Chapter 6
Initial, Boundary and Constraint Conditions

6.1 Introduction

The governing model equations derived in Chaps.3 and 4, which are summarized
in Table 3.7 for general variably saturated porous media, in Table 3.9 for fully
saturated porous media (groundwater), in Table 3.10 for 2D unconfined aquifers
and in Table 3.11 for 2D confined aquifers as well as in Tables 4.5-4.7 for variable-
density flow, mass and heat transport of discrete features, have to be supplemented
by initial, boundary and constraint conditions. The solutions for the flow, mass and
heat transport equations are generally sought within a domain 2 C R” closed by
its boundary I' C "L (D = 1,2,3) in the D—dimensional Euclidean space (cf.
Sect.2.2.2). By definition, the boundary I" is separated from the domain §2. On
the other hand, by £2 we denote the (closure) domain, which completely joins the
boundary

Q=0uUr (6.1)

On £2 and I' initial conditions (IC’s) and boundary conditions (BC’s) have to be
specified, respectively. The boundary I" consists of disjoint nonoverlapping portions
I i = 1,2,...) bounding the domain £2 both outside and inside, which can be
suitably subdivided according to the types of BC’s. BC’s are always required for
both transient and steady-state problems, while IC’s are always needed for transient
problems. An exception possesses nonlinear steady-state problems, where an IC of
the solution initializes an iterative procedure.

In addition, singular point conditions (SPC’s) are of interest for specifying
pumping (discharging) or injection (recharging) wells, which are assigned to
separate points of the domain §2. Due to the nature of singularities well-type SPC’s
must be treated in a singular (discrete) manner which is different to the treatment
of BC’s, where fluxes are continuous and integrable over a boundary section. It is
interesting to note that the effect by a flux-type BC can be similar or even identical
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to a SPC specification applied to a numerical model for cases, where all connected
points forming the discretized boundary are imposed by a respective SPC.

6.2 Initial Conditions (IC’s)

In the domain £2 the following IC’s are valid for the flow, species mass and heat
transport processes, respectively:

Flow
h(x, 1)) = ho(x) in £ (6.2)
Mass transport of species k
Ci(x,tp) = Cro(z) in £ (6.3)
Heat transport
T(x, 1) = To(x) in £ (6.4)

where h, Co and T are known spatially varying functions of initial distribution at
initial time 7.

6.3 Standard Boundary Conditions (BC’s) and Well-Type
Singular Point Conditions (SPC’s)

On the boundary I" closing the domain 2 disjoint portions are appropriately defined
as I7 (i = 1,2,...) for which different types of BC can be separately specified.
Dirichlet-type (1st kind or essential) BC’s on Iy, I'; and I';, Neumann-type (2nd
kind) BC’s on I, I'5 and I3 as well as Cauchy (Robin)-type (3rd kind) BC’s on I3,
I's and Iy will represent standard formulations (cf. Sect. 2.2.2) for flow, mass and
heat, respectively, so that for standard BC’s: I' = INUI,UI3 = IL,UT5UT = [7U
I's U I'y. Additionally, well-type SPC’s are included providing specific sink/source
conditions which have to be assigned to separate points of the domain £2 idealized
as wells. Furthermore, integrated formulations of Neumann-type and Cauchy-type
BC'’s are desired. BC’s of 1st, 2nd and 3rd will be symbolized by O, X and ),
respectively. A well-type SPC will be symbolized by I". Special formulations of
BC’s are necessary in various applications which will be introduced in Sect. 6.5
further below.
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2D

Fig. 6.1 Normal Neumann-type fluxes for 2D and 3D boundary geometries

6.3.1 Flow BC

6.3.1.1 QO Dirichlet-Type (1st Kind) BC

h(x,t) =hp() on I xt[ty,00) (6.5)

where hp are prescribed values of hydraulic head on I'7 C I'. Note that for steady-
state flow problems Dirichlet-type BC’s (6.5) are usually required, i.e., I # O,
unless Cauchy-type BC’s occur.

6.3.1.2 X Neumann-Type (2nd Kind) BC

gn, (@, 1) = [k, K f, - (Vh + yxe)|-m = q,(t)

for 3D and 2D vertical & unconfined
Gn, (@, 1) = =(T f. - Vh) - m = qn(t)

for 2D horizontal, confined

on Ixt[ty,o0) (6.6)

where 7 is the positive outward-directed unit normal to I3, g,, = g -n and g,, =
q-n represent normal fluxes (positive outward-directed) across the boundary I> and
qn and g, are the prescribed Neumann fluxes on I3 C I' as illustrated in Fig. 6.1.
If g = 0 and g, = 0 the Neumann-type BC reduces to a natural (no-flux) BC
associated with Vi + ye = 0 and Vi = 0, respectively. Note that for saturated
porous media k, = 1, for density-uncoupled problems y = 0 and for constant liquid
viscosity, equal to the reference viscosity, f, = 1. For 2D horizontal unconfined
aquifer problems with k, = 1 and y = 0, the prescribed Neumann flux g, has to be
vertically integrated in accordance with the unknown water table /.
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6.3.1.3 @ Cauchy-Type (3rd Kind) BC

qn, (@, 1) = =[k: K fiu - (Vi + ye)] -n = —®y(hc — h)
for 3D and 2D vertical & unconfined
QH;,(;B7I) = _(Tfll : Vh) 'n

for 2D horizontal, confined

_ Ty X t[t
Gyhe —h) [ 3 X £[ty, 00)

6.7)

where /¢ are prescribed values of hydraulichead on I3 C I'. The signs of ¢,, = g-n
and g,, = q - mn are chosen that the boundary fluxes are positive outward-directed
if b > he. In (6.7) the transfer coefficients @), and ®;, represent dual directional
functions in form of:

@in(xg,t) for he >h

&), = h .

{ &M (x,t)  for he <h ©.8)
= qs};‘(:c,t) for hc >h

Pn = { @,‘1"“(33,1) for hc <h 6.9)

which are in general functions of space « and time . Accordingly, in specifying two
alternate (if necessary temporal) transfer coefficients different transfer conditions
can be input to distinguish between inflow conditions (g,, < 0, e.g., infiltration
from a surface water into the aquifer) and outflow conditions (g,, > 0, e.g.,
exfiltrating the aquifer into the surface water). Their usefulness for river-aquifer
ir_1teracti(_)ns is di_scussed further below. The special case @, = 05}1“ = (b,‘;“‘ or
b, = 05}1“ = (b,‘;“‘ does not differ between inward and outward boundary flux,
so it becomes directionally independent.

The formulation of 3rd kind BC’s is based on a general transfer relation between
the reference value i¢ on the boundary portion I3 and the hydraulic head & to be
computed at the same place. The reference hydraulic head /¢ can also be time-
dependent ic = h¢(t). The dual transfer coefficient @, possesses the property of
a resistance coefficient which constrains the discharge through the boundary and,
additionally, differs between inflow and outflow conditions by means of <1>,i1“ and
@, respectively, according to (6.8) and (6.9). If @, = 0 the boundary becomes
impervious. On the other hand, using a very large value @, — oo the BC of 3rd
kind is reduced to a Dirichlet-type (1st kind) BC approaching to 4 = h¢ on I5.

For flow problems the transfer coefficient @; can be identified as a specific
colmation (or leakage) coefficient as outlined in Fig. 6.2 for inflow (infiltration)
conditions (¢, — @ (hc > h)). An adjacent river bed is clogged (‘colmated’)
by a layer of thickness d and a hydraulic conductivity of K)'. Commonly, the
layer conductivity K" is much smaller than the conductivity K; of the aquifer to
be modeled. Thereby the model boundary I" represents the inner boundary of the
‘colmation’ layer I3, where the model domain £2 ends.
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Fig. 6.2 Transfer coefficient iy
&, (= @) as ‘colmation’
parameter of a clogged river
bed

K

infiltrating

free surface

Ki» K,

The flux through such a ‘colmation’ layer can be estimated from the Darcy
equation (see Fig. 6.2), viz.,

wAh whe —h
qny, %—KOE :_KOT (610)
where s and As identify the arc length and line distance in direction of flow,
respectively. Setting (6.7) equal to (6.10) a simple relationship results for the transfer
coefficient @}l“ in 3D and 2D (vertical, horizontal unconfined) cases:

in K(i)n
o == (6.11)

For horizontal confined flow problems an inherent vertical averaging becomes
necessary (in the aquifer all fluxes are integrated over the depth) resulting in a depth-
integrated transfer coefficient ;" as:

in
Ko

@) = B® =B
! d

(6.12)

For outward directed (exfiltrating) boundary fluxes according to Fig.6.3 the
following relationships for @' and @;"* can be derived, analogously to the
above, viz.,

out
g = Ko” (6.13)
d

Hout __ B¢0ul _ BKc(w)ut (6 14)
h h d .

The coefficients @}l“ and dﬁfl’“‘ (also 4_5}1“ and 4_5}?“‘) differ if in case of infiltration
the conductivities of the ‘colmation’ layer become depart from that of the exfiltra-
tion Kin £ Kout,
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Fig. 6.3 Transfer coefficient
@y (= P") as ‘colmation’
parameter of a clogged river
bed

A

exﬁltraTng
out

i Q K » K,

Fig. 6.4 Number of
well-type SPC’s on singular
points Ve, € 2

6.3.1.4 P Well-Type SPC

A number of pumping (or injecting) wells are idealized as singular point sinks (or
sources) at locations x,, € £2 (Fig. 6.4):

Nw
Om(@.t) ==Y Qu()s(—=z,) on =z, € 2 xtlt,oc0) (6.15)

w=1

where Qp,, is the specific sink/source function of wells, Ny is the number of wells,
Q,,(?) is the prescribed volume per unit time discharge (pumping rate) of single
well w at location «,, and 6(x — x,,) = ]_[iD=1 8(x; — x;y) is the Dirac delta function
associated with location «,,. The Dirac delta §(x — @,,) is zero at all points except
x = x,, and satisfies

/ S(x—z,)dR2 =1 (6.16)
2

and accordingly

NW NW
[ 00s@-aiae =Y 0.0 6.17)
w=1

w=1
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6.3.2 Mass Transport BC

6.3.2.1 (O Dirichlet-Type (1st Kind) BC

Ci(x,t) = Crp(t) on Iy xt[ty,o0) (6.18)

where Cyp are prescribed values of concentration of species k on Iy C I". Note
that for steady-state mass transport problems Dirichlet-type BC’s (6.18) are usually
required, i.e., I'; # @, unless Cauchy-type BC’s occur.

6.3.2.2 X Neumann-Type (2nd Kind) BC
For 3D and 2D (vertical and axisymmetric):

convective form
G (@, 1) = —=(Dy - VCi) - m = qkc(1)
—
dispersive flux

on I35 X t[ty,00)
divergence form

Gnic(@, 1) = Ci g, — (Dy - VCi) - = g} (1)

total flux

(6.19)

and for 2D horizontal (confined and unconfined):

convective form
Guic(@®, 1) = —=(Dy - VCi) - m = Gic(t)
—_———
dispersive flux

on [5 X t[ty,00)
divergence form

Guie (@ 1) = Ci Gy, — (Dy - VC) - = Gl (1)

total flux

(6.20)

where g, and g, represent normal mass fluxes of species k (positive outward-
directed) across the boundary [I5 and gc, q,:rc, qrc and q,fc are the prescribed
Neumann mass fluxes of species k on I5 C I'. If gy¢ = 0 and gic = 0 the
Neumann-type BC reduces to a natural (no-mass flux) BC associated with a zero
concentration gradient VC, = 0 for the convective form of the mass transport
equation, sometimes called as Danckwerts condition [111]. Alternatively, however,
for the divergence form of the mass transport equation, if qZC = 0 and ch =0
the Neumann-type BC reduces to a natural (no-mass flux) BC which forces the
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total (advective plus dispersive) mass flux to zero on ['5. Both variants of BC have
their advantages. While the Neumann-type BC for the convective form is easier to
implement and more flexible, their counterparts for the divergence form provide a
stronger formulation in terms of mass convervation, however, possess difficulties at
outflow boundaries on which the total mass flux is unknown (see Sect. 6.5.7).

The divergence form is capable of prescribing the total mass flux along a
boundary portion resulting from the advective (convective) part Cy g,,, (load of con-
centration Cy in the liquid flow ¢,,, = g-n) and the dispersive part —(Dy - VCy) - n.
However, regarding this formulation all boundaries have to be specified with such
type of BC, which can cause a specific handling of such formulations in the case
of unknown mass concentration C; on outflow boundaries (rather, Cy, is here to be
solved). Such boundaries require a specific treatment. This is done by evaluating the
liquid flux via a budget analysis in a postprocessing step of computation which is
then involved in modifying the BC of the mass flux at such portions of boundaries,
for more see discussion in Sect. 6.5.7.

On the other hand, the default convective form does not require a specific han-
dling associated with formulations on outflow boundaries and is usually preferred.
Assigning gxc = —(Dy - VC) - n &~ 0 as a natural BC, the mass flux freely
passes through an advectively open boundary section and the concentration on the
boundary automatically results. Note here, a boundary source of mass, as far as it
should not be modeled via a 1st kind BC, in form of a mass boundary flux gxc # 0
includes only the dispersive part, i.e., the magnitude of the flux will result from the
gradient of concentration at the boundary. Thus in general, the convective form will
necessarily produce a higher concentration gradient to realize the same mass load
through a boundary.

However, there is a way to formulate mass flux BC providing an advective load
of mass in form of Cauchy-type BC even for the convective form of mass transport.
Indeed, we need not to resort to the divergence form in order to achieve suited mass
load conditions on boundaries. It is easy to see that the Neumann-type BC for the
divergence form, e.g., (6.19), is equivalent to Cauchy-type BC written as

—(Dy - VCi) -1 = g — Ci g,

6.21)
= g, (Cic — Cr)

with known ¢,, and qzc ~ (¢n, Ckc approximated as an input advective mass flux
with prescribed boundary concentration Cyc for the convective form as further
discussed in Sect. 6.3.2.3.

6.3.2.3 @ Cauchy-Type and Robin-Type (3rd Kind) BC

For 3D and 2D (vertical and axisymmetric):
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convective form

- _ VG, - - _ _
‘ Gnic (@, 1) (Di-VCy)-n Dic(Cre — C) on T x t[tg, o)
divergence form
e (@.1) = Ci qny — (Dy - VC) - n = —B/(Crc — Cp)

(6.22)
and for 2D horizontal (confined and unconfined):

convective form
gnyc(@,1) = —(Dy - VCy) - = —Dic(Crc — Ci)
divergence form

Gnie(@. 1) = Ck Gny, — (Dy - VC) - = —@zc(ckc - Cy)

on Iy X t[tyg, o0)

(6.23)

where Cy¢ are prescribed values of species k concentrationon Iy C I". The signs of
qn,c and gy, are chosen that the boundary mass fluxes are positive outward-directed

if Cx > Cyc. In (6.22) and (6.23) the mass transfer coefficients ®yc, Prcs @ZC and

@,IC represent dual directional functions in form of:

on (:13, I) for Cic > Cy
D, = kC 6.24
{ O (x,t)  for  Cye < C ( )

. @in (x,t) for Ciyec > Cy
e = K¢ 6.25
ke { ®%(w,1) for Cie < Cy (6.25)

and similar for QD,(TC and qs,jc, which are in general functions of space x and time ¢.
Accordingly, in specifying two alternate (if necessary temporal) transfer coefficients
different transfer conditions can be input to distinguish between inflow conditions
(qnie < 0) and outflow conditions (¢, > 0). The special case, e.g., Prc = P%. =
@ (and similar for @, CDZC and qSkTC) does not differ between inward and outward
mass boundary flux.

As already discussed in Sect.2.2.2 the 3rd kind BC of the convective forms of
(6.22) and (6.23) can be identified as Cauchy-type BC, while the 3rd kind BC of the
divergence form represents a Robin-type (mixed) BC, which is most general. It has
been shown by (6.21) that Neumann-type BC of the divergence form is equivalent
to Cauchy-type BC of the convective form if we simply set

Dic = —qy, (6.26)

where ¢,, = q - n is a known (positive outward directed) flux of liquid on Is. A
typical application of such type of BC is a leaky deposit, from where a mass flux
intrudes into an aquifer with a given (advective) rate as schematized in Fig. 6.5. It is
assumed that the deposit having a known concentration Cy¢ leaks by a given load
and intrudes into the domain £2 through Iy via

0t = a4 Cuc (6.27)
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Fig. 6.5 Leak of a deposit:
BC formulation of species
mass load ¢/ on Iy C I

r4
Q
where q}(‘?d is the load of species k on I'; and g™ is the inward-directed flux of
liquid leaving the deposit with concentration Cyc. Since ¢p™ = —g,, (negative due

to the inward direction on I§) we obtain with (6.26), i.e., Q¢ = qgu‘, the following

Cauchy-type BC for the load of mass
Guic(@, 1) = —(Dy - VCi) - = =" (Coc — Cx)  on T x t[tg,00)  (6.28)

applied to the convective form of mass transport.

The transfer coefficients, e.g., Pyc, associated with BC’s of 3rd kind (6.22)
can be regarded as leaching parameters which constrain the mass flux through the
boundary. If ;¢ = 0 the boundary becomes impervious. On the other hand, using
a very large value &y — oo the BC of 3rd kind is reduced to a Dirichlet-type (1st
kind) BC with C; = Cyc on I%. Such a leaching process is displayed in Fig. 6.6
for the example of a flow over a salt dome modeled with a diffusive input condition
(Crc¢ > Cy). Considering a thickness d for the leaching body and applying the
Fick’s law (4.67) written in 1D in form of

in ACy in CkC — C
Aniec ~ _Dk()K = _Dk()T (6.29)

the mass transfer coefficient ®}%. can be assessed as

) Din
o = ;0 (6.30)

and analogously to a horizontal problem as

in
Dko

bit = BOjt = B!

(6.31)
Analogous assessments for @22 and @2 result if the transition resistance differs
b_etvtveen inflow (leaching) and outflow (releasing) conditions: ®;7. # P8 (D7 #
Dh.

kC
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Fig. 6.6 Transfer coefficient
Dy (= dyp) as leaching
parameter of a salt dome

I'7

d  leaching body Dy,

salt dome Cec
6.3.2.4 I Well-Type SPC
Nw
Ow(@.)) = =) CwQu(d(@ —m,) on m, €2 x1lig.00)  (632)
w=1
and
Nw
[ 0uwiz ==3cuou (6.33)
2

w=1

where Qy,, is the specific kth-species mass sink/source function of wells, Q,,(¢)
is the prescribed volume per unit time discharge (pumping rate) of single well
w pumped with a known concentration of Cy,, at location x,, and §(x — x,,) =
]_[iD=1 8(x; — X;y) is the Dirac delta function associated with location «,,. The well
function Qy,, is assigned to a point sink of mass for the divergence form of mass
transport equation.

In contrast, the convective form of mass transport has to be related to a well-point
sink function in the following form (cf. mass transport equations of Table 3.7):

Oiw(@.1) = =X Cro(@) 00 (0)8(x — x,) + Ck NV, 0,(1)8(x — )
= -2 0,08 — ) (Crw — Cr(y))

(6.34)
and

Nw
| 02 ==Y 0.0)(Ceu— Cutan) (635)
w=1
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which reveals a similarity to a Cauchy-like, however, point-related mass transfer
relation as described above. Note that the pumping rate Q,, is positive for a sink
(pump) and negative for a source (recharge/injection) at well point x,,. These types
of SPC in form of (6.32) and (6.34) are usually applied to cases, where a mass flux
given by a flow rate of Q,, < 0 and known concentration Cy,, is injected through
wells w.

6.3.3 Heat Transport BC

6.3.3.1 (O Dirichlet-Type (1st Kind) BC

T(z,t) = Tp(t) on I} x tlty, o) (6.36)

where Tp are prescribed values of temperature on I; C I'. For steady-state heat
transport problems Dirichlet-type BC’s (6.36) are usually required, i.e., I; # @,
unless Cauchy-type BC’s occur.

6.3.3.2 X Neumann-Type (2nd Kind) BC
For 3D and 2D (vertical and axisymmetric):

convective form
qnr (@ 1) = —(A-VT)-n =qr(1)
————

conductive flux on [Iyx Z‘[l‘o, OO)
divergence form

Gnp (@, 1) = pc(T = To) g, — (A-VT) -1 = q}-(1)

total flux

(6.37)

and for 2D horizontal (confined and unconfined):

convective form
Gnr(@. 1) = —(A-VT)-n =qr(1)
~————

conductive flux on [y Xt[ty,00)
divergence form

Gnp (@, 1) = pc(T = To) Gy, — (A-VT)-m = G (1)

total flux

(6.38)

where ¢,, and g,, represent normal heat fluxes (positive outward-directed) across
the boundary I3, Ty is a reference temperature and gr, q;, qr and q; are the
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prescribed Neumann heat fluxes on I'y C I'. If g7 = 0 and gr = 0 the Neumann-
type BC reduces to a natural (no-heat flux) adiabatic BC associated with a zero
temperature gradient VT = 0 for the convective form of the heat transport equation.
Alternatively, however, for the divergence form of the heat transport equation, if
q; = 0 and q} = 0 the Neumann-type BC reduces to a natural (no-heat flux)
BC which forces the total (advective plus conductive) heat flux to zero on [3.
The advantages of both variants of Neumann-type BC are already discussed in
Sect.6.3.2.2 in the context of mass transport. Similarly, the equivalence of the
Neumann-type BC for the divergence form to the Cauchy-type BC for the convective
form of the heat transport equation leads to the formulation of a heat load condition

—(A-VT)-n = Q; —pc(T —Th) qn, (6.39)
= pcqn, (Tc = T)

with known ¢,, = q - n and q; ~ pcqn, (Tc — To) approximated as an input

advective heat flux with prescribed boundary temperature difference T¢ — Ty for the

convective form as further discussed in Sect. 6.3.3.3.

6.3.3.3 @ Cauchy-Type and Robin-Type (3rd Kind) BC

For 3D and 2D (vertical and axisymmetric):

convective form
qnr(@,1) = —(A-VT)-n ==&r(Tc = T)
divergence form

Gy (@, 1) = pe(T = To) gy — (A-VT) -m = —®}(Tc —T)

on [y xt[tg,00)

(6.40)

and for 2D horizontal (confined and unconfined):

convective form
Inr(@,1) = —(A-VT)-n ==&r(Tc = T)
divergence form

Gny (@, 1) = pe(T = To) g, — (A-VT) -m = =& (Tc —T)

on [y X t[tg,00)

(6.41)

where T are prescribed values of temperature on Iy C I". The signs of g,,, and g,
are chosen that the boundary heat fluxes are positive outward-directedif 7 > T¢. In
(6.40) and (6.41) the heat transfer coefficients &7, r, QD; and (5; represent dual
directional functions in form of:
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@in(g,t) for Tc>T
Dy = r 6.42
{ P (z,1) for Te <T (6.42)

= oinx,t) for Te>T
IER 6.43
r % & (x,1) for Te<T (6.43)

and similar for (b; and 05;, which are in general functions of space  and time 7.
Accordingly, in specifying two alternate (if necessary temporal) transfer coefficients
different transfer conditions can be input to distinguish between inflow conditions
(¢n; < 0) and outflow conditions (q,, > 0). The special case, e.g., Pr = quT“ =
@%‘“ (and similar for dr, @; and @;) does not differ between inward and outward
heat boundary flux.

The 3rd kind BC of the convective forms of (6.40) and (6.41) can be identified as
Cauchy-type BC, while the 3rd kind BC of the divergence form represents a Robin-
type (mixed) BC, which is most general (cf. Sect. 2.2.2). It has been shown by (6.39)
that Neumann-type BC of the divergence form is equivalent to Cauchy-type BC of
the convective form if we simply set &7 = —pcq,,, where g,, = q - 12 is a known
(positive outward directed) flux of liquid on I. This allows to prescribe (similar to
the mass transport in Sect. 6.3.2.3) a heat load BC, viz.,

Gny (@, 1) = —(A-VT)-n=—pcqy™(Tc —=T) on Iyxtty,00) (6.44)

applied to the convective form of heat transport, where the heat load q179ad =

g pc(Te — To) on Iy is forced by the inward-directed flux of liquid ¢)"* = —¢,,
entering with a boundary temperature 7¢.

The heat transfer coefficients, e.g., @, associated with BC’s of 3rd kind (6.40)
represent heat transition parameters. If @r = 0 the boundary becomes adiabatic
(insulated). On the other hand, using a very large value &7 — oo the BC of 3rd
kind is reduced to a Dirichlet-type (1st kind) BC with T = T¢ on Iy. The heat
transfer coefficients can be estimated analogously to the above transfer coefficients
for mass flux of Sect.6.3.2.3. Considering a thickness d for a heat transition layer
and applying Fourier’s law (4.76) for input condition (T¢ > T') in form of:

AT e —T
o A AN A C T D 6.45
q T o As o d ( )

the heat transfer coefficient @i can be obtained as

. Ain
oF = 7” (6.46)
and similarly to a horizontal problem as
_. . Al
oF = Bof = B—~ (6.47)

d
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where AN represents the heat conduction coefficient of the transition layer. Anal-
ogous assessments for @9 and @ result if the heat transition resistance differs
between inflow (leaching) and outflow (releasing) conditions: <1§iT“ # ot (qSiT“ #*
d_)%ut).

More general heat transfer coefficients and related thermal resistances of tran-
sition layers are described in Appendix E for single and composite plane wall and
circular pipe wall configurations. It results in heat transfer coefficients exemplified
in the form

1
Sr = —— 6.48
=3 SR (6.43)
with the specific thermal resistance R; of solid material i given as
di 1 I
—_— plane wal
S Af
R, = ! 6.49
l In(riy1/ri) ‘ (649)
—————  circular pipe wall
2 Af

where S is the specific exchange area and A7 is the thermal conductivity of solid
material ;. Note that for pipe wall geometry S = 2nr, where r is the radius of the
boundary surface at Iy.

6.3.3.4 I Well-Type SPC

Nw
Qrw(@.1) ==Y (T, — To) pcQu()8(x — @) on @, € 2 x1[tg, 00)
" (6.50)
and
Nw
/Q Qrud2 == (T, —To) pcQu(t) (6.51)

w=1

where Qr,, is the specific heat sink/source function of wells, Q,,(¢) is the prescribed
volume per unit time discharge (pumping rate) of single well w pumped with a
known temperature of 7, at location x,,, 6(x —x,,) = l_[,-Dzl 8(x; — x;y) is the Dirac
delta function associated with location x,, and Ty is the reference temperature. The
well function Qr,, is assigned to a point sink of heat for the divergence form of heat
transport equation.

In contrast, the convective form of heat transport has to be related to a well-point
sink function in the following form (cf. heat transport equations of Table 3.7):
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QT»V(‘B’ t) = - 2521 (TW(.’BW) - TO)'OCQW(t)S(m - mW)+
pc(T = To) SN 0, (1)8(x — ) (6.52)

=MW pc0,t)8(x — ) (T, — T(x))
and

Nw

/,Q QdehQ = - Z pCQw(t)(Tw - T(mw)) (6.53)

w=1

which reveals a similarity to a Cauchy-like, however, point-related heat transfer
relation as described above. Note that the pumping rate Q,, is positive for a sink
(pump) and negative for a source (recharge/injection) at well point x,,. These types
of SPC in form of (6.50) and (6.52) are usually applied to cases, where a heat flux
given by a flow rate of Q,, < 0 and known temperature 7,, is injected through
wells w.

6.4 BC Constraints (BCC’s) and SPC Constraints (SPCC’s)

Constraints are limitations for all types of BC’s and SPC’s. They can be written for
BC’s in the following form:

< Max bound(s) else replace BC by Max bound
value of BC is valid if and (6.54)
> Min bound(s) else replace BC by Min bound

They result from the requirement that BC should only be valid as long as minimum
and maximum bounds are satisfied. If during a simulation run the conditions are
violated, the constraints are to be assigned as new intermediate BC. The same
procedure is applied to SPC’s.

The formulation of constraints is commonly based on the formalism of com-
plementary conditions for a type of BC and SPC. Accordingly, value-type (1st
kind and 3rd kind) BC’s (hydraulic head, species concentration or temperature)
are constrained by maximum and minimum flux relations (liquid, mass and heat
fluxes, respectively). On the other hand, flux-type (2nd kind) BC’s and well-
type SPC’s are constrained by complementary limits of boundary values, i.e., the
liquid flux is constrained by maximum-minimum hydraulic heads, the mass flux
by minimum-maximum species concentrations and the heat flux by minimum-
maximum temperatures. Following formulations are available for flow, mass and
heat conditions.
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6.4.1 Flow BCC and SPCC

Max: Q,, < Q™ (1) else Qn, = Q™1 (1)
Min: Q,, > Q" (1) else Qn, = Q" (1)
Max: h < h™™2(t)  else h = h™™2(¢)
Min: & > h™"2(¢)  else h = h™"(¢)
Max: Oy, < Qp3(1) else Oy, = Q™ (t)
Min: Q,, > Q™ (1) else Qn, = Q™ (1)
Max: h < h™*4(t)  else h = h™>*(t)
Min: & > h™M(¢)  else h = h™M(¢)

Istkind hp(t) if

Ol

IXI

2nd kind ¢qp(¢) i

<

&
<

3rdkind hc(t) i {

Il

well type Qpnu(t) if

(6.55)
where

Oy, = —/q,,hdl“ (6.56)

represents the integral boundary balance flux of liquid summed-up at discrete
(nodal) points to which the corresponding boundary values are related. Note, due to
compatibility reasons with SPC’s the pointwise balance quantity is defined negative
outward (because a positive SPC acts as a sink). The flux Q,, has to be computed in
a balance analysis during the simulation (cf. Sect. 8.19.2). The minimum-maximum
bounds Q;71", QF1, jmin2 - pmaxa o™, 05, A™4 and A™¥*4 are optional input
parameters and can be even time-dependent functions. Accordingly, it is possible to
consider time-dependent variations in the existence and influence of boundary and
constraint conditions. For instance, these temporary capabilities of constraints are
very useful in modeling the temporarily varying occurrence of sealing or drainage
activities over a restricted time period, or in simulating time-constrained BC’s (e.g.,
1st kind) which are associated with certain construction or remedial actions arising
only at given times. Typical applications of constraint conditions formulated by
(6.55) are shown in sketches of Fig. 6.7.

In the first example (Fig. 6.7a) a single well operation is constrained by minimum
and maximum head conditions. A well-type SPC with a given recharging or
extracting discharge Qy,, is applied. The computation results a hydraulic head A
at the borehole. Only if the resulting head is between the bounds ™™ and A™4*4
the computation is accepted, otherwise if the head / is smaller than /™" the SPC
is replaced by h = h™ at the point, which represents a (pointwise) Dirichlet-type
BC, and the computation has to be repeated for the changed BC. Similarly, if the
resulting head 4 is larger than 2™**¢ the SPC is replaced by the &7 = h™** Dirichlet-
type BC at the point and the solution has to be restarted again.

The second example (Fig. 6.7b) is regarded to a flux-limited infiltration through
a river bed. A 3rd kind BC with a hydraulic head /¢ of the river is applied and
constrained by a maximum flux Q'*. If the groundwater table decreases below the
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infiltrating exfiltrating
Ah(1) = h—h

0,

surface

Fig. 6.7 Examples of using constraints for flow problems: (a) constraining a single well by an
allowable drawdown in form of a minimum well head and by an allowable injection water level
in form of a maximum well head, (b) flow separation in infiltration from surface water due to
constraining the maximum seepage through the river bed

location of the river bed a specific situation in form of a ‘flow separation’ occurs.
Physically, the zone between the river bed and the water table becomes unsaturated
and the linear relationship of a flow transfer in form of (6.7) for the infiltrating
water as a function of the difference Ah = h — h¢ between the groundwater
head % and the reference (river) head /¢ cannot be maintained anymore. It requires
the prescription of the maximum bound Q;7**. The formulation is termed as flux-
constrained transfer BC. In this case the computation is started with the given 3rd
kind BC. After the computation balance fluxes Q,, at the boundary are evaluated.
If 0y, violates the maximum bound Q;7*** (or the minimum bound Q,‘f}j‘“) the
computation has to be repeated with changed BC in form of Qp = Qn, = Q5™
(or Qpw = Op;, = 0 ,‘1‘;1“3), which represent a well-type SPC.

Although flux-constrained transfer BC’s are quite general formulations, their
specification is sometimes cumbersome because the determination of the constraint
fluxes requires geometric information of the boundaries (e.g., transfer areas). A
more convenient and alternative formulation of constraints for 3rd kind BC’s is in
the form of the so-called head-constrained transfer BC as exemplified in Fig. 6.8 for
a flux-limiting infiltration through a river bed. Instead of a direct input of constraint
fluxes according to (6.55), maximum and minimum head values A% and ‘gi“,
respectively, are prescribed, which are used to derive the constrained min-max fluxes

for Cauchy-type BC’s. It reads as follows:

Max: h < h{*™(t) else
L i q;lmn — _®h(hC _ hrélax) lth < hrélax
&® 3rdkind hc(t) if '
_ Min: h > hg"(t) else
Gny, = q;lnax — _qjh(hC _ hrénn) lth > hrénn
(6.57)
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Fig. 6.8 Head-constrained
transfer BC for a flux-limiting max? A
infiltration through a river bed ¢, \\\\\\
A p saturated colmation zone
d
A
T
hmin
c unsaturated zone
I Sl
h |he
saturated zone (groundwater)

Note that the effects of the constraints in (6.55) and (6.57) are different. It is apparent
that the minimum head bound A" determines the maximum flux rate g;™ and the
maximum head bound /#7** yields the minimum flux rate ¢;"".

The advantage of head-based constraint formulation is that the limiting (con-
straint) fluxes are rates and no more integral balance fluxes, which makes the
computation more efficient. The transfer coefficient @, in (6.57) can be determined
from the layer parameters of the clogged river bed as discussed in Sect.6.3.1.2.
Time-dependent head-constraints are appropriate to prescribe intermediate flux
conditions along a boundary (e.g., at certain times no flux conditions should occur
as applied to temporarily moving BC’s). Since hc = h¢(¢) a temporal no flux
condition is automatically satisfied if the reference head i ¢ becomes identical to the
constrained head h‘é‘i“ (or A*) in time. It means written for the minimum constraint

qn, = q;:ax =0 for i 6.58

he(t) = h@™(t) and h(t) < hg™ (6.58)
To force a temporal no flux condition independent of the groundwater head & =
h(t), the maximum head constraint has to be set additionally to the reference head.
It requires

Gny, = g =0 for

he(r) = HE™(t) = hE™(r)  and arbitrary  h(1) (6.59)



212 6 Initial, Boundary and Constraint Conditions

6.4.2 Mass Transport BCC and SPCC

Max
O =0’ (1)

as long as h™™ <h<h™1;
Oy =0 if h<h™™l or h>hm™1

anC<QZ“‘“‘ @)

else
J— . X hmm1<h<hmax1
O 1Istkind Cip(t) if
- Min

] anc_Qlel )

as long as h™n <ph<p™x1;
Q=0 if h<h™™ or h>pm1

nkC>QL"‘“‘ ()
else
hmml <h<hmax1

C <Cm axp (t) Ck=C,:mX2 (t)
else as long as h™™ <h<j™¥2;
— . . pming <h<hmaxz =0 if h<h™2 or h>hp™ax2
X 2ndkind que(t) if One=0
— Min
C >Cmmz (t) Ckzcli‘an (t)
and else as long as h™"2 <h<h™¥2;
hmin2 <h <pmaxa Oy =0 if h<h™"2 or h>hm>2
max
anC<Q’r1ndx3 (1) anc_Qn S(t)
else as long as h™"3 <h<h™¥3;
— . . ming <h<hm“"3 =0 if h<h™"3 or h>hm23
® 3rdkind Celt) if One=0¥f
- Min
anC>Q;‘;gs ) Q=0 (1)
else as long as h™"3 <h<h™¥3;
Jymin3 <h<hmax; Q”kC =0 lf h<hMin3 op hs pmax3
Cr <Cmax4 (t) Cr =C’:mx4 (t)
else as long as h™n4 <h<pmax4;
- . hmlﬂ4 <h<hmax4 =O i h<hlniﬂ4 or h>hmax4
" well type Qpy(t) if Ome=01¥f
Min
C >Cmm4 (t) Ck =C’;mn4 (t)
else as long as h™" <h<h™*4;
hmlﬂ4 <h<hmax4 anc =O l:_f h<hlniﬂ4 or h>hmax4
(6.60)
where
One = _/ancdr (6.61)

represents the integral boundary balance mass flux of species k summed-up at
discrete (nodal) points to which the corresponding boundary values are related (cf.
Sect.8.19.2), (...)™* and (...)™" denote the prescribed maximum and minimum
bounds, respectively, for the corresponding type of BC and SPC, and Cj and &
in (6.60) are the concentration of species k and the hydraulic head, respectively,
computed on the boundary or the singular point. The min-max bounds for the flux
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On,c» the concentration Cy and the hydraulic head /& can be again time-dependent
functions allowing very comfortable rules for constraints.

Naturally, the specific balance mass flux g,,. used in (6.61) is composed of the
advective and dispersive parts according to

dnie = Ck qn,, — (Di - VCy) - m (6.62)
—— N —
advective dispersive

In practice, it has shown to be inappropriate to include the total (advective plus
dispersive) flux into the procedure of controlling the constraint conditions (6.60)
because the direction of the dispersive fluxes is ambiguous (e.g., the dispersive
spreading also occurs against the advective flow direction). Accordingly, the
balance-based evaluation of fluxes has to be exclusively related to the advective
mass fluxes, viz.,

One = _/ancdr ~ _/(Ck (In;,)dr (6.63)

presenting unambiguously directional balance quantities.
The transport constraints (6.60) essentially consist of two parts for the individual
types of BC’s and SPC’s:

1. A min-max bound complementary for the type of BC and SPC is imposed, i.e., a
concentration boundary (1st or 3rd kind) is controlled by an allowable min-max
boundary mass flux, and a mass flux boundary magnitude (2nd kind or well type)
is controlled by an allowable min-max boundary concentration.

2. Optionally, a permitted range for BC and SPC within tolerable limits of hydraulic
head h (ranging between ™™ and /™) is imposed. If the simulated water table
h lies outside this range, the BC’s (all types, 1st to 3th kind) and SPC’s are
suppressed. This can easily be realized by assigning intermediately a zero flux
Oue = 0, i.e., no mass flux then occurs and the BC’s and SPC’s are switched
off.

Typical applications of mass transport constraints are outlined in Fig.6.9. Fig-
ure 6.9a describes the case of a density-coupled saltwater intrusion problem (flow
over a salt dome) having a boundary on which alternate boundary concentrations
appear in dependence on the dynamic process: As long as water enters the domain
it should have a prescribed concentration of freshwater. However, if the water
releases the domain (along the same boundary) the concentration on the boundary
is unknown and should be automatically computed. Such a description can be easily
realized if the entire boundary section is assigned by a freshwater BC of 1st kind
Cr = Cip, and at the same time, the boundary will be imposed by a constraint
condition in form of a null minimum mass flux Q,‘{fgl = 0 (more constraints are
not necessarily to be specified). Such an arrangement provides that the freshwater
condition remains valid as long as the advective (convective) flux points into the
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Fig. 6.9 Application of mass transport constraints: (a) Saltwater intrusion by flowing groundwater
over a salt dome and (b) wetting and activating a contaminant deposit during a groundwater rise
(flooding)

domain':

One = _f(Ck qn)dl” > QM =0 (6.64)
since ¢,, < 0 for inflow )

The second example shown in Fig. 6.9b describes an application in modeling a
contaminant spreading process from a deposit associated with rising groundwater
in a phreatic aquifer (referred to as flooding problem). The contaminant BC (e.g.,
modeled as a 1st kind type) should be active only when the water table reaches the
contaminant deposit (wetting case), i.e., a constraint in form of 2™ is prescribed
representing the bottom of the contaminant deposit. More constraints are not
necessarily required in such a case.

"Note that a freshwater condition identical to zero (Cyp = 0) is inappropriate in the present
balance-based computation to differ between inward and outward directed advective (convective)
fluxes. It can fail because the directional magnitude of Q,,. according to (6.64) is no more
identifiable since Q,,, = 0 = Q,'{f:l = 0! Accordingly, instead of zero it is recommended to
use a numerically very small value for Cyp.
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6.4.3 Heat Transport BCC and SPCC

Max
Qnr<Q3m1(t) Qup =07 ()
else as long as h™™ <h<h™1;
6 Istkind T (t) f ming <h<hm“"1 Onyr=0 if h<h™n1 oF h>pmax]
D )
- Min
QnT>Q??}"‘ ® Qup=0i7" ()
else as long as h™™ <h<h™>1;
hlnlﬂl <h<hmdxl QHT=0 l:f‘ h<hlniﬂ1 or h>hmax1
Max
T<Tlan2(t) T=TlnﬂX2(t)
and else as long as A2 <h<hM2;
% ondkind gr(t)  if hmin2 <fp<pmaxy Quy =0 if h<h™"2 or h>hmx2
X 2ndkind qr (¢ i
— Min
T>Tmmz (t) T:T“?i"2 (t)
else as long as h™"2 <h<h™>2;
pmin2 <h<hmaxz Quy =0 if h<h™"2 or h>hm2
Max
Oy <Q£‘ 0] Onp=0n7 2 (1)
else as long as h™"3 <h<h™>3;
@ rdkind Te(t) if hymin3 <h<hm°"‘3 Oy =0 if h<h™"3 or h>h™>3
C
- Min
QnT>Q?1“}m © Qur=0ur (1)
else as long as h™"3 <h<h™¥3;
ming <h<hm“"3 Onp=0 if h<h™iN3 oF h>pmax3
Max
T<Tlan4(t) T=Tlnﬂx4(t)
else as long as h™" <h<h™4;
= . hming <h<hm°"‘4 Oy =0 if h<h™4 or h>pm4
L welltype Qru() if {0
T>Tmm4 ) T=T“?i"4 )
else as long as h™™ <p<p™4
hming <h<hm°"‘4 Quy =0 if h<h™n4 or h>hmax4
(6.65)
where
O, = —/andF (6.66)

represents the integral boundary balance heat flux summed-up at discrete (nodal)
points to which the corresponding boundary values are related (cf. Sect.8.19.2),
(..)m™ and (...)™" denote the prescribed maximum and minimum bounds,
respectively, for the corresponding type of BC and SPC, and T and % in (6.65)
are the temperature and the hydraulic head, respectively, computed on the boundary
or the singular point. The min-max bounds for the heat flux Q,, the temperature T
and the hydraulic head / can be again time-dependent functions.
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Fig. 6.10 Intermittent
pumping regime of a well

doublet system for heat O
extraction and re-injection ;s
(horizontal view)

Similar to the mass flux constraints in Sect. 6.4.2 the balance-based evaluation of
heat fluxes must be exclusively related to the advective (convective) part

0y ~ = [T au)ar (6.67)

to assure unambiguously directional balance quantities. An example of using BCC’s
and SPCC'’s for heat transport is schematized in Fig. 6.10 for a well doublet system
under an intermittent pumping regime. The wells extract water from a heated aquifer
in a time-given pumping operation Q,, > 0 for which the temperature at the wells
has to be determined and re-inject cooled water with given temperature 7 = Tp(¢)
as long as a recharging pumpage occurs Q,, < 0. Both wells comprise a temperature
BC of Ist kind with T = Tp(¢) and a minimum heat flux constraint of zero

oz = 0.

6.5 Special BC’s

6.5.1 Free (Phreatic) Surface BC

Free surface and phreatic surface are used as a synonym for porous-media problems
describing the upper bound of a saturated zone (see Fig.6.11 and definitions
introduced in Sects. 2.2.1 and 2.2.2). A free (phreatic) surface is a moving boundary
and subjected to two conditions: (1) a constant liquid pressure, usually taken to be
p = 0 as the atmospheric pressure, and (2) a given mass conservation of flux across
the macroscopic surface of discontinuity. The first pressure condition p = ¢ = 0
is equivalent to 1 = x; expressed by the hydraulic head A, cf. (3.260), where x;
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Fig. 6.11 Free (phreatic) - P
surface and seepage face, AB

saturated zone

X3 v
/_‘. 2 datum level

is the coordinate aligned to the gravity direction (e.g., vertical coordinate x3 = z).
The second condition is derived in Sect. 3.10.7 in form of (3.295). Both conditions
finally lead to the following formulation of a free (phreatic) surface:

oh
Gy = e — P (6.68)

l’l=)€j

where ¢, is the specific yield (3.296) and P is the rate of infiltration (groundwater
recharge). Note that for a pure (non-porous) liquid flow &, = 1. According
to (6.68) the two BC’s imposed on a free (phreatic) surface are to be satisfied
simultaneously, viz.,

* A prescribed flux rate (as an infiltration or, if equal to zero, then impervious) as
Neumann-type BC and

* The location corresponds to the hydraulic head, the water table (constant pressure
level) as Dirichlet-type BC

which leads to a nonlinear boundary-value problem because the location (shape) of
a free surface is initially unknown.

6.5.2 Seepage Face BC

It is possible that a free surface approaches a rigid boundary of known geometry
on which the flow can freely drain out the saturated porous-medium domain. Such a
boundary is called a seepage face as illustrated in Fig. 6.11 for the boundary segment
AB. The shape of the seepage face is known, except for the location of its end
point A, which represents the point, where the a priori unknown free surface is
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terminated. Accordingly, the extent of a seepage face is initially unknown and its
solution also leads to a nonlinear task.

Since a seepage face is exposed to the atmosphere, the condition p = 0 or
equivalently 4 = x; must be imposed. Additionally, a seepage face only allows
drainage, i.e., through it the liquid seeps out. This can be enforced by applying a
constraint condition, where it is required that the balanced flux Q,, (6.56) on the
boundary is only directed outward, i.e., Q,, < O (note that a negative Q,, means
outflow). Thus, a seepage face is formulated by the following two conditions:

]’lZXj
max;
O, < '=0

np

(6.69)

Mathematically, a seepage face corresponds to a Dirichlet-type BC with A =
hp = x; which is combined with a maximum flux constraint Q"' equal to zero
according to (6.55).

Alternatively, instead of a Dirichlet-type BC allowing a free drainage through
the boundary, the pressure condition of the seepage face can be prescribed by a
Cauchy-type BC, which provides a limited drainage. It reads

qn, = _®(x] —h)
On, <Oy =0

where the transfer coefficient @ mimics a flow ‘resistance’ to limit the outflow
through the seepage face (e.g., at a dam covering).

(6.70)

6.5.3 Surface Ponding BC

Surface ponding denotes a ‘surface reservoir’ BC to describe the storage of liquid
(water) at the ground surface as illustrated in Fig. 6.12. This occurs when the liquid’s
pressure at ground surface satisfies the condition p > 0 (or A > x; = h™m™),
Usually, ponding is only allowed up to a maximum head, i.e., & < h™*2  where
h™¥2(¢) is a given maximum limit. Furthermore, mass conservation at the ponding
boundary has to be imposed. Thus, the following formulation at a surface ponding
boundary is required:

oh
B e 6.71)
Ry

which is easily performed by a Neumann-type BC combined with min-max head
constraints according to (6.55). Note that the first condition of (6.71) represents the
interfacial mass conservation (3.295) for which the specific yield &, becomes unity
(assuming that ponding on the ground surface occurs in an ‘air layer’). Condition
(6.71) can be recognized a specific free surface condition (6.68) which permits
liquid to store on top of the ground.
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Fig. 6.12 Surface ponding
boundary ' l l l l l ' P

saturated zone

6.5.4 Integral BC
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ponding boundary

With respect to BC’s of 2nd and 3rd kind special BC’s are available for problems
with free (phreatic) surface(s). They are referred to as integral BC’s and are defined

as follows:
| X 2nd kind integral BC (integral Neumann type):

Flow:

_ ) 4qn (Z ) for 3D related to the initial stratigraphic structure
G (.’13, t) a { qh (Z ) for 2D horizontal-unconfined as depth-integrated flux
Mass:

q ( Z) qkc (l ) for 3D related to the initial stratigraphic structure

nkc L =3 -

ke et for 2D horizontal-unconfined as depth-integrated flux
C

Heat:

Anr (1) = {

qr (Z ) for 3D related to the initial stratigraphic structure

q T (Z ) for 2D horizontal-unconfined as depth-integrated flux

f Q) 3rd kind integral BC (integral Cauchy type):

Flow:

_ —@Dh (hc — ]’l) for 3D related to the initial stratigraphic structure
n (.’13, t) { _@h (hc — ]’l) for 2D horizontal-unconfined as depth-integrated flux
Mass:

—@kc(c kC — Ck) for 3D related to the initial stratigraphic structure

Dnic (:B’ Z) - % _q_jkC(CkC — Ck) for 2D horizontal-unconfined as depth-integrated flux
Heat:

_ —QDT (TC — T) for 3D related to the initial stratigraphic structure
nr (CB, t) a { _@T (TC — T) for 2D horizontal-unconfined as depth-integrated flux

(6.72)

(6.73)

Using these integral formulations of flux BC’s it is ensured that a given flux rate on
their boundary portions becomes independent of the actually discharging aquifer
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thickness and the location of free surface. This is unlike a default nonintegral
BC where a flux rate is integrated along the effective aquifer thickness, which
depends on the actual (computed) free-surface position, and accordingly, varying
(gross-) discharges may occur through such boundaries. As a result, it may happen
that the total discharge through such varying boundaries constantly decreases at a
descending water table. Consequently, such a flow region can inevitably fall dry
and possibly the problem can ‘collapse’ with a zero inflow. Integral BC’s prevent
such situations since the gross discharges are not influenced by the location of free
surface. The relation of fluxes, however, is distinguished in 2D and 3D applications
due to reasons of implementation:

1. For 2D problems the fluxes have to be assigned as already depth-integrated.
The dimension of these fluxes is then L2T !, similar to a horizontal confined
condition.

2. For 3D problems the aquifer system is compiled as an initial stratigraphic
layer structure. BC’s of the integral type are related to this initial structure
and accordingly, the integrated gross discharges remain independent of the
free-surface location during the computation with the BASD technique (see
Sect.9.5.3). Notice, the dimension of these boundary fluxes is LT~ (not
L2T™1).

Integral boundary flux conditions have only a distinct meaning for problems with
free (movable) surface(s). If no free surfaces exist, they are totally equivalent to
the nonintegral BC’s of 2nd and 3rd kind, in accordance with (6.6), (6.19), (6.20),
(6.37), (6.38) and (6.7), (6.22), (6.23), (6.40), (6.41), respectively.

6.5.5 Gradient-Type BC

Applied to unsaturated problems a Neumann flux-type BC (6.6) in the form
— [k, OK fo- (Vh + )(e)] -n=q (6.74)

can be sometimes inappropriate, for instance if modeling a drainage boundary in the
vadose zone with a bottom outflow BC for situations where the water table is located
far below the domain of interest (Fig. 6.13). Here, a gradient-type BC is often to be
preferred [362] written as

—{K fu-[V¥ + (1 + pel} -n=gq) (6.75)

On such a boundary it can be assumed that the pressure gradient diminishes Vi x 0
and (6.75) can be practically applied in the following form:

—{K fu [+ pel} -n=qy (6.76)
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Fig. 6.13 Gradient-type BC
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Once (1 + y)e - n # 0 the boundary freely drains the flow domain due to the
influence of gravity.

6.5.6 Multilayer Well BC

The prescription of well-type BC in 3D heterogeneous aquifers under confined or
unconfined conditions requires a more general formulation to model the effects of
well bore storage and the vertical gradients of variables (hydraulic head, concentra-
tions, temperature) along the well bore and well screens in a more realistic way. The
standard well-type SPC’s in form of (6.15), (6.32) and (6.50) are only applicable
to singular points in the domain. Those points are per se not linked among each
other and could not suitably present a well bore and well screen, where a relatively
uniform distribution of a priori unknown head (or concentration and temperature)
results from the high conductivity of the conduit that transmits flow, species mass
and energy between different locations. Conventionally, iterative procedures (e.g.,
[384]) are used to adapt a uniform distribution of variables (e.g., hydraulic head
h) at a series of points forming a well or well screen when mimicked via standard
well-type SPC’s. But, this technique is cumbersome and rather inefficient.

In contrast, the present multilayer well BC is a noniterative, straightforward,
efficient and accurate method for handling well bore conditions in 3D aquifer
systems which can consist of different layers or heterogeneous formations. Even
in a 3D homogeneous aquifer, where a partially penetrating pumping well has to be
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Fig. 6.14 Aquifer system
containing a multilayer
pumping well

Q,, multilayer pumping well

well screen .-~
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imposed, the multilayer well BC is superior because the depth-variable inflow to the
well is naturally accommodated.

The multilayer well BC involves a method, which superimposes high-
conductivity 1D tubular discrete features (see Chap. 4) representing the well bore
and well screens (Fig. 6.14). It was firstly introduced by Sudicky et al. [502] for
aquifer flow problems and extended to contaminant transport by Lacombe et al.
[328]. The use of high-conductivity 1D discrete features to represent a well ensures
a uniform head (or concentration and temperature) along the well bore and well
screens, with slight vertical gradients in the well toward the point where the
well discharges. Storage in the well casing can also be accommodated by the
superposition of the 1D discreate features. This effect can be significant at early
times due to a rapid withdrawal of liquid from these features.

Assuming that the flow in the well along its axis is laminar and that the effect of
storage in the well casing can be uniformly distributed along the length of the well
bore, the 1D discrete feature equation describing transient liquid flow along the axis
of the well bore is given according to Table 4.5, case TP, pure liquid:

JtRz(LLW + pogy)a—il —nR*K,,— [f,L( + )(e)] =—0u0(s—sy) (6.77)

in which

R2
K, = =P8 (6.78)
8o

by using the Hagen-Poiseuille law (4.51), where Q,, is the total pumping rate of
the well, s is the arc length along the well bore (for vertical boreholes s is identical
to vertical coordinate x3 = gz), s, is the location of the point that is assigned to
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discharge (or recharge) the well bore, 4 is the hydraulic head in the well, L, is
the total length of the liquid-filled well bore, R is the radius of the well casing
and screen(s), assuming to be equal, §() is the Dirac delta function in 1D, y is
the compressibility of liquid, f,, is the viscosity relation function of liquid (3.264),
x is the buoyancy coefficient (3.265), e is gravitational unit vector (3.261), g is
the gravitational acceleration, py is the reference density of liquid and pg is the
reference viscosity of liquid. Equation (6.77) is written for a well in which the casing
is open (unconfined) to the atmosphere so that the storage in the well occurs due to
a change in the water table and effects by compressibility of liquid.

Analogously, based on the derivations done in Chap.4 and summarized in
Tables 4.6 and 4.7, 1D discrete feature equations of the well bore can be formulated
for species mass transport (Table 4.6, case TP, pure liquid)

BCk BCk ad aCk

R?—= R*v— — 7R>—| (D¢ + Doymech) —

RROSE RS = R (D D) 1
+7R*% Cr = —(Crw — Cr) Q18(s — 51) (6.79)

using Taylor’s relation (4.69) of mechanical dispersion in a liquid-filled tube under
laminar conditions as

R2y?

— 6.80
48 Dy, ( )

D(k)mech =

where Cy is the concentration of species k in the well, v is the velocity of liquid
in the well bore, Dy, is the free-solution diffusion coefficient of species k, ¥ is the
decay rate of species k and Cy,, is the prescribed concentration of species k at well
point s,

and for heat transport (Table 4.7, case TP, pure liquid)

T T 9 aT
2 i 2 o 27 il
TRpe - + wRpev - — R as[(A + pCDrmech) 8s]
= —(T = T)pcQn8(s — sv) (6.81)

using solute-analogous Taylor’s relation (4.69) for thermal mechanical dispersion in
a liquid-filled tube under laminar conditions according to
R*v%pc
48A

Dmech = (682)

where T is the temperature in the well, p is the density of liquid, ¢ is the specific
heat capacity of liquid, A is the coefficient of thermal conductivity of liquid and T,
is the prescribed temperature at well point s,,.

The governing equations (6.77), (6.79) and (6.81) for flow, species mass transport
and heat transport, respectively, are formulated for a liquid-filled well bore tube.
However, in cases, where the borehole is filled (or partially filled) with aquifer
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sediments (e.g., abandoned borehole), the well bore equations could be applied to
porous-medium flow and transport conditions, which can be taken from Tables 4.5—
4.7. Then, the K,, of (6.78) has to be replaced by Darcy’s hydraulic conductivity
and Dpech of (6.80) and (6.82) by the Scheidegger-Bear dispersion relation (4.68).
More complex situations occur in heat transport for borehole heat exchanger (BHE),
where different individual pipes and grout components are placed into a cylindrical
borehole. The concept of multilayer BC must then be extended as further described
in Sect. 13.5.

6.5.7 Outflow BC (OBC)

Often in mass and heat transport the liquid flows through (i.e., both into and out
of) the computational domain §2 and advects transport quantities (concentration
Ci, temperature T'). This situation is necessitated by the fact that the true physical
domain of interest is much too large to even be considered in a numerical simulation.
Particularly, we have to consider outflow conditions in which the computational
domain is truncated and suited BC’s have to be necessarily applied at these ‘artifical
boundaries’ of the truncated domain.

An outflow boundary of a truncated domain is often delicate to handle because
the advective (convective) and dispersive quantities cannot be specified a priori. The
goal of an outflow BC (OBC) is then to allow the transport quantities to leave freely
with a minimal influence on the upstream solution. In practice, outflow boundaries
are often subject to the assumption that the gradient of the transport quantity is zero
(i.e., a common natural BC of Neumann type with VC; = 0 and/or VT = 0), viz.,

—(Di-VCr) mn =0

—(A-VT)-n=0 (6.83)
with the consequence that the boundary is impermeable to the normal diffusive
(dispersive/conductive) fluxes. The question arises how such a common natural BC
does influence the solution upstream on the effluent boundary. To enlighten the
situation let us consider a domain, which becomes truncated by a transition zone
of infinitesimal thickness § — 0 representing an outflow boundary I} as shown in
Fig. 6.15 for heat transport. Providing the OBC in form of the transition zone has no
conserved property, heat balance requires that the temperature T varies continuously
and should not be changed by the presence of the boundary compared to the
untruncated domain. Apparently, the boundary permeable to both the advective
(convective) part pcT q and the conductive (dispersive) part —A - VT of the total
heat flux j; permits upgradient heat movement by conduction. However, if the
temperature gradient at the boundary is forced to zero, the conductive component
of the heat flux is dropped at the boundary and the temperature profile differs
over a certain distance upstream from the boundary as evidenced in Fig. 6.15. The
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A B

Fig. 6.15 Finite transition zone representation of outflow boundary "} of domain £2: (a) continu-

ity of total heat flux j; = pcTq — A - VT within the transition zone of infinitesimal thickness §,

where inside the temperature 7 = T (¢, t) may vary continuously, (b) profile showing the behavior
of temperature 7 when it varies continuously (1) and when temperature gradient is forced to zero
(2) (Modified from [103])

measure of this upstreaming alteration in the temperature profile is controlled by
the ratio between advection (convection) and conduction (dispersion). If advection
dominates this alteration effect is usually small. On the other hand, if heat transport
is dominated by thermal conduction, which possesses upstream conduction at the
outflow boundary to a greater extent, a zero-gradient condition could not be a
good choice. The situation can be mitigated if we can choose a more appropriate
location of the outflow boundary far enough, where the gradients are small or
negligible during the simulation. Moreover, there are applications, where the zero-
gradient condition is useful. For instance, the outlet into a big reservoir, where the
temperature is perfectly mixed out.

We have to ask what is a better OBC than the common natural BC of Neumann
type in form of (6.83). Alternative formulations have been analyzed by Gresho and
Sani [209] in a numerical context. A promising OBC treatment is proposed by
Frind [175] and Cornaton et al. [103] termed as free exit BC and implicit Neumann
condition, respectively. It consists in the following: Instead of explicitly prescribing
the Neumann-type BC’s for mass and heat transport written in the convective form

Inie = —(Dk . VCk) n
Gt = ~(A-VT)n ©59

and in the divergence form

e = Ckgni — (D - VCi) - n (6.85)
qnr = /OC(T - TO)qnh - (A . VT) 'n

the boundary terms of (6.84) and (6.85) are treated as unknown quantities and

put back onto the LHS for the numerical solution. In this way, no assumptions

must be made anymore for the gradients of the concentration or temperature. This
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form of OBC ensures that mass and heat fluxes become freely permeable at the
boundary both to the advective (convective) and dispersive (conductive) components
of transport. For the divergence forms of transport the OBC needs the knowledge
of the advective flux g, = g - n at the outflow boundary. In general, g, is a
prior unknown and must be determined from the flow equation via a postprocessing
balance analysis. The numerical treatment of OBC’s is described in Sects. 8.5.3
and 8.9.
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