
Auto-tuning of Numerical Programs
by Block Multi-color Ordering Code Generation

and Job-Level Parallel Execution

Tatsuya Abe1 and Mitsuhisa Sato2,1

1 Advanced Institute for Computational Science, RIKEN, Hyogo, Japan
abet@riken.jp

2 Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
msato@cs.tsukuba.ac.jp

Abstract. Multi-color ordering is a parallel ordering that allows programs to
be parallelized by application to sequentially executed parts of the programs.
While multi-color ordering parallelizes sequentially executed parts with data de-
pendences and increases the number of parts executed in parallel, improved per-
formance by multi-color ordering is sensitive to differences in the architectures
and systems on which the programs are executed. This sensitivity requires us to
tune the numbers of colors; i.e., modify programs for each architecture and sys-
tem. In this work, we develop a code generator based on multi-color ordering and
automatically tune the number of colors using a job-level parallel scripting lan-
guage Xcrypt. Furthermore, we support block multi-color ordering that avoids the
disadvantage of stride accesses in the original multi-color ordering, and evaluate
and clarify the effectiveness of block multi-color ordering.

Keywords: Block multi-color ordering, source-to-source code generation, job-
level parallel execution, scripting parallel language.

1 Introduction

Parallelization is a method applied to programs that allows us to parallelize sequen-
tially executed parts of the program. Parallel orderings are parallelizations that extend
the parts of a program executed in parallel by changing the order of computation in the
program [1]. Why do the parts of a program executed in parallel increase when chang-
ing the order of computation in the program? To answer this, consider the following
program as an example.

x(:) = 0

x(1) = 1

do i = 2, 100

x(i) = x(i-1)

end do

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 404–419, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Block Multi-color Ordering Code Generation and Job-Level Parallel Execution 405

In the above program, x(i) is initially 0, and then becomes 1 for any i. In this pro-
gram, computation order is significant. If x(3)were computed in advance, x(3)would
remain 0, whereas x(i) would be 1 for all i except 3. This is because x(i) depends
on x(i-1), and this data dependence obviously prevents the loop in the program from
being parallelized.

In the above program, the computation order cannot be changed since the semantics
of the program relies on the order. However, this is not always the case. There are some
programs whose order of computation can be semantically changed. For example, recall
the Gauss-Seidel method for solving systems of linear equations.

The Gauss-Seidel method is an iterative method. Roughly speaking, the point of the
Gauss-Seidel method is to update values immediately, i.e., to use values at the n-th time
step to calculate the n-th time step:

un
i =

1
aii

(bi −
i−1∑

j=1

ai ju
n
j −

n∑

j=i+1

ai ju
n−1
j)

where un
i denotes the i-th column of solution candidates at the n-th step and ai j denotes

the element in the i-th row and j-th column of the coefficient matrix. This calculation is
different from that in the Jacobi method where values at the n-th step are not only used
in the n-th step, but also in the (n + 1)-th step:

un
i =

1
aii

(bi −
i−1∑

j=1

ai ju
n−1
j −

n∑

j=i+1

ai ju
n−1
j) .

While both the Gauss-Seidel and Jacobi methods are used to solve systems of linear
equations, the values of u at the n-th step in these two methods are different. Neverthe-
less, this is not actually a problem. The aim in solving a system of linear equations is
to find a solution of the system of linear equations. Both the Gauss-Seidel and Jacobi
methods give us solution candidates for each system of linear equations. These solution
candidates can be checked by being substituted into the system of linear equations. In
this sense, differences in intermediate values along the way do not constitute a problem.

The Gauss-Seidel method contains data dependences. If we ignore these data depen-
dences by changing the ordering, that is, we forcibly parallelize sequentially executed
parts of a program, then intermediate values along the way would be different from
those in the original program. Therefore, we must choose a legal ordering that leads to
legal solutions.

In this paper, we propose automatic parallelization by using a parallel ordering called
multi-color ordering. Furthermore, our method supports block multi-color ordering that
avoids the disadvantage of the original multi-color ordering, namely, stride accesses,
which result in degraded performance. Our method relies on code generation using
block multi-color ordering, and job-level parallel execution. The proposed method pro-
vides programmers with an environment in which to modify and tune programs by
block multi-color ordering.

It should be noted that multi-color ordering changes the algorithm, i.e., the semantics
of the program. This distinguishes the work in this paper from studies on compilers.

406 T. Abe and M. Sato

Compilers do not change the semantics of programs although they may raise numerical
errors by exchanging the order of operations in programs as a result of optimization1.
This work is beyond the scope of compilers, and targets what compilers should not do.
It is up to the programmers to apply the proposed method to their programs, and in this
respect, great care should be taken.

We formalize the parallelization of block multi-color ordering, thus allowing it to
be implemented by computers. We would also like to handle a large number of pro-
grams instantiated with parameters simultaneously. Using existing tools like Bash for
this seems to be adequate. However, this is not the case. Given that anyone can execute
a program in a parallel or distributed computational environment, higher portability is
required for tools on computers. In reality, parallel and distributed computational en-
vironments often have batch job systems to manage and control the execution of jobs,
and keep the execution of one job separate from that of another. These batch job sys-
tems usually require text files containing job scripts. In other words, when executing
a large number of programs simultaneously in a parallel or distributed computational
environment, we need to create a large number of job scripts. It is tedious to do this
using existing tools like Bash.

In this work we propose using a scripting language domain specific to job-level par-
allel execution, namely Xcrypt [2]. Xcrypt absorbs differences between computational
environments and is suitable for parameter sweeps since it was originally designed for
executing and controlling such programs. Since we have developed a code generator
for block multi-color ordering, i.e., applying block multi-color ordering to programs is
semi-automatic, we can easily automate the execution of programs with block multi-
color ordering in parallel and distributed computational environments using Xcrypt. In
this paper we introduce the method by means of an example.

Outline. In Sect. 2 we introduce multi-color ordering in detail. In Sect. 3 we explain
block multi-color ordering, which overcomes the disadvantage of multi-color ordering
as described in Sect. 2. In Sect. 4 we give an overview of how to automatically tune
programs to which block multi-color ordering has been applied. In Sect. 5 we explain
the code generator based on block multi-color ordering. In Sect. 6 we introduce the
job-level parallel scripting language Xcrypt, which is used to execute block multi-color
ordered programs automatically, while in Sect. 7 we evaluate our method through ex-
perimental results. In Sect. 8 we conclude this work with reference to future work.

2 Multi-color Ordering

Multi-color ordering is a parallel ordering that parallelizes programs with data depen-
dences by exchanging the order of computation of columns of matrices [1]. For the pur-
pose of understanding parallelization, consider the differences in the settings of three-
dimensional real space R3 for the following program:

1 For example, the Intel Composer XE compiler has a compile option -par-report to show
reports on parallelization, while version 12.1 has the option -guide to provide detailed hints.
However, the compiler does not give any hints that change the semantics of the program.

Block Multi-color Ordering Code Generation and Job-Level Parallel Execution 407

integer x_num, y_num, z_num

real(8), allocatable :: u(:,:,:), f(:,:,:), dgn(:,:,:)

real(8), allocatable :: axp(:,:,:), axm(:,:,:)

real(8), allocatable :: ayp(:,:,:), aym(:,:,:)

real(8), allocatable :: azp(:,:,:), azm(:,:,:)

integer i, j, k

...

do k = 2, z_num+1

do j = 2, y_num+1

do i = 2, x_num+1

u(i, j, k) = (f(i, j, k)-&

axp(i, j, k)*u(i+1, j, k)-&

axm(i, j, k)*u(i-1, j, k)-&

ayp(i, j, k)*u(i, j+1, k)-&

aym(i, j, k)*u(i, j-1, k)-&

azp(i, j, k)*u(i, j, k+1)-&

azm(i, j, k)*u(i, j, k-1)&

)/dgn(i, j, k)

end do

end do

end do

Fig. 1. Sample code in Fortran 90

un(i, j, k) = (f (i, j, k)

− ax+(i, j, k)un−1(i + 1, j, k) − ax−(i, j, k)un(i − 1, j, k)

− ay+(i, j, k)un−1(i, j + 1, k) − ay−(i, j, k)un(i, j − 1, k)

− az+(i, j, k)un−1(i, j, k + 1) − az−(i, j, k)un(i, j, k − 1)

) / dgn(i, j, k)

where dgn(i, j, k), f (i, j, k), ax+(i, j, k), ax−(i, j, k), ay+(i, j, k), ay−(i, j, k), az+(i, j, k), and
az−(i, j, k) are various functions from the three-dimensional space to the set of real num-
bers R. un(i, j, k) denotes the value of (i, j, k) at the n-th time step. The equation shows
that un−1(i + 1, j, k), un−1(i, j + 1, k), un−1(i, j, k + 1), un(i − 1, j, k), un(i, j − 1, k), and
un(i, j, k − 1) are used to obtain un(i, j, k). This is done by iterating loops controlled
by the third (z-axis), second (y-axis), and first (x-axis) arguments in order, that is, the
equation is coded as in Fig. 1 where f, axp, axm, ayp, aym, azp, azm, and dgn denote
f , ax+, ax−, ay+, ay−, az+, az−, and dgn, respectively. In the program, no loop can be
parallelized, i.e., iterations in loops cannot be executed in parallel since each pair of
iterations in the loops has data dependences.

Multi-color ordering forces such loops to be parallelized, i.e., some iterations in the
loops are executed in parallel. It appears that parallelization changes the semantics of

408 T. Abe and M. Sato

G

��
��
��
��

B

��
��
��
��

R

��
��
��
��

R

��
��
��
��

G

��
��
��
��

B

B R

��
��
��
��

G

��
��
��
��

��������
B

��
��
��
��

B

��
��
��
��

R

��
��
��
��

G

G B R

��������
G

��
��
��
��

G

��������
B

��������

��
��
��
��

R

��
��
��
��

R

��������
G B

Fig. 2. Multi-color ordering of lattice points

the program. This is true. However, multi-color ordering does not force all iterations in
the loops to be executed in parallel. Adjacent pairs on the three-dimensional lattice are
not executed in parallel. An example with the number of colors set to 3, is illustrated
in Fig. 2 where the lattice points executed in parallel are colored in the same color for
simplicity. Here, R, G, and B are colored in red, green, and blue, respectively.

The program is one for stencil computation. Any lattice point immediately affects
adjacent lattice points. Adjacent pairs should not be considered for parallel execution.
Multi-color ordering executes computations at distinct lattice points. Actually, the se-
mantics of a program to which multi-color ordering has been applied is different from
that of the original program. Therefore, we cannot apply multi-color ordering to all
programs and should take care in applying this ordering to programs.

Iterative methods for solving systems of linear equations are typical examples of pro-
grams to which we can apply multi-color ordering. These methods involve a sequence
of initial values that is iteratively updated to a new sequence, and finally becomes a solu-
tion. Since a sequence is often proved to be a legal solution by substituting the sequence
in the linear equations and analyzing the residual errors, intermediate values on the way
do not matter. A change in ordering affects only the convergence rate. Therefore, we
can apply multi-color ordering to such iterative methods.

We conclude this section by showing the effect of applying multi-color ordering
to a program. In general, there are certain sufficient conditions that prevent adjacent
lattice points from being colored in the same color. To enable us to consider these

Block Multi-color Ordering Code Generation and Job-Level Parallel Execution 409

sufficient conditions in this section, we consider an equation in one-dimensional space.
The following program:

do i = 2, x_num+1

u(i) = (f(i)-axp(i)*u(i+1)-axm(i)*u(i-1))/dgn(i)

end do

is translated to

mulco_color_num = 3

do mulco_color = 0, mulco_color_num-1

do i = 2+mulco_color, x_num+1, mulco_color_num

u(i) = (f(i)-axp(i)*u(i+1)-axm(i)*u(i-1))/dgn(i)

end do

end do

where mulco color num denotes the number of colors. Here, it is assumed to be 3. The
mulco color is a loop variable over 0, . . . , mulco color num. When mulco color
is 0, computations at the red lattice points are executed in the loop. Similarly, when
it is 1, computations at the green points are executed, and when mulco color is 2,
computations at the blue points are executed. In other words, multi-color ordering is a
parallelization that executes independent computations (on non-adjacent lattice points)
in parallel.

3 Block Multi-color Ordering

Multi-color ordering parallelizes sequentially executed parts with data dependences and
increases the number of parts executed in parallel. However, the naı̈ve implementation
of multi-color ordering described in the previous section has the disadvantage of stride
accesses, that is, jumps in accessing elements in arrays, thereby decreasing the perfor-
mance of programs.

To avoid this disadvantage, block multi-color ordering, which is called block red-
black ordering when two colors are used, has been proposed [3]. A deterioration in per-
formance is caused by stride accesses to elements in arrays. Block multi-color ordering
prevents iterations in loops from becoming too fine-grained and keeps loop iterations
coarse-grained. Whereas multi-color ordering colors lattice points, block multi-color
ordering colors sets of lattice points called blocks. While computations in blocks are
executed sequentially, blocks are processed in parallel. When the block size is 1, block
multi-color ordering is simply multi-color ordering. Conversely, the larger the grain
size, the more sequential a program with block multi-color ordering becomes.

Block sizes for block multi-color ordering are customizable. The following are ex-
amples of blocks with sizes 1 and 2:

R G B R G B R

R R G G B B R

410 T. Abe and M. Sato

where lattice points R, G, and B are colored in red, green, and blue, respectively.
Thus, block multi-color ordering decreases the number of stride accesses in programs
and enables us to benefit from parallel computational environments. Extensions of the
applicable scope of block multi-color ordering are therefore studied [4].

4 Toward Auto-tuning

Block multi-color ordering is one of the parallelizations that can be applied to pro-
grams. As described in Sect. 3, we can customize block sizes and the number of colors.
However, block multi-color ordering requires us to modify the program source code ac-
cording to the block size and number of colors. Moreover, the performance of programs
to which multi-color ordering has been applied is known to be sensitive to the number
of colors [5].

In this work we relieve programmers of modifying their source code in order to
apply block multi-color ordering to their programs. Concretely, we develop a source
code generator for programs written in Fortran 90. The code generator analyzes the
Fortran 90 source code both lexically and syntactically, and returns a program with
block multi-color ordering.

Furthermore, we provide programmers with an environment for automatically tun-
ing their programs with block multi-color ordering. Since the code generator enables
us to apply block multi-color ordering to programs automatically, it is sufficient to set
the block size and number of colors for automatic tuning of our programs. Then, we
use job-level parallel execution. Job-level parallel execution is the coarsest form of par-
allel execution, and does not require any modifications to the programs for execution
in parallel. Job-level parallel execution is suitable for tuning programs with parameter
sweeps. We make it possible to apply block multi-color ordering to programs automat-
ically by using techniques for code generation and job-level parallel execution.

5 A Code Generator for Block Multi-Color Ordering

We have developed a code generator based on block MULti Color Ordering (Mulco).
Mulco takes Fortran 90 source code and returns source code that includes block multi-
color ordering. Mulco supports programs with computations in n-dimensional space
(n = 1, 2, 3). Mulco also takes as parameters, the number of colors and the x-axis block
size. However, this version of Mulco limits the y- and z-axes block sizes to 1. This is
because it is sufficient to allow only the x-axis block size to be customizable for the
purpose of removing stride accesses, which is the main disadvantage of multi-color
ordering.

We reuse the sample code for the three-dimensional space given in Section 2 with
the only difference being that the outermost loop has an annotation !$bmulco(3) as
shown in Fig. 3. Mulco applies block multi-color ordering to a program when it finds
!$bmulco(n) in the source code of the program, where n denotes the number of di-
mensions. Since n is 3 in the sample code, Mulco applies block multi-color ordering
in a three-dimensional space to the program. Mulco translates the sample code into
that given in Fig. 4, in which we have manually added extra carriage returns owing to

Block Multi-color Ordering Code Generation and Job-Level Parallel Execution 411

!$bmulco(3)

do k = 2, z_num+1

do j = 2, y_num+1

do i = 2, x_num+1

u(i, j, k) = (f(i, j, k)-&

axp(i, j, k)*u(i+1, j, k)-&

axm(i, j, k)*u(i-1, j, k)-&

ayp(i, j, k)*u(i, j+1, k)-&

aym(i, j, k)*u(i, j-1, k)-&

azp(i, j, k)*u(i, j, k+1)-&

azm(i, j, k)*u(i, j, k-1)&

)/dgn(i, j, k)

end do

end do

end do

Fig. 3. Sample Fortran 90 code with an annotation

the limitations on page size for the paper. Actually, Mulco adds the minimal carriage
returns compatible with the Fortran 90 grammar.

Variables mulco color num and mulco block size n (n = 1, 2, 3) denote the num-
ber of colors and the sizes of blocks (1 : x-axis, 2 : y-axis, and 3: z-axis), respectively.
Although mulco block size 2 and mulco block size 3 give the sizes of the y- and
z-axes blocks, the current version of Mulco does not support them, i.e., they are fixed
at 1. The number of colors and the size of the x-axis blocks are given to Mulco as argu-
ments. Variables mulco block num 2 andmulco block num 3 denote the number of
y- and z-axes blocks, respectively. Since we fix the sizes of the y- and z-axes blocks to
1, the numbers of y- and z-axes blocks correspond with the numbers of y- and z-axes
lattice points, respectively. Variable mulco block num 1 denotes the minimum number
of x-axis blocks containing all colors, i.e., the quotient of the number of x-axis blocks
and the number of colors.

Variable mulco color is the loop variable that represents the color using values 1 or
2, since mulco color num is 2. As mentioned in Sect. 2, when the number of colors is
2, the ordering is called a block red-black ordering. In the language of block red-black
ordering, all blocks in red (or black) are processed before any blocks in black (or red,
resp.).

Directives !$omp parallel and !$omp do are OpenMP directives [6]. The direc-
tive !$omp do dictates that iterations in the loop should be executed in parallel. Mulco
generates source code in which the outermost loop (z-axis) in a space is parallelized. It
should be possible to parallelize a loop of colors when the number of colors is greater
than the number of threads the computer can handle. However, we have not achieved
anything significant in our experimental setting discussed in Sect. 7. Therefore, we re-
frain from referring to this in the paper.

412 T. Abe and M. Sato

!$bmulcoed(3)

mulco_color_num = 2

mulco_block_size_3 = 1

mulco_block_size_2 = 1

mulco_block_size_1 = 16

mulco_block_num_3 = ((z_num+1-2)+1)/mulco_block_size_3

mulco_block_num_2 = ((y_num+1-2)+1)/mulco_block_size_2

mulco_block_num_1 = &

((x_num+1-2)+1)/(mulco_color_num*mulco_block_size_1)

do mulco_color = 0, mulco_color_num-1

!$omp parallel

!$omp do

do mulco_block_3 = 0, mulco_block_num_3-1

do k = 2+mulco_block_size_3*mulco_block_3, &

2+mulco_block_size_3*(mulco_block_3+1)-1

do mulco_block_2 = 0, mulco_block_num_2-1

mulco_color_remainder = &

mod((mulco_color+mulco_block_3+mulco_block_2),&

mulco_color_num)

do j = 2+mulco_block_size_2*mulco_block_2, &

2+mulco_block_size_2*(mulco_block_2+1)-1

do mulco_block_1 = 0, mulco_block_num_1-1

do i = 2+mulco_block_size_1*(mulco_color_remainder+&

mulco_block_1*mulco_color_num), &

2+mulco_block_size_1*(mulco_color_remainder+&

mulco_block_1*mulco_color_num+1)-1

u(i, j, k) = (f(i, j, k)-&

axp(i, j, k) * u(i+1, j, k)-&

axm(i, j, k) * u(i-1, j, k)-&

ayp(i, j, k) * u(i, j+1, k)-&

aym(i, j, k) * u(i, j-1, k)-&

azp(i, j, k) * u(i, j, k+1)-&

azm(i, j, k) * u(i, j, k-1) &

)/dgn(i, j, k)

end do

end do

end do

end do

end do

end do

!$omp end do

!$omp end parallel

end do

Fig. 4. Translation of the Fortran 90 code based on block multi-color ordering

Block Multi-color Ordering Code Generation and Job-Level Parallel Execution 413

Variables i, j, and k are loop variables ranging from the initial to terminal points of
the blocks. Note that the initial point of i is offset by mulco color remainder, the sum
of mulco color, mulco block 3, and mulco block 2 modulo mulco color num.
This is the point of block multi-color ordering that prevents any adjacent pair of lat-
tice points from being colored in the same color.

As an aside, Mulco can also generate code with a multi-color ordering as given in
Sect. 2 when finding the annotation !$mulco(1).

6 A Scripting Language for Job-Level Parallel Execution

In this section we introduce the scripting language for job-level parallel execution,
Xcrypt, developed by Hiraishi et al. [2]. In high performance computing, a program
is usually executed as a job through a batch job system to prevent other jobs from in-
terfering with that job. It is necessary to create a text file called a job script in order to
submit a job to a batch job system. In addition, the format of the job script depends on
the particular batch job system, making it difficult or tedious to submit, and moreover,
to control a large number of jobs.

Xcrypt is a domain specific language for controlling jobs. In Xcrypt there are differ-
ent layers for system administrators, module developers, and end users allowing admin-
istrators to configure Xcrypt systems, developers to provide useful modules for Xcrypt
users, and end users to use Xcrypt. With this mechanism, end users can control their
jobs without considering differences in systems.

Xcrypt is implemented almost as a superset2 of the Perl programming language, with
most of the new functionality implemented as functions or modules in Perl. This de-
creases the cost of learning a new scripting language that differs from existing scripting
languages.

The example Xcrypt script shown in Fig. 5 is used to highlight the syntax of Xcrypt.
The statement use base qw (limit core) is a Perl statement that declares super

classes similar to the notion in object oriented programming languages. Module core is
a required module in Xcrypt, while module limit limits the number of jobs submitted
at any one time. Xcrypt has special methods before and after that are executed before
and after executing a job, respectively. Module limit increments and decrements a
semaphore in the method before. These methods are used as hooks for a job, allowing
the number of submitted jobs to be controlled.

Module data extractor provides a way to extract data from text files. Various
methods of data extractor are used to obtain the elapsed time of execution later in
this script.

Function limit::initialize(1) sets the value of the semaphore to control the
number of submitted jobs.

2 Xcrypt has certain additional reserved keywords apart from those in Perl and includes name
spaces. However, Xcrypt supports the complete syntax of Perl, i.e., an interpreter for Xcrypt
can execute any script written in Perl.

414 T. Abe and M. Sato

use base qw (limit core);

use data_extractor;

limit::initialize(1);

foreach $j (1..9) {
$c = 2**$j;

foreach $i (0..(9-$j)) {
$x = 2**$i;

spawn {
system("./mulco bmulco3.f90 $c $x;" .

"ifort -openmp bmulco3_mulco.f90;" .

"time ./a.out");

}_after_in_job_{
my $self = shift;

$fh0 = data_extractor->new($self->JS_stderr);

$fh0->extract_line_rn(’real’);

$fh0->extract_column_nn(’end’);

my @output = $fh0->execute();

open ($fh1, ’>>’, ’result.dat’) or die $!;

print $fh1 "$c $x 1 1 $output[0]\n";

};
}

}
sync;

Fig. 5. Example script in Xcrypt

Variables c and x range over the colors and the x-axis block sizes, respectively. Any-
thing executed on computation nodes is written in a block statement spawn3. Since
the statement system executes the string given as an argument as a command, the
command is executed not at hand but on a computation node. Although a job script is
required for communicating with a batch job system as previously mentioned, Xcrypt
automatically creates an appropriate job script from the descriptions in the spawn block.
Program mulco refers to Mulco as explained in the previous section. Mulco takes the
source code written in Fortran 90, the number of colors, and the x-, y-, and z-axes block
sizes as arguments. We use the Intel Composer XE compiler version 12.1 with option
-openmp to use OpenMP. Mulco generates a Fortran 90 file with the name (the file name
of the source code) mulco.f90. Xcrypt also includes a block called after in job . Ev-
erything about extracting data in this block is asynchronously done after the main pro-
cessing of the job. It is implemented by Xcrypt’s special method after as described
before. It is useful to describe this in the terminology of object oriented languages.

3 Strictly speaking, spawn and the following after in job are not block statements, but func-
tions in Perl. Perl and various other modern scripting languages have such mechanisms as
syntax extensions.

Block Multi-color Ordering Code Generation and Job-Level Parallel Execution 415

Functions new, extract line rn, and extract column nn are methods in the mod-
ule data extractor as described. Function sync waits for all threads generated by
spawn to complete.

7 Experimental Results

In this section we present experimental results for the elapsed time in executing numer-
ical programs on one computation node4. The computer used in the experiments has the
following specifications:

CPU: Intel Xeon X5650 2.67 GHz
Cores: 12 (6 cores × 2)
Memory: 12 GB
OS: CentOS 6.2
Compiler: Intel Composer XE 12.1.2

In addition, we used -openmp as a compiler option as described in the previous section,
since the programs are parallelized using OpenMP. The program given in Fig. 3 was
used in these experiments. It makes use of nine arrays of real(8). Since the memory
size is 12 GB, the number of elements in a single array cannot be greater than (12 ·
109) /(9 · 23). Thus, we fix the size of a space at 512 ∗ 512 ∗ 512, since (12 · 109) /(9 · 23 ·
(29)3) ≈ 1.24 holds. Through the experiments we set out to investigate the relationship
between the number of colors and the size of blocks. We set the number of colors to be
greater than 1. Since the one-dimensional size of an array is 512, the maximum size of
a block side is 256.

First, we give the results for varying numbers of colors and block sizes in Table 1.
Some values in Table 1 are given as n/a owing to the limitation on the number of colors
and block sizes as explained above.

Next, we investigated the effect of varying the number of colors. Figure 6 illustrates
the results with the block size fixed at 1, i.e., non-block multi color ordering. As de-
scribed in Sect. 4 we can see that the performance of the program is sensitive to the
number of colors in block multi-color ordering, although not to the extent of being
called fragile. In general, there is an optimal threshold for the number of colors for
parallel execution. If the number of colors is less than the threshold, we cannot benefit
from parallel environments. If the number of colors is greater than the threshold, the
overhead of parallel execution contributes the greater part of the elapsed times. How-
ever, we did not obtain any results such as these. In our experiments, two colors was
almost always the best. Even with a lesser number of colors, parallel execution of the
inner loop may contribute to improved performance. Sensitivity to the number of colors
has been mentioned with respect to multi-color ordering. In fact, this can be seen in

4 In parallel and distributed computational environments the outermost loop in a program should
be parallelized not at thread-level, but at process-level, e.g., by using certain MPI libraries and
not OpenMP. This conforms to our proposal in Sect. 6 for using Xcrypt to execute programs
in parallel and distributed computational environments. We assume that this is done manually.
Mulco should be developed as generating a program in which the outermost loop is parallelized
not by OpenMP, but by MPI.

416 T. Abe and M. Sato

Table 1. Elapsed times (colors versus block size)

Time Colors
(sec.) 2 4 8 16 32 64 128 256 512

20 3.516 4.304 6.505 6.716 6.716 6.920 6.105 6.107 7.119
21 3.504 4.518 5.316 5.116 5.116 4.715 4.718 4.919 n/a
22 3.503 4.118 4.517 4.517 4.504 4.133 4.117 n/a n/a
23 3.326 3.703 3.923 3.917 3.717 3.726 n/a n/a n/a
24 3.317 3.704 3.514 3.512 3.306 n/a n/a n/a n/a
25 3.103 3.318 3.516 3.305 n/a n/a n/a n/a n/a
26 3.117 3.115 3.304 n/a n/a n/a n/a n/a n/a
27 3.103 3.118 n/a n/a n/a n/a n/a n/a n/a
28 2.903 n/a n/a n/a n/a n/a n/a n/a n/a
29 3.092 3.092 3.092 2.892 3.090 2.891 3.091 2.891 2.893
210 3.091 2.891 2.889 2.893 2.890 2.892 2.891 2.891 n/a
211 2.905 2.891 2.886 2.890 2.889 2.891 2.892 n/a n/a
212 2.896 2.891 2.893 2.892 2.891 2.894 n/a n/a n/a

Block size 213 2.891 2.891 2.891 2.889 2.891 n/a n/a n/a n/a
214 2.892 2.892 2.890 2.891 n/a n/a n/a n/a n/a
215 2.890 2.886 2.888 n/a n/a n/a n/a n/a n/a
216 2.891 2.893 n/a n/a n/a n/a n/a n/a n/a
217 2.891 n/a n/a n/a n/a n/a n/a n/a n/a
218 2.891 2.890 2.891 2.891 2.910 2.893 3.291 3.692 4.490
219 2.891 2.890 2.890 2.893 3.093 3.092 3.701 4.291 n/a
220 2.890 2.892 2.894 3.090 3.093 3.691 4.292 n/a n/a
221 2.891 2.892 3.091 3.091 3.692 4.292 n/a n/a n/a
222 2.891 2.888 3.291 3.691 4.274 n/a n/a n/a n/a
223 2.888 3.290 3.692 4.292 n/a n/a n/a n/a n/a
224 3.093 3.489 4.293 n/a n/a n/a n/a n/a n/a
225 3.491 4.292 n/a n/a n/a n/a n/a n/a n/a
226 4.292 n/a n/a n/a n/a n/a n/a n/a n/a

the histogram in Table 1 with only a single color. However, it seems to be unnecessary
to adjust the number of colors when the block size is large. We have not been able to
obtain any explicit results thus far.

Finally, we fixed the number of colors at 2, and obtained results for varying block
sizes as shown in Fig. 7. The best elapsed time is less than those for block size 1. That
is, the bar graph in Fig. 7 confirms that block multi-color ordering clearly contributes to
better performance of this program than non-block multi-color ordering. The best time
is found when the block size is 223. Since the number of lattice points of an object is
227, the number of iterations is 227/223 = 16. Since the number 16 is the upper bound
of more than the number of computational cores 12, it can be considered to be the best
to coarse-grainedness, an essence of block multi color ordering.

Block Multi-color Ordering Code Generation and Job-Level Parallel Execution 417

Fig. 6. Elapsed times (colors)

Fig. 7. Elapsed times (block sizes)

418 T. Abe and M. Sato

8 Conclusion, Related Work, and Future Work

In this paper we proposed an auto-tuning method incorporating code generation and
job-level parallel execution. The resulting code generator is based on block multi-color
ordering and we use a domain specific language, Xcrypt, for job-level parallel execu-
tion, making it easy to generate parameters and jobs from programs, and to control
the jobs. Experimental results for varying numbers of colors and blocks sizes were
presented.

As a means for implementing our method, we developed the code generator Mulco.
Using the directive !$bmulco(n) in the source code of a Fortran program instructs
Mulco to generate Fortran code. Thus, Mulco requires a small modification to the orig-
inal Fortran code and exploits existing resources. This is the main difference between
the proposed method and other methods, which require significant modifications to the
original program, or programs to be written from scratch, when parallelizing existing
programs.

ROSE is a well-known auto-tuning method that uses source-to-source program trans-
formation [7]. ROSE provides a framework for development in which programmers can
execute their methods including optimizations and parallelizations. While ROSE pro-
vides such a platform, we provide two tools that can be embedded in any program flow.
Our auto-tuning method consists of a combination of source-to-source code generation
and job-level parallel execution. Programmers can use our tools as components in their
program flow when and wherever they choose. Hitherto we have mostly used the so-
called Unix tools as typified by GNU tools. We are developing our tools with specific
focus on parallel and distributed computational environments.

The current version of Mulco does not support changes in the sizes of y- and z-axis
blocks, that is, Mulco in this version cannot divide a research object into blocks of the
shape except cuboid5. A support for any y- and z-axis blocks remains a future work.
From the results of the experiments in this work we found that larger block sizes are
better; however, we have not yet found the maximum block size that gives optimum
performance. This is also left to a future work.

Acknowledgments. The authors wish to thank Takeshi Iwashita and Masatoshi Kawai
for their helpful comments throughout this work. The authors would also like to thank
the anonymous reviewers for their suggestions and comments to the submitted draft.

References

1. Duff, I.S., Meurant, G.A.: The effect of ordering on preconditioned conjugate gradient. BIT
Numerical Mathematics 29(4), 635–657 (1989)

2. Hiraishi, T., Abe, T., Miyake, Y., Iwashita, T., Nakashima, H.: Xcrypt: Flexible and intuitive
job-parallel script language. In: The 8th Symposium on Advanced Computing Systems and
Infrastructures, pp. 183–191 (2010) (in Japanese)

3. Iwashita, T., Shimasaki, M.: Block red-black ordering: A new ordering strategy for paralleliza-
tion of ICCG method. International Journal of Parallel Programming 31(1), 55–75 (2003)

5 This is a suggestion by Takeshi Iwashita at the workshop.

Block Multi-color Ordering Code Generation and Job-Level Parallel Execution 419

4. Kawai, M., Iwashita, T., Nakashima, H.: Parallel multigrid Poisson solver based on block
red-black ordering. In: High Performance Computing Symposium, Information Processing
Society of Japan, pp. 107–116 (2012) (in Japanese)

5. Doi, S., Washio, T.: Ordering strategies and related techniques to overcome the trade-off be-
tween parallelism and convergence in incomplete factorizations. Parallel Computing 25(13-
14), 1995–2014 (1999)

6. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Holzmann, G.J.:
Parallel Programming in OpenMP. Morgan Kaufmann (2000)

7. Quinlan, D.J.: Rose: Compiler support for object-oriented frameworks. Parallel Processing
Letters 10(2), 215–226 (2000)

	Auto-tuning of Numerical Programsby Block Multi-color Ordering Code Generationand Job-Level Parallel Execution
	1 Introduction
	2 Multi-color Ordering
	3 Block Multi-color Ordering
	4 Toward Auto-tuning
	5 A Code Generator for Block Multi-Color Ordering
	6 A Scripting Language for Job-Level Parallel Execution
	7 Experimental Results
	8 Conclusion, Related Work, and Future Work
	References

