
Programming Incentives in Information Systems

Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{oscekic,truong,dustdar}@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at

Abstract. Information systems are becoming ever more reliant on dif-
ferent forms of social computing, employing individuals, crowds or as-
sembled teams of professionals. With humans as first-class elements, the
success of such systems depends heavily on how well we can motivate
people to act in a planned fashion. Incentives are an important part of
human resource management, manifesting selective and motivating ef-
fects. However, support for defining and executing incentives in today’s
information systems is underdeveloped, often being limited to simple,
per-task cash rewards. Furthermore, no systematic approach to program
incentive functionalities for this type of platforms exists.

In this paper we present fundamental elements of a framework for
programmable incentive management in information systems. These ele-
ments form the basis necessary to support modeling, programming, and
execution of various incentive mechanisms. They can be integrated with
different underlying systems, promoting portability and reuse of proven
incentive strategies. We carry out a functional design evaluation by illus-
trating modeling and composing capabilities of a prototype implementa-
tion on realistic incentive scenarios.

Keywords: rewards, incentives, social computing, crowdsourcing.

1 Introduction

Most ‘traditional’ incentive mechanisms used by companies today [1] have been
developed for static business processes, where the actors are legally bound to the
company (employees, workers), placed under human management and assigned
to specific workflow activities, usually for a longer time period. Such setting
allows direct monitoring of workers and subsequent direct application and adap-
tation of incentive mechanisms.

However, with the advent of novel, web-scale collaborative systems and col-
laborative patterns, starting from crowdsourcing, and moving towards the ever
more complex socio-technical collaborative systems1, we witnessed the actors in
the system become numerous, anonymous and interchangeable with machines.
They now engage with the system only occasionally, irregularly and for a short

1 For example, Social Compute Units [2] and Collective Adaptive Systems
(http://www.smart-society-project.eu).

C. Salinesi, M.C. Norrie, and O. Pastor (Eds.): CAiSE 2013, LNCS 7908, pp. 688–703, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.smart-society-project.eu

Programming Incentives in Information Systems 689

time, performing different tasks with variable duration and quality. This means
that most existing incentives, relying on the conventional understanding of the
notions of career, promotion and working hours cannot effectively support this
new type of collaborations.

In [3] we proposed adapting conventional incentive mechanisms to the new
collaboration forms, and providing programmable incentive management func-
tionalities to the information systems supporting them. In this paper we present
some of the fundamental building elements of a framework for programmable
incentive management in information systems – PRINC. These elements allow
modeling, programming, execution, monitoring and reuse of various incentive
mechanisms on top of existing workforce management and collaboration plat-
forms. We carry out a functional design evaluation by illustrating modeling and
composing capabilities of a prototype implementation on realistic incentive sce-
narios.

The paper is structured as follows. Related and background work is presented
in Section 2. Section 3 introduces the main functionalities and the overall archi-
tecture of the PRINC framework. Section 4 discusses in more detail individual
framework components and their design considerations. Section 5 evaluates the
functionality and usefulness of the presented design by encoding an exemplary,
realistic incentive strategy. Section 6 concludes the paper and presents the di-
rection of our future work.

2 Related Work and Background

2.1 Related Work

Most related work in the general area of rewarding and incentives originates
from economics, game theory, organizational science and psychology. Incentives
are the principal mechanism for aligning interests of business owners and work-
ers. As a single incentive always targets a specific behavior and induces unwanted
responses from workers [4], multiple incentives are usually combined to counter-
act the dysfunctional behavior and produce wanted results. Opportunities for
dysfunctional behavior increase with the complexity of labor, and so does the
need to use and combine multiple incentives. The principal economic theory
treating incentives today is the Agency Theory [4,5]. The paper [1] presents a
comprehensive review and comparison of different incentive strategies in tradi-
tional businesses.

Only a limited number of computer science papers treat these topics, and
usually within particular, application-specific contexts, like peer-to-peer net-
works, agent-based systems and human-labor platforms (e.g., Amazon Mechan-
ical Turk). In [6] the aim is to maximize p2p content sharing. In [7] the authors
seek to maximize the extension of social network by motivating people to in-
vite others to visit more content. In [8] the authors try to determine quality of
crowdsourced work when a task is done iteratively compared to when it is done
in parallel. In [9] the authors investigate how different monetary rewards influ-
ence the productivity of mTurkers. In [10] the authors analyze two commonly

690 O. Scekic, H.-L. Truong, and S. Dustdar

used approaches to detect cheating and properly validate submitted tasks on
popular crowdsourcing platforms. A detailed overview of incentive and reward-
ing practices in social computing today can be found in [3,11]. The key finding is
that incentives in use in today’s social computing platforms are mostly limited
to simple piece-rates that may be suited for simple task processing, but are in-
appropriate for the more advanced collaborative efforts. All these studies show
that, depending on the environment, there always exist types of incentives that
can provide the necessary motivation, and that incentive composition is the key
to a successful local application of general incentive practices.

In contrast to the described work, which focuses on specific application sce-
narios, we propose developing general models and techniques for programmable
incentive management. To the best of our knowledge, there exist no other similar
comprehensive approaches.

2.2 Background

The work presented in this paper is part of the ongoing effort to conceptualize a
general approach to model and encode most of the incentive mechanisms for use
in social computing environment today [3]. Currently, for every social computing
system a context-specific, tailored incentive functionality is developed anew. This
is a clear overhead, as most incentive strategies could be composed out of a
limited number of reusable, basic elements and then tweaked to fit a specific
application area. In particular, this paper builds upon the important concepts
introduced in [12].

The Rewarding Model (RMod) is a low-level, abstract model for representing
the state of a social computing system, allowing composition and execution of
various incentive mechanisms. RMod reflects the quantitative, temporal and
structural aspects of an external social computing system. The execution of
incentives implies changing the internal state of the RMod through programmed
application of rewards. Due to space constraints, the formal definition of the
RMod is provided as supplement2.

Workers are represented as nodes of a graph representation in RMod. Rela-
tions connect the worker nodes and are associated with a set of tags that de-
termine their types. Relation types are used for structural modifications. Each
worker contains a set of associated local attributes (quantitative data). The at-
tributes represent performance and interactions metrics. A set of system-level
quantitative data also needs to be stored.

Time management in our framework is expressed through the notions of time-
line, clock ticks, iterations, and past and future events [12]. The timeline is a
concept providing a unified time management functionality in the model. It is
in charge of producing clock ticks, delimiting iterations, storing past events,
scheduling, canceling, and reordering future events. Clock tick is the basic time
measurement unit. They have a fixed, predefined duration time. They are used
to express iteration lengths. Iterations have variable duration and are used to

2 http://tinyurl.com/princ-caise2013

http://tinyurl.com/princ-caise2013

Programming Incentives in Information Systems 691

model various productive cycles in real-world environments (e.g., working days,
project phases, software development cycles).

An event contains the scheduled execution time, execution priority and a query.
The query contains the logic necessary to perform an incentive condition evalua-
tion or rewarding action. This implies reading and/ormodifying global andworker
attribute data (quantitative aspect), past data and future scheduled events (tem-
poral aspect) or the current node structure (structural aspect). Technically, it
means running database queries, graph matching/transformation queries or logi-
cal expression evaluation. For reusability purposes queries should be composable.

The RMod state can be changed in three ways: a) through the execution of
events (queries) performing rewarding actions; b) through the execution of events
notifying of externally-originated changes (e.g., the arrival of new employee,
cancellation of project); and c) through direct manipulation.

3 PRINC Framework

3.1 Requirements

The PRINC (PRogrammable INCentives) framework aims to provide an end-
to-end solution for programmable incentive management. This includes formal
specification, automatic deployment and runtime management of incentive mech-
anisms [3] in information systems. The core idea behind PRINC is to enable
translation of system-independent incentives, such as the following:

“Give reward R to the workers who performed better than the average of their
collaborators in the past month.” or “If the overall team effort does not increase
to the satisfactory level in the next quarter replace the team leader with the best
performing subordinate worker.”

into concrete instantiations depending on the context-specific definitions of
the notions of: “reward R”, “performance”, “effort level” and “satisfactory ef-
fort level”. This means that entire incentive strategies can be specified in a
system-independent fashion and then automatically deployed by the framework
on particular information systems. This approach promotes the reuse of proven
incentive strategies and lowers the risks.

The major requirements for the framework, therefore, include the development
of the following components:

1. A model and a human-friendly notation for composing declarative, portable
descriptions of incentive mechanisms.

2. A model to represent incentive mechanisms through imperative rewarding
actions.

3. A mapping model for instantiating system-specific rewarding actions out of
generic variants.

4. An extensible API allowing the system to communicate with different un-
derlying social computing systems.

5. Automated translation of generic incentive strategies into system-specific
rewarding actions.

6. Functionality to execute and monitor rewarding actions.

692 O. Scekic, H.-L. Truong, and S. Dustdar

In this paper we focus primarily on the requirements 2-4, and present the design
and evaluation of components necessary to support them.

3.2 Architecture Overview

Figure 1 shows the architecture of the PRINC framework.

Cond

Action

Eval

Incentive Manager

Incentive Model
(IMod)

Structure

G
ra

ph
 T

ra
ns

.
M

od
el

Re
w

ar
di

ng
 M

od
el

(R

M
od

)
M

ap
pi

ng
 M

od
el

(M

M
od

)

Re
w

ar
di

ng

M
an

ag
er

M
ap

pi
ng

M
an

ag
er

D
ire

ct
 M

od
el

M

an
ip

ul
at

io
n

M
an

ag
er

RI Strategy

translate

External
System

event-based
API

direct
manipulation
API

(declarative) (imperative)

DB

data
layer

conceptual
layer

formal
layer

executive
layer

Timeline

Attributes

Fig. 1. The PRINC Framework

The Incentive Model (IMod) encodes the declarative, portable version of
the strategy. The Rewarding Model (RMod) encodes the imperative, system-
specific version of the strategy. It constantly mirrors the state of the external sys-
tem and executes incentive mechanisms on it. The Incentive Manager translates
the IMod version into the RMod form. The Mapping Model (MMod) defines
the mappings needed to properly interpret the system-independent version of the
strategy in the context of a specific social computing platform (external system).
The mapping itself is performed by the Mapping Manager.

The execution of an incentive strategy implies executing a number of incentive
mechanisms. This is done by scheduling a number of future rewarding actions
to be executed as events over RMod. Execution of rewarding actions modifies
the internal state of RMod, which is then propagated to the external system. At
the same time, the state of RMod can be changed via events originating from the
external system. The Rewarding Manager implements the RMod (Section 2.2),
performs and interleaves all event-based operations on RMod and ensures its
consistency and integrity (e.g., by rejecting disallowed structural modifications
or preventing modification of the records of past behavior).

The Direct Model Manipulation Manager (D3M) provides direct RMod ma-
nipulation functionalities without relying on the event mechanism and without
enforcing any consistency checks. The direct access to the RMod is needed for
offering the necessary functionalities internally within PRINC, but also to allow
more efficient monitoring and testing. D3M is therefore used to load initial state
of the system, and to save snapshots of the system’s current state.

Programming Incentives in Information Systems 693

The communication between PRINC and the external system is two-way and
message-based. The external system continuously feeds the framework with the
necessary worker performance data and state changes and receives rewarding
action notifications from PRINC. For example, PRINC may notify the external
system that a worker earned a bonus, suggest a promotion or a punishment.
Similarly, it may need to send an admonition message to the worker, or display
him/her a motivating visual information (e.g., rankings). The external system
ultimately decides which notifications to conform to and which to discard, and
reports this decision back in order to allow keeping the RMod in consistent state.

3.3 Intended Usage

PRINC will allow companies and organizations (clients) managing existing and
future social computing platforms make use of programmable incentive manage-
ment and monitoring by integrating PRINC with their platforms. After hav-
ing provided appropriate message mappings and context-specific metrics (Sec-
tion 4.2), client’s platform just needs to inform PRINC of relevant state changes
and receive in exchange suggestions of which concrete incentive actions to exe-
cute over workers.

Clients can assemble and adapt incentive strategies suitable for their par-
ticular contexts out of a number of existing incentive mechanisms known to
be effective for the same class of collaboration patterns, thus cutting the risks
and lowering the overall costs. An incentive strategy will be composed/edited
in a human-friendly notation that we intend to develop (Requirement 1 in Sec-
tion 3.1). Entire strategies or particular mechanisms can be publicly shared or
commercially tailored by experts in the field. Incentive management can also be
offered as a service, which can be of particular use to crowd-based SMEs unable
to invest a lot of time and money in setting up a full incentive scheme from
scratch.

4 Design Considerations

4.1 Rewarding Model (RMod)

The structural aspect of RMod’s state is reflected through a typed graph, con-
taining nodes representing workers and edges representing relations (Section 2.2).
Structural modifications are performed by applying graph transformations (graph
rewriting) [13]. Examples of graph transformations can also be found in [13].
Similar transformations are used to achieve relation rewiring between workers in
RMod, and thus represent various structural incentives (e.g., promotion, change
of team structure and collaboration flow). The temporal aspect of RMod’s state
is maintained by the Timeline class. It is a façade class offering complete itera-
tion and event handling functionality. A database is used for storing and querying
past events and iterations, and a separate in-memory structure for keeping and
manipulating future events. Clock ticks can be internally generated or dictated

694 O. Scekic, H.-L. Truong, and S. Dustdar

Fig. 2. Simplified UML diagram showing principal components of the event mechanism

by the external system. If internally generated, the duration is specified in MMod
(Section 4.2) to best fit the necessities of the external system.

Events can originate from the external system, or be generated by the incen-
tive logic. A Rule is the basic (atomic) piece of incentive logic in our system.
In the PRINC framework, the rewarding rules would be products of the auto-
mated translation of an IMod-encoded incentive strategy with applied mappings
from the MMod. Rules are used as reusable components that can be executed
independently (wrapped into an AtomicQuery) or used to build more complex
Query-ies(Figure 2). A rule/query execution results in either computation and
returning of a result (a non-modifying evaluation), or generation of (multiple)
Event objects for later execution. A rule can be marked for execution either at
each clock tick and/or upon receiving a message coming from the external sys-
tem. If a rule execution modifies the model’s state, not only the change itself, but
the fact that this particular rule was executed is also recorded into the database
for monitoring end evaluation purposes.

4.2 Mapping Model (MMod)

In order for our framework to couple with an external system (e.g., of a company)
we need to provide a number of mappings that enable the application of generic
incentive strategies within this company’s particular context. These mappings
are provided through the Mapping Model.

PRINC supports dynamic mappings. This means that the parameter values
can be modified during the runtime to allow a dynamic adaptation of the incen-
tive strategy. The company can easily and dynamically switch between different
basic incentive mechanisms, evaluation methods, rewarding actions and metrics.
Individual mechanisms can easily be turned on and off, giving the company a
flexible, composite incentive strategy.

The functionalities of MMod include:

– Definition of system-specific artifacts, actions, attributes and relation types.
These definitions inform PRINC of the unique names and types of different
company-specific artifacts, actions, attributes and relation types that need

Programming Incentives in Information Systems 695

to be stored and represented in PRINC for subsequent reasoning over condi-
tions for applying rewards. Actions represent different events happening in
the external system. Artifacts represent objects of the actions (Section 4.3).
For example, a design company may want to define an artifact to represent
the various graphical items that its users produce during design contests,
and an action to denote the act of submitting a design artifact or evaluation.

– Definition and parameterization of metrics, structural patterns and incentive
mechanisms.
Metrics are attributes that are calculated by PRINC from other attributes
provided by the external system. They are used to express different perfor-
mance aspects of individuals or groups of workers. For example, a context-
independent incentive strategy may rely on worker’s trust metric in a reward
application condition. However, for different companies, the trust metric is
calculated differently. For example, the trust of a worker may depend on the
percentage of the peer-approved tasks in the past (as in Section 5.2), or it
may involve a calculation based on trust values of nearest neighbors.

PRINC offers a number of well-known, predefined metrics that cover many
real-world application scenarios as library functions (e.g., trust, productivity,
effort), thus cutting the time needed to adapt a generic incentive strategy to
a particular scenario. Predefined metrics then only need to be parameterized.
For example, in case of trust calculation, our client only needs to choose one
of the predefined trust metric calculations and provide some attributes and
parameters as inputs to tweak the calculation to his needs (e.g., what is the
time interval used for the calculation).

In cases where a library metric definition is unable to express a system-
specific aspect, clients can provide their own definition. This is usually the
case with company-specific predicates, which we can define in MMod. One
common use of predicates is to define criteria of team membership. A cri-
terion can be structural (e.g., all workers managed by ‘John Doe’), logical
(e.g., workers with the title ‘Senior Java developer’), temporal (e.g., workers
active in the past week) or composite (e.g.,‘Senior Java developers’ active in
the past week).

In the same way, predefined structural patterns and entire incentive mech-
anisms can be parameterized in MMod. For example, the library pattern
COLLABORATORS (Worker W, RelationType RT, Weight w) returns for a
given Worker node W a set of workers that are connected with W via RT-typed
relations, having the weight greater than w, where w is a client-provided value.
In case a translated incentive strategy relied on using this library pattern,
the client could be asked to provide only a value for w, while PRINC would
initialize the other parameters during the execution.

– Message mappings.
In case a condition for performing a rewarding action is fulfilled, PRINC
needs to inform the external system. For each rewarding action we need to
specify the type of message(s) used to inform the external system and the

696 O. Scekic, H.-L. Truong, and S. Dustdar

data they will contain. The data contained may include metric values to be
used as a justification for executing a reward/punishment, or a structural
pattern suggesting a structural transformation to the external system. Also,
we need to specify which messages PRINC expects to get as an answer to
the suggested action. Only in case of a positive answer will PRINC proceed
to update its internal model. Otherwise, the rewarding action is ignored.

External System

Workforce
Management

System
Mapping
specification

Mapping Model
(MMod)

Rewarding Model
(RMod)

Inc.
Mech.
LibraryClient

PIECEWORK_RWD
(id,uid)
{
 task = BUG_REPORT(id);
 performed = SUB(id);
 evaluated = VER(id);
 score = SCORE(id);
 rew_action =
 AWARD_PTS(uid,score,
 STEP(score)
);
}

Rew
arding

M
anager

M
apping

M
anager

Fig. 3. Adapting a general piece-work incentive mechanism for software testing com-
pany use-case

Example. A software testing company wants to setup quickly an incentive
mechanism that awards every bug submitter a certain number of points for every
verified bug. The amount of points assigned is company-specific and depends on
bug severity. There is a number of real crowdsourcing companies that rely on
such mechanisms (e.g., translation companies and design companies).

A pre-designed library incentive mechanism PIECEWORK RWD(· · ·) works with
the concept of a ‘task’. Once the task is ‘performed’, an ‘evaluation’ process on
its quality is started. The evaluation phase ends with obtaining a ‘score’. The
‘rewarding action’ is then executed if a predicate taking the evaluation score as
one of its input parameters returns true.

In this particular case the testing company can define an artifact named
BUG REPORT to represent a bug report in our system, containing a bug ID, sever-
ity, and other fields. The act of submitting a bug report can be defined as the
SUB(id) action, the act of verifying a bug report as the VER(id) action. What
is left to do is to simply map these actions, artifacts and metrics to the incentive
mechanism parameters (Figure 3). In this case, the concept of ’task’ is mapped
to the BUG REPORT artifact. Performing of the task is signaled by a message
containing the SUB(id) action. The voting phase ends with the arrival of the
VER(id) action. From then on, the corresponding score can be accessed as the
metric SCORE(id).

Assignment of rewards to the bug submitters can also be automatically han-
dled by one of the library rewarding actions we indicate in the mapping. For
example, the action AWARD PTS(userID, score, mappingFunction(score))

simply informs the company’s system of how many points the user should be
awarded, based on his artifact’s score and a mapping function. The mapping

Programming Incentives in Information Systems 697

function in this case can be a step function or a piecewise-linear function, both
available as library implementations.

4.3 Interaction Interfaces

The framework provides two APIs for manipulation of the internal state: a)
An API for direct manipulation of RMod and MMod (DMMI); and b) A mes-
sage API for event-based RMod manipulation (MSGI), meant for the external
system.

DMMI is intended for internal use within the PRINC framework. This API ex-
poses directly the functionalities which are not supposed to be used during the
normal operation of the framework since the consistency of the model’s state
cannot be guaranteed. External use should therefore be limited to handling un-
common situations or performing monitoring. MSGI is intended for exchange
of notifications about external system state changes or suggested rewarding ac-
tions. (Un-)marshalling and interpreting of messages is handled by the Reward-
ing Manager. The functionalities offered by the APIs are summarized in Table 1.
Abstract representation of the message format is shown in Figure 4. This format
can be used for both incoming and outgoing messages.

The Action defines the message identifier, type, timestamp and importance. In
case of an incoming message, the type can represent the following: (a) A system-
specific activity that needs to be recorded (e.g., task completion, sick leave) for
later evaluation; (b) Update of an attribute (e.g., hourly wage offered); or (c)
Update of the worker/team structure.

The Artifact specifies the object of the action. It contains the new value of the
object that needs to be communicated to the other party. In case of an incoming
message, the Artifact can correspond to: (a) an activity notification (expressed as
an artifact defined in MMod); (b) an attribute update; (c) a structural update;
or (d) an iteration update. In case of an outgoing message, the artifact can
correspond to: (a) an activity notification; (b) a metric update; or (c) a rewarding
action notification.

Structural updates can be expressed either as library-defined structural mod-
ification patterns or as completely new descriptions of the graph (sub)structure
defined in a formal language. Iteration updates notify the system of the (re-
)scheduling of future iterations and the duration changes of the currently active

Table 1. Functionalities exposed through the APIs

API Functionality Description

MSGI
State updates Notify framework of external structural/temporal/attribute changes.

Rewarding Suggest a rewarding action to the external system.

Notifications Mutually exchange artifact, action and attribute updates/events.

DMMI

Database API Manipulate DB records. Execute DB scripts.

Rules API Directly execute RMod rules and queries.

Timeline API Modify past and future iteration parameters.

Structure API Directly perform graph transformations.

Mappings Change mappings in runtime (dynamically).

698 O. Scekic, H.-L. Truong, and S. Dustdar

+id

Worker

+id

Team

*
*

+id
+name
+type
+importance
+timestamp

Action

*

*

*
*

+id
+name
+value

Artifact
* 1

ArtifactAction 1
2
3
4
5

MMod

Timeline

Structure

GlobalData

Worker
1
2
3
4
5
6
7
8
9
0
1
2

RMod

Fig. 4. Abstract representation of the MSGI message format

ones. Worker and Team parts of the message specify the workers the message
applies to. As already explained, the team identifiers are defined in MMod and
serve to target all individual workers fulfilling a condition, or as a simple short-
hand notation.

5 Prototype and Evaluation

5.1 Prototype Implementation

The prototype we implemented consists of the framework components we pre-
sented in Section 4. The same components are framed with full borderlines in
Figure 1. Components outlined with dotted lines will be the subject of our future
work. The current implementation is capable of expressing and executing only
imperative incentive mechanisms.

The prototype was implemented in C#, using Microsoft SQL Server database.
Structural modifications are performed using the GrGen.NET [14] library. Gr-
Gen is a versatile framework for performing algebraic graph transformations,
including a graph manipulation library and a domain-specific language for spec-
ifying declarative graph pattern matching and rewriting. At this point, we use a
number of pre-compiled graph transformation patterns, which are able to cap-
ture structural requirements of the incentive mechanisms we intend to support.
Structural incentives [3] will be subject of our future work, as it goes beyond the
scope of this paper.

The prototype uses the imperative rewarding rules and MMod mappings pro-
vided by the user via initialization scripts. At the moment, they are specified
as C# code. This obviously makes sense only for a proof-of-concept purpose.
We plan to develop the mapping notation and the domain-specific language that
the clients will use to encode new incentive strategies or parameterize existing
ones. The implemented message-based API supports binary or XML messages,
following the format presented in Section 4.3.

Programming Incentives in Information Systems 699

5.2 Evaluation

The elements of the PRINC framework we presented deal with the low-level,
imperative techniques for modeling incentive mechanisms. The goal of this eval-
uation is to show that these techniques are expressive enough to model the
functional capabilities of some typical, real-world incentive strategies, allowing
us to use them as the foundation for the rest of the framework. It is important
to clarify that our intention is not to invent novel incentive mechanisms, nor to
compare or improve existing ones.

A broad overview of the incentive strategies used in social computing today
is presented in [3]. Out of the strategies presented there, we decided to model
and implement a slightly simplified version of the strategy used by the company
Locationary3. The reason for choosing this particular company was primarily
because their strategy is a very good example to demonstrate how a number of
simple incentive mechanisms targeting different behaviors can be combined into
one effective strategy.

Locationary’s Incentive Strategy. Locationary is a company that sells ac-
cess to a global business directory. In order to have a competitive advantage
over a number of companies already offering traditional and internet business
directories they need to maximize the number, accuracy and freshness of their
entries. For this reason, they need to incentivize users spread around the world
to add and actively update local business data. They combine a number of in-
centive mechanisms in their strategy. The three most important ones are the
conditional pay-per-performance/piece-rate (or ‘lottery tickets’ as they name it),
the team-based compensation (based on the ‘shares’ of added companies), and
the deferred compensation, based on the trust scores of the users.

Tickets are used to enter users into occasional cash prize draws. Chances of
winning are proportional to the number of tickets held. Tickets are not tied to any
particular company. Users are given different ticket amounts for adding, editing
or verifying different directory entry fields. Ticket amounts assigned depend on
the value of that field to the company. For example, a street view URL is more
valuable than the URL of the web page of the place. Similarly, fixing incorrect
data from other users is also highly appreciated. This mechanism incentivizes
the increased activity of the users, but also motivates the users to cheat, as some
people will start inputting invalid entries.

This is where the deferred compensation comes into play. The users are only al-
lowed to enter the prize draws if they collected enough tickets (quota system) and
if their trust score is high enough. The trust metric plays a crucial role. Trust is
proportional to the percentage of the approved entries, and this metrics discour-
ages users to cheat. The entries can be approved or disapproved only by other
highly trusted users (an example of peer evaluation). Trusted users are motivated
to perform validation tasks by getting more lottery tickets than they would get for
adding/editing fields. On the other hand, cheaters are further punished by sub-
traction of lottery tickets for every incorrect data field they provided.

3 http://www.locationary.com/

http://www.locationary.com/

700 O. Scekic, H.-L. Truong, and S. Dustdar

The strategy described so far does a good job of attracting a high number of
entries and keeping them fresh and accurate. However, it does not discriminate
between the directory entries themselves. That means that it equally motivates
users to enter information on an insignificant local grocery store, as it motivates
them to enter information on a high-profile company. As Locationary relies on
advertising revenues, that means that an additional incentive mechanism that
attracts higher numbers of profitable entries needs to be included on top of
the strategy described so far. The team-based compensation plays this role.
Locationary shares 50% of the revenues originating from a company with the
users holding ‘shares’ of that company. Shares are given to the people who are
first to add information on a company. Again, cashing out is allowed only to the
trusted users.

This example shows how a composite incentive strategy was assembled to fit
the needs of a particular company. However, its constituent incentive mechanisms
(piece-rates, quotas, peer evaluation, trust, deferred compensation, team-based
compensation) are well-known and general [3,11]. A different combination of
the same mechanisms could yield a different strategy, optimized for another
company.

% Library definitions in RMod
interface T_LOTTERY_TCKT % Predefined artifact interface.
{

id;
uid; % Owner ID.
value = 1; % Ticket value. Default is 1.

}

LOTTERY % Predefined (library) incentive mechanism.
{

id; % Auto -generated , or assigned during the runtime.
tickets []; % Collection of T_LOTTERY_TCKT objects.
...
type; % To choose from various sub -types.
timing; % Periodic , conditional or externally -triggered.
numberOfDraws; % How many tickets should be drawn.
external_trigger; % User -declared action triggering a lottery draw.
ticketType; % User -defined artifact that represents a ticket.

% Must be derived from the predefined
% T_LOTTERY_TCKT interface.

rew_action; % Action to execute upon each owner
% of a winning ticket.

prize_calculation; % Metric used to calculate the total reward
% amount for a draw. Usually proportional
% to the number of the tickets in the draw.

entrance_cond; % Predicate used to evaluate whether a ticket
% is allowed to enter the draw.

...
}

Listing 1.1. Definitions of library incentives

Programming Incentives in Information Systems 701

% User definitions in MMod
action RUN_LOTTERY(int id);
artifact LOCATIONARY_TICKET extends T_LOTTERY_TCKT {...};

metric CALC_PRIZE(int id, float prizePerTicket) % A user -defined
{ % metric.

LOTTERY L = getLottery(id);
return prizePerTicket * L.tickets.count;

}

predicate ENTER_LOTTERY_PREDICATE(int lotteryId , int userId) % User defined
{ % predicate.

return TRUST(userID) > 0.65 && % Trust and
LOTTERY_QUOTA(userId); % lottery quota

} % are library
% elements.

% User mappings in MMod
LOCATIONARY_LOTTERY = LOTTERY % Parameterizing

{ % a general inc.
... % mechanism.
timing = "triggered";
numberOfDraws = 1;
external_trigger = RUN_LOTTERY;
ticketType = LOCATIONARY_TCKT;
rew_action = AWARD_PTS(ticket.uid , amount , amount); % Previously

% explained.

prize_calculation = CALC_PRIZE(id , 0.0025); % Here we use a
% custom metric.

entrance_cond = ENTER_LOTTERY_PREDICATE(id, ticket.uid);
}

Listing 1.2. Defining customized incentive mechanisms with library elements

Implementing Locationary’s Incentive Strategy with PRINC. In Sec-
tion 4.2 we showed how a general rewarding mechanism for piece-work can be
adapted to fit the needs of a software testing company. Here we used the same
mechanism to reward workers with lottery tickets, and the same rewarding action
AWARD PTS(· · ·) to simulate cash payouts.

A lottery is a frequently used mechanism when the per-action compensation
amount is too low to motivate users due to a high number of incentivized actions.
Listing 1.1 shows the pseudo-code declaration of a general lottery mechanism
we implemented as part of our incentive mechanism library. In order to use this
mechanism, we simply need to parameterize the general mechanism by providing
the necessary mappings (values, metrics, actions and predicates), as shown in
Listing 1.2. Once the incentive strategy is running, we can easily adapt it by
changing which metrics, predicates and actions map to it.

This example also shows how we can combine different incentive mechanisms.
For example, the predicate that controls user’s participation in a lottery draw re-
quires the user to possess a certain quota of tickets. The threshold is
managed by another parameterized incentivemechanism, namely LOTTERY QUOTA.
To express trust we use one of the predefined metrics. The remaining mechanisms
are similarly implemented, demonstrating that our approach is capable of func-
tionally modeling realistic incentive strategies.

702 O. Scekic, H.-L. Truong, and S. Dustdar

6 Conclusions and Future Work

In this paper we introduced foundational models and techniques for supporting
programming of incentives in a dynamic and flexible fashion. These elements
represent the building blocks of the envisioned PRINC framework, intended to
provide an end-to-end solution for programmable incentive management in in-
formation systems. The implemented part of the PRINC framework was func-
tionally evaluated to demonstrate its capability of encoding real-life incentive
strategies. Our approach supports platform portability, while enabling dynamic
incentive composition, adaptation, and deployment.

In the future we will focus on extending our design with new incentive mech-
anisms, with a special focus on structural mechanisms. We are also developing
a simulation framework to allow us better testing the incentive composability.
The following step will be the work on the declarative domain-specific language
for expressing incentive strategies.

References

1. Prendergast, C.: The provision of incentives in firms. Journal of Economic Litera-
ture 37(1), 7–63 (1999)

2. Dustdar, S., Bhattacharya, K.: The Social Compute Unit. IEEE Internet Comput-
ing 15(3), 64–69 (2011)

3. Scekic, O., Truong, H.L., Dustdar, S.: Incentives and rewarding in social computing.
Communications of the ACM (Forthcoming 2013)

4. Laffont, J.J., Martimort, D.: The Theory of Incentives. Princeton University Press,
New Jersey (2002)

5. Bloom, M., Milkovich, G.: The relationship between risk, incentive pay, and or-
ganizational performance. The Academy of Management Journal 41(3), 283–297
(1998)

6. Sato, K., Hashimoto, R., Yoshino, M., Shinkuma, R., Takahashi, T.: Incentive
Mechanism Considering Variety of User Cost in P2P Content Sharing. In: IEEE
Global Telecommunications Conference, IEEE GLOBECOM 2008, pp. 1–5. IEEE
(2008)

7. Yogo, K., Shinkuma, R., Takahashi, T., Konishi, T., Itaya, S., Doi, S., Yamada,
K.: Differentiated Incentive Rewarding for Social Networking Services. In: 10th
IEEE/IPSJ International Symposium on Applications and the Internet, pp. 169–
172 (July 2010)

8. Little, G., Chilton, L.B., Goldman, M., Miller, R.: Exploring iterative and parallel
human computation processes. In: Proceedings of the 28th of the International
Conference Extended Abstracts on Human Factors in Computing Systems - CHI
EA 2010, p. 4309 (2010)

9. Mason, W., Watts, D.J.: Financial incentives and the performance of crowds. In:
Proceedings of the ACM SIGKDD Workshop on Human Computation (HCOMP
2009), vol. 11, pp. 77–85. ACM, Paris (May 2009)

10. Hirth, M., Hossfeld, T., Tran-Gia, P.: Analyzing costs and accuracy of validation
mechanisms for crowdsourcing platforms. Mathematical and Computer Modelling
(2012)

Programming Incentives in Information Systems 703

11. Tokarchuk, O., Cuel, R., Zamarian, M.: Analyzing crowd labor and designing in-
centives for humans in the loop. IEEE Internet Computing 16, 45–51 (2012)

12. Scekic, O., Truong, H.L., Dustdar, S.: Modeling rewards and incentive mecha-
nisms for social bpm. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS,
vol. 7481, pp. 150–155. Springer, Heidelberg (2012)

13. Baresi, L., Heckel, R.: Tutorial Introduction to Graph Transformation: A Software
Engineering Perspective. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 431–433. Springer, Heidelberg (2004)

14. Jakumeit, E., Buchwald, S., Kroll, M.: GrGen. NET. International Journal on
Software Tools for Technology Transfer (STTT) 12(3), 263–271 (2010)

	Programming Incentives in Information Systems

	1 Introduction
	2 Related Work and Background
	2.1 Related Work
	2.2 Background

	3 PRINCFramework
	3.1 Requirements
	3.2 Architecture Overview
	3.3 Intended Usage

	4 Design Considerations
	4.1 Rewarding Model (RMod)
	4.2 Mapping Model (MMod)
	4.3 Interaction Interfaces

	5 Prototype and Evaluation
	5.1 Prototype Implementation
	5.2 Evaluation

	6 Conclusions and Future Work
	References

