
Implementation and Evaluation of 3D Finite

Element Method Application for CUDA

Satoshi Ohshima, Masae Hayashi, Takahiro Katagiri, and Kengo Nakajima

The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, Japan
{ohshima,masae,katagiri,nakajima}@cc.u-tokyo.ac.jp

Abstract. This paper describes a fast implementation of a FEM appli-
cation on a GPU. We implemented our own FEM application and suc-
ceeded in obtaining a performance improvement in two of our application
components: Matrix Assembly and Sparse Matrix Solver. Moreover, we
found that accelerating our Boundary Condition Setting component on
the GPU and omitting CPU–GPU data transfer between Matrix Assem-
bly and Sparse Matrix Solver slightly further reduces execution time. As
a result, the execution time of the entire FEM application was shortened
from 44.65 sec on only a CPU (Nehalem architecture, 4 cores, OpenMP)
to 17.52 sec on a CPU with a GPU (TeslaC2050).

1 Introduction

The performance of GPUs is rapidly improving, attracting greater and greater
attention. Through various projects, numerous numerical applications and li-
braries have been optimized for GPUs. On the other hand, there are many
applications which are not suitable for GPUs, and some kinds of applications
are suitable for both CPUs and GPUs. Therefore, it is necessary to implement
and evaluate various real applications on GPUs.

Our specific interest is in investigating the acceleration of numerical appli-
cations though the use of GPUs and creating numerical libraries based on our
results. Our current aim to accelerate our 3D finite element method (FEM) ap-
plication on a NVIDIA GPU using CUDA[1]. We proposed and implemented
some optimization techniques specific to our FEM application for a GPU and
demonstrated that better performance can be attained than for a multi-core
CPU.

The remainder of this paper is as follows. Section 2 describes the abstrac-
tions of CUDA and our target FEM application. Section 3 describes special
characteristics of our FEM application and proposes three types of optimization
techniques, which we implement and evaluate the effectiveness of. Section 4 is
the Conclusion section.

2 CUDA and FEM Application

2.1 CUDA and NVIDIA GPU

CUDA is an architecture and application development framework of NVIDIA
GPUs. It provides a GPGPU program development environment using an

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 140–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Implementation and Evaluation of 3D Finite Element Method 141

extension of the C/C++ programming language and a corresponding compiler.
There is only a slight difference between C/C++ and CUDA in terms of lan-
guage specification, but CUDA has unique specifications in its hardware model,
memory model, and execution model. Therefore, the program optimization tech-
niques for CPUs and GPUs (CUDA) are greatly different.

Some optimization techniques and strategies for GPU programming are al-
ready well known[2]. For example, GPU programs must have high parallelism in
order to hide latencies of memory access. Also, reducing the number of branch
instructions and random memory accesses is important because the associated
performance penalties are larger for GPUs than for CPUs.

2.2 FEM Application

FEM is widely used in various scientific applications, and the acceleration of
FEM is important and in high demand. There are many FEM applications and
various libraries are used to accelerate these. Generally, Sparse Matrix Solver
and Matrix Assembly take up a significant portion of the execution time of
FEM applications.

Our target FEM application is based on the GeoFEM program[3], which is an
existing FEM program for CPUs. The target problem is a 3D solid mechanics
problem. This application has been parallelized for a multi-core CPU and PC
cluster by using OpenMP and MPI. We use the modified OpenMP version [4]
as a target of GPU acceleration.

Figure 1 shows the structure of our target FEM application, which has five
parts. The execution time breakdown is shown in Figure 2. The execution en-
vironment is described in Table 1. This environment has a Xeon W3520 CPU
(Nehalem architecture, 4 cores, 2.67 GHz) and a Tesla C2050 GPU (Fermi archi-
tecture, 448 SPs, 1.15 GHz). The number of elements is 512,000 (=80×80×80).
The most time-consuming part is Sparse Matrix Solver, for both sequential ex-
ecution (90.36%) and parallel execution (80.15%). In this part, this program
uses a Conjugate Gradient Solver (CG solver) with a simple block diagonaliza-
tion preconditioner as a sparse matrix solver. The second most time-consuming
part is Matrix Assembly. Therefore, we focused mainly on trying to accelerate
Sparse Matrix Solver and Matrix Assembly, which are described in Section 3.

Our FEM program has a special memory structure. Our matrix format is sim-
ilar to the Compressed Row Storage (CRS) and blocked CRS formats. Matrices
are partitioned into 3×3 blocks, and also divided into diagonal matrix, upper
matrix, and lower matrix parts (Figure 3). This is based on physical problem
setting that is stress strain. This 3×3 blocks structure is effective in terms of the
memory requirements. Moreover, because 3×3 blocks structure improves cache
hit rate, execution time is shorter than non-3×3 blocks structure.



142 S. Ohshima et al.

Fig. 1. Structure of our target FEM program

2.3 Related Works

Accelerating a CG solver requires speeding up matrix and vector calculations —
for example, summation and multiplication of a vector and scalar, and multipli-
cation of a matrix and vector — and these calculations are easy to parallelize.
Also, these calculations are suitable for GPUs. Thus, there have been many stud-
ies of sparse matrix solvers (CG solvers) for GPUs over the years [5] [6] [7]. Also,
some libraries for executing a CG solver on a GPU have been published. For
example, the CUSP library[8] provides a fast CG solver and some useful data
structures and calculation methods as a C++ class library.

One example of matrix assembly on a GPU is Cris[9].

Fig. 2. Breakdown of execution time on a CPU



Implementation and Evaluation of 3D Finite Element Method 143

Fig. 3. Matrix structure

Table 1. Evaluation environment

CPU Intel Xeon W3530 (Nehalem, 4cores, 2.67GHz)

Main memory PC3-10600(DDR3-1333) 12GB

GPU NVIDIA Tesla C2050 (Fermi, 448SPs, 1.15GHz)

Video memory DDR5 3GB

connection PCI-Express x16 (Gen 2)

OS CentOS5.7 (kernel 2.6.18)

Compiler gcc version 4.4.4 20100726 (Red Hat 4.4.4-13) (GCC)
Cuda compilation tools, release 4.0, V0.2.1221

Our work has a specific target application and focuses on optimization tech-
niques for that application. There are no existing reports of accelerating GeoFEM-
based FEM applications on a GPU. We only are trying to accelerate a 3×3-block
CG solver. Few studies have considered the implementation of boundary condi-
tion setting on a GPU or evaluating the CPU–GPU data transfer time between
matrix assembly and sparse matrix solver components.

3 Implementation

3.1 Optimization of Sparse Matrix Solver

In this section, we describe three kinds of optimization strategies and implemen-
tations. The first is the optimization of Sparse Matrix Solver.

As described in Section 2, for our FEM application, Sparse Matrix Solver,
which uses a CG solver with a matrix partitioned into 3×3 blocks, is the most
time-consuming part. The CG solver involves only a few types of calculation, the
most time-consuming of which is sparse matrix–vector multiplication (SpMV).



144 S. Ohshima et al.

Therefore, in this section, we mainly focusing on describing acceleration on a
GPU for a matrix partitioned into 3×3 blocks.

SpMV calculation with the CRS format is very easy to parallelize and accel-
erate, whether for CPU or GPU calculation, because the calculation of each row
is independent and can be executed in parallel. However, it is difficult to obtain
very good performance because SpMV calculation requires random memory ac-
cesses. A GPU can execute SpMV quickly and simply by dividing the matrix
based on rows and assigning them to CUDA Threads. Our problem is how to
divide and assign the 3×3 block partitioned matrix to CUDA Threads.

A simple strategy is dividing the block based on rows and assigning each
block to CUDA ThreadBlock and each row to a CUDA Thread (Figure 4(a)).
Although this strategy can obtain almost the same performance as SpMV cal-
culation without 3×3 blocking on a GPU, it is not sufficiently optimized. This
strategy cannot perform coalesced memory access and does not create sufficient
parallelism.

Our optimization strategy is to assign each 3×3 block to three CUDA Threads.
Each CUDA Thread reads matrix data in coalesced rule (Figure 4(b)) and has
data in the shared memory, and these CUDA Threads calculate multiplication
and addition using SharedMemory. Moreover, parallelism is increased by assign-
ing multiple 3×3 blocks to each CUDA TreadBlock. These strategies are simple
and effective.

Fig. 4. Optimization strategy for SpMV (coalesced memory access)

Figure 5(a) shows the SpMV performance. The evaluation environment and
problem setting are same as in Section 2. As a result, 3×3 blocked SpMV ob-
tained 3.20 times better performance on a GPU than on a CPU. The perfor-
mance ratio is much smaller than that for FLOPS (515 GFLOPS/42.7 GFLOPS
= 12.06). Rather, it is closer to the memory bandwidth ratio (144 GB/s / 32
GB/s = 4.50). Moreover, by applying the same strategies to vector summation,
multiplication, and dot product calculation, the execution time of the entire CG
solver was shortened from 39.90 sec to 14.15 sec (Figure 5(b)).



Implementation and Evaluation of 3D Finite Element Method 145

Fig. 5. Performance evaluation 1 (SpMV calculation and entire FEM application)

3.2 Optimization of Matrix Assembly

As shown in Section 2, Matrix Assembly was the second most time-consuming
part of the FEM application. As the result of accelerating the CG solver on a
GPU, the relative amount of time used by Matrix Assembly increased. In this
subsection, we describe the acceleration of Matrix Assembly.

Figure 6 shows the structure (flow of source code) of Matrix Assembly. The
flow of Matrix Assembly is more complicated than SpMV, and a hierarchical loop
structure (loopA, loopB, and loopC in Figure 6) is characteristic. The problem
of how to assign calculations to the GPU is more important than the problem
of Sparse Matrix Solver. Because Matrix Assembly has dependencies between
each matrix element, coloring computation is used to obtain parallelism. In this
study, we make the CPU execute coloring computation (multicolor method) and
make the GPU execute parallel calculation after coloring.

We tried to implement the calculation in two styles. The first style (data
strategy) performs the entire calculation in one GPU kernel, and the second
style (data+task strategy) divides the calculation into three parts. While the
data+task strategy can make each GPU kernel simple and small, the CPU and
GPU have to synchronize their kernels, which may degrade performance. Accord-
ing to the results of our implementation and evaluation, the data+task strategy
obtained better performance than the data strategy (Figure 7).

3.3 Optimization of Entire FEM Application

The execution time of the FEM application is shortened by accelerating Matrix
Assembly and Sparse Matrix Solver on a GPU. However, some parts of the FEM



146 S. Ohshima et al.

Fig. 6. Assignment of Matrix Assembly to the GPU

Fig. 7. Performance evaluation 2 (Matrix Assembly)

application are still executed on the CPU, but the execution times of these parts
are not so time-consuming. However, we think that accelerating more parts on
the GPU is important in order to obtain the best performance in the CPU with
a GPU environment.

Of the five parts of the FEM application, Sparse Matrix Solver and the latter
half of Matrix Assembly are already implemented to execute on the GPU. Here,
we implement Boundary Condition Setting on the GPU. Because our FEM appli-
cation has a simple boundary condition, the computation time for the boundary
condition is small and we can implement it easily on the GPU. However, if we
implement Boundary Condition Setting on the GPU, the data transfer between
CPU and GPU after Matrix Assembly and before Sparse Matrix Solver can be
omitted and the performance may improve. In order to obtain correct result,
we modify Matrix Assembly and Sparse Matrix Solver to omit the data man-
agement computation. Therefore, the CPU only performs control computations,
such as kernel launching of the GPU and loop control in the CG solver from
after the coloring procedure of Matrix Assembly to the end of Sparse Matrix
Solver (Figure 8).

Figure 9 shows the resulting execution times. The middle bar shows the results
of the above-described optimization. It is true that the effect of this optimization
is not large, but it is significant: a 5.14% performance improvement.



Implementation and Evaluation of 3D Finite Element Method 147

Fig. 8. Assignment more parts to the GPU

Fig. 9. Performance evaluation 3 (entire FEM application)

4 Conclusion

In this paper, we described the acceleration of a FEM application on a NVIDIA
GPU with CUDA. We implemented three components of the application, Sparse
Matrix Solver, Matrix Assembly, and Boundary Condition Setting, on a GPU.
The execution time of Sparse Matrix Solver was shortened from 39.30 sec to
14.15 sec, and the execution time of Matrix Assembly was shortened from 2.44
sec to 0.65 sec. By implementing the Boundary Condition Setting on the GPU
and omitting the CPU–GPU data transfer, the execution time of the entire FEM
application was reduced. The most important technique for accelerating execu-
tion was memory assignment. Exact assignment obtained good performance. As
a result, the execution time of entire FEM application was shortened from 44.65
sec on only a CPU (Nehalem architecture, 4 cores, OpenMP) to 17.52 sec on a
CPU with a GPU (TeslaC2050).



148 S. Ohshima et al.

There remains room for improvement and some challenges for FEM applica-
tions on a GPU. For example, coloring computation, complex preconditioners,
and complex boundary conditions are difficult for a GPU to accelerate. Utilizing
multiple GPUs is also an advanced topic. These remain as future work of our
project.

Acknowledgment. This work is partially supported by “Framework and Pro-
gramming for Post Petascale Computing (FP3C)” (JST, ANR) and “ppOpen-
HPC: Open Source Infrastructure for Development and Execution of Large-Scale
Scientific Applications with Automatic Tuning” (JST CREST).

References

1. NVIDIA: NVIDIA Developer Zone (CUDA ZONE),
http://developer.nvidia.com/category/zone/cuda-zone

2. NVIDIA: NVIDIA CUDA C Programming Guide
3. Research Organization for Information Science & Technology (RIST): GeoFEM

Homepage, http://geofem.tokyo.rist.or.jp/
4. Nakajima, K.: Parallel iterative solvers of geofem with selective blocking precon-

ditioning for nonlinear contact problems on the earth simulator. In: ACM/IEEE
Proceedings of SC 2003 (2003)

5. Bolz, J., Farmer, I., Grinspun, E., Scheróder, P.: Sparse Matrix Solvers on the GPU:
Conjugate Gradients and Multigrid. In: Proceedings of ACM SIGGRAPH 2003, pp.
917–924 (2003)

6. Krüger, J., Westermann, R.: Linear Algebra Operators for GPU Implementation
of Numerical Algorithms. In: Proceedings of ACM SIGGRAPH 2003, pp. 908–916
(2003)

7. Cevahir, A., Nukada, A., Matsuoka, S.: High performance conjugate gradient solver
on multi-gpu clusters using hypergraph partitioning. Computer Science - Research
and Development 25, 83–91 (2010)

8. cusp-library: Generic Parallel Algorithms for Sparse Matrix and Graph Computa-
tions, http://code.google.com/p/cusp-library/

9. Cecka, C., Lew, A.J., Darve, E.: Assembly of finite element methods on graphics
processors. International Journal for Numerical Methods in Engineering 85(5) (2011)

http://developer.nvidia.com/category/zone/cuda-zone
http://geofem.tokyo.rist.or.jp/
http://code.google.com/p/cusp-library/

	Implementation and Evaluation of 3D Finite Element Method Application for CUDA
	1 Introduction
	2 CUDA and FEM Application
	2.1 CUDA and NVIDIA GPU
	2.2 FEM Application
	2.3 Related Works

	3 Implementation
	3.1 Optimization of Sparse Matrix Solver
	3.2 Optimization of Matrix Assembly
	3.3 Optimization of Entire FEM Application

	4 Conclusion
	References




