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Abstract. A high-performance SYMV kernel is implemented on Fermi-
core GPUs using an atomic-operation based algorithm. The algorithm
is effective for the memory bandwidth and reduced memory usage. On
a Tesla C2050, sustained double-precision and single-precision perfor-
mances of approximately 43 GFLOPS and 78 GFLOPS, respectively,
were achieved. The proposed SYMV kernel also performs on a GeForce
GTX580 with 72 GFLOPS and 128 GFLOPS in the double-precision and
single-precision modes, respectively. The proposed SYMV kernel out-
performs major CUDA BLAS kernels, CUBLAS, MAGMABLAS, and
CULA-BLAS. This performance improvement has a significant impact
when the SYMV kernel is plugged into user codes.

1 Introduction

In the development of our eigensolver [1], it was very difficult to speed up House-
holder tridiagonalization. Detailed cost analysis revealed the cost of the kernel
SYMV to be extremely high, and cost reduction is a very important problem.
With emerging GPGPU, costly kernels such as SYMV and SYR2K in House-
holder tridiagonalization can be accelerated. Nath et al. [2] reported the opti-
mization of the SYMV kernel in their MAGMABLAS library, which had faster
performance than the CUBLAS library. Consequently, their Householder tridi-
agonalization routine, magma dsytrd, performs very well. In the present paper,
we present a new implementation of the SYMV kernel in order to realize a new
eigenvalue solver, and we demonstrate the performance of this kernel on a sin-
gle Fermi core GPU, such as an NVIDIA Tesla C2050 or an NVIDIA GeForce
GTX580.

2 SYMV Kernel

The SYMV is a kernel function for a symmetric-matrix vector product and is
categorized in Level 2 BLAS. Since the cost of operation and the amount of data
in SYMV are each O(n2), performance bounds are based on memory bandwidth.
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It is difficult to achieve sufficient performance on a general CPU, on which the
memory bandwidth is limited to at most 30 or 40 [GB/s]. Therefore, better
performance is expected to contribute to a wider global memory bandwidth of
the GPU (140 [GB/s] on a GTX280, for example). Compared with other Level
2 kernels (GEMV, for example), the symmetry of the matrix helps to reduce
data accesses between memory and processor. In other words, improving the
algorithm is expected to provide higher performance.

2.1 SYMV Algorithms

Taking symmetry into account, the Fortran code can be written as follows:

w(1:n)=0

do i=1,n

y0=0

do j=1,i-1

y0 =y0 +a(j,i)*x(j)

w(j)=w(j)+a(j,i)*x(i)

enddo

y(i)=y0+a(i,i)*x(i)

enddo

y(1:n)=y(1:n)+w(1:n)

The vector w, which can be replaced by y, is introduced in order to clarify
the CUDA algorithm. Based on the source lines shown above, the framework
of the SYMV algorithm specified with the ‘U’ option for a CUDA environment
is presented in Figure 1. The algorithm is divided primarily into three kernels:
pre-processing (corresponding to w(1:n)=0)), post-processing (corresponding to
y(1:n)+=w(1:n)), and the main process. The main kernel consists of three parts,
calculation on non-diagonal blocks, calculation on a diagonal block, and sumup
of the registers on each thread. In Figure 1, the outer-most loop represented
by counter i is expanded UX times, and the thread-block is organized into a
one-dimensional array of threads, where BLOCK SIZE is the number of threads
issued.

Since Figure 2 shows the data access pattern for a specific thread-block rep-
resented in block.id, data updating of vector w is performed by multiple thread-
blocks. In order to secure updating of vector w, we need an exclusive control
mechanism. There are several variations of implementations in which vector w
is multiplexed and exclusive (or mutex) control is fully obligated. In the remain-
der of this section, we would like to explain three algorithms with regard to an
exclusive control mechanism on the SYMV kernel.

2.2 Atomic Algorithm

The algorithm shown in Figure 3 (top) uses atomic operations or a mutex mech-
anism, and so is referred to as the Atomic algorithm. Since CUDA 4.x does not
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<01> // variable n refers to the dimension of the matrix A.
<02> // variables y{∗} and w{0} refer to registers.
<03> // array s is on shared memory.
<04> // assume blockDim>=UX.
<05> // sumup adds up the value of the specified register in a block.
<06> kernel kernel preprocess
<07> set j := thread.id + block.id ∗ block.Dim.
<08> if j < n then
<09> w[j] := 0.
<10> endif
<11> endkernel
<12> kernel kernel main
<13> define j ≡ j̃ + thread.id.
<14> foreach (thread, block) do
<15> set i:=UX*block.id.
<16> y{0} := . . . := y{UX−1} := 0.
<17> // part one / sweep along the column block
<18> CORE of either the Algorithm Atomic, Blocked, or Ticket in Fig. 3
is called here.
<19> // part two / calculation on a diagonal part
<20> for j̃:=thread.id to UX-1 do
<21> s(thread.id, j) := s(j, thread.id) := a(i+thread.id, i+ j).
<22> endfor
<23> sync threads in a block
<24> if thread.id<UX then
<25> y{k} += s(thread.id, k) ∗ x[i+ k] for k ∈ [0,UX).
<26> endif
<27> // part three
<28> s(k, thread.id) := sumup(y{k}) for k ∈ [0,UX).
<29> if thread.id<UX then
<30> y[i+ thread.id] += s(thread.id, thread.id).
<31> endif
<32> endfor
<33> endkernel
<34> kernel kernel postprocess
<35> set j := thread.id + block.id ∗ block.Dim.
<36> if j < n then
<37> y[j] += w[j], or y[j] +=

∑
w(j, :).

<38> endif
<39> endkernel

Fig. 1. Framework of the SYMV Algorithm
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Fig. 2. Schematic diagram of the data access pattern on the SYMV kernel

support atomicAdd for double precision, critical section controls (mutex lock
and unlock) are implemented using atomicCAS and atomicExch functions.

In our implementation, the atomic functions are issued on the master threads
to avoid incurring the serialization of all working threads. Thus, loss of thread
serialization can be minimized. Following the CUDA thread model, it is reason-
able to secure the update of vector w, even if the operations to be in the Atomic
algorithm are relatively small. Consequently, we expect that the total cost on
exclusive controls is reduced. This lock-and-unlock mechanism is a general model
and can be applied to other BLAS kernel implementations, such as GEMV and
spMV, to reduce memory usage on working buffers.

2.3 Blocked Algorithm

Figure 3 (middle) shows the variation for exclusive control of the Atomic algo-
rithm. This algorithm adds a second index to the variable w and requires no
exclusive control. Thus, data access to w is implicitly blocked, and we refer to
this algorithm as the Blocked algorithm. This is also known as the ‘scatter and
gather technique’. From the viewpoint of the multiplicity of vector w, this is
similar to the algorithm adopted in MAGMABLAS when UX=1.

2.4 Ticket Algorithm

On the other hand, we can generate another intermediate algorithm between the
Atomic algorithm and the Blocked algorithm. In Figure 3 (bottom), vector w
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// CORE of the Atomic Algorithm
for j̃:=0 to i− 1− thread.id step BLOCK SIZE do

y{k} += a(j, i+ k) ∗ x[j] for k ∈ [0,UX).
w{0} :=

∑
k∈[0,UX)

a(j, i+ k) ∗ x[i+ k].

// equivalent to atomic (w[j] += w{0}) in the CUDA semantics.
mutex lock @ the masterthread and syncthreads.
w[j] += w{0}.
syncthreads and mutex unlock @ the masterthread.

endfor

// CORE of the Blocked Algorithm
for j̃:=0 to i− 1− thread.id step BLOCK SIZE do

y{k} += a(j, i+ k) ∗ x[j] for k ∈ [0,UX).
w{0} :=

∑
k∈[0,UX)

a(j, i+ k) ∗ x[i+ k].

w(j, block.id) += w{0}.
endfor

// CORE of the Ticket Algorithm
ticket id = get ticket id( ).
for j̃:=0 to i− 1− thread.id step BLOCK SIZE do

y{k} += a(j, i+ k) ∗ x[j] for k ∈ [0,UX).
w{0} :=

∑
k∈[0,UX)

a(j, i+ k) ∗ x[i+ k].

w(j, ticket id) += w{0}.
endfor

// ‘int Ticket id master’ is initialized at the preprocessing step.
device int function get ticket id( )

shared int shred buff;
if is master thread then

shared buff := atomicInc( &Tickect id master, gridDim.x );
endif
syncthreads; block id := mod(shared buff, M); syncthreads
return block id

end function

Fig. 3. Core Algorithms (Top: Atomic, Middle: Blocked, Bottom: Ticket)



64 T. Imamura, S. Yamada, and M. Machida

is multiplexed M times (M should be a multiple of the number of SM’s). This
limits mutex control among activated thread-blocks and consequently reduces
the number of atomic operations. In this case, since exclusive control is open
not only for a single thread-block but also for multiple thread-blocks, this algo-
rithm is similar to a seat reservation model, such as for reserving train tickets.
Therefore, this algorithm is referred to as the Ticket algorithm.

2.5 Another Kernel Implementation (L+U Algorithm)

There is another implementation of SYMV. A symmetric matrix A is represented
by the sum of upper and lower triangle matrices by taking into account the
symmetry of the matrix

A = L+D + U = L̃(= L+D) + U(= Lt).

Using the decomposition, SYMV can be calculated by Ax = L̃x+ Ux. We refer
to the above expression as the L+U algorithm, which can be easily implemented
using GEMV kernels modified for upper and lower triangle matrices. In the
present paper, the GEMV kernel codes presented in [3] are modified and used for
the SYMV kernel. Since this algorithm requires two kernels, the upper triangular
part (Ux) and the lower triangular part (L̃x), the overhead to start up GPU
kernels is quite small. Therefore, the L+U algorithm offers better performance
when the matrix dimension is small.

2.6 Pointer Redirection Optimization

Pointer redirection [2] is an optimization technique for CUDA programming that
produces coherent running threads on a specific loop. When all of the threads
in a thread-block proceed with the loop and a number of these threads access
out of bound on array accesses, invalid pointers are modified in order to access
proper addresses. In the present case, invalid accesses to matrix a and vector
x are adjusted to access their top element. In the case of vector w, an invalid
pointer is redirected to a dummy variable on global memory in order to protect
w from an invalid overwrite.

3 Experiment Results

The primary experiments were conducted on an NVIDIA Tesla C2050 GPU and
an NVIDIA GeForce GTX580, and we use an NVIDIA GeForce GTX280 for a
preliminary test. Their specifications and software environment are summarized
in Table 1. All of the performance tests include only kernel execution without
host-device data transfer. In other words, CUDA BLAS kernels operate in the
non-thunking mode. The performance parameters (BLOCK SIZE, UX) are cho-
sen to be (256, 16) and (128, 26) for the DP and SP modes, respectively.
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Table 1. Hardware and software specifications of GPU’s used in the present study
(∗Theoretical peak performance is referred from [5])

Tesla C2050 GTX580 GTX280

The core architecture Fermi Fermi GT200
The number of CUDA cores 448 512 240
Processor core clock [GHz] 1.15 1.544 1.296

Peak performance [DP/SP GFLOPS]∗ 515/1030 393/1573 78/933
Memory capacity [GB] 3 1.5 1

Memory bandwidth [GB/s] 144 192.4 141.7

Host CPU Core i7-860 Core i7-2600K Phenom 9750
Frequency [GHz] 2.8 3.4 2.4

CUDA Compute Capability 2.0 2.0 1.3
CUDA version 4.0 4.1 4.1

NVIDIA Linux driver 275.09.07 295.71 295.71
GNU gcc version 4.4.5 4.5.3 4.5.3

3.1 Preliminary Performance Prediction

We first theoretically discuss the performance bound for the SYMV. As a re-
sult of symmetry, memory access to an element of matrix A corresponds to two
multiply-add operations. Thus, the memory requirement per DP operation is
computed by ‘BF’ := sizeof(element)[Byte]/4[flop] = 2 [Byte/flop]. Based on
the benchmark reports, e.g., [4], the sustained memory bandwidth of a C2050
with ECC switched on is calculated to be approximately 99 [GB/s]. The opti-
mal SYMV performance is 99/BF [GFLOPS]. Therefore, the SYMV kernel is
bounded by 49.5 and 99 [GFLOPS] in cases of the DP and SP modes,
respectively.

3.2 Comparison of Four Algorithms

The Atomic, Ticket, and Blocked algorithms have no difference in the core com-
putation part, except for exclusive operation and sumup of vector w. Table 2
summarizes the differences in parts 1 and 3 of these algorithms. Table 2 indi-
cates that the Atomic algorithm has a significant advantage with respect to the
cost of w, the computational cost, and memory usage. In contrast, the Atomic
algorithm requires far more atomic operations than other algorithms.

Here, we should have two scenarios according to the cost of the atomic oper-
ations. If the cost of atomic operations is too high, we expect Atomic > Ticket
< Blocked. Thus, the Ticket algorithm has an advantage in such cases. On the
other hand, if the cost of atomic operations is small, we expect Atomic < Ticket
< Blocked, which leads us to select the Atomic algorithm.

Table 3 shows the elapsed time and the overhead cost for the above three
algorithms as well as the L+U algorithm on an NVIDIA Tesla C2050. Tables
2 and 3 suggest that the overhead cost is proportional to the memory usage of
w. This tendency was reported by Nath et al. [2], and the results of the present
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Table 2. Complexity analysis for three algorithms (L ≡ �N/BLOCK SIZE�)

words of
extra data

cost of
sumup w

max(atomic ops.
per thread-block)

Atomic N + L N 2L
Ticket NM +M NM 2
Blocked N�N/UX� N�N/UX� 0

Table 3. Analysis of SYMV calculation for four algorithms in the DP mode on a Tesla
C2050 (top: total time [s], bottom: overhead time [s])

matrix dimension
1,000 2,000 4,000 6,000 8,000

Atomic
.252E-3 .395E-3 .968E-3 .189E-2 .319E-2
.118E-3 .126E-3 .127E-3 .119E-3 .124E-3

Ticket
.429E-3 .611E-3 .127E-2 .234E-2 .380E-2
.306E-3 .343E-3 .383E-3 .407E-3 .450E-3

Blocked
.426E-3 .632E-3 .160E-2 .294E-2 .492E-2
.266E-3 .376E-3 .694E-3 .103E-2 .159E-2

L+U .139E-3 .406E-3 .147E-2 .321E-2 .566E-2

Table 4. Analysis of SYMV calculation for four algorithms in the DP mode on a
GeForce GTX280 (top: total time [s], bottom: overhead time [s])

matrix dimension
1,000 2,000 4,000 6,000 8,000

Atomic
.275E-2 .514E-2 .914E-2 .110E-1 .149E-1
.387E-4 .364E-4 .399E-4 .405E-4 .400E-4

Ticket
.398E-3 .579E-3 .119E-2 .211E-2 .347E-2
.236E-3 .264E-3 .305E-3 .360E-3 .415E-3

Blocked
.346E-3 .556E-3 .142E-2 .270E-2 .454E-2
.236E-3 .289E-3 .503E-3 .855E-2 .139E-2

L+U .167E-3 .470E-3 .163E-2 .361E-2 .624E-2

study are similar. Furthermore, the cost of atomic operations is not significant
compared to the total computational time. Table 4 also shows the elapsed time
and the overhead cost for an NVIDIA GeForce GTX280, which is prior to the
Fermi GPU core architecture. Since the costs of the Ticket algorithm and the
Blocked algorithm on a GeForce GTX280 are almost equivalent to those on
a Tesla C2050, the large performance difference between a Tesla C2050 and a
GeForce GTX280 stems from the cost of the atomic operations. A technical
paper by NVIDIA reported that a Fermi core adopts fast and greatly improved
atomic memory operations, compared to GT200 cores [6], and that the cost
of atomic operations on a GTX280 is quite high. The Ticket algorithm is a
better algorithm in such a case. Thus, the Atomic algorithm has better overall
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performance than the Ticket and Blocked algorithms in the case of the current
Fermi core architecture. However, if the cost imbalance between calculation and
atomic operations is severe in a future architecture, the selected algorithm will
differ.

Furthermore, Tables 3 and 4 suggest that the L+U algorithm performs with
a tiny overhead. In fact, the L+U algorithm has better performance when the
matrix dimension is smaller (N = 1, 000). Therefore, on a Tesla C2050, we switch
the algorithm in the DP mode, using the L+U algorithm when N < 2, 020 and
the Atomic algorithm when N ≥ 2, 020. In the case of the SP mode, the border
between the L+U algorithm and the Atomic algorithm is N = 2, 990.

3.3 Performance Test

In the present paper, we measured the performance of SYMV kernels for the
present implementation (hybrid of the Atomic and L+U algorithms) and three
major BLAS implementations: CUBLAS [7], MAGMABLAS [8] (run in the L-
mode), and BLAS in CULA [9]. Here, the performance is calculated by 2N2/
‘elapsed time’.

Tesla C2050. The performance on a single NVIDIA Tesla C2050, which is a
high-end Fermi-core GPU card, is presented in Figure 4. The release versions of
the CUDA BLAS’s are as follows: CUBLAS R4.0, MAGMABLAS R1.2.1 (run in
the L-mode), and CULABLAS R12. In [2], the performance on the SP mode for
MAGMABLAS on a C2050 exceeds 80 GFLOPS; however, we could not obtain
that performance in the present C2050 environment. In order to compare the
throughput from the FLOPS rates fairly, the results on a C2050 are based on
the performance measurement in the present paper.

In the DP and SP modes, the performance of the proposed SYMV kernel
reaches 43 and 78 GFLOPS, respectively, when the matrix dimension is 18,000.
These values represent speed-ups of approximately 2.5 times and 4.0 times, re-
spectively, when CUBLAS is set as a baseline. Furthermore, performances of
86% and 78% of the upper bound, respectively, are achieved.

GeForce GTX580. The performance on a single NVIDIA GeForce GTX580,
which is also a Fermi-core GPU, is presented in Figure 5. The release versions of
the CUDA BLAS’s are as follows: CUBLAS R4.1, MAGMABLAS R1.2.1 (run in
the L-mode), and CULABLAS R14. In the DP and SP modes, the performance of
the proposed SYMV kernel achieves 71 and 128 GFLOPS, respectively, when the
matrix dimension is 12,000. These values represent speed-ups of approximately
2.8 times and 3.3 times, respectively, in comparison to CUBLAS.

3.4 Discussion and Related Research

Compared with other implementations of BLAS, small fluctuations in the SYMV
appear upon varying the matrix dimension, whereas the performance of the
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Fig. 4. Performance results on a Tesla C2050 in non-thunking mode (Top: DSYMV =
DP mode, bottom: SSYMV = SP mode)
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present implementation is the most stable. CUBLAS exhibits performance with
a sawtooth profile, and CULABLAS behaves irregularly for multiples of 32 or
64 dimensions, which is also true for MAGMABLAS on a C2050 in the SP
mode. The proposed SYMV kernel also has a small fluctuation, especially in the
SP mode. Since the period is observed to be equivalent to the size of UX, we
recognize that load imbalance among thread-blocks affects this phenomena. The
fluctuation reaches approximately 3% and is negligible.

Investigating the difference in the performance profile by reading the source
code of MAGMABLAS reveals that MAGMABLAS is realized by the GEMV-
N-based algorithm (access through the same row direction). On the other hand,
the GEMV-T algorithm (access through the same column direction) used in
the present study is the enhanced version presented in [3]. Their typical access
patters are shown in Figure 6. This also causes a difference in performance
between MAGMABLAS and the proposed SYMV kernel.

GLAS by Sørensen [10,11] is another CUDA BLAS implementation that uses
atomic operations. GLAS adopts atomic operations not in a SYMV kernel but
rather in a GEMV-N kernel at the current release, wherein atomicAdd or equiva-
lent functionality is emulated. GLAS’s GEMV implementation on a Tesla C2050
is optimized by an automatic tuning technique and achieved approximately 90%
of the memory bandwidth (performance upper bound) in the SP mode.

For the Tesla C2050 and the GeForce GTX580, the implementation of the
proposed SYMV kernel is sufficiently optimized. We conclude that the proposed
SYMV algorithm is, overall, the most stable and fastest. The Atomic algorithm
used in the current implementation is a powerful technique in CUDA GPGPU
programming for the Fermi generation GPU architecture.

4 Conclusion

We have presented an optimal implementation of the GPU kernel for symmetric-
matrix vector multiplication, referred to as the SYMV kernel. The proposed
SYMV kernel uses the Atomic algorithm, which requires very little extra working
memory. In the DP and SP modes, the proposed SYMV kernel performs at 43 and
78 GFLOPS on a Tesla C2050, respectively. The implementation of the SYMV
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kernel is herein demonstrated to provide remarkable memory consumption and
performance. Since a generic processor performs at from 2 to 5 GFLOPS on
DSYMV, the impact of the proposed SYMV kernel is enormous.

In the future, we would like to examine the proposed SYMV kernel on Kepler,
which is a new GPU core architecture. Furthermore, we would like to apply the
SYMV kernel to a previously proposed eigensolver [1].
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