
Automatic Parameter Optimization for Edit

Distance Algorithm on GPU

Ayumu Tomiyama and Reiji Suda

The University of Tokyo

Abstract. In this research, we parallelized the dynamic programming
algorithm of calculating edit distance for GPU, and evaluated the perfor-
mance. In GPU computing, access to the device memory is likely to be
one of the primal bottleneck due to its high latency, and this effect gets
noticeable especially when sufficient number of active threads cannot be
secured because of the lack of parallelism or overuse of GPU resources.
Then, we constructed a model that approximates the relations between
the values of parameters and the execution time considering latency hid-
ing, and by using this model, we devised a method of automatic tuning
of parallelization parameters in order to attain high performance stably
even when the problem size is relatively small.

1 Introduction

The problem of analyzing the similarities of a given string with patterns and find-
ing their optimum alignment is called approximate string matching. It is one of
the important problem in information science applied not only to text retrieval
but also to a variety of fields including computational biology. The computa-
tion of approximate string matching, however, includes some computationally
expensive steps. In this research, we worked on acceleration of the algorithm for
calculating Levenshtein edit distance by using graphics processing units (GPUs)
and made an evaluation of its performance.

GPUs, as the name suggests, were originally created as a hardware for image
processing. They have quite a lot of computing units, which produce high peak
performance at a relatively-low cost. Then, the idea to utilize the huge comput-
ing power of GPU for calculation other than image processing was born under
the name of GPGPU (General Purpose computing on GPUs,) and today this
technique has a wide variety of applications. Although GPGPU programming
became easily accessible thanks to the improvement of GPU architectures and
appearance of some useful developing environments including CUDA (Compute
Unified Device Architecture) [7] provided by NVIDIA, it is generally still difficult
to exploit the full performance of GPUs. In order to utilize all of the computing
units in GPUs, it is important to select highly parallelized algorithm and to cre-
ate a large number of threads. The cost of memory access is also a major factor
determining overall performance. To reduce this cost, it is important in terms
of latency hiding to increase the number of simultaneously executed threads by

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 420–434, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Parameter Optimization for Edit Distance Algorithm on GPU 421

setting a limitation on the size of used resource per thread and increasing the
total number of threads itself. Moreover, efficient utilization of low-capacity but
fast shared memory is also a common practice. These optimization can not be
achieved only by the selection of parallel algorithms, but it is also indispensable
to adjust values of parameters related to the parallelization depending on the
capacity of used GPUs.

As for approximate string matching on GPU, there are several researches on
implementation of parallel versions of Smith-Waterman algorithm for GPUs.
The Smith-Waterman algorithm closely resembles the edit distance algorithm
in the dependence relationship between computed elements, so almost the same
parallelization and optimization scheme can be applied.

The origin of the implementation of the Smith-Waterman algorithm for GPUs
dates back to the age before the CUDA became common. Liu et al. [3] imple-
mented the Smith-Waterman algorithm on GPU by mapping the algorithm on
rendering pipeline with using OpenGL API. They parallelized the algorithm by
making use of the fact that the cells on the same anti diagonal in the compu-
tation region can be simultaneously calculated. After the appearance of CUDA,
several researches on the parallel Smith-Waterman algorithm on GPU are con-
ducted. Manavski et al. [5] and Munekawa et al. [6] implemented the algorithm
by using CUDA. These implementations are similar in that alignments of mul-
tiple combination of strings are calculated in parallel, but different in that each
thread computes the whole alignment (inter-task parallelization) in the approach
of Manavski et al, while it is covered by whole threads in a thread block (intra-
task parallelization) in the approach of Munekawa et al. Liu et al. [4] not only
improved the performance but also eased the restriction caused by overuse of
memory on GPU by covering both of the inter-task and inner-task paralleliza-
tion. Ling et al. [2] also resolved the restriction on the length of the strings
arisen from the limitation of available resources of GPUs by adopting a divide
and conquer approach. Dohi et al. [1] improved the performance by using some
technique including the divide and conquer approach and an idea of reducing
the cost of thread synchronization.

Also after those, several implementations appear and show pretty good per-
formance as compared with the ones for CPU accelerated by some heuristic
methods. Most of them put emphasis on the performance when there is a lot of
queries, which enables simultaneous calculation of matchings of multiple com-
binations of strings and patterns, and ensures sufficient number of threads. On
the other hand, they seem to be giving little consideration on the case when
the number of active threads is limited because of the lack of queries relative
to the capacity of the used GPUs. When sufficient number of active threads is
not secured, the performance drops beause of failure in latency hiding or load
balancing.

In this article, we propose a parallel algorithm of calculating edit distance of
a pair of strings on GPU. We analyzed the relationship between computation
time and the values of parameters associated with parallelization: the block size
parameters, and the number of active threads. As a result, we confirmed that

422 A. Tomiyama and R. Suda

the latency of the device memory and the hiding of it have the strongest effect
on the performance other than the simple number of arithmetic and memory
reference instructions. Then, considering them, we constructed an estimation
model of execution time, and applied it to our system to automatically select
the optimum block size.

The rest of this article is constituted as follows. First we introduce the parallel
edit distance algorithm with brief explanation of GPU architecture in Chapter
2. Then, in Chapter 3, we present our estimation model of computation time.
Then we show the experimental results in Chapter 4, and finally we conclude
this article in Chapter 5.

2 Edit Distance Algorithm and Parallelization

First, we introduce the definition of edit distance and the serial version of the
dynamic programming algorithm for calculating it. Then we propose our parallel
algorithm after showing the features of CUDA GPUs. Note that in this research
we assume the use of GPUs supporting CUDA whose compute capability is 1.2
or 1.3.

2.1 Dynamic Programming Algorithm

Edit distance of two strings is defined as the minimum number of editing opera-
tions required for transforming one string into the other. There are three types
of operations available: insertion, deletion, and substitution of a character. For
exapmle, edit distance of strings “change” and “hunger” is three, for the former
string can be transformed into the latter one by the following three operations:
deletion of ‘c’, substitution of ‘u’ for ‘a’, and insertion of ‘r’.

In this paper, we let d(str1, str2) denote edit distance of the two strings
str1, str2. Also, |str| denotes the length of string str, str[i] the i-th character
of str (0 ≤ i < |str|), str[i..j] the substring from the i-th character to the j-th
character of str (0 ≤ i ≤ j < |str|).

Edit distance d(str1, str2) can be calculated by using dynamic programming.
Specifically, it can be obtained from edit distances d(str1[0..i], str2[0..j]) of pre-
fixes of the strings. Considering how to match the last characters of str1[0..i] and
str2[0..j] by using one or none of the three editing operations, the edit distance
d(str1[0..i], str2[0..j]) can be calculated according to the following formula:

d(str1[0..i], str2[0..j]) = min(d(str1[0..i − 1], str2[0..j]) + 1,
d(str1[0..i], str2[0..j − 1]) + 1,
d(str1[0..i − 1], str2[0..j − 1]) + c(str1[i], str2[j]))

(1)

where c(str1[i], str2[j]) is 0 if str1[i] equals to str2[j], and otherwise this value
is 1.

Therefore, the edit distance d(str1, str2) can be calculated by completing a
table of edit distances d(str1[0..i], str2[0..j]) of prefixes of str1 and str2 like

Automatic Parameter Optimization for Edit Distance Algorithm on GPU 423

Fig. 1. Table of edit differences of suffixes

one shown in figure 1. First, the values of leftmost cells and topmost ones in
the table are trivially obtained. On the other hand, the value of each inner cell
can be obtained from those of the immediate left, upper left, and upper cells of
its own by using the formula (1), so they can be sequentially calculated from
the upper left corner to the lower right corner. The amount of calculation is
O(|str1||str2|).

The calculation has a certain level of parallelism, and there is also flexibility
in what order to calculate values of cells.

2.2 GPU Architecture

GPU mainly consists of several multiprocessors (MPs) and a device memory. A
MP is a group of eight simple processors called scalar processors (SPs). SPs in
the same MP simultaneously execute the same instruction on different data like
SIMD instructions. GPU provides great performance by making its numerous
SPs carry the same operation in parallel.

The device memory is accessible from CPU and all MPs in the GPU. Gen-
erally, GPU program first copies data from host memory on CPU to the device
memory on GPU. Then, it runs parallel codes, called CUDA kernels, which make
each MP read data from the device memory, perform calculation, and write the
results back to the memory. Finally it transfers the results to the host memory.
Besides the device memory, each MP has its own low-latency memory called
shared memory. Via shared memory, each SP can access computational results
of other SPs in the same MP very fast.

In order to make GPU execute tasks, we have to give it a group of threads
called grid. A grid consists of numerous groups of threads called thread blocks.
The relationship of grid, thread block, and thread corresponds to that of GPU,
MP, and SP. Each thread block is assigned to a MP, and each thread in the
thread block is assigned to a SP in the MP. Each SP (or MP) concurrently
executes several threads (or thread blocks) by frequently switching the thread
(or thread block) to be executed.

424 A. Tomiyama and R. Suda

In order to exploit the performance of GPU, there is a lot of things to be
considered. In this research, we put emphasis on mainly two points.

One point is the hierarchical structure of tasks and the hardware. What SPs
can do is restricted in that SPs in the same MP can simultaneously execute only
the same instruction, so the sequence of executed instructions should be made
as nearly equal as possible among threads in the same thread block by avoiding
conditional branching. On the other hand, threads in the same thread block have
advantage in that they can communicate with each other very fast by utilizing
the shared memory and fast synchronization instruction, whereas communication
among threads in different thread blocks is not supported. Therefore, it is an
important matter how to split the entire processing into grids, into thread blocks,
and into threads considering regularity and dependency of calculation.

The other point is the latency hiding. In GPU computing, access to the device
memory is one of the primal bottleneck because of its high latency. Generally, it is
hidden by executing instructions of other threads during the latency. Therefore,
it is important to secure sufficient number of active threads in order to fill the
latency. The number of active threads depends not only on the number of total
threads but also on the amount of resources each thread block uses such as
shared memory and registers.

2.3 Parallelization and Blocking

We parallelized the dynamic programming algorithm for GPU, and in order to
reduce grid execution and access to the device memory, we brought in blocked
algorithm.

Fig. 2. Shape of a block and calculational procedure

Figure 2 shows the shape of a block by which the computational region of
the dynamic programming algorithm is divided in this parallel algorithm, and
how to calculate values of cells in the block in parallel. As explained in Section
2.1, the value of each cell can be directly calculated if those of the immediate
left, upper left and upper cells are available. Therefore, if all the values of gray
cells in Figure 2 are available, values of the leftmost cells in all the W rows of
the parallelogram block can be simultaneously calculated. Once their values are

Automatic Parameter Optimization for Edit Distance Algorithm on GPU 425

calculated, then by using them, values of all their immediate right cells can be
simultaneously calculated. In the same way, values of W diagonally aligned cells
are calculated in parallel, and it takes H steps to complete the processing of all
the cells in the block, in sequence from left cells to right ones.

Fig. 3. Blocking

Figure 3 shows how to divide the computational region into the parallelogram
blocks and what order to process the blocks. The blocks can be processed in
ascending order of the number, and all blocks assigned the same number can
be processed in parallel without inter-block communication. In parallelization
of this algorithm for GPU, a grid is assigned to process all the parallelogram
blocks tagged the same number, and in the grid, each thread block is assigned
to calculate values of cells in a block region. In a block region, just W values of
cells which are in different rows each other can be calculated in parallel at any
step, so the processing of a block region can be evenly parallelized by assigning
each thread calculation of values of all cells in a row in the block.

To be more precise, behavior of a thread block is expressed in Figure 4. First,
threads load necessary data, values of gray part in the left block of Figure 4 and

Fig. 4. Processing of a thread block

426 A. Tomiyama and R. Suda

characters in the strings, from the device memory and store them on shared mem-
ory. The values of gray cells are just calculated by the previous grid execution.
Then, each thread starts calculation of values of the assigned cells. W threads in
the thread block act in synchronization, and process diagonally aligned cells in
parallel, receiving necessary data, which was just calculated in the previous step
by the neighbor threads, via shared memory. Finally, after all the cells are pro-
cessed, they store the results which are necessary for the subsequent calculation
in the next grid execution on the device memory. The necessary region includes
only boundary part of the parallelogram block, which is colored gray in the left
block of Figure 4, so the thread block has to store only the values of gray part
in the right block of Figure 4 and do not have to do those of the whole inside of
the block.

Furthermore, we adopted bidirectional calculation. Edit distance can also be
calculated by putting together edit distance of prefixes of the two strings and
that of suffixes. They can be calculated in parallel, and by using this property, the
process of calculating edit distance can be divided into two half-size processings
and post-processing whose amount of calculation is at most proportional to the
length of the strings. By this division, the total amount of calculation slightly
increases by the post-processing. Instead, the parallelism doubles, so the number
of thread blocks per grid, and naturally that of threads, also doubles. In GPU
computing, it is important to increase the number of threads in terms of latency
hidind and load balancing, and as a whole it mostly results in an improvement
in performance.

3 Optimization of Block Size

It is important to configure appropriate values of block size parameters, W and
H in Figure 2, because they determine various quantities related to performance
of the parallel algorithm for GPU.

First, block size parameters determine the number of thread blocks in each
grid, which is important in terms of load balancing. At the same time, they
indirectly influence the number of active threads per MP by determining the size
of resources, such as shared memory and registers, needed by a thread block. In
grid execution, each MP executes multiple thread blocks in parallel by frequently
switching the thread block to be executed. Here, the resources of the MP are
distributed to the concurrently executed thread blocks. Therefore, the number
of active thread blocks is limited by the total size of resources divided by the
size a thread block uses. Basically it is desirable to increase the number of active
threads in terms of latency hiding. Note that the number of active thread blocks
per MP can not be more than eight because of the specification of CUDA, and
accordingly, too small block size reduces not only the number of threads per
thread block but also that of active threads per MP.

The block size parameters also determine the total amount of access to the
device memory and other additional calculation arisen from parallelization, in-
cluding grid executions. Generally, selecting small block size increases such cost.

Automatic Parameter Optimization for Edit Distance Algorithm on GPU 427

Besides, it is also important to appropriately configure the proportion of W to
H in order to reduce the cost.

Therefore, the block size should be carefully chosen considering trade-offs
among these factors. In this research, we constructed a model to estimate the
grid execution time from the parameters, and made the system to choose the
block size which minimize the total computation time estimated on the model.

Considering GPU architecture, there are not so many options of appropriate
values of block size parameters, so we adopted full search: estimating the total
computation time for all of the options, and actually calculating edit distance
on the block size which minimize the estimated execution time.

In the following sections, we introduce a model for estimating the grid execu-
tion time, and then how to estimate values of parameters in the model.

3.1 Model of Grid Execution Time

In order to choose optimum block size parameters, we constructed a model to
estimate the grid execution time from block size parameters W and H , and the
maximum number BMP of thread blocks per MP, which is obtained from the
total number Btotal of thread blocks and the number NMP of MPs as follows

BMP =

⌈
Btotal

NMP

⌉
.

First, we calculated the maximum number Bact of active blocks. It is limited by
the following two factors. One is the used resource size. In our algorithm, the
number of used registers is not so large as to limit the number of active threads,
but the shared memory usage may do. A thread block uses (W +H) of character
size area for storing the compared substring, and (W +H) of integer size area
for sharing values of the cells among the threads. Then, the number of active
blocks is not more than the quotient of the total size of shared memory per MP
and the used amount described above. The other factor is the specification of
CUDA. The maximum number of active threads per MP is 1024, so Bact must
not be more than the quotient of 1024 and the number of thread per thread
block. In addition, the number Bact of active blocks itself is also limited not to
exceed 8. Consequently, Bact is obtained as the maximum number such that all
the above conditions are satisfied.

Then, we introduce our model to estimate the grid execution time from W ,
H , and Bact. In this parallel algorithm, each thread block first loads necessary
data from the device memory all at once. Then, after synchronizing all threads
in the block, threads start calculating values of the cells assigned to themselves
with synchronization and communication with the neighbor threads through
the shared memory. Finally, they write the results back on the device memory.
The amount of main calculation per thread block is approximately proportional
to the number of cells in the block region, that is to say, the product of W
and H . On the other hand, the size of the data read from and written on the
device memory has linear relationship to W and H . Besides, there are trivial

428 A. Tomiyama and R. Suda

processing whose amount is at most linear to W or H . Therefore, as the most
fundamental approximation, the total amount of calculation of the grid per MP
can be expressed as BMP (a0WH+a1W+a2H+a3), where each ai is a constant.
This approximation, however, may not be accurate depending on the degree of
latency hiding.

Fig. 5. Latency hiding

Figure 5 represents a simplified model of the flow of instruction execution in a
thread block of the parallel edit distance algorithm. The left figure corresponds
to the case when Bact is three and the latency of the device memory access is not
fully hidden, while the right one corresponds to the case when Bact is five and
the latency is fully hidden. In this algorithm, threads in the same thread blocks
are synchronized before and after the access to the device memory. Therefore,
during the memory access of one thread, only threads in different active thread
blocks can contribute to latency hiding by executing the main task of calculating
edit distance. The latency is completely hidden when the total latancy of one
thread is shorter than the occupation time of computing units by threads in all
active blocks except one.

Based on this model, the grid execution time, if the total number of blocks
BMP is less than Bact, can be simply approximated by the expression

TBS(W,H,BMP) = BMP · (a00WH + a01W + a02H + a03) +

(a04WH + a05W + a06H + a07).

The first term of the expression represents the main computation time of all the
threads, while the second term represents the latency remained unhidden.

On the other hand, it depends on whether the latency is fully hidden or not
how much extra time is needed for grid execution when the number of thread
blocks in the grid increases by Bact. When the latency is not fully hidden, as
described in the left one of Figure 5, a new thread block should wait for the
completion of an old one without executable instruction in the MP, so the extra
time can be approximated by the turn around time of execution of one thread
block, the expression of which is

TDL(W,H,Bact) = (a14WH + a15W + a16H + a17).

Automatic Parameter Optimization for Edit Distance Algorithm on GPU 429

When the latency is fully hidden, some sort of calculation is always executed
on the MP even during the latency of memory access, so the extra time can be
approximated by the total amount of calculation of Bact thread blocks expressed
as

TDH(W,H,Bact) = Bact · (a20WH + a21W + a22H + a23).

By using these functions, the grid execution time in each condition can be ap-
proximated by the expression

TTL(W,H,BMP , Bact) = TBS(W,H,BMP%Bact) + TDL(W,H,Bact) ·
⌊
BMP

Bact

⌋

if the latency is not fully hidden, and otherwise, it is approximated by

TTH(W,H,BMP , Bact) = TBS(W,H,BMP%Bact)+TDH(W,H,Bact) ·
⌊
BMP

Bact

⌋
.

Whether the latency is fully hidden or not can be determined by comparing
the function values: fully hidden when the value of TDL(W,H,Bact) is smaller
than that of TDH(W,H,Bact), and otherwise, not fully hidden. Therefore, the
execution time is also approximately expressed as

max(TTH(W,H,BMP , Bact), TTL(W,H,BMP , Bact)).

In this way, the problem of estimating grid execution time comes down to that
of estimating parameters aij in the functions TBS, TDL, and TDH . Note that, in
practice, we extended the forms of the functions TDL and TDH into

TDL(W,H,BMP) = BMP · (a10WH + a11W + a12H + a13) +

(a14WH + a15W + a16H + a17)

TDH(W,H,BMP) = BMP · (a20WH + a21W + a22H + a23) +

(a24WH + a25W + a26H + a27),

the same in form as TBS , for improving the quality and for convenience sake.

3.2 Parameter Estimation

We introduce the way of estimating values of parameters aij in the functions
TBS, TDL, and TDH from the sample data of block size parameters, the number
of thread blocks, and the grid execution time.

As explained in the previous section, the grid execution time is approximated
by the greater value of the two: linear combination of TBS and TDL, and that
of TBS and TDH . Moreover, the three functions have linear relationships to the
parameters aij . Therefore, values of the parameters aij can be approximated by
using linear least-squares method if it is possible to determine in which case each
performance data belongs to: the case where the latency is fully hidden or the
other.

430 A. Tomiyama and R. Suda

Then, we adopted iterative refinement method alternately repeating classifi-
cation and parameter estimation. From the viewpoint of the model introduced
in the previous section, whether latency is fully hidden or not basically depends
on the ratio between the number of times loading from and storing on the device
memory per thread and the total amount of calculation of all active thread blocks
except one. By comparing this ratio to appropriately predetermined threshold,
we can roughly judge in which class each performance data belongs, and by
regarding this result as initial classification, values of the parameters can be
estimated by the linear least-squares method. Once the parameter values are
approximately obtained, the classification can be updated by another criterion:
which of the two estimating function TTH and TTL each sample of performance
data is near to. Repeating this cycle of parameter estimation and classification
a few times, better approximation of values of parameters can be obtained.

4 Experiments and Results

In this chapter, we show some results of estimation of grid execution time, and
efficiency of block size optimization based on this estimation.

Here, we used two GPUs: an old one called Quadro FX 4800, and a relatively
new one called Tesla C2075, which is based on Fermi architecture. Quadro FX
4800 has 24 MPs, each of which has 16384 bytes of shared memory and can
execute at most 1024 threads in parallel, while Tesla C2075 has 14 MPs and
49152 bytes of shared memory at each, and the maximum number of active
threads per MP is 1536.

We measured the grid execution time varying the block size W from 32 to 512
on multiples of 32, H from 16 to (1024−W) on multiples of 16, and the total
number of blocks Btotal from 1 to 504. Then, we estimated parameter values of
the model of grid execution time by the method introduced in Section 3, and
compared estimated time by the model with the measured value.

The actual grid execution time and estimated one on some H from 160 to
384 at step 32 when W was 32 are shown in Figures 6 - 9. In these graphs,
the horizontal axis corresponds to the number of thread blocks Btotal while the
vertical axis corresponds to the execution time on the millisecond time scale.

When W is 32, the number of active threads per MP is limited by the restric-
tion of that of active blocks per MP, so in this example the latency of the device
memory access was not fully hidden. Therefore, the execution time jumped at
points where Btotal exceeded multiples of Bact ·NMP , which corresponds to the
left case in Figure 5. Broadly speaking, the graph of estimated time reproduced
that of actual time well.

However, they have some errors in detail. Figure 10 and Figure 11 show the
ratio of estimated grid execution time to actual one when W was 32, with Btotal

on the horizontal axis. In both graphs, periodical waves were observed, but
they are qualitatively different. As Figure 6 shows, the slow increment of time,
represented by TBS in the previous chapter, is almost the same independent of
the range of the number of thread blocks on Quadro FX 4800, so its error is

Automatic Parameter Optimization for Edit Distance Algorithm on GPU 431

Fig. 6. Actual grid execution time
(W = 32, Quadro FX 4800)

Fig. 7. Estimated grid execution time
(W = 32, Quadro FX 4800)

Fig. 8. Actual grid execution time
(W = 32, Tesla C2075)

Fig. 9. Estimated grid execution time
(W = 32, Tesla C2075)

Fig. 10. Approximation ratio
(W = 32, Quadro FX 4800)

Fig. 11. Approximation ratio
(W = 32, Tesla C2075)

432 A. Tomiyama and R. Suda

Fig. 12. Actual grid execution time
(W = 256, Quadro FX 4800)

Fig. 13. Estimated grid execution time
(W = 256, Quadro FX 4800)

Fig. 14. Actual grid execution time
(W = 256, Tesla C2075)

Fig. 15. Estimated grid execution time
(W = 256, Tesla C2075)

Fig. 16. Approximation ratio
(W = 256, Quadro FX 4800)

Fig. 17. Approximation ratio
(W = 256, Tesla C2075)

Automatic Parameter Optimization for Edit Distance Algorithm on GPU 433

reduced by refining the approximation of TBS . In Figure 8, on the other hand,
the slow increment when the number of thread blocks is from 1 to 104 and that
when it is from 937 to 1040 is visibly different. It seems to be caused by adoption
of device memory cache and development of scheduling system on Tesla C2075.
Therefore, in order to improve the approximation accuracy on new GPUs, it is
indispensable to revise our model itself which approximate the execution time
by the sum of the slow increment TBS and the rapid increment TDH or TDL.

Figures 12 - 15 show the actual and estimated time of grid execution respec-
tively when W was 256. In this case, the number of active threads per MP was
so large that the latency of the device memory access was fully hidden by in-
struction execution of other threads. Therefore, the execution time constantly
increased every NMP threads, which corresponds to the right case in Figure 5.

Figure 16 and Figure 17 show the ratio of estimated grid execution time to
actual one when W was 256.

Just as the case when W was 32, there were some errors in TBS when the
number of blocks is small. In other points, however, the model accurately ap-
proximated the execution time, and the approximation error was within about
3% of the actual value except for the case with too small number of thread
blocks.

The results of experiments suggests that most of the approximation error
in our model was in TBS and TDL, that is to say, the approximation in case
when the latency was not fully hidden. Our model puts emphasis simply on the
number of instructions and the effect of latency hiding of the device memory
access because they have the most powerful influence on the performance, but
there are some other factors we did not considered. For example, it is officially
informed that registers of GPU are also source of generating delays, and it is also
hidden by securing sufficient number of active threads. Moreover, as mentioned
above, the influence of device memory cache is not negligible on new machines.
Our model cannot adapt to the two-stage bends of performance curve caused by
latency hiding of both the device memory and registers, which may be a cause
of the approximation error. This remains to be a future work.

5 Conclusion

In this research, we parallelized the dynamic programming algorithm for calcu-
lating edit distance on GPU. In GPU Computing, the cost of the device memory
access is in many cases a primary factor to slow down the performance because
of its high latency, so it is important to utilize the shared memory as a cache and
to hide the latency by meantime-executed arithmetic instructions, in addition
to merely reducing the number of access itself. Besides, load balancing is also
important in order to exploit the full performance of the GPU’s vast computing
resources.

Considering these facts, we suggested a blocking algorithm, and constructed
a model to estimate grid execution time for the purpose of optimizing block
size. In our model, especially taking into account the latency of memory refer-
ence instructions, we expressed the relationship between the number of active

434 A. Tomiyama and R. Suda

threads, the block size, and the grid execution time. By selecting the block size
to minimize the total computation time obtained from this model, we tried to
find optimum trade-off between load balancing and the cost of memory access
and other extra processing accompanied with the block splitting. Consequently,
we succeeded in automatically selecting nearly optimum block size in terms of
computation time.

Our model is specific to the dynamic programming algorithms, but there
are several problems which have similar data dependency, the Smith-Waterman
algorithm, SORmethod, preprocessing of ICCGmethod, and so forth. Therefore,
we think our model has some application range. In the edit distance algorithm,
the number of active threads is determined almost exclusively by the length of
strings, but other algorithms usually consume more GPU resources, and this may
limit the number of active threads. In such cases, it is indispensable to consider
the effect of latency hiding as done in our work. Application of the model for
grid execution time to more complicated algorithms is one of the challenges for
the future, as well as improvement in accuracy of the current model and its
adaptation to new GPUs.

Acknowledgements. This work is partially supported by CREST project
“ULP-HPC: Ultra Low-Power, High-Performance Computing via Modeling and
Optimization of Next Generation HPC Technologies”, JST.

References

1. Dohi, K., Benkrid, K., Ling, C., Hamada, T., Shibata, Y.: Highly efficient mapping of
the Smith-Waterman algorithm on CUDA-compatible GPUs. In: ASAP, pp. 29–36
(2010)

2. Ling, C., Benkrid, K., Hamada, T.: A parameterisable and scalable Smith-Waterman
algorithm implementation on CUDA-compatible GPUs. In: 2009 IEEE 7th Sympo-
sium on Application Specific Processors, pp. 94–100 (2009)

3. Liu, Y., Huang, W., Johnson, J., Vaidya, S.: GPU accelerated Smith-Waterman. In:
Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006.
LNCS, vol. 3994, pp. 188–195. Springer, Heidelberg (2006)

4. Liu, Y., Maskell, D.L., Schmidt, B.: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC Re-
search Notes 2(1), 73 (2009)

5. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware ac-
celerators for Smith-Waterman sequence alignment. BMC Bioinformatics 9(suppl.
2), S10 (2008)

6. Munekawa, Y., Ino, F., Hagihara, K.: Design and implementation of the Smith-
Waterman algorithm on the CUDA-compatible GPU. In: BIBE, pp. 1–6 (2008)

7. NVIDIA Corporation. NVIDIA CUDA C Programming Guide Version 4.0

	Automatic Parameter Optimization for Edit Distance Algorithm on GPU
	1 Introduction
	2 Edit Distance Algorithm and Parallelization
	2.1 Dynamic Programming Algorithm
	2.2 GPU Architecture
	2.3 Parallelization and Blocking

	3 Optimization of Block Size
	3.1 Model of Grid Execution Time
	3.2 Parameter Estimation

	4 Experiments and Results
	5 Conclusion
	References

