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Abstract. The dLV twisted factorization is an algorithm to compute
singular vectors for given singular values fast and in parallel. However
the orthogonality of the computed singular vectors may be worse if a
matrix has clustered singular values. In order to improve the orthogo-
nality, reorthogonalization by, for example, the modified Gram-Schmidt
algorithm should be done. The problem is that this process takes a longer
time. In this paper an algorithm to accelerate the reorthogonalization of
singular vectors with a multi-core processor is devised.

1 Introduction

Singular value decomposition (SVD) is one of most important matrix operations
[1][2]. SVD is applied for data analysis, signal processing and has many other
applications to engineering. Therefore SVD has been well studied for many years
and some effective SVD algorithms are devised. The QR decomposition, the bi-
section algorithm, the divide and conquer algorithm (D&C), the MR3 algorithm,
and the I-SVD algorithm are known[1][9][8][12][13][17].

Some of those algorithms can be divided to computations of 2 phases. The
first is the computation of singular values. The second is the computation of
singular vectors of the computed singular values. Examples of such algorithms
include the bisection algorithm and the I-SVD algorithm.

We can select an algorithm for computing singular vectors for given singular
values. The dLV twisted factorization [6][7] is one of the possible choices and can
compute singular vectors fast. However if a matrix has clustered singular values,
the orthogonality of singular vectors computed by the dLV twisted factorization
can be worse. In order to improve the orthogonality, we have to use other algo-
rithms to compute singular vectors of such singular values. The inverse iteration
algorithm with the modified Gram-Schmidt reorthogonalization can be used for
this purpose, and the orthogonality becomes better indeed. The algorithm is
known to be slower because the computational complexity is larger than the
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dLV twisted factorization. Furthermore in parallel computation with a multi-
core/many-core processor, it is often that few computation cores are busy for
computation but the others are idle [14][15]. Such a phenomenon occurs because
the ordinary implementation of the modified Gram-Schmidt reorthogonalization
is not parallelized and the task scheduling is not well-done.

In this paper, a new solution for faster computation of the SVD is devised.
The main idea is as follows: we introduce a faster reorthogonalization algorithm
which utilize all of the computation cores. For more efficient computation, We
estimate the computation time to compute the singular vectors, and we arrange
these tasks by the greedy algorithm, which is used for two-dimensional bin pack-
ing problem. The selection and arrangement of all of the tasks and algorithms
for the computation are decided by auto-tuning technique. Finally we do the nu-
merical experiments and examine the usefulness of the new reorthogonalization
algorithm.

2 Algorithms of SVD Which Computes Singular Values
and Singular Vectors Individually

There are some algorithms for SVD which consists of 2 phases of computation.
The procedure of such algorithms is described as follows:

1. Compute singular values.
2. Compute all singular vectors of the computed singular values.

The bisection algorithm and the I-SVD algorihm can be classified to the group
of algorithms. In the first phase, algoirthms which compute singular values are
used. In the bisection algorithm, we prepare the Golub-Kahanmatrix of the given
matrix if the given matrix is bidiagonal. Then we can compute singular values
by the use of the subroutine of the bisection algorithm which is implemented as
the xSTEBZ in LAPACK. In the I-SVD algorithm, the mdLVs algorithm is used
for this purpose.

In the second phase, algorithms which compute singular vectors of designated
singular values are used. Examples of such algorithms include the inverse itera-
tion and the dLV twisted factorization.

In this paper, we assume that given matrices are bidiagonal, and we use the
bisection algorithm to obtain singular values.

2.1 The Hybrid Algorithm for Computing Singular Vectors

The dLV twisted decomposition can compute singular vectors of the given singu-
lar values. However it is known that the orthogonality of the computed singular
vectors may be ill if the singular values are in the clusters. In order to improve
the orthogonality, we have to compute singular vectors of singular values in the
clusters in a different way.

The inverse iteration algorithm with the modified Gram-Schmidt reorthogo-
nalization can also compute singular vectors. The orthogonality of the computed
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singular vectors is better than those of the singular vectors computed by the
dLV twisted decomposition. But the reorthogonalization is slower than the dLV
twisted decomposition. In this paper, we call this algorithm the mGS algorithm.

Thus we can compute all the singular vectors in the hybrid algorithm as
follows (Fig. 1):

1. Compute singular values and some singular vectors.
2. Find clusters of close singular values.
3. Compute singular vectors corresponding to the close singular values with the

mGS algorithm.
4. Compute singular vectors of the other singular values by the dLV twisted

factorization.

In the first phase, all of the singular values are computed with the bisection
algorithm. In the second phase, all of the computed singular values are checked
whether there are any singular values which are very close to the next singular
value, namely, whether the distance of the neighboring singular values is suffi-
ciently small. In the program used for the experiments described in Sect. 4, a
pair of singular values (σi, σi+1) (σi < σi+1) are regarded as close if the pair
satisfies either condition as follows:

σ2
i+1 − σ2

i

‖M‖1 < ortol1,

σi+1 − σi

‖M‖1 < ortol2,

where σi is the i-th singular value, M is the given bidiagonal matrix, ortol1 =
10−8, and ortol2 = 10−3. Note that singular values are nonnegative real numbers.
The groups of such singular values are called clusters. The singular vectors which
are corresponding to the clustered singular values are computed in the first phase
are discarded since the orthogonality may be ill.

In the third phase, the singular vectors corresponding to the clustered singular
values are computed with the mGS algorithm.

In the fourth phase, singular vectors which are not in the clusters are computed
by the dLV twisted factorization.

This idea of the hybrid algorithm can be applied to the I-SVD algorithm. The
detail is described in [15].

2.2 Problems of the Performance

The computation time of the mGS algorithm is O(k2N), where k is the size of
clusters (1 ≤ k ≤ N). Thus if the k is larger, the whole computation time can
be much longer. As a preliminary experiment, we measure the computation time
to achieve SVD by the method described in Sect. 2.1. Here we prepare matrices
of 2 types, M1 and M2. The characteristics of them is described in Table 1 and
Fig. 2. This experiment is done on the computer whose features are described in
Table 3.
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Fig. 1. The main flow of the hybrid algorithm

Table 1. The 3 types of matrices

Matrix type M1 M2

Bidiagonal elements Random 1
Subdiagonal elements Random 1, 10−6

Distribution of singular values Some are clustered Clustered

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ŵ 10−6

Ŵ 10−6

. . .
. . .

Ŵ 10−6

Ŵ

⎞
⎟⎟⎟⎟⎟⎟⎠

, Ŵ =

⎛
⎜⎜⎜⎜⎜⎝

1 1
1 1

. . .
. . .

1 1
1

⎞
⎟⎟⎟⎟⎟⎠

Ŵ : N̂ × N̂ matrix, N̂ = 17.

Fig. 2. The distribution of singular values

Table 2. The computation time to achieve SVD

Matrix size N M1 M2

3400 2.6 4.3
6800 9.9 29.7

10200 24.2 130.3

in second: [s]
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Table 2 shows the computation time of several matrix of size N . This shows
that it takes much longer time to achieve SVD of M2 compared to M1.

Fig. 3 shows the number of the working CPU cores during the computation
of the M2 (N = 6800). According to the graph, only 1 core works at the latter
time and it lengthens the total computation time, while the other cores are idle.
It is obviously inefficient.

The M2 contains 17 large clusters. The computer which is used for the nu-
merical experiment has 8 computation cores. Therefore 16 (= 8 × 2) clusters
are computed by each cores, but the left 1 cluster is computed by 1 core after
computing the 16 clusters (Fig. 4).

In this article, we accelerate the total computation of SVD by improving the
above mentioned inefficiency.

Fig. 3. The changes of the number of working cores

Table 3. The features of computers

CPU Intel Xeon CPU X5570 2.93GHz
(2 processors × 4 cores)

Memory 32GBytes
OS Fedora Linux 17 (x86 64bit)

Compiler icpc, ifort 12.1 (-O3 option)
Libraries Intel Math Kernel Library 10.3

3 Accelerating the Reorthogonalization of Singular
Vectors

In order to accelerate the reorthogonalization, we first introduce another in-
verse iteration method in Sect. 3.1. In Sect. 3.2, a hybrid algorithm to utilize the
alternative inverse iteration method as well as the mGS algorithm is explained.
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Fig. 4. An inefficient task scheduling

3.1 Inverse Iteration Method with the Compact WY
Orthogonalization

The algorithm in this section is based on the idea of the use of the block House-
holder orthogonalization in terms of the compact WY representation[16]. The
calculation mainly consists of the product of matrices and vectors and rank-1
update operation. Thus these operations can be done with the level-2 BLAS.
These computations can be parallelized using the BLAS for parallel computa-
tion such as Intel Math Kernel Library, GotoBLAS 2, and so on. The detail of
the algorithm is explained in [3]. In this paper, this algorithm is called the cWY
algorithm.

During the execution of this algorithm, all of the computation cores are used
for the computation. Consequently the computation finishes faster than the mGS
algorithm, providing that sufficient cores are used for the computation.

3.2 Utilization of the 2 Algorithms

Using the cWY algorithm, we can accelerate the reorthogonalization by using
all of the cores. However the product of CPU time and the number of CPU cores
is apt to be larger than that of the inverse iteration and the modified Gram-
Schmidt reorthogonalization. Therefore we should not use the cWY algorithm
blindly. In fact, we should apply the mGS algorithm to small clusters, and apply
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Table 4. The features of the two algorithms

Algorithm mGS cWY

Required computation cores for 1 cluster 1 core All cores
Computation time Longer Shorter

mGS: The inverse iteration and the modified Gram-Schmidt reorthogonalization
cWY: The cWY algorithm

the cWY algorithm to large clusters, which takes much longer time. Table 4
shows the features of the 2 algorithms.

To utilize the 2 algorithms in a well-defined hybrid form, we have to keep in
mind the 2 points as follows:

1. The algorithm which is applied to a cluster should be selected properly.
2. Computation for all the clusters should be scheduled to each other properly.

These points are described in the next paragraph.

Selection of the Algorithm. Judging from Table 4, the main strategy for
selecting algorithm is that: for clusters of small number of singular values, the
modified Gram-Schmidt reorthogonalization should be selected. For large clus-
ters, the cWY algorithm should be selected. For more proper selection, we should
estimate the computation time for each cluster using the 2 algorithms, and select
the faster one.

However it is difficult to determine the obvious conditions and thresholds to
judge which algorithm is faster before the computation starts.

It is known that the computational complexity of mGS algorithm is O(k2N),
and that of the cWY algorithm is O(k2N), except for coefficients. First we collect
enough sample data of {N, k, ta,mGS, ta,cWY}, where ta,mGS is the actual time
to compute singular vectors by the mGS algorithm, and ta,cWY is the actual
time to compute singular vectors by cWY algorithm. Then we can obtain the
estimated computation times te,mGS and te,cWY of the given {N, k} by using
the least-squares method, where te,mGS is the estimated computation time of
the modified Gram-Schmidt algorithm and te,cWY is the estimated computation
time of the cWY algorithm, respectively.

Assuming that enough data of {N, k, ta,cWY} are given, the procedure to
estimate the computation time te,cWY of the cWY algorithm is as follows:

1. Fix k and regard te,cWY as a linear function of N , and estimate its value at
the given N by the least-squares method by using {ta,cWY}.

2. Repeat Step 1. with several values k = {ki}, and estimate {te,cWY}k=ki
.

3. Regard {te,cWY}k=ki
as a sample data at the given N , and estimate te,cWY

for given {N, k} by the least-squares method.

The computation time te,mGS can also be estimated by the same way.

Scheduling the Tasks. For more acceleration, the computation should also be
scheduled well. Scheduling tasks of computing singular vectors in clusters can be
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regarded as the two-dimensional bin packing problem. By scheduling, the total
computation time should be shorter, but we should not consume time for the
scheduling itself. Therefore we adopt the greedy algorithm, which can make so
good answer and does not cost so longer time.

Assuming that computation time of all of the tasks are estimated by the
technique described above, the procedure of the greedy algorithm which is used
in this paper is as follows:

1. Compute the current total computation time {hi} of each cores, where hi

means the total computation time of tasks which are assigned to core #i
(see Fig. 4).

2. Assign a task to the core whose total computation time hi is minimum.
3. Go to Step 1 until all of the tasks are assigned.

3.3 The New Algorithm

Based on the techniques above, the procedure of the new algorithm can be
described as follows:

1. Only once: Measure the actual computation time for some combinations of
parameters {N, k, ta} and collect the measured sample data.

2. Compute all the singular values by the mdLVs algorithm.
3. Find clusters of close singular values.
4. Select algorithms and schedule the tasks.

(a) Estimate the computation time of all the tasks.
(b) Arrange the tasks by the estimated computation time in descending or-

der.
(c) Set m← 0.

(d) Estimate the computation time
{
t
(i)
e,mGS

}M

i=m+1
,
{
t
(i)
e,cWY

}m

i=1
of the clus-

ters, and set the estimated computation time
{
t
(i)
e

}M

i=1
=

{
t
(i)
e,mGS (m < i ≤M)

t
(i)
e,cWY (1 ≤ i ≤ m)

.

(e) Arrange the tasks to minimize the total computation time by the greedy
algorithm.

(f) Check whether the total estimated computation time is shorter than
that of previous trial. If the time is not shorter, we adopt the previous
selection of algorithms and task schedule, and go to Step 5

(g) Set m← m+ 1 and go to Step 4d.
5. Compute all the singular vectors in clusters by the selected algorithms.
6. Compute other singular vectors by the dLV twisted factorization.

The Step 1 should be done only once. The results of the step can be stored in
a file, and we can load the results from the file and can reuse them. After the
procedure, the computation become more efficient and the total computation
time will be shorter (Fig. 5). The Step 1 should be only once. Once this step is
done, we do not have to do it again. Therefore this step should be done before
the computation, for example, on installing the library or at night. The Step 1
and Step 4 are added to the original procedure described in Sect. 2.1.
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Fig. 5. An efficient task scheduling

4 Numerical Experiments

In order to examine the effect of the new algorithm, we give numerical exper-
iments. In the experiments, we see the length of shortened time by the new
algorithm. The computers described in Table 3 are used for the experiments. For
the experiments, we use the 2 types of matrices {M1,M2}, which are described
in Sect. 2.2. We use several size N of these matrices.

In the experiments, we use the GotoBLAS2 for matrix operations. This library
is called parallelly and individually by working threads, which execute their
own tasks. During the computation of the mGS algorithm, the operation of the
library in 1 task should be done by only 1 core. In order to force the policy, we
use omp set num threads function to adjust the number of threads which are
used for matrix operations.

The results of the experiments are shown in Table 5 for M1, and in Table 6
for M2. The experiments are done under the condition that the number of cores
allocated for the experiments is 1, 2, 4, and 8.
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Result of M1. According to Table 5, any effect in acceleration of the new algo-
rithm is not observed. That is because the new algorithm accelerates only the
computation for clusters. Table 7 shows the distribution of the size of the clusters
of M1 (N = 20400). According to the table, the size of most of the clusters are
less than 10. Only 1 cluster is larger, but the cluster size is not so large compared
to that of M2. Thus the effect of the new algorithm is so little.

Result of M2. According to Table 6, the new algorithm accelerates the orthogo-
nalization if N is large enough and 8 cores are used. The most computation for
M2 consists of the reorthogonalization because there are large clusters. The size
of clusters k = N/17. Furthermore at the end of the computation, the compu-
tation of the remaining 1 large core is done on 1 core while other cores are idle.
Thus the effect of the new algorithm can be observed if enough cores are used
for the cWY algorithm. In this computer, the cWY algorithm is slower than
the mGS algorithm if 2 cores are used. Thus the cWY algorithm is not used
when 2 cores are used, and the computation time is not shorten by the proposed
algorithm.

Table 5. The computation time of M1

Matrix Maximum cluster 1 core 2 cores 4 cores 8 cores
size N size max {k} Org. Org. New Org. New Org. New

3400 52 16 8 9 5 5 3 3
6800 95 64 33 33 18 18 10 10

10200 169 143 73 75 42 42 24 24
13600 237 253 131 135 75 74 45 45
17000 296 396 207 210 119 118 73 72
20400 369 573 306 307 177 176 110 110

Org.: The original algorithm, New: The new algorithm
in second : [s]

Table 6. The computation time of M2

Matrix Maximum cluster 1 core 2 cores 4 cores 8 cores
size N size max {k} Org. Org. New Org. New Org. New

3400 200 16 8 10 6 5 4 4
6800 400 111 58 59 41 42 28 30

10200 600 390 201 203 139 143 126 130
13600 800 912 472 474 328 324 308 304
17000 1000 1725 899 903 639 633 598 585
20400 1200 2901 1509 1509 1059 1065 1037 1020

Org.: The original algorithm, New: The new algorithm
in second : [s]
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Table 7. The distribution of the size of clusters (N = 20400, Matrix: M1)

Cluster size k Count

2 65
3 6
4 5
5 1
6 1

10 1
14 1
25 1

369 1

5 Conclusion

In this paper, a new method to shorten the time for reorthogonalization of sin-
gular vectors and then the time for SVD. If the singular values of a given matrix
are heavily clustered, the reorthogonalization process is apt to take much longer
time in the previous works[14][15]. The new algorithm in this paper can shorten
this process by using 1) the cWY algorithm, 2) selecting algorithm to reorthog-
onalization, and scheduling the tasks. The new algorithm especially works well,
providing that there are some large clusters and the computation for the large
cluster is done on few cores while other tasks completes. The effect of the new
algorithm is checked by some numerical experiments.

As a future work, the predominance in performance and accuracy of the new
algorithm should be examined using more types of matrices. Test matrices which
have designated singular values or whose conditional number is large can be
generated[10][11]. The new algorithm is desired to be compared to existing al-
gorithms implemented in LAPACK.
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