
Context-Aware UI Component Reuse

Kerstin Klemisch1�, Ingo Weber1,2, and Boualem Benatallah1

1 School of Computer Science & Engineering, University of New South Wales
{kerstink,boualem}@cse.unsw.edu.au

2 Software Systems Research Group, NICTA, Sydney, Australia
ingo.weber@nicta.com.au

Abstract. Adapting user interfaces (UIs) to various contexts, such as
for the exploding number of different devices, has become a major chal-
lenge for UI developers. The support offered by current development
environments for UI adaptation is limited, as is the support for the ef-
ficient creation of UIs in Web service-based applications. In this paper,
we describe an approach where – based on a given context – a complete
user interface is suggested. We demonstrate the approach for the exam-
ple of a SOA environment. The suggestions are created by a rule-based
recommender system, which combines Web service-bound UI elements
with other UI building blocks. The approach has been implemented, as
well as evaluated by simulating the development of 115 SAP UI screens.

Keywords: User Interface Development,UI Component Reuse, Ripple-
Down Rules, Context-awareness.

1 Introduction

There are few ICT areas as economically and socially critical today as the pro-
vision of services over mobile and Web channels. This trend is impacting pro-
foundly the effectiveness of services delivery in a variety of domains including
health, banking, education, healthcare, meteorology, forecasting, media, and of-
fice tasks. For instance, over 577692 Android applications were accessible in
December 2012 [1]. The number of iPad applications reached 275000 in March
2012 since its launch in 2010 [2]. From a software engineering point of view,
while advances in mobile and Web technologies increased the ability to deploy
simple services and devices, demand for effective development of mobile appli-
cations is rising even faster. More specifically, the development of user interfaces
has been identified as one of the most time-consuming tasks in the overall appli-
cation development cycle [26]. This is partly due to the fact that user interfaces
have to be developed for a large number of different devices with different devel-
opment platforms, such as XCode for Apple iPhones and iPads, Android SDK
for Android mobile phones, or Carbide IDE for Symbian applications [13].

Modern Integrated Development Environments (IDEs) support UI developers
by providing: reusable basic UI elements (e.g., text boxes, sliders) from generic

� The majority of the work done while this author was working for SAP.

C. Salinesi, M.C. Norrie, and O. Pastor (Eds.): CAiSE 2013, LNCS 7908, pp. 68–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Context-Aware UI Component Reuse 69

programming libraries (e.g. JQuery [22], VCL [25]), code generation / completion
for both UI and functionality as in MS Visual Studio, UI to functionality binding
specification, etc. However, even with sophisticated IDEs like MS Visual Studio
or Bootstrap [24], there are still a lot of repetitive, time-consuming tasks that UI
developers have to code manually. Examples of such tasks are the repetitive drag
and drop of basic UI elements (e.g., text boxes, buttons) onto a canvas, creation
of UI elements from scratch, configuration of UI element parameters (e.g., size),
specify UI screen layouts, define labels and descriptions. In addition to describing
UI elements, developers need to develop mappings from UI elements to backend
functions and vice versa (e.g., mapping Web form fields to Web service (WS)
parameters, or WS invocation results to Web widgets).

In this paper, we focus on improving productivity of UI development on top
of Web services, as Web services are widely used to provide backend interfaces
to all sort of applications ranging from ERP software to cloud services. A good
example to illustrate the reuse of backend functionality via services is Twilio1,
a provider of various Application Programming Interfaces (APIs) for messaging
services such as telephony and SMS. A large number of applications have been
developed on top of Twillio in a variety of domains. For instance, recently Twilio
announced that 150,000 developers used its APIs to support phone calls, video
conferencing and chat features including the development team of eBay and
Hulu. Application development over services such as Twilio is UI intensive. When
offering a service in different contexts, its UI has to be adapted to these contexts,
including, e.g., the adaptation to new consumption channels, new audiences, and
the change of UIs as an outcome of usability testing [6].

In addition, in enterprise applications, adaptation to business scenarios is a
major requirement in UI development. A business scenario is essentially a “com-
plete description of a business problem” [23]. Examples of business scenarios are
sales order management and supply chain management. A business scenario can
be associated with a collection of reusable UI elements including UI templates,
backend services, and mapping templates between the two.

Adapting UI code to a given context can be complex, time-consuming and
resource-intensive. In major software development projects, various techniques
are used to create appropriate UI prototypes before the development phase
starts. These techniques include brainstorming, mockup design iterations by ex-
perienced UI designers, and usability testing. Existing UI development and adap-
tation techniques have not kept pace with our ability to deploy individual devices
and services. They rely on human understanding of different contexts, platforms,
devices and extensive manual programming to develop UI components. This is
clearly unrealistic in large scale and evolving environments. Main stream code
reuse techniques assist developers in finding and reusing general code artefacts,
such as functions and methods [14,18]. Although these techniques have produced
promising results that are certainly useful, more advanced techniques that cater
for effective and context-aware UI components reuse are needed. Whereas the

1 http://www.twilio.com/, accessed 25-11-2012.

http://www.twilio.com/

70 K. Klemisch, I. Weber, and B. Benatallah

backend functionality provided by code might be exactly the same on a desktop
and a mobile device, the UI is likely to be different.

In practice, we observe that UI developers often have valuable knowledge for
identifying UI components that are most appropriate in a given context (e.g. UI
components appropriate for sales order entry screens). We believe that sharing
this knowledge is beneficial for UI code reuse, and thus that integrating context-
ware UI components reuse and SOA offers tremendous opportunities to increase
productivity of modern application development frameworks. More specifically,
based on the above observations we propose a novel approach for context-aware
UI component reuse, making the following contributions:

1. We propose a UI artefacts representation model and a rule-based UI compo-
nent recommender system. The recommender system suggests comprehen-
sive UI components to developers. UI Programming knowledge is exploited in
the form of programming recommendations provided during UI development.
In essence, the recommender system uses a context description (e.g, device
type, business scenario) to query a “UI programming knowledge base”, which
returns UI components that are “appropriate” for the given context.

2. We propose an incremental knowledge acquisition technique, by which newly
created or modified UI components are associated to contexts and stored in
the UI programming knowledge base for future reuse. The UI programming
knowledge underpins knowledge-driven and context-aware UI components
recommendations.

3. We discuss an evaluation of the proposed approach, including (i) a proof-
of-concept prototype called UISE (UI Suggestion Environment); and (ii) a
detailed feasibility and usefulness experiment based on 115 UIs from the
SAP Business Suite CRM software.

The paper is structured accordingly, starting with how UI artefacts are repre-
sented. Section 3 describes how UI artefacts can be reused and how UI knowledge
is incrementally acquired. The implementation and evaluation is discussed in
Section 4, followed by related work (Section 5) and our conclusions (Section 6).

2 Representing UI Artefacts

The core idea of our approach is to support UI developers in their daily tasks
by suggesting user interface components during the development process. These
UI suggestions are based on context selected by the developer. Our approach
derives suggestions for user interfaces from UIs created for similar contexts in
the past. The suggested user interfaces consist of a number of UI widgets. These
widgets might come with a specific service and mapping already linked to it.
Where no service / mapping link is provided, the developer needs to perform
service discovery – which is outside of the scope of this paper. The UI developer
can modify the UI proposals according to her needs, or reject the proposal and
create a new UI from scratch. The changes / new UI will be made available to
other UI developers on its completion.

Context-Aware UI Component Reuse 71

UI components, context and recommendations are stored in a rule-based
knowledge base (KB) in our approach. Updates to the KB are triggered by
any change in context or UI. The KB structure consists of artefact types and
relationships linking them, as shown in the entity-relationship diagram, Fig. 1.
The main artefacts are Rules (for UI recommendations). The rules consist of
conditions (when does the rule apply) and conclusions (what should be rec-
ommended when the rule applies).

Rule

Component

Layout

Theme

Binding

Composition

Business
Scenario

Device

Context
Recommend

ation

Fig. 1. ER-Model of Rule Components

2.1 Rule Conditions

The left hand side of Fig. 1 shows artefacts which make up rule conditions or the
Context. Devices (different consumption platforms, e.g., Blackberry, iPhone,
Windows Desktop, etc.) and Business Scenarios (e.g., Sales Order Manage-
ment, Quotation Management, Campaign Management for Business Customers,
etc.) describe our Context. Information on how this context was assessed can
be found in Section 4.1. In this paper, we have restricted ourselves to two di-
mensions of context. The context could however be easily extended by other
dimensions, such as corporate identity or development platforms.

These artefacts form the vocabulary used in the condition of a rule, e.g.:
If device=“Apple iPhone” and screen resolution = 800x600(+/-20%) and sce-
nario=“Sales Order Management-Standard Sales Order”, then...

2.2 Rule Conclusions

The conclusion of a rule is a UI recommendation, for a given context. User inter-
face suggestions in our approach are composed of UI Components. These com-
ponents can be of different levels of granularity, ranging from simple textboxes
with labels to entire user interfaces. In order to capture relevant aspects of UI
components in a generic way, we represent them through four basic dimensions
(see right-hand side of Fig. 1).

72 K. Klemisch, I. Weber, and B. Benatallah

– Composition specifies which UI components are combined to form the
structure of a UI (component). For instance, a screen for the scenario ”Sales
Order Management - Standard Sales Order” might be composed of the UI
components ”sales order header V1”, ”sales order date section V3” and ”sales
order item list V1”.

– Layout describes how the components are arranged on the screen – see
Fig. 2. We distinguish horizontal layout, where components are placed next
to each other, and vertical layout, positioning components one beneath and
above one another. Vertical and horizontal layouts can be nested, thereby
allowing to model arbitrary combinations of horizontally and vertically or-
dered components. Layouts can be used to adapt a UI for different devices
– e.g., a collapsible vertical layout may be suitable for mobile devices with
small screen sizes, whereas a horizontal layout may be more suitable for
wider desktop screens.

Horizontal Vertical

Fig. 2. Examples for different layouts

– Binding links a UI to back-endWeb services, and describes how data should
be transformed and exchanged. One UI might be used for different purposes,
like accessing different back-end services, even without changing the UI itself.
The flexible binding mechanism allows for changing the functionality in the
background without changing the UI as such. An example is the creation of
user interfaces for creating a sales order vs. UIs for changing a sales order.
The UI may remain the same, whereas the Web service the data is submitted
to may change.

– Theme refers to style sheets, which define the look-and-feel of UIs. Style
sheets are a common method to adapt UIs to the look-and-feel of different
operating systems (Windows, iOS, etc.) and to different corporate designs
(e.g., Coca Cola vs. IBM). This is achieved by varying attributes like font
size and style, colour scheme, background images, and even scripts.

Context-Aware UI Component Reuse 73

3 KB-Based Reuse of UI Artefacts

A central part of our approach is the reuse of UI artefacts. This reuse is enabled
by a rule-based recommender system, which suggests user interfaces depending
on the current context, as specified by the developer. The suggested UIs stem
from previous development efforts. The high-level architecture of the proposed
Recommender System is shown in Fig. 3. We explain its parts and aspects of
its usage in this section, starting with the information used by the recommender
system. Then we describe how reuse rules are structured, how they are entered
into the system, and how they evolve over time.

Community UI Developers Domain Experts Software Users
Hardware
Producers

Recommender System

UIs

UIs

Component

p

Composition

p

Layout

Binding

g

Theme

C

UI UIContext Context

SO Mgmt.,
iPhone 4 Context

Platform

Descriptions

Business Scenario
Descriptions

Rules

Fig. 3. Proposed Architecture

3.1 UI Recommender System

The recommender system stores Context data for platforms and business sce-
narios. The Platform Descriptions database (see Fig. 3) contains data about
the characteristics of different platforms, such as brand, model, screen sizes, key-
board type, etc. The platform-related characteristics are stored using a hierarchi-
cal structure, from more generic characteristics such as “Mobile” vs. “Desktop”
to more specific ones such as “Apple iPhone 3G” vs. “Apple iPhone 3G S”.

Likewise, business scenarios are stored in a hierarchical structure in the Busi-
ness Scenario Descriptions database. An example for such a business scenario
hierarchy is “Sales Order Management” ⇒ “Quotation” ⇒ “Web Auction Quo-
tation”. The UI repository stores different types of UI components, as outlined
in Section 2:

– UI Components of different granularity, starting with

• basic UI components such as text fields, labels, sliders
• more complex generic composite UI components such as calendar pickers
• composite UI components which are specific to a certain domain, such
as a sales order management UIs or purchase order lists

– Themes in the form of stylesheets

74 K. Klemisch, I. Weber, and B. Benatallah

– Layout information as views (e.g. a view representing a horizontal layout
loops over an array of UI components and places them in a horizontal manner
on the screen), and

– Composition and Binding

Contextual knowledge can stem from different parties such as hardware and
software producers, UI developers, domain experts or internet communities 2.
How these data sources are used in rules is explained next; how the UI knowledge
is acquired follows in Section 3.3.

3.2 Rule Specification

A key point of the approach is the use of knowledge acquisition method Ripple-
Down Rules (RDR, [19]) which has been successfully applied to other domains
such as pathology reports, soccer simulations, duplicate invoices, but never be-
fore to the domain of UI creation. We decided to adopt this approach as it
(i) provides a simple and easy approach to knowledge acquisition and mainte-
nance [16]; (ii) allows for the incremental creation of new rules while processing
example cases.

For the specifications of rules, we make use of a Single-Conclusion RDR ap-
proach (SCRDR, [19]) which provides exactly one conclusion per context. This
is combined with an approval process as used in CRDR (collaborative RDR)[19],
and the possibility to actually change rule conclusions (in traditional RDR ap-
proaches, only exceptions to rules are allowed, rules can never be changed or
deleted).

A Rule in our approach specifies which UI components should be combined
to a screen for a given context. Each rule specifies a condition (the context),
for which a conclusion (a partial UI suggestion) is derived. In our approach,
rules are described in the following way: Conditions are based on two attributes,
the business scenario (Sales Order Management, Supply Chain Management,
etc.) and the platform (Desktop, Mobile, PDA, iPhone, etc.). These attributes
represent the context. The conclusion relates to a subset of the four dimensions
described above: Layout, Binding, Composition and Theme. The combination of
the conclusions of the most applicable rules for all four dimensions results in the
suggested user interface.

Fig. 4 depicts a number of rules, some with partial conclusions, in the knowl-
edge base. Rule 0 contains the default conclusion where the business scenario
and the platform chosen are not defined. In our prototype, we do not suggest
a specific UI for that case, but propose an empty UI screen with some default
layout and theme. The knowledge base shows true (except) branches and false (if
not) branches. Starting at the top node, the inference engine tests whether the
next rule node is true or false. If a rule node is true, the engine proceeds with the
child nodes and tests if they are false or true. The last rule node that evaluates
to true is the conclusion given. This is done for each dimension individually. The
overall conclusion is then the combination of all partial conclusions. To give an

2 In our approach, we are making use of device characteristics stored in the WURFL
[11] database, see 4.1.

Context-Aware UI Component Reuse 75

Rule 1:
IF Business Scenario = Sales Order
Management AND Device = Mobile,
THEN Layout = 2 (Vertical), Binding = 45
(SalesOrderCreate), Composition = 67,
Theme = 455 (GeneralMobile)

except

If not

Rule 0:
IF Business Scenario = “not defined
“AND
Device= “not defined”,
THEN Layout = 2 (Vertical),Binding= 0
(“”) Composition = 1, Theme = 455
(GeneralMobile)

except

Rule 3:
IFBusiness Scenario = Sales Order
Management , Telesales AND
Device = Mobile, PDA AND Pointing
Method= Touch screen,
THEN Composition = 68, Theme = 457
(MobilePDA)

except

Rule 2:
IF Business Scenario = Sales Order
Management AND Device = Desktop,
THEN Layout = 1 (Horizontal), Binding =
45 (SalesOrderCreate), Composition =
67, Theme = 434 (GeneralDesktop)

If

except

Rule 5:
IFBusiness Scenario = Sales Order
Management , Telesales AND
Device = Desktop, Mac AND
Resolution=1440x900,
THEN Theme = 435 (DesktopMac)

M
TH
(S

Fig. 4. Rules in our approach, featuring four dimensions in the conclusion

example in Fig. 4, a UI developer wants to create a UI for the context ”Business
Scenario = Sales Order Management, Telesales AND Device = Mobile, PDA
AND Pointing Method= Touch screen”. The system finds a UI that was created
for the context ”Business Scenario = Sales Order Management AND Device =
Mobile” (Rule 1). The developer modifies the UI suggested by Rule 1 by applying
a new stylesheet for PDAs (affects the theme) and adding further UI components
(affects the composition). An exception to rule 1 is created which results in rule
3. In a second scenario, the developer wants to create a UI for the context ”Busi-
ness Scenario = Sales Order Management AND Device = Desktop”. Rule 1 is
checked and results to ”false”. The system starts to check the rules down the ”if
not” path. Rule 2 results to true, and the UI with the dimensions ”Layout =
1 (Horizontal), Binding = 45 (SalesOrderCreate), Composition = 67, Theme =
434 (GeneralDesktop)” is suggested to the user.

3.3 Incremental UI Knowledge Acquisition

In our approach, knowledge is added to the KB in the following situations:

(a) A new UI is created from scratch, for a given context.
(b) A UI suggested by the recommender system is modified for a given context.
(c) A UI is created/changed based on a new context.

Case (a) triggers the creation of a new rule for a context that was already stored
in the database, but for which no associated UI existed. The KB is extended
with a new component entry, and, if new layouts, themes, or new Web service
bindings are used, these are stored in the respective databases.

In case (b), the rule condition would remain unchanged, but the conclusion
would change. In our approach, such changes are not stored automatically: if
an existing rule would be modified, it is unclear if this change would improve
the KB content. Therefore, an approval process is triggered, where a suitable
approver (e.g., development manager) has to confirm or reject the change.

76 K. Klemisch, I. Weber, and B. Benatallah

Case (c) relates to a completely new context. Here, the condition and (likely)
the conclusion of a rule are affected. This case arises when new devices are added
to the platform database, new business scenarios are added, or combinations of
devices and business scenarios are chosen for which no knowledge exists (a new
case is created and accordingly a new condition and rule is specified). If the new
context is an extension to an existing context, an exception to a rule is stored.
Otherwise, a new rule is stored in the if not branch of the rule tree.

After saving the UI in case (c), a difference list (similar to [19]) is presented
to the user for every dimension of the UI, e.g. the UI developer is asked why the
layout was changed, why the composition was changed, and a list of context-
related differences is presented to her. The developer can flag the differences
which were relevant for her decision to change the suggested UI. Relevant for a
change in the layout might be e.g. that the UI was created for a PDA as opposed
to a generic mobile device. The context specified as relevant by the user will be
saved by the system as a new rule condition.

Our approach thus requires little user effort for maintaining the knowledge:
Apart from specifying the rule conditions in a difference list, the user is not
required to actively contribute to the rule base evolution – rules are created and
stored by the system autonomously.

4 Evaluation

To evaluate the approach, we (i) developed a proof-of-concept prototype, and
(ii) conducted an experiment simulating the development of UIs.

4.1 Prototypical Implementation

As a proof-of-concept of our approach, we built a prototype which implements
the recommender system. The prototype instantiates the approach for a Visual
Studio .Net MVC environment. User interfaces are rendered with the help of
JavaScript and the libraries JQuery and JQuery Mobile. These technologies were
chosen as they support the adaptation of UIs to a large number of different
platforms. The prototype is implemented as a rich Web application, using JSON
(JavaScript Object Notation) as a data-interchange format.

To fill the context side of the KB, we first integrated the Wurfl database
[11] into our approach, which contains detailed technical descriptions of many
devices and is updated on a regular basis. Second, we fed the KB with sample
business scenarios derived from the SAP Business Suite CRM System via reverse-
engineering.

The prototype’s functionality is split into two main procedures: recommending
UIs and acquiring knowledge. The recommendation starts with the user speci-
fying the current context in a wizard. Using the hierarchies for the two context
dimensions, the user selects from all available devices and business scenarios
present in the repository. This is done with a set of dropdown boxes. The se-
lected context information is sent back to the recommender system. As shown in

Context-Aware UI Component Reuse 77

Fig. 3, the system matches the context with the conditions of the available rules,
selects the best fit, and returns a UI suggestion. Technically, the UI suggestion
is stored and transmitted as a HTML string.

If needed, the UI developer refines the suggested UI, deletes and adds ele-
ments, and possibly changes the theme, layout, or binding. Storing the changes
triggers the knowledge acquisition procedure, depicted in Fig. 5. For each di-
mension, the system calculates difference lists as described in section 3.3.These
are shown to the user, who selects the dimensions which were relevant for her
decision to modify the UI. The case repository is updated with the new case,
and the new UI is stored in the component repository. New rules and conclu-
sions are derived from the difference lists and stored into the database for all
four dimensions.

UI Modification UI ModificationUI Modification

Save
data

Composition

Layout

Binding

Theme

store rules

Rules

Difference Lists

Rule
Engine

Calculate
difference lists

Cases

Fig. 5. Recommender system: knowledge acquisition (top: user; bottom: system)

4.2 UI Development Experiment

Experiment Setup. An important factor in any application of our approach
is the amount of content and number of rules in the KB. On one end of the
spectrum, the KB does not contain any UI components needed to create a user
interface for a given context – all UI components have to be created from scratch
first. In this situation, we hypothesis that our approach will not provide a benefit
over conventional IDEs – it might even lead to a slightly increased effort. On
the other end of the spectrum, all UI components required for the creation of
a user interface are available in the KB. In this situation, we suspect that our
approach is most helpful and leads to a significant increase in productivity. In
all other situations, where only some of the UI components required are avail-
able, whereas others have to be created in order to complete the UI, we expect

78 K. Klemisch, I. Weber, and B. Benatallah

that an increase in productivity is observable – depending on the portion of UI
components available, the improvement may range from minor to significant.

For the evaluation herein, we decided to focus on the end of the spectrum
where UI components reuse enabled by using our approach should be most clearly
observable – i.e., all UI components needed are already available, but no rules
for the creation of UIs have been defined. In order to evaluate the added value
of our approach in UI development productivity, we analyzed 115 UIs from the
Customer Relationship Management system SAP CRM 700, specifically from
high-level business scenarios including “Sales Order Management”, “Service Or-
der Management”, and “Contracts/Service Contract Management”. To facilitate
the experiment, we reproduced the main screens for these highly complex UIs.

Using SAP CRM screens, our experiment was based upon a consistent set of
designs with strong methodological design background. Such a setting is likely to
occur in practice where development aims for UIs with a consistent look and feel
throughout an application, thereby fostering learnability and usability (e.g. ERP
and CRM software, e-government applications). The results of this experiment
thus rather apply to applications where consistency of UIs is given or desired.

In the first step, we identified the UI components out of which the user inter-
faces were composed. This was done by comparing different UIs with each other,
to detect common elements and identical screen parts – e.g., header elements,
item lists, data sections. The UI components identified thereby were added to the
KB of our prototype UISE. Furthermore, the business scenarios we encountered
in the CRM system were integrated into UISE via reverse engineering. After this
boot-strapping step, we reached a reasonably rich UI base. All UI components,
themes, layouts and bindings to Web services required to create the UIs were
available in the database – but no rules. By combining these elements to user in-
terfaces during our experiment, new compositions, rules and new UI components
would result.

In the following step, the testing phase, we recreated the SAP CRM screens
with UISE. For the experiment, we varied the business scenarios, but kept a fixed
platform (a generic mobile platform). By doing so, we simulated a large-scale UI
development effort. Given the source of the screens, the simulation is strongly
based on real-world application. Due to the fact that we recreated the screens, we
knew what a correct result would look like. However, we cannot use this setup
to realistically compare times taken for UI development. Instead, we counted
the number of rules that had to be created during the recreation of all the 115
user interfaces with our approach. Only if the UI suggested by the tool already
corresponded exactly to the desired UI, no changes were needed and accordingly
no new rule was created. Likewise, we observed how the number of compositions
evolved during the experiment. Since the experiment only involved recreating UIs
for an SAP system and a fixed platform, the theme, layout and mapping were
kept fixed. An identical composition therefore indicates an identical UI. Less new
rules and less compositions thus mean less work for the developer. Therefore,
both these numbers can be seen as an inverse measure of productivity.

Context-Aware UI Component Reuse 79

Experiment Results. Figure 6 shows the number of rules that had to be
created for the selected UIs over time. Over the course of the experiment, we
can see a slight decline of the rules curve: for creating 115 UIs, 107 rules were
added. That means, out of all suggested UIs, 8 were a perfect match. A much
more significant decline however is observable in the composition curve: the 115
UIs were reproduced with only 48 different compositions. Improvements through
the reuse of UI compositions were clearly present in the experiment.

0

20

40

60

80

100

120

140

1 11 21 31 41 51 61 71 81 91 101 111

ru

le
s/

co
m

po
si

tio
ns

user interfaces

UI Rules and Compositions

without UISE
Rules
Compositons

Fig. 6. Knowledge base size vs. number of UIs

On a more detailed level, we also counted the number of changes needed to
recreate a UI. A user interface is suggested to the developer according to the
context chosen. If the suggested UI corresponds already to the UI she wanted
to create, no changes are required. Otherwise suggested UI elements have to
be replaced or eliminated, or new elements added. We counted each add/delete
action as one change, thus replacements were counted as two changes. Fig. 7
shows the results of this investigation for each of the high-level business scenarios.

Depending on the specific scenario, Sales Order UIs consist of 38-71 simple UI
elements (like text boxes, labels and scroll-bars), contracts require 52-96 simple
UI elements, and Service Orders between 54 and 108.

The frequency with which how many changes were needed using our proto-
type, UISE, are shown in 7. For all three scenarios, there were cases where zero
changes were required – i.e., exact hits of the recommendation. For Sales Orders
(see light grey columns in Fig. 7) up to 6 changes were needed in UISE, with
an average value of 2.6 steps. Contracts (white columns) also required up to six
steps; the average was at 3.6 steps. Service orders (dark grey columns) required
up to 12 steps, with an average of 5.6 steps. Given the complexity of the target
UIs, the number of changes required with UISE seems relatively minor.

80 K. Klemisch, I. Weber, and B. Benatallah

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 1 2 3 4 5 6 7 8 10 12

%
 C

as
es

Changes

Service Orders

Sales Orders

Contracts

Fig. 7. Changes for Sales Order, Contract, and Service Order UIs

5 Related Work and Discussion

In the following section, we will review different approaches in research related
to the UI development. We differentiate between approaches dealing with the
creation of user interfaces for Web services, and approaches which adapt UIs to
various contexts.

GUI Development for Web Services. In this paragraph, we contemplate
GUI development approaches for Web services in general, which do not take con-
textual factors of any kind into account. The ServFace project aims at enabling
the non-technical user to create applications from annotated Web services (see
[20], [9], and [5]) . The ServFace project aims at a multi-channel approach and
provides platform-independent development models. [5] supports the creation
of user interfaces as well as the modelling of user interactions in task-driven
software development approaches. Like in [9], the concept is based on the in-
troduction of annotations. Annotations are as well used in the Dynvoker tool
[21]. All named works related to ServFace lack a feature which is provided in
our approach: Context in terms of business scenarios is not taken into account.
There is no guideline provided to the user how a UI has to look like in certain
scenarios. [15] tackles the creation of user interface from independent, loosely
coupled modules with a framework based on ontologies. It aims at reducing the
complexibility of large UI development projects via modularization. The FAST
project [8] establishes a concept for enterprise mashups. In contrast to tradi-
tional solutions, FAST does not allow for the mash up of heterogeneous data
sources, but proposes a screen flow design resulting in so-called gadgets. A FAST
ontology is introduced to describe the characteristics of complex gadgets (graph-
ical elements, user interaction models, data flows), thereby the approach partly

Context-Aware UI Component Reuse 81

resembles the work presented in [15]. The disadvantage of these approaches is
that the ontology has to be created before the solution can be used. Our ap-
proach is based on an incremental acquisition of knowledge, starting with an
empty knowledge base which is gradually built up.

GUI Development and Context-Awareness. Various attempts to integrate
UIs and context-awareness have been made in different research projects. The ap-
proaches are differing in terms of which type of context is taken into account and
which devices they refer to. Context-awareness for mobile UIs during runtime is
realized in [3], and during design time in [12]. In [3], user interfaces of mobile
devices are automatically adapted to user context-changes, as well as to changes
to different screen resolutions or orientations. UIs adapts to specified user con-
texts by the use of style sheets. [12] generates UI containers for mobile devices
and adapts UIs to platform specific characteristics and user tasks making use of
heuristics. [10]’s work aims at providing native user interfaces to mobile devices
based on the context of the user, whereas the context-awareness in this work is
not task-driven like in [27] or [12], but refers to environmental factors and user
data. An approach not restricted to mobile devices called ”CRUISe” [17] aims
at the dynamic composition of user interfaces via Web services. The work differs
from the other proposals presented insofar as it not making use of annotations
like [9] , and is not based on predefined structures or preindexed documents, but
is encapsulating generic, reusable web UI components as so-called User Interface
Services. All approaches named rely on hard-coded rules development and do
not support incremental UI reuse rules capture. There are assumptions made
about what users prefer, and all knowledge about the system behaviour has to
be captured before the implementation. Our approach provides more flexibility,
as user interfaces can be adjusted to varying needs and preferences, and rules
can be extended or changed accordingly. Our work is related to the multi-target
UI framework presented by Calvary et al. [4], in that we provide an automatic
method for Calvarys forward engineering step, using an RDR-based knowledge
base. [7] adapts user interfaces to tasks and context. The context considered
in this work comprises platform, user (such as user profile, level of knowledge)
and environmental (noise level, luminosity) factors. Users’ tasks point to related
business components. Task-driven UI adaptation can be realized together with
changing the UI according to different user contexts. In difference to our ap-
proach, the association between context and UI patterns is however fix, there is
no way to change relationships between entities during run time.

6 Conclusion

In this paper, we presented a novel framework and a tool for reusing UI com-
ponents in UI development environments. The approach has the following main
characteristics. (1) It enables the automatic creation of UI proposals for (Web
service-based) applications in a given context. The suggestions stem from previ-
ous developments. (2) The approach is based on ripple-down-rules (RDR), which
allows for incremental acquisition of knowledge in a rule base. The creation of

82 K. Klemisch, I. Weber, and B. Benatallah

rules is performed semi-automatically, during development. (3) UI suggestions
are matched to varying contexts by combining UI components, applying different
style sheets, changing the layout, and selecting the binding of UI fields to Web
services. We implemented the approach in a prototype. Using the prototype, we
simulated the development of 115 UIs from SAP’s CRM system. By doing so, we
evaluated qualitatively if using our approach is likely to result in productivity
gains. The results from the experiment indicate that productivity increase from
UI reuse is possible, and our approach is a step in the right way.

In future work, we would like to investigate if suggesting multiple user inter-
faces for a given context would be beneficial, and how an efficient combination
of aspects from different suggestions can be achieved. Furthermore, we would
like to evaluate our approach for mobile applications, and for the variation of
multiple dimensions of context (business scenarios and platforms).

Acknowledgements. We would like to thank Jan-Felix Schwarz for his im-
plementation work on the UISE prototype. The assistance and advice provided
by Prof. Paul Compton in regards to RDR technologies was greatly appreci-
ated. NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

References

1. AppBrain. Number of available android applications (December 2012),
http://www.appbrain.com/stats/number-of-android-apps

2. Apple. Made for iPad. Ready for anything. (March 2012),
http://www.apple.com/au/ipad/from-the-app-store/?cid=wwa-au-kwg-

ipad-00001

3. Butter, T., Aleksy, M., Bostan, P., Schader, M.: Context-aware user interface
framework for mobile applications. In: Distributed Computing Systems Workshops,
ICDCSW (2007)

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interacting with
Computer 15(3), 289–308 (2003)

5. Feldmann, M., Hubsch, G., Springer, T., Schill, A.: Improving task-driven soft-
ware development approaches for creating service-based interactive applications
by using annotated web services. In: Proceedings of the 2009 Fifth International
Conference on Next Generation Web Services Practices, NWESP 2009, pp. 94–97.
IEEE Computer Society, Washington, DC (2009)

6. Garnter. Hype cycle for context-aware computing. Technical report, Gartner (July
23, 2009)

7. Hariri, A., Tabary, D., Lepreux, S., Kolski, C.: Context aware business adaptation
toward user interface adaptation. Communications of SIWN 3, 46–52 (2008)

8. Hoyer, V., Janner, T., Schroth, C., Delchev, I., Urmetzer, F.: FAST platform: A
concept for user-centric, enterprise class mashups (March 25, 2009)

9. Izquierdo, P., Janeiro, J., Hubsch, G., Springer, T., Schill, A.: An annotation tool
for enhancing the user interface generation process for services. In: Microwave
Telecommunication Technology, CriMiCo 2009 (2009)

http://www.appbrain.com/stats/number-of-android-apps
http://www.apple.com/au/ipad/from-the-app-store/?cid=wwa-au-kwg-ipad-00001
http://www.apple.com/au/ipad/from-the-app-store/?cid=wwa-au-kwg-ipad-00001

Context-Aware UI Component Reuse 83

10. Lange, T.: Dynamic Service Integration for Applications on heterogeneous Mobile
Devices. Master thesis, TU Dresden (2009)

11. Luca Passani, S.K.: Wurfl (2011), http://wurfl.sourceforge.net/ (accessed in
April 2010)

12. Martinez-Ruiz, F., Vanderdonckt, J., Arteaga, J.: Context-aware generation of user
interface containers for mobile devices. In: Computer Science, ENC 2008 (2008)

13. McAllister, N.: Mobile UIs: It’s developers vs users (2012),
http://www.infoworld.com/d/application-development/mobile-uis-its-

developers-vs-users-184472

14. McMillan, C.: Searching, selecting, and synthesizing source code. In: ICSE 2011:
33rd International Conference on Software Engineering (2011)

15. Paulheim, H.: Ontology-based modularization of user interfaces. In: Proceedings of
the 1st ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS 2009, pp. 23–28. ACM, New York (2009)

16. Compton, P., Peters, L., Edwards, G., Lavers, T.G.: Experience with ripple-down
rules. Knowledge-Based System Journal 19(5), 356–362 (2006)

17. Pietschmann, S., Voigt, M., Rümpel, A., Meißner, K.: CRUISe: Composition of rich
user interface services. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE
2009. LNCS, vol. 5648, pp. 473–476. Springer, Heidelberg (2009)

18. Reiss, S.P.: Semantics-based code search. In: ICSE 2009: 31st International Con-
ference on Software Engineering (2009)

19. Richards, D.: Two decades of ripple down rules research. The Knowledge Engi-
neering Review 24, 159–184 (2009)

20. ServFace. Service annotations for user interface composition (2010),
http://www.servface.org/

21. Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A.: Ad-hoc usage of web
services with Dynvoker. In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave
2008. LNCS, vol. 5377, pp. 208–219. Springer, Heidelberg (2008)

22. The jQuery Foundation. jQuery (2012), http://jquery.com/
23. TOGAF. Business scenarios (2006), http://www.opengroup.org/architecture/

togaf7-doc/arch/p4/bus scen/bus scen.htm

24. Twitter. Bootstrap. Sleek, intuitive, and powerful front-end framework for faster
and easier web development (2012), http://twitter.github.com/bootstrap/

25. Wikipaedia. Visual component library (August 2012),
http://en.wikipedia.org/wiki/Visual_Component_Library

26. Yu, J.: A UI-driven Approach to Facilitating Effective Development of Rich and
Composite Web Applications. Doctorial thesis, Univ. of New South Wales (2008)

27. Zhang, L., Gong, B., Liu, S.: Pattern based user interface generation in perva-
sive computing. In: Third International Conference on Pervasive Computing and
Applications, vol. 1, pp. 48–53 (2008)

http://wurfl.sourceforge.net/
http://www.infoworld.com/d/application-development/mobile-uis-its-developers-vs-users-184472
http://www.infoworld.com/d/application-development/mobile-uis-its-developers-vs-users-184472
http://www.servface.org/
http://jquery.com/
http://www.opengroup.org/architecture/togaf7-doc/arch/p4/bus_scen/bus_scen.htm
http://www.opengroup.org/architecture/togaf7-doc/arch/p4/bus_scen/bus_scen.htm
http://twitter.github.com/bootstrap/
http://en.wikipedia.org/wiki/Visual_Component_Library

	Context-Aware UI Component Reuse

	1 Introduction
	2 Representing UI Artefacts
	2.1 Rule Conditions
	2.2 Rule Conclusions

	3 KB-Based Reuse of UI Artefacts
	3.1 UI Recommender System
	3.2 Rule Specification
	3.3 Incremental UI Knowledge Acquisition

	4 Evaluation
	4.1 Prototypical Implementation
	4.2 UI Development Experiment

	5 Related Work and Discussion
	6 Conclusion
	References

