
OpenMP/MPI Hybrid Parallel ILU(k)

Preconditioner for FEM Based on Extended
Hierarchical Interface Decomposition

for Multi-core Clusters

Masae Hayashi and Kengo Nakajima

Information Technology Center, The University of Tokyo, 2-11-16 Yayoi Bunkyo-ku
Tokyo, Japan

Abstract. While ILU preconditioner is a powerful and popular precon-
ditioning method for Krylov iterative solvers on sparse matrices derived
from finite element analysis, it have been exploerd the scalable hybrid
parallelization scheme for ILU preconditioner targetting multi/many-
core clusters. Hierarchical Interface Decompostion (HID) is a robust and
efficient parallel method for ILU preconditioner. The extended version of
HID (ExHID), our proposed method, introduces thicker level-2 connector
in order to consider fill-ins. Basing on HID and ExHID we developed hy-
brid parallel ILU preconditioner with fill-ins using OpenMP/MPI hybrid
parallel programing models. While inter-node parallelization is based
on HID/ExHID, we applied two different methods, multicolor based re-
ordering and HID/ExHID to intra-node parallelization. The two imple-
mentations according to different hybrid strategy, HID(inter-node)-HID
(intra-node) and HID(inter-node)-MC(intra-node), are evaluated
through strong scaling tests and the better hybrid strategy is explored.
HID-HID generally results with better convergence and less fill-ins. On
the other hand, HID-MC could be more stable strategy than HID-HID
when increasing the number of threads per process.

1 Introduction

Domain decomposition method(DDM) is widely used parallelization method in
many finite element applications. Then distributed sparse linear systems derived
from each subdomain is considered as distributed objects[1,2] on each process.
On the other hand, preconditioining method using incomplete LU factorization
without fill-in (ILU(0)) is popular and effective preconditioner for finite element
applications. Under the parallelization based on DDM, block Jacobi-type local-
ized preconditioner are widely used for parallel iterative solvers[3,4]. While they
provide excellent parallel performance for well-defined problems, the number of
iterations for convergence increases gradually according to the number of pro-
cessors. Moreover this preconditioner decreases its robustness for ill-conditioned
problems with many processors, since it ignores the global effect of external nodes
come of inherently sequential natures of ILU preconditioner. The common rem-
edy is to extend the overlapped elements between domains[5,6]. At the expenses

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 278–291, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



OpenMP/MPI Hybrid Parallel ILU(k) Preconditioner 279

of additional computation and communications it still only allows us to consider
the global effect without updates from previous row operations. Another com-
mon remedy to parallelize ILU preconditioner is multicoloring based ordering.
Multicoloring the subdomains which is assigned to processors, yeilds the paral-
lelism from a global ordering[7]. But the archieved parallelism is limited to the
color number and fiding optimal color number becomes another difficulty which
relates to the performance. The Parallel Hierarchical Interface Decompostion
Algorithm (PHIDAL) provides robustness and scalability for parallel ILU/IC
preconditioners basing on “hierarchical interface decompostion (HID)“[8]. HID
exploits a hierarchical decompostion of the graph which yields natural parallelism
in the factorization process. For taking into account fill-ins, we introduced addi-
tional layers in higher level connectors defined in HID. The proposed method is
called Extended HID (ExHID). We developed parallel ILU preconditioners with
fill-ins (ILU(k)) basing on HID/ExHID.

To enhance our parallel ILU(k) preconditioner for multi-core environment, we
applied a hybrid parallel programming model. A hybrid parallel programming
model is often employed in order to archieve minimal parallelization overheads
on multi-core clusters. Corse-grained parallelism is archieved through domain
decompostion by message passing among nodes, while fine-grained parallelism is
obtained via loop-level parallelism inside each node using compiler vased thread
parallelisation techniques, such as OpenMP. HID/ExHID is applied to inter-node
parallelization using message-passing interface (MPI), while two different meth-
ods are applied for intra-node parallelization using multi-threading(OpenMP).
One is HID/ExHID and the other is multicolor-based reordering method. Both
method are applied to distributed local data to yield the thread-level paral-
lelism. We call the former strategy HID-HID since HID/ExHID is used for
both intra-node and inter-node parallelization. And the latter is called HID-
MC since HID/ExHID is used for intra-node parallelization and multicoloring
is used for inter-node parallelization. Using OpenMP/MPI hybrid parallel pro-
gramming model, we implemented finite element based simulations of linear
elasticity problem solved by Krylov iterative solver with these hybrid parallel
ILU(k) preconditioners. Developped codes are evaluated through strong scaling
tests on multicore cluster called “T2K Open Supercomputer using up to 256
cores. Numerical experiments showed HID-HID generally leads to better conver-
gence and less fill-ins. On the other hand, HID-MC could be more stable strategy
than when increasing the number of threads per process.

The rest of this paper is organized as follows. Section 2 gives a overview
of Hierarchical Interface Decompostion (HID) and parallel ILU preconditioning
algrithm based on HID. And it descibes how fill-ins are introduced in the parallel
ILU preconditioning algorithm by the extended HID. Section 3 describes tatget
application based on finite element method and detailed implementations focus-
ing on the thread level parallelization for two strategies, HID-HID and HID-MC.
Section 4 contains the details on the test environment and numerical experiments
followed by the conclusions section.



280 M. Hayashi and K. Nakajima

2 Hierarchical Interface Decompostion(HID) and
Extended HID

By exploiting a static “hierarchical” decompostion of the graph, Hierarchical In-
terface Decompostion (HID) yeilds natural parallelism in the factorization and
consider the global effect from external domain in parallel ILU/IC precondi-
tioning process. However we cannot consider fill-ins from external domain in
parallel ILU/IC preconditioning via HID. In order to consider fill-ins from ex-
ternal domains, we developed extended version of HID(ExHID). In this section
we explain HID and our proposed method, ExHID. HID can be viewed as the
methods from the angle of an ILU factorization combined with a form of nested
dissection ordering in which cross points in the separators play a special role.
The hierarchical decompostion starts with a partioning of the graph with one
layer of overlap. Then “stages” or “levels” are defined from thie partioning, with
each level (or stage) consisting of a set of vetex grpups (small connected sub-
graphs). Each vertex group of a given stage is a separator for the vertex groups
of a lower stage. The incomplete factorization process proceeds level by level
from lowerst to higherst. Due to the separation property of the vertex groups
at different levels, this process can be carried out in a highly parallel manner.
These vertex groups are called connectors in definition of HID. The concept of
connectors of different levels and keys are introduced for the purpose of applying
this idea to general graphs as follows:

– Connectors of level-1 (C1) Are the sets of interior points. Each set of interior
points is called a sub-domain.

– A connector of level-k (Ck) (k¿1) is adjacent to k sub-domains.
– Connectors in the same level never be adjacent to each other.
– Key(u) is the set of sub-domains (connectors of level-1, C1) connected to

vertex u.

Fig.1 (left) shows the example of the partition of a 9-point gird into 4 domains.
In this case, there are 4 connectors of level-1 (C1, sub-domain), 4 connectors of
level-2 (C2) and 1 connector of level-4 (C4). Note that different connectors of the
same level are not connected directly, but are separated by connectors of higher
levels. These properties provide the block structure of the coeficient matrix A
through reordering the unknowns by this decompostion. By reordring the un-
knowns according to their level numbers, from the lowest to highest, the block
strucuture would be appeared as shown in Fig.1 (right). This block strucutre
leads to natural parallelism in ILU/IC decomposition or forward/backward sub-
stitution processes. Fig.2 shows pseudo code of forward substitution in ILU(0)
preconditioning. The most outer loop is for levels. At the end of each level global
communication is performed according to hierarchical communication table. Hi-
erachical communication table is communication table in which export/import
nodes communicated between neighbor processes are arranged by level hierar-
chy. This communication performed at the end of each level transfers the update
information calculated in the present level to the next level. Thus HID allows us



OpenMP/MPI Hybrid Parallel ILU(k) Preconditioner 281

to consider the global effect of external domains in parallel ILU precondition-
ing, which leads to more robust parallel preconditioning than block Jacobi-type
localized preconditioners.

However global effect from external doamains which can be considered via
HID is confined within the case of ILU(0)/IC(0). Fig.3 shows example of domain
decomposition of two dimentional 9-point grid into two domains via HID (left)
and how the local data are distributed on two processes. Though it depends on
the numbering assined to node A and node B, these two nodes are in the distance
which can affect each other when considering 2nd level of fill-ins. Suppose node
A will affect on node B as a 2nd level of fill-in, we cannot take into account the
effect from node A by the given distirubted local data sets since node A and node
B are in the different distributed data sets. The first remedy is simply extending
overlapped elements between domains. This allows us to consider the fill-in effect
on node B from node A. But the fill-in effect from node A can only be calculated
without any updates even which might have been occured on node A from other
nodes related to A. Thus it fundamentally results the same as blcok jacobi-type
preconditioning. Then thicker layer of separators is introduced in HID. Fig.4
illustrates the level-2 connector is extended from one layer to three layers. Then
node A which was in level-1 connector in Fig.3, becomes in the level 2 connector.
Since the nodes are reordered according to the level from lower to higher, ILU
preconditioning process proceeds level by level from lower to higher. Node A in
the lowe level is always calculated prior to node B. This allows us to calculate the
fill-in effect on node B from node A with updates already calculated. Extension
of layer of higher level connector allows us to consider fill-ins but also leads to
load inbalance in general.

1

1

1

1 1

1 1

11 2

2

22

2

2 2 2

2

3 3

3 3

3 3 3

3

30 0 0

0

0

0 0

0 0

0,1 0,1 0,1

1,2

1,2

2,32,32,3

0,3

0,3

0,1
2,3

0,1
2,3

0,1
2,3

Level1

Level2

Level4

0

1

2

3

0,1

0,3

1,2

2,3

2,3
0,1,

Fig. 1. Partitionoing of a 9 point grid into 4 subdomains by Hierarchical Interface De-
compostion, resulted with four C1 connectors(sub-domains), four C2 connectors, one
C4 connectors. The numbers showed on the nodes are keys. The number of keys cor-
responds the level (left). Block structure is appeared in the coefficient matrix through
HID reordering (right).



282 M. Hayashi and K. Nakajima

Fig. 2. Forward substitution process in preconditioning. Global communication is per-
formed at the end of each level, which allows us to caluculate the next level using
updated data from previous level. This makes us parallel ILU(0) more consistent by
HID than Block Jacobi-type localized method.

B A B A

Fig. 3. Internal nodes assigned to two processes by domain decomposition via HID
(left). There are two level-1 connectors (C1, sub-domains) shown by Black nodes and
one level-2 connector(C2). The distributed local mesh is given with one overlapped
layer (right).

3 Test Application and the Implementation

In this section test problems is discribed and the detailed implementations fo-
cusing on the intra-node parallelization are explained on each method employed
in our two strategies, HID-HID and HID-MC.

3.1 Finite Element Based Simulations of Linearelasticity Problems

The test problem is finite element based simulations of three dimensional lineare-
lasticity problem. Simple cube shaped analysis model is discritised by tri-linear
hexahedral elements. Poisson’s ratio and Young’s modulus are given homoge-
neously for all elements and set to 0.25 and 1.0 respectively. The boundary



OpenMP/MPI Hybrid Parallel ILU(k) Preconditioner 283

B BA A

Fig. 4. The distributed local data sets when introducing thicker separator in HID (left).
The level-2 connector (C2, gray nodes) is extended to three layers. Thicker separator
expand the range for global operations (right).

conditions are described in Fig.5. The Generalized Productive-type BiCG iter-
ative solver with ILU(k) preconditioner is applied. Iterations are repeated until
the norm ‖r‖ / ‖b‖ is less than 10−8. The code is based on the framework for
parallel FEM procedures of GeoFEM[9], and GeoFEM’s local data structure is
applied. The local data strucutres in GeoFEM are node-based with overlapping
elements[9]

x

z

y

Uz=0 @ Z=Zmin

Ux=0 @ X=Xmin

Uy=0 @ Y=Ymin

Uniform distributed force

in z-direction @ Z=Zmax

Ny-1 elements

Ny nodes

Nz-1 elements

Nz nodes

Nx-1 elements

Nx nodes

Fig. 5. Test model of simple cube geometry and the boundary conditions

3.2 HID/ExHID Ordering for Distributed Data

To yield the parallelism in the each distributed local data sets obtained by HID,
we again apply HID/ExHID to the disributed data sets. We apply HID for
ILU(0) and ExHID for ILU(k) to the disributed data sets on each MPI process
and the resulted sub-domains (C1) are assigned to threads and the adjacent Ck

connectors to C1s are also distributed among threads. Thus the number of sub-
domains resulted by HID/ExHID corresponds to the number of threads in our
implementation. And in our implementation of ExHID, extension of connector
is applied in only level-2 connectors. No extensions in Ck connectors (k > 2).



284 M. Hayashi and K. Nakajima

Depending on the level of fill-ins to be considered we set the thickness. Fig.6
(right) illustrates our implementation of ExHID for the same example of 2D
9-point grid mesh. The dashed line shows the distribution of conncectors among
threads. In Fig.6 (left) the decomposition by HID is illustlated for comparison.
Without thicker separator node A and node B are in the same level in HID
(left). Thus they are to be processed in parallel by different threads. If consider
the fill-in effect on node A from node B, no updates on node B are avairable for
node A. Moreover this trigger the data dependency problem between threads
since one thread having node A is going to read the data on node B to calculate
fill-ins on node A while another thread having node B is going to write the data
on node B. By introducing thicker separator as in Fig.6 (right) put node B in
level-2. Nodes in the higher level are processed after the nodes in the lower level
so node B is processed after node A. This removes the data dependency and
allows us to calculate the fill-in effect with update information.

However thicker separator is now applied for only level-2 connector, the same
data dependency problem can happen between nodes in the higher level connec-
tors than level 2, for example node C and node D in Fig.6 (right). Although they
are in the distance which can affect when considering the 2nd level of fill-ins,
they are in the same level. If these nodes are assigned to different threads, the
same data dependency occurs between the threads. For avoiding such possible
data dependencies in high level connectors, we ignore the fill-in effect from the
node in the same level but on the different thread in our implementation.

Level1

Level2

Level3

Level4

A B

C

D

Level1

Level2

Level4

A B

thread# 3 thread# 2

thread# 1thread# 0

thread# 3 thread# 2

thread# 1thread# 0

Fig. 6. The partitioning of a 9 point grid in to 4 subdomains by HID (left) and that
by ExHID (right). Introducing thicker level-2 connector allows us to consider the fill-in
effect on node A from node B and it also remove data dependency on it. Dashed line
shows how connectors are distributed among threads.

3.3 Multicoloring Based Ordering for Distributed Data

As another parallelization method applied to distributed local data set is mul-
ticoloring, which is commonly used for parallelization of ILU factorizations. For
taking into account the effect of fill-ins we apply the coloring rule which becomes
strict according to level of fill-ins. For example, if we don’t consider fill-ins at



OpenMP/MPI Hybrid Parallel ILU(k) Preconditioner 285

all, it is enough to color the nodes avoiding the adjacent nodes being in the
same color. On the contrary, we apply the coloring rule so that every node are
in different color from its neighbors’ and “neighbors’ of neighbors”. Thus the
number of colors increases in accordance with the level of fill-ins considered.

Fig. 7. Coloring rule for ILU(0) is simply to chose the color for each node avoiding
the node in the same color with its adjacencies (right). For parallelization of ILU(1)
each node has to be colored avoiding it in the same color with its adjacencies and
the adjacencies of its adjacencies. The more colors are needed acording to the level of
fill-ins to be considered.

3.4 Optimization for Memory Access

In the developed code, first touch data placement is considered. And appropri-
ate command lines for NUMA control is applied, which is suppoted by Linux
system, for efficient memory access to local memory. Minimizing memory access
overhead is important for cc-NUMA architecture, such as T2K/Tokyo[10]. In
order to reduce memory traffic in the system, it is important to keep the data
close to the cores that runs with the data. On cc-NUMA architecture, this corre-
sponds to making sure the pages of memory are allocated and owned by the core
that works with the data contained in the page. The most common cc-NUMA
page-placement algorithm is the first touch algorithm[11], in which the core first
referencing a region of memory has the page holding that memory assigned to
it. Very common technique in OpenMP program is to initialize data in parallel
using the same loop schedule as it will be used lated in the computations.

4 Numerical Experiments

We tested two different types of hybrid parallel strategies HID-HID and HID-MC
for solving the same problem discribed in section. To compare the performance
for hybrid parallel method as iterative solver with ILU(k) preconditioing, we
execute two numerical experiments. In both experiments we applied a strong
scaling. The first test is run to compare the performances of these strategies
using up to 16 nodes (256 cores) where the problem size is fixed at 3, 090, 903
DOF (1003 elements). The hybrid programming model applied is also fixed as
4x4 through this test. The second test is run to see their perfromances when the
number of threads per process is incrased. The number of processes is fixed at
eight and the problem size is fixed at 1, 590, 000 DOF (803 elements).



286 M. Hayashi and K. Nakajima

4.1 Hardware Environment

Test environment is “T2K Open Super conputer (Todai Combined Cluster)
(T2K/Tokyo), which was developed by Hitach under “T2K Open Supercom-
puter Alliance”[12]. T2K/Tokyo is an AMD Quad-core Opteron based combined
cluster system with 952 nodes, 15,232 cores and 31 TB memory. Total peak per-
formance is 140 TFLOPS. T2K/tokyo is an integrated system of four clusters.
Number of nodes in each cluster is 512, 256, 128 and 56 respectively. Each
node includes four “sockets” of AMD Quad-core Opteron processors(2.3GHz),
as shown in Fig. Peack performance of each core is 9.2 GFLOPS and that of each
node is 147.2 GFLOPS. Each node is connected via Myrinet-10G network. In the
present work, up to 64 nodes of the system have been used. Because T2K/Tokyo
is based on cache-coherent NUMA (cc-NUMA) architecture, careful design of
software and data configuration is required for efficient memory access to local
memory as stated in the previous section. We applied 4x4 hybrid programming
model(four MPI processes x four OpemMP threads where one MPI process per
one socket and four OpenMP threads per one MPI process) which is the most
efficient case for this type of application on T2K.

Fig. 8. The node specification of T2K/Tokyo. Each node includes four “sockets” of
AMD Quad-core Opteron processors(2.3GHz). 16 cores per node.

4.2 Configuration of Hybrid Parallel Executions

We consider the fill-ins up to 2nd level of fill-ins. Thus ILU(0), ILU(1), and
ILU(2) are applied to the iterative solver. In HID-HID strategy, we apply HID(3)
for both ILU(1) and ILU(2). HID(3) is ExHID whose level-2 connector is ex-
tended to three layer of thickness. On the other hand, the number of colors
required for parallelization of ILU(k) become larger the fill-in level k increases.
In HID-MC strategy we set the number of colors for to the minimum number of
colors required to yeild parallelism. The number of colors tested in the numerical
experiments are eight for ILU(0), 27 for ILU(1), 64 for ILU(2).



OpenMP/MPI Hybrid Parallel ILU(k) Preconditioner 287

4.3 Strong Scaling Test Up to 256 Cores

Fig.9 shows a comparison of elapsed time per iterations between HID-HID and
HID-MC as increasing the number of nodes under 4x4 hybrid programming
model where the problem size is fixed at 3, 000, 000 DOF. For parallelization of
ILU(k), we apply HID(3) while the number of colors in HID-MC is set to the
minimum. Up to 256 cores(16 nodes), the similer scalabilities are observed for
both strategy. Fig.10 and Fig.11 shows another comparisons on convergence and
memory requirement between HID-HID and HID-MC. Fig.10 shows the itera-
tions required for convergence and Fig.11 shows the number of fill-ins occured
for ILU(1) and ILU(2). HID-HID leads to smaller values in both iterations and
memory than HID-MC. Finally Fig.12 show the comparison on total solver time
(elapsed time for total iterations) between HID-HID and HID-MC. Due to the
larger iterations and larger number of fill-ins which is directly related to the
computational the total solver time becomes larger by HID-MC than HID-HID
larger iterations.

4.4 Strong Scaling Test with Different Hybrid Programming
Models

Fig.13 shows solver time (elapsed time for total iterations) as the number of
threads per process incrases. The number of threads is increased from one to 16
while process is fixed at eight. The problem size is here 1, 590, 000 DOF. Fig.13
again shows it cost longer time by HID-MC than HID-HID. Fig.14 shows the it-
erations required for convergence as the number of threads per process increases.

Fig. 9. Time per iteration with increase of the number of nodes under 4x4 hybrid
parallele programming on the 1003 elements problem. GPBiCG preconditioner with
ILU(0), ILU(1), and ILU(2) preconditioner are applied. Intra-node parallelization for
ILU(1) and ILU(2), HID(3) (ExHID adopted with thickness three) are used in HID-
HID. On the other hand, the minimum number of colors, 27 colors for ILU(1) and 64
colors for ILU(2), is set in HID-MC. The result by HID-HID is shown in the left and
HID-MC in the right.



288 M. Hayashi and K. Nakajima

Fig. 10. Iteration with increase of the number of nodes under 4x4 hybrid parallele pro-
gramming. GPBiCG preconditioner with ILU(0), ILU(1), and ILU(2) preconditioner
are applied. Intra-node parallelization for ILU(1) and ILU(2), HID(3) (ExHID adopted
with thickness three) are used in HID-HID. On the other hand, the minimum number
of colors, 27 colors for ILU(1) and 64 colors for ILU(2), is set in HID-MC. The result
by HID-HID is shown in the left and HID-MC in the right.

Fig. 11. The number of Fill-ins with increase of the number of nodes under 4x4 hybrid
parallele programming which is resulted in ILU(1)/ILU(2) for each strategy. The result
by HID-HID is shown in the left and HID-MC in the right.

The iterations are also larger by HID-MC than HID-HID. But it is observed that
the more iterations are required for ILU(1) and ILU(2) case as increasing the
number of therads per processe in HID-HID, while those stay almost the same
for the number of threads in HID-MC. This is because our ILU(k) implementa-
tion based on ExHID can only avoid data dependency between C1 connectors.
In our implementation, we ignore the fill-in effect when the fill-in node has data
dependency (i.e. the fill-in node is assigned to different thread and is in the same
level) from higher level connectors, as discribed in section3.2. Such nodes to be
ignored due to data dependency exist more and more in the higher level when
the number of C1 connectors increases (i.e. the number of threads increases).



OpenMP/MPI Hybrid Parallel ILU(k) Preconditioner 289

Fig. 12. Solver time (elapsed for total iterations) with increase of the number of
nodes under 4x4 hybrid parallele programming. GPBiCG preconditioner with ILU(0),
ILU(1), and ILU(2) preconditioner are applied. Intra-node parallelization for ILU(1)
and ILU(2), HID(3) (ExHID adopted with thickness three) are used in HID-HID. On
the other hand, the minimum number of colors, 27 colors for ILU(1) and 64 colors for
ILU(2), is set in HID-MC. The result by HID-HID is shown in the left and HID-MC
in the right.

Fig. 13. Solver time (elapsed for total iterations) with increase of the number of threads
per processes by GPBiCG with ILU(0), ILU(1), and ILU(2) for problem of 803 elements.
The number MPI process is fiexed at eitht. 803 elements. HID-HID case is shown in
left and HID-MC in right.

4.5 Number of Colors in HID-MC

For HID-MC we set the minimum number of colors needed for parallelization in
previous execution. Now we increase the number of colors and compare the con-
vergence and computation time between HID-HID and HID-MC. Fig.15 shows
iterations and solver time for ILU(0)+GPBiCG executed by Hybrid 4x4 case
using 16 nodes(256 cores) on small test model (803 elements, 1, 594, 323 DOF).



290 M. Hayashi and K. Nakajima

Fig. 14. Iterations with increase of the number of threads per processes by GPBiCG
with ILU(0), ILU(1), and ILU(2) for problem of 803 elements. The number MPI process
is fiexed at eitht. 803 elements. HID-HID case is shown in left and HID-MC in right.

Fig. 15. 803elements ILU(0)+GPBiCG, Intranode parallelization for ILU(0) HID-HID
(no thicker separator), HID-MC (color number 8(minimum))

As Fig.15 displays, the iterations become shorter, while the solving time become
shorter once and gradually become larger again in accordance with increase of
the number of colors. This is simply because the larger number of colors leads
the more frequent syncronization among threads. Thus the performance of HID-
MC is directly related to the number of colors and if we can find the optimal
number of colors (in this case 100 is the optimal), HID-MC can archive the close
performance to HID-HID.



OpenMP/MPI Hybrid Parallel ILU(k) Preconditioner 291

5 Concluding Remarks

ILU(k) preconditioner is widely used powerful preconditioner in many finite ele-
ment applications and it is important to establish the hybrid parallel scheme for
ILU(k) preconditioner. HID and ExHID is a robust and effective parallelization
method of ILU(k) and we developed hybrid parallel scheme for ILU(k) precon-
ditioner based on HID and ExHID. For intra-node parallelization we can have
several variations of methods. In order to find more efficient strategy for hy-
brid parallel ILU(k), we implemented using two differetn strategies, HID-HID
and HID-MC. By applying OpenMP/MPI hybrid programming model, our two
implementation are evaluated on multi-core cluster using up to 256 cores. HID-
HID strategy leads better convergence and fewer fill-ins than HID-MC gener-
ally. However towarding many core environment more than 100, HID-MC can
be more stable strategy than HID-HID. Multicoloring brings us another task
how to find optimal number of colors but the flexibiliy of multicoloring which is
easily applicable to the case of the large number of threads becomes advantage to
HID-HID. Depending the test environment, tactical selection of hybrid strategy
is important for ILU(k) preconditioner on multi/many- core clusters.

References

1. Jones, M.T., Plassmann, P.E.: Scalable iterative solution of sparse linear systems.
Parallel Computing 20(5), 753–773 (1994)

2. Saad, Y., Sosonkina, M.: Distributed schur complement techniques for general
sparse linear systems. SIAM Journal on Scientific Computing 21(4), 1337–1356
(2000)

3. Parallel iterative solvers of geofem with selective blocking preconditioning for non-
linear contact problems on the earth simulator (2003)

4. The Impact of Parallel Programming Models on the Linear Algebra Performance
for Finite Element Simulations (2007)

5. Washio, T., Hisada, T., Watanabe, H., Tezduyar, T.E.: A robust preconditioner
for fluid-structure interaction problems. Computer Methods in Applied Mechanics
and Engineering 194(39-41), 4027–4047 (2005)

6. Nakajima, K.: Parallel preconditioning methods with selective fill-ins and selective
overlapping for ill-conditioned problems in finite-element methods. In: Shi, Y.,
van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part III. LNCS,
vol. 4489, pp. 1085–1092. Springer, Heidelberg (2007)

7. Saad, Y., Sosonkina, M.: Enhanced parallel multicolor preconditioning techniques
for linear systems. UMSI Research Report/University of Minnesota (Minneapolis,
Mn). Supercomputer Institute, vol. 99, p. 4 (1999)

8. Henon, P., Saad, Y., et al.: A parallel multistage ilu factorization based on a hierarchi-
cal graph decomposition. SIAM Journal on Scientific Computing 28(6), 2266 (2006)

9. http://geofem.tokyo.rist.or.jp/
10. Nakajima, K.: Flat mpi vs. hybrid: Evaluation of parallel programming models for

preconditioned iterative solvers on “t2k open supercomputer”. In: International
Conference on Parallel Processing Workshops, ICPPW 2009, pp. 73–80 (2009)

11. Mattson, T., Sanders, B., Massingill, B.: Patterns for parallel programming.
Addison-Wesley Professional (2004)

12. http://www.opensupercomputer.org/

http://geofem.tokyo.rist.or.jp/
http://www.opensupercomputer.org/

	OpenMP/MPI Hybrid Parallel ILU(k) Preconditioner for FEM Based on ExtendedHierarchical Interface Decompositionfor Multi-core Clusters
	1 Introduction
	2 Hierarchical Interface Decompostion(HID) and Extended HID
	3 Test Application and the Implementation
	3.1 Finite Element Based Simulations of Linearelasticity Problems
	3.2 HID/ExHID Ordering for Distributed Data
	3.3 Multicoloring Based Ordering for Distributed Data
	3.4 Optimization for Memory Access

	4 NumericalExperiments
	4.1 Hardware Environment
	4.2 Configuration of Hybrid Parallel Executions
	4.3 Strong Scaling Test Up to 256 Cores
	4.4 Strong Scaling Test with Different Hybrid Programming Models
	4.5 Number of Colors in HID-MC

	5 Concluding Remarks
	References




