
Using Meta-modelling for Construction
of an End-User Development Framework

Erlend Stav1, Jacqueline Floch1, Mohammad Ullah Khan2, and Rune Sætre2

1 SINTEF ICT, NO-7465 Trondheim, Norway
{Erlend.Stav,Jacqueline.Floch}@sintef.no

2 NTNU, NO-7491 Trondheim, Norway
mukhan@item.ntnu.no, satre@idi.ntnu.no

Abstract. A main activity in meta-design is the creation of design
spaces allowing problem owners to act as system developers. Meta-design
is a conceptual framework; it does not provide concrete design space solu-
tions or engineering guidelines for constructing tools that support design
spaces. This paper discusses the applicability of a model-driven engi-
neering approach for the realization of an end-user service composition
framework, in line with the conceptual meta-design framework. We re-
port our experience of using meta-modelling techniques as supported by
the Eclipse Modelling Framework (EMF) family of tools. In our work we
found that meta-models are well-suited to formalize the composition lan-
guage, and the core parts of the EMF framework are useful to represent
the language elements and user-made compositions both at design and
runtime. Although EMF-based tools exist for creating visual editors, we
found that in our case these did not map well to the visual notation we
selected for our end-users.

Keywords: End-User Development, Meta-Design, Meta-Modelling,
Model driven Engineering, Eclipse Modeling Framework.

1 Introduction

Our research starts with the vision of mobile pervasive computing, i.e. envi-
ronments where objects are becoming increasingly intelligent and provide in-
formation and services to the user when and where needed. Tailoring the user
environment to exactly what the user wants is challenging and requires a good
understanding of individual needs. While several ambient intelligence approaches
combine gathering of context and user activities with reasoning techniques to
adapt environments to users, the vision where computers act as intelligent assis-
tant ”agents” is still an unrealistic promise [1] . We propose instead to empower
the users so that they themselves can develop or adapt applications to their own
needs and tasks in mobile pervasive environments. More specifically, we seek to
develop a framework for end-user service composition. We see two main rea-
sons for selecting services as a basis for end-user development. One is technical:
the principles of the Service Oriented Architecture (SOA) are widely applied

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 72–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Meta-modelling for Construction of an EUD Framework 73

in the construction of software systems in mobile pervasive environments. SOA
supports the dynamic composition of systems from loosely coupled functional en-
tities (specified as services), which fits the needs of pervasive computing where
resources can be represented as discoverable services and dynamically added to
a system as they appear. The other reason relates to user understanding. SOA
provides a paradigm shift in the way we think of software systems. Services are
decoupled from the system realization and rather represent activities or results
(i.e. a kind of consumables). Thus services are close to a human way of thinking
in the real world, and SOA has the potential to reduce the gap between idea and
system construction also for people without IT expertise.

In order to provide support for end-user composition, we adopt a meta-design
approach [2]. Meta-design is a conceptual framework that extends the traditional
notion of system development to include users as co-designers, not only at design
time, but throughout the entire life-cycle of the system [3]. An important concern
is that the user needs are not static. The users learn while using a system, and
their needs evolve. It is therefore important to involve the users not only dur-
ing system design, but also after system deployment. Meta-design describes an
ecosystem for the collaboration between developers and users, with the seeding,
evolutionary growth and reseeding (SER) process model as a central element.
Seeds are initial system entities designed through participatory design activities
involving developers and users. Seeds can grow, i.e. evolve, following the tailor-
ing of the system by users. Finally, reseeding is about the enhancement of the
initial system to integrate changes. The concepts of meta-design fit well in the
context of end-user service composition: services map to the concept of seeds,
user extensions through service composition map to evolutionary growth, and
finally the creation of new services based on user compositions and new needs
emerging during composition map to re-seeding.

A main activity in meta-design is the creation of a design space that supports
the ecosystem for collaborative design. Meta-design is a conceptual framework.
It does not provide concrete design space solutions or engineering guidelines for
constructing tools that support design spaces. This paper discusses the appli-
cability of a model-based approach for the realisation of an engineering frame-
work for end-user service composition, in line with the conceptual meta-design
framework. We describe our approach to the development of the model-based
framework UbiSys and illustrate the usage of UbiSys for the end-user extension
of a case application. Finally we discuss our experience of using meta-modelling
techniques as well as the EMF technology.

2 Related Work

Various technical approaches have been exploited for the creation of End-User
Development (EUD) frameworks [4]. Task specific Programming Languages,
TSPLs, were advocated by Nardi [1] for two main reasons: 1) The concepts of
the language relate to the task domain and thus are easy to understand by users
familiar with the domain; 2) The language supports high-level operations related



74 E. Stav et al.

to the task domain and thus the user can express the desired system functionality
without using low-level operations. Nardi also points out two main drawbacks
of TSPLs: 1) It is expensive to build different TSPLs for different needs and
computer usages; 2) The definition of multiple languages may require the users
to learn different interfaces. In our work, we define a Domain-Specific Language
(DSL) to support the development of applications adapted to the user tasks in
mobile pervasive environments. The proposed DSL is therefore close to a TPSL.
We may benefit from the advantages of using TSPLs, but have to face similar
drawbacks. The complexity of realising a DSL-based end-user framework is one
of the main issues in our work: we investigate the application of model-driven
software engineering approaches and technologies for that purpose. Related to
the second drawback, we differentiate between the composition concepts com-
mon across several domains, e.g. sequential service execution, and the service
concepts of the application domain. In other words, we provide a single compo-
sition interface to the end users. The variation lies in the service abstractions (we
call them building blocks) that need to be parameterized during composition.

Several approaches can be applied to develop a DSL [5]. We exploit existing
techniques. A first issue is the identification of the domain concepts. Our work
has addressed three application domains: city exploration [6], mobile telecom ser-
vices [7] and mobile asset management. The separation between the composition
concepts and the application domain services is a bit similar to that introduced
in AgentSheets [8]. Although the agent-based approach of AgentSheets differs
from ours, it also supports two programming levels: a domain-oriented language
for defining the behaviour of agents, and domain-oriented agents to be used in
domain-construction kits. The former corresponds to our composition, the latter
to the building blocks.

A second issue in the development of a DSL is the design of the language itself.
Since the composition model is to be transformed to an executable program that
orchestrates the composed services, precise language semantics are important.
Precise semantics are also needed for the construction of advanced end-user
engineering tools, such as simulation and validation tools. We exploit meta-
modelling that was found to be a good tool for the specification of DSLs in
terms of expressive power, flexibility, constraints and clarity of the semantics [9].
We thereby avoid building a notation upon any existing software engineering
modelling language, e.g. UML, because their focus on software professionals is
likely to not suit non-IT experts.

Finally, a third issue is the construction of tools. To that end, we explore
model-driven engineering (MDE) frameworks. MDE is an approach to software
development where models are given a central role in the development process,
and where the models are used directly to derive implementation artefacts [10].
Meta-modelling is usually used to define the modelling language in MDE ap-
proaches. Transformations, both model-to-model and model-to-text, are used to
generate implementation artefacts. Recently, using models directly at runtime
has also received some attention from the research community [11]. While MDE
has principally been used in a professional software engineering context, [12,13]



Meta-modelling for Construction of an EUD Framework 75

are examples of work closer to our own, where MDE is applied for to the creation
of an end-user development framework.

Also related to our work, a number of end-user frameworks have newly been
launched empowering mobile users to develop mobile applications themselves, for
instance Google’s App Inventor framework1, Microsoft’s TouchDevelop2, NFC
Task Launcher3 or atooma4. As mobile devices are becoming more powerful in
terms of computing and memory resources, and touchscreen technologies facil-
itate the construction of user-friendly interfaces, we expect that mobile soft-
ware development will also get more accessible for all. Similar to the end-user
frameworks for desktop environments, the mobile frameworks currently proposed
adopt different language abstraction levels, i.e. programming vs. composition,
and different development platforms, i.e. desktop vs. mobile tools. None of them
explicitly support the extension of the framework by domain developers (i.e. the
re-seeding step in the SER model).

3 Research Approach

Our research follows the design science paradigm [14]. While behavioural-science
approaches focus mainly on the use and benefits of a system implemented in an or-
ganization, design science approaches develop and evaluate IT artefacts intended
to solve identified organizational problems. Developing such artefacts requires do-
main knowledge and justification in form of proper evaluations. Design-science
suggests an iterative work process allowing a gradual understanding of the prob-
lem to be solved and improvement of the solutions. It does not impose any concrete
research and evaluation method since choice of method depends on the nature of
the research problem and the type of the artefact being created.

The first step in our work was the specification of a set of scenarios that
illustrate the concept of end-user service composition in mobile ubiquitous en-
vironments, and their evaluation and improvement through focus groups. The
scenarios were used to: 1) elaborate the idea of end-user service composition
and understand how it is perceived by the users; 2) identify an initial set of
functionalities that users wish to create and a set of reusable services needed to
create these functionalities. The scenarios were developed for three application
domains related to the business areas of the research partners (see Section 2).

Following the specification of scenarios, our work has investigated alterna-
tive end-user notations. The notation for UbiComposer was selected to support
both mobile-based and web-based scenarios. After the initial testing of a more
complex notation through paper-prototyping, we decided to use a simple trigger-
action sequence notation for the composition and a form-based presentation for
the parameterisation of the services in a composition (see Section 5.4 for more

1 The Site for Learning and Teaching App Inventor: http://www.appinventor.org
2 TouchDevelop (Microsoft Research): https://www.touchdevelop.com
3 NFC Task Launcher available on GooglePlay: https://play.google.com
4 atooma: http://atooma.com

http://www.appinventor.org
https://www.touchdevelop.com
https://play.google.com
http://atooma.com


76 E. Stav et al.

details). While the concepts of the proposed notation are inspired from the un-
derlying concepts of visual flow languages that have proven to be successful in
a number of end-users development environments, e.g. Lego MindStorm5, the
form-based approach is widely used for the parameterisation of online services
and mobile applications. We have avoided a pure visual notation since it does
not fit the pocket-size screens of mobile environments. As we will discuss later in
this paper, the proposed UbiSys framework supports the realization of different
end-user editors, and thus different notations may be provided in the future.

The focus of this paper, though, is on the development of engineering tools for
end-user service composition. The main research problem is to find out what tools
and technologies are well suited to building service composition environments for
end users. This paper addresses the following questions:

1. How applicable is meta-modelling in the design of an engineering framework
for end-user service composition?

2. Is it feasible to realize composition environments with existing model-driven
engineering technologies, as exemplified by the Eclipse Modelling Framework
(EMF) family of tools?

3. What are the architectural implications of meta-modelling and model-driven
engineering technologies?

To answer these questions, we have prototyped and applied the service compo-
sition environment UbiSys. This paper discusses the experience we gained.

4 Overall Architecture

Figure 1 gives an overview of the UbiSys architecture, with the stakeholders in
end-user service composition that we have identified, and with the tools and arte-
facts they use and create. We distinguish between two roles for meta-designers:

1. The environment developers create the service composition framework and
the runtime environment for a specific composition approach, e.g. UbiSys.
They are meta-designers that create tools for the composition design space.

2. The domain developers create reusable software services adapted to the needs
of a particular domain, e.g. by adaptation of generic solutions. The ser-
vices are created to fit the service composition framework. For instance,
generic calendar services may be adapted to the needs of elderly people and
to UbiSys. The domain developers are meta-designers that create seeds for
composition in the design space, either as part of seeding or re-seeding steps.

These roles are motivated by the fact that creating tools for a design space
requires different skills from creating services for composition by end-users. Ac-
cording to this separation, the developers in our own research activities were
also organized in two teams: one on UbiSys and one on the City Explorer ap-
plication example (see Section 6). In that way, we were able to identify initial
difficulties that domain developers may face when taking the tools in use. Beyond
developers, we also define two roles for the users:
5 LEGO MINDSTORMS: http://mindstorms.lego.com

http://mindstorms.lego.com


Meta-modelling for Construction of an EUD Framework 77

 
UbiSys 

 
 
 
 
 
 
 
 
 
 
 
 

UbiCompPro 

UbiComposer 

UbiCompRun 

External 
services 

[Composition] 
 

Component 
repository 

 

[Runtime] 
 

Component 
repository 

 

Compositions 
ref 

create 

use 

use 

use 

use 

create 

Environment 
developer 

Service 
composer 

Primary service user 

Domain 
developer 

use 

create 

create 
create 

Domain 
Components 

use 

Fig. 1. System model

1. The service composers compose and tailor services into applications for ser-
vice users. They test the service composition and eventually deploy it (or
part of it) to one or several devices or servers.

2. The primary service users install, configure and use the services and appli-
cations created by service composers.

Similarly to [15], we consider end-user service composition to be an activity
related to the development of software for personal use - unlike professional
development targeting public use. It is, however, useful to differentiate between
service composers and service users in several application domains. For instance,
a caregiver may play the former role to create a service adapted to the needs of
an assisted person, or a teacher to create a game for pupils. A user may play
both the composer and user roles, e.g. a caregiver may participate in a service
composed for assisted persons.

Our approach explores the application of a meta-modelling framework for the
creation of a service composition framework by environment developers. The
service composition framework itself, depicted as UbiSys in Figure 1, consists of
three components:

1. UbiCompPro is a tool for domain developers allowing the creation of reusable
components for composition. The domain developers implement components
compliant with the runtime system in the framework, invoking domain ser-
vices as needed. In addition they provide component descriptors that appear
as building blocks for service composers to specify compositions from.

2. UbiComposer is a composition editor used by the service composers to select
among the set of components defined using UbiCompPro and combine them
into user-defined services and applications.



78 E. Stav et al.

3. UbiCompRun is a runtime system for executing the services composed by the
service composers. The runtime system interprets the composition models
created using UbiComposer to control service execution, and invokes the
right runtime components for the building blocks used in the composition.

The components developed using UbiCompPro correspond to the seeds of the
meta-design framework. Both UbiComposer and UbiCompRun contribute to
evolutionary growth by supporting the modelling and execution of user-created
functionalities.

5 Framework Realization Using Meta-modelling

This chapter describes the meta-models defined by the UbiSys framework, and
how these meta-models are used in the realization of UbiCompPro, UbiComposer
and UbiCompRun. We chose to use the Eclipse Modeling Framework (EMF)6 as
the foundation for our realization because it is a mature open source framework
with a whole family of tools built on top of it (e.g., it is the foundation of
several commercial Eclipse based UML tools, including IBM’s Rational Software
Architect). In the first sub-section we give as background a short description of
the EMF family of tools. We then describe the meta-models, before we give
further details about our framework realisation based on these meta-models and
EMF. The UbiSys framework and the City Explorer example application (See
Section 6) are available as open source and documented on github7.

5.1 EMF at a Glance

The Eclipse Modeling Project8 is a top-level project in the Eclipse community
that organizes the model-based development activities in the community. The
foundation for most of tools that are sub-projects within Modeling is the Eclipse
Modeling Framework (EMF). The core of EMF consists of three parts:

– eCore [16], the meta-meta-model of EMF, with supporting Java runtime
libraries. The libraries contain APIs for managing model elements, and sup-
port for XMI-based persistence. EMF supports instantiation of meta-models
based on generated Java classes, but also dynamic instantiation of non-
generated classes using a generic, reflective API. This foundation provides
interoperability between the tools based on EMF.

– EMF.Edit, a framework foundation for creating editors and views on top of
the EMF models. This framework includes a command framework with a set
of pre-defined commands that can be used to provide undoable operations on
the model, like adding, deleting or moving model entities. Also, it provides
facilities for defining the viewable structure and textual labels for model
elements, giving a generic foundation for creating model views and editors.

– tools for the generation of runtime parts and a default model editor.

6 Eclipse Modeling Framework (EMF): http://www.eclipse.org/modeling/emf/
7 UbiSys and City Explorer source code: https://github.com/UbiCompForAll
8 Eclipse Modeling Project: http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/emf/
https://github.com/UbiCompForAll
http://www.eclipse.org/modeling/


Meta-modelling for Construction of an EUD Framework 79

The runtime libraries and EMF.Edit were designed for use within the OSGi and
Eclipse frameworks, but can also be used in stand-alone Java applications. From
an EMF model, the generator tools of EMF enable the generation of:

– a Java representation of the model, including Java interfaces representing
the model entity, implementation classes for these interfaces, and support
classes including factories for creating instances.

– adapters based on EMF.Edit for presentation of the model elements.
– a fully functioning tree-based model editor that can be used from within

Eclipse or in a stand-alone application using Eclipse Rich Client Platform.

While EMF can be considered to be a technology for developing abstract syntax,
the Eclipse Modeling Project contains several tools for developing concrete syn-
taxes using EMF as their foundation. Among these are the Graphical Modeling
Framework (GMF)9 and Graphiti10 for developing graphical modelling tools,
and xText and EMF Text for developing tools using textual syntaxes.

5.2 The UbiSys Meta-models

The meta-models shown in this section were developed using EMF (using the
standard EMF editors), but are conceptually independent of EMF and could be
realized using other meta-modelling frameworks with a meta-meta-model similar
to EMF’s eCore. For the UbiSys tools, two meta-models were developed:

– The component descriptor meta-model (Figure 2) is used to model libraries
of building block descriptors using the UbiCompPro tool. These libraries are
used for providing the palette of building blocks in the UbiComposer tools.

– The user service meta-model (Figure 3) defines the abstract syntax for com-
posing user services. The UbiComposer tool uses this to edit compositions,
and the compositions are further used by UbiCompRun during runtime.

As shown in Figure 2, a descriptor library for components consists of a set of
elements, which are building blocks, data types, or descriptors for domain objects
(i.e. objects from the application domain). The main types of building blocks are
triggers and steps, and each building block defines a set of properties. Elements
and properties have user-friendly names that will be shown in UbiComposer.

The meta-model of the end-user’s language is shown in Figure 3. It is used to
represent the user services composed by the service composer. As shown in the
figure, a user service is composed of one or more tasks, where each task has a
trigger and a sequence of steps (actions). This corresponds to the trigger-action
sequence used in the notations (see Section 5.4 for more details). Each building
block (including trigger and step) has a number of property assignments, which
can either be constant values, references to other properties, or references to
domain objects. As shown in the figure, some concepts from the component de-
scriptor meta-model are referenced to from this meta-model – e.g. each building
block refers to its corresponding building block descriptor.
9 Graphical Modeling Framework (GMF): http://wiki.eclipse.org/GMF

10 Graphiti - a Graphical Tooling Infrastructure: http://www.eclipse.org/graphiti/

http://wiki.eclipse.org/GMF
http://www.eclipse.org/graphiti/


80 E. Stav et al.

Fig. 2. Component descriptor meta-model

Fig. 3. User service meta-model



Meta-modelling for Construction of an EUD Framework 81

Fig. 4. UbiCompPro editor

5.3 UbiCompPro Implementation

UbiCompPro (Figure 4) is fully generated from the component descriptor meta-
model. The tool is an example of the standard tree-based editor generated by
EMF. As the target users of UbiCompPro are software developers, our assump-
tion is that the generated tree-based editor is suitable for the task of creating
component descriptors. The descriptor files created using the tool are used di-
rectly in UbiComposer for displaying the palette of building blocks that are
available to create compositions from.

Figure 4 shows a screenshot for the UbiCompPro editor where the developer
can create entries for each building block in the library. The editor as shown
in the figure is running in the Eclipse environment, with the current project
expanded in the view at the left. In the figure, the descriptor library developed
for the City Explorer example application case is selected and the property
”toPoiName” of the building block ”GetBusTimeStep” is being edited. The data
type for that descriptor is a domain descriptor ”PoI” that supports access to
data shared by the City Explorer application.

5.4 UbiComposer Implementation

UbiComposer is implemented in a mobile version for the Android platform
(Figure 5) and in a web version (not depicted in this paper). At the top level of
the composition, the service composer can define one or more tasks, where each



82 E. Stav et al.

Fig. 5. UbiComposer for Android

task represents a sequence of actions that will be performed (automatically)
when a specific trigger occurs. The set of tasks are shown in a list (left-most
screenshot of Figure 5). When editing the details of a task, its trigger and the
actions can be selected from the set of available building blocks available in the
tool (as provided by the domain developer), and the actions can be organized
into the sequence in which they should occur. This is done in a task detail editor
with pop-up menus for building block selection (middle screenshot of Figure 5).
Form-based editing is used for setting the parameters of each building block. Pa-
rameter values can be typed in, selected among constants, or linked to properties
of other building blocks or domain objects from applications. This is done in a
detail editor for each building block. The right most screenshot of Figure 5 illus-
trates different cases: while ”Current place.poiName” is a reference to another
building block, ”Nidaros cathedral” is a value from the City Explorer application
(see Section 6). The editors perform some validation, e.g. actions with missing
values for required parameters are highlighted in red in the Android version.

The Android implementation of UbiComposer is partially generated and uses
the core EMF libraries without EMF.edit. The in-memory representation of
the composition directly uses the Java classes generated from the EMF meta-
model, and the default EMF persistence mechanism is used to load and save the
compositions to a file-based storage. Also, UbiComposer uses the EMF-generated
classes for the component descriptors to provide the palette of building blocks,
and for setting up the detail editors for each component. The rest of the editor,
including the user interface providing the concrete notation is hand-coded using
standard Android libraries.

The implementation of the web version uses the Google Web Toolkit (GWT)11.
A main criterion for the selection of GWT is the availability of end-user friendly
widgets such as text boxes, selection boxes, forms, Google Maps, calendars etc.
In addition to GWT, third party widgets from SmartGWT and the Google
Map library were also integrated on the client side. GWT RPC was used for
the communication with the server. Tools exist that generate tree-based editors
11 Google Web Toolkit (GWT): https://developers.google.com/web-toolkit/

https://developers.google.com/web-toolkit/


Meta-modelling for Construction of an EUD Framework 83

(like UbiCompPro) for GWT from EMF meta-models12. However, the gener-
ated editor is far from our selected end-user notation, and we found it difficult
to adapt the generated code for our purpose. The current implementation of
the web-based version of UbiComposer was therefore hand-coded based on the
concepts of the meta-models. It can directly use component descriptor libraries
created using UbiCompPro.

GMF was initially considered for implementing UbiComposer, but we found
that its strength primarily lies in the development of notations such as UML
class-diagrams that are different from the form-based notation we wanted for
UbiComposer. Graphiti was not yet available at the time of our choice, and
textual syntax tools such as XText were not an option for our notation.

5.5 UbiCompRun Implementation

Two runtime approaches are supported: interpretation of compositions and trans-
formation to code. The former was realised on Android as UbiCompRun for An-
droid. The latter was realised as a transformation (currently manual) to Drools
rules since the Drools engine is used by one of our industry partners. This paper
does not provide further details on the transformation to Drools because this is
a proprietary solution of our industry partner.

Although the implementation of UbiCompRun on Android is mostly hand-
coded, it also exploits the core EMF libraries. More specifically, it also uses the
same Java classes generated from the user service meta-model as UbiComposer.

The hand-coded parts include the definition of the Java interfaces and abstract
classes of the runtime framework that the domain developers use to implement
their runtime components. Also, they include the classes performing the inter-
pretation of the service compositions and the invocation calls to the runtime
components. As part of the implementation of runtime components, the domain
developer must also provide a simple map between component descriptors and
component implementation classes.

6 Application Example: City Explorer

City Explorer is a mobile Android application that was developed in order to as-
sess the UbiSys composition framework. City Explorer supports the management
and sharing of contents for city exploration, e.g. places and itineraries, and the
navigation to places. In addition, it supports the creation of new functionalities
by the user. For example, the user may add tasks for sharing information through
social media, getting bus information to a place defined by City Explorer, or set-
ting up a lunch meeting place with friends. To support such creation, a number
of components (and building blocks) that the user can compose together were
defined. Respective to the meta-design framework, both City Explorer and the
set of building blocks map to seeds. New building blocks, i.e. new seeds, may be

12 EMF SDK for GWT: http://wiki.eclipse.org/EMF/GWT

http://wiki.eclipse.org/EMF/GWT


84 E. Stav et al.

gradually added depending on the emergence of new ideas and needs. Support
for end-user extension of City Explorer is realised using UbiSys:

– UbiCompPro is used to create building blocks. In our experimentation, we
have created event triggers, e.g. ”at a specific time”, ”at a specific place” or
”at any place in a specific itinerary”, and steps, e.g. ”send SMS”, ”add post
on Facebook” or ”get bus time”.

– The UbiComposer Android library is integrated in the mobile application
code. Thus, UbiComposer can be invoked from the application.

– The UbiCompRun Android library is also integrated in the mobile applica-
tion code. Thus the composed services can be activated from the application.

An important requirement in the extension of City Explorer was the ability to
access to application data both during composition and runtime:

– The service composer may wish to specify an extension for a particular entity
or set of entities defined by City Explorer, e.g. ”when arriving at a church,
switch my phone to the silent mode.” To do so, the service composer needs
access to the place classifications defined by the application during service
composition.

– The executing code extension may also need to access application data, e.g.
”when arriving close to one of my favourite places, give me a notification and
display information about that place.” The executing code needs to retrieve
the set of favourite places (and possibly listens to changes made to that set).
It also needs to retrieve information about a place when getting close to it.

UbiSys introduces the concept of ”domain descriptor” that supports the cre-
ation of building blocks that access application data. Access to data requires
the application to expose its data in compliance to the rules defined by UbiSys.
Currently, UbiSys supports the Android Content Provider mechanism. In that
way, Android application developers do need to learn any new mechanism to
expose application data.

7 Discussion

The discussion provided in this chapter is based on our own experiences in
applying meta-modelling and EMF to the development of the UbiSys framework
and example applications. While the team working on UbiSys have obviously
had a personal interest in succeeding with development, we do not have any bias
regarding the use of meta-modelling or the EMF family of tools.

Most of the attention of the MDE research community has been on simplifying
development for different groups of software developers. In our work, we found
that MDE is also useful for the realization of end-user development tools:

– Meta-models were found useful for discussing the realization of the com-
position language for the selected end-user notation. The development of
meta-models requires a precise definition of notation concepts. In addition
it is a tool for seeking simplification of the models.



Meta-modelling for Construction of an EUD Framework 85

– MDE simplifies the task of environments developers, i.e. the realisation of
the end-user composition framework.

– When meta-models are used all the way from design of building blocks,
via composition, to runtime, consistency is enforced. This contributes to
a smooth transition between the activities of domain developers and the
activities of service composers in the design space.

On the other hand, we found meta-modelling inadequate for the rapid explo-
ration of alternative notation concepts. Instead, visual prototypes (paper and
quick SW mock-ups) are in our experience better suited for discussing and agree-
ing on the end-user composition language because they also provide the concrete
syntax elements of the language. The different application domains addressed
in our research gradually raised new requirements on the structural concepts
needed for service composition. For instance the telco case added a require-
ment for if-then-else structures (not needed by other cases), while the mobile
asset management case added a requirement related to the use of conditions
in association with triggers. We were able to extend the initial meta-models to
support these concepts, but have completed implementation of them. We have
no experience so far on supporting extensions that would require more complex
adjustments of the meta-model.

The basic EMF technology selected in our work to realize the model-driven
engineering approach was found to be suitable for the ”invisible” parts of the
composition and runtime tools (i.e. the parts not exposed to end users):

– EMF supports the instantiations of meta-models (i.e. the creation of mod-
els) and persistent storage. We use EMF libraries and generated Java classes
to support the specification of compositions based on the composition nota-
tion, and to implement import and use of component descriptor libraries in
UbiComposer.

– Based the specification of a meta-model, EMF supports the generation of
a tree-base editor for the creation of models. UbiCompPro is such an edi-
tor. The domain developers can easily install UbiCompPro as a plug-in in
their development environment and create descriptors for the building blocks
descriptors the service composer will choose among during composition.

– The EMF cross-platform support worked between Eclipse-based / Desktop
Java, and Android. In the case of Android some repackaging of the EMF
libraries was required, and also the full potential of EMF was not used.
Although there is also support for automatic generation of GWT projects
from EMF meta-models, we found it too difficult to integrate this with the
end user-friendly widgets that we needed, and thus EMF libraries were not
used in the web-based UbiComposer.

When starting the development of UbiComposer, we also looked for tools based
on EMF that could assist in developing the visual parts of our notation. The main
candidate we found at that time was GMF, but it was not selected because it did
not match well to our selected notation. Also, it does not support the Android
and web-based platforms, and thus would only have been useful on the desktop.



86 E. Stav et al.

The different industry partners involved in our work had different require-
ments on composition and runtime. Using a MDE approach, the proposed no-
tation models remain platform-independent and we were able to integrate the
tools with other applications and middleware. The adoption of a meta-modelling
approach and the EMF technology has provided us the flexibility to fulfil various
architectural needs:

– Composition editors were developed both in native code for Android and as
a web-based solution. The former enables integration of the editor with any
Android app. The latter enables access to the editor on any platform.

– The compositions were both interpreted at runtime on Android and trans-
formed to Drools rules. In the former case, as the editor is also available on
Android compositions can be modified at runtime.

8 Conclusion and Further Work

The EUD community have mostly focused on the end-user perspective of EUD,
and not so much on technical realization of the required tools. This paper de-
scribes a MDE approach to the realisation of such tools. It positions the approach
with respect to the meta-design framework and reports our experience, mostly
positive, in adopting MDE and the EMF technology. Our work is a first step in
the realisation of end-user tools. Relevant future areas of work include:

– Validation support. End-users lack knowledge in software engineering prac-
tices. Support for creating correct compositions and avoiding errors is there-
fore a critical concern. We intend to investigate how the EMF validation
framework can be exploited to check the models.

– Simulation support. Most service compositions created for mobile pervasive
computing do not occur at once, but are triggered in a specific context. Thus,
differently from spread-sheet applications or EUD game environments, the
end user cannot observe the effect of a composition at once. We intend to
build simulation and debugging tools allowing end users to test the compo-
sitions and search for the causes of eventual errors.

– Guidance to domain developers. The proposed framework does not provide
any guidelines for the specification of building blocks adapted to the level
of expertise of non-IT experts. Few software developers are familiar with
the discipline of end-user development. We intend to enhance the tools with
guidelines based on earlier experience such as found in [17, 18]

– Adaptation to emerging technologies. Another relevant work is the explo-
ration of new tools to realize visual notations, such as the recent additions
to the EMF family of tools, including Graphiti and Extended Editing Frame-
work.

– End-user evaluation. The tools were improved based on feedback from project
participants. A more extensive evaluation including both external developers
and end-users is required.



Meta-modelling for Construction of an EUD Framework 87

Acknowledgement. Our research has been performed in the Norwegian Re-
search Council (NFR) project UbiCompForAll in cooperation with the EU IST
project SOCIETIES (contract 257493).

References

1. Nardi, B.A.: A small Matter of Programming. The MIT Press (1993) ISBN:
9780262140539

2. Fischer, G.: End-User Development and Meta-Design: Foundations for Cultures of
Participation. Journal of Organizational and End User Computing 22(1), 52–82
(2010)

3. Fischer, G., et al.: Meta-design: a manifesto for end-user development. Communi-
cation of ACM 47(9), 33–37 (2004)

4. Sutcliffe, A., Mehandjiev, N.: Special issue on End-User Development. Communi-
cations of the ACM 47(9) (2004)

5. Mernik, M.: When and How to Develop Domain-Specific Languages. ACM Com-
puting Surveys 37(4) (2005)

6. Floch, J.: A Framework for User-Tailored City Exploration. In: Costabile, M.F.,
Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654,
pp. 239–244. Springer, Heidelberg (2011)

7. Sanders, R.T., Mbaabu, F., Shiaa, M.M.: End-user Configuration of Telco Services.
In: Proc. of 16th Int. Conf. Intelligence in Next Generation Networks: Realising
the Power of the Network (ICIN 2012). IEEE (2012) (10.1109/ICIN.2012.6376036)

8. Repenning, A., Ioannidou, A.: Agent-based End User Development. Communica-
tions of the ACM 47(9) (1994)

9. Weisemöller, I., Schürr, A.: A Comparison of Standard Compliant Ways to Define
Domain Specific Languages. In: Giese, H. (ed.) MoDELS 2007 Workshops. LNCS,
vol. 5002, pp. 47–58. Springer, Heidelberg (2008)

10. Stahl, T., Völter, M.: Model-driven software development: technology, engineering,
management. Wiley, Chichester (2006)

11. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer 42(10)
(2009)

12. De Silva, B., Ginige, A.: Meta-model to support end-user development of web based
business information systems. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.)
ICWE 2007. LNCS, vol. 4607, pp. 248–253. Springer, Heidelberg (2007)

13. Fogli, D., Parasiliti Provenza, L.: End-user development of e-government services
through meta-modeling. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A.
(eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 107–122. Springer, Heidelberg (2011)

14. Hevner, A.R., March, S.T., Jinsoo, P.: Design Science in Information Systems Re-
search. MIS Quarterly 28, 75–105 (2004)

15. Ko, A.J., et al.: The State of the Art in End-User Software Engineering. ACM
Computing Surveys 43(3) (2011)

16. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional (2008)

17. Myers, B.A., Pane, J.F.: Natural Programming Languages and Environments.
Communication of ACM 47(9), 47–52 (2004)

18. Repenning, A., Ioannidou, A.: What makes end-user development tick? 13 design
guidelines. In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End-User Development.
Springer (2006) ISBN 1-4020-4220-5


	Using Meta-modelling for Construction of an End-User Development Framework
	1 Introduction
	2 Related Work
	3 Research Approach
	4 Overall Architecture
	5 Framework Realization Using Meta-modelling
	5.1 EMF at a Glance
	5.2 The UbiSys Meta-models
	5.3 UbiCompPro Implementation
	5.4 UbiComposer Implementation
	5.5 UbiCompRun Implementation

	6 Application Example: City Explorer
	7 Discussion
	8 Conclusion and Further Work
	References




