the following advection (convection)-dispersion equation
(ADE), incorporating effects of advection, dispersion (diffusion), retardation and
decay (as illustrated in Fig. 8.2), written in its divergence form as

3 R¢ \v4 V —+ (Z) —H — Q¢ =0

in 2CR?, >4

L(g) =

to be solved for ¢ subject to a set of BC’s of Dirichlet, Neumann and Cauchy type
as well as well-type SPC (see Chap. 6), which typically are

¢ =dp on I'p X t[ty, 00)
(qbq—D-VqS)-n:qj\, on [y Xt[ty,c0)
(¢q—D-V¢)-n=—-D(pc — ) on [ xt[ty,00)

Q¢w = - Zw ¢wa(t)5(w - ww) on x, € 2 % l[to, OO)
(8.4)
and written in its convective form as
;0
L@) =R 4 q-Vp—V-(D-Vg)+ (@ + 0)p— H — Qg = 0
ot (3.5)

in 2cR?, t>1

subject to the Dirichlet, Neumann and Cauchy BC’s as well as well-type SPC as

¢ =¢ép on [I'p xt[ty, 00)
—(D-V¢)-n=qn on Iy Xtty,00)
—(D-V9¢) - n=—-®(pc —¢) on [I¢ xtt,00)

Q¢w = - Zw(d)w - ¢)(mw)) Qw(t)g(w - wW) on x, € £2 % l[lo, OO)
(8.6)
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Fig. 8.2 Effects of advection, dispersion, retardation and decay on a scalar transport quantity
¢: Advection simply translates the quantity by the advective velocity g, dispersion spreads the
quantity both downstream and upstream and smoothes the fronts, retardation delays the advective
transport and reduces effects of dispersion, and decay accounts for disappearance of an amount of
the quantity

where the boundary I' = I'p U I'y U I'¢ is composed of the three segments, [ p,
I'y and I'c, which do not overlap each other: I'p N I'y N I'c = @. Usually,
I'p # @ is required for steady-state problems (d¢/dt = 0), unless [¢ # @.
It is assumed that each of the boundary segments can be further subdivided into
different portions of the same BC type, e.g., 'y = Iy, U I'y, U ..., however,
which must not be necessarily connected (Fig. 8.3). The scalar state variable ¢ can
stand for the hydraulic head & (or pressure head ), for a species concentration
Cy or the temperature 7 in accordance with the corresponding problem class to
be solved. In the above Egs. (8.3)-(8.6), n is the positive outward-directed unit
normal to I', q is the (at first assuming known) advective flux, R and R are storage
(retardation) coefficients, which are prototypical for the coefficients appearing in
(8.2) (note that for an ADE applied to a porous medium they include porosity and
saturation), D is a dispersion (diffusion/conduction) tensor, ¥ is a (linear) decay
parameter, H is a general source/sink term, Q is a flow supply term (without well-
type SPC), Qg is the singular well sink/source function with given well pumping
rate Q,,(¢) and known ¢,, at well w of location x,,, ¢p is the prescribed value of ¢
on the Dirichlet boundary segment I'p, q}Lv and gy are the prescribed fluxes on the
Neumann boundary segment I'y for the divergence and the convective form of the
ADE, respectively, and ¢¢ is a known value of ¢ on the Cauchy boundary segment
I'c associated with the transfer coefficients @' and @ related to the divergence and
convective form of the governing ADE, respectively. Note that quv and gy as well as
¢c associated with @1 or @ have different meaning in the divergence form (8.3) and
the convective form (8.6) since in the divergence form the boundary flux consists of
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Fig. 8.3 Domain 2 C R* and boundary sections of Dirichlet type I', C I', Neumann type
I'y C I' and Cauchy type I'c C I' as well as SPC’s Q,, for wells at ,, € §2

the total (advective plus dispersive) flux while in the convective form the boundary
flux implies only a dispersive flux. However, as has been shown in Sect. 6.3.2 the
Neumann-type BC of the divergence form is equivalent to the Cauchy-type BC of
(8.6) if using for the convective form, cf. (6.21) and (6.28),

—(D-V¢)-n=gq-n(pc —¢) on I¢ xt[ty,o0) (8.7)

Finally, the statement of the PDE problem (8.3) or (8.5) has to be completed by
specifying an IC in the form:

¢(z.10) = o(x) in 2 (8.8)

where ¢ is a given function of ¢ at position z and initial time #, with 2 = Q U I".

8.3 Mathematical Classification of PDE’s

The governing partial differential equations (PDE’s), such as summarized in
Sect. 8.2, can be mathematically classified into three categories: (1) elliptic,
(2) parabolic and (3) hyperbolic. Most of the equations are 2nd-order PDE’s.
To classify the PDE’s several procedures are available, where most common is the
discriminant evaluation [486]: Let us consider the PDE of the form in a 2D domain
xl = (x y) e W?

2
a_¢+Da_¢+Ea_¢+F¢+G:0 (3.9)
dy? dx dy

P¢ P¢

E(qb):AW—i-Bm—f-C

where the coefficients A, B, C, D, E, F and G are constants or may be functions
of both independent and/or dependent variables. Then, the three categories of PDE
can be distinguished according to:
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elliptic PDE: B2 —44C <0,
parabolic PDE: B? —4AC =0, (8.10)
hyperbolic PDE: B> —4AC > 0

It is apparent that the classification depends only on the highest-order derivatives in
each independent variable. We note that the coefficients A to G of (8.9) can also
vary as functions of x, y, ¢, d¢/dx or d¢/dy and (8.10) can still be used if A, B
and C are given a local interpretation. This implies that an equation can belong to
one classification in one part of the domain and another classification in another part
of the domain. Typical examples of PDE classifications are given as follows:

(a) Elliptic equation

2 2
Ka(ZS Ka—¢—0 (Ky >0, K,>0)
a2 Ty (8.11)
A=-K,, B=0,C =-K, '
B —4AC = —-4K,K, <0
(b) Parabolic equation
ad ad 02
¢+ ¢ Kx—¢=0 (v>0, K, >0)
ot dx dx2 (8.12)
A=—-K,, B=0,C=0 ‘
B> —4AC =0
(c) Hyperbolic equation
dp 9
m + v a =0 (v>0)
differentiating with respect to x and ¢:
2 02 9? 9?
a;+%%=a a?+a;=0
tox X t tox (8.13)
and combining:
0%¢ ,0%¢

=0
Ve
A=1B=0 C=
B2_4AC =42 >0

To generalize the PDE classification to more variables, a common way is to classify
the PDE’s via the 2nd-order differential operator defined as

D(p) =V-(D-Vo) (8.14)
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where D is a symmetric, positive-definite tensor. Then, the three categories of PDE
in the D—dimensional space "o (D = 1,2, 3) are distinguished as follows:

elliptic PDE: —D(¢p)—Fp+ G =0,
. ¢
parabolic PDE: aa +v-Vop—D(¢p)— Fp +G =0, (8.15)
ad
hyperbolic PDE: aa—f +v-Vop+Fp—-G =0

where a, F and G are coefficients and v represents a flux vector.

The classification of PDE’s can be associated with the smoothness of the
solution ¢. Elliptic PDE’s produce solutions that are smooth (up to the smoothness
of coefficients) even if BC’s are not smooth. On the other hand, parabolic PDE’s
will cause the smoothness of solutions to increase with growing time and reducing
influences by first-order derivatives, while hyperbolic PDE’s preserve lack of
smoothness.

8.4 Methods of Approximation

8.4.1 Approximate Solution

The sought approximation of the basic PDE’s (8.3) and (8.5) with their BC’s (8.4)
and (8.6), respectively, starts with expressing a suitable approximate functional form
for the solution ¢. The usual form is

¢(@,1) ~ p(@,1) = Y N;(@) (1) (8.16)
J

where ¢A> is the approximate solution, N; represent a set of given basis functions (or
trial or interpolation functions) and ¢ ; are a set of unknown coefficients (at the nodes
of interpolation) to be determined. In the functional expression (8.16) the spatial
and temporal variables are separated. This variable separation procedure is termed
as Kantorovich (semidiscrete) method [149, 300, 377] and allows the discretization
first in space followed by a time marching procedure for the temporal discretization,
which is the usual practice in numerical analysis leading to efficient computational
schemes, although alternative of (8.16) exists.'

A continuous space-time approximation can be expressed in the form

p(@.1) ~ d(w.1) = Y Nj(x.1)¢;
J
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Fig. 8.4 Approximating ¢?(x) (dashed line) of state function ¢ (solid line) creating an error e =
¢ — qAS (shaded area)

It is to be noted that the sought approximate solution ¢3 is a function distributed
over the entire domain £2 of L(¢) and its boundary I'; hence, it is a global
function. Examples of the corresponding basis functions include polynomials (e.g.,
Lagrangian, Hermite or Chebyshev polynomials) or trigonometric functions (e.g.,
Fourier series). Approximating the solution to (8.3)—(8.6) with the series expression
(8.16), an error will generally occur defined as the difference between the exact
solution ¢ and the approximate solution ¢3:

A~

e=¢—¢ (8.17)

The situation is sketched in Fig. 8.4, where the exact solution ¢ shown as solid line
is approximated by a piecewise continuous linear interpolation qAﬁ between selected
locations at nodes j = 1,2, ... depicted as dashed line. The difference between ¢
and ¢3 represents the error e of the solution illustrated by the shaded area in Fig. 8.4.
It indicates that the error is in general a function of space (and time). The error can
also be measured only at the discrete locations of nodes j = 1,2,..., providing a
vector e of pointwise errors:

e=ej=¢;—¢; (j=12..) (8.18)

The goal is now to make the error e as small as possible, and hence minimize the
difference between ¢ and q3 Since the exact solution ¢ is generally unknown and
e is variable in space and time, the minimization of the error e requires a general
approach to be described in the following.

where the basis functions @, t have to be prescribed both in space « and time ¢. It requires a finite
element in space-time and increases the computational dimension, e.g., a transient 3D problem
needs a 4D trial space.
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8.4.2 Definition of Errors and Related Functional Spaces

Defining in the D—dimensional Euclidean 9%? space with

3"“6(:6) 9% 0% 0%
¢ axy x5’ ... 0xp (8x‘f‘ ) (axgz ) (8x3’ )e(m) (8.19)

the generalized partial derivatives up to and including of the 2mth order appearing
in the governing PDE’s (m = 0, 1,...), where s is a multi-index s = (s, 52,...)
with |s| = ZiD=1 s; and s; = 0, 1,.. ., the following error norms are meaningful in
the further analysis.

8.4.2.1 Sobolev Space W " (£2) Norm Error

The Sobolev space norm error is defined as

m

1
||e||er’n(_Q) = %/Qli|e|p + Z|Dse|17]d_{2} ? (8.20)

s=1

where m denotes the highest order of the derivatives of the 2mth governing PDE
and p represents the power to which the derivatives are raised. Note that for a
2nd order PDE m = 1. The Sobolev space W' (£2) is defined as the functional
space which includes all p integrable functions (1 < p < 4-o00) with p integrable
derivatives of mth order. Hence, W (£2) is a collection of functions on §2 which
are endowed with the associated norm (8.20), where any function ¢ € W)’ (2)ism
times differentiable and pth-order integrable on 2.

8.4.2.2 Hilbert Space H" (£2) Norm Error

The Hilbert space H™(§2) corresponds to the Sobolev space W) (£2) with p equal
to 2,i.e., H"(§2) = W;"(£2). Thus,

1

" 3
lellzn@) = llellwy @) = {/ [e2 + Z(Dfe)z]dﬂ} (8.21)
s s=1

As seen the Hilbert space H™(S2) is a functional space with square integrable
functions and square integrable derivatives of mth order. Any function ¢ € H™(£2)
is m times differentiable and square integrable on 2.
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8.4.2.3 Energy Norm Error

The energy norm error ||e|| g is a special case of the Hilbert space norm H™(£2) in
the 2mthe PDE. For a 2nd-order PDE (m = 1) it reads

et = el = lelle, = | [ [+ (50) + () + - Ja}”

(8.22)

—_

The Hilbert space H!(£2) is a functional space with square integrable functions
and square integrable derivatives of 1st order. Any function ¢ € H'(£2) is once
differentiable and square integrable on £2. A (smaller) Hilbert subspace H, (§2) can
be defined for functions ¢ which are zero on the boundary I of the domain 2 at
the same time, i.e., ¢|r = 0. Then, the Hilbert subspace HO1 (£2) reads

Hy(2)={¢pc H'(2): ¢ =0 on I'} (8.23)

so that any function ¢ € H (£2) is once differentiable, square integrable on §2 and
zeroon .

8.4.24 L ,(£2)—Norm (Banach Space Norm) Error

The Banach space L ,(§2) is defined as the complete normed linear space such that

1
P
lellz, ) = ( /Q MW) (8.24)

Using p = 2 we obtain the L,(£2) space, which is equivalent to the Hilbert space
H°(2) with m = 0:

1
2
leliaca = leluna = el = ( [ 242 (325)

The L,(£2) space is a functional space with square integrable functions so that any
function ¢ € L,(£2) must be square integrable on §2. The L, norm is one of the
most widely used error norm. Another useful error norm is the maximum error norm
Loo(82) given for p = oo:

lell L) = mj«iﬂlxleﬂ (8.26)

where ¢; is the discrete error at location j. More seldom used in practice is the
L1($2) error norm:

lellz, i) = / le] d©2 827)
2
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8.4.2.5 Root Mean Square (RMS) and Other Pointwise Error Norms

The RMS error norm represents a pointwise L,(§2) space norm, which can be
expressed in different forms. Most useful is the normalized RMS error norm
defined as

11 & 2
lellrms = [Fp (¢A>2_ Z e?):| (8.28)

max j=l

where Np is the number of components of the error vector e and ¢3max is the
maximum value of the approximate solution q§ to normalize the e; components.

If focusing on the maximum error occurring in the approximate discrete solution,
the normalized maximum error norm can be useful and is defined as

1
lell oo = = max|e;| (8.29)
max

It yields the strongest error measure and should be preferred if the local error is
important in the numerical approximation (‘scheme listens to each sound’).

As an alternative to the L, RMS norm, the normalized L; error norm can be
applied:

X
lelle = w—— > lejl (8.30)

P @max j=1

However, it should not be the first choice and the RMS norm is commonly more
appropriate.

8.4.3 Method of Weighted Residuals (MWR)

There are two fundamental theories of constructing approximate solutions to the
governing PDE’s:

1. The classic Rayleigh-Ritz method [377,590], which is based on finding solutions
via an equivalent variational problem. By extremization of the related varia-
tional functional (condition of stationarity) useful approximate solutions can be
obtained. However, natural variational functionals only exist for self-adjoint*

%Let £ be a differential operator of a PDE defined in £2 and let ¢ and ¥ be two functions in the field
of definition of £. The operator £ is said to be self-adjoint if identical to its own adjoint operator
L*, ie., L = L*, which must result from the integral statement
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differential operator £ of the governing PDF. A self-adjoint PDE is given for a
symmetric equation (containing no advective terms). However, ADE in the form
of (8.3) or (8.5) possesses an unsymmetric non-self-adjoint differential operator
for which a natural variational functionals cannot be found.?

2. The method of weighted residuals (MWR) [163] provides the most generality in
applications and will be preferred usually. It can be applied to all type of PDE
and systems of PDE’s, even to those which cannot be cast in variational form.
The following finite element approach will be exclusively based on MWR.

It is obvious that the approximate solution qAﬁ of (8.16) is not likely to satisfy exactly
the governing PDE

L(p)=0 (8.31)

in form of (8.3) or (8.5). Substituting $ in (8.31) yields a PDE for the error ¢ =
¢ — ¢, (8.17), written as

L(e) = L(p) — L(P) = —L($) #0 (8.32)

or

L@)=R, R=—-L(e)#0 (8.33)

where R = R(x,t) is the residual, which is a measure of the induced error arising
from the used approximation. It is commonly impossible and not reasonable to try
to force R to be zero everywhere in £2 and on I" (it would meet the exact solution).

/ L(P)pdS2 = / ¢ L (¥)d 2 + boundary integral terms
2 2

3For instance, the non-self-adjoint ADE in form of (8.5) can be transformed to a self-adjoint
problem by introducing the new operator [129,132,218,427]

L=¢L
where the function ¢ = ¢(«) is chosen by
o =ep(). p=—1o
assuming a dispersion tensor D with D; = 0 for i # j. It yields the following variational

functional

3¢ 19+Q

7= [ [199- 09 +(R3 )o] exwprae— [ (D-Vgrnp exp(prir
to be extremized. However, its application is clearly restricted because values of exp(f) can
become very large (small) for advection-dominated processes and the variational functional terms
overflow (underflow) in practical computations [129,485].



254 8 Fundamental Concepts of Finite Element Method (FEM)

Instead, the pragmatic approach is to require the residual R to vanish in an overall
integrated sense. The corresponding mathematical statement is that R must be
orthogonal® to an arbitrary weighting (or test) function w(zx, 1), i.e.,

/ w(x,t) Rd§2 =0, forall w(x,t) (8.34)
o)

The expression (8.34) is the core of MWR [163], which minimizes the residual
R as a weighted average over the domain £2. This form is quite general and
the arbitrariness in w(x, t) provides theoretical generality for various numerical
approaches. For specifying appropriate weighting functions w(z, ¢) it is assumed
that its interpolation, using any suitable polynomial basis, can be made sufficiently
precise:

w(x. 1) ~ W@, 1) =Y wi(@) W) (8.35)

1

where w; () is the set of interpolation polynomials and W; (¢) is the corresponding
set of known coefficients at the nodes of interpolation. The coefficients W;(¢),

4We know from (2.26) when two vectors in space are at right angles, their dot product is zero and
the vectors are orthogonal. While vectors have only a limited number of entries, any real-valued
function f(x) is characterized by infinite number of points within its domain of definition £2. It
is obvious to consider two functions f(x) and g(zx) to be orthogonal, if the product f(x)g(x)
‘summed’ over all « within the domain §2 results zero. Since the amount of & covers infinite real
numbers, the product f(2)g(x) has to be integrated. Hence, the analogy for the dot product is the
inner product given by

(fig) = /Q f@)g@)d®

Then, the two functions are orthogonal if (f, g) = 0. It is evident that functions if defined in the
L,(82) space, cf. (8.25), e.g.,

1 1
2 2
171 = ([ r@rae)’ <oo. el = ([ s@rae)’ <o
2 2
can be treated if they were vectors, where the Schwarz’s inequality holds

(8 = /gl

or

(£ 9> < (f. )58

The L,(£2)—norm corresponds to a measure of the size of a function, which is in direct analogy
with the vector norm (2.11). The Schwarz’s inequality ensures that the expression

(f.8)
A1l

yields well-defined angles 6 in space similar to the scalar product of vectors (2.24).

cosf =
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Table 8.1 Suitable choices of weighting functions w; (), (i = 1,2,..., NEgq) and their resulting
numerical methods

w; (x) WS (8.36)* Method Remark
8(x — x;) [0 8(x — @) L($)d2 =0 Point collocation FDM

1 for =; € 2° ~ _ . .

0 for z; ¢ 92¢ Jo L(@)d2 =0 Subdomain collocation FVM
N; Jo Ni(@)L($)d2 =0 Galerkin GFEM

(Bubnov-Galerkin) (standard FEM)

N; + F(x) Jo(Ni(@) + Fi(x))L($)d 2 = 0 Petrov-Galerkin PGFEM (upwind)
OR /d¢; Jo L(Ni(@)) L($)d2 =0 Least square Galerkin LSGFEM (PGLS)

CL@) = R= () N @)

however, quantify the specific weighting function w. To remove this dependence on
a specific w, the weak statement (8.35) is extremized with respect to the parametric
set W;(¢). Thus, the following weak statement (WS) for minimizing the residual
error R = ﬁ(qg) in any selected approximate solution qg (8.16) results

[ R
WS = a—me(m,t),c@)drz =0

Np (8.36)
— [ w@L(Y N @;0)d2 =0 for (1 <1 = Neo)
0 N
j=1
where (i = 1,2,..., Ngg) is chosen to produce exactly the correct number of

equations required to determine the Ngq unknown coefficients ¢; (¢) at any time ¢.
We note that

Nrg = Np Npor (8.37)

where Np is the number of chosen nodes and Npor is the number of degrees of
freedom. For example, Npor = 1 for scalar equations of ¢ in the form of (8.3)
or (8.5) and Npop = N + 2 for the vectorial variable ¢ = (h C, T)T (k =
1,2,...,N) appearing in (8.2). Having the weak statement expressed in the form
of (8.36) it remains to identify the two sets of known functions w; (x) and N, (x)
spanning the domain £2 C R?. Usually, both the basis function set N; () and the
weighting function set w; (x) are defined as interpolation polynomials, with a typical
selection as Lagrange polynomials. Depending on the choice of the weighting
functions w; (x) various alternative (and familiar) methods can be generated. The
most important methods are summarized in Table 8.1.

Viewing Table 8.1, we can recognize classic numerical techniques as special
cases of MWR. In the point collocation approach a set of points x; is specified in
the solution domain £2 and Dirac delta functions are chosen as weighting functions.
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It produces a discrete approximation referred to as a stencil, common in finite-
difference schemes. The choices of polynomials N;(x) determine finally the
accuracy of the finite-difference approximation. In the subdomain collocation
approach the solution domain is subdivided into a number of subdomains £2 = U£2¢
and weighting functions are unity for all i if &; € £2° and zero otherwise. It
leads to finite volume approximations. As w; are constant in each of the respective
subdomains, any integration by part reduces to boundary integrals. First-order
operations are obvious and give normal fluxes through the discretized subdomain
boundaries. However, with derivatives higher than first-order, FVM approaches
require specific treatment such as TPFA or MPFA schemes [412].

A suitable option for the set of weighting functions w; () is to require it be
identical to the set of basis functions N; (x) by each term i: w; = N;. It means, the
test functions are represented by a linear combination of the same basis functions
as used to approximate the solution. This is known as the Galerkin criterion
named after B.G. Galerkin [181] who originally introduced it for (non-discrete)
structural formulations. This Galerkin method leads to the standard finite-element
approximation, called as Galerkin-FEM or GFEM (sometimes termed as Bubnov-
Galerkin method [590] to differ from the modified Petrov-Galerkin method). It is
important to note that the Galerkin-based WS enforces the residual error R be
orthogonal to every member of the basis functions, which provides an optimal
approximation expressed by Céa’s lemma [84,193,555] written in the form:

lelle.c < llell& o (8.38)

where |le||r. ¢ and |e| £ o are the energy (Hilbert space) norm errors (8.22) pro-
duced by the Galerkin method and by any other approximation method, respectively.
For elliptic boundary value problems the optimality (8.38) is explicitly shown
in Appendix F. Extensions to GFEM are given in the so-called Petrov-Galerkin
method, where the weighting functions differ from the basis functions. It allows
the foundation of stabilized numerical techniques which are appropriate for solving
advection-dominated transport problems.

In least squares (LS) the set of weighting functions is constructed via the
PDE operation. The resulting schemes can provide better convergence properties.
Furthermore, it can be exploited to derive stabilized methods for ADE with
dominant advection. An advantageous and attractive feature of the LS method is that
a non-self-adjoint (1st-order differential) operator of PDE is converted into a self-
adjoint 2nd-order problem, which provides symmetry in the approximate equation
system. The Galerkin choice w; (x) = N; () is also optimal for LS approximations.

In the following Galerkin WS will be taken as the base finite-element weak
statement. Extensions will be given for the Petrov-Galerkin and least square FEM
to derive artificial diffusion stabilization mechanisms of upwind schemes applied
to ADE.
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8.5 Weak Forms

For the following finite element analysis any governing PDE L(¢) = 0 (with its
BC’s and IC’s) has to be recast into its weak form (or weak statement) according
to (8.34)

/ w(z, 1) L($)d2 =0, Yw(z,1) (8.39)
2

where w(x,t) is an arbitrary weighting function. It is important to note the
difference between the original PDE formulation and the weak form from the
mathematical point of view. While the classic statement of the initial boundary
value problem is in general unique and unambiguous, there is usually no unique
weak statement of the same problem because there are alternative choices for w
and optional formulations for BC’s. Each weak form, however, has usually a unique
solution. Some weak statements are more useful than others and it is important
to find the most appropriate weak form. In this sense, a weak form represents a
formulation equivalent to the governing PDE. The weak form incorporates the BC’s.

8.5.1 Divergence Form of ADE

The weak form (8.39) in application to the ADE (8.3) yields

I(Ro)
/QwTd.Q+/QWV-(q¢)d.Q—/QWV-(D-V(;S)d.Q-l-

/ w@¢—H — Qp)d2=0  (8.40)
2

which is satisfied for any weighting function w = w(x, t). In the formulation of
(8.40) w need not to be differentiable and it is sufficient to require that w is only
square integrable: Yw € L,(£2).

However, let us restrict the class of weighting functions to those, which are at
least once-differentiable, i.e., Vw € H! (£2). The restriction on w permits to invoke
the following identity via partial integration applied to the 1st-order advective term

/V-(wq¢)d.Q:/ wV-(q¢)d9+/ ¢q-VwdS2 (8.41)
2 2 2

and to the 2nd-order dispersion term

/V-[w(D-Vq&)]d.Q:/ wv-(D-v¢)d9+/ Vw-(D-V¢)d2  (8.42)
2 2 2
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Now, let us apply the Gauss’s integral theorem (2.77) to the LHS’s of (8.41) and
(8.42) to obtain

/QV-(wq¢>)d.Q = [pwoq-ndl

(8.43)
/ V-w(D-V$)ldQ = [ w(D-V$)-ndl
2

and to find for (8.41)
/wV-(qqﬁ)dQ:/wqﬁq'ndF—/ ¢q-Vwd$2 (8.44)
Q2 r Q2
and for (8.42)
/wV-(D-VqS)d.Q:/w(D-VqS)-ndF—/ Vw-(D-V¢)ds2 (8.45)
2 r 2

Inserting (8.44) and (8.45) into (8.40), the weak form becomes

I(Ro)

/9 —5 42 - / $q-Vwd 2 +/ Vw- (D -V¢)d2 +

/Qw(lw —H—Q4,)dQ +Lw(¢q— D-V¢)-ndl =0, VYwe H'(2)
(8.46)

Recalling that the boundary is composed of three segments I = I'p U I'y U I¢
imposed by the Dirichlet, Neumann and Cauchy-type BC’s, we can separate the
boundary integral of (8.46) into these three parts and invoke the BC’s of (8.4) to

obtain
/wa(R¢) -de.§2+/ Vw-(D-V¢)d2 +
2 ot I?)
/w(ﬁqﬁ—H—Qw)dQ—}—/ w(pq—D -V¢)-ndl" +
2 I'p

/ wqhdr —/ wdl(¢pc —p)dl =0, Ywe H(2) (8.47)
Ty Ic

Now, we have to further restrict the class of test functions w to those that vanish
on the Dirichlet boundary segment I'p, i.e., we require w = 0 on I'p. This class
of functions belongs to the H| functional space (8.23). Using this restriction of
Yw e H(}, the final weak form for the divergence form of ADE (8.3) with its BC’s
(8.4) results
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I(R¢)
/Q Yy ——d2 — /d)q de[?—}-/ Vw-(D-V¢)d2 +

/ w(®¢ — H)d$2 + Zw(mw)qﬁwQ () + / wqydlm —
/ wd (pc —¢p)dl =0, Vwe H(2) (8.48)
I'c

which has to be solved for ¢ ~ QAS We recognize from (8.48) that the sought solution
must also only be once differentiable, i.e., ¢ ~ QAS € H'(£2). Note that in (8.48) the
well-type SPC (8.4) has been inserted, where we made use of the integral over the
SPC singularity, which simplifies

/Q WO pd 2 = - / (240 0u03(@ ~ 2)d2 = = 3 w(z)s 00
(8.49)
This SPC realization in the weak form implies that the entire amount of the
sink/source Q,, of a well w fully pertains to the equation at the given point x,,.

In a finite element approximation it will be attained by enforcing that each well
coincides with a node of the spatial discretization.

8.5.2 Convective Form of ADE

The weak form for the ADE (8.5) with its BC’s (8.6) can be derived in a similar way
as done in Sect. 8.5.1 for the divergence form. The weak statement (8.39) applied to
(8.5) yields

. 0
—dS2 -Vod$2 — V-(D-V 2
/QWRazd +/qu od /Qw ( 9)ds2 +
/w[(l?+Q)¢—H—Q¢w]d.Q=O, Vwe Ly(2)  (8.50)
2

In contrast to the weak form for the divergence form of ADE we restrict the partial
integration only to the 2nd-order dispersion term in the convective form of ADE, i.e.,

/V-[w(D-VqS)]d.Q:/ wV-(D-V¢)dS2+/ Vw-(D-V¢)d2 (8.51)
2 2 2

By employing the Gauss’s integral theorem (2.77) on the LHS term of (8.51) we
find
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/ wV - (D-V¢)ds2 = / w(D-V¢)-ndl’ —/ Vw-(D-V¢)ds2 (8.52)
o r o
Inserting (8.52) into (8.50) the weak form of the convective form of ADE results
¢
/ WR—d$§2 —i—/ wq - Vods2 —i—/ Vw-(D-V¢)dS$2 +
2 ot Q2 Q2

/ wl(® + Q)p — H — Q4 ]d 2 —/ w(D-V¢)-ndll =0, Ywe H'(R2)
2 r
(8.53)

Separating the boundary integral of (8.53) into the three segments I' = I'p U I'y U
I'c imposed by the Dirichlet, Neumann and Cauchy-type BC’s, respectively, we
invoke the BC’s of (8.6) to obtain

L)
R—d$2 -Vod 2 Vw-(D-V¢)dR2

/Qwat +/qu¢ +/Qw( $)d2 +

[ w10+ 01—t~ 0p1i2 ~ [ WD) mar +

2 I'p
/qudF—/ wd(pc —p)dl =0, Ywe HY(2)  (8.54)
I'n Ic

Using this restriction Yw € H, the final weak form for the convective form of ADE
(8.5) with its BC’s (8.6) results

. 0¢
Ld Ved 2 Vw- (D -Vé)ds2
/QWRard +/qu od +/Qw( P)d 2 +
[ 910 + 036 = H1a2 + Y w6~ 6(@0) 0ul0) +
/qudF—/ wh(pc —p)dl =0, Vwe Hy(£2)  (8.55)
I'y I'c

for solving ¢ =~ qg € H'(£2), where the well-type SPC has been incorporated
according to (8.6) (see related discussion in Sect. 8.5.1).

8.5.3 Discussion of Both Weak Forms

We emphasize again that the BC’s used in the weak form (8.55) for the convective
form of ADE have different meaning in comparison with BC’s embodied in the
weak form (8.48) for the divergence form of ADE because in general gy # ‘I}Lv
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and @ # &7, Only in absence of the normal advective flux q - n = 0, it becomes
gy = ‘I}Lv and accordingly @ = ®7. The consequences on boundary fluxes in both
weak forms are obvious. For instance, a natural Neumann BC for the divergence
form of ADE quv = 0 implies that the boundary segment [y is impervious for the
total (both advective and dispersive) flux independent of the actual value of q - n,
which represents a stronger BC formulation in comparison with the convective form
of ADE. On the other hand, a natural Neumann BC for the convective form of ADE
gy = 0 ensures at first that the boundary segment 'y is only impervious for the
dispersive flux, unless g-n = 0 can be additionally satisfied. In practical application,
the differences between these two weak forms are often not relevant. In solving the
convective form of ADE a preceding solution of a flow problem delivers a flow
field which satisfies q - n conditions on the boundary in a weak sense and implies
appropriate formulations of BC’s for both advective and dispersive fluxes in the
convective form of ADE, which are equivalent to the divergence form of ADE. In
cases, where a total load of a quantity ¢ (consisting of advective plus dispersive
fluxes) has to be imposed on a boundary section as formulated by (6.21), (6.28) or
(8.7), the Cauchy BC term of (8.55) in the convective form of ADE can be easily
utilized as

/ w(ge — $)dT = — / wq-n(de — $)dT (8.56)
I'c I'c

where g-n|r. is a known advective normal flux on /¢ so that g-n¢c|r. prescribes
an advective load of quantity ¢, positive outward-directed on I¢.

As discussed in Sect. 6.5.7 outflow BC’s (OBC’s) can be imposed in two different
ways. Commonly, for standard situations a zero-gradient condition, i.e., a natural
Neumann BC with V¢ = 0 is applied. Denoting the boundary portion of the OBC
by I'y, C I'v C I', itis specified

/ WquF:O on FNOCFN (8.57)
Iy

o

for the convective weak form (8.55) and

J,

for the divergence weak form (8.48). It is obvious, this type of OBC can be simply
realized in the convective form, while for the divergence form a surface integral
remains to be treated implicitly because ¢ is unknown and the normal flux q-n must
be determined (or be known) on Iy, . The second and alternative way is to impose
the OBC fully implicitly, even for the gradient-driven dispersive boundary flux.
Using this BC formulation the Neumann-type boundary integrals are replenished
to specify the implicit OBC

wqlhdln = / wéq-ndl’ on Ty, C Iy (8.58)

0 I'no
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J.

for the convective weak form (8.55) and

wgndIl = —/ w(D-V¢)-ndl' on Iy, Cly (8.59)
I'n,

o o

/ wqjvdrzf w(pq—D-V¢)-ndl' on Iy, CIy  (8.60)
I'n

0 I'no

for the divergence weak form (8.48), which must be treated with unknown ¢.
We conclude that OBC requires in general an implicit treatment of the specific
Neumann-type surface integrals for the divergence weak form, which is more
complex. In contrast, however, the OBC in the convective weak form can be simply
specified, unless the zero-gradient Neumann condition on the outflow boundary is
not appropriate under specific situations (cf. discussion in Sect. 6.5.7).

8.6 Spatial Discretization by Finite Elements

The governing weak forms derived in Sect. 8.5 contains integral expressions which
have to be solved. To accomplish an approximate solution via FEM the continuum
domain with its boundary £2 = £ U I' is subdivided into a set of nonoverlapping
subdomains, called finite elements (see Fig. 8.5), such that

&

O~ Q¢ with Q2°=Q°UTe, Q°+0 (8.61)

1

e

where Ng is the number of finite elements, £2 is the approximate global domain, £2¢
and I'¢ are the domain and the boundary of each finite element e, respectively. The
basic idea of the finite element spatial discretization (8.61) is to split any integral
that appears in the weak statements into a sum over the elements

Ng
Jolo 3d2 =" /m{‘ L)dRe
e=l (8.62)
Jptyar =" /ﬂ{. .dre
e=1
This nonoverlapping sum over all elements is called assembly. The actual domain

[22 assembled by all these elements | J,(£2¢ U I'°) is termed finite element mesh
(Fig.8.5). The goal of the assembly (8.62) is to accomplish an easily tractable,
sufficiently accurate and efficient integration on element level. This can be attained
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Fig. 8.5 Spatial
discretization of a continuum
domain with its boundary

2 = 2 U T by finite
elements £2¢ = £2¢ U re,
(e =1,..., Ng) forming a
finite element mesh

by choosing suitable shapes for the finite element £2¢ that have appropriate geo-
metric entities (vertices, mid-sides) to match the interpolation for the approximate
solution ¢A> according to (8.16) with a desired accuracy. The finite element £2¢
can be a line, triangle or quadrilateral in 1D, 2D or 3D, respectively, and the
degree of interpolation over it can be linear, quadratic or even higher. In practice,
the phrase finite element refers to both the geometry of the element and degree
of approximation used for the solution variable(s), e.g., a quadratic quadrilateral
element is a 2D quadrilateral shape with a biquadratic (biparabolic) interpolation, a
linear triangular prismatic element represents a 3D pentahedral shape with trilinear
interpolation, and so forth. Commonly used finite elements in 1D, 2D and 3D are
depicted in Fig. 8.6.

8.7 Elementwise Continuous Approximations

The assembly (8.62) of the finite elements is only valid if the basis (interpolation)
functions (8.16) satisfy requirements on continuity. The basis functions have to
be restricted to avoid any infinite terms in the integrals of the approximate weak
statement. The situation is explained in Fig.8.7. Let us consider the interfacing
boundary of two adjacent finite elements, where we study the approximate function
q3 and its derivatives in a very small distance § — 0. Within the elemenAtwise

interpolation procedure we can ensure that ¢A> is continuous everywhere in £ and
also at the element interface(s). However, this must not be the case for the first
derivative anymore, which can become discontinuous at element interfaces. While
the first derivative is discontinuous, its value remains in a finite value and any
integrand of the weak form containing up to a first-order derivative is finite and
accordingly evaluable. In contrast, however, consider its second derivative, which
tends to an infinite value at the element interface. Such a term is no more square
integrable and the assembly (8.62) fails.

The continuity requirement can be generalized as follows. Suppose the integrand
in the approximate weak statement contains up to (m + 1)th derivatives, then
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Fig. 8.6 Overview of commonly used finite elements. (1) 1D elements: (a) linear, (b) quadratic,
(c) cubic; (2) 2D elements: (a) linear rectangular, (b) quadratic rectangular, (c) linear triangular,
(d) quadratic triangular, (e) linear quadrilateral, (f) quadratic curved quadrilateral, (g) quadratic
curved triangular; (3) 3D elements: (@) linear quadrilateral prism (hexahedron), (b) linear triangular
prism (pentahedron), (c) linear tetrahedron, (d) linear pyramid, (e) quadratic curved hexahedron,

(f) axisymmetric linear rectangular ring, (g) axisymmetric linear triangular ring (Modified
from [76])

continuity in the mth derivative of the approximate function must be satisfied.
This is called the C,,,—continuity requirement. The validity of the assembly (8.62)
requires the fulfillment of the C,,—continuity in any finite element basis function.
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Fig. 8.7 Inter-element (I*) A
behavior of Cy continuous

approximate function $ and
its derivatives: While $ is
continuous at the element
interface, its first derivative
becomes discontinuous
within the inter-element zone
§ — 0, but is still finite. The
second derivative, however,
may become infinite
(Modified from [590])

inter - element zone

=

=Y

=Y

Now, having a look to the weak forms as derived in Sect. 8.5, we recognize that the
highest derivatives are only of first order (thanks to the reduction of the 2nd-order
derivatives in the dispersion term due to applying the Gauss’s integral theorem).
Hence, it is sufficient to satisfy only Cp—continuity in the interpolation function(s)
of the unknown variable(s), i.e., the element basis functions ¢A> have to be chosen in
such a way that the zero derivatives are continuous and their first derivatives, while
discontinuous at the element interfaces (they actually suffer jumps at nodal points),
need only to be square integrable.

The most important class of Cy basis functions refers to Lagrangian polynomials,
which are standard in FEM. C, functions are commonly sufficient for all problems
of advection-dispersion type, which are encountered in the present flow and
transport processes. On the other hand, a higher order continuity, e.g., C; functions
satisfying continuity of both zero and first derivatives, can be provided by Hermitian
polynomials [173,280]. Although C; Hermitian polynomials can achieve a higher
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accuracy for the first derivatives, however, at the expense of additional degrees of
freedom associated with computational extra costs, their practical applicability has
shown limited (e.g., to undistorted elements) and rather cumbersome. Indeed, we
need not a continuity higher than Cy. In the following we exclusively prefer Cy
continuous basis functions for various element types in 1D, 2D and 3D.

8.8 Finite Element Basis Functions

8.8.1 Shape Function, Master Element and Isoparametric
Element Type

In using assembly (8.62) it is advantageous to restrict the interpolation of
the unknown vanable(s) within each finite element £2¢ = £2¢ U I'°, such that
the approximation ¢(a} 1) according to (8.16) can then be formed as the union
of the finite element approximations ¢" (x¢,1) on Q2°, viz.,

Ng
pa.0) ~d@.r) =)0 (8.63)

e=1]

Note that it is not possible to simply sum (;3" over e since a double contribution
would occur on every finite element boundary. Thus, a summation without overlap
of element boundary will be indicated by the union symbol:

Ne Ne
U(. L) = Z(. ..) without boundary overlap (8.64)

e=1 e=1
On any finite element domain £2°, the generic form for <;§" is

NBN

¢ (@, 1) =Y N§(@) (1) (8.65)

J=1

where ¢¢ are the set of unknown coefficients at the nodes J belonging to the
element e and N§(x°) are the set of given Cy continuous basis functions, called
shape functions, associated with the element e and the local node number J
(note that we shall differ between local and global node numbering as further
discussed below). The element shape functions N§(xz¢) represent polynomials of
1st, 2nd or even higher degree. In practice, however, we prefer polynomials of
Ist degree and, optionally, 2nd degree. There are as many of these polynomials
as there are nodal points Npy in £2¢. To achieve a continuous representation of ¢
(cf. Sect.8.7) the element shape functions must satisfy Cp—continuity, for which
the approximate solution is continuous and have piecewise continuous first-order
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derivatives. Those element shape functions are referred to as Cy—class elements,
which will be generally used in the following.
The element shape functions have the following property at the nodal points:
e en _ 8y for iL‘? € Q¢
Ny (@) = { 0  otherwise (8.66)

where §;; is the Kronecker symbol (2.7) and x¢ are the Cartesian coordinates of
local node I (cf. (2.30)). From (8.66) it directly follows that

NpN _
Y ONj@) =1, Va‘eQ (8.67)
J=1

The ability of handling nonuniform and distorted geometries is an important
feature of the FEM. A fundamental aspect of FEM is the use of a master element
Q¢ = ¢ U I, where all element-related inner products and integrations are
performed in local coordinates 17 defined as

(6n¢ 3D
n’ = & n) 2D and axisymmetric (8.68)
®) 1D

A one-to-one mapping (coordinate transformation, see Sect.2.1.5) bridges the
global Euclidean x—space and the local (computational) n—space of the master
element £2;:

x® = x°(n) (8.69)

The element geometry of the master element 5_2,‘,’1 is always Cartesian (rectangular)
so that the integration on such an element level can be efficiently computed. Based
on this mapping the finite elements can be distorted easily to fit most applicable
geometries (Fig. 8.8). For this purpose it is advantageous to define the element shape
functions in their local coordinates N §(n7), such that (8.65) becomes

Nen

¢¢ (@ (m), 1) = Y N5(m) ¢5(1) (8.70)

J=1

and global coordinates x are related to the local coordinates 1 by using the
interpolation

Nx
x¢ = Z N¢(n) = (8.71)
J=1
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R a
/ / “n £ e

1.1 n 1,1

mapping:
e e
x =x(n)

= L

Xy (1,1,1 (1.1.-1)

Fig. 8.8 Finite elements with one-to-one mapping onto ° (D = 1,2, 3)
with
x = U x° (8.72)

where Nx is the number of element polynomials used for the geometry interpolation
and ¢ are the global coordinates of node j on element e. According to the choice
of Nx it is distinguished into (1) isoparametric elements with Nx = Nz, i.e.,
polynomial approximation is used for both geometry and variables, (2) superpara-
metric elements with Nx > Npn, where a higher order approximation is used for
the geometry, and (3) subparametric elements with Nx < Npn, where a lower order
approximation is used for the geometry compared to the variable approximation.
Most efficient and ideal for our needs are isoparametric elements, which will be
generally preferred in the present FEM. Appendix G summarizes the isoparametric
finite elements used in FEFLOW for 1D, 2D (incl. axisymmetric) and 3D problems.

8.8.2 Local and Global Shape Functions

To illustrate the construction of finite element basis functions let us consider at first
the simplest case: the use of linear isoparametric shape functions in a 1D geometry
x € R! (see also Table G.1 in Appendix G). Figure 8.9 displays the master element
5_2;1 with the local node numbering J = 1,2, the linear shape functions expressed
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Fig. 8.9 Piecewise-linear a
shape functions for 1D O e
element: (a) master element m
£2¢ with local node x¢= xf x¢= x;
numbering, e z O
(b) shape functions 1 2
N§(®) (J = 1,2)in b
local coordinate —1 < § <1, e e
(Ac) approximate variable 1 N, (€) N. 2(&)
¢°(§) as linear function over
element e
—
-1 3 (+1)
4
c b (&) b
e
¢y
—
1 (: 2
in the local coordinate (—1 < & < 1)
1 1
Ni(§) =;0-§ N =;0+8 (8.73)

and the resulting approximate function QAS" over the element e. Using the mapping
relation (8.71) for the linear 2-node element

NBN=2

XC= )0 NJE) xS (8.74)

J=1

we find £ = (2x¢ — x{ — x5) /(x5 — x{) and the shape functions can also be written
in the global coordinate x°, viz.,

x5 — x° x¢ —x¢
2 1
N;(x¢) =

NE(x) = =2 (8.75)

e
X3

— X x5 —x{
where x{ and x5 are the x—coordinates of local node number 1 and 2, respectively,

of element e. Then, the approximate variable qge is linear over element e (Fig. 8.9¢):

P°(E) = L[(d5 —¢)E + ¢ + 5] or
n 1
¢ (x) = ———[(@5 — ¢))x* + x5¢] — x{¢5 ]

e
Xy =X

(8.76)
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=V

=V

=Y

=V

=Y

=V

Fig. 8.10 Example of 1D finite element mesh consisting of four linear elements. Display of global
basis function N;(x), (j = 1,...,5) and linear approximation of variable ¢ by ¢

Now, let us consider a 1D mesh consisting of four linear elements and five global
nodes as shown in Fig. 8.10. The approximate function ¢ is represented using global
shape functions N; that are equal to one at node j and zero at all other nodes.

Accordingly, the global function q3 in the mesh shown in Fig. 8.10 can be written as

Np=5 Ng=4

$oey =3 N = |J ¢(x.) (8.77)

j=1 e=1
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with

Npn=2

¢(x,1) = D N5 ¢S (8.78)

J=1

It can be observed that, as j and J vary, all elements contain shape functions,
which are similar in global coordinates x and identical in the local coordinates £.
This is a key issue for devising efficient operations on the master element level,
which are generic and will be performed widely independent of the global (physical)
coordinates as discussed further below.

Now, we have to emphasize the difference between the global node numbering
used in N; and the local node numbering used in N§ and to consider how we can
relate properties between the global and the local systems: Any uppercase nodal
index J associated with an element-rank quantity represents a local node number,
while a lowercase nodal index j of a quantity without element rank means a global
node number. For the mesh of Fig. 8.10 it is seen that

Nl(x") = Ni(x), N)(x') = Np(x) overelement e =1
NE(x?) = Na(x), Ni(x?) = N3(x) overelement

8.79
NP (x¥) = N3(x), N3 (x*) = Ny(x) overelement = (8.79)
N (x*) = Ny(x), N} (x*) = Ns(x) overelement e =14
which can be written in a matrix form as follows
N
e N,
Nl e
(N) =A°|N; |, e=1,2,...,Ng (8.80)
2 N,
Ns
or more generally
Np
N§=> A4N;.  J=12... N (8.81)
=1
where A¢ = A;I. is the Boolean matrix of element e having the property:
A¢ = 1 ifthe 1(.)cal node J corresponds to the global node j (8.82)
J 0 otherwise

The Boolean matrix A¢ will prove to be convenient in derivations of finite element
equations, where local quantities have to be related to properties of the global
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coordinate system. The Boolean matrices for the present mesh of Fig. 8.10 result
for example:

1_ {10000 2> (01000 3 (00100 4_ (00010
A _(01000)’A _(00100)’A _(00010)’ A _(00001)
(8.83)

Using the Boolean matrix (8.82), the global shape functions N, (x) appearing in the
global approximate solution

Np
¢(@.1) =Y N;(@)p; (1) (8.84)

j=1

can be directly expressed by local shape functions N§ according to

Ne ,NBN
Ni@) = (Z Nj () A;,-) (8.85)
J=1

e=1]

To increase the accuracy of interpolation a quadratic shape function rather than a
linear shape function can be chosen. Quadratic interpolation functions are generated
by adding an additional node at the midside of each element as shown in Fig.8.11
for 1D geometry. The shape functions for this quadratic 3-node element are (cf. also
Table G.1 in Appendix G)

Ni@©) =38E-1D  NE=1-& N/ =3¢+ (886

Apart from the different polynomials and the number of polynomials (= number
of nodes Npy) per master element appearing for the quadratic element type, the
construction of the basis function is based on the same principles as stated above
for the linear element. The same is also true for isoparametric elements in higher
dimensions (see Tabs. G.2-G.4 in Appendix G for the family of 2D and 3D elements
used in FEFLOW). An example of a 2D triangle mesh for a piecewise bilinear
approximation of qg is shown in Fig. 8.12. The shape functions of each triangle for
the three nodes written in the local coordinates (0 < &, 7 < 1) are

NfEm=1-6-n N;j¢Em=¢ N¢Em=n (887
Furthermore, using the mapping relation (8.71) as
Npn=3 NpN=3

X“= Y NjEWXS =Y NiEmYS (8.88)

J=1 J=

—_

written with (8.87) as
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Fig. 8.11 Piecewise-
quadratic shape functions for
1D element: (a) master
element £2¢, with local node
numbering, (b) shape
functions

N7 (J =1,2,3) inlocal
coordinate —1 < § < 1,

(c) approximate variable

qge (&) as quadratic function
over element e

273
a j—
QVH
(e, O
1 2 3
1~ Mi©) N(E)

)e N (Xz — X1 X3 —xl)e , (%‘)
N2=Y1)y3—N n
)e N (Ju le)e_ (s) (8.89)
Jo Jn n
ps

we can express the local coordinates as

(i) N |Jlf|
1

||

( I —le)e ) (X —Xl)e
—Ja Ju y=n

e e (8.90)
(J’3 — X —x3) . (X —xl)
Yi=X2X2—X1 y=n

and find finally the shape functions of the linear triangle in global coordinates

according to

1

Nf(x¢, y¢) = m[)@% —x3)2 + (2 = y3)x + (x5 —x2)y ]
1 e

N§ (x4, y9) = 7] [x3p1 = x1y3 + (y3 = y1)x + (x1 — x3)y] (8.91)
1

N{(x¢, y¢) = [x192 — X231 + (1 — y2)x + (x2 — x1)y]°

|J¢]
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Fig. 8.12 2D triangular element mesh with global node numbering and a piecewise linear
approximation of q@ Selected triangular element 2¢ C RN?* with local node numbering and
mapping onto master element £2;, in local coordinates £ and n

where the determinant of the Jacobian J¢ (equal to twice the area of triangle) is
given by

|J| = [JuiJo2 = a1 J12]® = [x1(y2—y3) +x2(3 = y1) +x3(y1 —y2)]°  (8.92)

Then, the approximate variable QAS forms a piecewise-bilinear function over the
solution domain as exemplified in Fig. 8.12

$lx,y,0) =D N;(x,y) ¢, (1) (8.93)
J

with N, (x,y) = U, (2, N5 (. n) A%).

In the same way we are able to construct finite element basis functions for
all element types we have in mind for 1D, 2D and 3D applications. The family
of finite elements preferred in FEFLOW are summarized in Appendix G. While
the finite element basis functions Nj(n) are expressed in analytical forms, the
required coordinate transformation (mapping) between §2¢ in the global coordinate
system and Q; in the local coordinate system represents a generic task. It can
be performed by very efficient basis operations for each element, which will be
thoroughly described next.
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8.9 Galerkin Finite Element Weak Statement

Using the weak forms derived for the divergence and convective form of ADE
according to (8.48) and (8.55), respectively, their weak statements (8.36) applied
to the approximate variable ¢ result

IR
WS=/Q (a¢)d9 /¢q Vw,d.Q+/ Vw; - (D-V$)d2 +

[ 0d-tae + 4.0 UH+/MWMW—
2
/ wi @ (pe —P)dlr =0 Vw; € H (2), 1 <i <Npgqg (8.94)
I'c
for the divergence form of ADE and
) . R
WS = / Wi R—d 2 +/ wiq-Véd2 +/ Vw; - (D -Vé)d2 +
me0+Qﬁ—Hw9+( Mw)QUH+/ wigndl" -
/ wi®(pe —d)dl =0 Vw; € H(2), 1<i<Ngg  (8.95)
I'c

for the convective form of ADE.

Now, we discretize the domain £2 and its boundary I" by finite elements via
(8.62), introduce the semidiscrete finite element basis function forq3 = ¢A>(:13, t) over
each element e

Np Ng
dlx.1) =Y Nij@ep;(1) =) ¢x.1)
=t o Ve (8.96)
g ) =) ) Njm) A5, (1)

j=1J=1

and choose the Galerkin method (Table 8.1), where the weighting function becomes
identical to the basis function’

>The weak statements (8.94) and (8.95) imply that the weighting functions w; belong to the H,
functional space (8.23). On the other hand, the basis functions N; belong to the H'! functional
space, i.e., they do not vanish on Dirichlet boundaries: N; 7% 0 on I'p. Nevertheless, we may use
WS in form of (8.94) and (8.95) withw; = N; € H'(2), 1 <i < Np, where we enforce at first
a zero flux (¢q— D - V¢) -n ~ 0or —(D - V¢) -n ~ 0on I'p in the original weak statements
(8.47) and (8.54), respectively, and incorporate the actual Dirichlet (essential) BC’s afterwards via
a direct manipulation of the resulting discrete matrix system as further discussed in Sect. 8.16.
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Ng ,NpN
i@ = @ = (L v a;) 897)

e=1 =1

we find the following finite element forms of the Galerkin weak statement (GWS)
ad
OWs = Z/Q N’E[R(; Ny¢]d 2 — Z/Q(Z]: Ni¢j)q-VN;idQ“ +
Z/ VN;-[D-V()_N;¢j)]dec + Z/ N[O N;p;)— H]dR* +
ne N e N
e J e J

2.0.0+ Y [ Nahar =Y [ No'fpe ~ (D Nenlare =0
e N e C j

1<i,j<Np
(8.98)

for the divergence form of ADE and
GWS = 263/9 Nik%(;zvm,-)drze + zg:/ﬂ Niq~V(;Nj¢j)dQe+

Z/Q VN; - [D-V(; Njpj)]ds2¢ + Z/Q N[ + Q)(; Njgj)— H]d2¢+
(6w —¢:~)Qw(t)!i+2€jfm NigndI*—

Z/ﬂ N;o[pe — (O N;¢)]dIr =0 1<ij<Np
e C J
(8.99)

for the convective form of ADE. The indicated integrals in (8.98) and (8.99) are
evaluated at the element level e and assembled (summed up) into a global matrix
system of the form

O-¢+K-¢p—F=0 (8.100)

The assembly process in forming the global matrices and vectors from element
contributions will be described more in detail in Sect. 8.10. In (8.100) ¢ = ¢(¢)
is a column vector of the state-variable approximation coefficients

1
¢ (8.101)

b
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to be solved as unknowns from the resulting equation system (8.100). The super-
posed dot in (8.100) means differentiation with respect to time ¢

o
di

L7}
di

. d d
¢ = d_t¢(t) = E‘Pj(t) = : (8.102)

donp
dt

The components of the global rank square matrices O and K as well as the global
column vector F are written in indicial notation as®

SWe can alternatively write the matrices and vectors in using directly the global shape function
(8.85) with the global node numbers i, j:

Z R N;N;ds$2° divergence form
05=30
Z / RE N; de.Qe convective form
e Q¢
- Z/ q° - VN;N;d2°¢ divergence form’
A,‘j = ¢ ‘
Z / N;q° - VN/' d2°¢ convective form
e ¢
Ci=) | VN (D VN2
Z /Qe (¥ + sze )N; N;dS$2¢ divergence form
R,‘j = ¢
Z/ O+ Q°)N;N;d2° — §;0,,(t)l; convective form
e ¢

Z / ‘I’TEN[deFe + N,'(qu —D'VN/')-ndI"e) divergence form
‘ o

Z P°N;N;dI'* — / N;i(D-VN;)- ndF“) convective form
e JI¢ TN
N[¢Te¢éd1—‘e —/ quxdl"“) divergence form
g i\,

/ N;®°pidIe — N,-qjevdlw) convective form
ré

e i\

D) NiH A2 = 9,0,

0

"Note that:

a° - VNiNj = (Nfq - VN;)"
q“ . VN,'N]' = (N,-q“ . VN]')T
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0=0;=3 (3 0 4545)
e 1 J
K=A+C+R+B

A=4;=3 (2 2 A3

)
C=¢C;= Z( j ZCUAZAZ)
R=R;= Z( ZR,,A,,A,,)
B=8;= Z( j > By AGAS)
F=H+Q
H=H =Y (Y Hia)
Q=0 = Z(Z 05 45)

with the element matrices

R NfNSd Q¢
Oy = 7o
R NfNSd Q¢
Qe
—/ q° - VN{NSd Qe
Ajy = e
/ Niq-VNSd Q¢
QL’
Cy= [ VN{-(D-VN$dQ*
Q¢
. G BEVNFNjd Qe
7
| @0+ 0NgNsdRe ~8u 00,
e
/ O NENSAIre + N{(gN¢ —D-VN¢)-ndl®
BIeJ — FC FNO

/q)ezv,N,dre / N{(D-VNS$)-ndrI*
FC

and the element vectors

NioT pe.dre —/ Niqhdre
He =17 i\,

Nf@pedle — Niq%dre
¢ g\,

(8.103)

divergence form
convective form
;

divergence form

convective form

divergence form
convective form

divergence form

convective form

(8.104)

divergence form

convective form
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o :/9 NiHd2° — ¢, Qw(0)]1 (8.105)

where (i,j = 1,...,Np), (e = 1,...,Ng)and (I/,J = 1,..., NgN). Note that
in the B¢ matrix we also include the implicit OBC of (8.59) and (8.60) on the
specific Neumann boundary I'y = C I'y. The local element shape functions Ny
in the element-rank matrices and vectors of (8.104) and (8.105) are expressed in
the local n—coordinate system. Hence, the integration will be done on element
level in n—coordinates. We note in (8.103) and (8.104) that the advection matrix A
(and correspondingly A¢) as well as the boundary matrix B (and correspondingly
B¢) at the presence of implicit OBC are unsymmetric, while all other matrices are
symmetric.

8.10 Assembly Process

8.10.1 General Procedure

The assembly process is a fundamental feature of finite element computations.
Assembly represents the summation of matrix or vector contributions from element
integrals to global matrices and vectors. It is mathematically expressed as follows

Ng Ng
K=K;= Z(ZZ K;,A;’,.A;,.), F=F = Z(Z Fiay)  (8.106)
e=1 1 J e=1 1

exemplified for a square matrix A and a column vector F'. In (8.106) i,j =
1,..., Np are the global row and column indices, I, J = 1,..., Npy represent local
row and column indices, associated with the element matrix K}, and vector Fy, and
Af; and Ajj are Boolean matrices (8.82) consisting of Ngx rows and Np columns,
which relate the local indices 7, J to the global indices i, j. However, in actual
computational practice the Boolean matrices A7, Aj; will never be constructed.
Instead, the relation between global and local node numbers is executed via a
computer program based on a nodal correspondence table called incidence matrix,
N = N,y (e = 1,...,Ng, J = 1,..., Ngn). To demonstrate this procedure,
we consider an example as shown in Fig.8.13. A 2D domain is discretized by
six linear triangular elements forming a simple eight-noded finite element mesh.
The element-node relations are tabulated in the incidence matrix IN. There is no
need to be concerned with the element ordering, however, the assignment of the
global node numbers for each element must be consistent and systematic. It is not
crucial which first local node of a particular element is incident with one of the
global nodes joining the element, however, the remaining global nodes must be
counter-clockwise ordered in IN. This counter-clockwise ordering is consistent with
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the order of numbering used for the local nodes associated with the master element.
For instance, considering element 2 in Fig. 8.13: We have chosen that local node 1 is
incident with the global node 2, then local nodes 2 and 3 must be incident with global
nodes 4 and 3, respectively. Alternatively, we also could choose for example that the
global node 3 is incident with the first local node, so that the global nodes 2 and 4
become incident with the local nodes 2 and 3, respectively. The following C-like
pseudo-code explains how the global matrix K and global vector F' are assembled

from the element matrices K¢ and element vectors F'°, respectively:

K=0,F=0
for (e = 0;e < Ng;e++) {
fOI'(I =O;] <NBN;I++){

zeroing global matrix and vector
global element loop

local element row loop

i = N,y global row index assignment
for (J =0;J < Npn;J++){ local element column loop
J = Neyj global column index assignment
K=K+ K}, addition of element to the global matrix
}
F=F+F} addition of element to the global vector
}
}
(8.107)
For the example of Fig. 8.13 we obtain finally
Klil II(112 2 1K113 2 02
K211 K212 + Klzl 1 K223 + K133 \ K7,
K3 K3 + K5, K53 + K53 + K5, + K,
K:: = 0 K%l K223 + K32 K222 + K:?? + K§3
ij
0 0 K3, 0
0 0 K3 + Ky Ky + K35
0 0 0 K 153
0 0 0 0
0 0 0 0
0 0 0 0
K KK 0 o
4 s 5
03 K31 +3 K32 K31 0 (8.108)
K3 K3, 0 0
K3, K3 + K;S‘I + K% + K&, K?? + K% K%
0 K7, + K7 K3 + K7y K,
0 K3 Ky Kp

and
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e=1 e=2 e=3 e=4
ij1 2345678 ij12345678 ij1 2345678 ij12345678
x| x|x 1 1 1
2 x[x]|x 2 X[ x| x 2 2
3 x|x|x 3 x[x|x 3 x| | x[x 3 x| x| |x
4 + 4 X[ x|x L 4 + 4 x| x| |x +
5 5 5 x| | x[x 5
6 6 6 x| |x[x 6 x| x| |x
7 7 7 7
8 8 8 8
master element
IJ1 2 3
x| x|x
2| x[x|x
3 x| x|x NBN:
N =
5 N
e=5 e=6 global matrix Xe incidence matrix N = N,
ij12345678 ij1 23456738 ij1 2345678
element global
! ! T x]xix number e | node numbers
2 2 2| x[x|x[x 1 1 > 3
3 3 x| x|[x|x|[x]|x
4 x| |x|x n 4 _ 4 x| x| x x| x 2 2 4 3
5 5 T s x| [x[x 3 51316
6 x| [x[x 6 x| x[x 6 x[x[x[x][x[x 4 6 13 | 4
7 X X| X 7 X|X[x 7 X XX 5 7 6 4
8 8 X[ x| x 8 X[ x[Xx 6 7 8 6

Fig. 8.13 Schematic diagram to illustrate the assembly of a global matrix from element matrices
(Modified from [76])

F!

Fl+ F}
F+ F +F +F
F?+ F} + F}
F}?
F+F 4+ F+F
F? + F?

Ff

(8.109)

It can be seen that the resulting global matrix K is sparse and banded. The
sparsity structure of K is an advantageous feature of the GFEM. The assembly
of the global matrix requires the computation of Ng N§N coefficients. However,
it is not practicable to store the full matrix K. In dependence on the preferred
equations solvers (see Sect. 8.17.1) different storage management techniques have
been developed. For standard iterative equation solvers only the nonzero entries of
the matrix are compactly stored, which allows a very core-space saving strategy.
Bookkeeping is required to localize the nonzero elements within the matrix. On
the other hand, for Gaussian direct equations solvers the profile of the matrix (all
elements of a row up to the most right-sided nonzero entry) must be stored, where
also zero elements within the matrix profile have to be included, which is needed
for the fill-in entries arising at later stages in the Gaussian forward elimination
process. While for iterative solvers the order for the global numbering of the nodes
is not crucial, the matrix profile used for direct solvers is strongly dependent on
the ordering of nodes (and accordingly the demand on storage). As a general rule,
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the numbering should be such as to minimize the nodal difference for each element
(maximum node number minus minimum node number). For large and complex
meshes automatic nodal renumbering schemes have to be utilized to minimize
the matrix profile (cf. Sect.8.17.1.4). We note that the order of numbering the
elements is neither crucial for iterative nor for direct equation solvers. In cases
where the element matrices are symmetric, the global matrix K also becomes
symmetric K;; = Kj; and only the symmetric half of the matrix coefficients needs
to be stored. The assembly of a symmetric global matrix requires the computation
of %NE Npn(Npn + 1) coefficients, which means a reduction of the computational
effort by a factor of (Ngn—1)/(2NpN) compared to an unsymmetric matrix, i.e., for
instance % and % less for 2D triangular and 3D petahedron elements, respectively.

8.10.2 Parallelization via Element Agglomeration

The element-by-element assembly procedure (8.106) and (8.107) in form of K =
ZéVE K* and so forth is ideally suitable for parallelization by agglomeration of
elements for which the element matrices K¢ can be performed parallel on different
CPU’s or CPU cores to accelerate significantly the computations. The computational
work of assembly is proportional to the number of elements Ng. Therefore, an
efficient parallel assembly process can be achieved if the total number of elements
of a mesh is suitably split into a certain number of subdomains called partitions of
agglomerated elements so that the element summation is actually executed via

Npa NEp Npa

K=Y Y"K° with Ng=) Ng, (8.110)
p e p

where Npa is the number of partitions and NEp is the number of elements
agglomerated into partition p. Each partition is concurrently executed on different
threads representing logical processors. A symmetric multiprocessing facility
(SMP) of an operating system distributes all threads to the available physical
processors and CPU cores during runtime. However, on computer systems with
shared memory to which the threads simultaneously access the summation
operations for an element e cannot be executed on different threads at the same time,
otherwise the summation becomes erroneous due to occurring race conditions. To
avoid multiple access during the assembly process the concerned element must be
locked while it is summed up. But, locking is a rather inefficient process and slows
down the computations in particular with increasing number of threads.

More useful and generally preferred in FEFLOW is a technique which is called
disjoint domain partitioning. It does not need locking and provides an optimal
speedup in the parallel assembly process based on (8.110). The computational
domain 2 = £2 U I' is subdivided into a maximum number of partitions $2PAP
of agglomerated elements £2¢, which do not join each other, with a remaining
(possibly small) border set of partition £2° (Fig. 8.14), which joins all the disjoint
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Fig. 8.14 Partitioning of Q-
computational domain £2 into

disjoint subdomains

OPAD — UQ/I’AD or

(exemplified for Npap = 4)

and border set of partition £2°

joining 2PAD

partitions, i.e.,

NpaD Nep,
Q=" U= JeruQ’ wih =[] (8.111)
V4 e

where a partition p and any other partition g are disjoined if

Q2rNR9=0 with e’z ¢ 29

(8.112)
(p#4q. p.g=1,...,Npap)

and
QNP =%+ @ (8.113)

for a node I at location 9 in element e, where Npap = Npa — 1 is the number
of disjoint partitions. While all elements belonging to the disjoint partitions
can be concurrently assembled in the fast multithreadening mode, the elements
of the remaining partition £2° must be summed by single threaded execution.
However, provided that 2° C 2 is small compared to the disjoint partitions
QPAD — UJPVPAD 27, the sequential part of the assembly is insignificant and the
parallelized assembly in total provides superior speedups in practical computation.
In FEFLOW an efficient and fast agglomeration algorithm is incorporated to find the
suitable disjoint partitions of a mesh. To hold £2° small as possible, the algorithm
runs recursively for cases where £2° can be further split into disjoint subpartitions.
Practically, no more than three recursions are needed to find the minimum .QO,
which disjoins all £2PAP by only one element distance (Fig. 8.15).

8.11 Finite Element Basis Operations

Recalling the basic calculus operations for coordinate transformation described in
Sect. 2.1.5, the mapping (8.71) of isoparametric element geometry

Nen

a¢ =) Nj(n) (8.114)
J=1
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Fig. 8.15 Example of a partitioned 2D triangle mesh: Elements drawn in red indicate the border

set partition £2°

between global x and local np coordinates is associated with
Jacobian J¢ defined in the %* space
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in the %2 space

ax¢ dxS %azv,@ D e %W@ M .

Je = (111 le)e _| 9% 9% |_|i=
Jor I dx{ 9x3 A 3Ne(§ 7’)) o 8Ne(§ ’7)
Z Xy Z

J=1

(8.116)
and in the R' space

. 9xe NpN
J¢ = () = ( a);l) - (Z aNajg(g) 1,) 8.117)

J=1

To evaluate the flux vector divergence terms in the element matrices of (8.104) the
inverse Jacobian is required

aNg
356
VNS =T | G (8.118)
INY
e
where
L (Vs = T d5) U = T J5) (Tihdn — JihTn)\ .
|Je| (51055 — J51J53) (Ui J5s — J5J50) (UsJi — I d) in &
) (J31J5 = I35 93) UJ5 — IR 00 UhJdsn — Jhds)
_ 77 e e
J9y™! = 1 (Jzz _112) . 2
= Bae e in R
ac [Jel\=J5 Jf
1
_ in R!
[T
(8.119)

with the determinant of J*¢

TS TS5 = I505) = IS (I 05 = TG T5) + I (T J5 = T J5) i 9

|J| = Jidn = InJh in N
Ji in N!
(8.120)

Suppose the local shape functions are continuous and at least once-differentiable
with respect to the local coordinates 77, a necessary and sufficient condition for
(J¢)~! to exist is that the determinant of the Jacobian |J¢| of element e be nonzero
at every point 7 in £2¢:

[Tl #0 (8.121)
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The master element matrices and vectors appearing in (8.104) and (8.105), respec-
tively, are to be integrated over element volumes §2° and surfaces I'¢. The
integration in local coordinates becomes for a differential ‘volume’ element

d§2° =

dxy dx, dxs = |Je|d.§ d?]dé‘

dx1 de

= [J°|d&dn

dx; = |J¢|d&
rdrdpdz = 2mw|J¢|rd& dn

Cartesian

axisymmetric

RP (D =1,2,3)

(8.122)

and for a differential ‘areal’ element in Cartesian coordinates of % (D =1,2,3)

space:

dre¢ =

dxy dxp
9E o
dxp dy
e | < | o dé&dn
dx3 dx3
& an
dxp o
aﬂn aBZ
Iy dxy
o | < | % dnd¢
dx3 dx3
an a
Ix1 dxp.
335 aaZ
Iy dxy
e | x| a7 ||| 46d¢
dx3 oy
e a

X1
3— J
i )] o= | ()]«
xt
H(an)
‘§=+1
celi=y

in %!

= ()] -

e]
det | J§
I3
€]
et | J5,
I3
el
et | J§
I3

= V) + (T2 dE

% (Jzel)2 + (1262)25177

Jiady =
Jf3Jz€1 -

e ye
‘IIIJZZ -

Jnd3s —
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e 7e
J21J32 -
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e ge
J11J32_

€ €3
e e
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e e
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J13J22
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‘112‘]21
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at { = =1 in N3

at £=+1 in R3

at n = =1 in N3

at n = %1 in R?

at £ = %1 in R?

(8.123)

and in cylindrical coordinates of M2 (meridional) space (Fig. 8.16):
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m

Fig. 8.16 Axisymmetric finite element in global (cylindrical) and local coordinates

or e
‘ (‘;5) rdédg = 2x (jy) rdé = 2n/(JH)? + (J5)?rdE  at n = %1
% 12
re=
or J¢
‘ (‘j;g) rdndg = 2r (Jil) rdn = 21 J(U5)2 + (J5)2rdy  at & = %1
an 22

(8.124)
where r = ZIJVBN NS(E, n)rs.
In using (8.114)—(8.124) all integrals in (8.104) and (8.105) can be expressed

in the n—coordinate system. For example, the element advection matrix A€ of the
convective form (8.104) becomes in 3D

AfJ = fm Nleq'Vde.Qe
NG (n)
+1 9E
. . ) . 8.125
=/[ N,(n)q-<(J> v i )|J \dednde (8.123)
—1

on
ONj (1)
¢

and similarly for all other element integrals appearing in (8.104) and (8.105).
Typically, the integrals always take the form®:

8The local coordinates 7 commonly range —1 < 17 < +1, except in triangular or tetrahedral (and

partly pentahedral and pyramidal) geometries, where the lower limit is zero: 0 < n < 41, see
furthermore (8.128).



288 8 Fundamental Concepts of Finite Element Method (FEM)

+1
Il renvasina in 900
|
Joe f@)d2¢ = // fE mdedy in 92
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| S 0 o)
// g(E.n.0)(dédn, dnd, dEdE) in R
R T in 90
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where f(.) and g(.) are volume and surface integrand functions, respectively. We

observe that the dependency of the element e on the physical (global) geometry only
occurs in the Jacobian J*. Since the coordinate transformation is relatively simple,
the Jacobian matrix should be easily evaluated.

8.12 Numerical and Analytical Integration

The transformation of the geometry and the variable coefficients in the element inte-
grals (8.104) and (8.105) from the global coordinates « to the local coordinates n
results in algebraically complex expressions, which cannot be analytically evaluated
for distorted element geometries in general. However, in fact this is not an intrinsic
disadvantage because very efficient and exact numerical integration techniques are
available which makes the master element integration very cost-effective and highly
flexible for a wide class of finite elements under general geometric (i.e., distorted)
conditions.

For our needs the most efficient and, therefore, preferable numerical integration
is the Gauss-Legendre quadrature, e.g., [590], providing an optimal degree of
precision. Thus, the evaluation of the 3D, 2D and 1D elemental integrals of (8.126)
reduces to expressions with a triple, double and single summation, respectively, in
the following form:

+1 n n n
I renodzanas =3 35" my bt £
-1

p=lg=1r=1
+1 n n
|| remdsan =YYttty 1pon 8.127)
-1 p=1q=1

+1 n
| f®)de = Y Hyf(Ep)

r=1
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Table 8.2 Gauss-Legendre quadrature sampling points and weights for f_+11 f&de =
Y =1 Hy f(§p)

Order n )4 £p H,

Linear 1 1 0 2

Quadratic 2 1 +1/4/3 1
2 —1/4/3 1

Cubic 3 1 +40.6 5/9
2 0 8/9
3 —/0.6 5/9

Quintic 4 1 +/GB+a)/7 0.5—1/(3a) a= 448
2 +JG=a)7 0.5+ 1/(3a)
3 —JB=a)]7 0.5+ 1/(3a)
4 —/B+a)/7 0.5—1/(3a)

where n > 1 is the number of quadrature points in each direction, &,, 7, ¢,
denote the Gauss point local coordinates in .Q;, and H,, H,, H, are the associated
quadrature rule weights. Note that for 1D elements the integrals are commonly
evaluated analytically. Choosing n Gauss points a polynomial expression f(.)
of degree 2n — 1 can be exactly integrated. The positions and weights for the
Gauss-Legendre quadrature rule up to order n = 4 are listed in Table 8.2. When
the integrand f(.) is of different degree in &, 7, ¢, the number of Gauss points
should be selected on the basis of the largest-degree polynomial. The minimum
allowable quadrature is one that yields the volume or area of the element exactly
[590]. For undistorted elements (such as rectangular or brick-shaped elements)
the 2- and 3-point Gauss-Legendre rules (i.e., Gauss points in each direction) are
sufficient to evaluate exactly all interesting integrals of linear and quadratic element
types, respectively, because the Jacobian of the mapping J*¢ is constant for these
geometries. However, for distorted elements the Jacobian is no more constant and
integrals involving more than one derivative cannot be exactly integrated since the
integrand is a quotient of two polynomials [341]. In general, f(.) may not be really
polynomial due to the complex dependency of the integrand on J¢ and the possible
presence of other variable coefficients such that the required number of Gauss points
can only be estimated. In practice, an optimal order of Gauss-Legendre integration is
used, which is defined as one that guarantees the highest possible accuracy and rate
of convergence while minimizing the computational cost. For linear quadrilateral
elements 2 x 2 x 2 and 2 x 2, and for quadratic quadrilateral elements 3 x 3 x 3 and
3x3 are of optimal order in 3D and 2D, respectively. For the areal triangular element
(triangle), the 3D linear tetrahedron, the 3D linear triangular prism (petahedron) and
the 3D linear pyramidal element (pyramid) specific integration points and weights
are applied [84,280,586,590] as follows:
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Table 8.3 Quadrature points and weights of formulae (8.128) of quadratic order for linear
triangle, linear tetrahedron, linear pentahedron and linear square pyramid

Type m. p Sp p é'p H,
Triangle 311/2 0 1/6
2 1/2 1/2 1/6
30 1/2 1/6
Tetrahedron 4 1 a a a 1/24 a = 0.13819660
2 b a a 1/24 b = 0.58541020
3a b a 1/24
4 a a b 1/24
Pentahedron 6 1 1/2 0 +1/4/3 1/6
2 1/2 1/2 +1/4/3 1/6
30 1/2 +1/4/3 1/6
4 1/2 0 —1/4/3 1/6
51/2 1/2 —1/4/3 1/6
60 1/2 —1/4/3 1/6
Pyramid 8 1 +c/+/3 +¢/+/3 1—c  0.1007858820798250 ¢ = 0.455848155988775
2 —c//3 +c//3 1—c  0.1007858820798250
3 4e/v3 —c/A3 1—c  0.1007858820798250
4 —c/3 —c/A/3 1—c  0.1007858820798250
5 4+d/3 +d/v3 1—d  0.2325474512535080 d = 0.877485177344559
6 —d//3 +d/\3 1—d 0.2325474512535080
7 +d/3 —d/3 1—d  0.2325474512535080
8 —d//3 —d/\3 1—d 0.2325474512535080
triangle
1 1-¢& m
f@ydre = / fE mdnde = > HyfEpmp)
re 0 0 =1
tetrahedron
1 pl=§ pl=f— m
| s@ae= [ [ [ penodeinds = Y- sy 5
Qe 0 0 0 =1
pentahedron

1 pl—¢ pl m
[ r@ae = [ [ renvacina = Xt G-ty
pyramid

1 pl=t pl=¢ m
[ s@agr= [ [0 [ e oazanas = Xt G-ty

(8.128)

where m is the total number of integration points. The sampling points and weights
for the linear triangle, linear tetrahedron, linear pentahedron and linear square
pyramid of quadratic order with m = 3, m = 4, m = 6 and m = 8, respectively,
are listed in Table 8.3. Figure 8.17 illustrates the locations of the integration points
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Fig. 8.17 Location of Gauss
points symbolized by X for
linear and quadratic
isoparametric elements used
in FEFLOW in 2D (3-point
rule for linear triangle,
4-point rule for linear
quadrilateral and 9-point rule
for quadratic quadrilateral)
and 3D (4-point rule for
linear tetrahedron, 6-point
rule linear pentahedron,
8-point rule for linear
hexahedron, 8-point rule for
linear pyramid, 27-point rule
for quadratic hexahedron)

in the master element £2¢ for the 2D and 3D finite elements used in FEFLOW. For
axisymmetric elements the same quadrature rules are applied than in 2D.

Table 8.4 gives an estimation of arithmetic operations required for the numerical
integration of one element. The working steps 1-7 in Table 8.4 indicate the
effort from the coordinate transformation, which has to be performed basically,
however, only once for all integrands in consideration. We recognize that the
computation of the Jacobian and the terms related to the global derivatives are
the most expensive steps. Once these terms are available the effort in computing
additional terms and extensions in the integrand functions (e.g., introducing variable
coefficients and anisotropic relations) remains low, which makes the numerical
integration very flexible and efficient. We also see that the required number of total
operations increases significantly with more complex (higher-order) finite elements,
in particular for 3D finite elements, however, in favor of a higher accuracy in the
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Table 8.4 Estimation of computational effort for numerical integration of 2D and 3D finite
elements: Number of required arithmetic operations (sum of multiplications, divisions, additions
and subtractions) to build typical matrices of (8.104) for one element e via Gauss-Legendre
quadrature

2D 3D
Element type A Cl U l ‘ ) \%
3-node 4-node 8-node 4-node 6-node 8-node 20-node
triangle quadrilateral quadrilateral tetrahedron pentahedron hexahedron hexahedron
Npn 3 4 8 4 6 8 20
Gauss points m 3 4 9 4 6 8 27
1 Nf 2 17 48 3 22 68 255
2 Wi 0 4 » 0 4 16 112
3 o 0 4 2 0 4 16 112
4 B 0 0 0 5 16 128
5 J° 24 32 64 72 108 144 360
(o 2 D? Ngx)
6 |J°|ld 4 4 4 15 15 15 15
7 (J)! 5 5 5 28 28 28 28
8 VN; 24 32 64 72 108 144 360
(o< 2D? Ngy)
9 [N} 3 4 8 4 6 8 20
(¢ Ngn)
10 [ NfN§ 6 10 36 10 21 36 210
(o¢ $Ngn(Npx + 1)
11 [Nfq-VN§ 36 64 256 96 216 384 2,400
(x 2D N3
12 [VN;-(D-VN$) 48 80 288 180 378 648 3,780
(o< D? Ngn(Nex + 1))
Operations per Gauss point 152 256 817 480 915 1,523 7,780
(summation of steps 1-12)
Operations per element 456 1,024 7,353 1,920 5,490 12,184 210,060
(multiplied by m)

approximation. Nevertheless, to maintain the generality in the geometric shapes of
the used finite elements the numerical integration is indispensable. All quadrilateral,
pentahedral and hexahedral elements lead to very complicated integral expression
which can only be tackled numerically. Analytical evaluation is available only for
specific element shapes. In Appendix H we evaluate the element matrices of (8.104)
on an analytical basis for the linear 1D element, the linear 2D triangle and the linear
3D tetrahedron assuming constant coefficients. Only for these types of elements the
Jacobians are always constant for every element shape, which make these elements
favorable to analytical integration. In Appendix H we also discuss exceptions for
the quadrilateral, hexahedral, pentahedral and pyramidal element, where a constant
Jacobian is only attainable for an undisturbed element shape, such as the rectangle
or parallelogram for the quadrilateral element, the brick or parallelepiped for the
hexahedral element, the triangular prism with parallel top and bottom surfaces for
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the pentahedral element and the pyramid with a parallelogram or rectangular base
and oblique shape for the pyramidal element.

8.13 Temporal Discretization

8.13.1 General

The semidiscrete Galerkin approximation (8.96) of the governing ADE has led to
system of ordinary differential equations (ODE’s) written in the form (8.100)

O ¢+K -¢p=F (8.129)
for solving ¢ = ¢(¢) associated with IC’s at t = 1,

P(to) = o (8.130)

where O is called a consistent mass (CM) matrix because it is defined consistent
with the weak formulation in (8.98) and (8.99) assuming the separability of space x
and time 7. It remains to solve the resulting semidiscrete equations (8.129) for ¢(¢)
via appropriate and cost-effective time-integration methods, which integrate (8.129)
in time ¢ to trace the temporal evolution of ¢(¢) from the initial solution ¢.

Let us rewrite (8.129) in a normalized form, viz.,

op+p-dp=f with p=0""K and f=0""-F (8.131)

provided that O is invertible with |O| # 0, we find the solution of this first-order
system of ODE’s as [10]

t
O(t) = e M) L g 4 / eTHITI L f()dt (8.132)
- h —
decay forcing

consisting of two components: (1) the exponential decay of the homogeneous part
and (2) the particular solution of the forcing contribution. However, we recognize
that the exponential matrix e ! is complex and not an algebraic statement, hence
not directly solvable. We have to conclude that, in general, it is not possible
to integrate (8.132) (and accordingly (8.129)) on an analytical basis and further
approximation methods are required to obtain a set of algebraic equations in terms
of the nodal state-variable ¢.

There is an abundance of numerical methods for solving ODE’s, which are
categorized as methods of lines in the classic literature [331, 441, 462]. Among
the wide variety of available methods, however, from the practical point of view,
in particular the computational cost, we have interests only in efficient two-stage
single-step time marching recurrence schemes, where for stability reasons implicit
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Fig. 8.18 Time marching ¢n + 1 (to be determined)
recurrence of ¢ in the finite

time interval (¢,, f, ), where
hi+1 =1, + At,

¢n (known)

~Y

1, 1+

or semi-implicit (so-called .4—stable [110]) algorithms will be preferred, which are
stable independent of the used time step. Considering ¢ (¢) within the finite interval
(s, tpg1) With

tit1 =ty + Aty (8.133)

where the subscript n denotes the time plane and A¢, = #,4 — f, is a variable time
step length, the state-variable ¢(¢) is defined as

Dn = P(tn) (8.134)

at the previous (old) time plane n and as

Gnt1 = O(tyy1) (8.135)

at the new time plane n + 1. In each interval, ¢, 4 is recursively solved from the
preceding values ¢, at beginning of the time step At, as shown in Fig.8.18, and
(8.132) can be recast into an incremental form, viz.,

th+41
i1 = e HA L, 4 eTHIH / et f(vydr (8.136)
tn

While (8.136) is still an exact solution in time ¢ without any approximation, it is
necessary to expand the exponential decay matrix e “#4 within the time step At,
into a power series. The most typical linear approximations for e #4" are listed in
Table 8.5 and will be discussed in the following. However, before we proceed and
introduce the appropriate time stepping schemes in detail, we have to consider first
the approximation of the mass matrix O called mass lumping.
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Table 8.5 Linear §—approximations® of the exponential decay matrix e ~H4%

Algorithm 0 Approximation

Forward 0 6 — At,pn

Backward 1 [6 + At,pu] ™!

Trapezgid é [6 + (Aty/2u]™' - [6 — (At,/2) 1]
Galerkin 3 [0+ QAL /3]~ - [6 — (At,/3)u]

2 Weighting coefficient (0 < 6 < 1) classifies approximation methods

8.13.2 Mass Lumping

The Galerkin formulation naturally leads to consistent mass matrices O = Ze oe,
which typically distribute the mass of an element over all associated nodes. This
can be seen in the discrete element mass matrices O°¢ of (H.8), (H.23) and (H.41)
in Appendix H for the linear 1D, 2D triangular and 3D tetrahedral element,
respectively. However, there can be different numerical reasons to concentrate
(lump) the mass of an element on the mesh nodes. Mass lumping is a typical feature
of the FDM and can also be useful in the finite element context for certain time
stepping schemes. The principal motivation behind this technique is the generation
of a mass matrix O, which is diagonal and readily invertible to evaluate O ! of
(8.131) in a trivial way. In contrast, the CM matrix, which is sparse and banded,
has an inverse that is dense, such that the formulation (8.131) becomes inferior to
(8.129) in practical computations.

To permit an equivalent formulation of the mass matrix O¢ of an element e we
replace

O°=0f=| RENfNSAQ® — 8 | RENFdQ° (8.137)
Qe Qe

consistent lumping

where §;; is the Kronecker symbol (2.7). Since ZIJVB:NI N§ =1, (8.67), the lumping
procedure is equivalent to summing the rows of the CM matrix: Of; = ), Oj,.
However, this row-summing technique of mass lumping is usually only applicable
to linear elements, where the diagonals are always positive. We note that for higher-
order elements specific rules of mass lumping are required [590], for instance [129]:

'e e e e e N e e e
o, = | Jo RAR° [ NiNjd2 /Z,iNl C NENSdQe for 1=,
for I #J
(8.138)

In Table 8.6 analytical formulations of the consistent mass (CM) and the lumped
mass (LM) matrix are compared for the linear 1D, 2D triangular and 3D tetrahedral
element (cf. Appendix H). Using numerical integration, the quadrature rules are
directly applied to the 85y [,. Nfd $2° term to yield a diagonal matrix for O°.
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Table 8.6 Consistent versus

lumped mass matrix for the Consistent Lumping

Y X enre e e e
linear 1D, 2D triangular and Element type /. g NiNjd$2 8 J. g Njd$2
3D tetrahedral element - Axt (2 1) Ax¢ ( 1 0)

(cf. Appendix H) 6 \12 2.\01

A 211 100
A° A

> 41121 Llot1o
112 001

2111 1000

A} velr1211 ve o100
{1121 “loo1o

1112 0001

Mass lumping is generally desired for an explicit time integration scheme to
perform O~! very easily in use of (8.131) because the application of a CM matrix
for the explicit scheme becomes too expensive. On the other hand, for implicit time
integration methods mass lumping is commonly neither necessary nor preferred.
In general, CM matrix formulations provide higher accuracy, see [209, 210, 590].
Exception is given for unsaturated flow problems, where fully implicit time stepping
schemes in combination with mass lumping have shown superior to CM.

8.13.3 Galerkin Approximation in Time

Similar to the spatial approximation (8.16) we can use the standard finite element
expansion for the time-dependent state variable as

()~ p() =Y Ni()p; (j=n.n+1..) (8.139)
j

within the time interval (¢,,t, + At,). In the linear case with j = n, n + 1 the
interpolation functions are

N,, =1- T, Nn+l =T (8140)
where
t—t,
= 8.141
T A ( )

Inserting (8.139) into (8.129) a temporal weighted residual approximation, similar
to a spatial weak statement (8.36), can be written

th+ Aty . .
/ Wi(t)[o . (Nn(bn + Nn+1¢n+1) + K- (Nn¢n + Nn+1¢n+l) _F]dt =0
tn
(8.142)
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with

. 1 . 1
N, =— ., N, =
At, A

(8.143)

where w;(¢) represents the weighting function set to be specified below. If we
substitute (8.141) with dt = At,d t into (8.142) and divide by At,, the following
time marching recurrence formula results

1 1 1
(O/O WiAt dr—i—K/O Wifdf)'¢n+l_

1 1” 1 1 (8.144)
(O/ Wi dr—K/ w,-(l—r)dt)-qb,,—/ wiFdt =0
o Al 0 0
Introducing a weighting coefficient 6 defined as
1

itd

o = Joirdr (8.145)
.[0 W,‘d‘L’

and assuming a linear variation of F'(¢) ~ N,(t)F, 4+ N, +1(t) F}, 4+ within the time
interval where

fol w; Fdt

Jo WiPAT B 6+ F(1—6) (8.146)

fl widt
0 1

the final form of the recurrence scheme (8.144) is given by

(a7, +59) 0 = (7

_K(- 9)) cbu+ (Fypp 10+ F,(1—0))  (8.147)

to solve ¢, at the new time plane n + 1 from the preceding solution ¢, at the
previous time plane n. Using a Galerkin weighting with w; = N, the weighting
coefficient (8.145) yields 8 = 2/3.

8.13.4 The 0 —Family of Time Integration Methods

Introducing a more general weighting coefficient (0 < 6 < 1), we can write

Oty + 0AL,) = 09(1, + Aty) + (1 —0)p(1,)
Ft, +0At,) =0Ft, + At,) + 1 —-0)F(t,) (8.148)
bty + 0A1L,) = 0¢(1, + Aty) + (1 —0)(1,)
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Using the Taylor series expansion for ¢,+; = ¢(t, + At,) about t, and ¢, =
&(t,+1 — At,) about 1,41, respectively,

. 2 . 3 e
¢n+l = ¢n + A[nd)n + Azt” ¢n At” ¢n z. . (8.149)
¢n = ¢n+l Atn¢n+l + ¢n+l tﬁ ¢n+l + ...

we obtain a forward difference approximation, called forward Euler (FE)

b = ¢”+A‘t & — O(Aty) — O(ALY) (8.150)

and a backward difference approximation, called backward Euler (BE)

Pni1 = ¢’”+A‘t Py O(At,) — O(Ar2) (8.151)

which are accurate to a first-order truncation error of O(At,). Inserting (8.151) and
(8.150) into (8.148) it results’

Put1 — Pu

b1, + OAL,) =
o(t, + ) = A

+0((0 — DAy, At)) (8.152)
We recognize from (8.152) that the difference approximation is of second-order
accuracy of O(At?) if (and only if) 6 = %, for all other values of 6 within (0 <
6 < 1) the difference approximation is accurate to a first-order truncation error of
O(At).

Common time stepping schemes result if choosing 6 in an appropriate man-
ner, viz.,

6 =0 explicit scheme, O(At,)

0= % trapezoid rule (Crank-Nicolson scheme), O(At?) (8.153)
0= % Galerkin scheme, O(At,) .

6 =1 implicit scheme, O(At,)

9The 2nd-order derivatives are obtained by repeated application of 1st-order approximations:

¢n+l d)n + O(Al,l), (;b'” — ¢n+l ¢n O(A[n)

Put1 = At, At,

so that
(5/1-‘,-1 = d;n + O(Atn)
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Inserting (8.148) with (8.152) into (8.129) we obtain the following algebraic system
of equations

(0] o
(Atn +K9)-¢n+1 = (A—tn—K(l—G))-an+(F,,+19+F,,(1—9)) (8.154)

and accordingly for the normalized form (8.131)

o o
(4 +#0) o = (5, B0 =0) G+ (finf+ £(1-0)  B.155)

to recursively solve ¢, at the new time plane n + 1 from the preceding solution
¢, at the previous time plane 7, starting from the IC (8.130) at n = 0.

8.13.5 Predictor-Corrector Methods

A powerful alternative to the two-stage 6—implicit/explicit recurrence solution
(8.154) is the predictor-corrector method which was originally developed by Gresho
et al. [209, 211, 212], hereafter referred to as GLS. This time integration method
monitors the solution process via a local time truncation error estimation in
which the time step size is cheaply and automatically varied in accordance with
temporal accuracy requirements. It has been proven to be a cost-effective and robust
procedure in that the time step size is increased whenever possible and decreased
only if necessary. The predictor-corrector methods provide a rational mathematical
basis for adaptively selecting the time step via error control. Such an adaptive time
stepping is clearly superior to procedures based exclusively on empirical relations,
e.g., a target-based or heuristic time stepping control as discussed in [124,141,582].
In the present analysis both 1st- and 2nd-order accurate variable step predictor-
corrector schemes are of interest. The 1st-order accurate scheme refers to an explicit
forward Euler (FE) formula as the predictor and the implicit backward Euler (BE)
method as the corrector. It will hereafter be termed as the FE/BE predictor-corrector
scheme. For the 2nd-order accurate method the explicit method is based on the
Adams-Bashforth (AB) predictor, while the trapezoid rule (TR) is used as corrector
with 2nd-order accuracy. It will be hereafter called as the AB/TR predictor-corrector
scheme. The schemes are applied to the system of equations (8.129) or (8.131)
written in a simplified form:

¢=r(@) with r(@)=f-—p-¢ (8.156)
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8.13.5.1 GLS 1st-Order Forward Euler (FE)/Backward Euler (BE)
Scheme

Predictor Solution
The FE scheme applied to ¢ = r(¢) gives, cf. (8.149),

P = b+ Aty () = by + Aty (8.157)

where the superscript p indicates the predictor values at the new time plane n + 1.
The predictor provides a tentative solution at n + 1.

Corrector Solution

The BE corrector scheme applied to (8.156) is

Gt = Gn + At (dur1) = o + Alypui (8.158)
whose inversion yields the ‘acceleration’ vector

: o Gut1 — Pu
On+1 = A—t,, (8.159)

to be used for preparing the next predictor step on the RHS of (8.157). The corrector
(8.158) provides the actual solution at n + 1, which is commonly depart from the
predictor solution (8.157).

Local Truncation Error (LTE) Estimation
The LTE d, 4, is defined as the residual

dit1 = Put1 — P(tat1) (8.160)

between the approximate solution ¢, +; and the exact solution ¢(t,+) at the new
time plane n + 1. Practically, we determine the exact solution via Taylor series
analysis and assume that the exact solution is available at the beginning of the time
step. We obtain for the FE formula

d5+1 = ¢,117+1 — d(tu+1) R X
= ¢u+ Aty — (60 + Atuhy + %2 d, + S5y +..)  B.16D)
= 2, +O(AL))
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and for the BE scheme

dpr1 = Pnt1— Ptnt1) , \
= ¢n + Atn¢n+l - (¢n + Atn¢n+1 - %¢n+l + A%¢n+l — .. )
2 e
= F-dusr +O(AL)
= 25, +O(A))

(8.162)

taking into account that the exact solution is available at 7, (and not at #,4;) by
definition. From (8.161) and (8.162) it directly follows

1
di1 = 5 (Pus1 — ¢l ) + O(AL) (8.163)

by using d,+; = —de +O(At?). It provides an estimate of the LTE in a single BE
step, where ¢,,+; and qbf 41 are available from the corrector and predictor solution,
respectively, at time plane n + 1.

Time Step Selection

On this basis we can determine a useful formula for the acceptable size of the next
time step as follows. From (8.162) we find

ldns2ll _ (Afn+1)2 | Pt
1l Aty ol

where d, is available from (8.163). The idea is now to keep the expected LTE at
the next time plane n + 2 equal to a pre-set (tolerable, target) error measure €, i.e.,
ldptal = €. Since ¢pr1 = Pu + O(AL,) (see?), (8.164) permits an estimate for
the (potential) next time step size. Neglecting higher-order terms, we finally obtain
from (8.164)

(8.164)

¢ 1/2

Aty = Aty (—) (8.165)
[ dn+1ll

In this manner, the potential size of the next time step can be determined by the error

norm | d, 4| estimated from the difference between the predicted and corrected

solutions in (8.163). It can be used as a RMS error norm ||d,+1]||rums, cf. (8.28), or

as a maximum error norm ||dy 41| ... » cf. (8.29).
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8.13.5.2 GLS 2nd-Order Adams-Bashforth (AB)/Trapezoid Rule (TR)
Scheme

Predictor Solution

The 2nd-order AB formula applied to ¢ = 7(¢) is (e.g., see [211])

t t . At, .
b =yt Al ANy Al g 8.166
n+l 2 |:( Aln_l) At,—1 1:| ( )

where At, = t,41 —t, and At,—; = t, — t,—;. It represents an explicit two-step
method and requires two history vectors of acceleration at the current time plane
qZ)n and at the previous time plane qi),,_l. Since qZ),,_l is additionally needed, the
AB formula cannot be applied before the second step (n = 1). Accordingly, the
prediction has to be started with the FE predictor (8.157) and error estimation
therefore begins at the completion of the second step.

Corrector Solution

The corrector step applied to (8.156) is based on the 2nd-order accurate TR, which
reads

Aty
2

Aty
2

Pn+1 = Pu + [r(¢n) + r(¢n+l)] =¢n + (Cbn + d)n+l) (8.167)

whose inversion yields the history vector of acceleration
. 2 .
Pnt1 = E(¢n+l - ¢n) — @ (8.168)

to be used for preparing the next predictor step on the RHS of (8.166), where On
could be available from the previous application of the same equation. However,
Bixler [48] has shown that the previous accelaration vector qi)n used in (8.168)
can produce an oscillatory instability in the AB predictor in cases as a steady
state is approached. Under such conditions ¢, +; — ¢, in (8.168) will go to zero,
however, ¢, may not because of the recursive dependence on previous estimates of
the acceleration vector. Bixler [48] proposed an alternative to qf),, in (8.168) by the

following finite difference relation'®:

19Truncated Taylor series expansions for ¢, and ¢, 4 about #, give:

2

L AL . A
¢n71 = d)n - At}l*ld)n + Td)ns ¢n+l = ¢n + Atnd)n + Td)n
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d)n _ Aln—l (¢n+l - d)n) + Atn (¢n - ¢n—l

8.169
At, + Aty Aty At, + Aty At,—q ) ( )

which is also O(Atnz). Inserting (8.169) into (8.168) the following formula is used
to compute the acceleration vector for the next AB step (8.166), viz.,

(].5 —(2_ Atn—l ¢n+1 - ¢n _ Atn ¢n - ¢n—1
ntl At, + Aty At, At, + Aty Aty
(8.170)

Local Truncation Error (LTE) Estimation

In analogy to the FE/BE scheme in Sect. 8.13.5.1 the LTE is obtained for the AB
predictor

d5+1 = ¢n+1 D(tat1) .
=¢nt Aztn [(2+ - )d)n - At,, 1¢n 1] = o(tat1)

= o+ A2 [(2 4 25 )by — i (hy — Aty + 22, — )]
(b + 4ty bt big, B o))
= —5(2+3%=) ALk, + O(A)
(8.171)
where the exact solution is used at t,_; = t, — At,—; to invoke Taylor series.

Similarly, the LTE for the TR corrector results in

dyy1 = i1 — Pltnt1)
- ¢n At,, (¢n + ¢n+1) _ ¢(tn+l) - .
= ¢ + At” [ (g1 — Atn?l}ﬂ-l + A%?T-l — )+ busi]
—(¢n + Aty — S gt + 2y — O(Af:))
= %"3%”1 + O(At}

= AL+ o)

(8.172)

Using the first expression to write ¢, = %Td’”l‘ + A'” L ¢, and inserting into the second formula

with AZ'” ¢'n = ¢”+Alrn P _ ¢'m we obtain

b

_ ¢n _¢n71 Atnfl ¢n+1 _d)n _ )
T At + Aty ( Aty n

After some manipulations we finally find

(i) — A[n—l (d)n-‘rl — ¢/1) + Atn (¢/1 — ¢/1—1)
" A[n + A[n—l Atn Atn + Atn—l A[n—l
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From (8.171) and (8.172) we can directly express the LTE of a single TR step as

¢n+l - qb,],)-;-l 4
3(0+57)

providing a function of the available predictor solution ¢! 1 and corrector solution
@, +1 at the time plane n + 1.

Time Step Selection
In analogy to Sect. 8.13.5.1 we can estimate the next time step size for the AB/TR

scheme based on the requirement that an error norm for the next step should equal
a pre-set tolerance measure € = ||d,+>|. From (8.172) we find

4 Ao\ 1,
ldniall _( f+1) | Pn+1ll 8.174)

Idosill — \ A, lln

where d, 41 is known from (8.173). Neglecting higher-order terms and since
bdn+1 = ¢, + O(Aty), we finally obtain from (8.174) the following relation

1/3

€

Atyyr = At (—) (8.175)
! "\lldut1

which is used to compute the potential next time step size.

8.13.5.3 Major Solution Steps and Tactic of Time Step Control

In Table 8.7 we summarize the major solution steps of the lst-order accurate
FE/BE and 2nd-order accurate AB/TR predictor-corrector schemes. In step O the
time marching procedures are initialized by computing the acceleration vector (;50
based on the IC (8.130): ¢(ty) = ¢¢. Furthermore, an initial time step size Aty is
chosen, which should be kept sufficiently small. The error tolerance € is the only
user-specified parameter to control the entire adaptive time marching process. It has
significant effect on cost and accuracy. A too large value of € possesses a poor error
estimate and the AB/TR becomes prone to oscillate when large time steps are used.
Too small an €, however, will make the (albeit accurate) computations unacceptably
expensive. In practice, it has been shown in many applications that a relative error
per time step of € = 1073-10"* is quite optimal with respect to accuracy and
performance. Note that a decrease of € by one power will approximately double
the total number of time steps.
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The computations per each time step consist of five major solution steps as listed
in Table 8.7. At first, the predictor solution ¢ | at the new time plane  + 1 has to
be computed by using the explicit 1st-order accurate FE and 2nd-order accurate AB
schemes. The AB scheme must start at n + 1 as the FE scheme because the required
acceleration vector ¢,_; is only available from the second step onward. Only at the
second step n = 2 the usual AB predictor procedure is started. All the predictors
are cheaply computable and their extra effort is small. While these predictors are
subsequently needed to estimate the truncation error for the time step control, they
are also useful to linearize the governing PDE in the presence of nonlinearities.
Step 2, the corrector ¢, +1, is the actual solution of the governing PDE, O - qb + K-
¢ = F, via the implicit BE and TR schemes. If we additionally admit nonlinear
dependencies in the form

O(p)- ¢+ K(p)-¢ = F(p) (8.176)

we can solve the linear system by using the predictor solution 455 41 at the new time
planen + 1

O(¢" ! '
<—é§’;’l) + K(qﬁfﬂ)) b1 =0(¢) ) - [Eqs" +( - 1)¢”]
+Fn+l(¢;]1)+l)
(8.177)

where 6 = % for the TR scheme and 6 = 1 for the BE scheme.

Once the corrector solution ¢, is available at the new time plane n + 1, in
step 3 the acceleration vectors ¢ns1 can be computed, which will be needed in
the following n 4 2 time step in the predictor and AB-corrector. With the known
predictor and corrector solutions, ¢ 41 and ¢, 41, respectively, in step 4 the LTE
d, 4+ is determined at the current time plane n 4 1. Appropriate error norms are
applied to the vector d,, . Commonly, the RMS L, error norm (8.28)

—_

2

11 &
[ dn+1llrms = [Fp (2— Z d},n“)} (8.178)
j=1

max ;—

or the maximum L, error norm (8.29)

”d"‘H”Loo = mjax|dj,,,+1| (8179)

max

are chosen, where ¢, is the maximum value of the state variable ¢, detected at
the time plane n + 1 to normalize the error vectors.

In step 5, the potential next time step size At,4; is determined by using
the just estimated error norm ||d,+1|| € (||dn+1llrms, [|dn+1llLs,) With the user-
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supplied error tolerance €. The following criteria are used to monitor the progress
of solution:

1. If
Aty41 > Aty (8.180)

the current solution ¢, 4 is accurate within the error bound defined by € and the
increase of the time step is always accepted. In practice it has shown to be useful
that the increase of the time step should be optionally constrained by further
conditions. Firstly, the time step should not exceed a prescribed maximum size,
ie., Aty41 < Atma. Secondly, the rate for changing the time step size & =
At,41/ Aty has also to be limited, where & > 1 can be 2, 3 or even more. Those
constraints are beneficial to prevent inefficient oscillations in the time step size
prediction. Then, the actually increased new time step is determined from

AN = min(Aty 41, Atwax, E Aly) (8.181)

provided that At;ﬂ“lal > At,.
2. Else if

VAL, < Atyyy < Aty (8.182)

where y is typically 0.85, the solution ¢, 4 is accepted but the time step size is
not changed, i.e., Az, 4| = At,.
3. Else if

Aty41 < yAt, (8.183)

the solution ¢,4; cannot be accepted within the required error tolerance €
and has to be rejected. The current time step must be repeated with a reduced
time step size. The reduced time step is computed from (8.165) and (8.175),
respectively, by replacing ||d||,+1 and Af, with the just estimated ||d||,+. and
Aty 41 to obtain

At € 3
Ared = —n (— 8.184
= as GGa) (8159

where ¢ = 1 for FE/BE and ¢ = 2/3 for AB/TR scheme. The new solution
restarted with this smaller time step is again tested against the error conditions
and further step reduction can follow. However, up to 12 such reduction cycles
are only allowed, then the algorithm signals to restart the overall time stepping
procedure under stronger error bounds and initial time step (e.g., decrease €
and/or Atg).
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After finishing solution step 5 for an acceptable solution ¢, 1, the time stepping
procedure proceeds to the next time plane n + 2, where it begins again with
step 1 of Table 8.7. With the proposed predictor-corrector technique we can vary
the size of the time step based solely on temporal accuracy requirements. Such
an error-controlled adaptive time step selection strategy can follow the ‘physics’
of the underlying processes more intelligently and efficiently in comparison to
heuristic rules. For example, the physics may require a small time step to follow
a steep concentration or temperature profile over certain times or to adapt a sudden
change in transient BC’s, while at later times it may be sufficient to follow a slow
development of a flow or transport regime in time with reasonably large time steps.
In either case, the predictor-corrector algorithm will usually automatically select the
appropriate time step in a reliable manner, where the time step is increased whenever
possible and decreased only when necessary.

8.13.6 Stability Properties

Any of the time marching recurrence schemes derived above can be written for the
homogeneous solution (i.e., the source/sink of error is unimportant in the context so
that we can assume F' = 0) in the form

Put1 = A - Py (8.185)

where A is the amplification matrix, which is given for the exact solution by the
exponential decay relation (8.136)

A=e¢ P n=0"1"K (8.186)
and for the introduced time stepping schemes by the approximation

A=[0+0KA,]" -[0-(1-60)KAL]

5 (8.187)
=[6+0pAt]  -[6— (1 —0)uas,]
in which 6 identifies the different recurrence algorithms. Table 8.5 lists the preferred
linear single-step operators for particular 6 values. It is obvious as A is recursively
applied to each new vector ¢,, the stability of the time integration method requires
that any occurring approximation error must ultimately decay. Thus, A must be a
bounded operator and the time integration scheme is considered stable for |A| < 1.
The stability of the time integration approximations can be further analyzed
via modal decomposition. The solution ¢ is expressed in terms of its linearly
independent eigenvectors and eigenvalues by
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Np
= @i M (8.188)

i=1

where ¢p; are the eigenvectors and A; are the eigenvalues. Applying (8.188) to &+
pn-¢ =0,(8.131), with f = 0, it leads to the eigenproblem in the form

(N - 6/\,) c@i = 0, Vi. (8189)

Since the eigenvectors have the properties of modal orthogonality in the form cp]T. .
(6 - pi) = 8, we find after multiplying (8.189) by gojr

@f (- pi) = Ai8y (8.190)

showing that the eigenvectors are also orthogonal with respect to pt. Now, we assume
that the semidiscrete solution can be approximated in terms of the eigenvectors as

Np
=) iyit) (8.191)

i=1

where y; () represent the mode participation factors to be determined. Substituting
(8.191) into ¢ + p - ¢ = 0, premultiplying with gojr and applying the modal
orthogonality conditions, leads to the result

)}i[‘P]T"(é‘(Pi)]+J’i[sojr'(,u-cpi)] =0 or
Vi + yiAid; =0 or (8.192)
Yi+yidi =0 Vi

This modal formulation is very advantageous because it decouples the original
equation into a sequence of scalar evolution equations foreachmodei = 1,..., Np.
By applying the above time integration techniques, same as used for the original
problem, now to the modal equations (8.192) we obtain similar to (8.185)

i)n+1 = Ai(Yi)n (8.193)

where A; is the scalar amplification factor of the ith mode, which is given for the
exact solution by

A; = e A (8.194)
and for the introduced time stepping schemes by

1= -0 AL,

A= 8.195
1+ 6A; At ( )
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AT = = A L

Fig. 8.19 Amplification factor A; (decay function) for various linear # —approximants (8.195) in
comparison to the exact solution e % 4% of a mode i with eigenvalue A;

providing a scalar analog to (8.186) and (8.187), respectively. Taking into account
that the eigenvalues A; cover the full eigenspectrum ranging between a maximum
eigenvalue Ayx and a minimum eigenvalue A i,

Ai = (AmaXs ceey /\min) (8196)

which can comprise several orders of magnitude, the requirement for stability is that
the amplification factor A; must be |4;| < 1, i.e.,

1= (1= 60)A, At
—1 —_— 1 .197
ST oixenAnL (8.197)

holding for all eigenvalues A; of the system.

Figure 8.19 illustrates how the amplification factor A; of a mode i varies with
A; At, for various 6 of the four difference operators in comparison to the exact
exponential decay e*4", where § € (0, %, %, 1) represents the explicit FE, the
implicit TR (Crank-Nicolson), the implicit Galerkin and the fully implicit BE
scheme, respectively. We easily recognize that the right-hand inequality of (8.197)
imposes no restrictions on values of A; Az, or 6. However, the left-hand inequality

requires for stability that

(1 =20)A; Aty <2 (8.198)
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when 0 < % On the other hand, we see that there are no restrictions for 6 > % Such
algorithms satisfying (8.198) independent of the chosen time step size At,, are called
conditionally stable (A—stable). The TR (Crank-Nicolson) (6 = %), the Galerkin
scheme (0 = %) and the implicit BE method (8 = 1) belong to this category. In
contrast, the explicit FE scheme (6 = 0) is stable only if A; At,, < 2, otherwise A4;
predicts unbounded (unstable) solutions with 4; — —oo as evidenced in Fig. 8.19.
Therefore, an explicit scheme is not an .4—stable method. As also shown in Fig. 8.19
the 2nd-order accurate TR scheme (6 = %) fits very well with the exact solution
and furnishes highest accuracy for A; Az, < 1 in comparison to all other linear
single-step schemes. The implicit BE scheme (6 = 1) approaches to the exact
solution A; — 0 for very large time steps A; At, — oo, while the Galerkin and the
TR schemes satisfy A; — —1. Apparently, the Galerkin method (0 = %) exhibits
an optimal approximation behavior over the entire A; Az, —range.

The A—stable time stepping algorithms satisfying (8.198) ensure boundedness
and thus unconditional stability independently of the time step At,. However,
A-—stability is not sufficient to ensure smooth and wiggle-free (nonoscillatory)
solutions. In fact, all algorithms which admit a negative amplification A; (see
Fig. 8.19) are prone to oscillatory behaviors if A¢, becomes too large. The condition
for nonoscillation (called £—stability) requires 0 < A4; < 1. The bound 4; > 0
gives with (8.195) the criterion

(1—0)A Aty < 1 (8.199)

to ensure nonoscillatory solutions. It is obvious that only the BE scheme (6 = 1) can
satisfy this condition for arbitrary step sizes Az, assuring A; — 0 for A; At, — oc.
Unlikely, in the TR scheme (0 = %) the time step has to be restricted by a critical
time step Az such as

2

At, < AtSM = (8.200)

/\max

to ovoid oscillations in the solution (known as Crank-Nicolson noise [568]), which
must be controlled by the maximum eigenvalue A .

Different methods exist for analyzing stability. One is the matrix method in which
the eigenvalues of the matrix are estimated. To get a first (but simple) assessment of
characteristic eigenvalues A; which are important to determine time step limitations,
such as (8.200), we can use 4, = p from (8.189) and estimate t = O~! - K on
an element level basis, e.g., [590]. Let us consider for the sake of simplicity the 1D
linear element (cf. Table G.1a of Appendix G), for which the element matrices have
been derived in Appendix H. We find for the diagonal contributions of the (lumped)
mass matrix O;; and diffusion matrix C; from (H.7) at a (global) mode i, assumiqg
a uniform meshing with element length Ax and constant parameters (storage — R,
diffusion — D):
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C; 2D /RAx 4D
4 A S S 8.201
! Oii Ax/ 2 ‘LM RAX2 ( )

written without advection, where we also drop the source/sink terms appearing in
(H.7) because stability is independent of the forcing functions. Then, the assessment
of condition (8.200) for the TR scheme yields'!

Aty < At & % (8.202)

" " 72D '

which indicates that the critical time step is proportional to Ax? for a diffusion-
dominant problem D > 0. We see that the smallest element size Ax dictates
the criterion. In practice, however, the TR (or Crank-Nicolson) criterion (8.202)
is commonly insignificant. Possible oscillations produced by the TR scheme are
strictly bounded and small if linear finite elements are used. This is exemplified
in Fig. 8.20 illustrating slight, but quickly damped oscillations in the temporal
development of the solution for the TR (Crank-Nicolson) scheme using a constant
time step larger than the critical step size (8.202). It is shown in [568] that Crank-
Nicolson noise is more significant for finite elements of quadratic or higher-order
type.

For a further analysis let us consider the spatio-temporal discretization of
the system (8.154) for a simplified 1D problem. Again, we use linear elements
thoroughly described in Sect. H.1 of Appendix H for a 1D domain as shown
in Fig.8.21. As indicated in Fig.8.21 the assembly of the elements leads to a
tridiagonal global matrix, where the final discrete equations can be expressed for
the row of global interior node i by using the specific matrix entries of (H.8) and
(H.10). For simplicity we drop source/sink and boundary terms and find for (8.154)
the following discrete equations of the 3-node (i + 1,7,i — 1)—stencil:

[2 - a0,6( L — 3% = 2) [pivrnss + [ 22+ 46,0( 2 + 2) o0t +

[2 - 26,0( 2 + 3% = 2)|p-rntr = [2 4+ a0 = 0) (L = 55 = 2)[prsin +

(2 - 20,0 =6)(22 + 2)]pon + [2 + 26,0 = 0)( L + 55 = 2) |61
(8.203)

written for the CM matrix and

"Since 0f = Rf‘ cm for a consistent mass (CM) matrix, the critical time step becomes even
smaller:
RAx2

3D

Aty < At
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solution, ¢[1]

time, t[d]

Fig. 8.20 Example problem of a transient diffusion in a 1D domain of L = 1 m discretized by five
linear elements with Ax = 0.2m, R = 1 and D = 10~ m?s ™' showing the history of Crank-
Nicolson approximate solution ¢(¢) at x = 0.3 m in time for a constant time step Az, larger and
smaller than the critical time step At,f‘“ = 0.23d, (8.202), in comparison to the exact solution

- Atne(% - ZZ—X - %)¢i+l,n+l + [R + AtnG(% + %)]Qbi,n-i-l -
Atne(% + ook %)¢i—l,n+l = Aty(1 - 9)(% b7 i %>¢i+l,n +

[ 20,1 = 0)(22 + 2 [pin + 201 = 0)(Ls + 7% — £ ) i1
(8.204)

written for the LM matrix, where the diffusion D, the advective flux ¢, the
storage R, the decay rate ¥ and the length of the linear 1D element Ax are assumed
constant.

Based on discrete equations such as in form of (8.203) or (8.204) a very common
and most useful method for analyzing stability is the classical Fourier analysis,
called von Neumann stability analysis, e.g., [149,209,376]. Von Neumann stability
results necessary conditions at least on a uniform mesh, regardless of BC’s. On this
basis it can be shown that nonoscillatory solutions for the TR (or Crank-Nicolson)
method are bound to the pair of inequalities

Cr<Pg<1/Cr, or Cr<Pg and Cr<1/Pg (8.205)
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Fig. 8.21 Node numbering and assembly to a tridiagonal global matrix for a uniform mesh of 1D
linear elements

in which
Cr= q*AAxt”, with ¢* =q/R (8.206)
and
- q;ﬁf , with D*=D/R (8.207)

derived for the LM matrix, where Cr is the Courant number (named after the famous
paper by Courant et al. [105]) and Pg defines the grid (mesh) Péclet number. The
first limit Cr < Pg is the ‘diffusion limit’ Az, < 7@Ax2/(2D) when Pg < 1 as
already stated in (8.202) and the second one PgCr < 1 represents the ‘advection-
diffusion limit’ Az, < 2R.D /q* when Pg > 1. The second Crank-Nicolson criterion
PgCr < 1 was also found by Perrochet and Bérod [415] by using a matrix method.

While the discrete equations (8.203) and (8.204) are .A—stable for 6 > %,
i.e., stability is guaranteed for any time step At,, nonoscillatory results require
additional limits which directly follow from (8.203) and (8.204). It can be easily

seen from (8.203) that the term [% — Atné’(% + % — %)] must be negative to

avoid oscillations in a CM formulation. It leads to a restriction for a minimum time
step size, viz.,
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- RAX2
0(6D + 3|g|Ax — ¥ Ax?)

At, for 6> 1 (8.208)

and additionally it should be required that (6D +3|g|Ax — 1 Ax?) > 0 which arises
a further constraint related to the decay rate

3
9 < —>_(2D + |q|Ax) (8.209)
Ax?

or a limit for the element length determined by the decay rate ¢

V992 + 24D
Ax < S+ 92?9+ P 90

(8.210)

The physical interpretation of a minimum time step size (8.208) for a consistent
mass formulation is that the mesh is too coarse to transmit and distribute a quantity
to the nodes of an element in a very short time interval so that bounded oscillations
become unavoidable. However, we observe from (8.204) that such a minimum time
step constraint does not exist for mass lumping, since [—Atne(% + % - %)] is
always negative here, provided that (8.209) or (8.210) are satisfied. That means, the
restriction for the decay rate (8.209) or (8.210) are present both for CM and LM
matrix formulations. [Note that it could be possible to lump also the reaction matrix
term similar to the LM matrix as discussed in Sect.8.13.2, then the restrictions
(8.209) or (8.210) would disappear.] We illustrate in Fig.8.22 for a 1D example
problem the oscillatory effect of CM if the time step is too small violating (8.208)
and that mass lumping produces nonoscillatory results for the same time step. In
practice, however, the restrictions (8.208), (8.209) or (8.210) are not really crucial
because the mesh coarseness is commonly not achieved and even if oscillations of
this type are caused by too small time step sizes in a coarse mesh they are quickly
damped out in progressing the time steps. Nevertheless, due to the higher accuracy
the CM formulation (cf. Sect. 8.13.2) is generally the first choice in the present finite
element analysis.

The stability criterion (8.198) represents a serious restriction for the explicit FE
scheme ( = 0). A comprehensive stability analysis is given by Hindmarsh et al.
[250]. The lumped explicit FE scheme becomes unstable, unless

Cr < min(Pg, 1/Pg, 1) (8.211)
or
RAx2 2RD RA
Aty < min[ 222 el (8.212)
2D T ¢* g
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Fig. 8.22 Resulting distributions in a 1D domain of length L = 1 m discretized by five linear
elements with Ax = 0.2m, D = 107 °m?s™', q = Imd™!, R=1ad® =3-107* s,
satisfying the limit (8.209). Results are obtained for a full implicit scheme (6 = 1) at the first time
step of At, = 1072 d for CM and LM formulations, where only CM implies bounded oscillations

The first ‘diffusion limit” Az, < 7@Ax2/ (2D) governs when Pg < 1, the second
‘advection-diffusion limit’ is restrictive when Pg > 1. The third restriction

Cr<1 (8.213)

is the Courant-Friedrichs-Lewy (CFL) condition [105], which is always a necessary
condition for the stability of explicit schemes. If diffusion dominates the diffusion
limit Az, < Ax?/(2D*) possesses a terrible restriction for any explicit method. It
means in practical terms: Assume L is the characteristic length of the computational
domain, then the simulation time required for the full transient is fepg =~ L?/D*.
For a typical (thermal) diffusivity D* of 107®m?s™!, a length of L = 10 m and the
smallest element length of Ax = L/1,000 = 1072 m, the diffusion limit (8.212)
requires Az, < 50s. Since feng = 103 s, about 2 - 10° time steps are required to
perform the complete simulation with an explicit FE scheme. If we halve Ax the
required times steps increase to 8-10°s. This shows the serious drawback of explicit
schemes, in particular for diffusion problems, where a very large number of tiny time
steps becomes necessary, albeit each time step is computationally cheap because no
equation systems must be solved. In contrast, .A—stable implicit schemes having no
stability limitations can solve a diffusion problem with acceptable accuracy in, let’s
say, less than 100 time steps, however, each time step is more expensive due to the
solution of the equation system. Nevertheless, the implicit time stepping schemes
have shown clearly superior to explicit methods, at least for diffusion-dominant
problems, due to their clearly higher computational performance and robustness.
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On the other hand, for dominant advection (Pg >> 1), the CFL condition (8.213)
becomes important for explicit schemes

Ax
Aty < — (8.214)
q

which implies only a linear dependence on Ax. For example, choosing L = 10m,
Ax = 1072m and ¢* = 10~*ms~!, the time step limit (8.214) requires Az, <
100s and accordingly 103 time steps are needed to perform a full transient for the
advection problem up to feng ~ L/q* = 10°s. It illustrates that the performance
of explicit schemes considerably improves for advection-dominated (hyperbolic)
problems (Sect. 8.3) and could be in fact more affordable compared to implicit
techniques. But, taking into consideration more complex flow situations where
locally (in space or time) the advection can be small compared to the diffusivity or
even zero, the possible benefit of the computational performance of explicit methods
can easily get lost again due to the strong limitation (8.212) in the time step control.

Finally, the advection-diffusion limit (Cr < 1/Pg or At, < 27,€D/q2) can
be too restrictive for advection-dominated simulations via explicit methods [250].
However, it is common practice to incorporate the temporal truncation error and
upwind stabilization techniques (see following Sect.8.14), where the physical
diffusion D* is artificially increased by ¢**At,/2 and by ¢* Ax/2, respectively
[91,250]. Then, the explicit method becomes tractable for hyperbolic problems with
the changed advection-diffusion limits according to [250]

V1 +4Pg? —1 P
+—g and Cr < &

2Pg 1+ Pg

Cr<

(8.215)

In a resumé, due to the desired generality and robustness of the finite element
strategy we prefer usually implicit time stepping schemes for the present class of
problems. Explicit techniques (such as FE and AB) only occur in the context of
predictor-corrector time marching schemes, for which no time step restrictions exist
because the corrector solutions are generally implicit in form of the .A—stable BE
or TR methods.

8.14 Upwinding
8.14.1 Pros and Cons of Upwind Methods

In computing transport-flow processes the FEM must be applied in situations
where the advection dominates over diffusion/dispersion. For the numerical solution
stability and boundedness (definitions given in Sect. 1.2.2) should be guaranteed.
Numerical solutions should lie within proper bounds. Physically, nonnegative
quantities (e.g., density, mass concentration, absolute temperature) should always
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be positive. But, boundedness is difficult to guarantee under all circumstances.
Unbounded solutions can occur on too coarse meshes in form of wiggles, i.e., oscil-
latory results generally occurring in a node-to-node manner which overshoot and
undershoot the solution (Fig. 8.23). GFEM (and the equivalent central difference
approximations) are prone to generate those spurious oscillations in space if the
chosen mesh is inappropriate. In FDM it is popular to approximate the advective
terms of the ADE by first-order onesided (flow direction-biased) differences,
a process often referred to as upwinding. However, upwind methods precluding
unwanted oscillations have disadvantages with regard to accuracy. It is to emphasize
that stability does not imply accuracy — although it is true that instability implies
inaccuracy. The resort to upwinding is usually a reduction of accuracy in favor of
stability, where wiggles are artificially suppressed via damping mechanisms.

To treat advection-dominated transport problems by the FEM various upwind
formulations have been developed in past. Pioneering work was given by Christie
et al. [82], Heinrich et al. [236], Heinrich and Zienkiewicz [235] and Zienkiewicz
et al. [595]. Asymmetric weighting functions were introduced such that the element
upstream of a node is weighted more heavily than the element located downstream
of a node equivalent to an upwind differencing. This type of upwind distortion of
the weighting function represents a generalization of the standard (Galerkin-based)
FEM and is called Petrov-Galerkin finite element method (PGFEM), cf. Table 8.1.
Hughes [266] has shown that the upwind effect can also be achieved by asymmetry
in the numerical quadrature rule for the advection terms. It was recognized that
the PGFEM stabilization is equivalent to adding artificial (numerical) diffusion to
the GFEM, termed as balancing diffusion, e.g., [307]. Unfortunately, many of the
upwind methods reveal over-diffusive properties and there was a demand for alter-
native upwind techniques possessing reduced spurious numerical diffusion. While
a scalar artificial diffusion often suffers from a considerable smearing effects [446,
541], the streamline-upwind (SU) method adds artificial diffusion only in the flow
direction and not transversely [57]. The upwind finite element strategy have been
further developed in a number of works, see e.g., [131, 149,267-269,272-276,584,
585, 592]. The Petrov-Galerkin least square (PGLS) FEM [276, 385] appeared as
a promising stabilization technique. This procedure results in an artificial diffusion
concept of a built-in streamline-like upwinding similar to the SU method, however,
leads to symmetric matrix systems. However, it has been found [274] that the
streamline is not always the appropriate upwind direction. A generalization of the
streamline concept in form of adding an additional discontinuity-capturing term was
presented by Hughes and Mallet [269]. The shock capturing (SC) method applied to
finite elements has been developed by Johnson et al. [292] and Codina [90,92,93].

It becomes clear that upwinding is a compromise between the requirements of
accuracy and stability. There is (also) ‘no free lunch’ in numerics: stability must be
paid by a reduction of accuracy. The question arises how much reduction in accuracy
is acceptable or to which level wiggling can be tolerated. The most important pros
and cons of upwind methods can be summarized as follows:
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Fig. 8.23 (a) Profiles and (b) breakthrough curves for 1D advection-dominant transport in a
uniform flow field obtained by GFEM and upwind method simulated with AB/TR predictor-
corrector time stepping on a coarse mesh consisting of 100 linear elements with Ax = 0.1 m,
D* = 2.5-10°m?s™! and Pg = 23.15 in comparison to the exact solution.'> Oscillations
are generated for GFEM, while smooth and overdiffusive solution results for upwinding, where
physical diffusion D* is artificially increased to D* + ¢*Ax/2 = 6.04 - 10> m?s™!, which is

more than 24 times higher

2The analytical (exact) solution of a 1D ADE is [71], p. 388, [540], cf. also Sect. 12.5.1
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Pros

GFEM has serious deficiencies in solving problems with dominant advection,
which are prone to generate spurious (nonphysical) node-to-node oscillations.
Upwinding can stabilizes the solutions and is beneficial to obtain realistic (though
not always accurate) solutions.

Upwind methods allow efficient solutions without the ultimate need for fine
(sometimes extremely dense) meshes.

Upwinding makes difficult problems computable under given computational
constraints. Extremely fine meshes and expensive computations could be caused
for tough physical situations (e.g., shock-like front displacements of mass
or energy, very thin boundary layers, high density contrasts in a large-scale
problem) if upwind methods would not be admitted.

There are certain situations where any wiggles in the solution become absolutely
devastating and would totally preclude the possibility of obtaining a solution,
e.g., strong advection in multispecies mass transport processes with nonlinear
chemical reaction.

Cons

‘Don’t suppress the wiggles — they’re telling you something!” as stated in the
famous paper by Gresho and Sani [208] who oppose, in principle, any artificial
damping measures by upwinding: Wiggles are usually a signal that the spatial
(and temporal) discretization is poor and some mesh refinements (at least locally)
are required to obtain a physically adequate solution.

A positive aspect of wiggles is that in signaling improper discretization they
present self-diagnosis property. A method with such a self-diagnostic property
is often superior to schemes which give smooth, and totally wiggle-free, but
inaccurate and possibly overdamped solutions for any discretization.

Upwinding is a method of damping and smoothing. It solves the problem by
changing the physics of the problem. Robustness is obtained at the expense of
accuracy. Diffusion is artificially increased in dependence on the chosen mesh,
i.e., the solution becomes mesh-dependent. With other words: For a coarse
mesh the solution is independent of the physical diffusion and can be depart
from the physics of the original problem. Upwinding could be only acceptable

_ 1 _ (x—q*t xq* [ x+q*t
¢(X,I) - ¢0+ 2(¢D ¢0)|:ertc(2m) +eXp(D* ) erfc(zm)]

valid for the IC: ¢(x,0) = ¢, and BC’s: ¢(0,7) = ¢p and ‘;—f(oo t) = 0, where

erfc(a) = \/L; /00 exp(—éz)dé

is the complementary error function [71], ¢y = 0 is the used initial value and ¢, = 1 is the used
Dirichlet-type BC at x = 0. Note that for evaluating the analytical exp(.)erfc(.) expression the
more suitable exf(., .) function is applied which will be further discussed in Sect. 12.5.1.
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and reasonably accurate if the numerical diffusion is significantly less than the
physical diffusion.

» Upwinding is potentially dangerous because it often leads to a false sense of secu-
rity: ‘Any mesh works for any advection-diffusion relation’. Upwind schemes
can damp more than just wiggles; this is particularly true for more complex
nonlinear problems. J. Ferziger (noted in [209]) stated: The greatest disaster one
can encounter in computation is not instability or lack of convergence, but results
that are good enough to be believable but bad enough to cause trouble.

The decision between the pros and cons is often not easy. There is, unfortunately,
no panacea, but the practitioner should be aware of the necessary compromises
involved, and use a given method with due caution and ‘healthy skepticism’. Finally,
our recommended strategy is to solve a problem without upwinding whenever
possible, and to resort to an upwind method only if necessary and unavoidable. In
the following, appropriate upwind methods available in FEFLOW will be described.

8.14.2 Petrov-Galerkin Finite Element Method (PGFEM)

The most common technique for introducing the upwind concept into the FEM is
the Petrov-Galerkin finite element method (PGFEM), where the element weighting
functions differ from the element basis functions w$ # N; (cf. Table 8.1) and are
appropriately designed to incorporate asymmetry with respect to the flow field. The
weighting functions of an element e are constructed in general as

wi(n) = Ni(n) + aF;(n) (8.216)

where Fy are modifying functions with the sign depending on the sign of the
advective flux q and « is a free, so-called upwind parameter (0 < a < 1), which
has to be determined. We note if « = 0, (8.216) corresponds to the standard GFEM.
The modifying functions F; can be appropriately chosen either as continuous and
discontinuous relations. Let us consider for convenience firstly the 1D case: In
the continuous definition Fy are chosen as a polynomial one degree higher than
Ny, e.g., [236]. For a linear 1D element we introduce Ff(§) = F f¢(§), where
f(§) = a&? + bE + c, written in the local coordinate (—1 < & < +1), and
determine its polynomial coefficients a, b and ¢ such that f¢(—1) = f¢(1) = 0
and f_+ll fe(6)dE = 1.1t leads to

fE) =320-91+¢ (8:217)

Then, the following continuous weighting functions result as shown in Fig. 8.24 for
a linear 1D element at the local nodes 1 and 2:

wi(€) = Nf (&) —af () 8.218
Wi(E) = N§(E) + af e (€) G20
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Fig. 8.25 Discontinuous Petrov-Galerkin weighting functions (¢ = 1) for the linear 1D element

where the basis functions are N{ (£§) = %(1 —-£), Nj(§) = %(1 + &), cf. (H.1) of
Appendix H.

Much more convenient are discontinuous weighting functions, e.g., [584]. In 1D
one simply chooses:

Ax® g° dN§
2 |q¢| dx

aFS(E) = a (8.219)

where Ax® is the length of the finite element e. By using the derivations (H.6) of
Appendix H we obtain the following asymmetric discontinuous weighting functions
for a linear 1D element at the local nodes 1 and 2 with a positive advective flux
q° >0

wi(§) = Nf(§) — 3

(8.220)
wy(€) = N3 (§) + 3

which are displayed in Fig. 8.25.
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It is important to note that the discontinuous weighting functions w$ must result
finite contributions for first derivatives in the integrand of the approximate weak
statement in order satisfy the requirement on continuity as stated in Sect.8.7.
The discontinuity of the formulations (8.219) or (8.220) is considered within the
element such that any first-order derivative of w9 is finite and valuable due to the
Co—continuity in Ny .

Usually, the asymmetric weighting functions w9 are only applied to the terms
of the homogeneous solution of the governing PDE, i.e., in particular the advection
and diffusion/dispersion terms. In doing so, for example for the 1D discrete finite
element equations of Sect.H.1 of Appendix H, we find for (H.10) a modified
formulation of the semidiscrete ADE convective form'? (for sake of simplicity we
drop BC and SPC terms):

de
S s (21, T\ e (e 1ma) oo (1 -1
o \12) \% 2\-l-a l+4+a) 2 \-11

pe o (8.221)

eero9ax (2 1V (A1) meax (D)
e ()] () () =

We recognize from (8.221) that the upwind parameter « is indeed only effective
in the advection matrix A°, while it is canceled out in the diffusion matrix C*.
Furthermore, it is easy to see that the sum of A° + C° can be alternatively
written as'*

e (—11 € Aye 1 -1
A+ Ci=1% (_1 1) + (D¢ + a8y L (_1 | ) (8.222)

where the physical diffusion D¢ is increased by a”eﬁxe, which represents the

artificial diffusion introduced by the PGFEM upwind method. Similar to (8.203)
the assembly of the linear 1D elements (8.221) and applying the temporal
f—integration scheme of (8.154) the following discrete equations of the 3-node
(i +1,i,i — 1)—stencil can be written assuming constant parameter properties
(and for convenience also dropping source/sink terms):

3For the ADE convective form the continuous weighting functions (8.218) and the discontinuous
weighting functions (8.220) lead to the same result. However, for the ADE divergence form only
the continuous weighting functions (8.218) are applicable, where the element advection matrix A°

(8.104) becomes
e (14 l—«
[— q_
A 2 (—1 —a —1 +a)

14A similar expression can be obtained for the ADE divergence form.
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c 2¢
[E - Afn9(1 + (o — 1)Pg)]¢i+1,n+1 + [? + Atn9(2 + 2an)]¢i,n+1 +
c c
[3 - Atn9(1 + (o + I)Pg)]¢i—1,n+1 = [3 + Aty (1— 9)(1 + (@ — I)Pg)]¢i+1,n +
2¢ c
[? — A (1-0)(2+ 2an)]¢,-,n + [6 + At (1= 0)(1+ (@ + 1)Pg)]¢,<_1,,,
(8.223)
where ¢ = Ax?/D*, D* = D/R and Pg is the grid Réclet number as defined in
(8.207).
To analyze the upwind parameter « let us at first turn to the steady-state ADE
formulation. Then, (8.223) reduces to
1+ (@ = DPglpiv1 —2(1 + aPg)¢i + [1 + (¢ + DPglpi—1 =0 (8.224)
which represents a PGFEM formulation of the simplified 1D ADE:
gV —DV*¢p =0 wherein ID V = 9/dx (8.225)
We can solve (8.225) within the interval x;—; < x < Xx;4+; for the local boundary

value problem: ¢ (x;—1) = ¢i—; and ¢ (x;+1) = ¢i+1. The exact solution of this
local 1D problem is

2P8 (v — . —
)exp[ Ax (X xl—l)] 1 (8226)

¢(x) = i1 + (Piy1 — i exp(4Pg) — 1

which can be taken to express the solution for ¢(x;) = ¢; leading to the ‘locally-
exact’ formula of the 3-node (i + 1,7,i — 1)—stencil

$i+1— (1 +a)pi +api—1 =0 (8.227)
where
a = exp(2Pg) (8.228)
with

a>0 for ¢g>0

8.229
$>O for g<0 ( )

In comparison of the scheme (8.224) with the exact formula (8.227) it must be
required due to (8.229) forg > 0
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1+ Pgla+1)

= 8.230
T Ty Pg@—1) (8.230)
which yields
erit _ 1 _ 1
o>a™ =1 Pg for Pg=>1 8.231)

a=0 for Pg<1

Apparently, for the standard GFEM with « = 0 once the grid Péclet number
Pg > 1 node-to-node oscillations will occur since the denominator in (8.230)
becomes negative. To avoid oscillations the upwind parameter ¢ must be greater
than the critical value a* defined in (8.231). It shows that for & = 1 the scheme
is unconditionally stable and corresponds to a full upwind scheme. Furthermore, a
complete accuracy is obtained for a given Péclet number Pg if the parameter a of the
exact solution (8.228) is equated to a of the approximate solution (8.230). It gives
the so-called optimal upwind parameter

1
a®” = coth(Pg) — Pa (8.232)
8

It is obvious that the o°" satisfies the stability criterion (8.231) with
Q%P > it (8.233)

and so, indeed, it is optimal for this class of problems (Fig. 8.26). Upwind parameter
relations for higher-order finite elements have been derived in [81, 131,235].

The extension of the PGFEM to multidimensional and transient ADE problems
can be done straightforward, e.g., [278,279, 592]. However, in 2D and particularly
in 3D the use of continuous weighting functions in form of (8.216) is cumbersome
and ineffective, so that discontinuous weighting functions are often preferred. An
appropriate discontinuous weighting function is [585]

he Aty 3 , o
W) = Nj ) + 5 (a+ﬂ . 5)«1 - VN§ () (8.234)

where h° is a characteristic element length which is defined further below, « is
a first upwind parameter as already introduced above for steady-state problems
and B is a second upwind parameter related to the transient terms of the ADE.
The intent and result of (8.234) is to add artificial diffusion into the discrete finite
element equations. With the upwind parameter o the diffusion is increased by
a||g®||h¢/2 and with the upwind parameter 8 an added diffusion term is in the
order of B|q°||h¢At,/4. The upwind parameters can be determined by Yu and
Heinrich [584]

o = coth(Pg) — Pig

f_g_ o (8.235)
3 PgCr
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Fig. 8.26 Critical upwind parameter ¢ and optimal upwind parameter o°P

the grid Péclet number Pg based on linear finite elements

in dependence on

where the mesh Péclet number Pg (8.207) and the Courant number Cr (8.206) are
defined in multidimensions
_ llg*“liA®

Pg = D Cr

*e |l Af ; ;
= W10 in g = g%, D7 = DR

(8.236)

The resulting PGFEM upwind scheme [584, 585] shows the best accuracy with
a # 0and B # 0 according to (8.235). However, unconditionally stable algorithms
also result for ¢ # 0 and § = 0, albeit more artificial diffusion is produced.

The PGFEM upwind scheme in multidimensions requires the determination of
the characteristic element length /€. Figure 8.27 shows typical isoparametric finite
elements in 2D and 3D over which the parametric vectors hg, b, and h; are defined
and computed in 2D as

he = hsi = %[(x,-z + xi3) — (xi1 + Xia)]
=1,2 8.237
h, = hm’ = %[(xi?) + Xia) — (Xi1 + x2)] ( :

and in 3D as

he = hgi = H(xi2 + Xi3 + Xig + Xi7) — (Xi1 + Xia + Xis + Xig)]
hy = hyi = [(xi3 + X4 + xi7 + Xig) — (Xi1 + Xi2 + Xi5 + Xi6)] i=12,3
he = hg = F[(xin + Xi2 + Xi3 + Xi4) — (Xi5 + Xi6 + Xi7 + Xis)]

(8.238)
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X2

Fig. 8.27 2D quadrilateral and 3D hexahedral element used in definition of element length h°

Similar relations can be obtained for the other finite elements listed in Tables G.2—
G.4 of Appendix G. The characteristic element length /¢ then results

hi| + |hs] for 2D
pe= 1 8.239
|h1] + |ha| + |h3|  for 3D ( )
where in 2D
— _1 e . _ 1 (e e
hy = ||qle|| (qe h¢) = ||qle|| (qihgl + qihEZ) (8.240)
hy = (@ - hy) = e @iha + a5hip)
and in 3D
= 1@ - he) = eplathea + gshe + g5hes)
hy = e (a© - h) = @i + qship + q5hpn) (8.241)

—
—

hy = Tl (qe . h{) = T (qfhgl + q2€h§2 + q§h§3)

are the projections of hg, h, and h; in the direction of the local flow vector g°.
We note that for rectangular geometries the expression (8.239) reduces to h° =
(Ig51Ax] + |g51Ax5 + 1g51Ax5)/11g°]l in 3D, where Axf, (i = 1,2,3) are the
lengths of element edges in the coordinate directions. In 1D geometries it is simply
h¢ = Ax°.

8.14.3 Streamline Upwind (SU) and Full Upwind (FU) Method

We have seen in the preceding Sect.8.14.2 that PGFEM is designed to add an
appropriate amount of artificial diffusion for stabilization purposes. The use of the
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asymmetric weighting function takes effect only on the advective term and ends up
with a diffusion increased for instance by «/||q¢||2¢/2 for a linear finite element. It is
obvious that such a type of stabilization should be correlated with the flow direction
only and should not be effective in the transverse direction of advection to avoid an
overly diffusion due to an excess of so-called crosswind diffusion.

The avoidance of crosswind diffusion leads to the concept of the streamline
upwind (SU) method. The basic ideas were given by Kelly et al. [307] and
Brooks and Hughes [57] who constructed the artificial diffusion operator in
tensorial form acting only in the flow direction and not transversely, termed as
anisotropic balancing dissipation. The idea of SU is to extend the tensor of physical
dispersion/diffusion D defined for example in a porous medium of a single-species
solute transport as (cf. (3.180), Tables 3.7 and 3.9)

D = esD6 + Dyech

(8.242)
mech = IBTHq”(s + (IBL - ﬂT)li
where Dy 18 the (physical) tensor of mechanical dispersion and D is the
molecular diffusion, by the tensor of numerical dispersion Dy, in the form

Dyym = ﬂnum% (8.243)

so that

D =¢gesDé + Dmech + Dnum =esDé + IBTHqH(s + (IBL + ﬂnum ﬂT)|&
(8.244)

where B,um represents the parameter of numerical longitudinal dispersivity which
must be specified for each element. For example, in case of linear elements one
takes for the element e

¢ g (8.245)

where 0 < o < 1 is the upwind parameter introduced above (¢ = 0 is the standard
GFEM, « = 1 is the full upwind, @ = «°" is the optimal parameter defined in
(8.232)) and h° is the characteristic element length defined in (8.239). Note that for
quadratic elements B¢, = oh®/4 as derived in [131].

Now, if looking to the resulting weak statement we have to modify for the
advective and dispersive terms of the governing ADE written in its convective form
according to (8.55)

WS = / wq - Vod 2 + / Vw - [(D 4 Dyum) - Vld 2 (8.246)
2 2
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Since

/Q Vw - (Dyum - V)d 2 = /9 f(q- Vw)(q- V$)d Q2 (8.247)

Eq. (8.246) can be rewritten as

WS =/[w+%(q-Vw)](q-V¢)d.Q+/ Vw-(D-V¢)d2  (8.248)
2 2

As a result, a modified SU weighting function can be found in the form

W =w+ fE (g Vw) (8.249)

which only affects the advective term and is similar to the discontinuous weighting
function (8.234) (for 8 = 0) used by the PGFEM. Finally, the SU method is
recognized as the standard GFEM plus an extra term introducing the SU added
numerical dispersion term:

GWS = Z/m[zv,-q-vqs + VN; - (D-V¢)|d$2* +Z/m b (q- VN;) (g V)d 2°

standard GFEM added SU stabilization term
(8.250)

where D represents the physical dispersion tensor (8.242), B¢, = oh®/2 for
linear elements and B¢, = «h®/4 for quadratic elements. In practice, however,
the second SU stabilization term in (8.250) in not directly executed. Instead, the
modified dispersion tensor (8.244) is employed in the standard GFEM term, which
is equivalent to (8.250).

Commonly, the SU method is used with ¢ = 1. In case of need the SU
stabilization can be turned back to a full upwinding (FU), where the stabilization
is performed in all coordinate directions, i.e., independent of the flow field. In the
full upwind case the dispersion tensor (8.244) is then used in the form:

D = esD& + (Br + Prum)l|qll6 + (BL — pr) 12 (8.251)
However, it should be aware that a full upwind scheme usually produces a large

amount of crosswind diffusion.

8.14.4 Shock Capturing (SC) Method

SU stabilization is only effective in longitudinal direction of the advective flow and
avoids any crosswind damping. This is motivated by the fact that often the gradient
of a transported quantity ¢ establishes in the direction of flow. However, under
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Fig. 8.28 Solution profiles ¢ (x,¢) in longitudinal and transverse direction to a flow field g
forming an advection-displaced front and shearing transition layers, respectively

more complex flow conditions steep gradients can also occur in directions normal
or skewed to the advective flow forming shearing (or flushing) transition layers such
as illustrated in Fig. 8.28. Then, oscillations cannot be stabilized via the SU method.
Indeed, it has been shown by Hughes et al. [274] that the streamline is not always
the appropriate upwind direction. To increase the robustness of upwind methods it
is obvious that the control of gradients must be required, i.e., the upwind direction
should be aligned to the direction of gradients V¢ of the transported quantity
¢ rather than exclusively oriented to the trajectory of flow. This was basically
proposed by Hughes and Mallet [269] who generalized the SU concept by adding an
additional diffusion in the gradient direction which is called discontinuity capturing
or shock capturing (SC).

The SC method has been further developed by Johnson et al. [292] and Codina
[90]. The SC technique appears as a nonlinear method because the gradient V¢ is
part of the numerical solution. The main idea behind SC is to increase the amount
of damping in the neighborhood of gradients. Then, the damping to be added must
be proportional to the discrete residual of the governing ADE within each element
and must be vanish in regions where the solution is smooth and also where the
advective term of the residual is small. Hence, SC stabilizes in dependence on the
solution gradient and is accordingly operational both in longitudinal and transverse
direction. It admits an optimal amount of crosswind damping necessary to stabilize
also the shearing profiles (Fig. 8.28).

We have shown in the preceding Sect. 8.14.3 that the SU method is characterized
by introducing an additional term [Tl“;ﬁ‘ (g - Vw) to the weighting function w in form
of (8.249). Now, the basic idea of SC is to use w with a further additional term, the
SC term, such that

w= w +1(q-Vw)+0a(gy - Vw) (8.252)
. ——— ——
GFEM SU SC
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where the first term is the standard Galerkin weighting function, the second term
is the linear SU modification and the third term is the new nonlinear SC extension.
The vector gy is the projection of the flux vector g onto the direction of the local
gradient V¢ of the solution ¢, viz.,

q-V¢

= ——V 8.253
2R (8259

qi

provided that |V¢| # 0. It is easy to see that g, - V¢ = g - V¢. The upwind
parameters 71 and 1, are defined on element level as

ah” (0 ah’ ) (8.254)
nn=———" Tp = max s, — T .
2|lql| 2|lqul|

written for linear elements, where 0 < « < 1 is the known upwind parameter
defined above, (8.231) or (8.232), and h¢ is the characteristic element length
according to (8.239). In using (8.252), the SC method is recognized as the standard
GFEM plus two extra terms introducing the SU added numerical dispersion term
and the SC added numerical dispersion term applied to the Galerkin weak statement
of the advective and dispersive terms of the governing ADE:

GWS ZZ/W[N,'q~V¢+VNi -(D-V¢)]d.oe+2/m 11(q- VN;)(q- V¢)d 2°

standard GFEM added SU stabilization term

+ Z /Qe n2(qu - VN;)(q - V)d 2°

added SC stabilization operator

(8.255)

where the SC method is constructed to keep unaltered the added numerical
dispersion in the streamline direction and to modify only the crosswind (transverse)
dispersion. This crosswind dispersion must satisfy two conditions [90]. First, to
avoid overdamped crosswind effects, it must be small in regions where the advective
transport is not important, that is where q - V¢ is small. Second, the measure of
crosswind damping should be proportional to the element residual, e.g., for the ADE
convective form

R(@)=q- Vo —V-(D-Vp)+ (0 + Q)p — H — Qg (8.256)

to be evaluated on element basis. Using R(¢) we can determine an isotropic SC
dispersion coefficient as [90,292]
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Do 1o |R®)

= jeh o (8.257)

if [Vp|| # 0 and zero otherwise. If we use the element residual only for the
advective term of the ADE convective form by R(¢) ~ q - V¢, a useful and
simplified estimate of the isotropic SC dispersion coefficient results

Dy ~ %ache”(III” (8.258)

where with (8.253)itis ||qy|| = |g-V¢|/||V¢||. The upwind parameter ¢, is given by

1 . llqullh®
o, = max(O,a - Fg”) with Pg, = 2D (8.259)
where it is proposed, e.g., [90]
0.7 for linear element .
. in 2D
0.35 for quadratic element

a= ) (8.260)
1.0 for linear element .
in 3D

0.5 for quadratic element

The isotropic SC dispersion coefficient Dy. (8.257) or (8.258) is added to the
hydrodynamic dispersion tensor D (8.242). It yields

D = (esD + Dy)d + Dinech (8.261)

The SC dispersion coefficient Dy = Dy (¢) is nonlinear due to the solution
dependency and an appropriate numerical treatment is required. In the practical
implementation the SC method is not used in combination with the SU stabilization,
i.e., SC stabilizes completely the solution via the isotropic SC dispersion coeffi-
cient Dy..

8.14.5 Petrov-Galerkin Least Square (PGLS) Finite Element
Method

The Petrov-Galerkin least square (PGLS) FEM represents an alternative stabiliza-
tion technique to solve transient ADE in the convective form [276]. Its special
feature is in introducing a symmetric stabilization term. In contrast to the PGFEM,
SU and SC upwind methods as described in Sects. 8.14.2-8.14.4, PGLS leads to
symmetric matrix systems and possesses built-in streamline-like upwind character-
istics. The PGLS symmetrization is superior to symmetric-matrix time integration
schemes, where the advective term is treated only explicitly so as done by Leismann
and Frind [338]. The effect of PGLS has similarities to the SU upwinding, where
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an anisotropic (streamline-oriented) balancing dissipation (dispersion) is added to
the physical longitudinal dispersion parameter. However, in the PGLS method the
artificial dispersion (diffusion) is directly derived from the least-square (LS) finite
element concept and requires no ‘free’ upwind parameter such as « of the preceding
upwind methods.

As indicated in Table 8.1 the LS minimization by PGLS has to be done with
respect to the nodal values of the state variable(s). Due to the square operations in
the inner products of the governing PDE, higher order derivatives remain, which
usually require higher order basis functions, i.e., a Cy continuity (cf. Sect.8.7)
in the interpolation functions is no more sufficient, unless the LS operation is
only restricted to first-order terms while the higher order terms are treated in the
standard Galerkin-based manner via an operator splitting approach. Basic work
was given by Nguyen and Reynen [385] and further developments can be found in
[319,559], among others. Konig [319] used an operator splitting method in a two-
pass strategy, where the separate equations for the diffusive and the advective parts
are solved successively. On the other hand, Wendland [559] improved the operator
splitting technique by introducing a suited one-pass approach termed as symmetric
streamline stabilization, where the diffusive and advective parts are reassembled in
one symmetric matrix system.

8.14.5.1 Operator Splitting
The basic ADE in the convective form (8.5)
Rep+q-Vo—V-(D-Vo)+ 4+ 0)p—H — Qp =0 (8.262)
can be written in an operator-split formulation
R + (LY + LY = H + Qpu (8.263)

with

Li=-V.(D-V)+ @+ 0)

8.264
L gy (8.264)

where £7 is a diffusion differential operator and £¢ is an advection differential
operator. We can also split the solution ¢ into the diffusive and the advective part
such that

¢ = ¢! +¢° (8.265)

Then, we transform (8.263) into two separate equations: first, the diffusive PDE
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Fig. 8.29 Temporally A
discrete interpolation of the ¢
intermediate diffusive
solution ¢¢
q)d
t, t v th+1 t

Re? + L = H + Qpy (8.266)

and, second, the purely advective (hyperbolic) PDE
R($— ") + L% =0 (8.267)

Summing (8.266) and (8.267) we realize the original ADE (8.263).

The idea of the operator splitting technique is in approximating the diffusive PDE
(8.266) and advective PDE (8.267) in a separate manner. After completion the total
discrete ADE is obtained by assembling the diffusive and advective parts. In doing
so, we consider the variables ¢? () and ¢“(¢) in the time interval (z,,%,4) and
assume at the beginning of the interval the following IC’s for the diffusive variable
¢;1 = ¢?(t,) and for the advective variable oF = ¢p%(tn):

ol =g, ¢°=0  ¢*=0 (8.268)

It is to be noted that the diffusive solution ¢¢ can be considered as an intermediate
solution which represents a temporally discrete interpolation between the previous
and the new time plane as evidenced in Fig. 8.29.

8.14.5.2 Approximation of the Diffusive Part

In the context of FEM, the two variables ¢ and ¢¢ are replaced by a continuous
approximation (8.16) that assumes the separability of space and time, thus

o (x, ti f > Ni(x) ¢i(t) (8.269)

> Ni(@) ¢ (1)
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where the subscripti = 1,..., Np denotes the global nodal indices. The Galerkin
weak statement of (8.266)

GWS = / Ni(Ré? + Li¢p—H - 0g)d2 =0 (8270)
2

leads after inserting the semidiscrete basis functions (8.269) to the following global
matrix system (cf. Sect. 8.9)

O-¢'+K* - ¢p—F=0 (8.271)

with
K'=C+R+B (8.272)
where the matrices O, C, R, B and the vector F' are given in (8.103)—(8.105)

referred to the convective form. By using the methods of time integration introduced
above in Sect. 8.13 and invoking (8.265) and (8.268) with

Dty +0AL) =0, + 0 ) +(1—0)p ~ 087, +(1—-0)p,  (8.273)
the following matrix systems of the intermediate (diffusive) part result
(2 +K70)-¢¢,, =[2 -K'(1-0)]- ¢y + (Fp10 + F,(1-6))  (8.274)
for the 6 —family of time stepping methods (cf. Sect. 8.13.4) and
(7o + K9) - ¢l01 = O[5z + (5 — 1)du] + Futr (8.275)
for the predictor-corrector methods (cf. Sect. 8.13.5), where the weighting coeffi-
cient % < 0 < 1 identifies the different time integration methods.
8.14.5.3 Approximation of the Advective Part
The residual of the advective part (8.267) in form of
R=R($—¢") +q-V¢ (8.276)
will be treated by the LS method

0

— | 1R = 277
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Fig. 8.30 LS weighting
function of the operator
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RN, 0Az,g VN, LS upwind weighting

which is equivalent to
/ wiRd$2 =0 (8.278)
2

with the nodal test function w; given by

oR
or with (8.269) in (8.276)

aN;
wi =t +q-VN; (8.280)

Since N; = N;(x) is not a function of time, the residual (8.276) is to be expressed
in its temporally discrete form, such that

R = R[Z Ni(@int1 — bfiy) — Z Ni(pin — ¢>f,ln)] +
Atnq- V[0 Nidiwri + (1= Y Nigiu|  (8:281)

which yields

_ oR
9%i n+1
Then, the LS weak statement (8.278) results

= RN; + 0At,q - VN; (8.282)

Wi

LSWS = / (RN; + 0At,q-VN;)[R($p —¢) +q-Vo]d2 =0  (8.283)
2

where the residual is weighted by the LS test function (8.282) consisting of two
parts as displayed in Fig. 8.30.
The LS weak statement (8.283) leads to the following semidiscrete matrix system

(O +0A,V)-p+ (A+0T)-¢ = (O + A, V) - ¢* (8.284)
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with (cf. (8.103))

0=0;= Z( Z 05, 45,45
A=4;= Z( ZA;JA;A;)
__— Z ( Z Vi) (8.285)
T="T;= Z(Z Z T 4545)
and the element matrices
0f = /Q R¢ NENSd2¢
A5y = /Q Ni(g* - VN$dQ* .
V= | @ vNpNsa@:

T = [ Ak INpa TN

where A€ is the Boolean matrix defined in (8.82). The time discretization of (8.284)
for the O —family of time stepping methods (cf. Sect. 8.13.4) results

(O +6A1,V) - (L5=22) L 9(A +0T) - §,e1 + (1 — O)(A + 6T) - &,

= (0 +684,V)- (L)

(8.287)
and finally
(8.288)

Regarding the predictor-corrector strategy based on the BE and TR schemes, if
taking

¢}Z+1= i (¢n+1 ¢n) = (G = Dy (8.289)

n+1 Aty ( n+1 qbn) - (é - l)d)n

and using (8.284), the following matrix system for the predictor-corrector schemes
is obtained

(72 +V+A+0T) us1 = (;2- + V) - ¢t (8.290)
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8.14.5.4 Assembly of the Diffusive and Advective Parts

To obtain the matrix system for the complete ADE (8.262) the diffusive and
advective parts have to be added. For the § —family of time stepping methods the
summation of (8.274) and (8.288) yields

[ +0(V+A+0T)] ¢u1 + (2= +0K') -l = (2= +0V) o5y,
—(1=60)(A+6T)- ¢, + [2 — (1 —O)K"]- ¢ + (Fy410 + Fy(1-0))
(8.291)

The term A%n . ,‘f 41 can be eliminated from (8.291). The remaining terms correlating
with the intermediate solution ¢¢_ | will be transformed in the following way [559]:
All terms related to (;52’ 41 on the LHS of (8.291) are replaced by ¢, +1, while such
terms on the RHS of (8.291) are substituted by ¢, . In doing so, the following matrix

system results

[2+0(K'+V +A+0T)] ¢ot1 =

[ —(1-0)(K'+ A+0T)+ V] ¢ + (Fu160 + F,(1-0))
(8.292)

Analogously, for the BE and TR predictor-corrector schemes we add (8.275) and
(8.290)

(&M+V+A+9T)¢"+l+(eg_t”+Kd) ;{+1:
(3% +V) ¢+ 0 [t + (5= 1)du] + Foyr (8:293)

which gives

(- + K +V+A+0T) i1 =V -0y + O[5 bu + (5 — 1)Pu] + Fur

(8.294)
The final matrix systems (8.292) and (8.294) for the §—family of time stepping
methods and the BE and TR predictor-corrector schemes, respectively, are sym-
metric and positive definite. It results from the fact that the advective matrices V
and A form a symmetric contribution as the sum (V + A) because A = V7T
is the transpose as easily seen from (8.286). This is only attainable for the ADE
convective form (8.5) or (8.262). Unlikely, the ADE divergence form (8.3) is rather
inappropriate for the PGLS method."

5The ADE divergence form (8.3) contains a divergence expression of the advection term in form
of V - (g¢). For the split advective part (8.267) the advective operator £* would be

£'=q-V+(V-q)
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The symmetric term 7' appearing in (8.292) and (8.294) can be interpreted
as an additional term of artificial diffusion. This naturally results from the LS
weighting procedure (8.277). In comparison to the SU method (see Sect. 8.14.3)
where an anisotropic balancing dissipation tensor Dy, = ﬂnum% (8.243) with
Brum (8.245) as a function of the element length #¢ and the upwind parameter « is
added, it is obvious that the LS damping matrix T' (8.285), (8.286) is identical to
Dy, except for the parameter B, which becomes for the PGLS method

Aty||g¢
Boum = % — Crif (8.295)

where Cr is the Courant number defined in (8.236). It reveals that the PGLS
upwinding is quite similar to a SU method, where the damping is performed in
the longitudinal direction of flow via the added damping parameter Byy,. While in
the SU method By, is a function on the element length /¢ and the free upwind
parameter 0 < « < 1, in the PGLS the damping parameter B, is dependent
on the time step size Af, and the quotient ||q°|| /7@. Hence, PGLS is recognized
as a built-in streamline-like upwind strategy, however, without any free upwind
parameter. Comparing B,,m for the PGLS of (8.295) with the SU method of (8.245)
it is apparent that the Courant number should be Cr < 0.5 for the PGLS (at linear
elements) to avoid an overdamping larger than in the SU method.

8.14.6 An Illustrative Example

To demonstrate the impact of the different finite element schemes introduced above
on stability and accuracy we consider a representative example of an advection-

Then, the LS weak statement of the advective part is
LSWS = /Q[vézv,- + 041,V - (@N) ][R — ¢) + V- (gp)]d2 = 0
which leads to a matrix system equivalent to (8.284), but having different element matrices
A= [ Nila' VNG + (NSl
ve= [ 1@ N+ (NN ae
= [ A4V @ NIV - (@ Nl

While the symmetry of the matrix system is still maintained since A° = VT the divergence
expressions (V - ¢g°) appearing in A¢, V¢ and T* can cause difficulties if the flow is not selenoidal
(i.e., not divergence-free: V - q # 0) at the presence of storage and sources/sinks. This makes the
LS technique rather inappropriate for the ADE divergence form.
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Fig. 8.31 Plane view of Hoopes and Harlemann’s sand-filled semi-cylinder [257]

dominated solute transport on a nonuniform flow field to which analytical and
experimental results are available. It is known as the Hoopes and Harlemann’s
two-well problem [257,470]. Hoopes and Harlemann [257] performed a lab-scale
experiment in a semi-cylinder filled with sand as shown in Fig. 8.31. They measured
the distribution of a solute between a recharge and a pumping well. For an analytical
solution they set up a conceptual model of a 2D horizontal confined aquifer which
is homogeneous and isotropic. The nonuniform flow between the well doublet at a
distance, 2d = 0.61 m, is isothermal and in a steady state. The solute transport is
only affected by advection and dispersion. Comparisons of the analytical result with
experiments and various numerical solution schemes have already been performed
elsewhere [136,257,282,470]. The Hoopes and Harlemann’s problem is now used
to compare the different numerical schemes with the analytical (exact) results.

One obtains the 2D analytical solution in terms of the velocity potential @
and the streamline function ¥ (cf. Sect.2.1.11). They are related to the original
X1, Xp—coordinates via the conformal transformation

@ +i¥v=1Ln(z+d)/(z—d), with z=x1+ix; (8.296)

where Ln is the complex natural logarithm, i corresponds to the imaginary unit and
d is the half well spacing. This transformation maps the area of the half circle with
radius r < d onto a strip of infinite length and width 7 /2. The governing transport
equation can now be transformed to a 1D equation written in the form

dp 09 Py
5 T <8®+D8q)2)_0 (8.297)
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where v is the intrinsic velocity and D = D, + fpv is the dispersion coefficient
(D¢ = molecular diffusion, 8; = longitudinal dispersivity). The intrinsic velocity
v at a flux rate Q,, of the recharge well is given by

Qw (
27 BRd

cosh(®p) + cos(¥p)) (8.298)

with the dimensionless quantities

0y = Lin( L)

27\ —d P (8.299)
_ —2xpd :
Yp = arctan Tia—a?

where B is the aquifer thickness. The velocity potential @(x, x;) and the stream-
function ¥ (x;, x,) are obtained after multiplication with Q,,/(27B). The IC and
BC are

¢(¢s lI/’ Z‘0) = 07 and ¢(¢(_d5 O)s ll/(_ds O)s Z) = ¢)W (8300)

The dimensionless solutal quantity at arbitrary time is given by

_ ¢ Ip —1tp
¢ = - = Zerfc<—2m ) (8.301)

where erfc() is the complementary error function and tp = Q,t/ (27{B7,€d 2) is
the dimensionless time. Owing to the properties of the conformal transformation
(8.296), the solution (8.301) can be calculated for given spatial points, where the
integrals are

2
-0 Up —oo Up

®p ®p
Ip = / dq)D, and Jp = / D—fdcbD (8.302)
in whichvp = 2nB7édv/ Qvand Dp = 2nB7éD/QW are likewise dimensionless.
The complete analytical solution is given in [257, 470], but, its evaluation is
cumbersome.

For the present comparative study the finite element computations are performed
on a triangle mesh of the symmetric half of the circular problem as shown in
Fig. 8.32. The mesh is consciously chosen relatively coarse and only slightly refined
in the vicinity of the recharge and pumping wells, where high velocities are
expected. The used model parameters are listed in Table 8.8. The AB/TR predictor-
corrector method with automatic time stepping is firstly employed. Hoopes and
Harlemann [257] assumed no dispersion across streamlines in their formulation
of (8.297). The longitudinal dispersivity f;, = 0.0015m is very small and gives
rise to a steep front of solute in space and time. Hence, the transport is dominated
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Fig. 8.32 Used 2D mesh consisting of 4,890 triangles with 2,544 nodes and resulting isocontours
of solution ¢ at 1 = 0.2d computed by GFEM, SU, SC and PGLS using adaptive AB/TR time
stepping in comparison to the exact distribution

by advection as evidenced in Fig. 8.33 for breakthrough curves of two observation
points located at x, = 0.145m and x, = 0.305m along the symmetry line with
x; = Om between the wells. The breakthrough histories obtained for the different
finite element schemes are compared to the exact curve. As seen the standard GFEM
method provides oscillating numerical solutions, while the SU and SC schemes can
completely dampen out the oscillations but introduce in turn spurious numerical
dispersion. Figure 8.33 reveals that the PGLS scheme is not able to produce wiggle-
free solutions. Since the stabilization in the PGLS is dependent on the actual time
step size, cf. the relationship of (8.295), it is obvious that the time steps generated by
the adaptive predictor-corrector procedure are unsuitably small to achieve sufficient
damping via the LS mechanism.

The simulated solute distributions at 1 = 0.2 d for the GFEM, SU, SC and PGLS
schemes by using AB/TR time stepping are depicted in Fig. 8.32 for isocontours
of ten solute levels spanning between the maximum and minimum values of the
attained numerical results. The exact solution also shown in Fig. 8.32 reveals a sharp
circular-shaped front, which can be hardly modeled by the numerical methods on
the used coarse mesh. Thus, the GFEM and the PGLS schemes exhibit bounded
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Table 8.8 Simulation parameters of the Hoopes and Harlemann’s two-well problem

Quantity Symbol Value Unit
Flow

Well discharge 0. 2.339-107° m3s~!
Flux at recharge well Gny = 22 6.4327 m?d!
Head at pumping well hp 0 m
Isotropic aquifer transmissivity T 10~* m?s~!
Solute transport

Initial condition o (. to) 0 mgl~!
Solute at recharge well o 1 mgl~!
Aquifer thickness B 0.089 m
Porosity & 0.374

Molecular diffusion D, 0 m?s~!
Longitudinal dispersivity BL 0.0015 m
Transverse dispersivity Br 0 m
FEM

Half well spacing d 0.305 m
Wellbore radius R 0.005 m
Outer boundary radius Rp 1.45 m
Number of triangular elements Ng 4,890

Number of mesh nodes Np 2,544

Initial time step size Aty 10—° d
RMS error tolerance (AB/TR method) € 1074 1
Simulation time period tend 0.2 d

oscillations, which also spread in a distance from the front. On the other hand, the
SU scheme results a quite wiggle-free distribution, however, the front is significantly
widened due to the numerical dispersion effect. However, it is interesting that the SC
scheme, while also providing essentially non-oscillatory solutions, can remarkably
reduce the amount of spurious numerical dispersion and gives reasonably better
results than the SU method.

To complete the comparison let us also investigate the 1st-order accurate FE/BE
time stepping method, which promises a higher stability. Indeed, in this case even
the GFEM leads to well-stabilized solutions as displayed in Fig. 8.34, however, we
note a remarkable influence of numerical dispersion if the time steps are chosen
large (we enforce large time steps by relaxing the RMS error criterion in the FE/BE
predictor corrector method according to € = 1072). To better understand the reason
and measure of this effect, in the next section the quantities of numerical dispersion
will be estimated for the different methods. Further numerical comparisons in 2D
and 3D applications can be found in [136].
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Fig. 8.33 Breakthrough of approximate solutions obtained with the 2nd-order accurate AB/TR
time integration method in comparison to the exact history at two points located at x, = 0.145m
(left) and 0.305 m (right) on the symmetric line x; = 0 between the wells

8.15 Summarized Quantitative Discussion of Error
and Stability for the Favorite Schemes

A quantitative error estimate of the spatio-temporally discrete equations can be
obtained by evaluating the LTE associated with the temporal and spatial derivatives.
For this purpose let us consider the discrete equations (8.223) resulting from a
PGFEM approximation of the 1D ADE convective form without sources/sinks and
boundary terms for a uniform mesh with linear elements of length 4 (= Ax), CM
matrix and constant parameters written as

7é/ i n — @i n 27é/ i.n —@®in 7é/ i—1,n — @¥i—1n
R(¢isintr=divin) | 2R (Gint1 =din) | R (ictntr =di-in) o
6 Aty 3 Aty 6 Aty

9[ hD2+( —05) ]¢z+1n+1+(1—9)[ D+(1—05) ]¢z+1n

9(2}1—? + a%)¢i,n+l + (1 - 9)(ﬁ + 05%)¢i,n +

o[-0~ 4@y L]pn + -0~ +@L]p . =0
(8.303)
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Fig. 8.34 Isocontours of solution at # = 0.2d and breakthrough curves simulated for GFEM by

using the 1st-order accurate FE/BE predictor-corrector method with a relaxed RMS error criterion
of e = 1072

A Taylor series expansion in time for ¢;;, about the time plane n + 1 and for
di+1..+1 about the time plane n gives, cf. (8.149)

it — Bitin . Aty - Af? ...
(M) = 9[¢>,-+1 - T¢i+l + T¢i+l - O(Atr?):l +

At, n+l
. Aty - Af? ...
(1- 9)[¢i+1 + T¢i+l + — i1 + (’)(At,f)]
6 n
(8.304)

Similar expressions result for (¢; y+1 — ¢in)/ Aty and (Pi—1 41 — Pi—1.0)/ Athy.
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Now, we can also apply a Taylor series expansion in space for ¢; 4,41 and
di—1..+1, respectively, about i at a given time plane n + 1 to obtain

h? h3
Piiny1 = [¢i + he; + 7@5,{/ + Z‘P,-W + O(h4)]
ntl (8.305)

h2 h3
. — L / Dol 4
bimier = | ¢ =] + 4] — =8 + O]

where’ denotes differentiation with respect to the 1D space coordinate d/dx. Similar
expressions result for ¢; 1| and ¢;_; at the other time planes n and n — 1, i.e., ¢; 41,

Di—1.ns Pit+1.0—1 and ¢;_; ,—1, respectively. )
To obtain expressions for higher order time derivatives ¢ and ¢ in terms of spatial
derivatives, the governing 1D ADE ¢ +¢¢’— D¢” = 0 may be rewritten in the form

¢ =—q¢' + D¢" (8.306)

Differentiating (8.306) with respect to time, rearranging the differentials and
successively substituting again (8.306) in the resulting expression, gives

b= (-at + D9") = ~a-d + Dz = 49"~ 2qD¢" + D9
(8.307)

and similarly
¢ = —4*¢" +3¢*Dp® —3¢D*¢® + D*¢p© (8.308)

Now, inserting (8.304) and the related expressions into (8.303), replacing all
higher order time derivatives by spatial derivatives via (8.307) and (8.308) as well
as substituting with (8.305) all (i + 1)th and (i — 1)th terms, we find after some
manipulations the following approximate representation of the governing ADE at
node i and time plane n + 6 (note that t, 49 = 01,41 + (1 — 0)1,):

(R +q¢' — D),y = (0‘% + 4 2)9¢, 1t ( AZI" 2) — 091
+( 4 - Aznqb)e¢;§;+l +(%q + At,qu)(l —0)!"
+(5D— 4D+ 242D + 4ig* — o, h3)(9¢}‘,‘}+1
+(5D + 2D+ LD + gt —akh?) (1 - 0)p)
+ HOT

(8.309)
or simply
R +q¢’ = (D + Dyun)d” + O(h2, (20 — 1) At,., Ar2) (8.310)

where the numerical dispersion coefficient Dy, associated with the second spatial
derivatives on the RHS of (8.309) appears
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h
Diyum = aq? + Atyq? (0 — %) (8.311)

The RHS of (8.309) encompasses the total truncation error of the spatio-temporal
discretization, which has no physical basis. The coefficient D,y of the spurious
(unphysical) numerical dispersion covers the leading terms of the truncation errors,
which are of 1st order in space and time.

In generalization of (8.310) we can find a semidiscrete representation of the
governing ADE convective form in multidimensions as

. 0
R 3¢ +q-V¢—V-[(D+ Dnym)- Vo] + (¢ + Q)p— H — Q¢w = O(hezv (20 —1) Aty Atr%)
(8.312)
with the tensor of numerical dispersion
Dium = Doumd + Brum Joft (8.313)

where Buun is the streamline-oriented coefficient of numerical dispersion while the
scalar numerical dispersion Dy, consists of the spatial part DR and the temporal
paIt Dtlme

num’ Z.,

Dy = DPe 4 plime (8.314)

num num
with

Des® ~ different for GFEM, SU, FU, SC, PGLS
Dime = At,q“*(6 - 3)

num

(8.315)

The coefficients of numerical dispersion, the orders of accuracy and the stability
restrictions for the different favorite schemes discussed above in Sects. 8.13 and 8.14
are summarize in Table 8.9, where the parameters are evaluated at element level. The
standard Galerkin FEM with the TR (Crank-Nicolson) time stepping is recognized
as the most accurate method which is 2nd-order accurate in space and time
O(he?, At?) without numerical dispersion, however, it is only conditionally stable.
Most restrictive and crucial for the GFEM is the Pg < 1 condition, unless
oscillatory solutions can be produced. The diffusion limit Cr < Pg is commonly
not important for the TR (Crank-Nicolson) scheme, while the advection-diffusion
limit PgCr < 1 can be more serious for dominant advection if using the TR
time stepping. In Table 8.9 the accuracy of the schemes decreases from top to
down in favor of increasing stability. However, the higher stability is paid by an
increased amount of spurious numerical dispersion which can significantly exceed
the physical dispersion/diffusion D¢ if the mesh is coarse and/or the time steps are
large. Here, the FU scheme with fully implicit time stepping of 1st-order accuracy
O(h®, Aty,), while unconditionally stable, tends to produce very overdiffusive results
if h¢ and/or At, are large. Compromises between stability and accuracy are possible
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Table 8.9 Estimated accuracy and stability restrictions of the favorite schemes using linear finite
elements and semi-implicit or implicit (A—stable) time integration in solving the ADE (8.5) or
(8.3) at presence of advection g # 0. Note that for diffusion/conduction problems (g = 0) only
the standard GFEM is applied possessing no numerical dispersion and no stability restrictions,
except the diffusion limit Cr < Pg, (A, < Rh¢%/(2D?)), for the 2nd-order accurate TR time
integration method

Time  Accuracy Stability*

integra- Numerical dispersion” Temporal Spatial
Scheme tion® D¢ cum  Order limits? limits
GFEM! TR - - OMh?3 Aty B Cr<Pg<d& Pg<l1

BE A ge? - O(h*?, At,) - Pg <1
PGLS: TR - Crhe O(he?, Aty) Cr<Pg< 4 -

BE A ge2 Ccrht O(h?, At,) - -

he e

suh TR - z O(h*, At? Cr<Pg<4 -

BE Sq? Lo, Ar) - -
sc! TR tachellayll - O(he, At?) Cr<Pg<Z -

BE  jallall + 5r¢? - O, Ay - -
FUI TR gl - O(he, At? Cr<Pg< 4 - .

BE Lo+ anlallel - o6.an) & - - 2

4 Necessary but not always sufficient to ensure boundedness and prevent oscillations

b Expressed in the element tensor D¢, = D¢,.8 + ﬂnum“q—“ of numerical dispersion (8.313)

¢ @—family and corrector methods: 6 = % TR (Crank-Nicolson); 8 = 1, BE (fully implicit)

4 Conditionally stable, Cr = “%fu Pg = gﬁgf” (D¢ = physical dispersion, /¢ by (8.239))
T Standard Galerkin without any upwinding, @ = 0

¢ Least square strategy suitable for ADE convective form

h Streamline upwinding used with & = 1, (8.245)

I Shock capturing with projected flux | gf || = l‘ﬁVZf} Il and upwind parameter o, (8.259)

he

i Full upwinding equivalent to (8.251) with B¢, = 2

num

by resorting to the PGLS, SU or SC schemes, where always the 1st-order accurate
BE time stepping provides a higher stability in contrast to the 2nd-order accurate
TR time stepping scheme.

In predictor-corrector time stepping only the corrector solutions are important for
the stability analysis, while the explicit predictors provide prolongated solutions,
which are primarily used to estimate the accuracy in comparison to the corrector
solutions needed in the adaptive time stepping control. However, the accuracy of
the predictor and corrector must be consistent, so that FE and BE are both 1st-order
accurate in time as well as the AB and TR are both 2nd-order accurate in time, cf.
Sects. 8.13.5.1 and 8.13.5.2, respectively. No upwinding is used for the explicit FE
and AB predictor schemes, i.e., « = 0. However, we note from (8.311) with 6 = 0
a negative numerical dispersion coefficient D¢, = —At,q¢*/2 arises for the FE
predictor.

It is important to note that the stability bounds and errors of numerical dispersion
listed in Table 8.9 only occur in the presence of advection ¢ # 0. Without
advection ¢ = 0 there is no need to use the PGLS, SU, SC and FU schemes.
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For diffusion/conduction problems the standard GFEM is most optimal and uncon-
ditionally stable, except for the diffusion limit Cr < Pg, (At, < Rh°*/(2D°®)),
arising for the 2nd-order accurate TR time integration method, which is, however,
commonly noncrucial.

8.16 Implementation of Dirichlet-Type BC’s in the Resulting
Matrix System

In formulating the weak statements in Sect.8.9 the specification of Dirichlet
boundaries I'p remains of particular concern. So far, the resulting weak statements
do not incorporate any BC’s of Dirichlet type, now we have to make up for it. In
principle, there are two ways for implementing Dirichlet-type (essential) BC’s. First,
they can be mimicked via a Cauchy-type BC if the transfer coefficient ®¢ (or @)
appearing in (8.104) and (8.105), associated with a global node i and the adjacent
elements, is set to an arbitrary large value (theoretically, @¢ — o00). It enforces that
the condition ¢; ~ ¢ is satisfied in a reasonable approximation (the larger ®¢,
the better the approximation of ¢; ~ ¢¢), such that the Dirichlet BC appears as
a special case of the Cauchy BC. While this method is very easy and efficient, it
has a clear disadvantage; namely, the large value required for the transfer coefficient
increases significantly the parameter contrast in the resulting matrix system, which
can deteriorate the properties of the system matrix causing negative impact on the
solution of the sparse equation system.

The second method which is preferred here avoids those circumstances and
satisfies the Dirichlet-type BC’s in an exact manner without deteriorating the matrix
system. The basic idea is that the solution at a Dirichlet boundary I'p is known
and accordingly all nodes sharing I'p can be eliminated from the computations by
a simple bookkeeping procedure. Let us consider a matrix system resulting from
a spatio-temporal discretization such as given in (8.154) or (8.177), which leads
always to a linear (or linearized) sparse system of equations written in a compact
matrix form (note that the time plane indexing is dropped for convenience)

A-¢p=r (8.316)
or
A11 A12 Ali Ale ¢l ry
A21 A22 e A2i e AZNP ¢2 r
. . . . . . _ . 8317
A,’l A,'z e Aii e Ain QZ'),‘ ri ( )

Anpt Anp2 -« ANpi - ANpNp DNy 'Np
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which has to be solved at each time stage for the unknown solution vector ¢
consisting of Np components, where A is the sparse system matrix of dimension
Np x Np comprising all terms of the LHS and 7 is the Np—dimensional RHS vector
comprising all RHS terms of the basic discrete system (8.154) or (8.177). Now,
assuming that the solution at the ith node is known, i.e., ¢; = ¢p, where ¢p is a
prescribed Dirichlet value, then (8.317) can be rewritten

A11 A12 Ali Ale ¢)1 ry
A21 A22 e A2i e AZNP ¢2 r
. . . . . : _ . 8318
0O 0 ... 1 ... 0 bi ép ( )
ANpl ANPZ ANpi ANPNP ¢Np rNP

To retrieve a possible symmetry of A, it is useful to shift the i th column to the RHS.
It yields the equivalent formulation

Ay Ap ...0... Ale ol ri—Aiidp
Ay Ay ...0... AzNP l03) ra— A2i¢p
Co : S = 5 8.319
0 0 ...1... 0 o ép ( )
ANpl ANPZ-‘-O‘-‘ANPNP ¢NP er—ANpi¢D

This bookkeeping procedure can be done for all Dirichlet nodes. Assuming there
are Np Dirichlet BC’s in total, which are implemented in the matrix the system, the
actual number of equations Ngq which has to be solved is

Ngg = Np — Np (8.320)

and the final matrix system is compressed to the actual set of equations in the form

A A ..o Aing ¢ r—Aii¢p
Ay Axp ... A b2 r2 — A2 ép
ST O T = o (8.321)
ANEQI ANEQZ e ANEQNEQ ¢NEQ rNEQ - ANEQid)D

where all rows and columns of A are removed to which Dirichlet-type BC’s are
associated. In the practical solution, a profiling of the matrix system can be easily
performed, where all Dirichlet equations are determined and eliminated from the
matrix system which is actually solved. The procedure is accurate and efficient
because the properties of A remain unchanged and the equation system is reduced
by the Np entries.
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The spatio-temporal finite element approximation such as given by (8.154) or
(8.177) leads to a matrix system in form of (8.316). After elimination the Np
Dirichlet-type BC’s from the Np equations as described in the preceding Sect. 8.16,
we end up with a system of simultaneous linear (or linearized) algebraic equations
written in matrix form (for sake of simplicity we drop the time plane indexing in
case of transient ADE) as

A-p=b (8.322)
or in index notation
Aijp; = b; (1 <i,j < Ngg) (8.323)
or
A A ... Alng & b
A.ZI A.z P AszEQ : ?2 = b.2 (8.324)
AA;EQl AA;EQZ ANE;NEQ D Neg b]\;EQ

which has to be solved for the Ngg—dimensional solution vector ¢, where the
system matrix A has Ngg rows and columns. The RHS-vector b, containing
additionally the Dirichlet BC terms according to (8.321), has Ngg components. It
is to be noted that for transient problems we always prefer implicit or semi-implicit
time integration schemes due to stability and performance reasons, which essentially
require the solution of equation systems (in contrast to temporally explicit schemes,
where in combination with mass lumping, cf. Sect.8.13.2, there is no need to
solve a system of simultaneous equations, however, at the expense of a commonly
huge number of time steps as discussed in Sect. 8.13.6). Furthermore, steady-state
problems, in which the time step is deemed infinitely large Az, — oo, an equation
system in form of (8.322) has inevitably to be solved.
The unique solution of (8.322) at given A and b in a form

p=A""1b (8.325)

only exists when A is non-singular, i.e., A must have a non-vanishing determinant
|A| # 0. The system matrix A is usually unsymmetric, i.e., A # AT, when
advection terms occur in the discrete formulation (except for the PGLS method
introduced in Sect. 8.14.5). On the other hand, A can also be symmetric, i.e.,
A = AT, for instance when terms of advection are absent. As a consequence of
the used finite element discretization the system matrix A is sparse, i.e., many of its
components are zero, and possesses a definite structure which is determined by its
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Table 8.10 Advantages versus disadvantages of direct and iterative solution techniques

Method Advantage Disadvantage

Direct Solution of A - ¢ = b is exact. Sequence May be inefficient for large
of operations only performed once. No problems, in particular in 3D.
initial estimates and iterations are Can produce round-off errors
required

Iterative Efficient with respect to storage demand Solutionof A-¢ = bis
and CPU time approximative. Initial estimates

and iteration parameters are
required. System matrix A
should be well-conditioned

non-zero components. A method of inversion of A, in particular when the order Ngq
of the matrix becomes large, depends very much on the structure of A. Accordingly,
efficient solution methods will utilize the sparsity structure of A under exploitation
of its symmetry if occurring. In general, we can differ into two major solution
strategies: (1) direct and (2) iterative techniques, e.g., [15, 376,430,453, 590]. For
large problems, particularly in 3D applications, iterative solution methods are more
efficient than direct solution techniques, however, they may suffer sometimes from
a poor convergence behavior. The relative merits of direct and iterative solution
techniques are listed in Table 8.10. In recent years, due to the increases in computer
memory and the suitability for shared-memory multiprocessing there is a revival of
direct solution methods, e.g., [461].

8.17.1 Direct Solution Methods

8.17.1.1 Gaussian Elimination

The classic direct solution method is the Gaussian elimination. Its objective is
to subtract appropriately scaled rows in the system (8.324) to arrive at an upper
triangular matrix equation in the form

Ap=b-—>U-¢p=V (8.326)

where U is an upper triangular matrix. We obtain U by following procedure termed
as forward elimination: We choose the first row as the pivor equation and eliminate
¢1 from each equation below it. This is achieved by multiplying the first equation
by A1/ Ay provided the pivot element Ay; # 0, which is then subtracted from the
second equation. It is continued similarly until ¢; is eliminated from all equations.
Now, we eliminate ¢,, ¢3, ... in the same manner until the upper triangular form is
attained
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U U ... Uingg é b}

0 Uyp... Uy b2 b,
AR P R I (8.327)

0 0 ... UNEQNEQ ¢NEQ b;VEQ
where the components of the first row are U;; = Ay, (j=1,..., Ngg) and
by = by. The solution ¢ is then easily be performed by a recursive bottom-up
backsubstitution as follows

Preo = bveg/ Unioiig (8.328)

¢ = (b,{ —Uyo;)/ Ui, j>1i

We recognize that the Gaussian elimination changes the RHS vector b to &', which
makes this technique rather inappropriate for systems with multiple RHS’s. This can
be circumvented by the following decomposition solution strategy.

8.17.1.2 LU Matrix Decomposition and Crout Method

The preferred variant of Gaussian elimination is the Crout method, in which the RHS
vector b is not affected by the matrix decomposition. It is very advantageous for
matrix systems where A does not change in time (when using constant time steps) so
that A needs to be decomposed only once. In such cases ¢ can be easily computed
via simple backsubstitution for every time-varying RHS vector b, a considerably
fast computational process termed as resolution. In the Crout method the matrix A is
decomposed into a lower triangular matrix L and an upper triangular matrix U, viz.,

A=L-U (8.329)
where
1 0 0
Loy 1 ...0
L = ] . (8.330)
LNEQl LNEQ2 o1
and

(8.331)
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Fig. 8.35 LU decomposition of matrix A in the Crout elimination method: (a) reduced, active
and unreduced zones, (b) terms used to construct U;; and Lj;

Then, the linear equation system (8.322) expressed with (8.329)
A-¢=(L-U)-¢=L-(U-¢)=0 (8.332)
~———
y

can now be solved via the pair of equations

L-y=b (8.333)
and

U-¢o=1y (8.334)

The LU decomposition (also called factorization) of A = L - U represents the
crucial and most costly solution step. The Crout method computes L and U by a
continuous accumulation of products and does not need to record the intermediate
reduced matrices. In this LU decomposition process the matrix A divides into three
zones as outlined in Fig. 8.35. There is a region that is fully reduced, in the second
(called active) zone the matrix is currently being reduced and there is a third zone,
which contains the original unreduced matrix components. Taking

L;=1 (i=12,...,Ng) (8.335)

for each active zone j the entries of U and L are given by
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i—1
UUZAU—ZLim(]mj (J:l’l+1”NEQ)
= (8.336)
L= (Aji—ZijUmi)/Ui‘ (j=i+1Li+2,... Ngo)
m=1

for i =1,2,..., Ngg). We note that the summation in (8.336) is ignored when the
lower limit of the index m exceeds the upper limit.

It is obvious from (8.336) that the diagonal entry in the matrix U must be non-
zero. This can be assumed for a matrix A which is diagonally dominant, i.e.,

|4il =Y |4l (i =1.2..... Neg) (8.337)
j#i

In other cases partial pivoting is required in which rows of A are appropriately
interchanged to meet non-zero diagonals. The above decomposition can be used for
both unsymmetric and symmetric matrices A. However, if A is symmetric, A =
AT the relation exists

Uy = LiU; (8.338)

and it is no more necessary to store the complete matrix. Only the diagonals and
the components above the diagonals need to be stored, while (8.338) is utilized to
construct the missing part. It reduces the decomposition costs by nearly 50 % [509].

Having completed the decomposition of A, it is now trivial to solve ¢ by
utilizing (8.333) and (8.334) in a forward elimination and backward substitution
procedure, viz.,

i—1
Vi = bi — Z L,:,'yj (l = 1, 2, ey NEQ) (8339)
j=1
and
NEQ
= (vi— Y Ui)/Ui (i=NeoNeg—1L....l)  (8340)
j=i+1

respectively, which are computationally cheap. We see that in (8.339) the RHS
vector b is not destroyed during the forward elimination, which makes the Crout
method very useful for multiple RHS’s in a resolution process avoiding a repeated
LU decomposition.
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8.17.1.3 Other Methods
A symmetric matrix A which is positive definite, i.e.,
d-(A-¢p)>0 forallp #0 (8.341)

can be decomposed in the form

A=L-U=L-(D-L")=(L-D"*-(D"*.L") (8.342)
e i
i ir

where D is the diagonal matrix defined as
D = [Un, Uy, ..., Ungonig | (8.343)

The decomposition (8.342) in the form

A=L-L" (8.344)

i§ used in the Cholesky method, e.g., [456,468], in which the lower triangular matrix
L is related to L appearing in the Gaussian method by

L=L-D'? (8.345)

The Cholesky method introduces a little extra-effort in computing the square root
D'/? compared to the Crout method for symmetric matrices. However, just this
square root operation accounts for small round-off errors, which is a striking feature
of the Cholesky method.

Further variants of the Gaussian elimination method differ in strategies of sparse
matrix storage and bookkeeping, elimination sequences, pivoting techniques and
round-off error minimizations. Active column profile solvers [509,590] based on the
Crout method reduce the required storage and computational effort for unsymmetric
and symmetric sparse matrices, where their columns and rows are stored only within
the non-zero profile (also termed as envelope or skyline) of A, see Fig. 8.36. It has
a definite advantage over the method of a fixed banded storage. The profile can
be very variable so that long and small columns can be compactly stored. The
column heights are, however, dependent on the node (equation) numbering used
in forming A. An interesting alternative Gaussian elimination is the frontal method
[256,287,291], which operates in a wave-front advancing through a finite element
mesh. In contrast to a profile solution strategy, the operation sequences of the
frontal method are determined by the element numbering, rather than by the node
numbering. The advantage is that at no time the complete sparse matrix A must
exist. Only parts of the matrix are assembled as they enter the front. However, it
implies a considerable amount of bookkeeping compared to an active column profile
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Fig. 8.36 The profile - . =
(envelope) and band of a >
matrix A. The profile height
h; at a matrix row i is the
number of columns
(respectively rows) included
between the first non-zero
column entry and the
diagonal. The bandwidth *
Bwd(A), (8.347), is formed
by the maximum profile
height occurring in A
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solver where the processing overhead remains relatively small. The frontal method
is attractive in treating large matrices out-of-core, where the storage of a complete
matrix would exceed the capacity of computer memory. Today, however, this is often
no more a serious constraint.

8.17.1.4 Fill-in Reduction and Nodal Reordering

A profile of a sparse matrix structure as exemplified in Fig. 8.36 is formed by the
non-zero entries being in a largest distance from the diagonal. This is described by
the profile heights h; (i = 1,..., Ngq) for each row i defined as

hi =i—min(j|4; #0, j <i)+1, (=12,...,Ng) (8.346)

Note that the bandwidth Bwd(A) of A is the maximum of all profile heights
occurring in the matrix:

Bwd(A) = max #h; (8.347)

1<i<Ngq

However, it is the nature of the finite element discretization that not all matrix
entries between the first non-zero column entry and the diagonal are non-zero. Quite
contrarily, a large number of entries in between can be zeros. Now, the consequence
of the elimination process according to formulae (8.336) is that those zero entries
within the profile of A become replaced by non-zero entries. Such entries are called
fill-in. Since fill-in entries cause further fill-in, the complete matrix profile must
be stored to perform the matrix elimination. The required storage amounts to the
envelope (or total profile) given by the sum of the profile heights, viz.,
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Neq . for symmetric A
Env(A) = Z’N:E (12 ! y .
> 2%(2h; — 1) for unsymmetric A

i=1

(8.348)

On the other hand, the solution effort Ecp(A) of matrix elimination is proportional
to the square of each profile heights

Ngqg

Ecp(A) ~ Y h} (8.349)

i=1

In order to minimize both the storage size Env(A) and the computational effort
Ecp(A) for a matrix A it is obvious that the profile heights /; should be hold
small as possible. Indeed, the profile heights are determined by the global nodal
numbering used in a finite element mesh. In practical terms: the larger the difference
between the highest and lowest node number occurring in a finite element, the
larger the profile heights at the corresponding matrix index. This is evidenced in the
example mesh shown in Fig. 8.37. While an inappropriate nodal numbering used
in the mesh of Fig. 8.37a leads to a wide-spread pattern of non-zero entries in the
matrix with a consequent large storage demand and a significant amount of fill-in,
an intelligent nodal reordering as outlined for the mesh of Fig. 8.37b accomplishes
a significant reduction of the storage demand, fill-in and computational effort.

There are different techniques [189, 418] which are useful to automatically
renumber the mesh nodes with the aim to bring all matrix entries closer to the
diagonal. Most important are:

¢ The Reverse Cuthill-McKee (RCM) method [108], which reorders the nodes
according to the lowest connectivity with surrounding nodes at each level of the
corresponding graph of spatial discretization.

¢ The Multilevel Nested Dissection (MLNDS) method [301, 302], in which the
reduction of nodal interconnectivities is employed via a recursive partitioning of
domains.

The RCM usually gives excellent reductions. The MLNDS is to be preferred for
bigger meshes. It accomplishes a reasonable profile reduction (albeit often not so
much as via RCM), however, at lower computational costs. Furthermore, MLNDS
is better suitable for parallel processing. In practice, nodal reordering schemes are
obligatory when direct equation solvers become in use. The nodal reordering is
performed before Dirichlet-type BC’s are implemented according to (8.321). It ends
up with a compressed matrix system which is optimal for direct profile solvers.

8.17.2 Iterative Solution Methods

The solution of the matrix equation (8.322)

A-¢p=0 (8.350)
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40

Fig. 8.37 A—matrix occupations for a simple 2D triangle mesh (a) before and (b) after RCM
nodal reordering. Matrix entries drawn in black relate to intrinsic non-zero coefficients, entries
drawn in gray identify fill-in. The nodal reordering reduces the total profile Env(A) for the present
mesh to about one third

by using direct methods can be rather inefficient for large systems. Their computa-
tional effort Ecp(A) is proportional to the square sum of all matrix profile heights
(8.349), for a band structure of A it is proportional to Ngq(Bwd(A))? and for a
full matrix it is even proportional to NE’Q. However, there are reliable alternatives in
form of iterative solution methods, which solve (8.350) on an efficient approximate
basis possessing a computational effort having only a more or less linear proportion
to the equation number Ngq and, however, a dependence on an iterative cycle. The
faster the convergence of the iterative procedure, the smaller the required number of
iterations and the better and efficient will be the iterative solution.

The principle of all iterative solution procedures is to make a first guess ¢°,
then apply a recurrence scheme to generate a sequence of new approximations
b, (;52, ..., that converge to ¢. A simple recurrence scheme, known as Richardson
iteration, could have the form ¢*+! = ¢* — y(A - ¢* —b), (r = 0,1,...), where
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7 is an iteration counter and y # 0 is an acceleration parameter. The advantages
of such an approach are obvious: (1) the system matrix A must not be inverted
directly anymore and (2) the sparsity of A can be fully exploited, where only
the non-zero entries are stored in a dense manner (need not to consider fill-in).
The disadvantage of iterative methods is that (1) the rate of convergence may be
slow or even divergence may occur and (2) an error criteria has to be chosen at
which the iteration is terminated to consider the approximate solution as sufficiently
accurate. It becomes clear that the crucial point of each iteration method is to find
an acceleration strategy for a fast rate of convergence. Today, there is a wide variety
of iterative methods for solving both symmetric and unsymmetric systems, see €.g.,
[15,453]. Most important for the present class of problems are the following:

* The Conjugate Gradient (CG) method.

* The Orthogonal Minimum Residual (ORTHOMIN) method.

¢ The Generalized Minimal Residual (GMRES) method.

* The Lanczos Conjugate Gradient Square (CGS) method.

* The Lanczos Bi-conjugate Gradient Stabilized (BiCGSTAB) method.

* The Multigrid (MG), in particular Algebraic Multigrid (AMG) method.

To improve the convergence behavior of these iterative methods, they are usually
applied in combination with so-called preconditioning techniques which transform
the basic matrix system into a form that is more suitable for the iterative procedure.

8.17.2.1 Preconditioning

An important property of the matrix A is given by the condition number k(A)
defined as [453]

K(A) = |A[lIlA7" (8.351)

which characterizes the ratio between the maximum and minimum eigenvalues
K(A) = Anax(A)/Amin(A). Problems for which « is large are called ill-conditioned
problems, otherwise if « is not too large they are called well — conditioned
problems. Typically, a high parameter contrast in the coefficients of A causes a
high condition number x. Unfortunately, the eigenvalue distribution significantly
influences the convergence behavior of an iterative method. For instance in case of
the CG method, if S(P) is the number of iterative steps required to decrease the
error ||@° — ¢| by a factor of P, then S(P) < %ﬁln(Z/P) + 1. That means, the
number of iterations needed to reach convergence is O(+/k). It suggests that the rate
of convergence can be significantly improved if we could decrease x — 1. Indeed,
this is possible by a suited transformation of the basic matrix system in such a way
that an iterative method will converge much faster than without this modification.
Such a type of transformation is termed preconditioning.
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To construct appropriate preconditioners for matrix A, we differ between explicit
and implicit preconditioning methods. To solve A - ¢ = b, an explicit method
transforms the system into

(Cc't A).0o=C"-b (8.352)

where C' is the preconditioning matrix to be chosen. Then, (8.352) is solved on an
iterative basis, e.g.,

ot = (6—A)¢p"+b, where A=C"A and b=C""b (8.353)

In implicit preconditioning the original problem A-¢ = b is replaced by a sequence
of solutions of the form

C. (" — ") = —r7 (8.354)
with the residual vector
r'"=A-¢"—b (8.355)

Both forms (8.352) and (8.354) are equivalent. Their use is only dependent on how
the inverse C~! is explicitly known. In any cases, the preconditioning matrix C
should require only little computational extra-effort. On the other hand, the chosen
preconditioning matrix must significantly improve the eigenspectrum of C~! - A
in comparison to A, i.e., k(C~! - A) < k(A). Both requirements are somewhat
contradictory: the better the preconditioning, the higher often the costs. Note that
for the case C = A in (8.354) the scheme corresponds to a direct solution and
the sequence of solutions stops after one iteration. In approximating A with C it
tends to drop low eigenvalues (i.e., long-wavelength eigenmodes), what can be a
deficiency. Hence, a good and optimal choice of C (or explicitly C~') is desired.
Today, a large family of preconditioners is available, cf. [15,45,453]. Our preferred
conditioning methods are:

e The incomplete LU (ILU) decomposition method: C' = L - U for unsymmetric
and C = L - (D - L") for symmetric systems.

e The modified ILU (MILU) method, where diagonal entries of U are additionally
modified to tackle ill-conditioned problems.

e The polynomial preconditioning: C~! = p(A), where p(A) is a polynomial of
lower degree, commonly Chebyshev polynomials.

Most useful is the incomplete lower-upper (ILU) preconditioning in the form

L-U unsymmetric

C =
L-(D- LT) symmetric

(8.356)
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which is achieved by a matrix decomposition with a Crout method (8.336), however,
the fill-in that occurs for all the off-diagonals within the matrix profile is completely
or partly neglected. The simplest and usually preferred method is the ILU decompo-
sition (factorization) with no fill-in, termed by ILU(0). It works very fast, is robust
and needs only a comparatively small extra-storage. For certain applications an
extended ILU preconditioning can be suitable in which some fill-in is allowed in the
incomplete LU decomposition, e.g., ILU(1) which accomplishes 1st-order fill-ins,
see [453] for more. Commonly, nodal reordering (see Sect. 8.17.1.4) is not needed
for ILU(0), but in using ILU(1) it can improve the accuracy of the preconditioner
due to the fill-in-minimized rearranged structure of the matrix.

Improvements of ILU preconditioning can be attained by so-called modified ILU
(MILU) preconditioners [40]. Basically, these techniques are zero fill-in ILU(0O)
strategies, however, the fill-in entries occurring during the matrix decomposition
process are kept (e.g., adding up positive off-diagonal entries) in order to put the
lumped sum to the diagonal entries. In this way one attempts to compensate the
discarded entries, which can be important for the lower eigenvalues if the matrix is
ill-conditioned. A favorite is the Gustaffson MILU preconditioning [217], which
is designed and specialized for symmetric matrices including a high coefficient
contrast. However, the MILU strategy has shown often insuffiently robust and
should not be applied in general.

8.17.2.2 The Preconditioned Conjugate Gradient (PCG) Method

The conjugate gradient (CG) method goes back to Hestenes and Stiefel [247], who
presented a new iterative method with a significantly increased rate of convergence
in solving sparse symmetric positive-definite equation systems. Bizarrely, it took
many years until this powerful method has found acceptance in the numerical
analysis community that were exclusively fixed on direct solution methods over
long time. But, beginning in the 1970s and in particular once computers became
powerful enough to tackle real 3D problems, the CG method has started its triumph
and gained considerable attraction in numerical modeling. Today, the CG method
has become the standard iterative method for sparse symmetric equation systems.
Its major advantages are: (1) the number of operations per iterative step t is only
proportional to the number of equations Ngq and (2) it converges in at most Ngg
iterations in the absence of round-off errors. In practice, however, the method
already converges after a relatively small number of iterations much faster than the
pessimistic estimate of Ngq. The rate of convergence depends on the distribution of
eigenvalues. Accordingly, the use of appropriate preconditioning further increases
the rate of convergence of the CG method. The preconditioned CG (PCG) method
is the preferred iterative solution method for symmetric matrix systems.

The iterative algorithm for solving A - ¢ = b by the PCG method is given as
follows (see e.g., [15,453]):
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Let A and C be symmetric and positive definite. Guess initially ¢°
andset: 1= A-¢° —b, h® =C~'-r°and d° = —h?°,
with known values: € and ITMAX

For iterations t = 0, 1,2, ... compute until convergence:
T
t+1 _ 47T T T T h' -t
= o'd where of = ——"—
o} " + T ad) (8.357)

,,,r+1 =97 + a‘[(A_ dr)
h‘L’+1 — C—l . ,,,r+1
dr+1 — _hr+1 + ﬂl’dl’ where IBr —

T T T
Stop if % <€ or t>ITMAX

Rl i
htlpr

where 7 is the residual vector, h is the pseudoresidual vector, d is the search
direction vector, C is the preconditioning matrix, commonly C = L - (D - LT)
by using an ILU(0) preconditioner, € is the termination criterion (default 107%) and
ITMAX is the allowed maximum number of iterations (e.g., 200) to be chosen in
dependence on Ngq.

8.17.2.3 The Preconditioned Restarted ORTHOMIN Method

The orthogonal minimum residual (ORTHOMIN) method belongs to a family of
generalized conjugate gradient methods. It was firstly presented by Vinsome [547]
and widely used in petroleum reservoir simulation. A biorthogonal vector algorithm,
originally attributed to Lanczos [332], forms the basis for solving sparse unsymmet-
ric matrix systems. Most of the following variants of iterative methods applied to
unsymmetric matrices are based on that biorthogonalization procedure, termed as
Lanczos algorithm.

In iteratively solving A - ¢ = b by the ORTHOMIN method, the orthogonality
of A - q" is required, that is (A - q¢°) - (A - ¢) = 0 for t # k, where
q" and ¢* are the search directions at iterative steps t and k, respectively. The
ORTHOMIN method converges to the exact solution ¢ within Ngq iterations,
however, it is necessary to store up Ngq search directions g° and Ngq products
A - q°. This implies large summation which makes the procedure sensitive for
accumulating round-off errors in the computation of the search directions. To
overcome this deficiency the orthogonalization is restarted every K iterations, i.e.,
the ORTHOMIN procedure runs for K steps to get an approximation ¢X, then
setting ¢° = X and restart the iterations until convergence is reached. This
is referred to as restarted ORTHOMIN or ORTHOMIN(K), e.g., [342]. Since
the computational cost increases as O(K?Ngq) and the memory cost increases as
O(K Ngq), it is required to hold K small relative to Ngq. Usually, K is chosen in
the range between 4 and 10, depending inversely on the condition number of the
matrix. In practice, it has been shown that the restarted ORTHOMIN converges in a
similar number of iterations as the non-restarted version [42].
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The iterative algorithm for solving A - ¢ = b by the preconditioned restarted
ORTHOMIN(K) method is given as follows (e.g., [346,547]):

Let A and C be unsymmetric. Guess initially ¢° and set: r°* = b— A - ¢°,
i = 0, with the known values: €, ITMAX and K

(1) For iterations t = 1,2, ..., K do:

i=i+1
urzc—l_,,,r—l
vi=A-u’
p‘[:u‘[

q‘[ ,U‘L'

T T
okt = (g -v)/(d" - qb)
For 1 <k <, do pf:pr_akrpk

qr e qf _ aquk
T — T
ﬁt = (qt . ,’,,'L' l)/(qT . qt)
Pt = ¢T—1 + IBtpr
Pt o=l B q*
Compute ef = 1" lice o — FrlPTlico
PUIE €1 = Molo * 27 Té7TLoo
Stopif el <€ or el <e or i >ITMAX
(2) End do
’I’O = 'rK
¢ = ¢~

Go to (1) for restarting
(8.358)

where 7 is the residual vector, q is the search direction vector, u, v, p are auxiliary
vectors, C' is the preconditioning matrix, preferentially C = L - U by using an
ILU(0) Crout preconditioner, € is the termination criterion (default 107°), ||.||.., is
the maximum norm defined by (8.26), K is the number of iterations (default 5) after
which the algorithm is periodically restarted and ITMAX is the tolerated maximum
of total iterations (e.g., 200) to be chosen in dependence on Ngq.

The ORTHOMIN(K) method is only guaranteed to converge for positive real
matrices A, thatis if ¢ - (A - @) > 0 for all ¢ # 0. In other cases, there is no
guarantee anymore for convergence, unless an appropriate preconditioning matrix
C can be found which creates a positive real matrix C~' - A.

8.17.2.4 The Preconditioned Restarted GMRES Method

The generalized minimal residual (GMRES) method was introduced by Saad
and Schultz [454] for solving unsymmetric matrix systems. It is mathematically
equivalent to a generalized conjugate gradient method, however, the orthogonal
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vector algorithm is based on the Arnoldi method (see e.g., [15, 453]), which
saves computational effort and improves robustness in particular for large equation
systems. Li et al. [346] have shown that GMRES can be one-third faster than
ORTHOMIN in various large-scale petroleum reservoir applications. GMRES is
guaranteed to converge in at most Ngq steps, provided that A or C~!- A is positive
real. However, similar to the ORTHOMIN method the storage demand of GMRES
increases linearly with the iteration  and the number of operations increases as
O(1?Ngq), which is rather computationally impractical for large matrices. The
alternative is that GMRES is to restart after a fixed number of iterations K, similar
to a restarted ORTHOMIN(K) procedure. In GMRES(K), the GMRES method is
periodically restarted after every K iterations until reaching convergence.

The iterative algorithm for solving A - ¢ = b by the preconditioned restarted
GMRES(K) method is given as follows (e.g., [342,346,453,454]):

Let A and C be unsymmetric. Choose a first guess ¢°. Set up the
(K + 1) x K Hessenberg matrix: HX = (Hkr)1§k§K+l,1§r§K =0,i=0,
with the known values: €, €;, ITMAX and K

(1) Arnoldi process:
Compute 7® = C™'-(b—A-¢"), B = |7°||, and v' = r°/B
For iterations t = 1,2, ..., K do:

i=i+1

w'=C7'(A-vY)
Hkr — ,th . ’Uk

. T
For 1<k <t doif (w" -v*)> elflwlz, - w' = w' — Hkrpk

H‘L’+1,‘L’ — ||w1:||L2
vt = w/ w L,

End do

Define VK = (v, ..., v8)7T and update ¢ = ¢° + VEyK,

where yX is the minimizer of ||Be; — HXy| ., with e; = (1,0,0,...,0)T

K
Stop if HITbIIHLLZ < & or i>ITMAX, where T =C~'- (b—A. qSK),
2
otherwise set ¢° = ¢X and go to (1) for restarting
(8.359)

where r is the residual vector, H is the Hessenberg matrix [453], v and w are
auxiliary vectors, C' is the preconditioning matrix, preferentially C = L - U

by using an ILU(0) Crout preconditioner, €; is the criterion for checking orthog-
onality (default 10719), ¢, is the convergence criterion to terminate the iteration
(default 107°), |.||., is the L, error norm defined by (8.25), K is the number
of iterations (default 5) after which the algorithm is periodically restarted and
ITMAX is the tolerated maximum of total iterations (e.g., 200) to be chosen in
dependence on Ngq.
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8.17.2.5 The Preconditioned Lanczos Conjugate Gradient Square (CGS)
Method

The CGS method is a variant of the Lanczos-type biorthogonalization (biconjugate
gradient) method for solving unsymmetric matrix systems in which biorthogonal
sets of vectors are generated. It has been proposed by Sonneveld [487]. CGS is a
highly efficient iterative method for unsymmetric matrices which converges about
twice as fast than standard biconjugate gradient methods. It is based on squaring
the residual polynomials. While CGS works well in many applications, it is prone
to rounding errors due to the squared polynomials and even breakdowns cannot
be fully precluded in cases causing a divide by zero. On the other hand, the
residual error is not strictly decreasing in the progress of iterations. Nevertheless,
its properties regarding the smallest storage demand and accelerated convergence
in the most applications make the CGS method in combination with an appropriate
preconditioning a powerful recurrence scheme for solving unsymmetric equation
systems.

The iterative algorithm for solving A - ¢ = b by the preconditioned CGS method
can be written in the following form (e.g., [453,487]):

Let A and C be unsymmetric. Guess initially ¢°
andset: 1’ =q¢°=C~' - (b—A-¢%, g =h" =0, B° = qOT -r% and
y0 = 0 with known values: € and ITMAX

For iterations t = 0, 1,2, ... compute until convergence:
yr+l =9’ + yrhr
gr+l — yr+l + yr(hr + yrgr) ,
t+l _ 41 _ o+l o1, LT+l T+l ‘
h'™ =y ' 'CT - (A-g""") where o T IC (Ag ]
¢r+l = ¢ +ar+l(yr+l + hl’+l)
ritl = pr _ gt L. [A . (yl'+l + hr+l)]
grt! = qu Lprtl

yr+l — ,BI—H/,B‘L’

prtl
Stop if I ||r0||EL2 <€ or t>ITMAX
2
(8.360)
where 7 is the residual vector, q is the shadow residual vector, y, h, g are auxiliary
vectors, C' is the preconditioning matrix, preferentially C = L - U by using

an ILU(0) Crout preconditioner, € is the termination criterion (default 10~%) and
ITMAX is the allowed maximum number of iterations (e.g., 200) to be chosen in
dependence on Ngq. The preconditioned CGS method converges in at most Ngg
iterations for positive real matrices.
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8.17.2.6 The Preconditioned Lanczos Bi-conjugate Gradient Stabilized
(BiCGSTAB) Method

Van der Vorst [535] proposed the BICGSTAB algorithm as an improved variant of
CGS. The BiCGSTAB method stabilizes and smoothes the convergence behavior. It
leads to a more robust and usually faster converging iterative technique for solving
unsymmetric equations systems with small storage demand and low computational
cost. The BICGSTAB iteration steps are only slightly more expensive than the CGS
steps. But, similar to CGS the BICGSTAB method cannot fully exclude the risk
of a computational breakdown if the system matrix A is not positive real. In most
applications, however, BICGSTAB has shown a superior behavior by what it has
become a preferred iterative method for solving unsymmetric matrix systems.

The iterative algorithm for solving A - ¢ = b by the preconditioned BICGSTAB
method is given as follows (e.g., [453,535]):

Let A and C be unsymmetric. Guess initially ¢°
andset: 1 =b—A - andp’ =q°=C7' -7
with known values: € and ITMAX

For iterations t = 0, 1,2, ... compute until convergence:
st=7r"—a'A-p’ where af = gV e
q""[C71(Ap)
tt=C"1.g7 (8.361)

+1 _ _ _(At)Tst
¢r — ¢‘L’ + al’pl’ 4+ w't® where w® = (At)T-(At)
,rz+1 = 8T —w'A -7

pr = of auC vt

" ot lqO.(Cj‘Ffll.rr) |

= O 4 B[pt — T C (AT
P =7+, ol ol
Stop if 2 <€ or t>ITMAX

[E P

where 7 is the residual vector, q is the shadow residual vector, s, ¢, p are auxiliary
vectors, C' is the preconditioning matrix, preferentially C = L - U by using
an ILU(0) Crout preconditioner, € is the termination criterion (default 107%) and
ITMAX is the allowed maximum number of iterations (e.g., 200) to be chosen in
dependence on Ngq. The preconditioned BICGSTAB method converges in at most
Nk iterations for positive real matrices.

8.17.2.7 Multigrid (MG) Methods

The iterative solution methods treated so far suffer from disabling limitations:
(1) Their convergence rates are dependent on the number of equations Ngq to be
solved. This has severe implications in the numerical solution of very large problems
involving millions and billions of mesh nodes. The required number of iterations
inevitably increases and can reach an unacceptable size. (2) Their convergence rate
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Fig. 8.38 Convergence behavior of PCG method showing a typical well-behaved degression of
residual error and the occurrence of stalling in a large problem solution

has a tendency to stall, in particular for large problems, that means the reduction
rate of errors becomes slow or even practically stagnant. In fact, these iterative
methods converge very rapidly for the few iterations and very slowly thereafter, see
Fig. 8.38. The reason for that unfavorable behavior is obvious: The convergence rate
is a function of the error field frequency, i.e., the measure of change of the error from
node to node. All high error frequencies or small wavelength components which
are comparable to the mesh size can be effectively reduced (smoothed out), see
Fig. 8.39, however, low error frequencies or large wavelength components of error
can only badly annihilated such that the convergence rate automatically deteriorates.
As the mesh is refined, the low error frequencies dominate the solution error and
additional iterations become progressively less productive. Indeed, this represents a
serious limitation of those iterative methods. But, the remedy is possible by using
multigrid (MG) methods.

The basic idea of MG methods is likewise simple and intuitive: Since low
frequency errors remain widely hidden for fine grids (meshes), it should be more
efficient to reduce those errors on coarser grids (Fig. 8.40). In using both fine and
coarse grids in an appropriate interplay it must per se lead to a highly powerful
iterative strategy, where both high and low error frequencies are reduced at the
same time with fast convergence. The natural way of transfering between fine and
coarser grids firstly results in the traditional MG method, called geometric multigrid
(GMG).
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fine grid look less smooth on a coarse grid
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Geometric Multigrid (GMG) Method

The concept of the multigrid algorithm dates back to the 1960s when Fedorenko
[161] and Bakhvalov [21] published their first studies. Other multigrid pioneers are
Brandt [51] and Hackbusch [219], who have recognized in the 1970s the actual
efficiency of the MG method and started fundamental developments. Today, for MG
methods an extensive mathematical basis exists and a variety of efficient numerical
strategies for many applications have been worked out. A good overview is given
in the textbook by Trottenberg et al. [519]. The classic and standard MG approach
refers to the geometric MG (GMG) method.

The usual practice in GMG consists of a successive nested structured grid (mesh)
procedure in which the coarse grid has twice the grid spacing 2/ of the next finer
grid with the grid size & so that all nodes in the coarse grid also appear in the fine
grid. The use of grid spacings with a ratio of 2 allows very efficient intergrid transfer
operations and lead to hierarchical meshes where typically fine mesh elements
result from coarse mesh elements by a simple subdivision via element halving
[219]. A hierarchical mesh can also be locally refined. An example for a three-
level successive nested multigrid hierarchy consisting of uniform triangle meshes is
exhibited in Fig. 8.41 which features a V-cycle.

To illustrate the GMG procedure for solving the finite element matrix system
A - ¢ = b, the sequence of only two mesh levels identified by subscripts % for the
fine grid and 2/ for the next coarse grid are considered at first. It begins with solving
Aj, - ¢, = by on the fine mesh for a small number of iterations <10 by using an
appropriate iterative method (e.g., PCG or others) until the residual
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v =by— Ay - @] (8.362)

is sufficiently smooth, i.e., high error frequencies are suitably reduced. This solution
step is termed presmoothing. Then, to effectively reduce low error frequencies the
so-called coarse grid correction starts. It transfers the residual 7}, to the coarse grid,
a process called restriction, in the following form of a coarse grid defect matrix
equation

Ay - Apy, = by, with by, =TI -r] and A5, = ¢LF' — @3, (8.363)

where I ,fh is a nonsquare matrix, known as the restriction operator. The solution
increment Ay, results from (8.363) and can now be transferred back to the fine
grid by interpolation, a process called prolongation, to obtain

AL = I, - Ag3, (8.364)

where Iélh is a nonsquare matrix, known as the prolongation operator. It gives the
new approximation

= ¢p + Agj, (8.365)

on the fine mesh. A postsmoothing solution step can now follow in which the
residual r,j“ =b,— Ay - ZH is further reduced via a standard iterative solver to
obtain an improved solution ¢;+l on the fine mesh.

The construction of the restriction operator I ,fh and the prolongation operator
Ifh can be rather simple when using nested grids in which all coarse grid nodes
appear in the fine grid nodes. In the FEM context the natural choice is the use of

interpolations based on the basis functions (8.16) such that

Y Nowj o ~ Y Nui i (8.366)
j I

where Ny, ; and Ny, denote the basis functions of meshes 2/ with nodes j and
h with nodes [, respectively. To minimize the approximation error a Galerkin-
weighting approach for (8.366) becomes useful

Jo Noni N jd 2 ¢ j = [ NoniNnad$2 gy

8.367
Oup, - o = MP" - &y, ¢ )

where O, is a consistent mass matrix for the coarse mesh, which can also be
lumped (see Sect.8.13.2), and M,fh forms a new integral that consists of the
inner product of basis functions from the different meshes. The restriction operator
directly follows from (8.367) as

=o' - M (8.368)
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which is simply evaluable for the lumped matrix 0511 = . A similar relation
can be developed for the prolongation operator. We recognize that (8.368) implies
operations in form of averages between adjacent grid points. More difficulties arise
in using unnested and unstructured grids, see e.g., [354], where the operators have to
be carefully derived to avoid additional inacceptable approximation errors appearing
in the intergrid interpolations.

The principle of the two-grid procedure as stated above can be generalized
to sequences of multiple grids. The reason for using more sequences of grids is
obvious: The solution of (8.363) on the coarse grid may not be much different
from the next fine grid. Hence, we can recursively repeat this two-grid procedure on
successively coarser grids, creating coarser and coarser grids, down to some coarsest
grid. Then, on the coarsest grid the remaining defect equation of the type (8.363)
can be usually solved exactly via a direct solver. The solution is then prolongated
successively to the finer grids. The multigrid algorithm takes the form:

smooth r; = b, — A, - ¢, n times
restrict by, = I -7}
smooth 7}, = bj, — Ay, - A@j, n times
restrict by, = I;;’; ‘T
smooth r}, = b}, — Ay, - Ag}, n times
restrict bg, = Iff{: ‘T

: (8.369)
prolongate A@}, = I3 - Agy,
smooth 7}, = b}, — Ay, - Ag}, m times
prolongate A¢h, = IZ - A},
smooth r}, = b}, — Ay, - A@;, m times
prolongate A¢; = Ifh AP,
compute ¢fl+1 = ¢, + Ad;

smooth /™' =b, — Aj, - ;"' m times to finalize ¢}

encompassing one iteration step (cycle) r of the multigrid procedure. Such a
consecutive fine-to-coarse and coarse-to-fine multigrid cycle is called V-cycle,
sketched in Fig. 8.42. However, there are much more options of how to cycle the
multiple grids. Another possibility is the W-cycle, where more coarse grids are
visited to drive the residuals down as much as possible before returning to the more
expensive finer grids (Fig. 8.42). In cases where the initial solution on the fine mesh
may be too poor, a full multigrid cycle (Fig. 8.42) is appropriate to obtain better
starting solutions on the coarse grids.

It can be shown for the GMG method [519] that its convergence is independent
of the size of the finest grid. Solving a problem in D dimensions, the reduction
in the number of nodal points Np between subsequent grids is of the order of
NPZh / Nlﬁ’ ~ 1/2P. Assuming that n smoothing steps are required on each grid and
the computational work of each smoothing processes is proportional to the effective
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number of equations Ngq, the total computational work needed for a full V-cycle is
only of the order O(n Né’Q logp (Né’Q)) and the associated storage requirement only

of the order (’)(N}QQ log,, (N}QQ)). In fact, these estimates are extremely favorable
and hardly to be beaten by any other iterative strategy. For a W-cycle the amount
of work is only slightly larger. In particular for 3D problems, we observe that the
number of grid points on the coarser grids drops dramatically.

Algebraic Multigrid (AMG) Method

While the GMG method has shown very efficient in particular for large and very
large problems, there are unfortunately a number of serious deficiencies which
hamper its use in the finite element modeling practice. Detrimental is that GMG
often deteriorates for problems with anisotropic and discontinuous coefficients.
More important is that GMG depends fundamentally on the availability of an
underlying grid. The treatment of complex meshes in 3D has shown often rather
cumbersome. The FEM generally uses unstructured, nonhierarchical meshes. For
that mesh complexity it is difficult if not impossible to construct reliable GMG
methods. However, the basic principles of GMG can be exploited in a generalized
strategy without suffering from GMG’s fundamental restrictions. Such a strategy
has become true with the algebraic multigrid (AMG) method [453,519].
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Brandt [52] and Stiiben [497] can be seen as the major protagonists of the AMG
method, who started AMG’s development in the early 1980s. It was motivated by the
observation that straightforward geometric grid transfer operations of restriction and
prologation can be alternatively formulated on the basis of the underlying matrices
without any reference to grids (meshes), i.e., the construction of these operators can
be done purely algebraically. On the other hand, AMG’s algorithmic components of
smoothing and coarse-grid correction remain completely analogous to the classical
GMG method maintaining its computational power and efficiency for solving large
matrix systems. In contrast to GMG where coarse-grid discretizations are used to
reduce low-frequency error components, the AMG method reduces the low error
frequencies on matrix equations of a reduced dimension defining a certain level. As
a consequence, AMG does not require anymore fixed grid hierarchies. Accordingly,
in AMG one should better use the term multilevel rather than multigrid (but for
historical reasons the term multigrid is often further preferred in the AMG context).

AMG is best developed for scalar elliptic PDE, however, recent progress has
also been attained for systems of PDE’s and ADE’s. It has been proven to be a very
robust and efficient solution method applicable to both structured and unstructured
meshes. Stiiben [498] gives a comprehensive overview on AMG in different fields
of application. The key feature of AMG is the exploitation of the Galerkin approach
comparable to (8.367) of GMG, however, in the context of AMG the required
coarse-grid operators of restriction and prolongation are based on interpolation that
maps a coarse node into a fine one of a given matrix system. This coarsening process
is fully automatic. Suppose the finite element matrix system A - ¢ = b is given at
the highest level (finest mesh)

Ay -y =y (8.370)

similar to a geometric two-grid description, we can define the matrix system for the
next coarse-level problem identified by subscript H as

Ay - by = by (8.371)

The coarse-level AMG system (8.371) is constructed by means of the Galerkin
approach. In doing so, the coarse matrix Ay results from

Ay =T Ay -1, (8.372)

where I f and I 1]11 denote the restriction and prolongation operators, respectively.
Their construction forms the major task of AMG’s setup process, see [498] for more
details. Having these operators a two-level process and by its recursive application
any multilevel process can be easily performed in an analogy to GMG’s multigrid
cycle and smoothing algorithms described above.



8.18 Treatment of Nonlinearities 375
8.18 Treatment of Nonlinearities

In the previous Sect. 8.17 we have described techniques for solving the resulting
algebraic equations systems A - ¢ = b, provided that the system is linear, i.e.,
the solution ¢ does not occur in any other combination than in a linear one.
However, in a number of applications the parameters in the governing finite element
equations can contain dependencies on the solution ¢ itself. Typical examples are
variable density and variable saturation problems, where the advective and diffusive
(conductive) terms in A become a function of ¢. Furthermore, nonlinear BC’s and
higher order reaction processes imply nonlinear dependencies in the RHS vector b.
In such cases a nonlinear matrix system results in a form

A(P) - & = b(d) (8.373)

where the main nonlinear functional dependence is identified by parentheses.
Before we can solve (8.373) for ¢ the system of equations must be linearized
by using appropriate iterative methods. Most important are the Picard iteration
method, which is a linearly convergent algorithm, and the Newton iteration method,
which normally converges quadratically. A specific concern is suitable for transient
problems.

8.18.1 Fixed Point Form and Picard Iteration Method

The system of nonlinear equations (8.373) written as

R(¢) =0 with R(¢) = A(d)-p —b(¢) (8.374)

can be given in its fixed point form as

¢ =G(¢) with G(¢)=A""(¢)- b(¢) (8.375)

Solutions of (8.375) are called fixed points of the mapping function G(¢), which
represent solutions of (8.374). In graphical terms, fixed points are the intersections
of the graph y = G(¢) with the line y = ¢ as illustrated in Fig. 8.43 for a scalar
functional dependence.

The fixed point form (8.375) immediately suggests the following iteration
scheme

o' =G(¢") 1=01,2,... (8.376)

where 7 is the iteration counter. The formulation (8.376) is the method of successive
substitution known as the Picard iteration method. The iteration is started with a first
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guess ¢ so that G(¢") can be evaluated to obtain ¢'. Repeating this procedure a
sequence of successive solutions for ¢! is obtained (see illustration in Fig. 8.43).
In the practical application, however, the matrix G is not directly formed. Instead,
the Picard iteration is executed in the basic matrix system in the form

A@) - o =b(¢") t=0,1,2,... (8.377)

to obtain ¢*T!. The iteration method linearizes the matrix system so that the
equation system (8.377) can be easily solved by using solution techniques of
Sect. 8.17. An advantage of the Picard method is that the structural matrix properties
remain unchanged, in particular, if A in (8.373) is symmetric the matrix system
(8.377) remains symmetric. During the iterative loop the matrix system A and
the RHS b must be updated (reassembled) with the previous solution and the
equation system (8.377) has to be repeatedly solved until satisfactory convergence
is achieved. A typical convergence criterion is

[+ — o7l _

- 8.378
C e (8:378)

where € is an error tolerance to be prescribed and ||. || corresponds to a suitable error
norm, e.g., RMS error norm (8.28) or maximum error norm (8.29).

The proof of the convergence for the Picard iteration is given by the Banach fixed
point theorem, e.g., [199]. It is shown that the iteration error of the Picard method
decreases linearly with the error of the previous iteration step, viz.,

”¢r+l — ¢ < ¢ — ¢f—1 | for >0 (8.379)

provided that the initial estimate for the solution ¢° is within a contracting distance
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l¢® — ol <re (8.380)

to converge to the unique solution ¢, where r. is referred to as the radius of
convergence of the Picard iteration scheme. In general, for the present class of
problems it is not possible to determine r.. For strong nonlinearities the convergence
radius can be very small and a good first guess of the solution is usually needed to
attain a converging solution, otherwise the method diverges and fails. Nevertheless,
the Picard iteration method has shown relatively robust in many applications. Its
robustness is however paid by an only linear (1st-order) convergence rate.

8.18.2 Newton Iteration Method

The Newton iteration method, also known as the Newton-Raphson method, pos-
sesses a more rapid convergence behavior in form of a quadratic convergence rate.
Considering the nonlinear matrix equation (8.374) written as

R(¢) = A(¢)- ¢ —b(p) =0 (8.381)

and assuming that the residual R(¢) is continuous and differentiable, a Taylor series
expansion for the residual at the new iteration R(¢* ') about the previous iterative
solution ¢ yields

IR(¢")

o AP + O(AP™) + ... (8.382)

R(¢™") = R(¢") +
with
Apt =" — @7 (8.383)

Assuming R(¢*™!) = 0 and neglecting 2nd and higher order terms, we obtain from
(8.382) the Newton iteration scheme in the form

J(@")-A¢p" = —R(¢") 7=0,1,2,... (8.384)

where

R(¢%) = A(¢") - ¢" — b(9") (8.385)
and the tangential matrix

IR(¢*) _ 9

96T~ 9grAG) @1 —b(@N] = A@) + T (@) (8.380)

J(9%) =
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Fig. 8.44 Illustration of
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in which J(¢") and J (¢") are the Jacobian matrix and the partial Jacobian matrix,
respectively. It is important to note that the Jacobian has to be updated for each
iteration (full Newton method) to realize the quadratic convergencerate as illustrated
in Fig.8.44 for a scalar functional dependence. On the other hand, the partial
Jacobian J causes always an unsymmetric matrix even if the system matrix A is
symmetric. For these reasons the Newton iteration method is relatively expensive.
The partial Jacobian J can be computed either analytically or numerically.'®
Usually, the analytical evaluation is preferred because it provides a more efficient
implementation. From (8.386) we can recognize that the full Newton method
reduces to the Picard method (8.377) when the partial Jacobian J (8.387) is dropped
such that J(¢%) ~ A(¢").

For terminating the Newton iteration scheme (8.384) the deviatory convergence
criterion of (8.378) may be applied. However, the convergence of the Newton

161f the Jacobian J(¢°) = 0R(¢p*)/d¢® is not analytically available or too difficult for an
analytical evaluation, it can be constructed numerically via a secant approximation by using a
possibly very small increment § in a form such as

R(¢" +8) — R(¢")
8

J(¢) ~

The increment § should not be chosen too small to avoid roundoff errors. On the other hand, a
too large & leads to a poor approximation of the Jacobian. A reasonable choice is the square root
of the unit roundoff being about €z = 107'2 in double precision arithmetic, accordingly § =
ﬂ = 107°. The extra effort of the numerical evaluation consists of additional Ngq evaluation
of residual R.
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Fig. 8.45 Diverging Newton
iteration in solving the
nonlinear function R(¢) = 0
if initial value ¢° is outside
the convergence radius r,

R($)!

method can easily (and additionally) be controlled by another useful error criterion,
viz., the test of the minimal residual, e.g., written in the form

IR _

8.388
IF ) = © (8.388)

normalized for instance by the RHS vector F' (appearing in (8.154) or (8.177)),
where €, represents a second convergence criterion. The advantage of this test is that
the global balance error of the spatio-temporal matrix system is directly controlled.
The acceptable measure of the minimal residual €, can be chosen suitably small,
possibly in the range of the roundoff error.

It is known that the Newton method requires a good first guess of the solution
@°, otherwise if the starting solution is too far from the correct solution the method
can ‘blow up’ and quickly diverges (see Fig. 8.45). The convergence radius r. as
defined in (8.380) is generally smaller for the Newton method than for the Picard
iteration method. It is complicated further in the Newton method that r. decreases
as the number of equations Ngq increases so that ¢° must be closer to the correct
solution for bigger meshes. There are various cost-effective modifications in the
Newton iteration method to reduce the increased computational effort in updating
the Jacobian, where a concomitantly slower convergence rate (commonly linear)
has to be accepted. Most important are the modified Newton method and the quasi-
Newton method introduced next.

8.18.3 Modified Newton and Quasi-Newton Iteration Method

A major drawback of the full Newton method is that the Jacobian J(¢") has to
be updated in each iteration t. Although its quadratic convergence leads usually



380 8 Fundamental Concepts of Finite Element Method (FEM)
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to a small number of iterations, each iteration is accordingly expensive. There are
variants of the Newton method which can result in fewer costly iterations, however,
at the expense of a slower convergence. Nevertheless, since each iterative step is
ostensibly cheaper one can afford more iterations.

To obviate the need of Jacobian updating the modified Newton method can be
used in which the Jacobian is only built once at the initial step, i.e., J(¢°) is formed
with the initial solution ¢°. Then, all subsequent iterations leave this initial Jacobian
J(¢°) unchanged (see Fig. 8.46), i.e.,

0
J(@°) - A¢p" = —R(¢7) with J(¢°) = %ﬁ) (8.389)

The convergence rate of the modified Newton iteration method is only linear.
However, in comparison to the Picard method, which is also linearly convergent,
the modified Newton algorithm is usually cheaper because it needs only one matrix
update per iteration cycle.

Another possible cost-effective modification is the quasi-Newton method. In this
case the Jacobian J(¢") can be thought of as approximations to the system matrix
A(¢"). The quasi-Newton iteration can be written in the form

¢r+l — ¢r _ SIA_I(QZ)I) . R(d)r)

AT(@T) = AT ($7) + AAT () (®:50
where A(¢") has to satisfy the secant condition
A(97) - (9" —¢"") = R(¢") — R(¢" ") (8.391)

in which s7 is an acceleration factor (usually, s* = 1) and the update of the system
matrix is expressed directly via an incremental correction AA~!(¢7) to its inverse.
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The efficiency of the quasi-Newton method is dependent on finding good choices
of inverse update forms. For a symmetric matrix A the Broyden-Fletcher-Goldfarb-
Shannon (BFGS) update [121] has shown most successful. Broyden’s update is also
available for unsymmetric matrices, for more see, e.g., [156]. The quasi-Newton
method possesses usually a better than linear convergence rate and is accordingly
superior to the modified Newton method.

8.18.4 Transient Nonlinear Problem Solution

For transient problems the nonlinear matrix system has to be solved at the time plane
n+1:

A(Pn+1) - Put1 = b(du+1) (8.392)

In accordance with the used time integration methods different strategies have found
appropriate. In principle, at each time plane the nonlinear system (8.392) must be
iteratively solved to achieve convergence. The iteration procedure reads for the
Picard method

A(qS;_H) . (;5;11 = b(qS;_H) t=012,... (8.393)
and for the full Newton method

J(d, 1) - Ad = _I?F(lqbfzﬂ) r=012,...
A¢;+1 = ¢:1+1 - zrz+1
. IR($T ) (8.394)
T =

R(¢,11) = AP 11) by — b))

The iteration usually starts at time plane n 4 1 with the first guess taking from the
previous time 7, i.e., ¢° 11 = @ The process is repeated within each time plane
until the following convergence criteria are satisfied:

+1
551 = @il _

- (8.395)
lpr il

and/or

| R(n i)l _

< (8.396)
IF@h ~ 7

For transient problems a good first guess (;52 1 1s always available since the solution
usually changes little between time steps, provided the time step length Af, is
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sufficiently small. All the more, if we use the error-controlled predictor-corrector
methods as described in Sect. 8.13.5 an even better first guess can be obtained by
using the predictor solution ¢»? 41 at the current time plane n + 1, viz.,

G = Dh (8.397)

where ¢ 11 s given by (8.157) and (8.166) for the FE and AB scheme, respectively.
Now, it is argued [211] that (1) the required degree of convergence is reached in just
one iteration per time step when the predictor furnishes a sufficiently accurate first
guess, and (2) the pre-set error measure € used in the predictor-corrector schemes is
recognized as the controlling parameter when keeping the time discretization error
small. It leads to the so-called one-step Newton method (or alternatively, one-step
Picard method), in which the predictor value ¢” 41 is generally utilized to linearize
the complete nonlinear system without any need for a repeated iteration within each
time step. The following procedures result

J(¢Z+1) : A¢n+l = _R(¢Z+1)

Ayt = ¢n+lp_ o (8.398)
IR ) .
J(@y 1) = R

R(¢Z+1) = A(¢Z+1) ’ ¢5+1 - b(¢5+1)
for the one-step Newton method and

APy ) - a1 = b)) (8.399)

for the one-step Picard method. The one-step Newton (or Picard) method embedded
in the predictor-corrector scheme with its automatic step-size (time approximation
error) control has shown a cost-effective and favorable approach in many applica-
tions. In comparison to the Picard method the extra work for the one-step Newton
method is small in forming the Jacobian and residual matrices which can be done
simultaneously with assembling the matrix system, however, in favor of achieving a
quadratic convergence behavior. This is particularly true for an unsymmetric system
matrix A, typically appearing in ADE problems. For symmetric systems possessing
strong nonlinearities the use of the Newton procedure can also be advantageous, in
spite of losing symmetry in the final equation system to be solved.

8.19 Derived Quantities
8.19.1 Computing First Derivatives at Nodes

We have discussed in Sect.3.11 the suitably chosen primary variables in form of
hydraulic head, species concentration or temperature for solving the governing
flow, mass and heat transport equations in porous media. Having known the
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X

Fig. 8.47 (a) Continuous (smoothed) and (b) discontinuous (unsmoothed) flux component given
for an element patch of quadrilaterals (Modified from [251])

spatio-temporal solutions of the primary variables, there is a need to obtain the
solution of secondary variables, such as Darcy velocity, mass flux or heat flux, which
represent quantities derived from the primary variables. In terms of the prototypical
ADE equation (8.3) or (8.5), the FEM leads to the solution of the primary variable ¢
in space and time, which represents an elementwise continuous approximation (cf.
Sect. 8.7). A derived quantity would be the flux

j=-D.V¢ (8.400)

where D is a dispersion tensor. Since the finite element approximation of the
primary variable ¢ is of the form (cf. (8.16))

p(x.1) =Y Nj(x)¢;(t) (8.401)
J

we obtain the discrete flux

j@.0) ==Y D-VN;(x)$,(1) (8.402)
J

As result of the basic finite element solution, e.g., (8.322), ¢; is known at each
global node j of the mesh and given time ¢ so that 7 can be evaluated in a
postprocessing operation. However, we recognize from (8.402) the first derivative in
the flux 7 is no more continuous since the used element shape function N; satisfies
only Cyp—continuity (cf. Sect. 8.7). Indeed, by using lower order elements of linear or
quadratic type, the first derivatives do not possess anymore inter-element continuity.
The elemental fluxes become discontinuous between elements and no unique fluxes
at nodal points result as illustrated in Fig. 8.47.

Unfortunately, the discontinuity of the derived fluxes results in a number
of serious drawbacks. Most important are balance errors arising in local flux
evaluations. For example, Yeh [578] showed balance errors up to 30 % on a domain
interior. On the other hand, the evaluation of streamlines according to (2.94)
and pathlines according to (2.98) needs always a basically continuous flow field,
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otherwise coherent trajectories in the global flow field cannot be computed. Hence,
suitable methods are required to produce continuous and precise fluxes over the
finite element mesh, which are referred to as smoothing strategies. Most important
are global and local smoothing as well as superconvergent patch recovery (SPR)
techniques to derive continuous fluxes at internal nodes.

8.19.1.1 Global Smoothing

Global smoothing represents a natural approach of FEM to obtain continuous flux
values at nodes. Most common is the technique basically proposed by Hinton
and Campbell [251], which has proved to be quite widely used [590]. Yeh [578]
firstly introduced such type of global smoothing in groundwater modeling to
compute precise Darcy fluxes. A global finite element approximation of a smoothed
(continuous) flux j can be written as

J@.0) = Ni(x)j;(1) (8.403)
J

Suppose an unsmoothed (discontinuous) flux is given by 5 (8.402), then the smooth
function which provides a best fit in the least squares sense over the domain §2 can
be obtained from a minimization of the functional

7= / (G — 7)?d 2 = min (8.404)
2

The minimization procedure

9T - 7
== [ 2G-i)Tan =0
0Ji g 03 for i =1,2,...,Np (8.405)
— [ MG-pin o
2

results in a system of linear equations to solve for the nodal vector of smoothed
fluxes j, for each vector componentd = 1,..., D in NP viz.,

O0-jio=F, d=1,....D) (8.406)

where O represents a mass (smoothing) matrix and Fy is the RHS d —component
flux vector involving the unsmoothed relations. They are formed in the finite element
assembling procedure as

0 =05 =3 (33 0j4545)
e 1 J

Fi = Fq= Z(Z FIZAZ)
e 1

(8.407)
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where the element matrix and element vector are formed by

e
01]

NENSdQ®
@ NN D

aNe (d,lz 1,,D) (8408)
Fo=— [ NS (pi gl es)aer
J 1

It can be easily seen that the least squares global smoothing is equivalent to the
Galerkin weak statement directly applied to (8.400). The smoothing matrix O and
the RHS vector F; may be evaluated using numerical integration as described in
Sect. 8.12. However, the complete solution of the linear matrix system (8.406) has
been found too costly and furthermore in many cases unnecessary. The following
smoothing procedures will be accordingly the preferred techniques.

A cost-effective alternative to (8.406) appears if the element smoothing matrix
O is lumped by a row-summing technique (see Sect. 8.13.2) for each element e

0, =6y | Ntdee (8.409)
QF

In doing so, there is no need anymore to solve the linear equation system (8.406).
Instead, the smoothed flux can be explicitly evaluated by

ja=0"F; (d=1,..D) (8.410)

where the inverse of the diagonal matrix O~! effects for each node a division by the
sum Y, /. ge d$2° of the surrounding element patch. This lumped form of global
smoothing (8.410) can be recognized as an area/volume-weighted averaging for
nodal flux values. However, this area/volume-weighing strategy has an essential
drawback for irregular meshes: It weights larger elements more than smaller
elements notwithstanding that larger elements imply presumably less accurate
flux computations. To weight the more accurate smaller elements than the less
accurate larger elements, the inverse area/volume-weighted averaging could be
chosen instead [209], however, its foundation lies outside of the Galerkin-FEM
framework. Thus, the following local smoothing and recovery strategies will be
preferred.

8.19.1.2 Superconvergent Flux Evaluation and Local Smoothing

In FEM there is the phenomenon of superconvergence [590], which is referred to
optimal sampling points for which derivatives are more accurate than elsewhere. In
particular, Gauss quadrature sampling points (cf. Sect. 8.12) exhibit superconvergent
behavior and have shown the suited locations x to evaluate derived quantities
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Fig. 8.48 Superconvergent
flux components

Ji+Jir Jir Jiv sampled at
Gauss points

Eponp (p=1,...,4) and
functional dependency of
smoothed flux j°(£, ) to
extrapolate to nodal flux
components ]f , ]2“ , ]{ ]4“ for
a linear quadrilateral
element e

having best accuracy.!” Such a superconvergent flux evaluation means that the
discontinuous flux j(z(n), ¢) of (8.402) has to be sampled at the Gauss points with

the local coordinates 7, (p = 1,...,m) within each elemente, i.e.,
Nen
J@m),1) > j(m,,1) = =) D -VNin,)¢50) (p=1,....m)
J

(8.411)

where 77, is the vector of local coordinates, e.g., (§,,1,, {,) for a 3D element, and
m is the total number of Gauss points. Their locations in 2D and 3D elements are
displayed in Fig. 8.17. Conveniently, m is chosen by the same number of element
nodes Npy so that the Gauss sample points can be related to corresponding element
nodes (see Fig. 8.48).

Now, the smoothing of the discontinuous flux is considered over individual
elements, termed local smoothing. It is assumed that the smoothed flux function
3e(n) is a least squares fit to the selected values j¢(7n,) at the Gauss points
p = 1,...,m for each element e separately. In using the least squares procedure of
Sect. 8.19.1.1 to an individual element the following local equation system results

Joe NENFdQ . g NENK, d 2 Jia Jae NEj§md e
Joe NN{dQe ... g Ny Njy, d Q¢ Ja | Jae N3 jim)d 2
Joe N NEd2° . Jgo N Niwd 2] \Jpua Jao N Ji (n=nio ) 2¢

@=1,....D) (8.412)

17Superconvergence of the derivatives can be shown for the Gauss points, at least for quadrilateral
elements [590]. On the other hand, the location of the superconvergent points for triangular
elements is not fully known. Zienkiewicz and Zhu [594] propose to use optimal points, for instance
the central points for linear triangles.
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X X X X
X  Gauss sampling points
X X X X @® node value determined
>< by averaging
X X X e —» nearest Gauss point values
are assigned to node @
X X X X
O O

Fig. 8.49 Element patch surrounding the particular node ® at which a globally smoothed flux is
computed on the basis of extrapolated or shifted superconvergent flux values sampled at Gauss
points X

to solve the smoothed flux d —components f,fi at the localnodes I = 1,2,..., Ngn
of an element e from the superconvergent flux d —components j¢(7,) according
to (8.411) sampled at Gauss points p = 1,...,m = Ngn. Simple relations are
obtained from (8.412) for elements having a constant Jacobian in d 2¢ = |J¢|dn,
see derivations in Appendix H. For example, for a rectangular and parallelogram 2D
element by using 2 x 2 Gauss points (listed in Table 8.2) the following expression
can be derived

z V3 1 V3 1 i

it I+5 -3 1=-%5 - Jir

Te _1 1 ﬁ _1 1— ﬁ j€

JTZd _ 2f +3 2[ 2 J.d” d=1,...,D)
J3a - -1 1+£ -1 Jamm

> 1 e v 4

Jia -1 1-% 5 14+ Jarv

(8.413)

to compute directly the smoothed flux components f,fi at the corner nodes I =
1,2,3,4 from the superconvergent flux components at Gauss points 1,11, I11,1V
(illustrated in Fig.8.48), where j§ = j§ (—J%, —%), is j;(ﬁ, —%),
Jon = ]5(\%§ %) and ji, = Jj§ —%, %) It can be easily seen that such
a formula of local smoothing represents nothing more than a local scheme to
interpolate/extrapolate Gauss point values to nodal point values [251].

Unlike global smoothing, the local smoothing strategy does not produce unique
flux values at nodes and therefore an appropriate averaging of the superconvergent
flux values is needed. Consider for example the element patch surrounding the
particular node at which a unique flux has to be computed as shown in Fig. 8.49.
For each element of the patch the superconvergent flux values determined at the
Gauss sampling points can be either (1) interpolated/extrapolated to the particular
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node by using solutions of (8.412), exemplified for 2D rectangular elements in
form of (8.413), or (2) without any interpolation, by a simple assignment (shift)
of Gauss-point fluxes nearest to the particular node. The latter strategy is commonly
acceptable, in particular for linear elements, because the derivatives usually vary
only slightly or are even constant within the element. In doing so, each nodal
contribution of elements sharing the particular node is summed up and finally
averaged in the following ways. The simplest method is the arithmetic mean for
the global node i in the form

. 1 =
Ji = Vo Ze:jf (8.414)

to determine the smoothed flux 5} at the node i, where Ny is the number of
patch elements surrounding the node i and jf{ is the superconvergent flux of
element e assigned or extrapolated to node i. Alternatively, as discussed above,
an inverse area/volume-weighted averaging can be favorable to attain an improved
approximation for more irregularly shaped elements of a patch. It reads

s 1 Nz
g = T ;w 3¢ (8.415)
with the weights
1
Y 1D
w'=1{1L 2 (8.416)
1
Ve 3D

The averaging techniques in combination with local smoothing the supercon-
vergent flux values have proved to be accurate comparable to global smoothing
procedures. Instead of nodal averaging, however, an improved method exists in
which a polynomial expansion is used on an element patch fitting locally the
superconvergent points in a least squares manner, known as superconvergent patch
recovery (SPR) to be described next.

8.19.1.3 Superconvergent Patch Recovery (SPR)

Zienkiewicz and Zhu [594] have proposed a powerful and accurate method of
computing derivatives via a direct polynomial smoothing, which leads to super-
convergent flux values at all and not only at certain Gauss sampling points within
the finite element, called superconvergent patch recovery (SPR). In this method a
polynomial expansion of the function 3(3}) describing the derivatives is used on
an element patch surrounding the interelement node at which the nodal derivatives
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1D 2D 3D

Fig. 8.50 Element patches of linear quadrilateral elements in 1D, 2D and 3D. Polynomial
expansion of linear function j (x) describing the derivatives at superconvergent Gauss points X is

used on the element patch surrounding the node ® at which recovery is desired. Its nodal value [l
is obtained by evaluating the resulting polynomial

have to be determined (recovered). The polynomial is chosen in the same order as
occurring in the used finite element approximation of the primary variable, which
achieves superconvergent accuracy everywhere if this polynomial is made to fit the
superconvergent Gauss sampling points in a least square manner [209, 590]. Let
us consider for example the linear polynomial expansion of the derivatives applied
to element patches of linear quadrilateral elements in 1D, 2D and 3D as shown in
Fig. 8.50. The following three working steps are needed:

1. The derivatives are evaluated at the superconvergent Gauss points X.

2. A least-squares fit through the Gauss points is made with a linear polynomial.

3. The superconvergent nodal derivatives [ are obtained by evaluating the result-
ing polynomial at the patch node ®.

Having determined the derivatives j(x) at the Gauss points according to (8.402)
we introduce the linear polynomials for the superconvergent (smooth) derivatives in
the form

a+pBx 1D
J@) ={a+Bx+yy+8xy 2D (8.417)
a+Bx+yy+8z+exy+odyz+yzx+nxyz 3D

where £ = (x y z)T are the Cartesian coordinates and «, B, x.8.€, ¢, y.n are
unknown coefficients to be determined. Note that the mixed terms in (8.417) does
not exist for 2D triangular and 3D tetrahedral elements. Now, the method of least-
squares is applied to minimize the sum of the squares j(z;) — j(x;) over all Gauss
pointsi = 1,2,...,n encountered in the element patch, i.e.,

T=13Y) [i@) — j(x)]’ = min (8.418)

i=1
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where n = m Ny (m =number of Gauss points per element, Ny =number of patch
elements). For example, the minimization of 7 = % oiole+Bxi+xyi+Sxiyi—
j(x;,y:)]* for the 2D polynomial with respect to the four unknown coefficients
yields

0Z/da =0=) ", a+Bxi+ xyi +8xiyi —F(xi,yi)

31/3,3 = 0 = Zi[a +,3-xi +Xyl +8xiJ’i _j(xi,Yi)]xi (8419)
0Z/dx =0= Y [a+ Bxi + xyi +8xiyi —3(xi,yi)]yi

0Z/38 =0 =3 ;[a+ Bxi + xyi +8xiyi — j(xi yi)lxiyi

This leads to the local 4 x 4 linear system (}_ =Y "'_))

n in Zyi in)’i o Zj(xhy")

Yxi XX Xxiyi Xy Bl _ | XxidCxi i) (8.420)
Yvi rxivi nyi Xxvi| |« > vid(xi, vi) '
Soxivi Yoxtyi YoxiyE Y xty? 8 X yig(xi, yi)

to solve for the polynomial coefficients «, B, y and §. Then, the recovered derivative
at an interelement node j can be easily computed from

J ) =a+Bx;+ 1y +8xy; (8.421)

Similar recovery expressions can be derived for 1D and 3D element patches. The
additional numerical cost in SPR is acceptable because the equation system like
(8.420) remains small. The total effort usually is smaller than global smoothing
and larger than local smoothing, however, in favor of an improved accuracy of the
derivatives at the nodes. A robust implementation of SPR requires that the rank of
the resulting local equation system, e.g., (8.420), must be equivalent to the number
of terms a used in the polynomial expansion [326]:

n>a (8.422)

where a = 2 in 1D, a = 4 for quadrilateral and a = 3 for triangular elements in 2D
and @ = 8 for quadrilateral and a = 4 for tetrahedral elements in 3D. Thus, there
is a minimal number of elements Ny in an element patch to make the resulting
local equation system solvable. Hence, for linear triangles Ny has to be greater
than or equal to three. To overcome this difficulty in a robust recovery procedure
the number of sampling points m is set at least equal to the number of terms a in
the polynomial expansion regardless of achieving actual superconvergence for the
recovered solution.
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8.19.2 Computing First Derivatives at Exterior or Interior
Boundaries: The Consistent Boundary Flux Method
(CBFM) and Budget Analysis

8.19.2.1 Consistently Derived Boundary Flux Based on Weak Forms

In the previous Sect.8.19.1 appropriate postprocessing methods for determining
fluxes j = —3_; D-VN; ¢; atnodal points are introduced. Now, we could assume
that those nodal fluxes are also suitable to evaluate boundary fluxes g, in a way
such as

0 ==Y 0, (D-VN))on, 8429
J

where n is the unit normal vector to the boundary I" and ¢; is the given solution of
the primary variable at nodal points j. Boundary fluxes are needed for evaluating
balance quantities in a budget analysis, for example balanced boundary fluxes
through exterior Dirichlet-type boundary I'p or Cauchy-type boundary section [¢
of the model domain §2 or through interior boundaries I'; of subdomains £2; as
part of 2 (Fig.8.51). However, the numerical differentiation in the form (8.423)
is not a sufficiently accurate and reasonable expression of a discrete boundary flux
because it does not guarantee a proper balance condition at the local position of
the boundary. Additionally, (8.423) requires an actual construction of 72, which is
cumbersome and often quite ambiguous if the boundary is not smooth. In a sum, the
discrete boundary flux in the form of (8.423) has not the required quality of a locally
balanced flux and is accordingly rather inappropriate for any balance evaluation.

To overcome the difficulties with (8.423) the consistent boundary flux method
(CBFM) satisfies the requirements for local balance accuracy as suggested by
Gresho et al. [213]. It has been shown that CBFM (and related methods) leads to
conservative (consistent) flux quantities, e.g., [47, 69, 148, 355, 403]. To obtain a
consistent approximation to the boundary flux

(8.424)

) (¢q—D-V¢)- n| ;  for the divergence form of ADE
= —D-V¢- n| r for the convective form of ADE

we directly utilize the weak statements (8.46) and (8.53) of the governing balance
equations for divergence form and convective form, respectively. Applying the
Galerkin finite element weighting we find the appropriate weak formulation

/Nqndl“— /N@d.@—i—/qﬁq-VNidQ—
2

/ VN; -(D-V¢)dS2 —/ Ni(0¢p — H — Q4,)d 2 (8.425)
2 2
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Fig. 8.51 Mesh of domain §2
with discrete exterior
boundary sections I'p and I'¢
as well as interior boundary
I'; enclosing subdomain

2, C82

for the divergence form of ADE and
. 0
/ Nig,dI' = —/ NiR—dQ—/ Niq-Vods2 —
r 2 dt o)
/ VN; - (D-V¢)ds2 —/ Ni[(® + Q)p — H — Qp,]d2  (8.426)
2 2

for the convective form of ADE, where the primary variable

p=Y N;¢; (8.427)
J

is now known from the approximate finite element solution ¢; given at each
nodal point j and current time #,4;. These weak formulations allow a consistent
computation of the boundary flux ¢, . In doing so, we expand g, in the finite element
context as

G =Y Njdu (8.428)
J

where ¢,; is the nodal boundary flux to be determined on I" and at evaluation time
t,+1. Inserting (8.427) and (8.428) into (8.425) and (8.426) the following matrix
system results

M-g,=-0-$—(A+C+R)-¢+Q (8.429)
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where

dn = qnj = . (8.430)
qup

is the nodal vector of the boundary flux and

M=M;= Z(Z ZMIEJAZ‘AZ')
e 1 J

(8.431)
Mg = / NENSIe
1"P
is the boundary mass matrix, which couples g,; to its nearest neighbors of I". The
matrices O, A, C and R as well as the RHS vector @ appearing in (8.429) are
already given by (8.103)-(8.105). The assembly of (8.429) is done in the usual
way at element level, except that only those elements with nodes on I" need be
considered, i.e., the linear matrix sytem (8.429) is solved only for a subset of Np
nodes because all contributions to nodes which do not belong to I are irrelevant.
The linear system (8.429) is solved for the nodal boundary flux g, on I", where
the RHS of (8.429) is built up with the known solution ¢ and its time derivative
¢ at evaluation time 7,1,. We recognize that the CBFM is a strategy in which the
‘forward’ solution system (8.100) is reversely solved on I"—nodes with known ¢
and qb Babuska and Miller [18] have shown that the consistent boundary fluxes
exhibit superior convergence behavior, i.e., superconvergence.

Remark. The equation (8.429) represents the consistently derived flux having the
following remarkable properties: (1) If this flux is computed on a Dirichlet boundary
I'p, it will lead to the same ¢ when imposed as a Neumann-type BC, i.e., g, and
¢ are equivalent and exchangeable as BC’s. This means that with a known ¢ the
domain §2 can arbitrarily be subdivided into subdomains £2; C £2 (Fig.8.51)
forming nonoverlapping interior and/or exterior boundaries of Dirichlet type (¢
is prescribed there) formed along mesh edges/faces I'; on which the consistent
boundary flux is computable. (2) The boundary flux guarantees the appropriate
approximation to the governing balance equation both globally and locally. The
smallest subdomain can be even each single element £2; — £2¢ so that the boundary
flux on I'y — I'¢ also guarantees conservation according to the local balance with
(8.429), see Sect. 8.19.3 for further discussion.

8.19.2.2 Lumped Solution

To avoid the solution of the linear system (8.429) the cost-effective alternative is to
invoke mass lumping for M, i.e.,
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M= M;=3§; /F N:dI' (8.432)

With mass lumping (8.432) the nodal boundary fluxes in (8.429) become uncoupled
and can be explicitly computed from

@ =-M"'[0-¢$+(A+C+R) ¢-Q] (8.433)

8.19.2.3 Integral Boundary Flux

Alternatively to (8.433), we can simply sum up the contributions of the system for
each row i to obtain the integral boundary balance flux at the boundary node i

Qni = _/ N; QndF
r
== My (8.434)
J

=Y [04¢; + (A + Cj + Ry)p; — Oi].  (j =1.....Np)
J

or in matrix form

Q,=—-M-q,
=0-¢+(A+C+R)-¢—-Q (8.435)

where the sign of Q,; = @, is used in accordance with the definitions of well-
type SPC terms (cf. Sect.6.3), i.e., a positive @, corresponds to a point sink. The
integral boundary flux Q, = —M - g, is used in a budget analysis in which the
balance quantities on boundaries I" are determined at evaluation time #,,+1. It is also
required in constraint formulations for BC’s (see Sect. 6.4).

8.19.2.4 Auxiliary Problem Formulation for Convective Form of ADE

In use of the convective form of ADE the boundary flux is dispersion/diffusion-
controlled qf =—-D-V¢- n|  (8.424) according to the basic weak statement. For a
budget analysis it is also desired to quantify the missing advective part of a boundary
flux ¢;; = ¢g-n| ., where q is the advective flux. We recall that the convective form
of ADE results from the substitution of mass conservation, cf. (3.45). To obtain
the total boundary flux ¢, = ¢i + qf we have to retrieve the substituted mass
conservation via an auxiliary weak formulation. Let us consider for example the
mass conservation equation given in Table 3.7 and multiplying all terms by ¢. It
results
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oh as
9 (58,5 +e5-) +#V-a=(Q + Oron) (8.436)
Its weak statement reads
/ woV - qd 2 = / wp(0 + Qrop)d 2 — / wo (58S, = h -+ eg—j)drz

(8.437)

where &, the hydraulic head, and s, the saturation, are another primary variables
which are assumed to be known from a separate finite element solution of the flow
equation. Using the product rule of differentiation

V.-(wpq) = dpq-Vw+wopV -q+wgqg-Ve (8.438)

and employing the Gauss’s integral theorem (2.77) on the LHS term of (8.438) we
obtain from (8.437)

/w¢q-ndF=/¢Vw-qd.§2+/wv¢-qd.§2+
r

as

/w¢(Q+QEOB)d9 /W¢ sS on +8az)d9 (8.439)

Now, using the Galerkin weak formulation w — N;, invoking the Darcy law to
express the flow vector as ¢ = —k, K f,, - (Vh + ye) (cf. Table 3.7) and expanding
the known variables ¢ = >, N;¢;,h =3 ; N;jhjands =} ; N;s; in the finite
element context, we find

[ Nigtdl' = ;/ﬁvzvi kK £, - (VN +Xe)]hj(XI:N/¢z)d9—
;/Q NiVN; ;- [XI: ke K £, - (YN, hy + ge)]d 2+
fg Ni (; Ni¢1)(Q + Qrop)d 2—

/Q Ni (; de)l)[(; NISI)So(; Mo+ s(; N2h]ag  (8.440)

or with expanding g2 = >~; N, 4y,
M-q" =-U($) h—V(h) ¢+ X (@) —Y(¢.5.h. ) (8.441)

to solve the advective boundary flux vector g at evaluation time #,11, where the
matrices U and V are related to the 1st and 2nd RHS-terms and the vectors X
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and Y are related to the 3rd and 4th RHS-terms of (8.440). It is assumed that the
solutions ¢, h, s and the time derivatives h and $ are known. Dependence of the
solution vectors ¢, h, s, h and/or $ in U,V, X and Y are shown in parentheses.
Finally, we can combine (8.429) and (8.441) to find the expression for solving the
total consistent boundary flux g, = g% + qf in the form

M.q,=-0-6—[A+C+R+V(h)] ¢—-U($) -h+
X(@)—Y(p,s.h,$)+Q (8.442)

associated with the convective form of ADE.

8.19.2.5 Illustrative Example
To clarify the consistent flux method let us consider a simple, however, quite
representative and illustrative example [213]: A steady-state diffusion problem with
a varying source in one dimension x. The corresponding basic PDE is

— V2 =H(x), 0<x<3 (8.443)
which has to be solved for ¢ = ¢ (x) subject to the BC’s

0 at x=0 and
= 8.444
¢ { 0 at x=3 ( )

and with the source function

0 for 0<x<2 and
Hx) = - 44
x) { 6 for 2<x<3 (8.445)
The exact solution is
X for 0<x<2
- o 44
¢(x) { —3x24+13x—12 for 2<x<3 (8.446)

which is plotted as the lower solid curve in Fig.8.52. The exact boundary flux
qn = —V¢ -n = —0¢/0x|r through the outer boundary at x = 3 can be simply
derived from (8.446) as ¢, = 5.

The problem is approximated by using just three linear elements, each of unit
length Ax = 1 (Fig. 8.52). The finite element discretization leads to the following
matrix system (see Appendix H.1, note that incoming and outgoing gradients are
canceled at interior element boundaries due to their opposite signs):
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Fig. 8.52 Steady diffusion
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The BC’s (8.444) giving ¢; = ¢4 = 0 are incorporated in (8.447), cf. Sect. 8.16.
Then, the following discrete equations result

42— ¢3) =0 (8.448)
and
a2 +25) = HE (8.449)

Hence, with ¢, = 1 and ¢35 = 2 the finite element solution is exact at the nodes (see
the dashed line in the lower curve of Fig. 8.52).

Now, suppose that the flux g, at the boundary x = 3 is desired. If the
conventional nodal flux evaluation according to (8.423) is employed, we find (cf.
Appendix H.1)

Gn = =35 (=¢3 + ¢a) =2 (8.450)
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which is different to the exact solution of 5. In contrast to (8.450), the consistent
boundary flux results from (8.447) (resolving the last row for ¢, with the given
¢—solution):

G = HE — s+ 99 =5 (845)

which agrees with the exact solution. It is obvious that although (8.450) is in fact
the true slope of the approximate solution, the CBFM solution (8.451) yields the
correct balanced flux, which properly accounts for both the source term in the finite
element and the diffusion at x = 3. We can even proof the local balance for each
element if we solve the consistent boundary flux for a separate element. Consider,
for example, the last element e, (2 < x < 3):

(7)) () - ()
—_— . = e )= (8.452)
AxE(—l 1) o)~ \mesy) " gf
It yields g, = —1 and g} = 5 as left-sided and right-sided boundary flux of the
element, respectively. Thus, the element balance is exactly satisfied with

HAX +q; —qf =6-1-5=0 (8.453)

Finally, to demonstrate consistency in the finite element solutions, let us solve
the problem by using a Neumann-type BC gy at x = 3, where we use the derived
value for g, from (8.450): gy = g, = 2. The corresponding nodal equations are for
this case

= Qpr—3) =0
ax (2 + 263 —¢4) = HS (8.454)
(b3 +¢a) = HEE —qn

The solution to (8.454) for gy = 2is ¢» = 4, ¢3 = 8 and ¢4 = 9, which is
displayed as the dashed upper curve in Fig. 8.52 in comparison to the exact solution
forgy = 2givenas¢ = 4xfor0 <x <2and¢ = —3x24+16x—12for2 < x < 3.
On the other hand, using gy = 5 from (8.451) we retrieve the original result as
¢r = 2, ¢3 = 3 and ¢4 = 0. Thus, it demonstrates that only the consistently derived
flux can be applied as a natural BC to recover the original solution obtained with
Dirichlet-type BC’s. Although we have shown only a 1D problem, the same essential
issues are given in multidimensional and transient problems [209,213,277].

8.19.3 Continuous Finite Element Approach Is Locally
Conservative

The basic model equations which are solved via approximate methods represent bal-
ance laws for conserving physical quantities such as mass, momentum and energy.
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Accordingly, the used numerical approach should also respect these conservation
equations both globally and locally. Conservativity (see definition in Sect. 1.2.2)
enforces that incoming and outgoing fluxes through interior and exterior boundaries
of a global domain and its subdivided subdomains have to be conserved and
consistent with the source/sink and storage effects occurring in the balance volumes,
otherwise the method is nonconservative which can produce artificial sources and
sinks, changing the balance both locally and globally. Nonconservative methods are
to be declined to avoid erroneous solutions.

Local conservativity means that conservation is guaranteed for each of the
smallest discrete unit, i.e., for each element (or cell), regardless of mesh (grid) size.
However, local conservativity does not mean local accuracy. The problem solution
may be inaccurate, but will, nevertheless, be conservative. Repeatedly, it is believed
that finite element methods are not locally conservative. But, this is a misbelief
(and in part a strange discrediting of FEM) which has been refuted in a number
of papers, see e.g., [47, 89, 148,277, 355]. Obviously, there is a misunderstanding
on both the basic conservation law structure of the FEM and the computation of
local fluxes. A major reason is apparently in the misuse of nodal derivatives in
form of (8.402) or (8.423) as balance fluxes. Indeed, those nonconsistent fluxes
obtained from a numerical differentiation are not necessarily conservative and can
cause significant local balance errors [47, 148, 355, 578]. The simple example of
Sect. 8.19.2.5 has evidently shown the importance of a suitable flux computation for
balance evaluations.

The present continuous finite element approach is based on an elementwise
continuous approximation, see Sect. 8.7. It guarantees continuity up to first deriva-
tives (fluxes) even at element interfaces. Having this property for Cy continuous
basis functions, the subdivision of the global integrals into subdomains, elements
and subboundaries can be done via (8.62) without any interelement residual.
As a consequence, fluxes between adjacent elements cancel since the flux is
contained within the element, while fluxes exposed on the external boundary do
not. With other word, the fluxes appears only on external (global) boundaries, while
fluxes interchanging between adjacent elements remain hidden during the usual
computation. However, we can evaluate this type of flux as consistent boundary flux
qn-In Sect. 8.19.2 the CBFM is described which provides precise boundary fluxes at
any exterior or interior boundaries of a meshed domain coinciding with the element
edges or faces. If the external boundary I" is used, the consistent boundary fluxes
determine the global conservation of the domain £2 = £2 U I, if the boundary I';
refers to a subdomain £2; C £2, such as illustrated in Fig. 8.51, the boundary flux
measures the exchange between the adjacent subdomain and accordingly determines
the conservation of the subdomain §2; = £2; U I}, and finally if the boundary is
even chosen as the element boundary I"¢, the resulting boundary flux measures the
conservation of the single element 2° = £2¢ U I'° (Fig. 8.53).

Now, we can utilize the weak formulations (8.425) and (8.426) to find the
boundary flux ¢g¢ of each single element e in form of element conservation laws:
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Fig. 8.53 Consistent boundary flux ¢,(£2°) of element £2¢ in equilibrium with boundary flux
¢ (£2\£29) of subdomain £2\£2¢ (Modified from [277])
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for the divergence form of ADE and
e e e e a¢e e e e e e
Nigidr® =— NiRe—d2° — Niq°-V¢d2°—
1"6 Q(’ a[ Q(’
[ N0 vetrae - [ Nilo + 00 - e - 05, 1ag
Q¢ Q¢
(8.456)

for the convective form of ADE, where I = 1,..., Ngn. Similar to (8.434) and
(8.435), respectively, we can summarize (8.455) and (8.456) as follows

o= [ Nigar
re

-y Mjq, (8.457)
J

Z[Oudﬂ + (A5, + C+ Rip¢5 — Qr]. (J =1,...,Ngn)
J
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e

Qn2 QZ3

Fig. 8.54 Element conservation: The consistent boundary flux g, ((_26) is the conservative redistri-
bution of the integral element flux Q¢ in terms of the element basis functions N/, I = 1,..., Npn
(Modified from [277])

or in matrix form

Q, =—-M*-q,
; 4
= O° - ¢¢ + (A° + C° + R%) - ¢ — Q° (8.458)
with
Mjy= [ NyNjdr¢ (8.459)
re

where g¢ is the element boundary flux and Q¢ = O°- ¢+ (A +C°+R%)- ¢ —Q°
is the integral element flux (Fig. 8.54). By summing (8.457) over I = 1,..., Npn,
we see that

/ qedl* + > Q4 = (8.460)
re 7

which represents the element conservation. Thus, the sum of the integral element
fluxes is a conserved quantity. The corresponding element boundary flux ¢, of ele-
ment §2¢ is in equilibrium with the boundary fluxes of the adjacent complementary
subdomain 5_2\{2“ (see Fig.8.53), viz.,
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4n(2°) = —, (2\2°) (8.461)

It becomes clear that the nodal fluxes Q¢, and their continuous redistribution g¢ in
terms of the element basis functions are different but equivalent representations of
the same information [277], viz.,

> / NENSqe,dIMe = —Q¢, (8.462)
g e

o= —/ Nigidre (8.463)
re

Once Qy, is known, ¢, = >_; N{qy; is uniquely defined by (8.462). Likewise, if
q: = qn(£2°) is known, the nodal fluxes Q¢,; are uniquely defined by (8.463). These
quantities are fundamental to the local conservativity of the continuous FEM.

8.19.4 Note on Mixed Finite Element Formulations

So far we have considered the basic balance equation in a form in which the
governing flux 5 = —D-V¢ has been suitably substituted so that only one unknown
function ¢, the primary variable, remains in the scalar governing equations (8.3) or
(8.5). This elimination of j leads to a mathematically well-defined problem with
appropriate BC’s expressed in terms of ¢ or its gradients (8.4) or (8.6). In the FEM
context it leads to an approximation of only one unknown variable ¢; per node i
of a mesh, i.e., degrees of freedom are Npor = 1, and the resulting matrix system
becomes usually easily solvable. However, in this approach the required knowledge
of the secondary variable in form of the flux 5 must be obtained as a derived quantity,
which naturally implies a loss of accuracy compared to the accuracy attainable for
the primary variable, notwithstanding the precise evaluation techniques for deriving
7 such as described in the preceding Sect. 8.19.1.

The FEM does not restrict per se the formulation to governing equations in
which the flux is eliminated. It is also possible to refer to a formulation where
both ¢ and j are chosen as primary variables. This is called as a mixed finite
element formulation, e.g., [56, 84, 436, 590]. Mixed finite element methods are
inevitable in CFD for solving the coupled system of Navier-Stokes equations
[209], where the eliminatation of fluxes (velocities) from the basic equations is not
possible or restricted. This is quite different to Darcy-based flow equations in porous
media, where a mixed formulation appears as a useful but commonly nonessential
alternative [75, 152, 378]. To illustrate the mixed finite element formulation for the
present class of problems, let us write the governing ADE (8.5) in the alternative
form as
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9
R L g VLV i+ D+ 0= H+ Oy (8.464)

ot
j=-D-V¢

and introduce the finite element approximation for both primary variables ¢ and j
as (cf. (8.16))

p(x.t) =3, Nj(x) ¢;(t) 8.465
J@, 1) =3, My(x) 3a(r) (6469

where N; and M, represent basis functions at global nodes j and d, respectively,
which must not coincide, and ¢; and j; are the corresponding nodal vectors of
the unknowns ¢ and j, respectively. Now, taking (8.465) and applying the GFEM to
(8.464), in which the weighting functions are in accordance with the basis functions,
we can find the following matrix system

(é}* (oj) ' (?) N (ﬁ) (8.466)

to solve simultaneously ¢ = ¢; and J = j,, where

. 5
A=y =3 | RENNjg @+ | NigtNd2'+

/ ° + Q°)N;N;d 2° +/ cD"NideF“)—
¢ r¢

8ijQw(t)|i
C=Cy= Z/ NiVMyd ¢
e 2¢
ct=c¢l=->| MD-VN;d2*
e V¢
F=F = Z( | N+ /F N;@epedre —/Fe N,-qj’vdl"")—
e C N
B Qu(1)],

(8.467)

in which the indices i, j and [, d, respectively, run over the same nodal points.
The mixed finite element formulation in the form of (8.467) includes the following
properties:

1. The simultaneous solution of ¢ and J leads to a higher accuracy of the flux J
compared to the standard formulation (at the same mesh resolution) in which J
has been eliminated and appears as secondary variable. Indeed, J resulting from
the mixed formulation satisfies implicitly local conservativity.



404 8 Fundamental Concepts of Finite Element Method (FEM)

2. The higher accuracy of J must be paid by a significant increase in the
computational effort because the increased degrees of freedom (e.g., Npor = 4
in 3D) considerably enlarge the final equation system to be solved.

3. The resulting matrix system (8.466) forms a saddle point problem, where the
total matrix is not positive definite. It can lead to difficulties in the solving the
equations.

4. The formulation of BC’s for the flux is restricted.

5. The mixed interpolation for ¢ and 7 must satisfy a compatibility condition,
known as LBB (Ladyshenkaya-Babuska-Brezzi) condition, see e.g., [56, 149,
209], otherwise the mixed formulation does not guarantee stability. The basis
functions N; and M, are differently chosen. Once subjected to 1st-order
derivatives they have to be Cy continuous functions, otherwise no continuity is
needed. A well-known stable element is the Taylor-Hood element [209], in which
the flux j is interpolated quadratically and the scalar variable ¢ is interpolated
by a linear continuous function such as used by Diersch [130] in free convection
flow modeling in porous media. Other useful stable elements are discussed in
[30,56,149,209,436], where the Raviart-Thomas element [75] appears suitable
for the present class of porous-media problems [31,46,359,476].

The mixed finite element formulation offered the possibility for obtaining a poten-
tially higher accuracy in the flux computations compared to a standard formulation
(simulated at the same mesh resolution), however, at a significant increase in the
computational effort and at the expense of a reduced robustness and flexibility. This
limits the mixed FEM to only specific (often academic, small-size) problems. In
practical modeling of flow and transport processes in porous and fractured media,
mixed finite element formulations are neither feasible nor necessary in general.
Indeed, the accuracy of fluxes achieved from the standard formulations by using the
derived quantity evaluations as discussed in Sect. 8.19.1 are usually able to provide
equivalently precise flux computations. In the following, we need not to resort to
mixed finite element formulations.
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