
Parallel Smoother Based on Block Red-Black

Ordering for Multigrid Poisson Solver

Masatoshi Kawai1, Takeshi Iwashita2,3, Hiroshi Nakashima2,
and Osni Marques4

1 Graduate School of Informatics, Kyoto University, Japan
2 Academic Center for Computing and Media Studies, Kyoto University, Japan

3 JST, CREST, Japan
4 Lawrence Berkeley National Laboratory, USA

Abstract. This paper describes parallelization techniques for a multi-
grid solver for finite difference analysis of three-dimensional Poisson
equations. We first apply our block red-black ordering for parallelization
of a Gauss-Seidel (GS) smoother, whose sequentiality is often problem-
atic in parallelization of multigrid methods. Furthermore, we introduce
a new multiplicative Schwarz smoother, in which multiple GS iterations
are performed in each of red-black ordered blocks. Numerical tests are
conducted on a cluster of multi-processor nodes comprising four quad-
core AMD Opteron processors to examine the effectiveness of these par-
allel smoothers. The multi-process test using 216 processes in flat-MPI
model shows that the block red-black GS smoother and its multiplicative
Schwarz variant achieve 1.3 and 1.8 times better performance than the
conventional red-black GS smoother, respectively.

1 Introduction

Solving Poisson equation problems often plays an important role in computa-
tional science simulations. To accelerate these simulations, the development of
a fast Poisson solver is demanded. This paper focuses on the finite difference
method for three-dimensional Poisson equation problems. In the finite difference
analysis, it is important to efficiently solve the derived linear system of equa-
tions. In this paper, the multigrid method is used as the solver of the linear
system. This method is suitable for large-scale problems, because it achieves a
convergence rate independent from the number of degree of freedoms [1]. In this
paper, we discuss the parallelization of the multigrid solver.

It is well known that the Gauss-Seidel (GS) smoother shows good convergence
for the linear system arising in the discretized Poisson equation, and is superior
to other smoothers such as (weighted) Jacobi. However, the GS smoother can-
not be parallelized straightforwardly due to its data-dependency. Accordingly,
several GS-based smoothers have been proposed for parallelization. The hybrid
smoother combining weighted Jacobi and GS smoothers is a well-known easily
parallelizable smoother based on the additive Schwarz method. Another popular
method is to impose red-black ordering on GS smoothing to have a convergence

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 292–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallel Smoother Based on Block Red-Black Ordering 293

rate superior to the hybrid smoother as well as a large degree of parallelism [2].
However, when the red-black GS smoother is implemented with stride memory
accesses to the data array elements, the computational time for a smoothing step
becomes longer than the sequential GS smoother due to poorer cache utilization.

To remedy this problem, we first introduced the block red-black ordering to
parallelize the GS smoother [3]. Next, for further improvement of the solver per-
formance, we have proposed a parallel multiplicative Schwarz smoother based on
the block red-black ordering [4]. The smoothing step of the proposed smoother
is faster than that of the red-black GS smoother, while it attains a good conver-
gence rate comparable to the sequential GS smoother. In this paper, we mainly
verify the effectiveness of the block red-black GS smoother and its variant in
numerical tests of multi-process implementations, the solver performance on a
multi-threaded environment was reported in [4].

2 Multigrid Solver for Three-Dimensional Poisson
Equation

This paper deals with a multigrid solver for the finite difference analysis of a
three-dimensional Poisson equation given by

−∇2φ = ρ on Ω, (1)

where ρ is the given source, φ is the unknown spatial function, and Ω is the
analyzed domain. Applying a 7-point finite difference scheme to (1), we obtain
a linear system of equations to solve:

A(0)u0 = f0. (2)

In this paper, we solve (2) by means of geometrical multigrid method, in which
multiple coarse grids are generated from the original grid. Using these grids, the
solution process of the multigrid method is given by Alg. 1. In the algorithm,
A(i), Ii+1

i , Ii
i+1 and L denote the coefficient matrix on i-th level grid, the re-

striction operator from i-th level to i+1-th level, the prolongation operator from
i+1-th level to i-th level, and the number of grids, respectively. The vectors ui

and ũi are for i-th level unknowns and their approximation, respectively. In the
analysis, the i-th level grid is twice as fine as the i+1-th level grid in each direc-
tion. We use the full-weighting restriction operator and tri-linear prolongation
operator shown in, for example, [2] on the grids.

3 Parallelization of Geometric Multigrid Poisson Solver

3.1 Parallelization of Multigrid Method

The major components of a multigrid solver are a smoother and operators for
restriction and prolongation. Since the restriction and prolongation operations
are naturally parallelized by an usual domain decomposition, these operations

294 M. Kawai et al.

Smoothing on A(0)u0 = f0

f1 = I1
0

(
f0 −A(0)ũ0

)

Smoothing on A(1)u1 = f1

...

Solve A(L−1)uL−1 = fL−1

...

Smoothing on A(1)u1 = f1

ũ0 ← ũ0 + I0
1 ũ

1

Smoothing on A(0)u0 = f0

Alg. 1. Procedure of L-level V-cycle multigrid method

on a grid point are mutually independent from others. On the other hand, the
parallelization of the smoother is often problematic. For example, the weighted
Jacobi smoother can be easily parallelized, but its convergence rate is inferior to
the GS smoother. In the following subsection, we describe conventional GS-based
parallel smoothers which have been used in many practical applications.

3.2 Conventional Parallel Smoothers

Hybrid Smoother. The hybrid smoother consists of the weighted Jacobi
and the GS smoothers. It uses the weighted Jacobi method for boundaries of
each domain-decomposed region allocated to a process/thread so that the GS
smoother works on the interior region independently from those of other pro-
cesses or threads. The smoother can be regarded as an additive Schwarz
smoother, in which the GS method is used for the subdomain solver. The hybrid
smoother is included in the popular multigrid solver library, BoomerAMG [5].
Although the hybrid smoother has the advantage of implementation easiness, it
often entails a degradation in convergence. The convergence rate of the hybrid
smoother depends on the number of processes/threads, and it is often worsen
when that number is increased.

Red-black GS Smoother. In the 7-point finite difference scheme, each grid
point has data dependence only on adjacent 6 points. Consequently, when we
paint the grid points alternately by red and black, the grid points having an
identical color can be updated independently of each other. That is, after the GS
smoothing step is performed for red grid points in parallel, the smoothing step for
black grid points is also processed in parallel. This parallel smoothing technique
is called red-black GS (RB-GS) smoother. The convergence rate of the RB-GS
smoother can be different from that of the sequential GS smoother in general.

Parallel Smoother Based on Block Red-Black Ordering 295

However, it is known that the RB-GS smoother has good convergence when
compared to the sequential one in homogeneous Poisson equation problems.
Accordingly, the RB-GS smoother is the most widely-used parallel smoother for
the problems.

In finite difference analyses, the RB-GS smoother is usually implemented with
stride memory accesses of unknown and right-hand vector elements, because they
are mapped from three-dimensional grid points with lexicographical ordering and
thus red and black elements are arrayed alternately. This ordering is expedient
for easy and efficient implementation of the whole of a simulation problem, and
so it is for those of the restriction and prolongation. However, the efficiency
of the smoother itself is degraded from the GS smoother because the stride
accesses have poorer cache-line utilization causing lower cache-hit ratio and thus
performance.

4 Block Red-Black Gauss-Seidel Smoother and Its
Variants

In this paper, we aim to present a parallel smoother free from stride accesses for
high-performance while keeping a convergence rate comparable to the conven-
tional RB-GS smoother. For this, we first introduce block red-black ordering,
which we originally proposed was for parallel ILU preconditioning [3], to paral-
lelize a GS smoother. Next, we present a new multiplicative Schwarz smoother,
being an enhanced version of the block red-black GS smoother.

4.1 Block Red-Black Ordering

Block red-black ordering is one of the parallel ordering techniques. In the order-
ing, the entire grid is first divided into multiple blocks. Next, red-black ordering
is applied to the blocks as shown in Fig. 1, where a block of a color never has
direct data-dependency on other blocks of the same color. This feature allows us
to parallelize the smoothing step of the block red-black GS (BRB-GS) smoother,
so that the GS smoothing is applied to all red blocks in parallel and then to all
black ones also in parallel.

It is important that arbitrary ordering can be used in a block and thus the
lexicographical one is used in the analysis. Consequently, this ordering makes
the block-level GS smoother implemented without stride memory accesses. That
is, by choosing the block size sufficiently large especially for the axis conforming
to the memory address ordering, the accesses of unknown and right-hand vector
elements in the GS smoothing in the block are made almost sequential. This
means that a cache-line having a series of vector elements is almost fully utilized
by a series of smoothing operations resulting in higher cache-hit ratio and thus
more performance than the conventional (i.e., element-wise) RB-GS smoother.

As for the convergence rate, it is strongly expected that the BRB-GS’s rate is
sufficiently high and comparable to the RB-GS’s and the sequential GS’s. This
expectation is based on the fact that the BRB-GS with the block size of one for

296 M. Kawai et al.

Fig. 1. Concept of block red-black ordering

each axis is just identical to the RB-GS while extremely large block size virtually
gives us the sequential GS smoothing. Though the convergence with block sizes
between these two extremes above needs to be investigated with real problems,
our numerical tests discussed afterward support our expectation.

Furthermore, the cache-blocking technique for smoothing and other compo-
nents, namely the restriction and the prolongation operations, shown in a context
of the sequential multigrid solver in [6], can be easily applied to the BRB-GS. To
use the technique in the BRB-GS, we only need to set the block size to match
the cache size, and to execute the restriction or the prolongation operation just
after/before the smoothing step in each block. Since this technique doubles the
utilization of a cache line, it should significantly improve cache-hit ratio and thus
performance.

4.2 Modified Block Red-Black Gauss-Seidel Smoother

In this subsection, we introduce a modified version of the BRB-GS smoother
to increase the total solver performance. In this version, we simply increase
the number of GS iterations in each red/black block from 1 to α > 1. The
smoother, denoted by mBRB-GS(α) hereafter, is regarded as a multiplicative
Schwarz smoother rather than a parallel GS smoother based on parallel ordering.
In the following, we discuss the advantage of this multiple iterations of block
smoothing.

In general, increasing the number of iterations, namely β, in a smoothing
step for the whole grid space, leads to improved convergence. However, since
grids are usually much larger than the cache size, the computational cost for one
smoothing step is also increased in proportion to β. As the smoother is dominant
in the multigrid solver in term of computational cost, the total computational
time is also proportional to β. Consequently, increasing β rarely reduces the
total computational time unless the convergence is improved by a factor of β or
more.

On the other hand, increasing the number of GS steps α for a block in the
BRB-GS is expected to have different behavior. Let ts be the computational
time required for the first smoothing step in a block. When we set the block
size less than the cache size, we can expect that the computational time for

Parallel Smoother Based on Block Red-Black Ordering 297

the succeeding smoothing step t̃s is much less than ts because of on-cache com-
putation. Consequently, the computational time tm for one smoothing step of
mBRB-GS(α) is given by

tm ≈ ts + (α− 1)t̃s < αts. (3)

From (3), even when the improvement in the convergence does not reach a factor
of α, the total computational time can be reduced by increasing the number of
GS steps in a block.

5 Numerical Results

5.1 Test Model and Used Parallel Computer

Numerical tests were conducted on the T2K Open Supercomputer at Kyoto
University to examine the developed multigrid Poisson solver. The parallel su-
percomputer consists of SMP nodes, each consisting of four AMD quad-core
Opteron 8356 (2.3 GHz) and 32 GB (DDR2-667) shared memory. The internal
network between computational nodes, which is based on the DDR-InfiniBand
technology, provides full bisection bandwidth and 8 GB/s for each node. The
code was written in Fortran90 and MPI. In the present study, we only use the
flat-MPI parallel programming model. It is noted that the multi-threaded im-
plementation reported in [4] is based on OpenMP.

In the test model, the analyzed domain Ω is given by [−0.5, 0.5]3 together
with Dirichlet boundary condition of φ = 0, and the source term is defined as

ρ(r) =

{
1 if r ≤ 0.015
0 otherwise

(4)

where r is the distance from the origin. To evaluate weak scalability, we fix the
finest grid size per process at 1283.

5.2 Performance Evaluation of the Multigrid Solver

Table 1 lists the computational time and the number of cycles of the multi-
grid solver with 1, 8, 64 and 216 cores (processes). Because the convergence
of the hybrid smoother is 1.7 times slower than the sequential GS smoother,
its parallel speedup is limited. On the other hand, the RB-GS and the BRB-
GS smoothers attain a convergence rate comparable to that of the sequential
GS smoother. However, the computational time for one multigrid cycle of the
RB-GS is longer than that of the sequential GS because of the stride memory
access. Consequently, only 63.7-fold (weak scaling) speedup is obtained by 216
processes compared with the sequential GS smoother. It is noted that the weak
scaling speedup ratio is given by (Ts×P)/T , where P is the number of processes
(cores), and Ts and T are the elapsed time in sequential and parallel computa-
tions, respectively. Table 1 also indicates that the BRB-GS has advantage in

298 M. Kawai et al.

Table 1. Comparison of the computational time (s) and the number of cycles(in paren-
thesis) of parallel smoothers

Number of processes
1 8 64 216

Seq.GS 3.55(10) -

Hybrid - 9.99(17) 14.08(17) 15.08(17)

RB-GS 4.84 (9) 8.83(11) 11.39(10) 12.22(10)

BRB-GS 4.33(11) 6.22(11) 8.40(11) 9.43(11)

Table 2. Computational time (s) and the number of cycles(in parenthesis) of the

multigrid solver using mBRB-GS on 216 processes

po
1 2 3 4 5 6

pr

1 10.38/11 8.23/9 8.33/9 7.58/8 7.84/8 8.12/8
2 8.10/ 9 7.42/8 6.69/7 7.21/7 7.11/7 7.58/7
3 7.54/ 8 6.75/7 6.78/7 7.05/7 7.30/7 7.59/7
4 7.52/ 8 6.86/7 6.96/7 7.13/7 7.53/7 7.68/7
5 7.85/ 8 7.16/7 7.45/7 7.80/7 7.92/7 8.24/7
6 8.31/ 8 7.36/7 7.45/7 7.80/7 7.92/7 8.24/7

the computational time per cycle than the RB-GS, because of the more effi-
cient cache utilization. Therefore the BRB-GS attains better solver performance
than the conventional RB-GS smoother. The weak scaling speedup ratio of the
BRB-GS reaches 81.3 by 216 processes.

Next, the performance of the mBRB-GS is examined. We carried out a pre-
liminary test on single node using 16 treads for checking the computational time
for the first and the second smoothing steps for the block, ts and t̃s. On the grid
of 5123, ts and t̃s were measured 0.67 s and 0.11 s, respectively. The preliminary
test confirms the inequality(3) because t̃s is approximately one sixth of ts.

Table 2 shows the computational time and the number of iterations of multi-
process parallel processing with 216 processes when the mBRB-GS(pr) and the
mBRB-GS(po) are used for the pre- and post-smoothing steps, respectively. Ta-
ble 2 confirms that increasing the smoothing steps in the block leads to the
improvement in the solver performance. The best result of the mBRB-GS was
obtained when (pr, po)=(2, 3) for 216 processes. Figure 2 shows the weak scaling
speedup ratio of the solver with various parallel smoothers. In the test, (pr, po)
of the mBRB-GS was set to (2, 3). The numerical result shows the advantage
of the BRB-GS and the mBRB-GS over conventional parallel smoothers. In the
multi-process parallel processing, increasing the number of GS steps in the block
of the mBRB-GS improves the convergence without increasing the number of
MPI communications. Consequently, the mBRB-GS achieves 1.80 times better
performance than the RB-GS.

Parallel Smoother Based on Block Red-Black Ordering 299

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

pa
ra

lle
l s

pe
ed

up

Number of process

mBRB-GS
BRB-GS

RB-GS
Hybrid

Fig. 2. Weak scaling speedup of parallel multigrid solver with various smoothers com-
pared to a sequential solver with GS smoother

6 Conclusion

In this paper, we investigated the parallelization of a multigrid solver for three-
dimensional Poisson equation problems, focusing on the parallel processing of
the Gauss-Seidel (GS) smoother. First, we introduced the block red-black or-
dering technique to parallelize the GS smoother. In this method, the analyzed
grid is divided into multiple blocks, to which the red-black ordering is applied.
Numerical tests on 216 processes showed that the block red-black GS smoother
can be 1.3 times faster than the conventional red-black GS smoother due to
more efficient cache utilization. Next, we presented the modified version of the
block red-black ordering GS smoother (mBRB-GS). In this version, we iterate
GS smoothing in each block twice or more to have a like multiplicative Schwarz
smoother. The smoother improves the convergence without largely increasing
the computational time of one smoothing step. Consequently, the mBRB-GS
can be 1.8 times faster than the RB-GS on 216 processes.

References

1. Trottenberg, U., Oosterlee, C., Achuller, A.: Multigrid. Elsevier Academic Press
(2001)

2. Thoman, P.: Multigrid Methods on GPUs. VDM (2008)
3. Iwashita, T., Shimasaki, M.: Block red-black ordering: a new ordering strategy for

parallelization of ICCG method. Int. J. Parallel Prog. 31, 55–75 (2003)
4. Kawai, M., Iwashita, T., Nakashima, H.: Parallel Multigrid Poisson Solver Based on

Block Red-Black Ordering. In: Proc. Symposium on High Performance Computing
and Computational Science, pp. 107–116 (2012) (in Japanese)

5. Henson, V., Yang, U.: BoomerAMG: A parallel algebraic multigrid solver and pre-
conditioner. Applied Numerical Mathematics 41, 155–177 (2002)

6. Kowarschik, M., Rüde, U., Weiß, C., Karl, W.: Cache-aware multigrid methods for
solving poisson’s equation in two dimensions 64, 381–399 (1999)

	Parallel Smoother Based on Block Red-Black Ordering for Multigrid Poisson Solver
	1 Introduction
	2 Multigrid Solver for Three-Dimensional Poisson Equation
	3 Parallelization of Geometric Multigrid Poisson Solver
	3.1 Parallelization of Multigrid Method
	3.2 Conventional Parallel Smoothers

	4 Block Red-Black Gauss-Seidel Smoother and Its Variants
	4.1 Block Red-Black Ordering
	4.2 Modified Block Red-Black Gauss-Seidel Smoother

	5 Numerical Results
	5.1 Test Model and Used Parallel Computer
	5.2 Performance Evaluation of the Multigrid Solver

	6 Conclusion
	References

