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Abstract. We consider an eigenproblem derived from first-principles
electronic-structure calculations. Eigensolvers based on a rational filter
require solutions of linear systems with multiple shifts and multiple right
hand sides for transforming the spectrum. The solutions of the linear sys-
tems are the dominant part of the eigensolvers. We derive an efficient al-
gorithm for such linear systems, and develop implementation techniques
to reduce time-consuming data copies in the algorithm. Several experi-
ments are performed on the K computer to evaluate the performance of
our algorithm.

The first-principles electronic-structure calculation based on the density func-
tional theory (DFT) is currently one of the best choices for understanding and
predicting phenomena in material sciences. In terms of parallelization on dis-
tributed parallel computers, the real-space method in which the basic equation
of DFT, the Kohn-Sham equation, is solved as a finite-difference equation is a
promising idea due to small communication costs comparing to the other method
such as the reciprocal-space method with fast Fourier transformations [1, 2, 3]. A
real-space first-principles calculation of a large system, which consists of about
100,000 Si atoms, was performed on the K computer [3]. In such calculations, we
have to solve eigenproblems of large Hermitian matrices called the Hamiltonians
self consistently, because the Hamiltonian depends on the charge density that is
constructed from its eigenvectors correspond to a certain number of the smallest
eigenvalues. Thus it is an exterior eigenproblem.

By using the self-consistent charge density, various physical quantities can
be calculated. The electronic band structure around the Fermi energy is impor-
tant information on the electric current flow of the system. In order to get the
band structure, eigenproblems of the self-consistent Hamiltonian with several
different parameters need to be solved. However, we need only the eigenval-
ues within a certain range in this case. Thus it is an interior eigenproblem. In
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the self-consistent calculation, the exterior eigenproblem with a large number
of eigenpairs is inevitable. On the other hand, the band structure calculation is
just the interior eigenproblem with relatively small number of eigenpairs, and
we can reduce much computational time by utilizing the eigensolver suitable for
interior eigenproblems.

In this study, we solve this interior eigenproblem in band structure calculations
with the Sakurai-Sugiura (SS) method [4]. The SS method is proposed as a
solver for interior eigenproblem. In the method, solutions of linear systems with
multiple shifts and multiple right hand sides (RHSs) are required. Ohno et al. [5]
and Mizusaki et al. [6] solve them by a conjugate gradient (CG) type methods for
linear systems with multiple shifts. They consider a restricted case of single RHS.
We extend these approaches to deal with both multiple shifts and multiple RHSs
on an additional degree of freedom. In addition, we introduce implementation
techniques to reduce time-consuming data copies of the dominant part in our
approach.

The present paper is organized as follows. Section 1 describes a brief introduc-
tion of the Sakurai–Sugiura method and linear systems solved in the method.
We propose an algorithm of a CG type method for multiple shifts and multiple
RHSs in Section 2. We also describe implementation techniques to reduce time-
consuming data copies for the algorithm. In Section 3, we show the performance
evaluation of our algorithm on the K computer. Conclusions and future work
are presented in Section 4.

1 Linear Systems in the Sakurai–Sugiura Method

The Sakurai–Sugiura method is an eigensolver which seeks eigenvalues in speci-
fied closed curve and their corresponding eigenvectors. Let A = AH ∈ Cn×n. Let
us describe the Rayleigh-Ritz projection type method for standard eigenproblem.
In the SS method, we calculate matrices

Sk ≡ 1

2πi

∫
Γ

zk (zI −A)
−1

V dz

where, V ∈ Cn×L is an arbitrary nonzero matrix, Γ is an Jordan curve, i is the
imaginary unit, I is the n dimensional unit matrix, L is called block size usually
L << n, z ∈ C and k = 0, 1, . . . ,M−1. Assume that L is greater than maximum
multiplicity of eigenvalues in Γ , L×M is greater than number of eigenvalues in
Γ and M ≤ N . So as to calculate Sk numerically, the N -point trapezoidal rule
is applied, and we approximate Sk by

Ŝk ≡
N−1∑
j=0

wjζ
k
j (zjI −A)−1V, (1)

where zj and wj are a quadrature point and a weight, respectively. The condi-

tion for ζj and wj is given in [5]. Let S ≡ [Ŝ0, Ŝ1, . . . , Ŝm−1] ∈ C
n×(LM) and
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U ∈ Cn×(�m) be an unitary matrix given by the QR decomposition of Ŝ. Let λ̃
and x̃ be eigenvalues and corresponding eigenvectors that obtained by diagonal-
izing UHAU . Eigenpairs of A are approximated by λ ≈ λ̃x ≈ U x̃. To calculate
(1), we should solve linear systems with multiple shifts and multiple RHSs. This
process often become the most time-consuming part of the SS method.

2 Solver for Linear Systems with Multiple Shifts and
Multiple Right Hand Sides

In the SS method, the linear systems with multiple shifts and multiple RHSs
should be solved. From this section, we refer to the target shifted linear systems
as

(A+ σjI)Xj = B, j = 0, 1, . . . , N − 1. (2)

Here, Xj, B ∈ Cn×L. We refer AX = B as the seed system. Ohno et al. [5]
and Mizusaki et al. [6] solve them by conjugate gradient (CG) type methods
in case of L = 1. They compare the SS method with a widely used method,
the Lanczos method, and found that the methods are comparable. When seed
system is Hermitian, the linear systems with multiple shifts can be solved by
the shifted CG method [7] even if σj are complex numbers [5]. Using the shift
invariance of the Krylov subspace, the update of solution vectors for shifted
systems can be performed without time-consuming matrix-vector products, i.e.
matrix-vector products are only required for the seed system. In this study, we
deal with multiple RHSs in addition to multiple shifts to reduce the iteration
count by exploiting this additional degree of freedom. A GMRES algorithm
for both multiple shifts and multiple RHSs was proposed by Darnell et al. [8].
Since we consider the case that the seed system is Hermitian, we choose the CG
method as the base method. Thus, we propose the CG method for multiple shifts
and multiple RHSs. We refer to the approach shown in [5] as the conventional
approach.

2.1 Shifted Block CG-rQ Method

We derive the CG method for multiple shifts and multiple RHSs by extending
the block CG method [9] for shifted systems. The block CG method solves sys-
tems with multiple RHSs by using the block Krylov subspace [10]. In the block
CG method, the search space is extended by L basis per iteration. The block CG
method often requires fewer iteration count than the CG method. Several tech-
niques and variants to stabilize the block CG method are presented in [9, 11, 12].
Dubrulle [12] showed that a variant BCGrQ (we refer this as the block CG-rQ
method) is the best variant in terms of execution time by numerical experiments.
Therefore we choose the block CG-rQ method as the base method of extension
for shifted systems. In a similar way as the standard Krylov subspace, the block
Krylov subspace also has the shift invariance. Thus there is a relation between
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the orthonormalized residual matrix Qk in the block CG-rQ method for the seed
system and the residual matrix of R

σj

k in the block CG method for the shifted
systems, that is R

σj

k = ξ
σj

k Qk. Here, ξ
σj

k ∈ CL×L. By using this relation, an algo-
rithm of the block CG-rQ method for multiple shifts can be obtained. We refer
to this algorithm as the shifted block CG-rQ (SBCGrQ) method . The pseudo
code of the algorithm is shown in Fig.1. Note that the time-consuming matrix-
vector products with (A+ σjI) do not appear in the algorithm of the SBCGrQ
method. The computational cost for the SBCGrQ method is much smaller than
that of the case that block CG-rQ method is applied for each shifted system.

If a preconditioner is applied, preconditioned coefficient matrices of shifted
linear systems are no longer shifted matrices in general. Thus applicable precon-
ditioners are limited (e.g. the incomplete LU preconditioner can not be applied)
for block Krylov subspace methods that use the shift invariance. For this reason
we omit considering preconditioners in this study.

1: X
σj

0 = On×L, ξ
σj

−1 = α−1 = IL,
2: Q0ρ0 = qr(B)
3: ξ

σj

0 = Δ0 = ρ0, P
σj

0 = P0 = Q0

4: for k = 0, 1, . . . until solutions converge do
5: αk =

(
Pk

HAPk

)−1

6: Xk+1 = Xk + PkαkΔk

7: Qk+1ρk+1 = qr(Qk − APkαk)
8: Δk+1 = ρk+1Δk

9: Pk+1 = Qk+1 + Pkρ
H
k+1

10: for j = 0, 1, . . . , N − 1 do

11: ξ
σj

k+1 = ρk+1

[
IL + σjαk +

{
ρk − ξ

σj

k

(
ξ
σj

k−1

)−1
}(

αk−1

)−1
ρHk αk

]−1

ξ
σj

k

12: α
σj

k = αk

(
ρk+1

)−1
ξ
σj

k+1

13: β
σj

k = αk

(
ρk+1

)−1
ξ
σj

k+1

(
ξ
σj

k

)−1(
αk

)−1
ρHk+1

14: X
σj

k+1 = X
σj

k + P
σj

k α
σj

k

15: P
σj

k+1 = Qk+1 + P
σj

k β
σj

k

16: end for
17: end for

Fig. 1. Pseudo code of the SBCGrQ method. On×L is the n × L dimensional zero
matrix. IL is the L dimensional unit matrix. qr(C) indicates the QR decomposition of
matrix C.

To implement the SBCGrQ method for distributed parallel computers, we
introduce the row-wise distribution. We implement our distributed parallel code
with Message Passing Interface (MPI). In row-wise distribution, matrix-matrix
product with a Hermitian transpose matrix in the third line and the QR decom-
position in the 7th line are performed with MPI Allreduce to sum local results.
The parallel implementation for the matrix-vector products APk depends on the
application. The calculations in lines 8,11-13 are replicated. Other lines can be
executed without MPI communications.
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2.2 Efficient Implementation with Recurrence Unrolling

In the SS method, a number of shifted systems should be solved. In such a case,
computational cost for lines 11-15 becomes dominant. Especially lines 14,15 are
the most time-consuming part of the algorithm. In addition, the computational
cost of lines 14,15 increases O(L2) with increasing L. We reduce execution time
for this computation by following techniques. Fig.2 shows an naive implemen-
tation of the 9th line. Note that we reuse the memory area of the variables
with subscript k for corresponding variables with subscript k + 1. We use sim-
plified notations of the two BLAS subroutines ZGEMM and ZCOPY. Here,
ZGEMM(A,B,C) operates C ← AB+C and ZCOPY(A,B) operates B ← A. To

ZGEMM(P
σj

k , α
σj

k , X
σj

k+1)
ZCOPY(Qk+1, T )
ZGEMM(P

σj

k , β
σj

k , T )
ZCOPY(T , P

σj

k+1)

Fig. 2. Naive implementation. T ∈ C
n×L is a temporary variable.

exploit the efficiency of the cache blocking of ZGEMM, we operate the products
P

σj

k α
σj

k and P
σj

k β
σj

k in block as P
σj

k [α
σj

k , β
σj

k ]. The drawback of this approach
is that additional 2 ZCOPY calls for Xσj are required. We reduce the total
number of ZCOPY calls by unrolling the recurrences for Xk+1 and Pk+1. The
recurrences can be unrolled as

X
σj

k+1 = X
σj

k−u +
u−1∑
h=0

Qk−hγ
σj

h + Pk−uγ
σj
u

and

P
σj

k+1 = Qk+1 +

u−1∑
h=0

Qk−hδ
σj

h + P
σj

k−uδ
σj
u .

Here,

{
γ
σj

0 = α
σj

k

γ
σj

h = α
σj

k−h + β
σj

k−hγ
σj

h−1

,

{
δ
σj

0 = β
σj

k

δ
σj

h = β
σj

k−hδ
σj

h−1

and

θ
σj

h = [γ
σj

h , δ
σj

h ].
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Fig.3 shows the implementation which uses these relations. By this implemen-
tation, the total number of ZCOPY calls is reduced from 2K to 4K/u when
u > 2 since ZCOPY is only called every u iterations. Here K is the number
of iterations which is required to satisfy the stopping criterion. Simular to the
implementation in Fig.2, we reuse the memory area of the variables with sub-
script k−u for corresponding variables with subscript k+1. The problem is that
the implementation shown in Fig.3 requires an additional memory requirement,
mainly that of Qk−h (h = 0, 1, . . . , u − 1). Note that this memory requirement
is comparable with that of X

σj

k and P
σj

k (j = 0, 1, . . . , N − 1) when u ≈ N .

if mod(k + 1,u+ 1)= 0 then
ZCOPY(X

σj

k−u, T2(:,1:L))
ZCOPY(Qk+1, T2(:,L+ 1:2L))
for h = 0, 1, . . . , u− 1 do

ZGEMM(Qk−h, θh, T2)
end for
ZGEMM(P

σj

k−u, θu, T2)

ZCOPY(T2(:,1:L), X
σj

k+1)

ZCOPY(T2(:,L+ 1:2L), P
σj

k+1)
end if

Fig. 3. Implementation with recurrence unrolling. T2 ∈ C
n×2L is a temporary variable.

3 Numerical Experiments

In this section, we perform numerical experiments to evaluate the efficiency of
the SBCGrQ method and the recurrence unrolling technique described in the
previous section. In the experiments, all examples are performed on the K com-
puter. The K computer is a distributed memory supercomputer system which
has more than 80,000 compute nodes. It is currently under development at the
RIKEN Advanced Institute for Computational Science as a Japanese national
project. A SPARC64TM VIIIfx CPU which has eight cores is equipped for a
compute node. The clock frequency and the peak performance of the CPU are
2 GHz and 128 giga-flops, respectively. The target system is a silicon nanowire
which consists of 9924 Si atoms [3]. The dimension of the Hamiltonian matrix
A is n = 8, 719, 488. Our code is compiled with Fujitsu Fortran Compiler. We
describe common parameter setting for all experiments as follows. The contour
pass for the SS method is a circle with a center of 0.05 and a radius of 0.01.
The number of quadrature points is N = 32. The RHS vectors are generated
by random numbers. We executed the experiments with 768 MPI processes and
each MPI process had 8 OpenMP threads. Note that the results of the numer-
ical experiments are tentative since they are obtained by early access to the K
computer.
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First, we evaluate the execution time of the SS method, the number of eigen-
values that can be obtained by the SS method, and the iteration count and the
execution time for the SBCGrQ method. The results of experiments are shown
in Table 1. The parameter u is set to u = 32. Table 1 shows the elapsed time for
the SS method is mostly occupied by the solutions of the linear systems with the
SBCGrQ method in all cases. Large #eig is obtained by large L. This result is
predictable since large subspace is given by large number of RHSs. The remark-
able thing is that although the number of linear systems to be solved increase
L-fold, linsol time does not. This trend is mainly supported by the behavior that
#iter decreases with increasing L as is the case in the block CG method [11].
We have succeeded to extend this feature for multiple shifts by developing the
SBCGrQ method. Note that the case L = 1 and the conventional approach
described in [5] are equivalent except that scaling of the vectors are different
and the conventional approach was not implemented with recurrence unrolling.
Thus, we can find in the column Speed-up for the case L = 32 that the SBCGrQ
method is more than five times faster than the case that the shifted CG method
is sequentially applied to each RHS if these is no significant difference in the
iteration count for different RHSs.

Table 1. #iter and linsol time are iteration count and elapsed time for SBCGrQ
method, respectively. #eig is the number of eigenvalues derived in contour pass with
relative residuals less than 1e−2. SS time is elapsed time for the SS method. Speed up
is the speed-up ratio of average elapsed time for one RHS comparing to L = 1, i.e.
(128.2 × L) / linsol time.

L 1 2 4 8 16 32 64

#iter 10626 10560 9999 8382 6501 4455 4026
#eig 10 21 43 82 159 212 271
SS time [sec] 131.8 197.7 247.0 395.2 442.5 721.1 1714.6
linsol time [sec] 128.2 195.3 246.3 349.3 432.8 698.1 1600.5
Speed-up 1 1.31 2.08 2.93 4.74 5.87 5.12

Next we see the detailed data that support the remarkable results described
above. Fig.4 shows the results of experiments to see the behaviors of the domi-
nant parts of the SBCGrQ method with increasing L. Matvec is the elapsed time
of the matrix-vector products with A in the 5th line of Fig.1. QR is the elapsed
time of the QR decomposition for the 7th line of Fig.1. Shift is the elapsed time
of the calculations for lines 11-15 of Fig.1. Note that the time data are average
data for one RHS of one iteration. Matvec slightly decreases with increasing L
since latency for communication was reduced by sending or receiving L-fold data
at once. QR increases with increasing L since the computational cost increases
O(L2). The most time-consuming item Shift decreases until L = 16. This result
indicates that the efficiency of cache blocking of ZGEMM hides the growth of the
computational cost. However, Shift increases when L = 32, 64 due to the high
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complexity. Fig.5 shows the results of experiments to see the behaviors of the
dominant parts of Shift with increasing u of the recurrence unrolling technique.
The number of RHSs is fixed to L = 32. Square is the elapsed time for calcula-
tions that involve L dimensional square matrices in lines 11-13 of Fig.1. ZCOPY
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and ZGEMM are the elapsed time for ZCOPY and ZGEMM in Fig.2 or Fig.3
that implement the calculations for lines 14-15 of Fig.1. Note that the time data
indicates average data for one shift of one iteration. The computational cost for
Square other than naive is larger than that of naive due to calculations for θh.
Practically, the elapsed time of all cases rarely different since this additional
computational cost is negligible. We can find that elapsed time for ZGEMM is
reduced by the recurrence unrolling technique. This is because the cache hit ratio
is improved by merging two calls of ZGEMM into once. Moreover the elapsed
time for ZCOPY decreases linearly with increasing u, since ZCOPY is only called
every u iterations. We can find in these details that the efficient use of ZGEMM
and the reduction of total call for time-consuming ZCOPY contribute to the
remarkable efficiency of the SBCGrQ method.

4 Conclusions and Future Work

We have proposed a CG type method for linear systems with multiple shifts
and multiple RHSs and efficient implementation techniques that reduce time-
consuming data copies in the method. The proposed method can be used for
linear systems that arise in solutions of eigenproblems by an interior eigensolver
such as the SS method. We utilized the proposed method for the electronic-
structure calculation of a large system which consists of about 10,000 Si atoms.
We have found that the proposed method solves the linear systems more than
five times faster than the conventional approach and have shown how much our
implementation techniques contribute to efficiency of the proposed method. For
future work, we will apply the proposed method in unprecedented simulations
to clarify important physical properties.
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