
Software Transactional Memory, OpenMP
and Pthread Implementations of the Conjugate
Gradients Method – A Preliminary Evaluation

Vincent Heuveline2, Sven Janko1, Wolfgang Karl1, Björn Rocker3,
and Martin Schindewolf1

1 Karlsruhe Institute of Technology (KIT), Chair for Computer Architecture and
Parallel Processing, Haid-und-Neu-Straße 7, 76131 Karlsruhe, Germany

{sven.janko,karl,schindewolf}@kit.edu
2 Karlsruhe Institute of Technology (KIT), Engineering Mathematics and Computing

Lab (EMCL), Fritz-Erler-Str. 23, 76133 Karlsruhe, Germany
vincent.heuveline@kit.edu

3 Robert Bosch GmbH, Corporate Sector Research and Advance Engineering,
Robert-Bosch-Platz 1, 70839 Gerlingen-Schillerhöhe, Germany

bjoern.rocker@de.bosch.com

Abstract. This paper shows the runtime and cache-efficiency of par-
allel implementations of the Conjugate Gradients Method based on the
three paradigms Software Transactional Memory (STM), OpenMP and
Pthreads. While the two last named concepts are used to manage paral-
lelization as well as synchronization, STM was designed to handle only
the latter. In our work we disclose that an improved cache-efficiency does
not necessarily lead to a better execution time because the execution time
is dominated by the thread wait time at the barriers.

Keywords: Software Transactional Memory, OpenMP, Pthreads, Con-
jugate Gradients Method, Case Study.

1 Introduction and Motivation

Parallelization is state of the art in scientific computing for a long time, but
also comes with the need to synchronize parallel threads of execution. Efficient
synchronization is the key towards maximum performance on (shared mem-
ory) multicore architectures. Traditional synchronization primitives in OpenMP
(e.g., omp critical) and Pthreads (e.g., locks) achieve synchronization through
enforcing mutual exclusion. Threads may experience long delays when waiting
for a lock to become available. In the last decade Transactional Memory (TM)
has been proposed for synchronization. Instead of following the traditional pes-
simistic scheme of avoiding memory conflicts, TM favors an optimistic scheme
that detects and resolves conflicting accesses. The goal of this strategy is to
increase the scalability in regard to a high number of threads and coevally to
decrease the time needed for synchronization.

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 300–313, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Software Transactional Memory, OpenMP and Pthread Implementations 301

In this paper, we evaluate the applicability of TM for the method of Conjugate
Gradients (CG), a solver for linear systems of equations that is frequently used
in many fields of application, especially in the area of structural mechanics and
computational fluid dynamics.

This paper is structured as follows. Section 2 reviews related work in the area
of Transactional Memory research and describes the method of CG. In Section 3
we will discuss our implementations which leads us to Section 4 where we present
our results. Section 5 concludes our work and presents ideas for future work.

2 Background on Transactional Memory

Writing efficient, highly scalable and correct parallel software is a challenging
task for programmers. They are in charge of the synchronization and communi-
cation of the involved threads in order to avoid memory conflicts and deadlocks.
Furthermore, one should have consolidated knowledge of the mechanisms of the
underlying runtime/operating system.

The idea behind TM is to simplify the process of writing parallel code by
providing basic constructs for synchronization. Originally Herlihy and Moss in-
vented TM in 1993 as an architectural extension to enable lock-free data struc-
tures [17]. The basic construct is called a transaction and guarantees to execute
the comprising load and store commands with three properties: atomicity, con-
sistency and isolation [11]. In contrast to traditional synchronization approaches
that enforce mutual exclusion, transactions are executed optimistically in paral-
lel and conflicts are detected and resolved by a TM run time system. The TM
system can be implemented in hardware [21,20], software [12,13,14] or as a com-
bination of both as hybrid TM [19,16,18]. In case of a Software Transactional
Memory (STM) system a user-level library fulfills this task. All transactional
accesses to shared memory are performed through this STM. Often this library
comes with compiler support. Then a programmer can use a specific keyword
to mark a transaction in the code. For this region of code the compiler inserts
calls into the STM instead of performing accesses to shared memory directly.
This approach offers the most convenience for the programmer, but also comes
at some cost. The compiler makes pessimistic assumptions and, thus, may in-
strument more memory accesses than absolutely necessary. This phenomenon is
known as over-instrumentation [22]. Further, STMs suffer from overheads due
to the managing of meta data and acquiring and releasing locks [15]. In our
work, we use an STM-only approach with manually instrumented memory ac-
cesses, which has the advantage that the resulting binary does not suffer from
over-instrumentation through the compiler. OpenMP [6] and Pthreads APIs [7]
provide the thread management for the STM.

2.1 Conjugate Gradients

The Method of Conjugate Gradients (CG) is a common solver in many fields
of application, especially in the area of structural mechanics and computational
fluid dynamics. There, finite element and volume methods (FEM/FDM) are

302 V. Heuveline et al.

frequently employed. Within most linearization methods linear systems have to
be solved, consuming often most of the time within the solution process. If those
systems are symmetric and positive definite, CG can be applied. Usually, CG
is used in combination with an appropriate preconditioning depending on the
problem that is solved. Within this paper, we evaluate a pure version of CG.

Algorithm 1. Conjugate Gradi-
ents
1: r0 = b− Ax0, p0 = r0, A spd
2: for i = 0, 1, 2, ... do
3: αi =

rTi ri
pTi Api

4: xi+1 = xi + αipi
5: ri+1 = ri − αiApi

6: βi =
rTi+1ri+1

rT
i
ri

7: pi+1 = ri+1 + βipi
8: end for

CG is an improvement of the methods
of Steepest Descent and Conjugate Direc-
tions where the disadvantage in building the
search directions disappears. By conjugation
of the residuals the search directions are con-
structed and it is no longer needed to store
the old search vectors (see [5] for a detailed
explanation).

In the following, n denotes the dimension
of the matrix A that is introduced in Algo-
rithm 1. There are one matrix-vector prod-
uct, three vector updates and two dot-products per iteration cycle. In general
the matrix-vector product for computing Apj needs n2 floating-point multipli-
cations and n2 − n summations, leading to a asymptotic complexity of O(n2).
The complexity for the vector updates is O(n), because n multiplications and n
summations for each update are needed. The inner product has also a complex-
ity of O(n). Hence the total complexity per iteration step is dominated by the
matrix-vector product. If sparse matrices are used and only nonzero entries are
saved the complexity decreases. Supposing a matrix having nnz nonzero entries
and nnz << n2. Now, nnz floating-point multiplications are needed and at most
nnz− 1 summations. The total complexity is O(nnz) compared to O(n2) in the
dense case.

3 Implementations

In the first step we implemented the CG-algorithm as described in Section 2.1
using the C programming language and OpenMP. Then this code was trans-
formed to a similar Pthreads variant and afterwards this version was modified
using TM commands. With this approach, we were able to get results that were
comparable to each other. The main calculation takes part in five for-loops, cor-
responding to lines 3 to 7 in Algorithm 1, each iterating n times where n still is
the dimension of the underlying matrix of the algorithm.

3.1 OpenMP

In our OpenMP program the parallelization is achieved by inserting #pragma
omp for -statements on top of each for-loop. Because a for-loop has an implicit
barrier, we did not have to care about data dependencies between the several
for-loops.

Listing 1.1 shows the five for-loops where most of the execution time is spent.
In line 4 and 10 we make use of an OpenMP feature that is called reduction.

Software Transactional Memory, OpenMP and Pthread Implementations 303

Every thread, that is part of the calculation, gets its own private copy of the
variable scp_temp. Each thread then uses this copy for calculations inside of
the loop. Afterwards an addition takes place and the variable scp_temp can
be used as the sum of all thread-private variables. As this reduction is gen-
erated by the OpenMP compiler and hence is hidden from the programmer,
this is exactly where we had to insert commands to achieve mutual exclu-
sion when writing the Pthreads versions (with and without TM, respectively).

Listing 1.1. OpenMP parallelization

1 #pragma omp for p r i v a t e (. . .) s chedu le (static)
2 for (i =0; i<n ; i++){ . . . }
3 . . .
4 #pragma omp for r educt ion (+: scp_temp) schedu le (static)
5 for (i =0; i<n ; i++) scp_temp += p [i]∗ v [i] ;
6 . . .
7 #pragma omp for s chedu le (static)
8 for (i =0; i<n ; i++){ . . . }
9 . . .

10 #pragma omp for r educt ion (+: scp_temp) schedu le (static)
11 for (i =0; i<n ; i++) scp_temp += r [i]∗ r [i] ;
12 . . .
13 #pragma omp for s chedu le (static)
14 for (i =0; i<n ; i++){ . . . }

3.2 Pthreads

The basic idea of the OpenMP-to-Pthreads transformation was to pass the main
calculation to each created thread modifying the start and end index of each
for-loop. With this practice we tried to keep very close to the internal imple-
mentation of our OpenMP model. Of course, we also had to reproduce the im-
plicit barriers in OpenMP. We achieved this by inserting explicit barriers that
are implemented using the simple function shown in Listing 1.2.

3.3 Transactional Memory

The third model of the CG-algorithm was written using our Pthreads program as
basis. Only a few lines in the TM-implementation differ from this code. We used
the same thread creation concept and also the same barriers. We customized our
code mainly in two places by inserting TM instructions to generate a transac-
tion. With this transaction, threads will optimistically read and write the shared
variable scp_temp concurrently. Listing 1.3 shows a TM version of the reduction
that was previously mentioned in Section 3.1.

304 V. Heuveline et al.

Listing 1.2. Pthreads barrier implementation

1 typedef struct ba r r i e r {
2 pthread_cond_t complete ;
3 pthread_mutex_t mutex ;
4 int count ;
5 int c r o s s i n g ;
6 } bar r i e r_t ;
7
8 void ba r r i e r_c ro s s (bar r i e r_t ∗b) {
9 pthread_mutex_lock (&b−>mutex) ;

10 b−>cro s s i n g ++;
// one more thread through

11 i f (b−>cro s s i n g < b−>count) {
// i f not a l l here , wai t

12 pthread_cond_wait(&b−>complete , &b−>mutex) ;
13 } else {
14 pthread_cond_broadcast(&b−>complete) ;

// l a s t thread a r r i v ed
15 b−>cro s s i n g = 0 ;

// Reset f o r next time
16 }
17 pthread_mutex_unlock(&b−>mutex) ;
18 }

Listing 1.3. TM reduction

1 for (i = thread−>s t a r t ; i < thread−>end ; i++) {
2 scp_temp_private += p [i]∗ v [i] ; }
3 START(thread−>id , RW) ;
4 scp_temp_private += (double)LOAD_DOUBLE(&scp_temp) ;
5 STORE_DOUBLE(&scp_temp , scp_temp_private) ;
6 COMMIT;

4 Numerical Experiments

4.1 Hardware and Software Environment

All experiments were run on two computers C1 and C2 which are described in
detail in Table 1. As compiler, gcc-4.4 was invoked with options -O3 and -g3.
As Software Transactional Memory library we chose TinySTM [9,10]. TinySTM
is a lightweight and efficient word-based STM implementation. Its time-based
algorithm is derived from LSA and its lock-based design borrows several key
elements from other word-based STMs, such as TL2.

Software Transactional Memory, OpenMP and Pthread Implementations 305

Table 1. Experimental Setup

Computer 1 (C1) Computer 2 (C2)
CPU name Intel Xeon X56701 AMD Opteron 23782

#Sockets two two
CPU frequency 2.93 GHz 2.36 GHz
RAM 12 GB 16 GB
Size of L1 32 KB 64 KB
Size of L2 256 KB 512 KB
OS GNU/Linux (Ubuntu) GNU/Linux (Ubuntu)
Kernel version 2.6.32-29-server 2.6.38-12-server
Architecture x86_64 x86_64
Hyper-threading yes no
NUMA yes yes

4.2 Numerical Results

Each of our tests were run several times (>15) taking into account the exclusive
computing time for the process. Afterwards we calculated the arithmetic mean
of the results omitting the fastest and the slowest run. Thus, every value in the
subsequent figures is an arithmetic average of at least 14 executions.

We evaluated the performance assuming a sparse matrix described by means
of a CSR format. The linear system is obtained from a finite element discretiza-
tion of the stationary heat equation without heat source (homogeneous case)
which represents a prototype of Laplace’s equation. It is equivalent to a finite
differences discretization based on the 3-point-stencil. The matrix has a dimen-
sion of 5 000 000 and 14 999 998 nonzero entries (nnz). The residual stopping
criteria for the residual is set to 10−13.

Performance. As expected, with all three paradigms we could achieve signif-
icant speedups over the respective single thread execution time by increasing
the number of threads from one to two, three, four and more. On Computer
1 we achieved a speedup of S8 = 2.72 (OpenMP), S8 = 3.42 (Pthreads) and
S8 = 3.79 (STM) by increasing the number of threads from one to eight. See
Figure 1. The dimension of the underlying matrix was set to 5M in this case.
Although there are clear differences in the above-named speedups, the execution
time does not differ much with eight threads on C1. The good speedup with
STM is also due to the high single thread overhead. A special case is 24 threads
and OpenMP: the calculation takes slightly longer than with the single threaded
concept. A model that describes the effects of the scheduling on the run time of
the application explains the peak with 24 threads. Christmann et al. developed
this model when they where researching the impact of oversubscription on the
application throughput [8]. The scheduling algorithm must be fair (each process
1 Registered Trademark by Intel Corporation.
2 Registered Trademark by AMD.

306 V. Heuveline et al.

gets a fair share of time), balance the load across cores (or hardware threads)
and pins a process to a processing element as long as possible. Our case meets
all of these assumptions. The explanation for the peak in execution time is that
a fully loaded node (with 24 OpenMP threads) competes with some background
process for computing resources. Eventually, after a long stall time, one of the
OpenMP threads gets migrated leading to a prolonged overall execution time.
Later experiments verified that a later Linux kernel (with version number 3.0.0-
23-server) that enables a fair scheduling of groups instead of processes does not
show this behavior anymore.

Fig. 1. Runtime analysis of the CG method (OpenMP, Pthreads, STM)

Another finding of our research is that the Pthread-program (and also the TM-
program) is in the majority of cases slightly slower than the OpenMP-variation.
We see mainly two causes therefor: a) more cache misses (see Section Cache-
Efficiency Analysis) and b) more time is spent at the barriers. We will discuss
the second argument in more detail now. We measured the time that the threads
had to wait at each barrier in the Pthreads-program on C2. For two threads it
took 7-15% of the overall execution time to wait at the barriers. Four threads
waited about 25%, six threads about 43% and eight threads even about 70% of
the execution time. What we discovered with this analysis is, that the time at
the barriers increases rapidly if there are pairs of threads that have the same
Hardware-Thread-ID. That means these threads cannot be executed in parallel
because they are mapped to the same hardware entity and hence have to run
one after the other. Those pairs appear even if the number of threads is less than
the number of possible hardware threads in the system, which is an important
insight. Apparently this is nothing the software developer is able to control.

PARSEC Barrier Tests. Another test concerning the barriers was the com-
parison of two slightly varying Pthreads programs. On the one hand, we used
the constructs for the barriers as described in Listing 1.2, on the other hand, the
PARSEC barriers were tested [2]. When using the PARSEC barriers, one can
choose between two modes: 1) spinning ON and 2) spinning OFF. The results
(executed on C2) are shown in Figure 2.

Software Transactional Memory, OpenMP and Pthread Implementations 307

Fig. 2. PARSEC barrier comparison

Fig. 3. Level 1 data cache misses

In general, using the PARSEC barriers did not bring strong advantages over
the simple implementation which we used earlier. On the contrary, it was even
slower for most configurations. Only for four to eight threads, if the spinning
option was set to ON, it resulted in a faster runtime. As shown in Figure 2,
the execution time increases for more than eight threads. That is exactly as we
expected. In this example, spinning does not make any sense for a higher number
of threads.

Cache-Efficiency Analysis. In order to understand the differences in runtime
we also studied the cache behavior in detail. Our main focus was on the data
cache, because the instruction cache analysis did not reveal noticeable results.
The following designations apply to C2. As one can see in Figure 3, the data
cache misses of the first level cache (L1 DCM) do not change with an increasing
number of threads3, whereas the L2 DCMs increase at the same time (see Figure
4). This holds as long as the number of threads is less or equal the number of
possible hardware threads (here 8) in the system. Beyond this point the L2
DCMs are not increasing anymore. From Figure 4 we educe that there is no
direct correlation of the L2 DCMs and the execution time of the program. Rising
3 The DCMs of OpenMP are hidden behind the DCMs of Pthreads.

308 V. Heuveline et al.

Fig. 4. Level 2 data cache misses

L2 DCMs do not necessarily bring a slower execution time and on the contrary,
falling L2 DCMs do not always result in a faster execution time. This holds for
all three programs.

If we now compare Figure 4 and 2, it becomes apparent that the waiting time
at the barriers dominates the execution time of the programs. As one can see in
Listing 1.2, the main function of the barrier construct is to pause a thread at a
specific point of execution until all other threads reach the barrier. That means,
that the last thread significantly increases the execution time. Thus, increasing
the number of threads only makes sense, if the time that is spent at the barriers
is improved, too.

4.3 Experiments with Matrices from Structural Engineering

In this section we will add additional experiments with two more matrices to
provide a richer evaluation of the implemented CG variants. In order to com-
plement the findings from the previous section, we also distinguish two more
implementation variants that differ in the implementation of the reduction. The
two reductions in CG are each implemented in two ways: Fast, and Slow. Fast
uses a thread-local variable to accumulate the results over a private part of the
vector that is assigned to this specific thread. Then, a single update adds the
thread-local variable to the shared memory one that is guarded by a critical
section or transaction. Thus, contention between threads only arises from the
update of the shared memory variable. The Fast version of CG updates one
shared memory location per thread and reduction pattern. Thus, the number
of executed transactions equals the number of threads times the number of re-
ductions per iteration. This is the reduction pattern that has also been used for
the previous experiments presented in this paper. The Slow version updates the
shared memory location in one transaction or critical section and does not use
thread-local variables. Because each reduction only updates one shared mem-
ory location, OpenMP atomic is a perfect fit because it maps to a processor
instruction that assures the atomicity of the update (if the processor supports

Software Transactional Memory, OpenMP and Pthread Implementations 309

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 5 10 15 20

T
im

e
[s

]

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(a) Matrix bcsstk14.

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 5 10 15 20

T
im

e
[s

]

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(b) Matrix bcsstk18.

Fig. 5. Run times with OpenMP and all variants of synchronization mechanisms

atomics). The Fast version, again, uses thread-local variables whereas the Slow
version does not. This atomicity is limited to one memory location and can not
be extended. Thus, the Atomic Fast uses the thread-local variables to update
the shared memory locations and the Atomic Slow updates the shared memory
location for each new value. Since each value must be updated with a separate
atomic instruction there is no need to distinguish between long and short sec-
tions. These self-made reductions are complemented by the OpenMP reduction,
denoted as Reduction, that the programmer specifies through using a #pragma
omp for reduction(+:var) schedule(static).

The two additional matrices are taken from the matrix market4. This assures
that other researchers may compare their results with ours. The first matrix is
called bcsstk14, has a dimension of 1806 with 32630 entries. The matrix has a
Frobenius norm of 6.5 ∗ 1010 and an estimated condition number of 1.3 ∗ 1010.
The matrix is used for static analysis in structural engineering and models the
roof of the Omni Coliseum in Atlanta. The second matrix, called bcsstk18, has
a dimension of 11948 with 80519 entries, a Frobenius norm of 2.4 ∗ 1011 and an
estimated condition number of 65. Both matrices are from the set BCSSTRUC2
of Prof Mac Will, Georgia Institute of Technology. As experimental setup, we
use again C1 with OpenMP parallelization only this time running Linux kernel
version number 3.0.0-23-server that enables a fair scheduling of groups instead
of processes and, thus, does not show the peak in the run time with 24 threads
(cf. to Section 4.2).

Figure 5 highlights the run time and shows that the implementation strat-
egy of the reduction is more important than the choice of the synchronization
mechanisms for this reduction. Clearly all Slow variants perform worse than
their single-threaded counter parts. This is due to the contention on the shared
variables that are updated in each loop iteration. The Fast variants show a far
better scalability due to a reduction in time with an increasing thread number.
4 http://math.nist.gov/MatrixMarket

http://math.nist.gov/MatrixMarket

310 V. Heuveline et al.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5 10 15 20

Sp
ee

du
p

#Threads

Reduction
Critical Fast

STM Fast
Atomic Fast

(a) Matrix bcsstk14.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5 10 15 20

Sp
ee

du
p

#Threads

Reduction
Critical Fast

STM Fast
Atomic Fast

(b) Matrix bcsstk18.

Fig. 6. Speedup of the Fast synchronization variants over the respective single thread
performance

 8.19e+03

 1.64e+04

 3.28e+04

 6.55e+04

 1.31e+05

 2.62e+05

 5.24e+05

 1.05e+06

 2.1e+06

 4.19e+06

 5 10 15 20

#L
1

IC
M

s

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(a) Matrix bcsstk14.

 2.62e+05

 5.24e+05

 1.05e+06

 2.1e+06

 4.19e+06

 8.39e+06

 1.68e+07

 3.36e+07

 6.71e+07

 1.34e+08

 2.68e+08

 5 10 15 20

#L
1

IC
M

s

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(b) Matrix bcsstk18.

Fig. 7. L1 instruction cache misses with different synchronization variants

In Figure 6 the speedup over the respective single thread performance of the
Fast variants. Atomic Fast achieves the highest speedup for bcsstk14 with 8 and
for bcsstk18 with 12 threads. For bcsstk18 STM Fast also performs almost as
good as Atomic Fast.

Figure 7 shows the L1 instruction misses for both matrices. The Slow vari-
ants have a significant higher number of instruction cache misses than the Fast
variants. The interesting observation is that for bcsstk14 Atomic Slow is almost
as good as STM Fast. This shows the large overhead in terms of instructions
that is associated with using an STM system. The Reduction and Atomic Fast
utilize the instruction cache the most efficiently.

For the L1 data cache misses, shown in Figure 8, the trend is similar as with the
L1 instruction cache miss but the gap between STM and the other mechanisms

Software Transactional Memory, OpenMP and Pthread Implementations 311

 3.36e+07

 6.71e+07

 1.34e+08

 2.68e+08

 5.37e+08

 1.07e+09

 5 10 15 20

#L
1

D
C

M
s

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(a) Matrix bcsstk14.

 1.07e+09

 2.15e+09

 4.29e+09

 8.59e+09

 1.72e+10

 3.44e+10

 6.87e+10

 5 10 15 20

#L
1

D
C

M
s

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(b) Matrix bcsstk18.

Fig. 8. L1 data cache misses of all different synchronization variants

 1.05e+06

 2.1e+06

 4.19e+06

 8.39e+06

 1.68e+07

 3.36e+07

 6.71e+07

 1.34e+08

 2.68e+08

 5.37e+08

 1.07e+09

 5 10 15 20

#L
2

D
C

M
s

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(a) Matrix bcsstk14.

 3.36e+07

 6.71e+07

 1.34e+08

 2.68e+08

 5.37e+08

 1.07e+09

 2.15e+09

 4.29e+09

 8.59e+09

 1.72e+10

 3.44e+10

 6.87e+10

 5 10 15 20

#L
2

D
C

M
s

#Threads

Reduction
Critical Fast

STM Fast

Atomic Fast
Critical Slow

STM Slow

Atomic Slow

(b) Matrix bcsstk18.

Fig. 9. L2 data cache misses with OpenMP and all variants of synchronization mech-
anisms

is not as big when it comes to the Fast variants. The Slow versions again have
significantly more misses due to the contention on the shared variable.

Figure 9 highlights the L2 data cache misses of both matrices and implemen-
tation variants across thread counts. Again STM Fast is slightly worse than the
other Fast variants but still significantly better than the Slow variants. For ma-
trix bcsstk18 the gap between STM Fast and the rest seems smaller which may
be due to the larger size of the matrix. Calculating the L2 data cache miss rate
according to L2 data cache misses

L2 data cache accesses yields the following results. For the Fast vari-
ants there is an almost linear increase in the L2 data cache miss rate with the
number of threads whereas the Slow variants follow a logarithmic curve which
results in a rate of more than 80%. For Fast the rate stays well below 20% for
bcsstk18 and 30% for bcsstk14.

312 V. Heuveline et al.

5 Conclusion and Future Work

In our work we compared three similar implementations of the Conjugate Gra-
dients Method. One that uses OpenMP, one that uses Pthreads without TM
and one that uses Pthreads with TM constructs. The results showed that it is
very important to reduce the waiting time at the barriers in order to improve
execution time of these programs. Complementary experiments reveal that the
choice for implementing the reduction is even more important than the choice
of the synchronization primitive. Using thread-local variables for implementing
the reduction is indispensable for a well-performing implementation. Further,
these experiments with two additional matrices, lent from the static analysis in
structural engineering, confirm the findings of the previous experiments regard-
ing the cache efficiency of STM. In most cases, OpenMP is the fastest approach
on both machines. This is the case because STM suffers from significantly more
L1 cache misses compared to a pure OpenMP or Pthread implementation. In
terms of performance, OpenMP is the first choice if the CG algorithm is used
as done in this paper. As future work, the above-mentioned programs should be
compared to other formulations of the Conjugate Gradients Method, such as the
pipelined CG-algorithm described in [1] in order to benefit from advantages with
TM. Further, we want to research the influence of using a NUMA machine (e.g.,
through employing a first touch policy for memory pages) on the performance
of the different implementations of the CG method.

References

1. Strzodka, R., Göddeke, D.: Pipelined Mixed Precision Algorithms on FPGAs for
Fast and Accurate PDE Solvers from Low Precision Components. In: IEEE Pro-
ceedings on Field-Programmable Custom Computing Machines (2006)

2. Bienia, C.: Benchmarking Modern Multiprocessors. Princeton University (January
2011)

3. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. ACM Transactions on Graphics 22, 917–924
(2003)

4. Goodnight, N., Lewin, G., Luebke, D., Skadron, K.: A multigrid solver for
boundary-value problems using programmable graphics hardware. In: Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware, pp. 102–111 (2003)

5. Saad, Y.: Iterative Methods for Sparse Linear Systems (2003)
6. OpenMP Architecture Review Board: OpenMP Application Program Interface.

Version 3.1 (July 2011), http://www.openmp.org/mp-documents/OpenMP3.1.pdf
7. Butenhof, D.: Programming with POSIX threads. Addison-Wesley Longman Pub-

lishing Co., Inc. (1997)
8. Christmann, C., Hebisch, E., Weisbecker, A.: Oversubscription of Computational

Resources on Multicore Desktop Systems. In: Pankratius, V., Philippsen, M. (eds.)
MSEPT 2012. LNCS, vol. 7303, pp. 18–29. Springer, Heidelberg (2012)

9. Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-Based Software Transactional
Memory (2010)

http://www.openmp.org/mp-documents/OpenMP3.1.pdf

Software Transactional Memory, OpenMP and Pthread Implementations 313

10. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (2008)

11. Larus, J., Rajwar, R.: Transactional Memory. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers (2007)

12. Lev, Y., Luchangco, V., Marathe, V., Moir, M., Nussbaum, D., Olszewski, M.:
Anatomy of a Scalable Software Transactional Memory. In: Workshop on Transac-
tional Computing TRANSACT 2009 (February 2009)

13. Saha, B., Adl-Tabatabai, A., Hudson, R., Minh, C., Hertzberg, B.: McRT-STM:
a high performance software transactional memory system for a multi-core run-
time. In: PPoPP 2006: Proceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 187–197 (2006) ISBN
1-59593-189-9

14. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

15. Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatterjee,
S.: Software Transactional Memory: Why is it Only a Research Toy? Queue 6(5),
46–58 (2008) ISSN 1542-7730

16. Lev, Y., Moir, M., Nussbaum, D.: PhTM: Phased Transactional Memory. In:
TRANSACT 2007: 2nd Workshop on Transactional Computing (August 2007)

17. Herlihy, M., Moss, E.: Transactional memory: architectural support for lock-free
data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993) ISSN
0163-5964

18. Christie, D., Chung, J., Diestelhorst, S., Hohmuth, M., Pohlack, M., Fetzer, C.,
Nowack, M., Riegel, T., Felber, P., Marlier, P., Rivière, E.: Evaluation of AMD’s
advanced synchronization facility within a complete transactional memory stack.
In: EuroSys 2010: Proceedings of the 5th European Conference on Computer Sys-
tems, pp. 27–40 (2010) ISBN 978-1-60558-577-2

19. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hy-
brid transactional memory. In: ASPLOS-XII: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 336–346 (2006) ISBN 1-59593-451-0

20. Yen, L., Bobba, J., Marty, M., Moore, K., Volos, H., Hill, M., Swift, M., Wood,
D.: LogTM-SE: Decoupling Hardware Transactional Memory from Caches. In:
IEEE 13th International Symposium on High Performance Computer Architec-
ture (HPCA), pp. 261–272 (February 2007) ISBN 1-4244-0804-0

21. Hammond, L., Wong, V., Chen, M., Carlstrom, B., Davis, J., Hertzberg, B.,
Prabhu, M., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional Memory Co-
herence and Consistency. In: Proceedings of the 31st Annual International Sympo-
sium on Computer Architecture, p. 102. IEEE Computer Society (June 2004)

22. Yoo, R., Ni, Y., Welc, A., Saha, B., Adl-Tabatabai, A., Lee, H.: Kicking the tires
of software transactional memory: why the going gets tough. In: SPAA 2008: Pro-
ceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures, pp. 265–274 (2008) ISBN 978-1-59593-973-9

	Software Transactional Memory, OpenMP and Pthread Implementations of the Conjugate Gradients Method – A Preliminary Evaluation
	1 Introduction and Motivation
	2 Background on Transactional Memory
	2.1 Conjugate Gradients

	3 Implementations
	3.1 OpenMP
	3.2 Pthreads
	3.3 Transactional Memory

	4 Numerical Experiments
	4.1 Hardware and Software Environment
	4.2 Numerical Results
	4.3 Experiments with Matrices from Structural Engineering

	5 Conclusion and Future Work
	References

