
M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 314–328, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Smart Tuning Strategy for Restart Frequency
of GMRES(m) with Hierarchical Cache Sizes

Takahiro Katagiri1, Pierre-Yves Aquilanti2,3, and Serge Petiton4

1 Information Technology Center, The University of Tokyo,
2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, Japan

katagiri@cc.u-tokyo.ac.jp
2 LIFL, Université Lille 1 Science et Technologie, Cite Scientifique, Bâtiment M3,

59655 Villeneuve d’Ascq Cedex, France
3 A*STAR Computational Resource Centre,

1 Fusionopolis Way, #17-01 Connexis, Singapore 138632
aquilantip@acrc.a-star.edu.sg

4 LIFL, Université Lille 1 Science et Technologie, Cite Scientifique, Bâtiment M3,
59655 Villeneuve d’Ascq Cedex, France

Serge.Petiton@lifl.fr

Abstract. In this paper, we propose a smart tuning strategy that uses the cache
size hierarchy of current multicore architectures. Both increase and decrease
auto-tuning (AT) strategies for the restart frequency of GMRES(m)
(Generalized Minimum Residual) are evaluated with the proposed hierarchical
cache sizes. This evaluation, using one node of the T2K Open Supercomputer
(Univ. Tokyo), demonstrates that the proposed strategies are very efficient
compared to previous strategies without hierarchical cache sizes. We test both
strategies with 22 matrices from the University of Florida Sparse Matrix
Collection. As a result, we find an average speedup of 1.13× (maximum 2.06×)
using an increase strategy (an implementation of Xabclib), and an average
speedup of 4.25× (maximum 15.1×) with a decrease strategy (Aquilanti’s) using
the proposed method.

Keywords: Auto-tuning, GMRES(m), Dynamic Restart Frequency Adjustment,
Xabclib.

1 Introduction

Current computer architectures have complex structures, with multicore systems
commonly utilizing non-uniform memory access and hierarchical caches. In terms of
cache organization, several multiple caches are independent of cores, but one cache is
shared across multiple cores. Thus, tuning the performance of software is becoming
increasingly difficult. To solve this problem, auto-tuning (AT) technology is
frequently used by non-experts to establish high performance computing on current
architectures.

A wide range of problems is expressed through a linear system. Hence, solving
sparse linear systems, such as the following, is a crucial task for scientific computing:

 A Smart Tuning Strategy for Restart Frequency of GMRES(m) 315

 (1)

When the operator A is sparse, it is common to use iterative solvers. The Generalized
Minimum Residual (GMRES) algorithm [1] is considered to be powerful and can be
applied to a wide range of cases. For the iterative approximation of the solution
vector, the Krylov subspace is used to determine the direction in which the solution of
the linear system lies, such that:

 (2)

where },,,{),(0
1

000 rAArrspanrA mm −≡Κ  is the Krylov subspace of dimension m, x0 is

the initial guess, x1 is the estimated vector in the first iteration, and r0 is the initial
residual.

As GMRES iterates, its computing power and memory requirements are likely to
increase when the dimension of the Krylov subspace is large. As memory is limited in
practice, it is common to restart GMRES after m iterations. This variant is known as
the restarted GMRES [1]. The parameter m controls the restart; hence, we call this
parameter the “restart frequency.” It has been demonstrated that m is a critical
argument, driving not only memory consumption but also the execution time required
for the solver to converge. Determining m is thus a very important issue, affecting not
only high-performance libraries but also research topics in AT.

1.1 Categories of AT for the Restart Frequency of GMRES(m)

As the restart frequency of GMRES(m) is very crucial for performance, several AT
strategies have been proposed. In this section, we categorize the strategies as follows.

 Increase Strategy
The increase strategy is defined as follows. In the first phase, the restart frequency
is assigned a small number, say m = 2. In the next phase, the frequency is increased
using run-time information. Previous strategies in this category include that of
Sosonkina et al. [2] and the strategy implemented in Xabclib [3]. Obviously, this
strategy is good for easy problems that require only a small number of restarts to
converge.
 Decrease Strategy
The decrease strategy is the opposite of the increase strategy. In the first phase, the
frequency is assigned a maximum size. In the next phase, the frequency is
decreased using run-time information. The major strategy in this category is that of
Baker et al. [4]. Obviously, this strategy is good for difficult problems, which
require a large number of restarts. One of the drawbacks of this strategy concerns
the difficulty of finding the optimal maximum size for m.
 Hybrid Strategy
This strategy is a hybrid of the increase and decrease strategies. The frequency is
dynamically increased or decreased according to run-time information. As the

.bAx =

),,(001 rAxx mΚ+∈

316 T. Katagiri, P.-Y. Aquilanti, and S. Petiton

hybrid strategy needs an initial restart frequency, we can define two subcategories
according to whether the initial frequency increases or decreases.

The strategy proposed by Habu et al. [5] starts from a small initial frequency;
hence, this is categorized as an increasing hybrid. On the other hand, the strategy
proposed by Aquilanti et al. [6] starts from a maximum size, hence this is a
decreasing type. As for the previous strategies, it depends on the convergence as to
which type is better suited to the problem.
 Other Considerations: The Target
Although the strategies shown above have general properties, the target of their
evaluations is limited to GMRES(m). There are a few implementations and
preliminary evaluations for the adaptation of these strategies to other algorithms.
The strategy used in Xabclib [3] has been extended to the restarted Lanczos and
explicit restarted Arnoldi problems. The codes have been released to the public as a
free (GNU licensed) library.

1.2 Originality of This Paper

With respect to the above categorization, we summarize the originality of this
research as follows:

 Showing Effectiveness of AT with Hierarchical Caches on Multicore
Architectures
In general, the parameter search space in restart parameter AT is huge; hence,
we need some heuristics to avoid using a brute force search and to obtain
reasonable parameter settings. One of the candidates for finding reasonable
parameter settings for AT is to use hardware parameters. We use an AT
strategy with cache information to demonstrate the effectiveness of this
approach. The key to our strategy is that the cache information helps to
restrain the search of m.
Aquilanti et al. [6] first proposed the hybrid method of decreasing type to
utilize hierarchical caches for AT of the GMRES(m) algorithm. We re-
evaluate this strategy from the following two viewpoints: (1) Supposing
“real” multicore architectures with three kinds of cache, i.e., two levels of
independent cache and one level of shared cache; (2) Evaluating the AT effect
using an increase strategy.

 Evaluating AT Strategies with Different Methods
AT methods vary amongst the different strategies. The principal method takes
the current and past (one) residual vectors, and calculates the angle between
them to find a stagnation point [4,5,6]. Xabclib, however, uses a method
based on multiple norms from past residuals, which are taken as “sampling”
points. It then uses the ratio among these sampling points, called the MM
(Maximum Minimal) ratio, to find stagnation. Our research includes a
comparison between the angle calculation method and the MM ratio method.

 A Smart Tuning Strategy for Restart Frequency of GMRES(m) 317

1.3 Organization of the Paper

This paper is organized as follows. In Section 2, we explain the GMRES(m) method
and the AT strategy for the restart frequency. Section 3 describes the proposed AT
strategies (increase and decrease) for hierarchical caches. We use the strategies of
Aquilanti et al. [6] and Xabclib [3] as examples of the two categories. In Section 4,
we evaluate the proposed strategies on a multicore architecture. We use one node of
the T2K Open supercomputer (Univ. Tokyo), which uses the AMD Quad Core
Opteron. Finally, we summarize the findings of this paper in Section 5.

2 GMRES(m) and AT Strategy for the Restart Frequency

2.1 The GMRES(m) Algorithm

The GMRES(m) algorithm for this paper is based on [1]. The algorithm is shown in
Fig. 1.

Fig. 1. GMRES(m) algorithm

 <1> Compute
00 Axbr −= ;

20r=β ; βν /01 r= ;

 <2> if (
20r .le. ε) then goto <16>.

 <3> Let the mm ×+)1(matrix be
mjmiijm hH ≤≤+≤≤= 1,11}{ . Set 0=mH .

 <4> do j = 1, m
 <5> Compute

jj Av=ω

 <6> do i = 1, j
 <7>),(jjijh νω=

 <8>
jijjj h νωω −=

 <9> enddo
<10>

2,1 jjih ω=+
. If 0,1 =+ jih then Set m = j; goto <12>

<11>
jjjj h ,11 / ++ = ων

<12> enddo
<13> Let the },...,,{ 21 mννν be

mV .

<14> Compute
my to minimize

21 yHe m−β ;
mmm yVxx += 0

;

<15>
mxx =0

; goto <1>;

<16> continue

318 T. Katagiri, P.-Y. Aquilanti, and S. Petiton

2.2 AT Strategies for the Restart Frequency of GMRES(m)

To perform AT on the restart parameter m in Fig. 1, we append the following to line
<1>:

The function),(prevculAT rrf forms the AT strategy.

We first take the Xabclib strategy, which is categorized as an increase strategy. The
definition of),(prevculAT rrf is shown in Fig. 2.

Fig. 2. Restart Frequency AT for Xabclib (Increase Strategy). In this example, the
OpenATI_DAFRT finds stagnation using the norms of the past five residual vectors. The “5”
is an AT parameter. If stagnation is found, the frequency is increased by IATPARAM(5),
which is set to 5 as a default value. The increase value “5” is also a tunable parameter.

Note that the stagnation state is found via the API of OpenATI_DAFRT, which is
provided by OpenATLib [3]. In this example, it requires the past five residual norms.
The number of past residual norms is a tunable parameter. The default
implementation of Xabclib is to use five points.

To demonstrate a decrease strategy, we consider Aquilanti’s method (Fig. 3). There
are also tunable parameters in this strategy: maximum frequency (TRestart%m_max),
default frequency (TRestart%m_def), and maximum count of decrease cycles
(TRestart%m_count_max).

<0> SAMP =
2culr

<1>CALL OpenATI_DAFRT
 (5, SAMP, IRT, IATPARAM, RATPARAM, INFO)
<2> if (IRT .EQ. 1) then
<3> MOLD = M
<4> M = M + IATPARAM(5)
<5> if (M .GT. MSIZE) then
<6> M = MSIZE
<7> endif
<8> endif
<9> return M

<1-1>
prevr is set to previous residual vector. If this is the first iteration, then

set
0rrprev = .

<1-2> Line <1> in Fig.1.
<1-3>

0rrcul = ;),(prevculAT rrfm = ;

 A Smart Tuning Strategy for Restart Frequency of GMRES(m) 319

Fig. 3. Restart Frequency AT for Aquilanti’s (Decrease) Strategy. The maximum frequency
(TRestart%m_max), default frequency (TRestart%m_def), and maximum count of decrease
cycles (TRestart%m_count_max) are tunable parameters in this strategy.

<0> resid =
2culr ; presid =

2prevr ;

<1> max_cr = cos(8.*PI/180.); min_cr = cos(80.*PI/180.);
<2> cr = resid / presid !! get the angle
<3> if (cr .gt. max_cr) then !! normal cycling
<4> M = TRestart%m_max
<5> else
<6> if ((cr .lt. min_cr) .or. (TRestart%m_count_max

.lt. TRestart%m_count)) then !! enter an aug cycle
<7> if (TRestart%m_aug .eq. 0) then
<8> TRestart%m_aug = 1; TRestart%m_floor = 1;
<9> else !! or continue it
<10> TRestart%m_floor = TRestart%m_floor + 1
<11> endif
<12> TRestart%m_count = 0;
<13> M = TRestart%m_floor * TRestart%m_max
<14> else
<15> if (M - TRestart%m_incr .ge. TRestart%m_min) then
<16> M = M - TRestart%m_incr
<17> else
<18> M = TRestart%m_max
<19> endif
<20> if ((TRestart%m_aug .eq. 1) .and. (TRestart%m_count .le.
<21> TRestart%m_count_max)) then !! if in aug cycle
<22> if (TRestart%m_def * TRestart%m_floor

.lt. TRestart%m_max) then
<23> M = TRestart%m_def * TRestart%m_floor
<24> TRestart%m_count = TRestart%m_count + 1
<25> else
<26> M = TRestart%m_def; TRestart%m_aug = 0;
<27> endif
<28> endif
<29> endif
<30> return M

320 T. Katagiri, P.-Y. Aquilanti, and S. Petiton

3 A Smart Tuning Strategy with Hierarchical Cache Sizes

3.1 Using the Vector Size of Caches to Better Estimate m

Most of the computational cost of GMRES(m) is due to the orthogonalization process
in lines <4>–<12> in Fig. 1. The computational complexity of orthogonalization
depends on the restart frequency m, i.e., O(nm2), where n is the dimension of
matrix A.

Orthogonalization is performed in a space of dimension n × m. The
orthogonalization process can be parallelized by threads based on the rows of the
space. (See parallel Classical Gram–Schmidt or Modified Gram–Schmidt
procedures.) With respect to parallel implementation with threads, we can estimate a
better value m* with a double-precision computation using the following formula:

 (3)

where the Memory Size corresponds to the sizes of the L1 cache (Independent), L2
cache (Independent), and L3 cache (Shared), etc. The memory size of the sparse
matrix A is not considered in this model. It will, however, give a good estimate for the
orthogonalization complexity, as all computations are performed with vectors that
must be orthogonalized. In addition, if m is large, the most demanding process of
GMRES(m) will be the orthogonalization. With this in mind, we consider this to be a
reasonable estimation for m*.

3.2 Principle of AT Using Hierarchical Caches

We use one socket of the AMD Opteron (Barcelona) to explain AT with hierarchical
caches. The AMD Opteron has three types of cache: L1 cache (Independent, 64 KB),
L2 cache (Independent, 512 KB), and L3 cache (Shared between four cores, 2 MB).
Taking into account the real configuration of the caches, the idea to improve the AT
strategy is summarized as follows:

 Use cache information to set maximum values of m for the AT. In the AMD
Opteron case, the following hierarchy is formed (although this is not
necessarily limited to the specific configuration):

 M_MAXL1 : maximum size of m on the L1 cache.
 M_MAXL2 : maximum size of m on the L2 cache.
 M_MAXL3 : maximum size of m on the L3 cache.
 M_MAXMM : maximum size of m on the main memory.

3.3 AT for an Increase Strategy with Cache Hierarchy

Fig. 4 shows the proposed AT method with cache hierarchy for the Xabclib strategy.

,/8/* threadsofnumberThenSizeMemorym =

 A Smart Tuning Strategy for Restart Frequency of GMRES(m) 321

Fig. 4. Increase strategy (Xabclib) with cache hierarchy. Additions to line <3> in Fig. 2 are
shown. Set MLEVEL = 1 before the main loop of GMRES(m) in Fig. 1.

3.4 AT for a Decrease Strategy with Cache Hierarchy

Fig. 5 shows the proposed AT method with cache hierarchy for Aquilanti’s strategy.

Fig. 5. Decrease strategy (Aquilanti’s) with cache hierarchy. The modifications to lines in Fig.
3 are shown. Set TRestart%mlevel = 1 before the main loop of GMRES(m) in Fig. 1.

3.5 Implementation Variants of the Decrease Strategy

There are some variants to the cache hierarchy strategy for Aquilanti’s method.
Roughly speaking, there are three ways to adapt the cache sizes: (1) using the
maximum value; (2) using the minimum (default) value; or (3) a mixture of both.

We take option (3)—the maximum value for the cache hierarchy in the current
level (see lines <3’> and <18’> in Fig. 5) and the default values for current level (see
line <26’> in Fig. 5). The reason for this approach is to prevent setting too small a
default size with respect to the execution on the previous level.

<3-1> if (MLEVEL .eq. 1) then
<3-2> M = M_MAXL1; MLEVEL = 2;
<3-3> else if (MLEVEL .eq. 2) then
<3-4> M = M_MAXL2; MLEVEL = 3;
<3-5> else if (MLEVEL .eq. 3) then
<3-6> M = M_MAXL3; MLEVEL = 4;
<3-7> else
<3-8> M = M + IATPARAM(5)
<3-9> endif
<3-10> if (M .GT. MSIZE) then
<3-11> M = M_MAXMM
<3-12> endif

<3’> m = TRestart%m_maxs(mlevel)
<4’> if (TRestart%mlevel .le. 3) TRestart%mlevel = TRestart%mlevel + 1

 else TRestart%mlevel = 1
<13’> m = TRestart%m_floor * TRestart%m_maxs(TRestart%mlevel)
<18’> m = TRestart%m_maxs(TRestart%mlevel)
<22’> if (TRestart%m_maxs(TRestart%mlevel) * TRestart%m_floor .lt.
 TRestart%m_max) then
<23’> m = TRestart%m_maxs(TRestart%mlevel) * TRestart%m_floor
<26’> m = TRestart%m_maxes(TRestart%mlevel); TRestart%m_aug = 0;

322 T. Katagiri, P.-Y. Aquilanti, and S. Petiton

At the end, we add the following parameters to the original strategy:

 m_max = M_MAXMM
 TRestart%m_maxs(1) = M_MAXL1
 TRestart%m_maxs(2) = M_MAXL2
 TRestart%m_maxs(3) = M_MAXL3
 TRestart%m_maxs(4) = 200 (this is m_max, which is the maximum

frequency parameter in Aquilanti’s original strategy)

4 Numerical Experiments

4.1 Computer Environment

We used the T2K Open Supercomputer, which is a HITACHI HA8000 installed at the
Information Technology Center, University of Tokyo. Each node contains four
sockets of the AMD Opteron 8356 (Quad core, 2.3 GHz). The L1 cache is 64
KB/core, the L2 cache is 512 KB/core, and the L3 cache is 2 MB/4 cores. The
memory on each node is 32 GB with DDR2-667 MHz. The theoretical peak is 147.2
GFLOPS/node. The inter-node connection comprises four lines of the Myri-10G with
a full bisection connection. This attains 5 GB/s in both directions. We used the Intel
Fortran Compiler Professional Version 11.0 with options “-O3 -m64 -openmp –
mcmodel=medium.”

4.2 Experimental Conditions

We used a pre-release version of Xabclib ver.1.0 [3] for the GMRES(m)
implementation of both strategies. The GMRES(m) subroutine on Xabclib is
OpenATI_GMRES. ILU(0) was chosen as a preconditioner. The convergence
tolerance was set to 1.0e-08, and the time tolerance was set to 600 s. If an iteration
had not converged after 600 s, the routine was forcibly stopped. This is the
fundamental function of Xabclib.

We formed a solution vector x whose elements were set to 1. The right-hand-side
(RHS) vector was then generated by Ax. The initial guess x0 was set to 0.

For Aquilanti’s original strategy (Fig. 3), we required a number of default
parameters, which were set as follows in this experiment.

 m_def = 20
 m_min = 3
 m_max = 200
 m_incr = 3
 m_count_max = 5

 A Smart Tuning Strategy for Restart Frequency of GMRES(m) 323

4.3 Test Matrices

We used 22 non-symmetric, real matrices from the University of Florida Sparse
Matrix Collection (referred to hereafter as the UF collection) [7]. The test matrices are
shown in Table 1. Equation (3) was used to calculate the cached m* size.

According to Table 1, the cached m* sizes for L2 and L3 are the same. This is
because the size of the shared L3 per core is the same as the L2 (512 KB) when we
use 16 cores on the AMD Opteron. We set the cached sizes of m* to M_MAXL1,
M_MAXL2, and M_MAXL3, respectively.

Table 1. Test matrices from the UF collection and cached m* sizes on the AMD Quad Core
Opteron. N is the dimension of the matrix, and NNZ is the number of non-zero elements.

Name N NNZ
L1 Cached
m* Size

L2 Cached
m* Size

L3 Cached m*
Size (16 cores)

chipcool0 20082 281150 6.5 52.2 52.2
chem_master1 40401 201201 3.2 26.0 26.0
torso1 116158 8516500 1.1 9.0 9.0
torso2 115967 1033473 1.1 9.0 9.0
torso3 259156 4429042 0.5 4.0 4.0
memplus 17758 126150 7.4 59.0 59.0
ex19 12005 259879 10.9 87.3 87.3
poisson3Da 13514 352762 9.7 77.6 77.6
poisson3Db 85623 2374949 1.5 12.2 12.2
airfoil_2d 14214 259688 9.2 73.8 73.8
viscoplastic2 32769 381326 2.0 32.0 32.0
xenon1 48600 1181120 1.3 21.6 21.6
xenon2 157464 3866688 0.4 6.7 6.7
wang3 26064 177168 2.5 40.2 40.2
wang4 26068 177196 2.5 40.2 40.2
ecl32 51993 380415 1.3 20.2 20.2
sme3Da 12504 874887 5.2 83.9 83.9
sme3Db 29067 2081063 2.3 36.1 36.1
sme3Dc 42930 3148656 1.5 24.4 24.4
epb1 14734 95053 4.4 71.2 71.2
epb2 25228 175027 2.6 41.6 41.6
epb3 84617 463625 0.8 12.4 12.4

4.4 Results and Discussion

Effect on the Increase Strategy (Xabclib)
Fig. 6 shows the effect of AT with hierarchical cache sizes for the increase strategy
(Xabclib) on the T2K (16 threads).

According to Fig. 6, the performance for several matrices is improved. The average
speedup of execution time compared to the original is 1.13×. In particular, the
airfoil_2d matrix from the UF collection establishes a speedup of more than 2×. We
examined the evolution of the restart frequency for this case. Fig. 7 illustrates the
change in m using the original Xabclib method and our proposed cache size AT
strategy for airfoil_2d.

324 T. Katagiri, P.-Y. Aquilanti, and S. Petiton

According to Fig. 7, the frequency of m is increased dramatically, from 9 to 73,
after the first restart process. This is because airfoil_2d is not a large matrix; the 73
vectors are all cached in L2. Hence, after the first restart, our strategy can suddenly
increase m up to 73. This causes faster convergence than in the original strategy.

Fig. 6. Effect of AT with hierarchical cache sizes for the increase strategy (Xabclib) on the T2K
(16 threads). Execution time of the original is normalized to 1. Speedup factor greater than 1
implies faster convergence than the original. The ex19 and xenon2 matrices do not converge in
the ILU(0) preconditioner, whereas xenon1 converges if we use the cache size strategy.

Fig. 7. Change in restart frequency using the Xabclib strategy in the airfoil_2d

 A Smart Tuning Strategy for Restart Frequency of GMRES(m) 325

Effect on the Decrease Strategy (Aquilanti’s)
Fig. 8 shows the effect of AT with hierarchical cache sizes for the decrease strategy
(Aquilanti’s) on the T2K (16 threads).

Fig. 8. Effect of AT with hierarchical cache sizes for the decrease strategy (Aquilanti’s) on the
T2K (16 threads). Execution time of the original (Aquilanti’s) is normalized to 1. Speedup
factors greater than 1 implies faster convergence than the original. Speedup compared to the
original Xabclib increase strategy is also shown. The ex19, xenon1, and xenon2 matrices did
not converge in the ILU(0) preconditioner.

According to Fig. 8, the performance for several matrices is strongly improved.
The average speedup factor is 4.25×. In addition, the average speedup compared to
the original Xabclib strategy is 1.29×, which is considerable. Therefore, this implies
that the crucial effect is due to our cache size strategy.

The torso2 matrix, in particular, established a speedup of more than 15× the
original decrease strategy, and torso1 achieved a 4× speedup compared to the original
Xabclib increase strategy. We examined the evolution of the restart frequency for
both of these matrices, and have plotted these in Fig. 9 in order to help explain these
phenomena.

According to Fig. 9 (a), the maximum frequency in the proposed strategy is
limited, as it still uses the cached m sizes for L1 and L2. The torso2 matrix is large,
hence the cached m for L2 is only 9, whereas the original strategy uses m = 200, the
default maximum. In addition to this, torso2 needs a very small value of m to
converge. This fact leads to the enormous speedup compared to the original.

In contrast, torso1 is a difficult problem in that it requires almost maximum
frequency, i.e., 200, to converge. In the first phase, the cache size strategy is trying to

326 T. Katagiri, P.-Y. Aquilanti, and S. Petiton

find better values for m within L1, L2, and L3; however, this does not give
convergence because m is very small i.e., 9, in this case. After searching all cache
sizes, the strategy retains the default maximum size, i.e., 200. On the other hand, the
Xabclib strategy is to increase m step-by-step until it reaches 200. This causes very
slow convergence compared to Aquilanti’s strategy.

(a) torso2

(b) torso1

Fig. 9. Change in restart frequencies for Aquilanti’s strategy on (a) torso2 and (b) torso1

 A Smart Tuning Strategy for Restart Frequency of GMRES(m) 327

From the above discussions concerning the statistically significant gains in
speedup, we can conclude that our proposed cache size strategy is crucial to AT for
both increase and decrease strategies.

It is difficult to implement a good decrease strategy without cache information; this
is because it is generally difficult to set a better maximum restart frequency. Using the
cache size strategy, it is clear that no additional cost is needed to set the maximum
value. As a result, the decrease strategy is faster than the increase strategy in terms of
average speedup.

5 Conclusion

In this paper, we proposed a smart tuning strategy using hierarchical cache sizes for a
current multicore architecture. We have proposed an auto-tuning (AT) strategy for the
restart frequency of both increase and decrease GMRES(m) methods.

As a result of performance tuning using one node of the T2K Open Supercomputer
composed of an AMD Quad Core Opteron (16 cores), the proposed AT strategies
were found to be very efficient compared to the original strategies without
hierarchical cache sizes.

We evaluated the proposed strategies on 22 matrices from the University of Florida
Sparse Matrix Collection. The results showed an average speedup of 1.13× for the
increase method (an implementation of Xabclib) and an average speedup of 4.25× for
the decrease method (Aquilanti’s) using the proposed strategy.

One of the drawbacks to the traditional decrease strategy is the difficulty in
determining the optimal maximum restart frequency—if too large a value is specified,
the algorithm takes a long time; however, if too small a value is specified, it may not
converge at all. According to the results of our numerical experiment, we found that
the performance of the decrease strategy was improved by a factor of 15. This was
caused by the selection of appropriate values for the maximum restart frequency
based on cache size information.

In addition, we found that the decrease strategy is better than the increase strategy,
in terms of the average speedup, if the maximum frequency is set appropriately. The
hierarchical cache information is a crucial factor in setting an appropriate maximum
frequency.

As the L2 and L3 cache sizes are the same when we use 16 cores for the AMD
Quad Core Opteron, the evaluation of several multicore architectures is important
future work. The proposed strategy does not permit “multiple” re-use of the cache
information. Constructing such a strategy is also vital in future research.

Acknowledgments. This work is supported by the FP3C “Framework and
Programming for Post Petascale Computing” Project, funded by Strategic
International Research Cooperative Program, JST, Japan, and Agence National de la
Recherche (ANR), France. The authors would like to thank members of the Xabclib
project for the use of a pre-released version of Xabclib ver.1.0.

328 T. Katagiri, P.-Y. Aquilanti, and S. Petiton

References

1. Saad, Y., Schults, M.: GMRES: A Generalized Minimal Residual Algorithm For Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

2. Sosonkina, M., Watson, L., Kapania, R.: A New Adaptive GMRES Algorithm for
Achieving High Accuracy. Technical Report, Computer Science, Virginia Polytechnic
Institute and State University (1996)

3. Xabclib Project, http://www.abc-lib.org/Xabclib/index.html
4. Baker, A., Jessup, E., Kolev, Tz.: A Simple Strategy for Varying The Restart Parameter in

GMRES(m). Journal of Computational and Applied Mathematics 230(2), 751–761 (2009)
5. Habu, M., Nodera, T.: GMRES(m) Method with Changing The Restart Cycle Dynamically.

Trans. IPS Japan 43(6), 1795–1803 (2002) (in Japanese)
6. Aquilanti, P.-Y., Petiton, S., Calandra, H.: Parallel Auto-tuned GMRES Method to Solve

Complex Non-Hermitian Linear System. In: Proceedings of iWAPT 2010 (2010)
7. The University of Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

	A Smart Tuning Strategy for Restart Frequency of GMRES(m) with Hierarchical Cache Sizes
	1 Introduction
	1.1 Categories of AT for the Restart Frequency of GMRES(m)
	1.2 Originality of This Paper
	1.3 Organization of the Paper

	2 GMRES(m) and AT Strategy for the Restart Frequency

	2.1 The GMRES(m) Algorithm
	2.2 AT Strategies for the Restart Frequency of GMRES(m)

	3 A Smart Tuning Strategy with Hierarchical Cache Sizes
	3.1 Using the Vector Size of Caches to Better Estimate m
	3.2 Principle of AT Using Hierarchical Caches
	3.3 AT for an Increase Strategy with Cache Hierarchy
	3.4 AT for a Decrease Strategy with Cache Hierarchy
	3.5 Implementation Variants of the Decrease Strategy

	4 Numerical Experiments
	4.1 Computer Environment
	4.2 Experimental Conditions
	4.3 Test Matrices
	4.4 Results and Discussion

	5 Conclusion
	References

