
Parallel Scalability Enhancements

of Seismic Response and Evacuation Simulations
of Integrated Earthquake Simulator

M.L.L. Wijerathne�, Muneo Hori, Tsuyoshi Ichimura, and Seizo Tanaka

Earthquake Research Institute, The University of Tokyo, Tokyo, Japan
{lalith,ichimura,hori,stanaka}@eri.u-tokyo.ac.jp

Abstract. We developed scalable parallel computing extensions for
Seismic Response Analysis (SRA) and evacuation simulation modules
of an Integrated Earthquake Simulator (IES), with the aim of simulat-
ing earthquake disaster in large urban areas. For the SRA module, near
ideal scalability is attained by introducing a static load balancer which
is based on the previous run time data. The use of SystemV IPC as
a means of reusing legacy seismic response analysis codes and its im-
pacts on the parallel scalability are investigated. For parallelizing the
multi agent based evacuation module, a number of strategies like com-
munication hiding, minimizing the amount of data exchanged, virtual
CPU topologies, repartitioning, etc. are used. Priliminary tests on the
K computer produced above 94% strong scalability, with several million
agents and several thousand CPU cores. Details of the parallel com-
puting strategies used in these two modules and their effectiveness are
presented.

Keywords: multi agent simulations, seismic response analysis, large ur-
ban area, HPC, scalability.

1 Introduction

Petascale super computers have opened new avenues for more reliable earth-
quake disaster predictions compared to the currently used simplified methods.
The current earthquake disaster predictions, which are based on the statistical
analysis of past events, are less reliable since the built environment has signifi-
cantly changed since those decades old past events. It is possible to make more
reliable predictions by simulating large area earthquake disasters using cutting
edge numerical tools from many disciplines like seismology, earthquake engineer-
ing, civil engineering, social science, etc. High performance computing is vital to
meet the computational demand of simulating high fidelity models of large urban
areas, with high spatial and temporal resolutions. Further, the need of stochastic
modelling increases this high computational demand by severalfold. Stochastic

� Earthquake Research Institute, the University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku,
Tokyo 113-0032, Japan.

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 105–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

106 M.L.L. Wijerathne et al.

modeling is required to improve reliability of the numerical predictions; what
decision makers require is the high level of confidence in the predictions.

With the aim of developing a such a system for making for more reliable
earthquake disaster predictions, a system called Integrated Earthquake Simula-
tor (IES) is being developed[1]. The objective of IES is to seamlessly simulate
earthquake hazards, disasters and aftermaths. Modules for simulating source to
site seismic wave propagation, seismic response analysis (SRA) of buildings and
underground structures, evacuation and recovery are being developed. Highly
scalable parallel extensions are essential for IES, in order to realize more reli-
able disaster predictions using high fidelity models. While petascale machines
provide the necessary hardware resources, it is a challenging task to develop
scalable codes for simulating a large urban area with fine detailed models.

Prior to this work, a parallel computation extension for the IES’s SRA module
has been developed[2]. However, several bottlenecks seriously hinder its scala-
bility to mere 32 CPU cores. The SRA module of IES consists of several simple
to moderately advanced seismic response analysis methods. All these seismic
response analysis models are implemented as serial programs. With task level
parallelism and simple static load balancer, near ideal scalability is attained up
to a limited number of CPUs. Runtime of some tasks are excessively large com-
pared to the majority of tasks; large buildings involve much longer run time.
These tasks with large runtime limit the scalability, and have to be parallelized
to scale over a large number of CPUs.

The emergency evacuation module of IES is based on Multi-Agent Simulation
(MAS), in which people are represented by agents that autonomously navigate,
and interact with the neighbors and the environment. Even though MAS often
advocates the use of simple agents, sophisticated and smart agents are necessary
to model complex human behaviors. High performance computing enhancements
are necessary to simulate the evacuation of large urban area with millions of
smart agents. Most literature focuses on simulation of several ten thousands of
simple agents on less than 50 CPU cores, and real time rendering; modeling
virtual worlds for games and entertainment is the main objective of the existing
studies. Consenza et al.[3] have demonstrated simulation of 100,000 agents on
64 CPUs, but it has limited scalability. With several strategies to hide commu-
nications and minimize the volume of data exchanged, our HPC enhanced MAS
code attained 94% strong scalability up to 2048 cores on the K-computer, with
two million agents.

Details of the parallel extension of the SRA module and scalability are pre-
sented in the section 2. Section 3 summarizes difficulties and the strategies used
in parallelizing the multi-agent based evacuation module. Some concluding re-
marks are given in the last section.

2 Parallel Performance Enhancement of SRA Module

SRA module of IES has a series of simple to advance nonlinear SRA meth-
ods like discrete element method (DEM), one component model (OCM), fiber

Parallel Scalability Enhancements of IES 107

element model, etc. All these SRA methods are implemented as serial codes
with FORTRAN 77. On the other hand, IES is developed with C++; extensive
object oriented features make C++ a popular choice for projects developed by
large groups. Though FORTRAN 77 is an outdated standard, the reuse of these
SRA codes is unavoidable since rewriting in a latest standard, verification and
validation require a significant effort and time.

A previous effort to parallelize SRA module [2] based on a master slave model
produced much lower scalability than the required; some bottlenecks that hinder
the scalability are extensive use of temporary files for inter-process communica-
tion and output data saving, uneven workloads assign to CPUs, and the large
number of message passing. We eliminated these bottlenecks and achieved high
scalability with task parallelism and a static load balancer. The rest of the sec-
tion provides the details of these improvements.

2.1 Calling Legacy FORTRAN Codes

The existing FORTRAN 77 based SRA codes have to be converted to libraries,
so that those can be reused in IES. This conversion is a complex and error prone
process since the original codes have been developed under non-standard default
compiler settings. The SRA codes have been developed with COMPAQ FOR-
TRAN which used save semantics, which makes compiler to allocate all local
variables in static storage and initialized to zero. The use of this special com-
piler setting is not recommended by most of the present day compilers including
Intel FORTRAN, which is the successor of COMPAQ FORTRAN. To circum-
vent this problem, independent SRA executables can be called from IES using
system() command while using temporary files for data exchnage. Though this
is an acceptable solution in serial applications, using temporary files is a serious
performance bottleneck in parallel applications.

It is necessary to find a simple and less error prone means of reusing old FOR-
TRAN codes for the future needs. To this end, we explored the applicability of
SystemV IPC[4] (commonly abbreviated SysV IPC) in parallel computing envi-
ronment. In this setting, IES invokes the legacy FORTRAN codes as indepen-
dent executable and use shared memory segments and semaphores of SysV-IPC
to exchange data with IES. Compared with conversion to a library, this process
involves fewer modifications to FORTRAN codes. As shown at the end of this
section, the use of SysV-IPC is a good alternative to call legacy FORTRAN 77
codes in parallel environments.

One disadvantage of using SysV IPC shared memory segments is that those
persist even after termination of the owner processes, unless explicitly cleaned.
Under normal operations, the IPC classes introduced to IES take care of the
cleaning of the used SysV IPC resources. However, if the main program dies
prematurely, the IPC resources used must be manually cleaned, in each node;
SysV IPC resources can be released with the command ipcrm <-s/-m> <shmid/
semid>. Unless the shared memory segments are manually cleaned, it becomes
a system wide persistent memory leak. SysV IPC is a good solution for a clus-
ter dedicated for IES. However, premature exits of IES may cause problems in

108 M.L.L. Wijerathne et al.

clusters with multiple users and automated resource management. Therefore,
this SysV IPC approach cannot be used in professional super computers; spawn-
ing new process is usually prohibited.

2.2 Saving Large Volume of Data with MPI-IO

When simulating a large urban area, SRA module produces a large volume of
output data; around 10GB of binary data per 10,000 structures. IES should or-
ganize and save the output data in a ready-to-visualize format. We utilized the
MPI-IO functionalities of MPI-2 standard to write the SRA output in ready
to visualize format, thereby achieving higher parallel performance and reduc-
ing the visualization time. Compared to POSIX I/O, MPI-IO can deliver much
higher I/O performance in parallel environment[5]. The level 3 access function
MPI File write all(), which allows non-contiguous collective access to a file, is
used to write SRA output data in a ready to visualize format.

2.3 Load Balancing

The currently implemented task parallelism makes the SRA module an embar-
rassingly parallel problem. However, the difficulty of predicting the runtime of
each task makes it difficult to attain a good load balance; run time for each
structure depends on the location and magnitude of an earthquake, etc. There-
fore, some form of dynamic load balancing is necessary. A hybrid solution with
static load balancing for the majority of the buildings and switching to dynamic
load balancing for the remaining is the best solution. However, only static load
balancing is implemented in the modified version, since dynamic load balancing
requires significant modifications to the present code of IES.

The static load balancer utilizes the runtime information recorded at previous
executions to assign nearly equal workloads to each CPU. The simple static load
balancer first distributes all the building information and previous run time
data to all the CPUs. These data are grouped such that data of one or several
GIS (Geographic Information System) tiles are in one set, and each data set is
compressed to reduce message size. CPUs independently pick a subset of data so
that each has nearly equal work load, estimated based on the previous runtime
data. The use of static load balancer is an acceptable solution provided the
runtime difference of a given building due to different input Strong Ground
Motions (SGM’s) of similar magnitudes would not be large. Irrespective of the
number of input data files of building shapes and run times, this phase involves
only 2 message broadcasts, provided the volume of building shape data and run
time data is less than 4GB. Unlike a master slave load balancing, where master
CPU decides and distributes the work, this communication independent load
balancing does not degenerate the scalability.

2.4 Scalability of the New Parallel Extension of SRA Module

The modified parallel extension of SRA module involves message passing only at
the very beginning and the end of a simulation: at the beginning to share some

Parallel Scalability Enhancements of IES 109

configuration files and building shapes and run time data of each GIS tile; at the
end to save data with collective MPI-IO. In this setting, the modified parallel
module should well scale with the number of CPUs, as long as previous run time
based load estimation assigns equal workloads to CPUs.

To test the scalability of the new parallel extension, we simulated 125,500
buildings in the Kochi city of Japan, with the OCM model. The buildings are
excited with the strong ground motion data observed during the 1995 Kobe
earthquake. A DELL cluster with QLogic 12200 InfiniBand switch and 16 com-
putation nodes, each with two hexa-core Intel Xeon X5680 CPUs and 47GB
DDR3 memory, was used for these simulation. This cluster has hardware sup-
port for MPI-IO. However, it does not have a parallel file system supporting
MPI-IO.

9

10

11

12

13

14

3 4 5 6 7 8

lo
g2

(r
un

 ti
m

e)

log2(Num. of CPUs)

with output saving
without output saving
Ideal gradient

Fig. 1. Scalability of the SRA module

As shown in Fig. 1, the modified parallel extension of SRA module exhibits
near ideal scalability, up to 110 CPUs. The same graph shows that saving 84 GB
of output data with MPI-IO has little impact on the scalability, even though the
cluster does not have supporting file system for MPI-IO. On the same hardware,
another simulation is conducted to find the scalability issues due to the use of
SysV IPC for inter-process communication; OCM model is called as an indepen-
dent executable and SysV IPC resources are used for data exchange. It is found
that the use of SysV IPC has no noticeable effect on the scalability. This con-
firms that SysV IPC resources can be used for calling legacy FORTRAN codes
in parallel environments, without any impact on scalability. Surely, some work
is necessary to introduce SysV IPS resources to FORTRAN codes. However,
compared to conversion to a library, it is less error prone and requires much less
time.

The sudden changes of the graphs in Fig. 1 to a constant, after 110 CPUs,
indicates the inadequacy of task level parallelism. For complex SRA methods
like OCM and fiber element method, run time for large buildings is 2-4 orders of
magnitude larger compared to that for small buildings. Further, these complex

110 M.L.L. Wijerathne et al.

SRA methods involve hours of runtime for large buildings. One of the buildings
in this demonstration involves 1211 seconds run time, which is almost equal to
the run time with 110 CPUs. Hence the graphs in Fig. 1 flatten.

Parallelizing the SRA codes is necessary to break the above mentioned per-
formance barrier. With parallelized SRA codes, CPU subgroups of different sizes
have to be formed such that resources are optimally used. All the small build-
ings are executed as serial codes in one large CPU group while the other groups
execute bigger buildings in parallel. Such strategy makes it possible to simulate
a large urban area in a single simulation.

Figure 2 shows a snapshot of seismic response of 145,000 buildings in central
Tokyo; assumed structural skeletons and material properties are used. Colors
represent the magnitude of displacement vector; red color indicates displace-
ments exceeding 0.5m.

Tokyo dome
Ikebukuro

Shinjuku

||u|| (/m)
0.0 0.1 0.3 0.4 0.50.2

Fig. 2. Snapshot from a seismic response analysis demonstartion of central Tokyo

3 Parallel Performance Enhancements of Evacuation
Module

To simulate emergency evacuation of millions of people in a large urban area like
Tokyo, it is necessary to develop a scalable parallel extension of the evacuation
module. The existing MAS based pedestrian simulation studies have reported
low scalability which is limited to a few tens of CPU cores; the objective of
majority of the existing studies is simulating virtual worlds, for which a few tens
of CPU cores may be sufficient. With several strategies for hiding and minimizing
communications, we attained near liner scalability at least up to 2048 CPU cores,
with a few millions of agents. The rest of this section provides a short description
of the abilities of current agents, difficulties in parallelization and main strategies
used to attain high parallel scalability.

Parallel Scalability Enhancements of IES 111

3.1 Complexity of Agents

Since the evacuation simulations are concerned with human lives, it is necessary
to use smart agents which can reproduce the observed behaviors of real crowds.
Modeling smart agents involves complex data structures consisting of a large
number of variables. While the current agents are simple, we are implementing
the required abilities that are important for tsunami triggered emergency evac-
uations. To model the heterogeneous real human crowds, a wide range of agents
are implemented: agents with different physical abilities like speed, maximum
sight distance, etc.; agents with different amount of information related to the
environment and the emergency scenario; agents with different levels of responsi-
bilities like police officers, fire fighters, volunteers and common residents. Figure 3
shows a part of the UML diagram for a resident agent. Another two types of
agents, officials and non-residents, are implemented similarly by specializing the
same Agent base class.

Model

RadarTemplate
+num_intervals
+ray_info

EventTime

Times

Recognition
+p_near_neighborset
+p_lr_neighborset
+pneighbors_in_vicinity
+exitinview

_Memory
+IVset
+time_at_IVset
+viewvector
+RT_stop
+RT_think
+destination_final
+position_previous
+velocity
+velocity_previous
+destination_looping
+pass
+trapped
+looping
+direction
+direction_previous
+path_to_destination
+no_rcnt_IV_sets_updates
+no_IV_sets_updates_to_SR
+past_IV_sets
+time_at_past_IV_sets
+pathtodest_size
+path_to_dest_snd

_Ability
+level
+max_speed
+visibility_radius

Type
+name

_Agent
+ID
+GID
+vctindx
+fin_time
+influenced_time
+distance_travelled
+peventtime
+time
+radartemplate
+precognition
+pmemory
+position
+IV
+pability
+ptype

Resident

circ_list
+container
+…
:…

Fig. 3. Class hierachy of a resident agent

All the types of agents have common navigation behavior, though the different
type of agents may take different actions depending on the role they play. As
an example, official agents seek for the other agents requiring support while
resident agents move to nearest evacuation center. With See() functionality, an
agent makes a high resolution scan of his visible environment like a radar, and
identify the boundary of visibility and visible neighboring agents. Next, with
Think() functionality, he analyzes the area and the boundary of his visibility
and identify the available paths and choose the closest path to his destination
direction. Finally, with Move() functionality, he navigates avoiding collisions
with neighboring agents and other obstacles.

112 M.L.L. Wijerathne et al.

3.2 Difficulties in Parallelization

The major steps in parallelizing the multi agent code are the same as that of
other particle type simulations like SPH. However, compared to other particle
type methods, parallelization of the multi agent code involves several additional
difficulties, some of which are listed below.

1. Complexity of data structures and the amount of data involved
(a) The volume of agent’s data is 50 times or more compared to SPH.
(b) Agents have dynamically growing data like memory of their experiences,

etc.
(c) Implementing smart agents requires the use of complex data structures

like graphs, maps and trees, which grow in size.
2. Objects of different types of agents, like officials, residents, etc., have to be

stored in non-contiguous locations in different vectors.
3. Require maintaining a wide ghost layer of thickness at least equal to the

maximum visibility distance of an agent.
4. Amount of computations depends on the type and surrounding conditions

of an agent.

While all the first three items increase the communication time, the last item
leads to load imbalance. The agent data to be communicated are located in non-
contiguous memory locations; the hierarchical data structure shown in Fig. 3
requires byte padding for the alignment of base class objects and for the sake
of performance. Item 2 makes the data to be communicated become further
fragmented and non-uniform; it is not possible to store agents to be sent and
received to each CPU in a continuous memory stretches, and one may prefer
not to delete inactive agents for performance reasons. In order to preserve the
continuity, it is necessary to maintain a ghost layer of width at least equal to the
largest sight distance of agents. In a dense urban area, ghost layer of 50m may
contain a large number of people. Communicating a larger volume of fragmented
data always is associated with increase in communication time[6]. Hence the
first three items increase the communication time. The presence of dynamically
growing data further increases the communication time; it requires at least two
messages, memory allocation at the receiving end and packing and unpacking of
data.

3.3 Strategies for Enhancing Scalability

The basic strategies used in parallelization of the multi agent code are more
or less the same as that of other particle type simulations: the domain is de-
composed such that each has equal work loads; ghost or overlapping layer is
maintained and updated with the neighboring CPUs to preserve the continuity;
agents are moved to neighbor CPUs when they enter the domain of a neigh-
bor CPU; domain is repartitioned when the agent movements bring significant
load imbalance. For domain decomposition, kd-tree is used. Although kd-tree
does not minimize the volume of data being communicated, its simple geometry

Parallel Scalability Enhancements of IES 113

makes it possible to easily detect the movements of agents between different do-
mains. In addition to these common strategies, the following strategies are used
to deal with the above mentioned additional difficulties.

Virtual CPU Topologies. With 2D-tree based partitioning we cannot take the
advantage of communication topologies of underlying hardware like hypercube,
torus, etc.; the resulting communication patterns of kd-tree is too irregular to
be mapped to these structured hardware topologies. Distributed graph topology
interfaces of MPI-2.2 address this problem[7]. We used MPI Dist graph create()
to map MPI process ranks to processing elements, to better match the commu-
nication pattern of the partitions to the topology of the underlying hardware.
However, we could not test the effectiveness of virtual topology due to the un-
availability of a cluster supporting this feature.

Algorithm 1.

comm freq = ghost update interval;

for k = 1 to n do
Execute send agents;
if (! (k%comm freq)) then

Initialize ghost update;
end
Execute inner agents;
if (! (k%comm freq)) then

Finalize ghost update;
end

end

Fig. 4. Subdivisions of a partition

Hiding Communications and Minimizing Volume of Data Exchanged.
As mentioned in the Section 3.2, communication of large volume of fragmented
data is time consuming. However, most of the communication time can be hidden
behind calculations by processing the agents in a certain order (see Algorithm
1). To this end, agents in each CPU are divided into three sub groups (see Fig
4); agents to be received from other CPUs, agents to be sent to other CPUs
and the rest of the active agents which are named inner most agents hereafter.
To deal with the large amount of data to be communicated, only the necessary
agent data is exchanged. The three agent sub groups are stored in std::map<>
C++ containers instantiated with std::pair< global ID, Agent * >. The map
data structure makes it efficient to manage agent movements among CPUs and
repartitioning.

114 M.L.L. Wijerathne et al.

The presence of dynamically growing data makes it difficult to eliminate the
communication overhead completely. Exchanging all the dynamic data requires
at least two messages and packing and unpacking of large amount of data. In-
stead, in a single message, only the newly added contents are exchanged when
updating ghost boundaries; new updates are packed to a small temporary buffer
in agent objects, sent with the static data members in one message, and unpacked
at the receiving end. The explicit packing and unpacking makes it impossible
to hide the communication overhead completely. However, a significant portion
of communication overhead is hidden, making the code to attain high parallel
scalability.

Reduction of the Frequency of Ghost Layer Updates. Even if the ghost
update communications are hidden, packing and unpacking dynamically growing
data, etc. incur some time. Therefore, further gain in scalability is possible by
reducing the frequency of ghost layer updates. This introduces small error to
the simulation. However, the error is negligibly small; the time increment used is
0.2 s. Table 1 shows that the reduction of ghost update frequency has a significant
advantage only with smaller number of CPUs. With the increasing number of
CPUs, its effect diminishes; the overhead of packing and unpacking data goes
down with the decreasing number of agents. Therefore, this approach is effective
only when CPUs have a large number of agents in the ghost regions.

Table 1. Comparison of runtimes with ghost update interval ’s of 1 and 2

CPUs
Runtimes with /(s)

Difference
comm freq=1 comm freq=2

4 16701.7 15103.2 1598.5

8 7765.6 7025.6 740.0

16 3243.5 3170.5 73.0

32 1701.3 1694.4 6.9

Minimizing Data Exchange in Repartitioning. Migration of agents from
a partition to another brings load imbalance. When a significant load imbalance
occurs, repartition is necessary to maintain equal workloads. Repartitioning is
an expensive step since sophisticated agents have large amount of data. With
2D-tree, it is observed that most of the agents remain in the same CPU even
after repartitioning, unless MPI Dist graph create() maps a partition to a differ-
ent CPU. The repartitioning algorithm detects whether a partition is assigned
to the same CPU and exchanges only the newly assign agents. This drastically
reduces the communication overhead involved with repartitioning, effectively
lowering any performance degeneration due to repartitioning. Table 2 compares
run times without any repartitioning and with 4 repartitioning (once in 80 steps).
As is seen, even with the current serial 2d-tree algorithm, the gain due to repar-
titioning is significantly increasing with the number of CPUs. Figure 6, about

Parallel Scalability Enhancements of IES 115

which a detailed explanation is given later, demonstrate the gain due to reparti-
tioning. Instead of calling repartitioning at fixed intervals, load in each CPU has
to be monitored and repartitioning has to be called based on the level of load
imbalance.

Table 2. Effectiveness of repartitioning

CPUs
Runtime /(s)

Gain /(%)
no repartition 4 repartitions

32 1733.9 1656.7 4.6

64 939.1 866.5 8.4

128 459.8 434.1 5.9

256 250.9 220.6 13.7

3.4 Scalability

In order to test the effectiveness of the above major strategies, we conducted a
series of simulations with 500,000 agents in a part of Kochi city environment.
The same cluster used for the scalability test of the SRA module is used for
these simulations. Ghost layer updating at each time step and repartitioning at
an interval of 80 steps are considered for these simulations. As Fig. 5 indicates,
the above strategies have produced near linear scalability; super linear behavior
is due to the nonlinear time reduction of the neighbor search algorithm with the
decreasing number of agents.

Further, preliminary tests in the K-computer produced 94% strong scalability

with 2048 CPU cores; strong scalability is defined as
(Tm

Tn
)

(n
m) , where Tk is the time

with k number of CPU cores and n ≥ 2m. For the tests on the K-computer, 400
time steps with 2 million of agents are considered. Further the ghost boundaries
are updated at each iteration, movements of agents between CPU cores are
checked at each 10 iterations and domain is repartitioned at each 100 iterations
for load balancing. Figures 6a and 6b show the runtime for 400 iterations, except
the repartitioning time. These figures clearly show the significant performance
gain due to repartitioning. As is seen, at each iteration, the run time with 2048
cores is nearly the half of that of 1024 cores.

Figure 7a shows the history of total run time with 2048 CPU cores. As is
seen the major bottleneck in the current code is repartitioning, which is still a
serial code. Further, as shown in Fig. 7b, migration of agents (detecting agent
movements from the domain of one CPU to another and dispatch those agents
to the new CPU) is relatively time consuming. In future developments, these
two bottlenecks are to be addressed to further increase the scalability.

116 M.L.L. Wijerathne et al.

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8

lo
g2

(r
un

ti
m

e)

log2(number of CPUs)

comm_freq=1

ideal (w.r.t 2 CPUs)

Fig. 5. Scalability of the multi agent code

1.6

1.8

2

2.2

2.4

0 100 200 300 400

Tim
e /

(s)

Iteration step

(a) run time with 1024 CPU cores

0.8

0.9

1

1.1

1.2

0 100 200 300 400

Tim
e /

(s)

Iteration step

(b) run time with 2048 CPU cores

Fig. 6. History of run time with 1024 and 2048 cores. Repartitioning time is exculded.

0

4

8

12

16

0 100 200 300 400

Tim
e /

(s)

Iteration step

repartitioning

(a) history of total run time

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0 100 200 300 400

Tim
e /

(s)

Iteration step

(b) time for moving agents among do-
mains

Fig. 7. History of total run time and agent migration time with 2048 CPU cores

Parallel Scalability Enhancements of IES 117

4 Summary

Scalable parallel extensions for the seismic response analysis and multi-agent
based evacuation modules of an Integrated Earthquake Simulator (IES) are being
developed. Task parallelism is considered for the SRA module and near ideal
scalability is attained with a static load balancer. In future, parallelization of
the SRA codes is necessary to address the scalability limitations due to the
presence of long time consuming tasks (i.e. large buildings). Further, out of a
given number of CPUs, forming CPU subgroups of different sizes to execute the
parallel SRA codes with minimum waste of CPU time and task scheduling have
to be considered.

The multi agent based evacuation simulation module produced high strong
scalability with a few thousands of CPU cores in the K-computer. In future,
further scalability improvements of evacuation module are planned with direct
remote memory access features of MPI. Such enhancements are necessary to
cope with complexities arising from planned sophisticated agent features and
introduction of different types of agents.

Acknowledgements. This work was supported by JSPS KAKENHI Grant
Number 24760359. Part of the results is obtained by using the K computer at
the RIKEN Advanced Institute for Computational Science.

References

1. Hori, M., Ichimura, T.: Current state of integrated earthquake simulation for earth-
quake hazard and disaster. J. of Seismology 12(2), 307–321 (2008)

2. Sobhaninejad, G., Hori, M., Kabeyasawa, T.: Enhancing integrated earthquake sim-
ulation with high performance computing. Advances in Engineering Software 42(5),
286–292 (2011)

3. Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V.: Distributed Load Balancing
for Parallel Agent-Based Simulations. In: 19th International Euromicro Conference
on Parallel, Distributed and Network-Based Processing, pp. 62–69 (2011)

4. Richard Stevens, W.: UNIX Network Programming. Interprocess Communications 2
(1999) ISBN 0-13-081081-9

5. Latham, R., Ross, R., Thakur, R.: The impact of file systems on MPI-IO scalability.
In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS,
vol. 3241, pp. 87–96. Springer, Heidelberg (2004)

6. Balaji, P., Buntinas, D., Balay, S., Smith, B., Thakur, R., Gropp, W.: Nonuniformly
Communicating Noncontiguous Data: A Case Study with PETSc and MPI. In: Pro-
ceedings of the 21th International Parallel and Distributed Processing Symposium
(IPDPS 2007), Long Beach, March 26-30 (2007)

7. Hoefler, T., Rabenseifner, R., Ritzdorf, H., de Supinski, B.R., Thakur, R., Traff, J.L.:
The Scalable Process Topology Interface of MPI 2.2. Concurrency and Computation:
Practice and Experience 23(4), 293–310 (2010)

	Parallel Scalability Enhancements of Seismic Response and Evacuation Simulationsof Integrated Earthquake Simulator
	1 Introduction
	2 Parallel Performance Enhancement of SRA Module
	2.1 Calling Legacy FORTRAN Codes
	2.2 Saving Large Volume of Data with MPI-IO
	2.3 Load Balancing
	2.4 Scalability of the New Parallel Extension of SRA Module

	3 Parallel Performance Enhancements of Evacuation Module
	3.1 Complexity of Agents
	3.2 Difficulties in Parallelization
	3.3 Strategies for Enhancing Scalability
	3.4 Scalability

	4 Summary
	References

