
Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part II, LNCS 7929, pp. 191–199, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Credit Scoring Analysis Using B-Cell Algorithm
and K-Nearest Neighbor Classifiers*

Cheng-An Li

College of Economics and Commerce
South China University of Technology, Guangzhou, 510006, P.R. China

chanli@scut.edu.cn

Abstract. This paper applies B-Cell algorithm (BCA) for credit scoring analysis
problems. The proposed BCA-based method is combined with k-nearest
neighbor (kNN) classifiers. In the algorithm, BCA is introduced to select the
optimal feature subsets and kNNs are used to classify the investors in different
groups representing different levels of credit in the classification phase.
Experiments employing the benchmark data sets from UCI databases will be
used to measure the performance of the algorithm. Its comparison with genetic
algorithm, particle swarm optimization and ant colony optimization will be
shown.

Keywords: Classification, Credit Scoring, K-Nearest Neighbor Classifiers,
B-Cell Algorithm.

1 Introduction

Credit scoring is a major issue for financial institutions, for firms that grant credit to
their customers, as well as for institutional and individual investors. One of the key
decisions financial institutions have to make is to decide whether or not to grant a loan
to a customer. The decision basically boils down to a binary classification problem so
as to distinguish customers with low credit risk from customers with high credit risk
[1], [2].

Selecting the right sets of features for classification is one of the most important
problems in designing a good classifier [1]. The objective of feature selection is to
search through the space of feature subsets to identify the optimal or near-optimal one
with respect to a selected performance measure. In the literature, many feature selection
algorithms have been proposed [2]. These algorithms can be classified into two
categories, that is, filter methods that select variables by ranking them with correlation
coefficients and wrapper methods that assess subsets of variables according to their
usefulness to a given predictor.

Recently, randomized metaheuristic search algorithms, including simulated
annealing, genetic algorithms [3], particle swarm optimizations (PSO) [4]and ant

* This paper is supported by the Guangdong Planning Office of Philosophy and Social Science

(Grant No. GD10CGL11).

192 C.-A. Li

colony optimizations (ACO) [5] are of great interest because they often yield high
accuracy and are much faster, and have been used to find the optimal feature subsets in
many real-world cases, including credit scoring analysis. However, the complexity of
the methods in implementation made them difficult to solve some real problems.

The B-Cell algorithm (BCA) [6] is one of artificial immune algorithms, which is
built on the clonal selection principle and uses an alternative model called somatic
contiguous hypermutation for the mutation probability in the affinity mutation process.
It is very important that BCA is very simple and has a small number of parameters [7].
Thus, in this paper, we propose a novel approach to solve the feature subset selection
problem using B-Cell algorithm. In the classification phase of the proposal algorithm,
the nearest neighbor classification methods are used. The proposed BCA-based
algorithm is tested using the data from UCI benchmark databases in order to classify
the investors in different groups representing different levels of credit risk. In addition,
the other algorithms are compared with the proposed algorithms in order to validate
their efficiency.

This paper is organized as follows. Section 2 summarizes the principle of BCA
briefly. Section 3 addresses the BCA based classification method. Section 4 shows its
application and experimental results. Finally, Section 5 concludes the paper and
discusses briefly.

2 B-Cell Algorithm

2.1 B-Cell Algorithm

The B-Cell algorithm (BCA) [6] is inspired by the clonal selection process. It
implements non-deterministic iterated process of exploring multidimensional search
space and works with a population of tentative solutions called B-cells.

An important feature of BCA is its use of a unique mutation operator, known as
contiguous somatic hypermutation. Here, a contiguous region of the point
representation is randomly selected and each position is mutated with a certain
probability. The general principles of the BCA method are outlined as follows.

In BCA, each cell is a candidate solution that has an associated performance index
that allows it to be compared with the other cells. Each cell, represented
as 1 2(, ,)i i i iNx x x x= , is composed of the binary variable and decides on {1} or {0},

where N is dimension number. Computationally, the implementation of the algorithm is
quite simple and could be performed using the following steps:

--First, generate an initially randomized population of individuals P over the search
space.

--Second, evaluate each individual. Clone and place in clonal pool C.
--Third, for each clone, apply the contiguous somatic hypermutation operator.
--Fourth, evaluate each clone; update the individual if a clone has higher affinity than

its parent B-cell.

 Credit Scoring Analysis Using B-Cell Algorithm and KNN Classifiers 193

Stopping Criterion:
BCA is usually terminated with a maximal number of iterations or the entire

population cannot be improved further after a sufficiently large number of iterations.

2.2 The Contiguous Somatic Hypermutation Operators

The immune-inspired mutation operator is one of the main characteristic of the B-Cell
algorithm. The operator is called the somatic contiguous hypermutaion operator [8]. It
decides randomly about a contiguous region of the bit string and flips each bit within
this region with a given probability r∈[0,1]. In this paper, the somatic contiguous
hypermutaion which has wrapping around has been used in the BCA shown in the
following.

Definition 1 Somatic Contiguous Hypermutation (CSM) Wrapping Around [9]).
CHM mutate x∈{0,1}n, given a parameter r∈[0,1].

1. Select p∈{0, 1, …, n-1}uniformly at random.
2. Select l∈{0, 1, …, n}uniformly at random.
3. For i=p to l-1 do
4. With probability r set x[(p+1) mod n]=1- x[(p+1) mod n].

2.3 B-Cell Algorithm for Classification

In this paper, we introduce BCA into classification, in particular, credit scoring
problem. To the best of our knowledge, no related work about BCA for classification
problems has been reported in the previous literatures. A new algorithm is proposed by
utilizing the k-Nearest Neighbor Classifiers and BCA for credit scoring problems. In
the proposed method, BCA is employed to find the optimal feature subset and an
independent classifier to evaluate the quality of the subset.

3 The Proposed B -Cell Algorithm

3.1 The Method

In this paper, an algorithm for the solution to the feature selection problem based on the
B-Cell Algorithm is presented. We apply B-Cell Algorithm to select optimal feature
subsets. This algorithm is combined with k-Nearest Neighbor classifiers which are used
to evaluate the quality of the selected feature subsets. A pseudo-code of the proposed
BCA -based method is presented in Table 1.

194 C.-A. Li

Table 1. B-Cell Algorithm

Begin
 Randomly Initialize the population P
 Do until the maximum number of solutions has been reached:
 Select randomly a number of features to activate
Enddo
Selection of the maximum number of generations
While (number of iterations, or the termination criterion is not met)
 Classify given data based each B-cell in the population
 For each xi∈P
 Evaluate xi with a fitness function f(x)
 Clone xi, and place in clonal pool C
 Randomly select a clone c∈C, randomise the vector
 Each c∈C, apply the contiguous somatic hypermutation operator
 Evaluate each clone c with the fitness function f(x)
 If a clone has higher fitness than its parent xi then
 xi =c
 endif
 next xi
 Update the optimal cell with new population P
next generation until termination criterion
 Return the best cell (best solution)
End

In each iteration, the algorithm records and updates the global optimal solution.

3.2 K-Nearest Neighbor Classifiers

In this paper, the classic k-Nearest Neighbor (kNN) methods are used for classification
after a number of features were selected in each iteration. For each sample of the test
set, the Euclidean Distance from each sample in the training set is calculated. The
Euclidean Distance is calculated as follows:

2

1

| |
d

ij il jl
l

D x x
=

= − (1)

where ijD is the distance between the test sample i=1,…, Mtest (Mtest is the number of test

samples) and the training sample j=1,…, Mtrain (Mtrain is the number of train samples),
and l=1,…, d is the number of activated features in each iteration.

In the classic k-Nearest neighbor methods, every member among the k nearest
neighbors has an equal weight in the vote. As described in Ref. [5], it is nature more
weight to those members that are closer to the test sample. A method, Weighted k
Nearest Neighbor (wkNN), is proposed [5]. In the wkNN method, the most distant

 Credit Scoring Analysis Using B-Cell Algorithm and KNN Classifiers 195

neighbor from the test sample has the smallest weight while the nearest neighbor has
the largest weight. The weight of th ith neighbor is set:

1

i k

i

i
w

i=

=

 (2)

3.3 Population

A state vector of all features is denoted as a component or cell. In feature selection
problems, we represent the cell by binary bit strings of length N, where N is the total
number of attributes. Every bit represents an attribute, the value ‘1’ means the
corresponding attribute is selected while ‘0’ not selected. Each vector is an attribute
subset.

A number of cells are used. Each cell begins from a random initialization in the
feature vector and changes according to a mutation operator.

3.4 Fitness Function

To effectually evaluate the quality of the produced members of the population, the
following fitness function is adopted in our method with the classification accuracy of
good group and bad group and the number of selected features. Thus, for each cell, the
classifiers are called and the produced number of selected features and overall
classification accuracy are used to generate the fitness function.

Accuracy of the good group is:

1
1

1 1

T
AC

T F
=

+
 (3)

Accuracy of the bad group is:

2
2

2 2

T
AC

T F
=

+
 (4)

where T1 and F1 are correct and error classification for good group respectively, and T2
and F2 are correct and error classification for bad group respectively.

Hence, the fitness function can be defined as:

1 2* * *(1/(5))fitness AC AC Fsα β= + + (5)

where α and β are constant factors used to weight each term in (5),

0 1α≤ ≤ and 1α β+ = . Fs is denoted as the number of the selected features.

4 Experiments

This section describes the experimental setup used to test the performance of the
proposed approach. We compare the proposed BCA-based algorithm with the GA-based,

196 C.-A. Li

PSO-based, ACO-based algorithm in credit scoring by using two public credit card
datasets (Australian, and German credit datasets) from the UCI KDD Archive [10].

4.1 Data Sets and Parameter Setting

The data are obtained from UCI Repository of Machine Learning Databases [10]
illustrated in Table 2. The Australian credit data consists of 307 instances of
creditworthy applicants and 383 instances where credit is not creditworthy. This dataset
has a good mixture of attributes: continuous, nominal with small numbers of values,
and nominal with larger numbers of values, along with missing attributes in 5% of the
samples. To protect the confidentiality of data, the attributes names and values have
been changed to meaningless symbolic data. The dataset are preprocessed by fitting
suitable values into the missing values for the original data set. The German credit
data are more unbalanced, and it consists of 700 instances of creditworthy applicants
and 300 instances where credit should not be extended. This data set only consists of
numeric attributes. In implementation, the input variables in each dataset were
normalized independently in each dimension into the range [0, 1].

Table 2. The data sets from the UCI Repository

No Names # Instances Nominal features Numeric features # Class

1 Australian 690 6 9 2

2 German 1000 0 24 2

These data have been classified into two classes: creditworthy, denoted as good

group, and not creditworthy, denoted bad group. Hence, the credit scoring task will be
to discriminate between these two groups of data. The algorithm was implemented in
Matlab 7.10 and Intel at 3.3 GHZ.

The parameters for all algorithms are shown in Table 3.

Table 3. Parameter setting for differen algorithms

Methods Parameter setting

BCA Generation: 50, B cells: 5, Clone cells: 5, mutation probability: 0.1

GA Generation: 100, population size: 50, crossover: 0.9, Mutation: 0.01

PSO Generation: 50, particles: 25, maxw =0.9, minw =0.1, c1=2.0, c2=2.0, maxV =6

ACO ants=25, tmax=50, r=20, r1=5, q=0.5, aθ =0.25, bθ =0.95 [5]

In addition, α and β in fitness function are set to 0.8 and 0.2 respectively.

4.2 Evaluation Functions

Seven measures are used to validate the proposed method: number of selected features,
the Root Mean Squared Error (RMSE), accuracy of good group, accuracy of bad group,
average accuracy, overall accuracy and computational time.

 Credit Scoring Analysis Using B-Cell Algorithm and KNN Classifiers 197

RMSE can be calculated from the formula:

2

1

| | /
M

i ei
i

RMSE y y M
=

= − (6)

where M is the number of samples in the data set, eiy is the classifier model output and

iy is the true class of the test sample i.

Accuracy of good group and bad group defined in (3) and (4) respectively.

The Average Classification Accuracy (ACA) is :

1 2A (AC) / 2CA AC= + . (7)

The Overall Classification Accuracy (OCA) is:

100
T

OCA
M

= . (8)

In (8), T is the number of the samples classified correctly. In fact, T=T1+T2.
In the experiments, the algorithms used the datasets with 10-fold cross validation.

The mean values of number of selected features, RMSE and classification accuracy of
10-fold cross validation and computational time for three data sets are shown in the
following tables Table 4 and 5.

4.3 Experimental Results

We implemented BCA and compared experiments with the other randomized search
algorithms GA, PSO and ACO. We used 1NN and wkNN as base classifiers in each of the
iterations. The results reported consist of the average number of selected features, RMSE,
accuracy of good group, accuracy of bad group, average accuracy, overall accuracy and
computational time. The classification results are presented in Table 4 and 5.

From Table 4 and 5, in the two base classifiers 1NN and wkNN, experimental results
show that wkNN outperform 1NN except computational time for BCA, GA, PSO and
ACO in general. Hence, we focused on the result analysis about wkNN as the base
classifier in the following.

Table 4. Results of the proposed algorithm and the compared algorithms on Australian dataset

Methods Average

number of

features

RMSE Accuracy

for good

group (%)

Accuracy

for bad

group (%)

Average

Accuracy

(%)

Overall

Accuracy

(%)

Computational

time(s)

BCA-1NN 6.4 0.2849 92.18 91.64 91.91 91.88 40.4199

BCA-wkNN 5.8 0.2554 92.83 93.99 93.41 93.48 186.9204

GA-1NN 7.4 0.2998 90.23 91.64 90.94 91.01 97.7806

GA-wkNN 7.2 0.2719 92.18 92.95 92.57 92.61 289.5219

PSO-1NN 6.9 0.2745 92.18 92.69 92.44 92.46 44.3350

PSO-wkNN 5.6 0.2638 92.83 93.21 93.02 93.04 147.0794

ACO-1NN 7.9 0.2973 89.58 92.43 91.00 91.16 24.4885

ACO-wkNN 7.4 0.2745 90.23 94.20 92.24 92.46 72.6886

198 C.-A. Li

It can be observed that RMSE, average accuracy, and overall accuracy of the
BCA-wkNN (0.2554, 93.41% and 93.48%) are superior to those of GA-wkNN,
PSO-wkNN and ACO-wkNN from Table4. Accuracy of good group of the
BCA-wkNN (92.83%) is equivalent to that of PSO -wkNN, but better than GA-wkNN
and ACO-wkNN. Accuracy of bad group of the BCA-wkNN is slightly inferior to that
of ACO-wkNN, but better than GA-wkNN and PSO-wkNN. Average number of
selected features of the proposed BCA-wkNN is slightly larger that of PSO -wkNN, but
smaller than that of GA-wkNN and ACO-wkNN. It is also noticed that, for
computational time, the proposed BCA -wkNN is superior to GA-wkNN, but slightly
inferior to PSO-wkNN and ACO -wkNN.

Table 5. Results of the proposed algorithm and the compared algorithms on German dataset

Methods Average

number of

features

RMSE Accuracy

for good

group (%)

Accuracy

for bad

group (%)

Average

Accuracy

(%)

Overall

Accuracy

(%)

Computational

time(s)

BCA-1NN 11.6 0.4266 85.71 72.67 79.19 81.80 102.7111

BCA-wkNN 13.1 0.4123 87.43 72.67 80.05 83.00 378.3960

GA-1NN 12.6 0.4658 82.43 68.67 75.55 78.30 260.6146

GA-wkNN 11.6 0.4393 86.86 66.33 76.60 80.70 657.7960

PSO-1NN 11.2 0.4722 80.71 70.67 75.69 77.70 139.4050

PSO-wkNN 10.8 0.4494 84.14 69.67 76.90 79.80 300.0934

ACO-1NN 12.6 0.4324 88.86 63.67 76.26 81.30 126.8113

ACO-wkNN 11.8 0.4159 91.14 63.00 77.07 82.70 334.0931

From Table5, we can observe that RMSE, accuracy of bad group, average accuracy,

and overall accuracy of the proposed BCA-wkNN (0.4123, 72.67%, 80.05% and 83%)
is superior to those of GA-wkNN, PSO-wkNN and ACO-wkNN. Accuracy of good
group of the BCA-wkNN is inferior to that of ACO -wkNN, but better than GA-wkNN
and PSO-wkNN. For average number of selected features, the proposed BCA-wkNN
performs slightly worse than GA-wkNN, PSO-wkNN and ACO-wkNN. Of course, for
computational time, the proposed BCA-wkNN is superior to GA-wkNN, but slightly
inferior to PSO-wkNN and ACO-wkNN.

In summary, the experimental results demonstrate that the proposed BCA-based
approach is effective and has better classification performance than other optimization
techniques such as GA, PSO and ACO for the credit scoring problems.

It is noted that the Australian and German datasets are most widely selected to test
the performance of algorithms for financial crises [1]. Hence, in this paper, we also use
these datasets to validate the proposed method so that future researchers can make
direct and fair comparisons.

 Credit Scoring Analysis Using B-Cell Algorithm and KNN Classifiers 199

5 Conclusions and Discussion

This paper discussed the application of BCA for credit scoring. A novel approach
has been proposed to solve the feature subset selection problem using B-Cell algorithm.
In the approach, the nearest neighbor classification methods are used in the
classification phase. The experimental results show that the proposed BCA-based
approach outperforms the compared GA, PSO, and ACO-based approaches in the
classification performance for credit scoring problems. In the future work, we shall
discuss how to apply the proposed BCA algorithm to other applications such as optimal
risk portfolios. In addition, we will use the proposed approach in some specific
real-world problems.

References

1. Lin, W.-Y., Hu, Y.-H., Tsai, C.-F.: Machine Learning in Financial Crisis Prediction: A
Survey. IEEE Transactions on Systems, Man and Cybernetics-Part C: Application and
Reviews (2011), doi:10.1109/TSMCC.2011.2170420

2. Crook, J.N., Edelman, D.B., Thomas, L.C.: Recent developments in consumer credit risk
assessment. European Journal of Operational Research 183, 1447–1465 (2007)

3. Vafaie, H., Imam, I.F.: Feature selection methods: genetic algorithms vs. greedy-like search.
In: Proceedings of International Conference on Fuzzy and Intelligent Control Systems
(1994)

4. Yang, C.-S., Chuang, L.-Y., Ke, C.-H., Yang, C.-H.: Boolean Binary Particle Swarm
Optimization for Feature Selection. In: IEEE Congress on Evolutionary Computation, pp.
2093–2098 (2008)

5. Murinakis, Y., Marinaki, M.: Applicaton of Ant Colony Optimization to Credit Risk
Assessment. New Mathematics and Natural Computation 4(1), 107–122 (2008)

6. Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for function
optimisation. In: Cantu-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 207–218.
Springer, Heidelberg (2003)

7. Zarges, C.: Theoretical Foundations of Artificial Immune Systems, The dissertation of
Technical University Dortmund, Dortmund Germany (2011)

8. Jansen, T., Oliveto, P.S., Zarges, C.: On the Analysis of the Immune-Inspired B-Cell
Algorithm for the Vertex Cover Problem. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS
2011. LNCS, vol. 6825, pp. 117–131. Springer, Heidelberg (2011)

9. Jansen, T., Zarges, C.: Analyzing different variants of immune inspired somatic contiguous
hypermutations. Theoretical Computer Science 412(6), 517–533 (2011)

10. Murphy, P.M., Aha, D.W.: UCI Repository of machine learning databases, Department of
Information and Computer Science. University of California, Irvine (2001)

	Credit Scoring Analysis Using B-Cell Algorithmand K-Nearest Neighbor Classifiers
	1 Introduction
	2 B-Cell Algorithm
	2.1 B-Cell Algorithm
	2.2 The Contiguous Somatic Hypermutation Operators
	2.3 B-Cell Algorithm for Classification

	3 The Proposed B -Cell Algorithm
	3.1 The Method
	3.2 K-Nearest Neighbor Classifiers
	3.3 Population
	3.4 Fitness Function

	4 Experiments
	4.1 Data Sets and Parameter Setting
	4.2 Evaluation Functions
	4.3 Experimental Results

	5 Conclusions and Discussion
	References

