
M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 435–450, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Automatic Tuning of Parallel Multigrid Solvers
Using OpenMP/MPI Hybrid Parallel Programming

Models

Kengo Nakajima

Information Technology Center, The University of Tokyo, 2-11-16 Yayoi,
Bunko-ku, Tokyo 113-8658, Japan
nakajima@cc.u-tokyo.ac.jp

Abstract. The multigrid method with OpenMP/MPI hybrid parallel
programming model is expected to play an important role in large-scale
scientific computing on post-peta/exa-scale supercomputer systems. Because
the multigrid method includes various choices of parameters, selecting the
optimum combination of these is a critical issue. In the present work, we focus
on the selection of single-threading or multi-threading in the procedures of
parallel multigrid solvers using OpenMP/MPI parallel hybrid programming
models. We propose a simple empirical method for automatic tuning (AT) of
related parameters. The performance of the proposed method is evaluated on
the T2K Open Supercomputer (T2K/Tokyo), the Cray XE6, and the Fujitsu
FX10 using up to 8,192 cores. The proposed method for AT is effective, and the
automatically tuned code provides twice the performance of the original one.

Keywords: Multigrid, Hybrid Parallel Programming Model, Automatic Tuning.

1 Introduction

To achieve minimal parallelization overheads on multi-core clusters, a multi-level
hybrid parallel programming model is often employed. In this method, coarse-grained
parallelism is achieved through domain decomposition by message passing among
nodes, and fine-grained parallelism is obtained via loop-level parallelism inside each
node by using compiler-based thread parallelization techniques such as OpenMP.
Another often used programming model is the single-level flat MPI model, in which
separate single-threaded MPI processes are executed on each core.

In previous works [1,2], OpenMP/MPI hybrid parallel programming models were
implemented in 3D finite-volume simulation code for groundwater flow problems
through heterogeneous porous media using parallel iterative solvers with multigrid
preconditioning. The performance and the robustness of the developed code was
evaluated on the T2K Open Supercomputer at the University of Tokyo (T2K/Tokyo)
[3,4] using up to 8,192 cores for both weak and strong scaling computations.
Furthermore, a new strategy for solving equations at the coarsest level (coarse grid
solver) was proposed and evaluated in [2], and the new coarse grid solver improved

436 K. Nakajima

the scalability of the multigrid solver dramatically. The OpenMP/MPI hybrid parallel
programming model, in which one MPI process was applied to a single quad-core
socket of the T2K/Tokyo with four OpenMP threads (HB 4×4) [1,2], demonstrated
the best performance and robustness for large-scale ill-conditioned problems by
appropriate optimization and coarse grid solvers. In [5], performance of parallel
programming models for algebraic multigrid solvers in Hypre Library [6] have been
evaluated on various multicore HPC platforms with more than 105 cores, such as IBM
BlueGene/P, and Cray XT5. The MultiCore SUPport library (MCSup) [5] provides a
framework, in which the optimization processes described in [1,2] are applied
automatically. Results show that threads of an MPI process should always be kept on
the same socket for optimum performance to achieve both memory locality and to
minimize OS overhead for cc-NUMA architecture. This corresponds to HB 4×4
programming model in [1,2].

The concepts of OpenMP/MPI hybrid parallel programming models can be easily
extended and applied to supercomputers based on heterogeneous computing nodes
with accelerators/co-processors, such as GPUs and/or many-core processors by Intel
Many Integrated Core Architecture. Multigrid is a scalable method for solving linear
equations and for preconditioning Krylov iterative linear solvers, and it is especially
suitable for large-scale problems. The multigrid method is expected to be one of the
powerful tools on post-peta/exa-scale systems. It is well known that the multigrid
method includes various choices of parameters. Because each of these strongly affects
the accuracy, the robustness, and the performance of multigrid procedures, selection
of the optimum combination of these is very critical. In OpenMP/MPI hybrid parallel
programming models, the number of threads strongly affects the performance of both
the computation and the communications in multigrid procedures [1].

In the present work, we focus on the selection of single-threading or multi-
threading in procedures of parallel multigrid solvers using OpenMP/MPI hybrid
parallel programming models. We propose a new method of automatic tuning (AT) of
the parameters. The proposed method implemented in the code in [2] is evaluated by
using up to 8,192 cores of the T2K/Tokyo, the Cray XE6 [7], and the Fujitsu FX10
[3]. The rest of this paper is organized as follows. In Section 2, an overview of the
target hardware is provided. In Section 3, we outline the target application and give a
summary of the results in [1] and [2]. In Section 4, details of our new method for
automatic tuning and the results of the computations are described, while some final
remarks are offered in Sections 5.

2 Hardware Environment

Table 1 and Fig. 1 summarize features of the architectures of the three target systems
used in the present work. The T2K/Tokyo was developed by Hitachi under the “T2K
Open Supercomputer Alliance” [4]. It is a combined cluster system with 952 nodes,
15,232 cores and 31 TB memory. The total peak performance is 140 TFLOPS. Each
node includes four sockets of AMD quad-core Opteron (Barcelona) processors (2.3
GHz), as shown in Fig. 1(a). Each socket is connected through HyperTransport links,

 Automatic Tuning of Parallel Multigrid Solvers 437

and the computing nodes are connected via a Myrinet-10G network, which has a
multi-stage cross-bar network topology. In the present work, 512 nodes of the system
are evaluated. Because T2K/Tokyo is based on cache-coherent NUMA (cc-NUMA)
architecture, careful design of both the software and the data configuration is required
for efficient access to local memory.

Table 1. Summary of specifications: Computing node of the target systems

 T2K/Tokyo Cray
XE6

Fujitsu
FX10

Core #/Node 16 24 16
Size of Memory/node (GB) 32 32 32
Peak Performance/node (GFLOPS) 147.2 201.6 236.5
Peak Memory Bandwidth/node
(GB/sec)

42.7
8×DDR2 667MHz

85.3
8×DDR3 1333MHz

STREAM/Triad Performance/node
(GB/sec) [8]

20.0 52.3 64.7

B/F Rate 0.136 0.260 0.274

 (a) T2K/Tokyo (b) Cray XE6

(c) Fujitsu FX10

Fig. 1. Overview of a computing node of (a) the T2K/Tokyo, (b) the Cray XE6, and (c) the
Fujitsu FX10 (C: core, L1/L2/L3: cache, Memory: main memory)

Each node of the Cray XE6 (Hopper) system at the National Energy Research
Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory [7]
includes two sockets of 12-core AMD Opteron (Magny-Cours) processors (2.1 GHz).
Each socket of the Magny-Cours consists of two dies, each of which consists of six
cores. Four dies are connected through HyperTransport links (Fig. 1(b)). The Magny-
Cours has more HyperTransport links than the Barcelona processor, and the four dies

L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L3

Memory

L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2

Memory

L3

L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L3

Memory

L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2

Memory

L3

L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L3

Memory

L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L3

Memory

L1

C

L2
L1

C

L2

L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L3

Memory

L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L1

C

L2
L3

Memory

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

C

L2

Memory

438 K. Nakajima

are connected more tightly. An entire system consists of 6,384 nodes, 153,216 cores,
and 212 TB memory. The total peak performance is 1.28 PFLOPS. The computing
nodes are connected via Cray’s Gemini network, which has a 3D torus network
topology. In the present work, 128 nodes of the system are evaluated. Both the
T2K/Tokyo and the Cray XE6 are based on cc-NUMA architecture. Each die with six
cores of the Cray XE6 corresponds to a socket with four cores of the T2K/Tokyo.

The Fujitsu FX10 (Oakleaf-FX) system at the University of Tokyo [3] is Fujitsu’s
PRIMEHPC FX10 massively parallel supercomputer with a peak performance of 1.13
PFLOPS. The Fujitsu FX10 consists of 4,800 computing nodes of SPARC64™ IXfx
processors with 16 cores (1.848 GHz). SPARC64™ IXfx incorporates many features
for HPC, including a hardware barrier for high-speed synchronization of on-chip
cores [3]. An entire system consists of 76,800 cores and 154 TB memory. Nodes are
connected via a six-dimensional mesh/torus interconnect called “Tofu” [3]. In the
present work, 128 nodes of the system are evaluated. On the SPARC64™ IXfx, each
of the 16 cores can access the memory in a uniform manner (Fig. 1(c)).

3 Algorithms and Implementations of the Target Application

3.1 Overview of the Target Application

In the target application, Poisson’s equations for groundwater flow problems through
heterogeneous porous media are solved using a parallel cell-centered 3D finite-
volume method (FVM) (Fig.2) [1,2]. A heterogeneous distribution of water
conductivity in each mesh is calculated by a sequential Gauss algorithm [9]. The
minimum and the maximum values of water conductivity are 10-5 and 105,
respectively, and the average value is 1.0. This configuration provides ill-conditioned
coefficient matrices whose condition number is approximately 1010. Each mesh is a
cube, and the distribution of meshes is structured as finite-difference-type voxels.

Fig. 2. Example of groundwater flow through heterogeneous porous media
(a) Distribution of water conductivity, (b) Streamlines

The conjugate gradient (CG) solver with a multigrid preconditioner (MGCG) is

applied for solving the Poisson’s equations [1,2]. A very simple geometric multigrid
with a V-cycle, where eight children form one parent mesh in an isotropic manner for
structured finite-difference-type voxels, is applied [1,2]. The level of the finest grid is
set to 1 and the level is numbered from the finest to the coarsest grid, where the

(a) (b)

 Automatic Tuning of Parallel Multigrid Solvers 439

number of meshes is one in each domain (MPI process). Multigrid operations at each
level are done in parallel manner, but the operations at the coarsest levels are executed
on a single MPI process by gathering the information of entire processes. The total
number of meshes at the coarsest level is equal to the number of MPI processes. IC(0)
with additive Schwarz domain decomposition (ASDD) [1,2], because of its
robustness, is adopted as the smoothing operator at each level. The 3D code is
parallelized by domain decomposition using MPI for communications between
partitioned domains [1,2]. In the OpenMP/MPI hybrid parallel programming model,
multithreading by OpenMP is applied to each partitioned domain. The reordering of
elements in each domain allows the construction of local operations without global
dependency to achieve the optimum parallel performance of IC operations in
multigrid processes. In the present work, Reverse Cuthill-McKee (RCM) with cyclic-
multicoloring (CM-RCM) [10] is applied. The number of colors is set to 2 at each
level (CM-RCM(2)) for efficiency [1,2]. The following three types of optimization
procedures for cc-NUMA architectures are applied to the OpenMP/MPI hybrid
parallel programming models [1,2]:

• Appropriate command lines for NUMA control, with “--cpunodebind” and
“--localalloc”, where memory locality is kept, and each thread can access
data on the memory of each socket efficiently [1]

• First touch data placement [1,2]
• Reordering for contiguous “sequential” access to memory [1]

Furthermore, optimization of the coarse grid solver proposed in [2] is applied.

3.2 Results (Weak Scaling)

The performance of weak scaling is evaluated using between 16 and 8,192 cores of
the T2K/Tokyo. The number of finite-volume meshes per each core is 262,144
(=643); therefore, the maximum total problem size is 2,147,483,648. The following
three types of OpenMP/MPI hybrid parallel programming models are applied as
follows, and the results are compared with those of flat MPI:

• Hybrid 4×4 (HB 4×4): Four OpenMP threads for each of four sockets in Fig.
2(a), four MPI processes in each node

• Hybrid 8×2 (HB 8×2): Eight OpenMP threads for two pairs of sockets, two
MPI processes in each node

• Hybrid 16×1 (HB 16×1): Sixteen OpenMP threads for a single node, one MPI
process in each node

In Fig. 3, (a) and (b) show the performance of the MGCG solver. An improved
version of the coarse grid solver (C2) proposed in [2] is applied, where a multigrid
based on the V-cycle with IC(0) smoothing is applied until convergence (ε=10-12) at
the coarsest level [2]. Both figures show the scalable features of the developed
method. The number of iterations until convergence and the elapsed time for MGCG
solvers at 8,192 cores are as follows:

440 K. Nakajima

• Flat MPI: 70 iterations, 35.7 sec.
• HB 4×4: 71 iterations, 28.4 sec.
• HB 8×2: 72 iterations, 32.8 sec.
• HB 16×1: 72 iterations, 34.4 sec.

Fig. 3. Performance of MGCG solver with CM-RCM(2) on the T2K/Tokyo using up to 8,192
cores, weak scaling: 262,144 meshes/core, maximum total problem size: 2,147,483,648. (a)
Number of iterations for convergence, (b) Computation time for MGCG solvers with improved
coarse grid solver (C2) applied.

MGCG is a memory-bound process, and the performance of memory access is very
critical. The performance of HB 4×4 is the best, primarily because all data for each
process are guaranteed to be on the local memory of each socket, and so the most
efficient memory access is possible. HB 4×4 is the best according to both the elapsed
computation time and the performance in a single iteration [2]. Flat MPI is also better
than the others for a small number of cores, but it consists of a larger number of MPI
processes than OpenMP/MPI hybrid parallel programming models. Moreover, the
problem size for the coarse grid solver is larger than that of these hybrid parallel
programming models. Therefore, its performance gets worse for a larger number of
cores due to the overhead of communications and coarse grid solvers.

3.3 Results (Strong Scaling) and the Optimization of Communication

The performance of strong scaling is evaluated for a fixed size of problem with
33,554,432 meshes (=512×256×256) using between 16 and 1,024 cores of the
T2K/Tokyo [1]. Figure 4(a) provides the parallel performance of the T2K/Tokyo
based on the performance of flat MPI with 16 cores using the original coarse grid
solver in [1]. At 1,024 cores, the parallel performance is approximately 60% of the
performance at 16 cores. Decreasing of the parallel performance of HB 16×1 is very
significant. At 1,024 cores, HB 16×1 is slower than flat MPI, although the
convergence is much better [1]. Communications between partitioned domains at each
level occur in the parallel multigrid procedures. Information at each domain boundary
is exchanged by using the functions of MPI for point-to-point communications. In this

0

50

100

150

200

10 100 1000 10000

Ite
ra

tio
n

s

CORE#

Flat MPI C2

HB 4x4 C2

HB 8x2 C2

HB 16x1 C2

0

20

40

60

80

100

10 100 1000 10000

se
c.

CORE#

Flat MPI C2

HB 4x4 C2

HB 8x2 C2

HB 16x1 C2

(a) (b)

 Automatic Tuning of Parallel Multigrid Solvers 441

procedure, copies of arrays to/from sending/receiving buffers are made, as shown in
Fig. 5. In the original code using OpenMP/MPI hybrid parallel programming models,
this type of operation for the memory copy is parallelized by OpenMP. But the
overhead of OpenMP is significant if the length of the loop is short at the coarser
levels of the multigrid procedure and the number of threads is large. If the length of
the loop is short, operations by a single thread might be faster than those by multi-
threading.

Fig. 4. Performance of MGCG solver with CM-RCM(2) on the T2K/Tokyo using up to 1,024
cores, strong scaling: 33,554,432 meshes (=512×256×256). (a) Parallel performance based on
the performance of flat MPI with 16 cores, (a) Initial case, (b) Optimized case: “LEVcri=2” in
Fig. 7 is applied for OpenMP/MPI hybrid parallel programming models [1].

Fig. 5. Point-to-point communications for information exchange at the domain boundary
(sending process), copies of arrays to/from sending/receiving buffers occur

In [1], the effect of switching from multi-threading to single-threading at coarser
levels of the multigrid procedure was evaluated. Figure 6(a) shows the results of HB
16×1 with 1,024 cores (64 nodes) for the strong scaling case. The “communication”
part includes processes of the memory copies shown in Fig. 5. “LEVcri=0” is the
original case, and it applies multi-threading by OpenMP at every level of the
multigrid procedure. “LEVcri=k (k>0)” means applying multi-threading if the level of
the grid is smaller than k. Therefore, single-threading is applied at every level if
“LEVcri=1”, and multi-threading is applied at only the finest grid (level=1) if

0

20

40

60

80

100

120

16 32 64 128 256 512 1024

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

CORE#

Flat MPI HB 4x4
HB 8x2 HB 16x1

0

20

40

60

80

100

120

16 32 64 128 256 512 1024

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

CORE#

Flat MPI HB 4x4
HB 8x2 HB 16x1

(a) (b)

!C
!C-- SEND

do neib= 1, NEIBPETOT
istart= levEXPORT_index(lev-1,neib) + 1
iend = levEXPORT_index(lev ,neib)
inum = iend - istart + 1

!$omp parallel do private (ii)
do k=, istart, iend

WS(k)= X(EXPORT_ITEM(k))
enddo

!$omp end parallel do
call MPI_ISEND (WS(istart), inum, MPI_DOUBLE_PRECISION, &

& NEIBPE(neib), 0, SOLVER_COMM, req1(neib), ierr)
enddo

442 K. Nakajima

“LEVcri=2”. Generally, “LEVcri=2” provides the best performance at 1,024 cores for
all of HB 4×4, HB 8×2, and HB 16×1. The optimized HB 16×1 with “LEVcri=2” is
22% faster than that of the original case, although the effect of switching is not so
clear for HB 4×4. Figure 4(b) shows the effects of this optimization with “LEVcri=2”
for all OpenMP/MPI hybrid cases. The performance of HB 8×2 and HB 16×1 are
much improved at a large number of cores, and HB 8×2 is even faster than HB 4×4 at
1,024 cores, while the performance with a fewer number of cores does not change.

Fig. 6. Effect of switching from multi-threading to single-threading at coarse levels of the
multigrid procedure in operations of memory copy for communications at domain boundaries
using 1,024 cores for a strong scaling case with 33,554,432 meshes (=512×256×256),
“LEVcri=0”: applying multi-threading by OpenMP at every level of the multigrid procedure
(original case), “LEVcri=k (k>0)”: applying multi-threading if the grid level is smaller than k.
(a) HB 16×1, (b) HB 4×4.

4 Automatic Tuning (AT) of Multigrid Processes

4.1 Overview

In multigrid procedures with OpenMP/MPI hybrid parallel programming models,
most of the processes are parallelized by OpenMP at each level. But the overhead of
OpenMP is significant if the length of the loop is short at coarser levels and the
number of threads is large. If the length of the loop is short, operations by a single
thread might be faster than those by multi-threading, as shown in 3.3. In 3.3, the
optimum parameter ("LEVcri=2") is determined by comparing the results of cases
with different values of LEVcri between 0 and 6. But this optimum parameter depends
on various conditions, such as problem size, number of processors, number of threads
per each MPI process, architecture of hardware, performance of computing nodes,
communication performance of network, etc. Therefore, automatic tuning (AT) is
helpful for the selection of the optimum parameters.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 2 3 4 5 6

se
c.

LEVcri

Communication Computation

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 2 3 4 5 6

se
c.

LEVcri

Communication Computation(a) (b)

 Automatic Tuning of Parallel Multigrid Solvers 443

4.2 Method for Automatic Tuning (AT)

In the present work, we focus on the selection of single-threading or multi-threading
in procedures of parallel multigrid solvers using OpenMP/MPI hybrid parallel
programming models. The method for AT of related parameters was proposed, and
was implemented to the code in [2], which was optimized for cc-NUMA
architectures, such as the T2K/Tokyo and the Cray XE6. Finally, the proposed
method is evaluated using the three supercomputer systems. In the present work, the
following three types of parallel programming models are evaluated:

• Hybrid 4×4/6×4 (HB 4×4/6×4): Four MPI processes on each node. Four

OpenMP threads/MPI process for the T2K/Tokyo and the Fujitsu FX10, six
threads/MPI process for the Cray XE6

• Hybrid 8×2/12×2 (HB 8×2/12×2): Two MPI processes on each node. Eight
OpenMP threads/MPI process for the T2K/Tokyo and the Fujitsu FX10, 12
threads/MPI process for the Cray XE6

• Hybrid 16×1/24×1 (HB 16×1/24×1): One MPI process in each node. Number of
threads corresponds to the number of cores on each node (16: T2K/Tokyo,
Fujitsu FX10, 24: Cray XE6)

We focus on the automatic selection of single-threading or multi-threading in the
following three procedures of parallel multigrid solvers using the OpenMP/MPI
hybrid parallel programming models:

(A) Smoothing operations at each level of the V-cycle
(B) Point-to-point communications at domain boundaries with the memory copies

described in 3.3
(C) Smoothing operations at each level of the coarse grid solver

Process (A) corresponds to smoothing operations for each MPI process at each level
of the V-cycle, whereas process (C) corresponds to smoothing operations at each level
of the coarse grid solver on a single MPI process [2]. The level of the multigrid for
switching from multi-threading to single-threading is defined as LEVcriA for process
(A), LEVcriB for process (B), and LEVcriC for process (C). The definition of LEVcriX
is the same as that of LEVcri in 3.3 [1]. If “LEVcriX=0”, multi-threading is applied at
every level of the process (X). “LEVcriX=k (k>0)” means multi-threading is applied to
the process (X) if the level of the grid is smaller than k. The policy for optimization is
defined as a combination of these three parameters (LEVcriA, LEVcriB, and LEVcriC).
In the present work, this policy is represented by a three-digit number, where each
digit corresponds to each LEVcriX. For example, the policy represented by “542”
means “LEVcriA=5”, “LEVcriB=4”, and “LEVcriC=2”. In the present work, we
develop a method for AT that can automatically define the optimum policy (i.e., the
combination of optimum LEVcriX’s) for various kinds of hardware and software
conditions. LEVcriA and LEVcriC are defined by a critical loop length LOOPcri,
which is a parameter for selection of single-threading or multi-threading, and is

444 K. Nakajima

calculated by the simple off-line benchmark
shown in Fig. 7. This benchmark simulates
typical and costly processes in smoothing
operations, such as sparse-matrix-vector
products and forward/backward substitutions
for IC(0) operations [1,2]. Six off-diagonal
components are used because the target
application is based on cell-centered
structured 3D meshes with six surfaces. This
off-line benchmark compares the
performance of loops with single-threading
and multi-threading for various loop lengths,
N, and automatically introduces the critical
loop length LOOPcri. LOOPcri is a function
of the number of threads, the computational
performance of each core and the memory
bandwidth. Table 2 shows the LOOPcri
calculated by a single node of each supercomputer system for each parallel
programming model. LOOPcri of the FX10 is smaller because of its hardware barrier
for high-speed synchronization of on-chip cores. Generally, this off-line benchmark
needs to be performed just once, as long as computational environment, such as
version of the compiler, does not change significantly. We just provide LOOPcri as
one of the input parameters of the application, in which the proposed method for AT
is implemented. If the loop length is larger than LOOPcri, multi-threading is applied.
Optimization of process (B) (i.e., selection of LEVcriB) is done by a run-time tuning
procedure. This run-time tuning procedure is embedded as one of the subroutines of
the target application written in FORTRAN. This subroutine (comm_test) is called
by the main program of the application before starting of the real computations. This
subroutine (comm_test) compares the performance of single-threaded and multi-
threaded versions of communication functions at each level, and chooses the faster
one for the real computations, as shown in Fig. 8. This procedure is very convenient
and reliable because it can evaluate the combined performance for both MPI
communication and memory copying by the real functions used in MGCG solvers of
the target application. Moreover, this run-time tuning procedure is not costly: it takes
less than 0.05 sec. for all cases in the present work. Finally, Figure 9 summarizes the
procedure of proposed method for AT.

Table 2. LOOPcri measured by the simple off-line benchmark in Fig. 7

 T2K/Tokyo Cray XE6 Fujitsu FX10
HB 4×4/ 6×4 256 64 32
HB 8×2/12×2 512 128 32
HB 16×1/24×1 1,024 256 32

!$omp parallel do private (i,k)
do i= 1, N
Y(i)= D(i)*X(i)
do k= 1, 6

Y(i)= Y(i) + A(k,i)*X(i)
enddo

enddo
!$omp end parallel do

do i= 1, N
Y(i)= D(i)*X(i)
do k= 1, 6

Y(i)= Y(i) + A(k,i)*X(i)
enddo

enddo

Fig. 7. Off-line benchmark, which
defines critical loop length LOOPcri
for the selection of single-
threading/multi-threading. If loop
length N is larger than LOOPcri,
multi-threading is applied.

 Automatic Tuning of Parallel Multigrid Solvers 445

Fig. 8. Procedure of subroutine comm_test for run-time tuning for optimization of
process (B) (point-to-point communications at domain boundaries with the memory copies)

Target Application with MGCG Solver

Off-line Benchmark
(Fig.7)

Main Program subroutine comm_test
(Fig.8)

Control Data
for Target Appl.

LOOPcri
LEVcriA
LEVcriC

LEVcriB

configurations

Fig. 9. Procedures for the proposed method of AT

4.3 Preliminary Results

The method for AT proposed in 4.2 is implemented with the code in [2]. CM-RCM(2)
reordering [1,2] is applied at each level; therefore, the loop length at each level is half
of the problem size. The following three types of problem sizes are evaluated:

• Large: 2,097,152 (=128×128×128) meshes per each node
• Medium: 524,288 (=128×64×64) meshes per each node
• Small: 65,536 (=64×32×32) meshes per each node

Tables 3, 4, and 5 show the results for the three types of problem sizes on the
T2K/Tokyo (512 nodes, 8,192 cores), the Cray XE6 (128 nodes, 3,072 cores), and the
Fujitsu FX10 (128 nodes, 2,048 cores), respectively. For each case, two types of
codes are developed and applied.

The first code is based on the method for AT described in 4.2, and Fig.9. This code
is implemented so that critical loop length LOOPcri in Table 2 provides the optimum
LEVcriA and LEVcriC automatically, while the run-time tuning procedure by a
subroutine (comm_test) of the first code described in Fig. 8 provides the optimum
LEVcriB automatically. The rows with “AT” in Tables 3, 4, and 5 show the results of

1. At each level of V-cycle, execution time T(m,level) for point-to-point communications at
domain boundaries (including memory copies and MPI communications) with multi-threading
using OpenMP is measured.

2. At each level of V-cycle, execution time T(s,level) for point-to-point communications at domain
boundaries (including memory copies and MPI communications) with single-threading
(without OpenMP) is measured.

3. Each of 1. and 2. is repeated for 50 times at each level, and average execution time,
Tave(m,level) and Tave(s,level) are calculated.

4. If Tave(m,level) > Tave(s,level), single-threading is adopted at this level of V-cycle. Otherwise,
multi-threading is adopted.

5. Optimum LEVcriB is determined through these procedures.

446 K. Nakajima

this first code and provide the speed-up compared to that of the original case
(policy=”000”). The three-digit numbers in parentheses are the policy for
optimization provided by AT.

In the second code, each of LEVcriA, LEVcriB, and LEVcriC can be explicitly
specified, where two of these parameters are fixed as “0” in the present work.
According to the results by the second code, the best combination of parameters can
be estimated. The rows with “Estimated Best” in Tables 3, 4, and 5 show the results of
the second code (speed-up and corresponding policy for optimization). Figures 10, 11,
and 12 show the effect of the individual parameter. The performance is 1.00 for the
original case (policy=”000”).

The effect of tuning by switching from multi-threading to single-threading is
significant on the T2K/Tokyo and the Cray XE6 if the problem size per node is small
and the number of threads per node is large. Generally, “AT” provides better
performance than “Estimated Best” in each case; therefore, the AT procedure works
well. The optimum policies (i.e., combinations of optimum parameters) provided by
“AT” and “Estimated Best” in Tables 3, 4, and 5 are similar. The “small” size cases
for the T2K/Tokyo with HB 16×1, and the Cray XE6 with HB 24×1 provide 1.75–
1.96 times speed-up by AT, compared to the performance of the original cases. In
contrast, the effect of this type of tuning is very small for the “large” size cases.
Among the three parameters (LEVcriA, LEVcriB, and LEVcriC), the effect of LEVcriB
is the most critical in the “small” and “medium” size cases. Therefore, accurate
estimation of the optimum LEVcriB is important. The optimum value of the parameter
varies according to the problem size. For example, “LEVcriB=2 (020)” is the best for
“medium” size cases (Fig. 10), while “LEVcriB=1 (010)” provides the best
performance for “small” size cases (Fig. 11). The effect of tuning by switching from
multi-threading to single-threading is very small on the Fujitsu FX10 (Table 5 and
Fig. 12). This is because of its hardware barrier for high-speed synchronization of on-
chip cores. Multi-threading provides higher efficiency even for short loops on the
Fujitsu FX10, as shown in Table 2. Finally, Table 6 compares the performance of the
three types of OpenMP/MPI hybrid parallel programming models on three
supercomputers for “small” size cases, where the effect of the proposed AT procedure
is the most significant. Generally, HB 4×4/6×4 provides the best performance for
original, except Fujitsu FX10. But HB 8×2 for T2K/Tokyo and Fujitsu FX10
optimized by the proposed AT procedure is even faster than optimized HB 4×4.

Table 3. Results on the T2K/Tokyo with 512 nodes (8,192 cores): Speed-up compared to the
original case (policy=”000”) and policy for optimization (three-digit number in parentheses)

 Large Medium Small

HB 4×4
AT 1.02 (522) 1.04 (422) 1.08 (322)
Estimated Best 1.01 (522) 1.03 (613) 1.14 (612)

HB 8×2
AT 1.01 (522) 1.10 (412) 1.40 (311)
Estimated Best 1.02 (532) 1.08 (412) 1.33 (512)

HB 16×1
AT 1.03 (421) 1.22 (421) 1.96 (311)
Estimated Best 1.02 (633) 1.10 (521) 1.89 (511)

 Automatic Tuning of Parallel Multigrid Solvers 447

Table 4. Results on the Cray XE6 with 128 nodes (3,072 cores): Speed-up compared to the
original case (policy=”000”) and policy for optimization (three-digit number in parentheses)

 Large Medium Small

HB 6×4
AT 1.02 (522) 1.09 (422) 1.49 (322)
Estimated Best 1.02 (642) 1.07 (432) 1.40 (612)

HB 12×2
AT 1.01 (632) 1.11 (521) 1.57 (311)
Estimated Best 1.01 (641) 1.08 (621) 1.68 (421)

HB 24×1
AT 1.05 (531) 1.18 (531) 1.75 (321)
Estimated Best 1.05 (641) 1.18 (541) 1.63 (421)

Table 5. Results on the Fujitsu FX10 with 128 nodes (2,048 cores): Speed-up compared to the
original case (policy=”000”) and policy for optimization (three-digit number in parentheses)

 Large Medium Small

HB 4×4
AT 1.01 (532) 1.01 (532) 1.06 (422)
Estimated Best 1.00 (053) 1.01 (023) 1.06 (622)

HB 8×2
AT 1.00 (532) 1.02 (532) 1.06 (422)
Estimated Best 1.00 (042) 1.01 (542) 1.04 (522)

HB 16×1
AT 1.00 (042) 1.01 (642) 1.06 (422)
Estimated Best 1.00 (052) 1.01 (030) 1.08 (532)

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

000 001 002 003 010 020 030 040 050 200 300 400 500 600 est.
best

AT

P
er

fo
rm

an
ce

base coarse grid solver
communication smoother

Fig. 10. Effect of individual parameters on speed-up: LEVcriA (smoother), LEVcriB
(communication), and LEVcriC (smoother for coarse grid solver), T2K/Tokyo with 512 nodes,
8,192 cores, HB 16×1, “medium” size case (524,288 (=128×64×64) meshes/node)

448 K. Nakajima

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

000 001 002 003 010 020 030 040 050 200 300 400 500 600 est.
best

AT

P
er

fo
rm

an
ce

base coarse grid solver
communication smoother

Fig. 11. Effect of individual parameters on speed-up: LEVcriA (smoother), LEVcriB
(communication), and LEVcriC (smoother for coarse grid solver), T2K/Tokyo with 512 nodes,
8,192 cores, HB 16×1, “small” size case (65,536 (=64×32×32) meshes/node)

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

000 001 002 003 010 020 030 040 050 200 300 400 500 600 est.
best

AT

P
er

fo
rm

an
ce

base coarse grid solver
communication smoother

Fig. 12. Effect of individual parameters on speed-up: LEVcriA (smoother), LEVcriB
(communication), and LEVcriC (smoother for coarse grid solver), Fujitsu FX10 with 128 nodes,
2,048 cores, HB 16×1, "small" size case (65,536 (=64×32×32) meshes/node)

 Automatic Tuning of Parallel Multigrid Solvers 449

Table 6. Speed-up compared to that of the original case (policy=000) of HB 4×4/6×4 for
“small” size case (65,536 (=64×32×32) meshes/node)

 T2K/Tokyo
512 nodes

Cray XE6
128 nodes

Fujitsu FX10
128 nodes

HB 4×4/6×4
Original 1.00 1.00 1.00
AT 1.08 1.49 1.06
Estimated Best 1.14 1.41 1.06

HB 8×2/12×2
Original .963 .879 1.03
AT 1.35 1.38 1.08
Estimated Best 1.29 1.47 1.06

HB 16×1/24×1
Original .572 .652 .866
AT 1.12 1.14 .920
Estimated Best 1.08 1.06 .932

5 Concluding Remarks

In the present work, we focus on automatic selection of single-threading or multi-
threading in procedures of parallel multigrid solvers using hybrid parallel
programming models. We propose a simple empirical method for AT of related
parameters. The proposed method is based on the run-time tuning procedure for the
optimization of communications as a subroutine of the target application and the
parameter of the critical loop length for multi-threading derived from a simple off-line
benchmark. The effect of the proposed method was evaluated on the T2K/Tokyo, the
Cray XE6, and the Fujitsu FX10 using up to 8,192 cores. The proposed AT method is
very effective, and the automatically tuned code provides twice the performance as
the original code on the T2K/Tokyo and the Cray XE6 when the problem size per
node is relatively small. The proposed method is very useful in strong scaling
computations in these architectures. The effect is not so significant on the Fujitsu
FX10, because multi-threading provides a higher efficiency even for short loops on
the Fujitsu FX10 due to its hardware barrier. Because the original code is optimized
for cc-NUMA architectures, such as the T2K/Tokyo and the Cray XE6, a different
strategy for further optimization may be needed for the Fujitsu FX10. Generally
speaking, NUMA-aware optimizations do not improve performance of the code on
such architectures like Fujitsu FX10, where each core of the computing node can
access the memory in a uniform manner.

In the present work, we focus on the choice of single-threading or multi-threading.
A more sophisticated method that defines the optimum number of threads at each
level may further contribute to optimization. For example, current choice is only 16-
threads or a single thread for HB 16×1 of T2K/Tokyo and Fujitsu FX10, but 2-, 4- or
8-thread procedures at certain levels of the multigrid may provide further
improvement of the performance. This type of more flexible approach is an
interesting topic for future works. Because the topic of the present work covers only a
small aspect of parallel multigrid methods, other directions of optimization, such as
reducing communications, should also be considered in future works.

450 K. Nakajima

Acknowledgements. This work is supported by Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency (JST),
Japan.

References

1. Nakajima, K.: Parallel Multigrid Solvers Using OpenMP/MPI Hybrid Programming
Models on Multi-Core/Multi-Socket Clusters. In: Palma, J.M.L.M., Daydé, M., Marques,
O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 185–199. Springer,
Heidelberg (2011)

2. Nakajima, K.: New strategy for coarse grid solvers in parallel multigrid methods using
OpenMP/MPI hybrid programming models. ACM Proceedings of the 2012 International
Workshop on Programming Models and Applications for Multicores and Manycores,
ACM Digital Library (2012), doi:10.1145/2141702.2141713

3. Information Technology Center, The University of Tokyo,
http://www.cc.u-tokyo.ac.jp/

4. The T2K Open Supercomputer Alliance,
http://www.open-supercomputer.org/

5. Baker, A., Gamblin, T., Schultz, M., Yang, U.: Challenge of Scaling Algebraic Multigrid
across Modern Multicore Architectures. In: Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2011), pp. 275–286 (2011)

6. Hypre Library, http://acts.nersc.gov/hypre/
7. NERSC, Lawrence Berkeley National Laboratory, http://www.nersc.gov/
8. STREAM (Sustainable Memory Bandwidth in High Performance Computers),

http://www.cs.virginia.edu/stream/
9. Deutsch, C.V., Journel, A.G.: GSLIB Geostatistical Software Library and User’s Guide,

2nd edn. Oxford University Press (1998)
10. Washio, T., Maruyama, K., Osoda, T., Shimizu, F., Doi, S.: Efficient implementations of

block sparse matrix operations on shared memory vector machines. In: Proceedings of the
4th International Conference on Supercomputing in Nuclear Applications (SNA 2000)
(2000)

	Automatic Tuning of Parallel Multigrid Solvers Using OpenMP/MPI Hybrid Parallel Programming Models
	1 Introduction
	2 Hardware Environment
	3 Algorithms and Implementations of the Target Application
	3.1 Overview of the Target Application
	3.2 Results (Weak Scaling)
	3.3 Results (Strong Scaling) and the Optimization of Communication

	4 Automatic Tuning (AT) of Multigrid Processes
	4.1 Overview
	4.2 Method for Automatic Tuning (AT)
	4.3 Preliminary Results

	5 Concluding Remarks
	References

