
Interactive Volume Rendering

Based on Ray-Casting for Multi-core
Architectures

Alexandre S. Nery1, Nadia Nedjah2, Felipe M.G. França1, and Lech Jozwiak3

1 LAM – Computer Architecture and Microelectronics Laboratory
Systems Engineering and Computer Science Program, COPPE

Universidade Federal do Rio de Janeiro, Brazil
2 Department of Electronics Engineering and Telecommunications

Faculty of Engineering – Universidade do Estado do Rio de Janeiro, Brazil
3 Department of Electrical Engineering – Electronic Systems

Eindhoven University of Technology, The Netherlands

Abstract. The Volume Ray-Casting rendering algorithm, often used to
produce medical imaging, is a well-known algorithm and the underlying
computation can be easily executed in parallel. This is due to the fact
that the huge number of rays, used to sample the volumetric data, can
be processed independently. However, the algorithm’s performance may
drop substantially when the complexity/size of the volumetric dataset
increases. In this paper, we present three implementations of our parallel
volume ray-casting algorithm in different multi-core architectures, such
as CMPs, GPUs and MPSoCs. Furthermore, we show that using multi-
GPUs, that perform in parallel, we can almost halve the rendering time.
The performance and aspects of the three implementations are discussed.

1 Introduction

High performance visualization of 3-D datasets has always been one of the main
goals in Computer Graphics. For 3-D volumetric datasets, such as those acquired
by Computer Tomography (CT), the rendering process is generally known as Vol-
ume rendering. The volumetric dataset is usually composed of several stacked
parallel slices (images) that form a 3-D volumetric dataset. There are different
techniques to render 3-D volumetric datasets [9,2]. For instance, the March-
ing Cubes algorithm [11] is one approach to turn voxels samples into polygonal
data, in order to create an actual set of 3-D primitives that can be rendered
by regular GPUs pipeline. On the other hand, such technique may lead to a
poor quality polygonal representation of the volume, because of the approxi-
mations that are performed to create the polygonal data. Thus, the Volume
Ray-Casting algorithm is a better candidate for producing more accurate re-
sults [10,4]. Essentially, this algorithm samples equidistant points along the ray,
inside the volumetric 3-D dataset. Each sample, i.e. Voxel (volumetric pixel), cor-
responds to a given color and opacity in one of the parallel slices of the dataset.

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 177–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



178 A.S. Nery et al.

The interpolated colors and opacities are merged through compositing to yield
the color of the view-plane pixel through which a primary ray has been traversed.
For instance, the algorithm can show specific parts of a human body volumetric
dataset, such as bones or internal organs.

Interactive visualization of volumetric datasets is often difficult. The volume
ray-casting performance can drop significantly as more complex datasets are
used. On the other hand, volume ray-casting has a very high parallelization
potential, as each ray can be processed independently, producing one corre-
sponding pixel information. Therefore, there are consistent approaches to accel-
erate volume ray-casting with custom parallel architectures in hardware. In [6],
a pipelined application-specific integrated circuit (ASIC) was created, fabricated
in 0.35 µ technology and running at 125MHz. Such ASIC is capable of produc-
ing interactive frame-rates at some degree, since there are limitations regarding
the size of the dataset (2563 voxels). GPUs have recently become a good option
for massively parallel processing of floating point data [8]. Thus, there are also
approaches to accelerate volume ray casting using GPUs [5,3]. However, most of
the volume ray-casting algorithms on GPU strongly depend on optimizations to
achieve real-time rendering performance. For example, using texture or constant
memories of the GPU to store frequently-used data can substantially improve
the given algorithm performance, because of their much lower latency [8].

In this paper, we propose and discuss the implementations of our interactive,
un-optimized and flexible parallel volume ray-casting algorithm with supersam-
pling on three different multi-core architectures: Chip Multiprocessor (CMP),
Graphics Processing Unit (GPU) and Multiprocessor System on Chip (MPSoC).
The CMP implementation of the algorithm uses OpenMP, while the GPU imple-
mentation is CUDA-based. The MPSoC-based implementation on FPGA uses
the shared DDR memory for synchronization. We extensively compare perfor-
mance results of the GPU and OpenMP implementations, showing that the GPU
implementation can reach interactive visualization, especially when a multi-GPU
configuration is used. We also compared and analyzed the advantages of using
multi-GPU configuration over a single-GPU configuration for varying workloads
(number of primary rays). Finally, the MPSoC-based implementation on FPGA
(Xilinx Virtex-5) shows the portability and scalability of the volume ray-casting
algorithm, as several microprocessors (MicroBlaze [13] cores) can be mapped on
the FPGA and run the algorithm in parallel. All the implementations have not
been optimized to use any special features of the corresponding architectures.

The rest of this paper is organized as follows: Sections 2, 3 and 4 briefly ex-
plains the parallel Volume Ray-Casting algorithm in CMP, GPU and MPSoC.
Then, Section 5 presents extensive performance results for the three implemen-
tations and compare them, while Section 6 draws the conclusion of this work.

2 Parallel Volume Ray-Casting in CMP

The OpenMP-based parallel volume ray-casting technique is presented in Algo-
rithm 1, where we use a for work-sharing construct, that splits the execution of



Interactive Volume Rendering Based on Ray-Casting 179

the parallel section among the group of threads. Thus, iterations of the for loop
are split across the group of threads. Therefore, in Algorithm 1, groups of rays
are assigned to groups of threads for execution, leading to parallelization of rays.
Each thread has its own private variables (i, j and s) that are used to control the
loop iterations assigned to each thread in the beginning of the parallel section.
Also, if supersampling is enabled, then each ray spawns a given number of neigh-
bor sampling rays (i.e. in the vicinity of the primary ray), that are executed by
the same thread. Thus, the color information of each pixel is measured from all
the sampling rays, improving the overall quality of the resulting image.

3 Parallel Volume Ray-Casting in GPU

The CUDA-based parallel volume ray-casting is presented in Algorithm 2. In the
CUDA programming model, a thread is actually a lightweight thread, because of
their simplicity and faster context switching mechanism when compared to regu-
lar threads. Throughout this section, we refer to threads in CUDA as lightweight
threads. In addition, the CUDA-based implementation in Algorithm 2 has not
been optimized for GPU execution. For example, the kernel do not make use of
shared memory or texture memory, that are usually employed to avoid global
memory long latency penalties.

Algorithm 1. Volume Ray-Casting with OpenMP

Require: rays, uniform grid structure, 3-D dataset
Ensure: image
1: # pragma omp parallel for private(i,j,s)
2: for i = 0 to WIDTH do
3: for j = 0 to HEIGHT do
4: color pixel;
5: for s = 0 to N SAMPLES do
6: ray ry ⇐ get ray(i,j,s);
7: color aux ⇐ intersectGrid(grid, ry, dataset);
8: pixel ⇐ pixel + aux;
9: pixel ⇐ pixel / N SAMPLES;
10: image[i][j] ⇐ pixel ;

Modern general purpose GPUs are capable of executing many thousands of
threads in parallel [8]. Thus, each thread can be assigned to a primary ray
that crosses a pixel of the view-plane. The result is that a portion of the final
image is going to be produced by a block of threads (one pixel per thread). The
corresponding CUDA Kernel is presented in Algorithm 2, considering that all
data transfers between the host and the GPU have been already performed.
If supersampling is enabled, the thread will execute as many sampling rays as
required, as shown in line 5 of Algorithm 2. The sampling rays are addressed in
column chunks, as shown in line 6.



180 A.S. Nery et al.

Algorithm 2. Volume Ray-Casting CUDA–kernel

Require: rays, uniform grid structure, 3-D dataset
Ensure: image
1: ray ry;
2: i ⇐ blockDim.x * blockIdx.x + threadIdx.x;
3: j ⇐ blockDim.y * blockIdx.y + threadIdx.y;
4: color pixel;
5: for samples = 0 to N SAMPLES do
6: ry ⇐ rays[i][j+samples];
7: color aux ⇐ intersectGrid(uniform grid, ry, dataset);
8: pixel ⇐ pixel + aux;
9: pixel ⇐ pixel / N SAMPLES;
10: image[i][j] ⇐ c; {corresponding pixel color}

3.1 CUDA-Based Implementation Using Multi-GPUs

In this implementation, the same kernel shown in Algorithm 2 is executed by
each GPU. However, the input rays are split among the GPUs, increasing even
more the parallel processing of rays. In order to use two GPUs, a separate thread
must be created to access each GPU, because one thread cannot control both
GPUs at the same time. For that reason, we use OpenMP to create two threads,
each one controlling one GPU. The same idea can be extended for more than
two GPUs, if available. In the end, the results from both GPUs are merged by
the host process into one single image.

4 Parallel Volume Ray-Casting in MPSoC

The MPSoC architecture consists of up to four Xilinx MicroBlaze [13] micro-
processors running in parallel at 125MHz. They are connected to a shared DDR
memory via a Xilinx Multi-Port Memory Controller (MPMC) [12]. One of the
microprocessors is connected to a few communication peripherals, to enable in-
put/output data transmission between the MPSoC and a host machine, as well
as to enable access to the FPGA’s flash memory. Thus, all the microprocessors
must wait until the whole 3-D volume data is available for computation.

The parallel volume ray-casting implementation is presented in Algorithm 3,
where iterations of the for loop are split across the microprocessors, as shown
in line 2. Therefore, in Algorithm 3, groups of rays are assigned to different
microprocessors, since rays can be processed independently from the others.
Each microprocessor knows which data to read and to write, according to its
own identification number (CPU ID= 0, 1, 2 or 3) and also according to the
total number of enabled microprocessors (N CPU= 1, 2, 3 or 4), as shown in line
2 of Algorithm 3. Finally, at each loop iteration, an image pixel is produced, as
shown in line 9 of Algorithm 3.



Interactive Volume Rendering Based on Ray-Casting 181

Algorithm 3. Volume Ray-Casting with MicroBlaze

Require: rays, uniform grid structure, 3-D dataset
Ensure: image
1: for (i = 0; i < IMG WIDTH; i++) do
2: for j = CPU ID; j < IMG HEIGHT; j ⇐ j + N CPU) do
3: color pixel;
4: for s = 0 to N SAMPLES do
5: ray ry ⇐ get ray(i,j,s);
6: color aux ⇐ intersectGrid(grid, ry, dataset);
7: pixel ⇐ pixel + aux;
8: pixel ⇐ pixel / N SAMPLES;
9: image[i][j] ⇐ pixel ;

5 Experimental Results

In this section we present the experimental results on different datasets for each
multi-core architecture implementation. The CUDA-based implementation was
compiled using the CUDA Toolkit 4.0, while the OpenMP-based implementation
was compiled in GCC 4.4.4. Up to two NVIDIA GTX 470 GPU were used for
execution of the algorithm in CUDA, while a Core i7 960 Intel Multiprocessor (at
3.2 GHz) was used for the algorithm execution in OpenMP. The MPSoC-based
architecture was synthesized in Xilinx EDK 13.1 for a Virtex-5 XC5VLX50T
FPGA and the parallel algorithm implementation was compiled using MicroB-
laze gcc compiler 4.1.2. All the execution time results are measured in seconds
and the volumetric dataset (Fig. 1) used in this work is available in [1].

Fig. 1. Images produced by the proposed parallel volume ray-casting algorithm

Table 1. High-resolution execution times for eight different datasets

Data
Sampling rays, OpenMP Core i7 Sampling rays, single-GPU Sampling rays, dual-GPU
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

foot 2.54 4.68 9.02 18.30 34.58 69.75 0.03 0.08 0.17 0.34 0.67 1.35 0.03 0.06 0.12 0.24 0.48 0.96
skull 2.07 3.94 7.22 15.08 30.36 55.45 0.04 0.09 0.19 0.38 0.77 1.54 0.02 0.05 0.09 0.19 0.38 0.76
engine 2.14 4.12 8.63 16.81 33.42 66.45 0.02 0.04 0.09 0.18 0.37 0.74 0.02 0.03 0.07 0.14 0.28 0.56
aneurism 2.69 5.43 11.20 21.41 41.19 81.48 0.03 0.07 0.15 0.29 0.59 1.18 0.03 0.06 0.12 0.24 0.49 0.97
bonsai 2.23 4.19 7.41 14.65 30.16 55.78 0.03 0.06 0.14 0.27 0.53 1.11 0.03 0.05 0.11 0.22 0.44 0.87
teapot 2.58 4.57 8.72 16.84 38.36 73.00 0.03 0.06 0.13 0.26 0.53 1.06 0.02 0.05 0.09 0.19 0.38 0.77
aorta 6.19 12.22 24.08 47.94 95.76 192.46 0.08 0.19 0.39 0.80 1.62 3.26 0.06 0.12 0.23 0.45 0.88 1.76
backpack 6.36 12.51 24.97 49.45 99.22 198.32 0.12 0.29 0.58 1.20 2.43 4.91 0.08 0.17 0.33 0.66 1.32 2.62



182 A.S. Nery et al.

5.1 High-Resolution Performance Results

For each volumetric dataset, the volume ray-casting algorithm was executed for
1280×800 primary rays, producing high-resolution images. In addition, the algo-
rithm was executed with supersampling enabled, varying from 1 to 32 sampling
rays per pixel. Therefore, up to 32 sampling rays were cast around the region
of the primary ray pixel, producing smoother edges in the resulting image. The
performance results are summarized in Table 1, for the OpenMP and the CUDA
based implementations, using 1 and 2 GPUs, respectively. The MPSoC does
not support high-resolution volume ray-casting processing because of memory
limitations. Thus, its results are not included in Table 1.

The OpenMP-based implementation uses 8 parallel threads, since the Core i7
microprocessor can execute up to eight parallel processes. The results in Table
1 show that even for one sampling ray, the performance is still not enough to
ensure interactive visualization of the datasets. However, good results, i.e. image
quality and interactive visualization, can still be obtained at lower resolutions,
as fewer primary rays are processed. This will be shown in Section 5.2.

On the other hand, the GPU-based implementation results show that inter-
active visualization of volumetric datasets is possible even for high-resolution
volume ray-casting. As depicted in Fig. 2a and 2b, the volume ray-casting exe-
cution time for every dataset is still below one second if up to 4 sampling rays
are used, which corresponds to processing 1280 × 800 × 4 rays, in total. Thus,
more than one image, a.k.a frame, can be produced in one second, especially if
less than four sampling rays are used. The dual-GPU implementation is around
90 times faster than the OpenMP implementation. Comparing the algorithm
execution results using one and two GPUs, the performance is almost two times
faster when two GPUs are employed instead of one. Also, observe that as more
sampling rays are used, the performance gap increases, making the dual-GPU
configuration a better candidate for high-quality interactive volume ray-casting,
especially for complex datasets such as aorta and backpack, as shown in Fig. 3.

(a) Single-GPU, CUDA-based results. (b) Dual-GPU, CUDA-based results.

Fig. 2. GPU performance results in CUDA



Interactive Volume Rendering Based on Ray-Casting 183

(a) Single vs. Dual GPU speed up. (b) GPU frame rate (1 sampling ray).

Fig. 3. Acceleration rate using two GPUs and frames per second rate

5.2 Lower-Resolution Performance Results

Lower resolution volume ray-casting can still provide a good trade-off between
image quality and performance. In this section, we present some experimental
results for the foot and backpack datasets, rendered in lower resolutions. The
performance results are presented in Fig. 4, for one sampling ray.

It is clear that the GPU-based implementation can easily achieve real-time
visualization (30 fps) of volumetric datasets when the resulting image resolution
is decreased, which means that fewer primary rays are used to sample the volume
data. For a simple dataset (foot), interactive visualization (around 60 fps) can be
achieved even for higher resolutions, as in Fig.4a. On the other hand, the backpack
dataset can achieve interactive visualization performance for very-low resolutions
only, as depicted in Fig.4b. Moreover, the OpenMP-based implementation cannot
provide real-time or interactive rendering yet. Thus, optimizations are necessary
in order to improve the algorithm performance in OpenMP, as shown in [7].

5.3 MPSoC Synthesis and Performance Results

The MPSoC-based implementation results are shown in Fig. 5. Because of mem-
ory limitations of the FPGA we could render images of 640× 480 pixels. Also,

(a) Foot dataset low-resolution fps. (b) Backpack dataset low-resolution fps.

Fig. 4. Frames per second rendering rate for lower resolutions



184 A.S. Nery et al.

we could not fit the aorta and backpack datasets in memory. In Fig. 5a, one
can observe that almost all the FPGA slices are being used (82%), as well as
the available BlockRAMs (95%). Because of that, we could only fit up to 4 mi-
croprocessors running in parallel. The high usage of BlockRAMs is due to the
MPMC implementation of FIFOs for each input/output memory port, in order
to improve timing and performance [12].

Performance and scalability results are shown in Fig. 5b. For most datasets the
parallel algorithm execution time improves as more MicroBlaze microprocessors
(Processing Elements - PEs) are being used in parallel. The MPMC FIFOs for
the fourth microprocessor are implemented using shift register lookup tables
instead of BlockRAMs, which can contribute to create stalls in the datapath
and, hence, worsen the overall performance of the microprocessor.

Finally, it is clear that interactive performance is not yet achieved. How-
ever, an Application-Specific Integrated Circuit (ASIC) implementation of such
application-specific MPSoC design, instead of FPGA, could most probably run
faster, with lower area and power consumption, as in [6].

(a) FPGA area occupancy (4 PEs). (b) Execution times for 640× 480 res.

Fig. 5. MPSoC synthesis and scalability, for up to 4 parallel microprocessors

6 Conclusions

In this paper, three un-optimized implementations of our volume ray-casting
algorithm are discussed and compared. The GPU-based implementation is up
to 90 times faster when a dual-GPU configuration is used, in comparison to the
OpenMP-based implementation. One of the reasons for such speed up gain is
because thousands of lightweight threads can be executed in parallel on GPU,
while in the OpenMP-based implementation only 8 threads are executing in par-
allel. Furthermore, the overhead of changing between threads in GPU is much
lower. The MPSoC-based implementation on a single Virtex-5 FPGA can exe-
cute up to four MicroBlaze microprocessors in parallel, running at 125MHz. As
more microprocessors are used, the better is the performance achieved. How-
ever, interactive performance is not yet achieved, although in ASIC technology
it could most probably run at higher frequencies, with more dedicated hardware.



Interactive Volume Rendering Based on Ray-Casting 185

Summing up, we demonstrated that the un-optimized GPU implementation of
our volume ray-casting algorithm is able to deliver a high performance, between
60 and 90 times higher than that of our OpenMP-based implementation. For
most datasets, high-resolution interactive visualization is achievable. Also, if we
would make use of the texture and constant memories of the GPU, we would very
likely achieve much higher frame rates, since the latency of these memories is
much lower than the global memory latency. On the other hand, interactive per-
formance may only be achieved in OpenMP unless several optimizations are ap-
plied to the algorithm. Furthermore, since the GPU implementation introduces
more hardware overhead comparing to an MPSoC-based ASIC implementation,
a MPSoC-based ASIC is expected to have lower area/power consumption.

References

1. Bartz: Volvis – volume library (2005), http://www.volvis.org/ (last access May
2012)

2. Bhaniramka, P., Demange, Y.: Opengl volumizer: a toolkit for high quality volume
rendering of large data sets. In: Proceedings of the 2002 IEEE Symposium on
Volume Visualization and Graphics, VVS 2002, pp. 45–54. IEEE Press, Piscataway
(2002)

3. Cox, G., et al.: Exploring parallelism in volume ray casting: understanding the
programming issues of multithreaded accelerators. In: Proceedings of the 2012
International Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM 2012, pp. 64–73. ACM, New York (2012)

4. Wald, I., et al.: Faster isosurface ray tracing using implicit kd-trees. IEEE Trans-
actions on Visualization and Computer Graphics 11(5), 562–572 (2005)

5. Mensmann, J., et al.: An advanced volume raycasting technique using gpu stream
processing. In: GRAPP: International Conference on Computer Graphics Theory
and Applications, pp. 190–198. INSTICC Press, Angers (2010)

6. Hanspeter, P., et al.: The volumepro real-time ray-casting system. In: Proceedings
of the 26th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1999, pp. 251–260. ACM Press/Addison-Wesley Publishing Co., New
York (1999)

7. Lee, V., et al.: Debunking the 100x gpu vs. cpu myth: an evaluation of through-
put computing on cpu and gpu. In: Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA 2010, pp. 451–460. ACM, New York
(2010)

8. Kirk, D., Hwu, W.M.: Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann Publishers Inc., San Francisco (2010)

9. Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization
of the viewing transformation. In: Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1994, pp. 451–458.
ACM, New York (1994)

10. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. 9, 245–261
(1990)

http://www.volvis.org/


186 A.S. Nery et al.

11. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3d surface construction
algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)

12. Xilinx. Logicore ip multi-port memory controller (mpmc) v6.03.a,
http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf

(last access May 2012)
13. Xilinx. Microblaze reference,

http://www.xilinx.com/support/documentation/

sw manuals/xilinx13 1/mb ref guide.pdf (last access May 2012)

http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/mb_ref_guide.pdf

	Interactive Volume Rendering Based on Ray-Casting for Multi-core
Architectures

	1 Introduction
	2 Parallel Volume Ray-Casting in CMP
	3 Parallel Volume Ray-Casting in GPU
	3.1 CUDA-Based Implementation Using Multi-GPUs

	4 Parallel Volume Ray-Casting in MPSoC
	5 Experimental Results
	5.1 High-Resolution Performance Results
	5.2 Lower-Resolution Performance Results
	5.3 MPSoC Synthesis and Performance Results

	6 Conclusions
	References




