
Integrity in Very Large Information Systems

Dealing with Information Risk Black Swans

Beat Liver and Helmut Kaufmann

Credit Suisse Information Technology, Zurich, Switzerland
beat.liver@credit-suisse.com, helmut.l.kaufmann@gmail.com

Abstract. Multi-national enterprises, like financial services companies,
operate large and critical information systems around the globe on a
24/7 basis. In an information-based business, even a single inadequately
designed, implemented, tested and operated business application can put
the existence of the enterprise at risk.

For adequately securing the integrity of business critical information
and hence ensuring that such information is meaningful, accurate and
timely, we present our risk assessment and controls framework: First,
we introduce our criticality rating scheme that is based on the recov-
erability from integrity failures. For dealing with dependencies among
applications, we present our approach based on services given a Service-
Oriented Architecture (SOA). Second, we provide an overview of our
design-related controls including a data analytics approach to continu-
ously audit the most critical information assets. Finally, we present our
learnings from a first implementation of the presented framework.

Keywords: Information risk management; integrity; business critical
systems; data analytics; Service-Oriented Architecture.

1 Introduction

Information security in general aims at protecting the confidentiality, integrity
and availability of information. Integrity protection is mainly understood as the
assurance that all data modifications are authorized [6]. Our understanding is
broader: Integrity also requires that information is meaningful, accurate and
timely and that it is modified only in acceptable ways (see also [8,9]). In the
financial industry, severe integrity failures are rare, but have already resulted in
material harm to companies and even the financial markets. This is illustrated
by the following real-world examples:

– A trading software bug generated wrong market orders resulting in a loss of
440 million USD within 30 minutes [13].

– After a software change, a payment order processing batch failed. Sorting
out and restoring operations took several weeks [14].

– A trader inadvertently entered an order to sell 610’000 shares at 16 Yen a
piece instead of 16 shares at 610’000 Yen. The resulting order was partially
canceled. However, it resulted in a loss of up to 100 million USD [15].

C. Salinesi, M.C. Norrie, and O. Pastor (Eds.): CAiSE 2013, LNCS 7908, pp. 641–656, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



642 B. Liver and H. Kaufmann

The root causes for the above failures cannot be determined impeccably from
the available public sources. In the last example, a plausbile explanation is a
combination of human error, bad design and testing. The point these examples
illustrate well, is that integrity failures can have disastrous consequences.

In the above examples, material financial losses resulted from mis-processing
by business critical systems. The recent accumulation of similar incidents caught
the attention of the regulators and triggered a public discussion on integrity fail-
ures and their root causes, such as (i) systems’ ages, complexity and technology;
(ii) risk management issues, such as underestimated risks as well as inadequate
and ineffective controls; and (iii) impact of organizational and economic factors,
especially outsourcing/off-shoring and cost pressure [20].

Generally, risk-related standards require that business critical systems must
be adequately protected. While people tend to agree that business critical systems
must be safeguarded, they often fail in identifying these systems. And even if
truly critical systems are identified, you are almost guaranteed to find yourself in
a discussion around the term adequate safeguards : If you are not doing enough
– whatever enough means – an organization can be seriously harmed. If you are
doing too much, an organization’s resources are wasted.

This paper presents Credit Suisse’s approach to safeguard the integrity of very
large information systems, of which many are considered to be business critical.
Figure 1 illustrates our overall information risk management framework and
highlights the scope of this paper. Section 2 introduces our easy-to-understand

Fig. 1. Information Risk Framework Overview

rating scheme to correctly determine the integrity criticality of systems and
services. Section 3 summarizes our so-called minimum bar for integrity, a min-
imum standard regarding integrity design controls, which ensure risk-adjusted
safeguarding of systems, i.e., commensurate to a system’s criticality. We briefly
discuss related work in Section 4. Section 5 summarizes our learnings from a
first enterprise-wide compliance assessment against these standards as well as a
proof of concept for independent integrity controls.



Integrity in Very Large Information Systems 643

To illustrate our approach, we use foreign exchange orders throughout the
paper: A client buys 100’000 USD against CHF at an exchange rate of 0.9228
USD/CHF on November 6th, 2012 at 08:26 UTC. This so-called spot trade
results in two settlement payments on November 8th: The client receives 100’000
USD from the bank and pays 92’280 CHF to the bank.

2 Integrity Criticality Rating

In traditional information security, a system’s criticality corresponds to the im-
pact of confidentially breaches, loss of integrity and availability [6,8]. Often, there
is a fixed set of 3-5 criticality levels, ranging from ’non-critical’ to ’business crit-
ical’. In our rating scheme,

– information systems are called business critical if a single failure might put a
firm’s existence at risk. In a regulated financial services environment, large-
scale financial losses pose that risk;

– the number of levels is determined by the ability (i) to distinguish levels and
(ii) to identify meaningfully different sets of safeguards per level.

2.1 Integrity Criticality Rating of Applications

Integrity-Criticality Rating Schema. To determine the integrity critical-
ity of a system, we first determine whether legal/regulatory requirements exist
or not. Legal and regulatory requirements are, e.g., privacy laws, liquidity or
records retention requirements. Hence, we divide business applications in two
classes based on whether such requirements apply or not. Second, we classify
the applications according to financial impact by considering whether (i) mate-
rial financial losses are possible and (ii) whether all possible material financial
losses are recoverable or not. Table 1 summarizes the resulting rating scheme.
For instance, the ’normal’ integrity criticality level means basically that neither
losses nor non-compliances are acceptable. These strictly-defined non-functional
requirements determine the minimum bar (see also Section 3), which an appli-
cation has to meet.

As an example, let’s apply this rating scheme to an Order Management ap-
plication for foreign exchange orders. Orders are trades between clients and the
bank, i.e., they are legally binding external financial commitments and therefore
integrity-relevant from a financial and compliance perspective.

Table 1. Integrity-criticality levels

Integrity-criticality Level Financial Impact Legal/Regulatory Reqs.

I-1, critical Irrecoverable losses possible Yes/no, traceable
I-2, normal Recoverable losses possible Yes, traceable
I-3, non-critical Losses impossible No



644 B. Liver and H. Kaufmann

For applying this rating scheme in general, we first classify the data processed
by an application. For this purpose, we identify the business objects that are
relevant from one or more of the following perspectives:

– Compliance relevant, i.e., the application is used for legal/regulatory pur-
poses, e.g., the calculation of the Basel II/III capital requirements.

– Financially relevant, i.e., it results in asset ownership changes and, in partic-
ular, legally-binding external financial commitments and elements thereof.

– Risk management controls relevant, e.g., systems management applications
used for safeguarding confidentiality, integrity and availability.

Given this integrity-relevance classification, all applications that are not process-
ing integrity-relevant data are rated as non-critical. Second, all applications that
are not processing legally binding external financial commitments and elements
thereof are rated as normal critical. In case of external commitments, we define
the recoverability of possible financial losses using following guidelines:

– Losses are impossible, if transactions involving external commitments are
subject to compensatory business controls by the involved counter-parties.
E.g., a trusted third party, like Continuous Linked Settlement (www.cls-
group.com), clears and settles transactions only if they receive matching
orders from all trade parties.

– Losses are possible and recoverable, if the business controls are sufficient to
detect and correct all possible errors. Questions that need consideration in
this context: How fast is a large number of small errors detected? How fast
are a few large errors detected?

Business controls often have control points at which data validity is verified
and, hence, the time period between two control points has to be considered
in an assessment. Note: In reality, the recoverability of financial losses is
often considered given, if the recovery costs and the residual losses do not
exceed a certain financial threshold.

It is important to understand, that our rating scheme intentionally requires only
a rough quantitative assessment of possible losses. We recommend to use a recov-
erability threshold and loss statistics for taking estimation errors into account.
More important than a particular threshold and the exact estimation is the
identification of worst-case scenarios including market turbulences with extreme
market volatilities. Such turbulences might also be caused by an integrity breach
– as above real-world examples illustrate.

For example, the foreign exchange Order Management application is rated
at least as I-2 due to compliance requirements. For determining the possible
losses and their recoverability, we consider worst-case failure scenarios: Say, losses
might result from offering prices below market rates and erroneous settlement
payments. Let us assume that all orders are hedged immediately and all settle-
ment payments are conducted through a trusted third party. Hence, the possible
losses are recoverable and the (final) rating is I-2.



Integrity in Very Large Information Systems 645

Business and IT Criticality Rating. For an application, business determines
the protection requirements, called Business Criticality Rating, using the above
rating schema and taking defined business controls into account. Business con-
trols consist of manual activities to supervise the correct working of applications
and to handle exceptions. Given the Business Criticality Rating, IT determines
the IT Criticality Rating based on the business requirements, the actual de-
sign and the inter-dependencies of applications. If the IT rating differs from the
business rating, it is necessary to redesign and, if impossible, to reconsider the
Business Criticality Rating. For instance, our Order Management application
offers prices in all tradable currency pairs based on an interbank market data
feed. The generated prices are monitored by a trader, which is possible thanks to
an automated rate-tolerance check. If IT comes to the conclusion (for example
during design or testing) that this check does not work as intended, the critical-
ity rating of the application must be revised, i.e., set to I-1 as non-recoverable
losses are possible.

2.2 Criticality Rating of Services

A system typically depends on data and functions that are provided by other ap-
plications. For instance, the Order Management application depends on systems
providing market data and performing credit-risk checks and order settlement.
This leads to criticality dependencies that must be managed. In particular, un-
necessary propagations of high criticality levels must be prevented. For dealing
with criticality-dependencies, we use the Service-Oriented Architecture (SOA)
[2,19] and introduce risk-adjusted services.

Risk-Adjusted Services. A service description defines, like an API, the ser-
vice interface in terms of service operations. A service operation is described by
the IN- and OUTput data and the functions provided. For instance, our Or-
der Management application offers a trade capture service with Create, Read,
Update and Delete operations for foreign exchange orders. For including crit-
icality in service descriptions, we must understand the function of a service
operation (e.g., createFxOrder).Towards this end, we classify the functionality
of services into EVENT and ACTION service operations [10], whereby a ser-
vice provider reports on events and responds to service requests, respectively.
Integrity criticality is a non-functional requirement on a service, i.e.,

– an EVENT service delivers data of a particular quality; and
– an ACTION service provides data and function at a particular quality.

The criticality rating of a service operation is based on the criticality rating
of the application sub-system implementing the service. The resulting rating is
specified by tagging the service operation with the respective criticality level in
the service description. For instance, an EVENT service getMarketData that
provides inter-bank foreign exchange rates sourced from market data providers
would be rated as I-2, because the data is informational and not representing



646 B. Liver and H. Kaufmann

an offered price. Depending on the division of labor within the bank, our Or-
der Management application might consume tradable prices from the wholesale
business unit using an EVENT service getFxPrice.This service is classified I-1
assuming that delivering erroneous tradable prices results in possible irrecover-
able losses. Furthermore, the Order Management application itself provides AC-
TION services, such as createFxOffer and createFxOrder to request a quote
and to capture an order, respectively. These two services are classified as I-2,
because these services are creating financial commitments and given our Order
Management application is classified as I-2.

We also declare the criticality of the data that the service provider expects
and delivers by tagging the data attributes of the exchanged data accordingly.
The exchanged data is defined by the payload description for the IN and OUT
messages of a service operation. A foreign exchange order consists of data at-
tributes defining the financial contract details, contract settlement details, sales
markups and customer comments. Arguably, the latter two attributes might be
classified as not integrity relevant.

For explaining how risk-adjusted services lead to risk-adjusted sub-systems,
we discuss the criticality-level of functional and physical sub-systems:

– A functional sub-system is a functional component that is not instantiated
as an isolated run-time component. Without this isolation, a functional sub-
system must meet the criticality-level of the system. For example, an ap-
plication serving multiple tenants consists of a functional sub-system per
tenant. If such tenants have different business integrity criticality ratings,
the applications and its functional sub-systems are one system due to a lack
of isolation. Hence, the highest rating of a tenant determines the rating of
the whole system.

– A physical sub-system is a physically isolated sub-system of a system. Hence,
it must meet only its own criticality level taking into account the dependen-
cies that other sub-systems of the application have on it. For example, a
service replica and multiple application-instances serving different tenants
are physical subsystems, which might be operated and even designed and
implemented according to their particular criticality level. In our example,
we might consider using two physical instances of the Order Management
application to support tenants with different criticality levels.

For managing services, a physical sub-system results in a single service de-
scription with multiple service implementations – one per sub-system. Each
service implementation description has its own criticality level. For instance,
createFxOrder service replicas offer all the same service interface, but their
service is either an I-1 or an I-2 one.

Consuming Adequate Services. Given we have a declared criticality in
the service descriptions, prospective service consumers simply have to identify
and to use adequate services from the service repository. Let’s first define the
term adequate and then discuss how we document the selection for management
purposes.



Integrity in Very Large Information Systems 647

Understanding integrity criticality as a quality – the degree of dependability,
we conclude that a service consumer must either (i) consume services with at
least the same criticality level or (ii) implement compensations for consuming
lower-grade services. We distinguish between the following two classes of com-
pensations:

– Data Services : For EVENT and ACTION services solely delivering data, a
compensation can be implemented by an input plausibility validation detect-
ing and handling erroneous and missing data.

– Processing Services : For ACTION services that have real-world effects that
are not reported in the response, a compensation is a so-called final inspection
of the result (by the consumer).

For instance, our Order Management application might consume a lower-grade
market data service getFxRates, if it uses an automated input plausibility val-
idation and, in case of a validation exception, a trader manually quotes prices.
For using a lower-grade down-stream createPaymentOrder service, the Order
Management application has to validate the resulting payments.

Note that the service consumers are registered in a service repository. This
includes the registration of the required integrity criticality-level and the neces-
sary and implemented compensations. The latter is simply a textual description
with a reference to the relevant application documentation.

3 Integrity Minimum Bars

A system’s protection does not come for free. Therefore, any protection mech-
anisms should be employed in line with a system’s criticality. To facility this
approach, we have introduced so-called minimum bars that define a unique stan-
dard set of controls for each criticality dimension and level, which an application
must fulfill. Minimum bars must meet a number of criteria, such as:

– Each standard must apply to a single application such that an IT architect
can design an application by acting locally while ensuring integrity globally.

– Each standard is applicable to all kinds of programming languages and to
systems developed in-house as well as by third parties.

– Wherever possible, standards must be satisfied by using a standard infras-
tructure capability. This simplifies the design and assessment, as a system
can rely on the controls implemented by the standard infrastructure.

– Standards must be minimal, where (i) implementing higher standards is pos-
sible, if justified by other reasons than information security (e.g., efficiency);
(ii) implementing alternative controls requires a risk assessment and a proof
of adequacy; and (iii) controls perceived irrelevant for a system require a
formal exception, if not implemented.

3.1 Ensuring Authorized Modification

The first integrity protection objective is that all data modifications are autho-
rized, which requires non-repudiation and tamper-resistance. Respective controls



648 B. Liver and H. Kaufmann

are mainly in the space of access control. For example, foreign exchange interbank
rates are integrity-relevant. Updating such rates is hence subject to standard ac-
cess control mechanisms.

3.2 Ensuring Valid Results

Our set of integrity design standards aims at ensuring that information is mean-
ingful, accurate and timely (and hence also modified in acceptable ways). The
basic idea is that an application defines first what data must be valid. Second,
that its data processing maintains validity. Third, that an application validates
its input and output.

These design standards apply to all systems with a criticality I-1 or I-2. The
reason is that the same design can be used for both levels, where the controls
for testing and operations are differentiated.

Data Integrity Standards. A first standard mandates that the integrity-
relevance of business-object attributes is classified and documented in the data
model. For defining useful validations, business objects are typed and the actual
and more specific business rules must be defined. In our example, the business
object is a foreign exchange order with its financial and settlement details. Busi-
ness rules are, for instance, that traded amounts above a particular threshold are
manually quoted; and that trades captured by junior traders require a sign-off
by a supervisor.

A second standard mandates that integrity-relevant data is consumed from
its golden source using services. Furthermore, it requires that integrity-relevant
data – typically, at the level of a business object – is versioned and globally
uniquely identifiable.

For instance, all applications processing foreign exchange orders source
counter-party and settlement instructions from the same golden sources. Ver-
sioning is important because the order processing requires, for instance that a
counter-party and a settlement instruction is ’active’ and not in an on-boarding
state. Other version updates, such as domicile and address changes do not change
the state, but are nevertheless relevant for order processing. Therefore, services,
such as createConfirmation and createPayment have to specify how they deal
with version updates of reference data. For instance, createConfirmation sends
a confirmation letter to the current address of the client instead of the one when
the order was captured.

Processing Integrity Standards. A first standard requires that integrity-
relevant data processing produces an audit trail using the standard logging in-
frastructure. A second standard requires a reconciliation of integrity-relevant
data exchanged between two systems. A third standard requires idempotent
batches, services and user interfaces, if they support integrity-critical data pro-
cessing. A fourth standard requires the use of our standard consistency patterns
and the respective supporting infrastructure. These patterns are, in particular,



Integrity in Very Large Information Systems 649

non-remote transactions, reservations and modify tickets. The standard also rec-
ommends to use asynchronous instead synchronous service interactions, wherever
possible. Finally yet importantly, service interactions might be delayed or fail,
for which monitoring and exception handling is mandated.

Validation Integrity Standards. A first standard mandates an automated
input/output plausibility validation of all integrity-relevant data communicated
in machine and user interfaces. These validations aim at determining the plau-
sibility of the input/output, e.g., input values being in a reasonable range and
relation to each other. This standard implies that applications perform their own
input/output validation and consume services for complex business validations,
like suitability and credit-risk checks. A second standard requires that all valida-
tion exceptions must be handled by either a sign-off, degraded mode of operation
or a failure. For instance, invalid market rates might result in a degraded mode of
operation where all prices are manually quoted. A third standard mandates that
service descriptions specify the degree of required and provided data validation.

In the first standard, we distinguish between deterministic and heuristic in-
put/output validations, where the latter takes into consideration a processing
context defined in terms of attributes, such as user, counter-party, asset class,
etc. At the source of data entry and creation of a business object, a fine-granular
processing context is available and hence can be used for heuristic validations.
Therefore, the third standard requires that golden sources perform fine-granular
validation and deliver authoritatively-validated data. There exist hence two
degrees of validation: ’normal’ and authoritative. For instance, the Order Man-
agement application performs fine-granular input validation, such as ’is this cap-
tured amount in the usual range for this user and client?’: Capturing an order
with a much larger traded amount triggers a request to the user to confirm the
order. The down-stream applications receive authoritatively-validated orders and
hence they are not obliged to consider whether an order is usual or unusual.

Recovery Integrity Standards. A first standard mandates an appropriate
backup of integrity-relevant data. A second standard requires that an applica-
tion processing integrity-relevant data is restorable, e.g., from its backups. This
ensures that all restored integrity-critical data and functions are valid as per post-
restoration validation. It is important to understand that integrity requires that
the selected availably criticality – defining an upper bound for the duration of pos-
sible outages and data losses – does not lead to integrity issues given the capability
of the business controls to deal with such a situation. Otherwise, integrity requires
an upgrade of the availability criticality, i.e., shorter outage durations.

3.3 Final Validations and Independent Controls

Limitations and Motivation for Additional Controls

Propagation of criticality: The presented rating scheme has the drawback that
it leads to a large number of applications that are in the highest class, as il-
lustrated in Fig. 2. Often a business critical source application for an external



650 B. Liver and H. Kaufmann

Fig. 2. Error and criticalit propgation vs. final validations

commitment is supported by a chain of down-stream applications. And, this
chain is terminated by an interface application that eventually communicates
such an external commitment to counter-parties that are outside of the firm.
In a first analysis, such interface applications were identified as business critical
given that integrity failures are materialized at this point. The reason is that er-
rors occurring after the source are propagated to an interface application. Unless
such an interface application is able to detect such errors, the whole processing
chain has to be treated as business critical. Detecting such errors is possible by
introducing final validations at the interface that check the correspondence of
business activities between the source and interface. For instance, an interface
sending out an external-payment message checks that the message content cor-
responds with the respective payment order captured at the source, such as an
on-line banking application.

Mandating that interfaces are performing final validations would allow us to
simplify the above rating scheme by (i) applying the rating procedure to distin-
guish between I-1 and I-2 to source applications only; and (ii) mandating that I-1
interfaces perform final validations (on the I-1 feeds). Instead of this simplified rat-
ing procedure, the current version supports only a down-grading of the criticality,
if an application is subject to final inspections (by the respective source).

The devil (of controls assurance) is in the details: If all applications along a
processing chain design, implement, test and operate their integrity controls
completely, consistently and correctly, the presented minimum bars are suffi-
cient. In practice, explicit integrity standards are beneficial on one hand, be-
cause integrity receives the necessary attention. On the other hand, controls for
I-1 applications are generally very expensive to implement/operate and flawless
execution of these controls is almost impossible to guarantee. Past material in-
tegrity breaches illustrate the latter point: for instance, a duplicate check failed
due to a race condition resulting in a loss of 500’000 USD. For either reduc-
ing the effort and/or increasing the assurance, we are developing the concept of
independent integrity controls including (i) source behavioral monitoring; and
(ii) source to interface correlation. Similar to multi-version programming, these
controls are to be designed, implemented and operated by a party independent
from the application developers. Given the initial objective to detect only severe
integrity breaches, the correlations can be approximations.



Integrity in Very Large Information Systems 651

Independent Integrity Controls for Final Validations. As a proof-of-
concept, we implemented two correlation use cases using audit trails. Fig. 3
illustrates the resulting architecture. Our order processing applications, for in-

Fig. 3. Integrity engine proof of concept architecture

stance, generate audit log records, which are collected and stored by our log
infrastructure. This infrastructure is based on SPLUNK (www.splunk.com) and
we implemented our correlations using the product’s analytics capability. For
this purpose, the relevant log records are retrieved and normalized first. Second,
the correspondence of source and interface events is validated by identifying and
comparing the relevant source and interface log records. Finally, the correlation
results are reported in a dashboard.

Identifying and Defining Validation Correlations: Trading typically involves a
trading, a clearing and a settlement business sub-process. In case of foreign ex-
change, we need to identify trade capture events and relate them to clearing
and settlement events. Such a trading business process is often distributed over
multiple applications, each of which having its own business objects. For system-
atically identifying and defining correlations, we use communicating finite state
machines. For an example, see Fig. 4(b).

For a source application, we define the business object and its life-cycle
states. Then, we define the relevant interface applications and their business
objects with their life-cycle. Finally, we identify the correlations by communica-
tions between state-transitions of the source and interface finite state machines.
Fig. 4(b) represents a simplified example for foreign exchange: a client order is
captured on the Order Management application, which results in an order in
state Active.This order is confirmed by a letter generated by a Print Delivery
application and the Single Account application pre-books a credit for the bought
amount. At settlement date, the client order becomes Mature and, hence, the
Single Account application credits the account (i.e., replacing the pre-booking
with the actual booking). In addition, the counter amount has to be paid to
the bank, for which an external payment is received via a Messaging Gateway
application. The example illustrates that business process boundaries are either
internal or external (and in the latter case involving an interface application).
The internal boundaries trigger often new business processes, some of which work



652 B. Liver and H. Kaufmann

Fig. 4. (a) modular correlation implementation and its (b) finite state machine model

on aggregates. For instance, foreign exchange orders are aggregated into posi-
tions and hedged in the interbank market. The integrity control for the hedging
business process includes an approximate check of the correct aggregation.

Modular Implementation of Correlations: Given the above finite state machine
correlation model including the conditions for state transitions, we implement
the correlation rules using our correlation engine based on a few patterns, as
illustrated in Fig. 4(a). In the upper half, we search the source order events
and keep the order’s current state in the SPLUNK lookup table OrderBook. In
case the order processing has no unique business case identifier, we search for
the related correlation identifiers starting from the source: a chain of related
identifiers can be established, which might involve computing mappings, such as
hashing. For deadline-driven interface events, we create a view of the OrderBook
for a particular deadline. For instance, foreign exchange spot orders are settled
two business days after the trade date. In Fig. 4(b), this view is a lookup-table
SettlementBook, which is used by InterfaceSettlementTracker to correlate
the payment messages with the source foreign exchange orders. The matured
order correlates with Pay and Receive in Fig. 4(b). A settlement event might
be either missing, duplicated or not corresponding (e.g., amount differences).
This example illustrates how to identify and implement validation correlations
in a modular way. This is important for maintainability and automating the
implementation (for a given correlation engine).

4 Related Work

Integrity Information-Risk: In [6], integrity is defined as the property of safe-
guarding the accuracy and completeness of assets. However, the standard and the
accompanying best-practices [7] are of rather generic nature. Furthermore, the



Integrity in Very Large Information Systems 653

controls primarily ensure that all modifications are authorized. This is the most
widely used facet of integrity [8]. Like in [8,9], we consider also the requirement
that information is accurate, consistent and meaningful.

Finally yet importantly, we are, in contrast to [6], not considering the prob-
ability of a failure. The reason is that severe integrity failures are rare events
and practically not predictable (see also [16]). Such failures including the above
real-world examples are arguably black swans [17] - these are unexpected events
that can be rationalized in hindsight, but are hard to foresee. Consequently, we
are not using classical risk analysis techniques [23], such as failure mode effect
analysis (FMEA). For assessing possible financial losses and their recoverability,
we require, first, to determine the financial assets at risk and, second, to assess
the business controls processes. During our work, we considered initially to con-
struct an integrity data and controls flow graph to carry out a formal effects
analysis of ”corrupted” data attributes. A first pilot with the integrity data and
controls flow graph as well as the underlying dependency graph showed that
such a formal approach is not suitable for an organizational deployment without
considerable investments, especially in tools.

Integrity Criticality Rating: Regarding risk ratings, the industry standard [6]
requires that ”information shall be classified in terms of its value, legal require-
ments, sensitivity and criticality to the organization”. Our rating scheme pro-
vides a modular procedure that effectively classifies integrity risks based on the
impact of an integrity failure. Modular means here that, first, risk can be as-
signed on a per-application-basis. Second, the dependency analysis is limited
to the services offered and provided by the assessed application (i.e., the direct
dependencies). Our scheme is not universal, because safety-critical systems are
out of scope.

Embedded Integrity Design Standards: Best practice on correct processing in
applications is the most relevant one (see section 12.2 in [7]). We extended these
best-practices in the following ways:

1. Standards for information definition and labeling including data-flow con-
trols using services (e.g., criticality, validation quality, etc.). Our data label-
ing and flow control policies and patterns are aimed at application design-
ers. Hence, we have currently not formalized them. The different facets of
integrity as well as their formalization and enforcement as information flow
policies are discussed in, for instance, [3].

2. Specific patterns related to idempotency [5] and data consistency suitable
for a Service-Oriented Architecture (e.g., non-remote transactions).

3. An extensions of input/output plausibility validations with heuristic plausi-
bility checks (behavioral monitoring).

4. Last but not least, an emphasis on the business operating procedures and
hence the business controls for an application.

Independent Integrity Design Standards: Following multi-version programming,
we drafted a second set of independent integrity controls that are independent



654 B. Liver and H. Kaufmann

from our established integrity controls (outlined previously). This paper presents
the validation of the processing of legally-binding financial external commitments
at the boundary of the firm: for instance, order entry and payment business
events are correlated. This is similar to the transaction verification in continuous
auditing [11,12], but we use audit trails and log analysis [4] and hence apply
data analytics to improve the information security in the integrity dimension.
The same integrity facet is considered by applying data analytics to ensure the
correctness of authentication data [18].

From a data provenance perspective [21,22], we are collecting provenance in-
formation in the form of audit records through our existing audit log infras-
tructure. In contrast to data provenance, we are neither explicitly nor implicitly
constructing a data provenance graph - a directed acyclic graph explaining the
sources and derivations of the data. Like in some data provenance approaches,
we are evaluating the data quality by comparing the relevant source and inter-
face events for financial commitments, such as trading and payment orders. Data
provenance techniques might be of interest to integrity-critical information based
on data warehouses. Hence, future work should relate our log-analysis approach
to the service-oriented data provenance approach [22].

5 Experiences and Learnings

The presented rating scheme and standards are currently being rolled out within
Credit Suisse. The simplification of the presented rating scheme based on final
validations depends on the further development of the final validation concept,
the initial proof-of-concept as well as cost/benefit considerations.

Rating: When we piloted a new questionnaire to support the criticality rating,
we learned that availability and confidentiality are well-understood concepts.
However, integrity – especially beyond the meaning of authorized modifications –
is not. We have invested considerable time in phrasing the questions, make them
easy to understand and unambiguous. Getting it right is especially important
for integrity as a single failure in this dimension might result in the enterprise
defaulting.

Minimum Bar Assessment: In order to determine the level of residual integrity
risk within critical applications, we established an extensive questionnaire to as-
sess the standing of an application against its defined minimum bar. 200 applica-
tions were assessed against their minimum bars. We investigated confidentiality,
integrity and availability capabilities using roughly 120 questions per application.
Thereof, 1/3 of the questions related to integrity and covered aspects regarding
the design and implementation of an application, its testing as well as daily
operations in the data center. From this initial assessment, we learned that the
application owners partially faced difficulties in correctly assessing their appli-
cations. The original set of questions was hard to understand. In collaboration
with the IT Risk Management department and the application owners, we have



Integrity in Very Large Information Systems 655

re-phrased many questions, making them easier to understand. Additionally, we
held training sessions, which are now available as a replay for the education of
new staff or as a refresher. We believe that such dedicated training sessions fa-
cilitate the understanding of integrity, which in turn increases the acceptance of
integrity controls and the related assessments.

Independent Final Validation: A proof-of-concept demonstrated that the corre-
lation of source and interface events is possible. For in-band final validations,
the non-functional requirements are different and we will have to re-consider the
correlation engine architecture. We are also evaluating the SPLUNK database
connector for obtaining scalable look-up tables. The model for these correlations
was developed manually, which does not scale. And, a large effort to develop
correlation rules makes it also brittle, if rules change frequently. Finally yet
importantly, demonstrating the validation of aggregations (e.g., such as posi-
tions aggregating foreign exchange market orders) was not in scope. However,
we have demonstrated in another project how to implement such aggregation
controls with Mathematica (www.wolfram.com) using the position aggregation
for foreign exchange spot, swap and forward orders as an example.

6 Conclusions and Outlook

What does this paper demonstrate? How to deal with integrity in a broader
sense; how to standardize the rating to achieve a more consistent risk assess-
ment; as well as design standards to ensure that integrity is considered appro-
priately. Finally, it points to a direction for cost-effective assurance of control
implementations using independent integrity controls.

We are currently working on the institutionalization of the standards, improv-
ing them on an ongoing basis, issuing supporting guidelines, conducting training
sessions and delivering self-study training material. For the further development
of the independent controls and final validations, we are investigating machine
learning approaches to reduce the modeling effort for correlation rules.

References

1. Murer, S., Bonati, B., Furrer, F.J.: Managed Evolution: A Strategy for Very Large
Information Systems. Springer (2011)

2. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall Publisher (2004)

3. Birgisson, A., Russo, A., Sabelfeld, A.: Unifying facets of information integrity. In:
Jha, S., Mathuria, A. (eds.) ICISS 2010. LNCS, vol. 6503, pp. 48–65. Springer,
Heidelberg (2010)

4. Oliner, A., Ganapathi, A., Xu, W.: Advances and Challenges in Log Analysis.
Communications of the ACM 55(2), 55–66 (2012)

5. Helland, P.: Idempotence is not a medical condition. Communications of the
ACM 55(5) (2012)



656 B. Liver and H. Kaufmann

6. ISO/IEC 27001:2005, Information technology – Security techniques – Information
security management systems – Requirements 2nd Edition (2005)

7. ISO/IEC 17799:2005, Information technology – Security techniques – Code of prac-
tice for information security management, 2nd Edition (2005)

8. Pfleeger, C.P., Pfleeger, S.L.: Security in Computing, 4th edn. Prentice Hall (2007)
9. Mayfield, T.: Integrity in automated information systems, National Computer Se-

curity Center, Technical Report 79-91 (1991)
10. OASIS Reference Model for Service Oriented Architecture 1.0, Official OASIS Stan-

dard (2006)
11. Vasarhelyi, M.A., Alles, M., Kogan, A.: Principles of Analytic Monitoring for Con-

tinuous Assurance. Journal of Emerging Technologies in Accounting 1(1), 1–21
(2004)

12. Chan1, D.Y., Vasarhelyi, M.A.: Innovation and practice of continuous auditing.
International Journal of Accounting Information Systems 12(2) (2011)

13. Risks Digest: Forum On Risks To The Public In Computers And Related Systems
(moderated by Neumann, P.G.), vol. 26(97) (2012)

14. Risks Digest: Forum On Risks To The Public In Computers And Related Systems
(moderated by Neumann, P.G.), vol. 26(92) (2012)

15. Risks Digest: Forum On Risks To The Public In Computers And Related Systems
(moderated by Neumann, P.G.), vol. 21(81) (2001)

16. Ross, S.J.: Information Security Matters: Keynes, Shelley, Taleb and Watts. ISACA
Journal 4 (2012)

17. Taleb, N.: The Black Swan: The Impact of the Highly Improbable. Penguin (2008)
18. Clement, M., et al.: Data analytics for information security: from hindsight to

insight, Research Report, Information Security Forum (2012)
19. Murer, S.: 13 Years of SOA at Credit Suisse: Lessons Learned-Remaining Chal-

lenges. In: Ninth IEEE European Conference on Web Services, ECOWS (2011)
20. Financial Times, FSA challenges bank chairmen over IT (September 4, 2012)
21. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.

SIGMOD Rec. 34(4), 31–36 (2005)
22. Moreau, L., et al.: The Provenance of Electronic Data. Communications of the

ACM 51(4), 52–58 (2008)
23. Bennett, J.C., Bohoris, G.A.: Risk analysis techniques and their application to

software development. European Journal of Operational Research 96(3), 467–475
(1996)


	Integrity in Very Large Information Systems

	1 Introduction
	2 Integrity Criticality Rating
	2.1 Integrity Criticality Rating of Applications
	2.2 Criticality Rating of Services

	3 IntegrityMinimumBars
	3.1 Ensuring Authorized Modification
	3.2 Ensuring Valid Results
	3.3 Final Validations and Independent Controls

	4 Related Work
	5 Experiences and Learnings
	6 Conclusions and Outlook
	References




