
Auto-tuning the Matrix Powers Kernel

with SEJITS

Jeffrey Morlan, Shoaib Kamil, and Armando Fox

Computer Science Division, University of California at Berkeley
Berkeley, CA 94720, USA

{jmorlan,skamil,fox}@cs.berkeley.edu

Abstract. The matrix powers kernel, used in communication-avoiding
Krylov subspace methods, requires runtime auto-tuning for best perfor-
mance. We demonstrate how the SEJITS (Selective Embedded Just-In-
Time Specialization) approach can be used to deliver a high-performance
and performance-portable implementation of the matrix powers kernel
to application authors, while separating their high-level concerns from
those of auto-tuner implementers involving low-level optimizations. The
benefits of delivering this kernel in the form of a specializer, rather than a
traditional library, are discussed. Performance of the matrix powers ker-
nel specializer is evaluated in the context of a communication-avoiding
conjugate gradient (CA-CG) solver, which compares favorably to tradi-
tional CG.

1 Introduction

Krylov subspace methods (KSMs) are iterative algorithms in linear algebra used
to solve linear systems (given matrix A and vector b, solve Ax = b for x) or to
find eigenvalues and eigenvectors (given A, solve Ax = λx for λ and x) when
the matrix is large and sparse, making direct solvers impractical. The solution
vectors these methods produce in the first i iterations lie in the vector space
spanned by the vectors {x0, Ax0, . . . , A

ix0} for some starting vector x0; this
kind of space is called a Krylov subspace.

Conventionally, KSMs access the matrix A with one or more sparse matrix-
vector multiplications (SpMVs) per iteration. Since an SpMV must read a matrix
entry from memory for every two useful floating-point operations, making it a
highly memory-bound operation, Demmel et al. have proposed communication-
avoiding algorithms that improve performance by trading redundant computa-
tion for memory traffic [1]. In communication-avoiding KSMs, SpMV is replaced
by the matrix powers kernel, which computes Ax,A2x, . . . , Akx (or some equiv-
alent basis that spans the same vector space) for matrix A, vector x, and a small
constant k. Once the computation has been performed, the next k steps of the
solver can proceed without further memory accesses to A by combining vectors
from this set. Thus, memory traffic can be reduced – by up to a factor of k in
the best case – but obtaining the best performance requires substantial tuning.

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 391–403, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

392 J. Morlan, S. Kamil, and A. Fox

A difficulty in auto-tuning the matrix powers kernel is that optimal code
depends on not only the machine architecture but also on the specific prob-
lem instance (namely, the placement of nonzeros in the matrix A), so runtime
auto-tuning is necessary to get high performance and performance portability.
Moreover, it is desirable to separate concerns of the application writers using
KSM solvers and programmers implementing auto-tuning. To do this, we take
advantage of SEJITS (Selective Embedded Just-In-Time Specialization) [2], a
programming methodology for maximizing separation of concerns between pro-
grammers working in specific problem domains and programmers who know how
to write efficient low-level code for the kinds of computation used in these do-
mains. The idea is to enable domain experts to express their applications in
code without needing to deal with low-level optimizations. This is accomplished
by defining a domain-specific language (DSL) or API, embedded in a high-level
general purpose language such as Python. The efficiency expert, with the help
of a SEJITS framework such as Asp (“Asp is SEJITS for Python”) [3], writes a
specializer to compile efficient implementations for the domain-specific code.

This can be seen as a generalization of the common practice of writing a library
in a low-level language with bindings allowing it to be called from a high-level
language. The ability to generate code at runtime makes specializers applicable
in cases where a library would not be able to provide sufficient flexibility and
performance. This could be because the computation itself is too general for a
library: an example of this is the domain of stencil computations [4]. It would
not be possible to compile implementations of all possible stencils up front, but
a specializer can lower a stencil function, given as code in its Python-embedded
DSL, down to C++, making it capable of generating optimized code for arbitrary
stencils.

Although the matrix powers kernel’s computation is not application specific,
since SEJITS can generate and compile code at runtime, this approach to de-
livering auto-tuning avoids the combinatorial explosion of code variants implied
by the large space of possible optimizations. Application writers can get both
high performance and performance portability without having to be concerned
with the low-level optimizations making them possible. SEJITS also allows the
tuning logic to be written in the high-level language, making it easier to write
and maintain while still keeping it well separated from applications. These ben-
efits would be difficult to obtain if the kernel were delivered as a conventional
library.

This paper describes a specializer for the matrix powers kernel, which was
built on the Asp framework. Section 2 describes the specializer and the various
optimizations implemented in it, and Section 3 contains performance results. Fi-
nally, discussion of the benefits that SEJITS brings to this kernel is in Section 4.

2 Implementation

The overall structure of the specializer and code using it is shown in Figure 1.
The application first calls the tuner, passing in the sparse matrix A and the

Auto-tuning the Matrix Powers Kernel with SEJITS 393

Fig. 1. Overview of specializer and related code. Solid arrows indicate calls, dotted
arrows indicate processing of code.

constant k to be used. The tuner attempts to produce an optimized plan for
computing matrix powers, comprising both the code to do this computation and
its input data derived from the matrix. To do this, the tuner iterates over feasible
ranges of the optimization parameters described in Section 2. It calls into static
C code to do the necessary transformations on the matrix data, and uses the Asp
infrastructure to generate the specialized computational code from a template
and compile it. Each candidate plan is benchmarked by running it in a loop
until more than a half second has elapsed to get an accurate measurement of its
execution time.

An object representing the fastest plan found is returned back to the applica-
tion, which can then use it in a KSM solver. The solver invokes a method on the
object to execute the matrix powers kernel; for other linear algebra operations
that KSMs need, the specializer module also provides helper functions which are
simply wrappers around Intel Math Kernel Library (MKL) [5] BLAS operations.

2.1 Optimizations

The optimizations of the matrix powers kernel, summarized in Table 1, fall
into two major categories: those that reduce memory traffic by storing data
more efficiently, and those that re-order computation to parallelize it or make
better use of cache. The latter must obey the constraint that if matrix entry
Aij is nonzero, then for each level e : 0 ≤ e < k, component j of Aex must be
computed before it can be used in computing component i of Ae+1x. Because of
this, their effectiveness is highly dependent upon the structure of the matrix’s
nonzero entries, making runtime auto-tuning necessary for best performance.

The first optimization is to allow for parallelism by thread blocking. The ma-
trix rows are partitioned among a number of threads, with each thread being

394 J. Morlan, S. Kamil, and A. Fox

Table 1. Summary of optimizations

Optimization Type Restrictions

Thread blocking Re-ordering
Explicit cache blocking Re-ordering Useful only when k > 1
Tiling Size reduction

Symmetric representation Size reduction A = AT ; square tiles only
Implicit cache blocking Re-ordering Useful only when k > 1; square tiles only
Index array compression Size reduction Block must be sufficiently small

responsible for computing the vector components whose indices are that of rows
in its partition. In general, however, one thread’s set of Ae+1x components will
depend on a few components of Aex belonging to other threads. To avoid hav-
ing dependencies across threads which would force synchronization after each
output vector and preclude the cache blocking described later, a thread block
contains not only the rows in its partition, but also any additional rows needed
for redundantly computing other threads’ components as shown in Figure 2.

Fig. 2. Thread blocking of an 18x18 tridiagonal matrix. Colors indicate which thread
computes each component; the striped components are redundantly computed by two
different threads.

Minimizing the redundant computation means choosing a good partitioning,
i.e. one with few dependencies between thread blocks. One way would be to
make a graph with one vertex per matrix row, add an edge between vertex i
and vertex j whenever Aij �= 0, and partition this graph. For a more accurate
model of communication volume, what is implemented is to build a hypergraph
in which each vertex has a net containing all vertices that have a dependency
on it in k steps [6] (that is, net i contains vertex j if (AT + I)kij �= 0, ignoring
cancellation), and partition the hypergraph with the PaToH [7] library. Because
this can be very time-consuming for larger k, the current tuner only partitions
a k = 1 hypergraph regardless of the actual value of k.

Auto-tuning the Matrix Powers Kernel with SEJITS 395

If a thread block is too large to fit in the processor’s cache, then without
further division it would be read from RAM k times. We can improve this with
cache blocking: divide each thread block into sufficiently small cache blocks, and
compute the entries for all k vectors in one cache block before moving on to
the next. This way, the contents of the thread block are only read once for
all k vectors. Explicit cache blocking is done in an identical manner to thread
blocking; each thread block is simply subdivided recursively until each piece is
small enough. An alternative is implicit cache blocking, which is done later on.

Nonzero entries in a sparse matrix are often close together, and this can be
taken advantage of by tiling. By default, blocks are stored in compressed sparse
row (CSR) format, which consists of three arrays: an array of nonzero values
(one floating point number for each nonzero), an array of column indices corre-
sponding to those values (one index for each nonzero), and an array indicating
where each row begins and ends (one index for each row plus one more, since the
end of one row is the start of the next). Tiling a block modifies this to store some
fixed-size tile instead of individual values; a tile is stored if any of its individual
values are nonzero (Figure 3). This results in a larger values array to hold the
extra zeros, but smaller column index and row pointer arrays, which can often
make for a net decrease in size. When either dimension of the tile size is even,
it also becomes possible to use SIMD instructions to do two multiply-adds at a
time, which is implemented via compiler intrinsics.

In many applications, the matrix is symmetric, meaning that Aij = Aji for
all i, j. When this is the case, the leading square of every block is symmetric as
well, since the columns are permuted into the same order as the rows. All entries
below the main diagonal can be omitted without losing any information, as they
are merely reflections of entries above the diagonal; this optimization can reduce
the memory size of a block by almost half. However, it alters the structure of
the computation: computing component i now requires going through not only
the entries in row i, but also any entry with a column index of i. This adds
additional dependencies between components for the purposes of implicit cache
blocking, possibly reducing its efficacy.

Unlike the partitioning of the matrix A into thread blocks or of a thread block
into explicit cache blocks, where each block is internally stored as a separate

⎡
⎢⎢⎣
4 5
6 7

8
9

⎤
⎥⎥⎦

values: 4 5 6 7 8 9
colidx: 0 1 0 1 3 2
rowptr: 0 2 4 5 6

⎡
⎢⎢⎣
4 5
6 7

0 8
9 0

⎤
⎥⎥⎦

values: 4 5 6 7 0 8 9 0
colidx: 0 1
rowptr: 0 1 2

Fig. 3. A 4x4 block and its representation in compressed sparse row format, before
and after 2x2 tiling

396 J. Morlan, S. Kamil, and A. Fox

Fig. 4. Implicit cache blocking. Arrows represent the order of computation within each
block; the left block is done first, then the middle block, then the right.

matrix, in implicit cache blocking (Figure 4) the partitioning into cache blocks
is not reflected in the internal data structures in this way. Instead, an array
is created that lists the indices of components that need to be computed at
each level of each cache block; this array determines the sequence to perform
the computation in, which would otherwise simply be one level after another.
Since this array will often contain long sequences of increasing integers, it may be
stanza-encoded. There is no need for any redundant computation: while creating
the array, keep track of what level each entry will have been computed up to at
the current point, and just omit any redundancy.

Finally, arrays of indices in each block can be compressed from 32-bit to 16-bit
if the block is sufficiently small. If a block is implicitly cache blocked and has
fewer than 216 rows, the computation sequence can be compressed. If any block
has no more than 216 columns, its colidx array can be compressed. With fewer
than 216 nonzero tiles, the rowptr array can be compressed as well.

The tuner logic currently works as follows: for each possible number of threads
(specified in the configuration), both explicit and implicit cache blocking are
attempted. For explicit blocking, the tuner iterates over a range of maximum
block sizes (5M bytes down to 250K, dividing by 2 each time) recursively bisect-
ing each thread block until all cache blocks are below the maximum size. For
implicit blocking, it iterates over a range of the number of implicit blocks per
thread (1 to 256, multiplying by 2 each time). With both types of cache blocking,
the tile size of each explicit cache block or thread block is chosen to give the
smallest memory footprint. Symmetric representation and index compression are
used if possible, but implicit blocking is tried both with and without symmetric
representation.

3 Results

To test the specializer in a realistic context, we have implemented in Python
a communication-avoiding variant of the conjugate gradient (CG) method, a

Auto-tuning the Matrix Powers Kernel with SEJITS 397

Krylov method for solving symmetric positive definite linear systems. The basic
structure of communication-avoiding CG is shown in Algorithm 1. It produces a
sequence of solution approximation vectors xi and residual vectors ri = b−Axi,
using a three-term recurrence which relates xi−1, xi, xi+1, and ri (details of this
are described in [8]). On each iteration, it applies the matrix powers kernel to
the current residual vector rki+1; the power vectors, along with vectors from
the previous iteration, form a basis B from which all vectors produced in this
iteration will be a linear combination. The recurrence relation is used to compute
a matrix D giving the iteration’s output vectors in terms of B columns, with
dot products computed using the Gram matrix G = BTB. Finally, the output
vectors are made explicit by multiplying B and D. Constructions of the Gram
matrix and the final output vectors are done by calling the specializer’s BLAS
wrappers.

Algorithm 1. CA-CG algorithm outline
1: x0 ← 0
2: x1 ← initial guess
3: r0 ← 0
4: r1 ← b− Ax1

5: for i = 0, 1, . . . do
6: Use matrix powers kernel to compute [Arki+1, . . . , A

krki+1]
7: B ← [xki, xki+1, rki−i+2, . . . , rki+1, Arki+1, . . . , A

krki+1]
8: G← BTB
9: Compute matrix D of output vectors in terms of B
10: [xki+i, xki+i+1, rki+2, . . . , rki+i+1]← BD
11: end for

To demonstrate performance portability, the CA-CG solver was tested on
three different multi-core machines: an Intel Xeon (Figure 5), another Intel Xeon
with a large number of cores (Figure 6), and an AMD Opteron (Figure 7). The
five test matrices are from the University of Florida Sparse Matrix Collection [9]
and were chosen for being positive definite and so compatible with CG, being
reasonably well-conditioned, and having the kind of locality in their structures
that makes it possible to avoid communication. A matrix labeled 149K/10.6M
has 149 thousand rows and 10.6 million nonzero elements. The solver is gener-
ally several times faster than SciPy’s serial implementation of conventional CG,
the baseline performance a high-level language application writer could obtain
without using any additional libraries. When k is allowed to be greater than 1, it
often beats MKL’s parallel CG implementation as well (geometric mean is 159%
faster for matrix powers alone and 35% faster altogether).

For the k > 1 case, the time given is the time per iteration divided by k, since
one iteration is mathematically equivalent to k iterations of conventional CG.
Although CA-CG is more susceptible to accumulating error in the x vectors, for
every matrix tested, if CA-CG did converge to a given tolerance then it did so
in nearly the expected number of iterations. The dark part of each bar shows

398 J. Morlan, S. Kamil, and A. Fox

bmwcra_1
149K/10.6M

boneS01
127K/6.7M

cant
62K/4.0M

cfd2
123K/3.1M

Dubcova3
147K/3.6M

0

5

10

15

20
T
im

e
 p

e
r

s
te

p
 (

m
s
)

19.0

12.8

7.3 7.4

9.0

6.3

4.4

2.2
2.7

3.6

5.7

4.8

2.5

3.4
3.7

4.7

3.5

1.7

2.7
3.2

scipy.sparse.linalg.cg

MKL dcg/dcsrmv

CA-CG (k=1)

CA-CG

Fig. 5. CG solver performance on 2-socket Intel Xeon X5550 (8 cores, 2.67GHz)

bmwcra_1
149K/10.6M

boneS01
127K/6.7M

cant
62K/4.0M

cfd2
123K/3.1M

Dubcova3
147K/3.6M

0

5

10

15

20

25

30

35

40

T
im

e
 p

e
r

s
te

p
 (

m
s
)

37.8

24.8

14.5

12.9

15.9

4.2 3.9

2.1 2.1
2.82.7 2.9

1.3
2.1 2.62.7

2.1
1.2

2.1 2.2

scipy.sparse.linalg.cg

MKL dcg/dcsrmv

CA-CG (k=1)

CA-CG

Fig. 6. CG solver performance on 4-socket Intel Xeon X7560 (32 cores, 2.27GHz)

Auto-tuning the Matrix Powers Kernel with SEJITS 399

bmwcra_1
149K/10.6M

boneS01
127K/6.7M

cant
62K/4.0M

cfd2
123K/3.1M

Dubcova3
147K/3.6M

0

10

20

30

40

50

60

T
im

e
 p

e
r

s
te

p
 (

m
s
)

53.1

35.7

20.2 20.7

27.1

18.1

12.5

6.5
7.9

9.8

17.4

14.7

6.9

9.5

11.612.3

9.4

3.7

6.2
7.1

scipy.sparse.linalg.cg

MKL dcg/dcsrmv

CA-CG (k=1)

CA-CG

Fig. 7. CG solver performance on 2-socket AMD Opteron 2356 (8 cores, 2.3GHz)

Table 2. CG solver timing data for Figures 5–7

Platform Solver
Time per step (ms; sparse/dense)

bmwcra 1 boneS01 cant cfd2 Dubcova3

SciPy 16.6/2.4 10.8/2.0 6.4/0.9 5.6/1.8 6.5/2.5
2-socket MKL 5.3/1.0 3.6/0.8 1.8/0.4 1.9/0.8 2.6/1.0

Intel Xeon X5550 CA-CG (k=1) 3.2/2.5 2.9/1.9 1.4/1.1 1.6/1.8 1.7/2.0
(8 cores, 2.67GHz) CA-CG (best) 2.8/1.9 1.8/1.7 0.9/0.8 1.2/1.5 1.2/2.0

k=2 k=2 k=3 k=2 k=2

SciPy 34.0/3.8 21.7/3.1 12.9/1.6 10.2/2.7 12.1/3.8
4-socket MKL 3.0/1.2 2.9/1.0 1.6/0.5 1.1/1.0 1.5/1.3

Intel Xeon X7560 CA-CG (k=1) 0.7/2.0 1.0/1.9 0.2/1.1 0.4/1.7 0.5/2.1
(32 cores, 2.27GHz) CA-CG (best) 0.7/2.0 0.4/1.7 0.3/0.9 0.4/1.7 0.3/1.9

k=1 k=2 k=2 k=1 k=2

SciPy 46.7/6.4 30.1/5.6 17.6/2.6 15.3/5.4 20.7/6.4
2-socket MKL 14.9/3.2 9.6/2.9 5.4/1.1 5.2/2.7 6.6/3.2

AMD Opteron 2356 CA-CG (k=1) 11.1/6.3 9.7/5.0 4.3/2.6 5.1/4.4 5.9/5.7
(8 cores, 2.3GHz) CA-CG (best) 8.6/3.7 6.2/3.2 2.0/1.7 3.1/3.1 2.9/4.2

k=2 k=2 k=3 k=3 k=2

400 J. Morlan, S. Kamil, and A. Fox

time spent on matrix powers while the light part shows time in the remainder of
the solver. This does not include time spent in tuning before calling the solver,
which is on the order of a few minutes for each matrix and value of k, or typically
about 4000–10000 SciPy SpMV calls; however, this cost can be amortized across
multiple solves using the same matrix, as tuning need not be repeated. There
is also plenty of room for improvement regarding reducing the tuning time, as
discussed in section 6.

4 Discussion

From the experience of developing this specializer, several benefits of writing a
specializer rather than a traditional library are observable.

One benefit is that the SEJITS framework provides a ready-made templating
system for generating code. SEJITS templates are less work to create, and often
cleaner, than the ad-hoc code generation scripts typically written in developing
auto-tuned libraries. An example of template use is in Figure 8, where normal
and unrolled loops integrate nearly seamlessly, in contrast to the more confus-
ing code that would exist to do the same code generation using direct string
concatenation.

for (jb = A->browptr[ib]; jb < A->browptr[ib+1]; ++jb) {

% for i in xrange(b_m):

% for j in xrange(b_n):

y[ib*${b_m} + ${i}] += A->bvalues[jb*${b_m*b_n} + ${i*b_n + j}]

* x[A->bcolidx[jb]*${b_n} + ${j}];

% endfor

% endfor

}

Fig. 8. Template code for computing one row (having index ib) of the matrix-vector
multiplication y = Ax. b_m and b_n are the tile height and width, respectively. In Asp’s
template language, lines beginning with % are template directives, and ${} substitutes
the value of an expression.

Another benefit of writing a specializer is that it allows the auto-tuning logic
to be written in the high-level language. Not only does this make it easier to
write but it also makes it more extensible; if someone wishes to plug in a more
advanced auto-tuner, this can be done without having to modify and re-install
the specializer.

Finally, being able to generate and compile code at runtime means the combi-
natorial explosion of all possible code variants does not cause exponential growth
in the size of the specializer. Each combination of parameters for basis, tile size,
symmetric representation, implicit cache blocking and index compression re-
quires its own compiled code variant to work efficiently. The set of all possible
combinations already numbers in the hundreds, which would make for a large li-
brary; adding more features and optimizations could render the library approach
unworkable.

Auto-tuning the Matrix Powers Kernel with SEJITS 401

5 Related Work

The idea of using multiple variants with different optimizations is a cornerstone
of auto-tuning. Auto-tuning was first applied to dense matrix computations in
the PHiPAC library (Portable High Performance ANSI C) [10]. Using param-
eterized code generation scripts written in C, PHiPAC generated variants of
generalized matrix multiply (GEMM) with a number of optimizations plus a
search engine, to, at install time, determine the best GEMM routine for the
particular machine. The technology has since been broadly disseminated in the
ATLAS package (math-atlas.sourceforge.net). Auto-tuning libraries include
OSKI (sparse linear algebra) [11], SPIRAL (Fast Fourier Transforms) [12], and
stencils [13,14], in each case showing large performance improvements over non-
autotuned implementations. With the exception of SPIRAL and Pochoir, all of
these code generators use ad-hoc Perl or C with simple string replacement, unlike
the template and tree manipulation systems provided by SEJITS.

The OSKI (Optimized Sparse Kernel Interface) library [11] precompiles 144
variants of each supported operation based on install-time hardware benchmarks
and includes logic to select the best variant at runtime, but applications using
OSKI must still intermingle tuning code (hinting, data structure preparation,
etc.) with the code that performs the calls to do the actual computations.

ABCLibScript [15] is a tool to create auto-tuned libraries from files which,
like SEJITS templates, contain efficiency-level code combined with scripting di-
rectives to control code variant generation. It is geared towards specific kinds
of optimizations and tuning searches, whereas SEJITS tries to provide a more
general framework suitable for any domain.

6 Future Work

There are several ways this specializer might be improved or extended. Varia-
tions on the matrix powers kernel required by more sophisticated solvers could
be added, such as preconditioning, or simultaneous computation of powers of A
and AT as in BiCG. More optimizations could be added based on the extensive
existing knowledge of optimizing sparse matrix-vector multiplication. The tuner
could be made more advanced, by using a performance model or machine learn-
ing, in order to effectively cover a larger search space of possible optimizations
without taking excessively long as the current brute-force approach would; note
that this would not require changes to the underlying C code.

Currently, the hypergraph partitioning used is the most time-consuming part
of the tuning. However, such partitioning is most beneficial when the matrix is
highly non-symmetric. One simple optimization would be to use non-hypergraph
partitioning for symmetric matrices, such as the matrices used with the CA-CG
solver; this could also be extended to other matrices that are not highly non-
symmetric. In addition, the search could be implemented using more intelligent
mechanisms such as hill climbing or gradient ascent. Such search strategies would
also be amenable to cases when the user wants a tuning decision within a specified

math-atlas.sourceforge.net

402 J. Morlan, S. Kamil, and A. Fox

time bound, in which case hill climbing or gradient ascent could be used for a
few iterations until the maximum bound is reached.

Tuning decisions could potentially be reused for matrices with the same struc-
ture; such matrices are commonly used in finite element computations, where
the actual values in the matrix may change, but the elements appear in the same
locations across modeling problems.

7 Conclusion

Though originally motivated by domains where a library is unsuitable due to
the generality of the desired computational kernel, the SEJITS methodology
also proves useful for domains where generality comes not from the kernel itself
but from the need to tune it for performance. Although the matrix powers kernel
could plausibly be written as a library, as a specializer it demonstrates how writ-
ing auto-tuners as specializers has benefits for both efficiency-level programmers
and for productivity-level programmers who wish to extend the tuning logic.

Acknowledgements. Thanks to Erin Carson and Nicholas Knight for provid-
ing the initial version of the code for the matrix powers kernel. Thanks also to
Mark Hoemmen, Marghoob Mohiyuddin, and James Demmel for feedback and
suggestions on this paper.

This work was performed at the UC Berkeley Parallel Computing Labora-
tory (Par Lab), supported by DARPA (contract #FA8750-10-1-0191) and by
the Universal Parallel Computing Research Centers (UPCRC) awards from Mi-
crosoft Corp. (Award #024263) and Intel Corp. (Award #024894), with match-
ing funds from the UC Discovery Grant (#DIG07-10227) and additional support
from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Oracle, and
Samsung.

References

1. Mohiyuddin, M., Hoemmen, M., Demmel, J., Yelick, K.: Minimizing communica-
tion in sparse matrix solvers. In: Supercomputing 2009, Portland, OR (November
2009)

2. Catanzaro, B., Kamil, S., Lee, Y., Asanović, K., Demmel, J., Keutzer, K., Shalf, J.,
Yelick, K., Fox, A.: SEJITS: Getting productivity and performance with selective
embedded JIT specialization. In: Workshop on Programming Models for Emerging
Architectures, PMEA 2009, Raleigh, NC (October 2009)

3. Kamil, S.: Asp: A SEJITS implementation for Python,
https://github.com/shoaibkamil/asp/wiki

4. Kamil, S., Coetzee, D., Fox, A.: Bringing parallel performance to Python with
domain-specific selective embedded just-in-time specialization. In: Proceedings of
the 10th Python in Science Conference, SciPy 2011, Austin, TX (2011)

5. Intel: Math Kernel Library,
http://software.intel.com/en-us/articles/intel-mkl/

https://github.com/shoaibkamil/asp/wiki
http://software.intel.com/en-us/articles/intel-mkl/

Auto-tuning the Matrix Powers Kernel with SEJITS 403

6. Carson, E., Demmel, J., Knight, N.: Hypergraph partitioning for computing matrix
powers (October 2010),
http://www.cs.berkeley.edu/~knight/cdk_CSC11_abstract.pdf

7. Catalyürek, Ü.V.: Partitioning Tools for Hypergraph,
http://bmi.osu.edu/~umit/software.html

8. Hoemmen, M.: Communication-avoiding Krylov subspace methods. PhD thesis,
EECS Department, University of California, Berkeley (April 2010)

9. Davis, T., Hu, Y.: The University of Florida sparse matrix collection,
http://www.cise.ufl.edu/research/sparse/matrices

10. Bilmes, J., Asanović, K., Chin, C.W., Demmel, J.: Optimizing matrix multiply
using PHiPAC: a Portable, High-Performance, ANSI C coding methodology. In:
Proceedings of International Conference on Supercomputing, Vienna, Austria (July
1997)

11. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned
sparse matrix kernels. Journal of Physics Conference Series 16(i), 521–530 (2005)

12. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.:
SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, Special
Issue on “Program Generation, Optimization, and Adaptation” 93(2), 232–275
(2005)

13. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework
for parallel multicore stencil computations. In: IPDPS 2010, pp. 1–12 (2010)

14. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The
Pochoir stencil compiler. In: Proceedings of the 23rd ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA 2011, pp. 117–128. ACM, New York
(2011)

15. Katagiri, T., Kise, K., Honda, H., Yuba, T.: ABCLibScript: a directive to sup-
port specification of an auto-tuning facility for numerical software. Parallel Com-
put. 32(1), 92–112 (2006)

http://www.cs.berkeley.edu/~knight/cdk_CSC11_abstract.pdf
http://bmi.osu.edu/~umit/software.html
http://www.cise.ufl.edu/research/sparse/matrices

	Auto-tuning the Matrix Powers Kernel with SEJITS
	1 Introduction

	2 Implementation

	2.1 Optimizations

	3 Results

	4 Discussion

	5 Related Work

	6 Future Work

	7 Conclusion
	References

