
End-User Development

of Information Visualization

Kostas Pantazos1, Soren Lauesen2, and Ravi Vatrapu1,3

1 Computational Social Science Laboratory (CSSL), Department of IT Management,
Copenhagen Business School, Copenhagen, Denmark

2 Software and Systems, IT University of Copenhagen, Copenhagen, Denmark
3 Norwegian School of Information Technology, Oslo, Norway

Abstract. This paper investigates End-User Development of Informa-
tion Visualization. More specifically, we investigated how existing vi-
sualization tools allow end-user developers to construct visualizations.
End-user developers have some developing or scripting skills to perform
relatively advanced tasks such as data manipulation, but no formal train-
ing in programming. 18 visualization tools were surveyed from an end-
user developer perspective. The results of this survey study show that
end-user developers need better tools to create and modify custom vi-
sualizations. A closer collaboration between End-User Development and
Information Visualization researchers could contribute towards the de-
velopment of better tools to support custom visualizations. In addition,
as empirical evaluations of these tools are lacking both research commu-
nities should focus more on this aspect. The study serves as a starting
point towards the engagement of end-user developers in visualization
development.

Keywords: End-User Development, Information Visualization, Visual-
ization Tools.

1 Introduction

Information Visualization attempts to reduce the time and the mental effort
users need to analyze large datasets by visually presenting abstract data (e.g.
medical information such as patient name, age, treatment, dose, intake, etc) that
“has no inherent mapping to space” [1]. Unlike scientific visualization such as
radiology, in information visualization there is no spatial correspondence between
the physical information and the conceptual domain. Information Visualization
is an important topic in many domains: clinicians want a complete picture of
patient data; project managers need to obtain an overview and identify the
bottlenecks in a project; database analysts look for visualizations that can locate
trends in large datasets. Traditionally, visualization development is collaboration
between domain experts and professional programmers. Both parties spend time
and resources to design a good visualization. Usually, there are communication
problems between users and programmers [2]; users have the domain knowledge

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 104–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



End-User Development of Information Visualization 105

but no programming skills, while programmers do not have the domain expertise.
Consequently, the process may require time and resources. From a management
perspective, this collaboration can become very expensive. One solution to this
problem would be to allow different domain users to construct visualizations.
As a result, the cost would be significantly reduced, and better visualizations
would be developed as users know their own domain-specific analytical needs
and demands better.

In the last decade, a new research discipline has emerged, called End-User
Development (EUD). EUD has its roots from the field of End-User Programming
[3–5]. However, EUD is not limited to programming [6] and the main goal of EUD
is to empower end-user developers – users who “may have little or no formal
training or experience in programming” [7]– create, modify and extend software
artifacts, and as a result gain more control over their applications by engaging
them in the development process [8]. In 1995, Boehm et al. [9] estimated that
by 2005, there would be 55 million end-user developers in the United States. In
2005, Scaffidi et al. [10] used and improved Boehm’s method to estimate that
in 2012 there will be 90 million end-user developers. They predicted that 55
million will be users of spreadsheets or databases. Some of end-user developers
are: system administrators, interaction designers, teachers, accountants, health
care workers, managers, etc.

This paper investigates End-User Development of Information Visualizations.
More specifically, it investigates how end-user developers can create visualiza-
tions with existing visualization tools. We selected 18 Information Visualization
tools form research and industry. The results of this study showed that end-user
developers need more and better tools to create visualizations. Furthermore, the
results of this study serve as a starting point in introducing End-User Develop-
ment of Information Visualization. Also, the study aims at driving the attention
of both communities towards research paths that may lead to the discovery of
new development approach for end-user developers.

The remaining of this paper is structured as follows. Section 2 and 3 provide
a summary of End-User Development and Information Visualization. Section 4
discusses the importance of users in visualization development. Section 5 presents
a brief summary of 18 development tools from Information Visualization field
focusing on how end-user developers can create visualizations. The paper con-
cludes with a discussion of the limitations of the study and conclusions.

2 End-User Development

The End-User Development (EUD) field is a new research discipline, which has
emerged from research in Human-Computer Interaction, Cognitive Science, Re-
quirements Engineering, Software Engineering, CSCW, Artificial Intelligence,
Information Systems, and the Psychology of Programming [11]. As a relatively
young discipline, the field is not mature enough when it comes to definition,
terminology, approaches and subject areas [11]. However, Lieberman et al. [8]
defines EUD as “a set of methods, techniques, and tools that allow users of soft-
ware systems, who are acting as non-professional software developers, at some



106 K. Pantazos, S. Lauesen, and R. Vatrapu

point create, modify and extend a software artifact”. Consequently, end-user
developers are not professional programmers, but users who “may have little
or no formal training or experience in programming” [7]. EUD aims at better
users efficiency and effectiveness as it allows users ”to develop and evolve their
computer based working tools to support their specific tasks in an efficient way”
[12]. Therefore, the main goal of EUD is to empower these users create, mod-
ify and extend software artifacts, and as a result gain more control over their
applications by engaging them in development.

EUD takes a broader perspective than End-User Programming because it is
not limited to programming when it comes to adjust application to users’ needs
[6]. Lieberman et al. [8] defines two types of end-user activities: parametrization
or customization (activities that allow end-users to parametrize or customize
their applications using the available presentations or interactive mechanisms)
and program creation and modification (activities that allow end-users to cre-
ate or modify software artifacts). In order to support these types of end-user
activities, the system should be flexible and expressive enough to changes (e.g.
set parameters, compose objects, etc.) [8]. Simple changes are not difficult, but
things become more complicated as the level of complexity for a change increases.
MacLean et al. [13] suggested a “gentle slope” to reduce the level of complexity
and support changes on different levels. However, in cases of extensive change
actions a programming language should be used [13]. EUD does not focus only
on how to support end-users create an application, but also focuses on the use
and adaption of the application in existing environments [14]. The second means
customizing, configuring and tailoring a application, but not direct changes in
the source code [15]. Customizing, configuring and tailoring are performed be-
yond the stage of creating a new application, and take place after the application
is implemented within its organizational infrastructure. Bolmsten and Dittrich
[12] presented two case-studies and discussed the challenges that infrastructure
context poses to EUD. In this study, we primarily focus on program creation
and modification.

As there is not an EUD taxonomy which categorizes development techniques
for end-user developers, several techniques developed from the psychology of
programming are inherited, and some of the main techniques useful for end-user
developers are [6]: Scripting Language, Visual Programming, Spreadsheet and
Programming by Example.

Rode et al. [16] investigated EUD of web application. Their study showed
that web development tools focus more at supporting developers with a wide
range of functionalities, and less attention is paid to ease-of-use. Further, the
authors say that ideally a web development tool “would provide ease-of-use with
the appropriate abstractions, absence of jargon, a library of examples and tem-
plates, wizards for complicated tasks and take a holistic approach by integrating
all aspects of web development” [16]. Investigating how end-users think may
help in designing better tools. Similar to this study, we investigate visualization
development tools.



End-User Development of Information Visualization 107

3 Information Visualization

Information visualization (InfoVis) enhances human cognition by visually pre-
senting abstract data and revealing patterns, trends and outliers [1]. The InfoVis
field has enabled development of visualization systems that enhance human cog-
nitive processes by visually presenting abstract data [1]. Although, the InfoVis
field emerged during the 1980’s with the availability of computers, InfoVis ev-
idence can be tracked long before. Florence Nightingale’s diagram designed in
1858 shows the death rates in the hospital of Scutari, and how the rates reduce
by the changes introduced by nurse Florence Nightingale [17]. Thus visualiza-
tions (when designed by a domain expert) allows viewers to get a clear picture
of the situation, and derive results without any detailed explanation.

The InfoVis community has done considerable work in order to develop the
field into a mature discipline. Shneiderman [18] presented a task by data type
taxonomy for InfoVis. This popular taxonomy classifies visualization data types
(1D Linear, 2D Map, multidimensional, temporal, tree and network) and iden-
tifies the tasks (overview, zoom, filter, details-on-demand, relate, history and
extract) that have to be supported. The reference InfoVis model described by
Card et al. [1] highlights end-user interactions, and it consists of three steps:
(1) Data Transformations : convert the raw data to data tables; (2) Visual Map-
pings : convert the data tables into visual objects; (3) View Transformations :
transform visual objects into views by means of visual objects properties. The
first step is mainly related with data, while the last two have a direct impact on
the visual form.

Several visualizations have been developed to present data. LifeLines [19] is
an interactive visualization that presents an overview of a patient’s medical
record. LifeLines 2 [20] and LifeFlow [21] are two other examples of temporal
data. Aigner et al. [22] provide an overview of 101 visualizations techniques
for temporal data. Among them are Arc Diagrams, Circel View, Circos, Flow
Map, Prespective Wall, TimeTree, etc. Many of them have been developed in
close collaboration with domain experts. This collaboration has contributed in
producing useful visualizations.

4 Users in Visualization Development

Considering the variety of data and user tasks, it is obvious that new visual-
izations are needed. However, developing new visualizations is not an easy task.
Several InfoVis toolkits and tools [23–30] have been developed to improve visu-
alization development and provide better presentation of data. Providing good
data visualization is challenging as visualization creators should have a good
understanding of the data, and then properly design representations that allow
users to accomplish tasks effectively and efficiently. This is usually a problem ac-
cording to Thomas and Cook [31], who say that: “Most visualization software is
developed with incomplete information about the data and tasks. New methods
are needed for constructing visually based systems that simplify the development
process and result in better targeted applications.”



108 K. Pantazos, S. Lauesen, and R. Vatrapu

To facilitate the visualization development process and ensure that visual-
izations provide complete information about the data and tasks, several In-
foVis applications (e.g. [19, 32–34]) have been developed applying the user-
centered method, where users participated during the entire development pro-
cess. Norman[35] and Nielsen[36] describe user-centered design as the early and
continuous involvement of end-users in the design and development process.
Considerable work has been conducted by Slocum et al. [32], Robinson et al.
[33], Roth et al. [34], and Koh et al. [2] to define the activities applied in the
user-centered model for the design and implementation of InfoVis tools. For ex-
ample, Robinson et al. [33] describe a six-stage user-center design process (work
domain analysis, conceptual development, prototyping, interaction and usability
studies, implementation, and debugging) where users are involved and provide
input in each stage. Using this model [33], Roth et al. [34] present a modified
user-centered design approach, which starts with prototyping, followed by in-
teraction and usability studies, work domain analysis, conceptual development,
implementation and ends with debugging. Although, the user-centered model
helps producing better visualizations, still it is challenging to bridge the gap of
knowledge between end-users and programmers. This gap can influence commu-
nication and create challenges such as: programmers should understand end-user
needs, end-users should gain some knowledge regarding InfoVis, end-users should
be devoted and actively participate in the process, etc. In their study Koh et
al. [2] experienced similar challenges where simple users where more interested
in the tool than on questions about their tasks and data. Also, when they tried
the tool they found it limited compared to the prototypes defined during the
process. The authors [2] suggested that an iterative approach may address these
issues.

Although a user-centered method is a successful approach, researchers envis-
age approaches to facilitate visualization development and assure that visual-
izations provide complete information about the data and tasks. Aigner et al.
[37] discuss how to support user-centered visual analysis that consists of three
factors: the visualization, the analysis, and the user. They suggest that future
research should focus on these three factors and lead to the convergence of user-
centered visual analysis. Their vision matches the universal usability challenge
defined by Plaisant [38]. According to Plaisant [38] visualization tools should
be accessible to diverse users that do not have the same background, technical
knowledge, or personal abilities. Other InfoVis researchers seek ways of introduc-
ing new audiences in InfoVis. Heer et al. [39] say that designing visualizations
is not an easy task for users, but “we have to provide them tools that make it
easy to create and deploy visualizations of their datasets” [39].

5 InfoVis Development Tools - A Survey

The purpose of this survey is to investigate how end-user developers are sup-
ported by InfoVis tools in visualization development. To the best of our knowl-
edge, no prior study has looked at EUD of InfoVis. The results of this survey



End-User Development of Information Visualization 109

may serve as a starting point towards the engagement of end-user developers
in visualization development. Before we present the tools, we describe the tool
selection process and how the tools were assessed. The purpose of this study
is not to analyze and compare implementation details, but to investigate the
way end-user developers construct visualizations. For a deeper understanding of
implementation details we encourage readers to refer to the references.

5.1 Analysis Approach

We used two professional and popular sources to find InfoVis tools and toolkits:
the ACM Portal and the IEEE website. We searched for related work by com-
bining these keywords: “information visualization”, “tool”, “toolkits”, “graph-
ical user interface”. Initially, we ranked the results based on the total number
of citations, and then we selected only the most relevant ones by reading the
abstracts. Next, we read all the papers and selected the most appropriate tools
and toolkits. They are: APT [40], SAGE & SageBrush [41–43], DEVise [44, 45],
The InfoVis Toolkit [23], GeoVISTA Studio [46], Piccolo [47], Improvise [48],
Prefuse [24], Protovis and ProtoViewer [49, 50], and Data-Driven Documents
(D3) [25]. During the process of reviewing the existing literature, we identified
two more tools from research that were relevant to the investigation and decided
to include them in the analysis, because of their popularity and approach. They
are: Processing [51] and Flare [29]. In total, we selected 12 tools from the re-
search area. As we were reviewing the existing literature, we also found several
industry tools that we decided to use. At the end we selected six popular tools:
Spotfire [26], Tableau [27], Omniscope [28], MS Excel [30], Google Chart Tools
[52] and Many Eyes [53]. In total, we chose only 18 tools and toolkits and we
believe that the selected ones are a good sample that represents the wide-range
of InfoVis tools from research and industry.

In this study, we investigated how end-user developers can construct visualiza-
tions with existing development tools. We conducted our tool analysis focusing
on three main questions:

1. Can end-user developers create and modify a visualization?
2. How do end-user developers create and modify visualizations with a tool; Do

they specify language specifications (e.g. Java, JavaScript, etc.), use wizards
or drag-and-drop actions?

3. Can tools support development of predefined and custom (not-predefined)
visualizations? A predefined visualization, for instance a bar chart in MS
Excel, uses a chart where only a few visual attributes can be assigned to
data. While LifeLines [19], a custom visualization, combines bars, triangles,
labels, etc., into a complex visualization.

Investigating these questions will provide an overview of the current status of
InfoVis development tools and reveal their accessibility to end-user developers.
The assessment of the tools from academia is based on the published papers. The
commercial tools were assessed using the trial or the full versions, and informa-
tion from their websites. A full-fledged usability study is currently scheduled for
Fall 2013 and will be reported in subsequent publications.



110 K. Pantazos, S. Lauesen, and R. Vatrapu

5.2 Tools and Toolkits

In this section, we briefly describe the selected tools. First, we present InfoVis
tools and toolkits from research, and then the ones from industry.

APT (A Presentation Tool) [40] is one of the earliest tools that automatically
creates effective graphical presentation of relational data. Presentations are gen-
erated in a linear model where data are extracted, synthesized and then the tool
handles the rendering process to create the final output. Users of APT use prede-
fined visual objects (e.g. bar charts, scatter plots or connected graphs) and write
their graphical specifications (sentences of a graphical language that has exact
syntax and semantics), and the tool creates the graphical presentation. The vi-
sual mapping is defined through APT specifications and automatically handled
by the tool. Probably, end-user developers, would be able to specify graphical
designs, but still they cannot create visualizations other than the supported ones.

SAGE & SageBrush: Early 1990’s, Roth and Mattis [41] presented SAGE,
“an intelligent system which assumes presentation responsibilities for other sys-
tems by automatically creating graphical displays which presents the results
they generate” [41]. This tool uses graphical techniques to express the applica-
tion data characteristics and fulfill the presentation needs. Users of SAGE query
the database, and the result is used by SAGE. Based on the data, SAGE au-
tomatically defines the visual mappings and generates the visualization. After
a presentation is generated, users can adjust the visual mappings of the auto-
generated visualization by setting layout constraints for the data. SAGE can
probably be used by end-user developers.

SAGE was extended with an interactive design tool called SageBrush [42, 43].
SageBrush aims at removing the complexity introduced by SAGE representations
and operations [43]. It allows users to sketch by dragging and dropping primitives
or partial controls from a palette. The sketches are used by SAGE to create a
visualization. SageBrush facilitates visualization development and can be used
by end-user developers. They can create predefined and custom visualizations
with drag-and-drop actions.

DEVise [44, 45] allows users to create visualizations by creating, modifying or
connecting visual objects. DEVise maps the data to visual objects and displays
them in a view. At the end, the view uses the data and visual filters to draw
the result in a window. DEVise users use a step-by-step approach to create
visualizations: select an input, choose a file type for the input file, select an
existing mapping or define a new mapping using tcl language expressions [54],
select a view to display the data, select initial values for the visual filter, and
finally select a window to display the view. In DEVise, end-user developers can
create custom visualizations by combining and linking visual objects using the
predefined visual mappings. In order to create new visual mappings, they have
to use the tlc language. The authors says that DEVise is a powerful exploration



End-User Development of Information Visualization 111

framework, “but to appreciate this power fully, one must work with the system
or at least look at several applications in some details” [45].

Processing was developed initially “to teach fundamentals of computer pro-
gramming within a visual context” to newcomers, but it has grown into a more
complete tool for constructing images, animations and interactions [51]. Pro-
cessing has a development environment similar to a regular one. Programmers
specify visual mappings by writing code in the code editor. They view the visu-
alization in a new window after having executed the code. To create predefined
and custom visualization, users have to know a programming language called
Processing. This tool cannot be used by end-user developers via direct manipu-
lation in the WYSIWYG (What You See Is What You Get) paradigm.

GeoVISTA Studio is a development environment designed to support geosci-
entific data analysis and visualizations [46]. It is built in Java and uses JavaBeans
technology. A visualization in GeoVISTA Studio is composed by connecting vi-
sual objects (implemented as Java beans components). GeoVISTA Studio con-
sists of three windows: the Main window shows the menus and JavaBeans visual
object palette; the Design window where visual objects are placed and connected;
the Graphical User Interface (GUI) window shows “live” the output of the used
beans. Programmers can use the Property Editor to customize the appearance
and behavior of a visual object. The application programmers (probably end-
user developers) are the main users of the Studio, and they follow the following
steps to construct an application: list the requirements, select the appropriate vi-
sual objects from the palette menu (new visual objects can be developed outside
of the Studio and imported), place visual objects in the Design, link the visual
objects to meet the requirements, customize a visual object using the Property
Editor, and test the design in the GUI.

The InfoVis Toolkit [23] is a Java based visualization toolkit that uses several
interactive controls to construct visualizations. This toolkit allows programmers
to program visualizations. It allows programmers to extend the toolkit with
new controls and to integrate visualization techniques into interactive applica-
tions. However, creating visualizations requires experienced programmers. Con-
sequently, this toolkit is not appropriate for end-user developers.

Piccolo [47] is mainly used for developing graphical applications with rich user
interfaces. It is developed in Java and C# and supports the development of
visualizations indirectly, as it does not support visualization techniques [24].
Nevertheless, novel visualizations are based on this toolkit. Programmers can
create visualizations in Java or C# and use visualization functionality and con-
trols, such as zooming, animation and range slider. This toolkit can be used only
by programmers, and the fact that it does not support visualization techniques
directly, makes it challenging even for them. End-user developers cannot use this
tool.



112 K. Pantazos, S. Lauesen, and R. Vatrapu

Improvise [48] is a visualization toolkit for creating multi-view coordination vi-
sualizations for relational data. It is written in Java. Visualizations are created by
specifying expressions for simple shared-object coordination mechanism. Shared-
objects in Improvise, which are responsible for visual mappings, are graphical
attributes such as color, font, etc. Improvise has a specialized development envi-
ronment where users apply a step-by-step approach interacting with four editors
and creating views by adding frames, controls, defining variables and attaching
data using the lexicon work area (a central repository where information related
to the data and database are saved). Users of Improvise can construct visu-
alizations based on the predefined controls. Programmers create visualizations
by specifying expressions for simple shared-object coordination mechanism. Al-
though we believe that Improvise can be used by end-user developers, this has
not been empirically evaluated.

Prefuse [24] is another toolkit developed in Java. Visualizations in Prefuse are
programmed in Java. Programmers construct them using a set of fine-grained
building blocks and specifying operators that define the layout and behavior of
these blocks. The purpose of this tool is to facilitate programmers’ work, but
end-user developers cannot use this toolkit.

Flare [29] is a successor of Prefuse [24], but is written in ActionScript. Flare sup-
ports programmers develop visualizations. To construct visualizations, program-
mers specify in ActionScript the properties of the visual objects and sequential
commands. Programmers can also define new operators and visual objects, but
advanced programming knowledge is required. Flare cannot be used by end-user
developers.

Protovis & ProtoViewer: Protovis [49] is implemented in JavaScript and
helps programmers construct visualizations using a domain specific language.
They can combine primitive visual objects, called marks, bind them to data,
and specify visual properties. Programmers can create visualizations by specify-
ing Protovis specifications. The authors of Protovis have compared the specifica-
tions for a simple pie chart in Protovis, Processing and Flare, showing that the
visualization in Protovis is specified in fewer lines of code [49]. This shows the
simplicity of Protovis language, which has a high potential of engaging end-user
developers in visualization development. Although we believe that Protovis can
be used by end-user developers, there is no empirical evidence that proves it.

ProtoViewer [50] extends Protovis with a development environment. The
screen is divided in three parts: Data, Design and Code. Programmers choose
a dataset, select a visualization template and automatically the code is shown
in the Code editor. They execute the code to view the results in the Design.
Programmers can either use predefined visualization templates, and the code is
automatically shown in the Code editor, or start from scratch and write Pro-
tovis specifications to specify controls. Constructing custom visualizations by
end-user developers in Protovis becomes even more realistic by means of its



End-User Development of Information Visualization 113

development environment – ProtoViewer. However, neither Protovis nor Pro-
toViewer has been evaluated with end-user developers.

Data-Driven Documents (D3) [25] is a successor of Protovis [49]. Visualiza-
tions are constructed using SVG, HTML 5 and CSS. In D3 the data transfor-
mation, the immediate evaluation and the browser’s native representation are
handled in more effective and transparent way than Protovis, which uses more
succinct specification for static presentations [25]. However, these improvements
introduce an overhead for users: the knowledge of SVG, HTML 5 and CSS. This
toolkit is not suitable for end-user developers as it requires advanced program-
ming skills.

MS Excel [30] is a spreadsheet program that allows end-user developers to
analyze and visualize data. With simple steps, end-user developers can construct
visualizations based on predefined visualization templates (e.g. bar chart, pie
chart, etc.) They select a visualization template (e.g. bar-chart) and specify
spreadsheet formulas or use standard wizards to map the data to the visual
object in the worksheet area. In MS Excel, visual mappings are limited and
end-user developers can set only predefined visual properties.

Tableau [27] is a commercial visualization tool, a successor of Polaris [55] de-
veloped at Stanford University. Tableau allows end-user developers to construct
visualizations by dragging and dropping fields onto axis shelves (vertical and
horizontal areas) and using visual specifications. This tool provides drag-and-
drop features and several wizards to facilitate development. Further, it has a
powerful interactive development environment where end-user developers can
interact, filter, sort data and create interactive dashboards. Tableau is a “black
box” system and constructing visualizations other than the predefined ones is
not possible.

Spotfire [26] is another commercial tool for data visualizations. It supports end-
user developers with a number of visualization techniques. End-user developers
interact with the development environment and construct visualizations based on
predefined ones. Once they select the data and choose a visualization template,
the tool automatically generates the visualization. Users can sort, filter and re-
arrange data by simply dragging and dropping fields in the design area. Users
can also create dashboards, by combining different predefined visualizations (e.g.
bar chart, scatter plot, etc.) in a single screen. As in Tableau, end-user developers
can only create predefined visualizations.

Omniscope [28] is in the same category as Tableau and Spotfire, and shares
similar features such as interactive dashboard, drag and drop features, etc. It
supports end-user developers in constructing predefined visualizations, as Spot-
fire and Tableau do. Custom visualizations cannot be constructed with this tool.



114 K. Pantazos, S. Lauesen, and R. Vatrapu

Google Chart Tools [52] is a library written in JavaScript that provides sev-
eral predefined simple (line chart, scatter chart, etc.) and advanced chart types
(Image multi-color bar chart, Motion Chart Time Formats, etc.) Visualizations
can be constructed by end-user developers in the web-based development envi-
ronment named Code Playground. In addition, Google Chart Tools has another
environment named Live Chart Playground, to test charts already created in the
Code Playground. In Live Chart Playground, end-user developers can change
some parameters and see how the visualization changes. End-user developers
are limited to predefined visualizations.

Many Eyes [53], developed at IBM Research Center, is a web-based visual-
ization platform that can be used by end-user developers. In Many Eyes, vi-
sualizations are implemented in Java Applets. End-user developers construct
visualizations in three steps: upload a dataset; choose a visualization template;
customize and publish the visualization. Many Eyes automatically generates and
shows the visualization on the screen. Custom visualizations are not supported.

Results

In this study, we surveyed 18 visualization tools from an end-user developer
perspective. Based on published papers and subjective evaluation of the selected
the tools, we found 12 InfoVis tools that have the potential to be used by end-user
developers. 11 tools allow end-user developers to construct visualizations with a
programming language (e.g. Java, ActionScript, JavaScript, etc.), and six with
a wizard or drag-and-drop actions. Furthermore, 11 tools support development
of predefined and custom (not predefined) visualizations, but only five of them
can be used by end-user developers. Figure 1 provides an overview of the results.

There is a tendency that researchers mainly focus on developing visualiza-
tion tools that allows users to construct predefined and custom visualizations,
but users need advanced programming skills. End-user developers would not be
able to benefit from these tools. Some examples are: Prefuse, Flare, D3, etc. On
the other hand, industry produce visualization tools for large audiences without
advanced programming skills, but at the same time limit them with predefined
visualization templates. Although both communities can benefit from the en-
gagement of end-user developers in constructing custom visualizations, they are
overlooked. Only five visualization tools (SAGE/SageBrush, DEVise, GeoVISTA
Studio, Improvise and Protovis/ Protoviewer) may support them in construct-
ing visualizations other than predefined. To the best of our knowledge, none of
the selected tools were empirically evaluated with potential users. As a result, it
remains debatable if the five tools can support end-user developers in visualiza-
tion development. This indicates that InfoVis community has to focus more on
evaluation of development tools with users. In addition, a future collaboration
between EUD and InfoVis researcher may address this issue and lead to better
tools for the advancement of both communities.

The results also show that commercial tool provide interactive development
environments where users can use wizard and/or drag-and-drop actions. These



End-User Development of Information Visualization 115

Tools
End User
Developer

Visualization
Development

Predefined
Visualizations

Custom
Visualizations

Processing Programming Language x x

InfoVis Toolkit Programming Language x x

Piccolo Programming Language x x

Improvise x Programming Language x x

Prefuse Programming Language x x

Flare Programming Language x x

D3 Programming Language x x

SAGE / SageBrush x
Programming Language &
Drag and Drop Approach

x x

Protovis / Protoviewer x
Programming Language &

Wizard Approach
x x

GeoVISTA Studio x
Wizard & Drag and Drop

Approach
x x

DEVise x Wizard Approach x x

ATP
x Programming Language x

Google Chart Tools
x Programming Language x

Tableau x
Wizard & Drag and Drop

Approach
x

Spotfire x
Wizard & Drag and Drop

Approach
x

Omniscope x
Wizard & Drag and Drop

Approach
x

MS Excel x Wizard Approach x

Many Eyes x Wizard Approach x

18 11

Predefined
Visualizations

Custom
Visualizations

12
6

End user
developers

Programmers

a. b. 9
5 4

Programming
Language

Drag and Drop
Approach

Wizard
Approach

c.b.

Fig. 1. 18 InfoVis surveyed from an end-user developer perspective. Classification by:
a. end-user developer and programmers, b. predefined and custom visualizations, and
c. visualization development approach.

environments aim at handling the gulf of execution (How do I do something?)
and evaluation (What happened?) identified by Norman [35] by allowing users
to easily map data to visual objects and obtain immediate feedback.

Custom visualizations in Prefuse, InfoVis Toolkit, D3, Flare, Processing and
Picolo are created and modified through code. This makes them less accessible
to end-user developers. Improvise and DEVise use a step-by-step approach to
lower the barriers to development introduced by code and become accessible by
end-user developers. While, SageBrush and GeoVISTA Studio take a different
approach. Similar to commercial tools, in these two tools, end-user developers
interact with visual components using drag-and-drop actions.

6 Limitations

This study investigates 18 visualization development tools. Instead of all existing
InfoVis tools, we decided to include only 18 tools as that are representative of
the InfoVis field and that have contributed significantly to it.

To identify InfoVis tools we searched two popular and comprehensive pro-
fessional sources IEEE and ACM. InfoVis tools published in other sources such



116 K. Pantazos, S. Lauesen, and R. Vatrapu

as Springer, Elsevier, Sage, etc., were not included. As a result, the findings of
this study may be debatable as there might be other tools published in these
sources for end-user developers. Another limitation of the selection is that we
investigated tools published before 2012.

Our investigation was based on the published papers and subjective evaluation
of the selected the tools. However, we do not have the knowledge that authors of
these tools have. This should have facilitated the analysis process. Furthermore, a
task-based evaluation with end-user developers would have enriched the results of
this study, which, however, provides a first orientation towards what tools might
be suitable for visualization development. Also, this study does not investigate
visualization and interaction techniques a tool may support.

7 Conclusion

This paper presents a study that investigates EUD of InfoVis. We investigated
how existing InfoVis tools can support end-user developers create and modify
visualizations. The results of this study indicate that EUD and InfoVis commu-
nity has to focus more on developing new approaches and tools to allow end-user
developers create visualizations other than the predefined ones. Supporting them
with more tools that provide direct manipulation, immediate feedback may be a
potential research path. Furthermore, the study provides a high-level overview of
the available visualization tools, which may facilitate the tool selection process
for new audiences.

To the best of our knowledge, no tool has been empirically evaluated with
users. Therefore, both research communities should collaborate more on this
aspect in order to better address the ease-of-use and understand what makes vi-
sualization tool popular for end-user developers. In this respect, we are planning
to conduct task-based usability studies and evaluate InfoVis tools with end-user
developers.

References

1. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in information visu-
alization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

2. Koh, L.C., Slingsby, A., Dykes, J., Kam, T.S.: Developing and applying a user-
centered model for the design and implementation of information visualiza-
tion tools. In: 2011 15th International Conference on Information Visualisation,
pp. 90–95 (2011)

3. Nardi, B.A.: A small matter of programming: perspectives on end user computing.
MIT Press, Cambridge (1993)

4. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A. (eds.): Watch what I do: programming by demonstration.
MIT Press, Cambridge (1993)

5. Lieberman, H.: Your wish is my command: programming by example. Morgan
Kaufmann Publishers Inc., San Francisco (2001)



End-User Development of Information Visualization 117

6. Lieberman, H., Paternò, F., Wulf, V.: End User Development (Human-Computer
Interaction Series). Springer-Verlag New York, Inc., Secaucus (2006)

7. Pane, J., Myers, B.: More natural programming languages and environments.
In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development. Human-
Computer Interaction Series, vol. 9, pp. 31–50. Springer, Netherlands (2006)

8. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-user development: An emerg-
ing paradigm. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Develop-
ment. Human-Computer Interaction Series, vol. 9, pp. 1–8. Springer, Netherlands
(2006)

9. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost
models for future software life cycle processes: Cocomo 2.0. Annals of Software
Engineering, 57–94 (1995)

10. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user
programmers. In: Proceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, VLHCC 2005, pp. 207–214. IEEE Computer So-
ciety, Washington, DC (2005)

11. Klann, M., Paternò, F., Wulf, V.: Future perspectives in end-user development.
In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development. Human-
Computer Interaction Series, vol. 9, pp. 475–486. Springer, Netherlands (2006)

12. Bolmsten, J., Dittrich, Y.: Infrastructuring when you don’t – end-user develop-
ment and organizational infrastructure. In: Costabile, M.F., Dittrich, Y., Fischer,
G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 139–154. Springer,
Heidelberg (2011)

13. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: press-
ing the issues with buttons. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 1990, pp. 175–182. ACM, New York (1990)

14. Dittrich, Y., Lindeberg, O., Lundberg, L.: End-user development as adaptive main-
tenance. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development.
Human-Computer Interaction Series, vol. 9, pp. 295–313. Springer, Netherlands
(2006)

15. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaf-
fidi, C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G.,
Shaw, M., Wiedenbeck, S.: The state of the art in end-user software engineering.
ACM Comput. Surv. 43(3), 21:1–21:44 (2011)

16. Rode, J., Rosson, M.B., Quinones, M.A.P.: End user development of web appli-
cations. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development.
Human-Computer Interaction Series, vol. 9. Springer, Netherlands (2006)

17. Spence, R.: Information Visualization: Design for Interaction, 2nd edn. Prentice-
Hall, Inc., Upper Saddle River (2007)

18. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information
visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages,
VL 1996, pp. 336–343. IEEE Computer Society, Washington, DC (1996)

19. Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., Shneiderman, B., Colorado,
K.P.: Lifelines: Using visualization to enhance navigation and analysis of patient
records. In: Proceedings of the 1998 American Medical Informatic Association An-
nual Fall Symposium, pp. 76–80 (1998)

20. Wang, T.D., Plaisant, C., Quinn, A.J., Stanchak, R., Murphy, S., Shneiderman,
B.: Aligning temporal data by sentinel events: discovering patterns in electronic
health records. In: Proceedings of the Twenty-Sixth Annual SIGCHI Conference
on Human Factors in Computing Systems, CHI 2008, pp. 457–466. ACM (2008)



118 K. Pantazos, S. Lauesen, and R. Vatrapu

21. Wongsuphasawat, K., Guerra Gómez, J.A., Plaisant, C., Wang, T.D., Taieb-
Maimon, M., Shneiderman, B.: Lifeflow: visualizing an overview of event sequences.
In: Proceedings of the 2011 Annual Conference on Human Factors in Computing
Systems, CHI 2011, pp. 1747–1756. ACM (2011)

22. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-
Oriented Data, 1st edn. Springer Publishing Company, Incorporated (2011)

23. Fekete, J.D.: The infovis toolkit. In: Proceedings of the IEEE Symposium on In-
formation Vizualization 2004, pp. 167–174 (2004)

24. Heer, J., Card, S.K., Landay, J.A.: prefuse: a toolkit for interactive information
visualization. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2005, pp. 421–430. ACM (2005)

25. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Transac-
tions on Visualization and Computer Graphics 17(12), 2301–2309 (2011)

26. Spotfire, http://spotfire.tibco.com/ (accessed August 2011)
27. Tableau, http://www.tableausoftware.com/ (accessed August 2011)
28. Omniscope, http://www.visokio.com/ (accessed August 2011)
29. Flare, http://flare.prefuse.org/ (accessed August 2011)
30. Microsoft Excel, http://office.microsoft.com/en-us/excel/ (accessed August

2011)
31. Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Comput. Graph.

Appl. 26(1), 10–13 (2006)
32. Slocum, T.A., Cliburn, D.C., Feddema, J.J., Miller, J.R.: Evaluating the Usability

of a Tool for Visualizing the Uncertainty of the Future Global Water Balance.
Cartography and Geographic Information Science, 299–317 (October 2003)

33. Robinson, A.C., Chen, J., Lengerich, E.J., Meyer, H.G., MacEachren, A.M.: Com-
bining usability techniques to design geovisualization tools for epidemiology. Car-
tography and Geographic Information Science 32(4), 243–255 (2005)

34. Roth, R., Ross, K., Finch, B., Luo, W., MacEachren, A.: A user-centered approach
for designing and developing spatiotemporal crime analysis tools. In: GIScience
2010 (2010)

35. Norman, D.A.: The Design of Everyday Things. Doubleday Business (1990)
36. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-

cisco (1993)
37. Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visual methods

for analyzing time-oriented data (January 2008)
38. Plaisant, C.: The challenge of information visualization evaluation. In: Proceedings

of the Working Conference on Advanced Visual Interfaces, AVI 2004, pp. 109–116.
ACM (2004)

39. Heer, J., van Ham, F., Carpendale, S., Weaver, C., Isenberg, P.: Creation and
collaboration: Engaging new audiences for information visualization. In: Kerren,
A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS,
vol. 4950, pp. 92–133. Springer, Heidelberg (2008)

40. Mackinlay, J.: Automating the design of graphical presentations of relational in-
formation. ACM Trans. Graph. 5(2), 110–141 (1986)

41. Roth, S.F., Mattis, J.: Automating the presentation of information (1991)
42. Roth, S.F., Kolojejchick, J., Mattis, J., Chuah, M.C.: Sagetools: an intelligent en-

vironment for sketching, browsing, and customizing data-graphics. In: Conference
Companion on Human Factors in Computing Systems, CHI 1995, pp. 409–410.
ACM (1995)

43. Chuah, M.C., Roth, S.F., Kerpedjiev, S.: Intelligent multimedia information re-
trieval, pp. 83–111. MIT Press (1997)

http://spotfire.tibco.com/
http://www.tableausoftware.com/
http://www.visokio.com/
http://flare.prefuse.org/
http://office.microsoft.com/en-us/excel/


End-User Development of Information Visualization 119

44. Cheng, M., Livny, M., Ramakrishnan, R.: Visual analysis of stream data. In: Pro-
ceedings of SPIE/The International Society for Optical Engineering, vol. 2410,
pp. 108–119 (1995)

45. Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Donjerkovic, D., Lawande, S.,
Myllymaki, J., Wenger, K.: Devise: integrated querying and visual exploration of
large datasets. In: Proceedings of the 1997 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 1997, pp. 301–312. ACM (1997)

46. Takatsuka, M., Gahegan, M.: Geovista studio: a codeless visual programming envi-
ronment for geoscientific data analysis and visualization. Comput. Geosci. 28(10),
1131–1144 (2002)

47. Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit design for interactive structured
graphics. IEEE Trans. Softw. Eng. 30, 535–546 (2004)

48. Weaver, C.: Building highly-coordinated visualizations in improvise. In: Proceed-
ings of the IEEE Symposium on Information Visualization, pp. 159–166. IEEE
Computer Society (2004)

49. Bostock, M., Heer, J.: Protovis: A graphical toolkit for visualization. IEEE Trans-
actions on Visualization and Computer Graphics 15(6), 1121–1128 (2009)

50. Akasaka, R.: Protoviewer: a web-based visual design environment for protovis. In:
ACM SIGGRAPH 2011 Posters, SIGGRAPH 2011, p. 85:1. ACM (2011)

51. Processing, http://www.processing.com/ (accessed August 2011)
52. GOOGLE CHART TOOLS, http://code.google.com/apis/chart/ (accessed

October 2011)
53. Viegas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: Manyeyes:

a site for visualization at internet scale. IEEE Transactions on Visualization and
Computer Graphics 13, 1121–1128 (2007)

54. Welch, B.B.: Practical programming in Tcl and Tk, 2nd edn. Prentice-Hall, Inc.,
Upper Saddle River (1997)

55. Stolte, C., Hanrahan, P.: Polaris: a system for query, analysis and visualization
of multi-dimensional relational databases. In: IEEE Symposium on Information
Visualization, InfoVis 2000, pp. 5–14 (2000)

http://www.processing.com/
http://code.google.com/apis/chart/

	End-User Development 
of Information Visualization
	1 Introduction
	2 End-User Development
	3 Information Visualization
	4 Users in Visualization Development
	5 InfoVis Development Tools - A Survey
	5.1 Analysis Approach
	5.2 Tools and Toolkits

	6 Limitations
	7 Conclusion
	References




