
Yvonne Dittrich
Margaret Burnett
Anders Mørch
David Redmiles (Eds.)

 123

LN
CS

 7
89

7

4th International Symposium, IS-EUD 2013
Copenhagen, Denmark, June 2013
Proceedings

End-User
Development

Lecture Notes in Computer Science 7897
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Yvonne Dittrich Margaret Burnett
Anders Mørch David Redmiles (Eds.)

End-User
Development
4th International Symposium, IS-EUD 2013
Copenhagen, Denmark, June 10-13, 2013
Proceedings

13

Volume Editors

Yvonne Dittrich
IT University of Copenhagen
2300 Copenhagen, Denmark
E-mail: ydi@itu.dk

Margaret Burnett
Oregon State University
Corvallis, OR 97331-5501, USA
E-mail: burnett@eecs.oregonstate.edu

Anders Mørch
University of Oslo, InterMedia
0318 Oslo, Norway
E-mail: anders.morch@intermedia.uio.no

David Redmiles
University of California
Irvine, CA 92697-3440, USA
E-mail: redmiles@ics.uci.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38705-0 e-ISBN 978-3-642-38706-7
DOI 10.1007/978-3-642-38706-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939110

CR Subject Classification (1998): D.2, H.5, K.4, D.1, K.6, K.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Taking the International Symposium of End User Development to Copenhagen
and Scandinavia brought it to the origin of the participatory design commu-
nity. Participatory design explores techniques and methods to facilitate users
to contribute toward shaping the technology they use in the contexts of use, for
example, work processes. In Copenhagen and in Malmö, situated across the Øre-
sund Strait, linked by the 8-km Øresund Bridge, Scandinavian architecture and
design traditions meet with participatory design. This connection has brought
forward a (sub-) community of design combining esthetic with utilitarian design.
The emphasis of the co development of the social and the technical has resulted
in a broadening of design beyond the workplace to embrace community-based
design, which in turn leads to an opening toward heterogeneous design con-
stituencies and users not only as participating but also developing their own
technology.

At the same time, Copenhagen is a hub of programming language research
and technology. Since Peter Naur’s Algol 60 compiler, Copenhagen researchers
have continued to improve upon the development of programming languages,
domain-specific languages and tools supporting the programmers who deploy
them. Naur’s concept of “Programming as Theory Building” that emphasizes
the need to relate the technical design to the use context opens up for rethinking
the relation between development and use.

End user development relates to both traditions: The idea that users can
be part of configuring, customizing, and assembling their software tools and
environments is seen by many of the end user development researchers as a
natural extension to participatory design. From a programming language point of
view, this requires the development of languages and programming environments
that can be used by non-IT professionals.

The ambition on the one side, to make programming language technologies
useful for non-IT professionals and, on the other side, explore the shaping of
technology by users and user communities, requires relating these two tradi-
tions. Both traditions met in the 2013 End User Development International
Symposium. Whereas some contributions focus on the development of domain-
specific languages, e.g., for the insurance domain, others explore community
collaboration in the shaping of technology. This gives a chance to explore the
complementarity and interdependency of the two perspectives on and in end
user development.

Program Chairs David Redmiles and Anders Mørch were responsible for de-
veloping the program. Based on a rigorous review process, 13 full papers (45%
acceptance rate) and 11 short papers (50% acceptance rate) were selected. The
resulting program provided a broad overview of the current state of end user
development research with interesting presentations and discussions. We would

VI Preface

like to take this opportunity to thank the members of the Program Committee.
Their high-quality reviews have provided us with a sound base for the selection
of the articles.

Two keynote speakers brought their expertise to the program: Pelle Ehn and
Mary Beth Rosson. Mary Beth Rosson, professor at the College of Information
Sciences and Technology at the Pennsylvania State University, is well known
for her research in human–computer interaction, including participatory and
scenario-based design and evaluation methods, and end user development. She
has been a founding member of the end user development community. Pelle
Ehn is professor at the School of Arts and Communication, Malmö University,
Sweden. He has for four decades shaped and contributed to the research field of
participatory design and in bridging design and information technology.

Laura Beckwith and Mike Twidale arranged the doctoral consortium, intro-
ducing a number of young and promising EUD scholars to the community. It was
the second time that the award in memory of Prof. Piero Mussio (University of
Milan, Italy) was awarded to the PhD student presenting the most interesting
and innovative research.

Barbara Baricelli and Gunnar Stevenson took care of the workshop program.
Brief descriptions of the two workshops, held in parallel with the Doctoral Con-
sortium on June 10, are included in the final part of these proceedings.

Thanks also to all those others who contributed to the success of IS-EUD
2013, including the authors, the International Program Committee, and the
Steering Committee. Boris de Ruyter, Phillips Research, The Netherlands, and
Andrew Begel, Microsoft Research, acted as Industrial Liaison Chairs. Special
thanks to the other members of the Organizing Committee: Benjamin Koehne
did a great job with handling the electronic submission system and supporting
the authors when assembling the proceedings. Johan Bolmsten, World Maritime
University, Malmö, and IT University of Copenhagen, and Scott Fleming, Uni-
versity of Memphis, did a great job as publicity co-chairs and designed and
managed the website; Jeanette Eriksson, Malmö University, served as a Stu-
dent Volunteer Chair and helped with the local organization; Nhi Quyen Le and
Emilia Wasik of the IT University of Copenhagen, served as local chairs and took
care of offering an enjoyable stay to the participants of the conference. Last but
not least, we thank the IT University of Copenhagen for the resources provided
to support the organization of the 4th International Symposium on EUD.

March 2013 Yvonne Dittrich
Margaret Burnett

Anders Mørch
David Redmiles

Organization

Program Committee

Michael Atwood Drexel University, USA
Barbara Rita Barricelli University of West London, UK
Andrew Begel Microsoft Research, USA
Tone Bratteteig University of Oslo, Norway
Susanne Bødker University of Aarhus, Denmark
Maria Francesca Costabile University of Bari, Italy
Antonella De Angeli University of Trento, Italy
Rogerio de Paula IBM Research, Brazil
Boris de Ruyter Philips Research Eindhoven, The Netherlands
Clarisse de Souza PUC-Rio, Brazil
Cleidson de Souza Vale Institute of Technology and Federal

University of Pará, Brazil
Robert Deline Microsoft Research, USA
Paloma Dı́az Universidad Carlos III de Madrid, Spain
Daniela Fogli Università di Brescia, Italy
Sean Goggins Drexel University, USA
Thomas Herrmann Ruhr-University Bochum, Germany
Letizia Jaccheri Norwegian University of Science and

Technology, Norway
Caitlin Kelleher Washington University, USA
Thomas Latoza University of California, Irvine, USA
Catherine Letondal ENAC, France
Monica Maceli Drexel University, USA
Nikolay Mehandjiev University of Manchester, UK
Kumiyo Nakakoji Software Research Associates Inc., Japan
Jeffrey Nichols IBM Almaden Research Center, USA
Samuli Pekkola Tampere University of Technology, Finland
Marian Petre The Open University, UK
Antonio Piccinno University of Bari, Italy
Volkmar Pipek University of Siegen, Germany
Alexander Repenning University of Colorado Boulder, USA
Mary Beth Rosson Pennsylvania State University, USA
Anita Sarma University of Nebraska, Lincoln, USA
Christopher Scaffidi Oregon State University, USA
Gunnar Stevens University of Siegen, Germany
Simone Stumpf City University London, UK

VIII Organization

Erik Trainer University of California, Irvine, USA
Michael Twidale University of Illinois, USA
Stefano Valtolina Università degli Studi di Milano, Italy
Steve Voida Cornell University, USA
Jacob Winther Microsoft Development Center Copenhagen,

Denmark
Volker Wulf University of Siegen, Germany
Li Zhu Early Morning, Italy

Additional Reviewers

Bortzmeyer, Stephane
Kuttal, Sandeep
Namoun, Abdallah
Neufeldt, Cornelius
Schönau, Niko
von Rekowski, Thomas

Table of Contents

Part I: Keynote Speeches

Evolutionary Design of a Developmental Learning Community 1
Mary Beth Rosson

The End of the User – The Computer as a Thing . 8
Pelle Ehn

Part II: Long Papers

End User Development in Theory and Practice

“Human Crafters” Once again: Supporting Users as Designers in
Continuous Co-design . 9

Monica Maceli and Michael E. Atwood

End-User Experiences of Visual and Textual Programming
Environments for Arduino . 25

Tracey Booth and Simone Stumpf

Enabling End Users to Create, Annotate and Share Personal
Information Spaces . 40

Carmelo Ardito, Paolo Bottoni, Maria Francesca Costabile,
Giuseppe Desolda, Maristella Matera, Antonio Piccinno, and
Matteo Picozzi

Identity Design in Virtual Worlds . 56
Benjamin Koehne, Matthew J. Bietz, and David Redmiles

End User Development Technology

Using Meta-modelling for Construction of an End-User Development
Framework . 72

Erlend Stav, Jacqueline Floch, Mohammad Ullah Khan, and
Rune Sætre

Sheet-Defined Functions: Implementation and Initial Evaluation 88
Peter Sestoft and Jens Zeilund Sørensen

End-User Development of Information Visualization 104
Kostas Pantazos, Soren Lauesen, and Ravi Vatrapu

X Table of Contents

Resolving Data Mismatches in End-User Compositions 120
Perla Velasco-Elizondo, Vishal Dwivedi, David Garlan,
Bradley Schmerl, and José Maria Fernandes

Collaboration in End User Development

Co-production Scenarios for Mobile Time Banking 137
John M. Carroll

Co-evolution of End-User Developers and Systems in Multi-tiered
Proxy Design Problems . 153

Daniela Fogli and Antonio Piccinno

Meta-design in Co-located Meetings . 169
Li Zhu and Thomas Herrmann

Designed by End Users: Meanings of Technology in the Case of
Everyday Life with Diabetes . 185

Anne Marie Kanstrup

Cultures of Participation in Community Informatics: A Case Study 201
Daniela Fogli

Part III: Short Papers

End User Development in Theory and Practice

End-User Development: From Creating Technologies to Transforming
Cultures . 217

Gerhard Fischer

Objects-to-think-with-together: Rethinking Paperts Ideas of
Construction Kits for Kids in the Age of Online Sociability 223

Gunnar Stevens, Alexander Boden, and Thomas von Rekowski

End-User Development in Tourism Promotion for Small Towns 229
Augusto Celentano, Marek Maurizio, Giulio Pattanaro, and
Jan van der Borg

Get Satisfaction: Customer Engagement in Collaborative Software
Development . 235

Renate Andersen and Anders I. Mørch

End User Development Technology

Lightweight End-User Software Sharing . 241
Cristóbal Arellano and Oscar Dı́az

Table of Contents XI

Decision-Making Should Be More Like Programming 247
Christopher Fry and Henry Lieberman

Back to the Future of EUD: The Logic of Bricolage for the Paving
of EUD Roadmaps . 254

Federico Cabitza, Carla Simone, and Iade Gesso

End User Development in Technology and Society

Guidelines for Efficient and Effective End-User Development
of Mashups . 260

Saeed Aghaee and Cesare Pautasso

Software Development for the Working Actuary . 266
David Raymond Christiansen

Automated Test Case Generation in End-User Programming 272
Nysret Musliu, Wolfgang Slany, and Johannes Gärtner

Component-Based Design and Software Readymades 278
Anders I. Mørch and Li Zhu

Part IV: Doctoral Consortium

End User Architecting . 284
Vishal Dwivedi

TagTrainer: A Meta-design Approach to Interactive Rehabilitation
Technology . 289

Daniel Tetteroo

Socio-technical Systems That Foster and Support Mindfulness Can
Benefit from End-User Control Mechanisms . 293

Jason Zietz

Part V: Workshops

Workshop on EUD for Supporting Sustainability in Maker
Communities . 298

Alexander Boden, Gabriela Avram, Irene Posch,
Volkmar Pipek, and Geraldine Fitzpatrick

Culture of Participation in the Digital Age Empowering End Users to
Improve Their Quality of Life . 304

David Dı́ez, Anders I. Mørch, Antonio Piccinno, and
Stefano Valtolina

Author Index . 311

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 1–7, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Evolutionary Design
of a Developmental Learning Community

Mary Beth Rosson

Center for Human-Computer Interaction/College of Information Sciences and Technology,
The Pennsylvania State University,

University Park, Pennsylvania 16802 USA
mrosson@psu.edu

Abstract. In the United States, young women continue to turn away from edu-
cation that would prepare them for careers in the information technology (IT)
workforce. Researchers studying this phenomenon have identified a wide range
of contributing factors, including the career attitudes and guidance of family
members, friends and mentors; curricular approaches to teaching software de-
velopment skills; and well-entrenched stereotypes of IT professionals as anti-
social “geeks.” I describe a research project that explored a community-oriented
approach to attracting and retaining women in our own College’s IT education
program. Our design goal was to seed and support the evolution of a multi-
leveled emergent community pursuing its own developmental trajectory, with a
focus on the online community for wConnect – a system that hosts a variety of
online activities and communication options. In this talk, I will chronicle the
system’s development as an instance of action design research, showing how a
sequence of four design phases were motivated by evolving design goals that
led to systems with differing design rationales. I conclude with a synthesis and
discussion of lessons learned, including design implications for online tools
aimed at building and supporting developmental learning communities.

Keywords: women in computing, developmental learning community, evolu-
tionary design.

1 Introduction

In the United States, many girls entering their teenage years lose interest in computer
and information sciences (CIS); in the past ten years, the number of women graduat-
ing with CIS degrees has dropped by almost 25% [4]. This trend is a challenge for
university educators who are working hard to prepare a diverse and competent work-
force of computing professionals. As a result, universities have been exploring a va-
riety of curricular initiatives to attract and retain women and other under-represented
minorities in their CIS programs and courses [3,5,6]. In this paper I describe a com-
plementary approach, namely a project that initiated and studied a developmental
learning community aimed at attracting and retaining women in CIS. In particular, I
reflect on the design and evolution of a series of online spaces that were designed and
built for and by the community to support its activities.

2 M.B. Rosson

Fig. 1. Four different phases in the evolution of wConnect’s online community system

This brief paper summarizes and integrates a number of earlier publications report-
ing on the wConnect action research project at varying points in its development (Fig-
ure 1). Some of these reports have emphasized the activities that the emerging
community organized and conducted to meet their developmental goals [11]; others
discussed the design and use of one or more online tools created by the community
for outreach [12] or community building [9]. In this summary paper I draw from all of
these, including the recent exposition of the design rationale for successive phases in
wConnect’s online community system [7].

2 Evolution of the wConnect Online Community System

The target audience for the wConnect community is women who vary in age,
computer expertise, and level of interest and commitment to education and careers in
CIS. Even before joining wConnect, they are connected implicitly through an
affiliation (whether current, past or future) with our college’s education programs, and
one of our goals was to leverage these implicit social connections.

The core members of the community are current undergraduate students who may
already be taking courses together, participating in extra-curricular and social activi-
ties, and engaging in other real world community building activities. However be-
cause the percentage of women in our programs is quite small (around 13% at the

 Evolutionary Design of a Developmental Learning Community 3

initiation of wConnect), there is no guarantee that any specific female undergraduate
will enjoy face-to-face social interactions with another. Further, there are other target
members of wConnect who are not co-present. These include younger females (e.g.,
high school students who are not even considering (yet) university education pro-
grams); alumnae who have recently completed one of our programs and are now
working in a professional position; and mentors in residence or elsewhere in the
workforce. Thus we assumed from the beginning that the online “space” for wCon-
nect would be an essential defining element of the community.

With this assumption in place, we began to consider the design features of an on-
line community space that would help us to attract and build community amongst the
diverse stakeholders, but at the same time that could have a developmental impact on
those individuals. By developmental, I mean that members regularly interact with one
another to pursue the shared goal of developing their own or other members’ skills,
understandings and interests in CIS education or careers. With respect to the online
system, this meant that that members should be able to initiate activities that would
have this developmental character; secondarily, we hoped that by making the design
and construction of the online system a participatory design effort, we could cause the
system building activities themselves to have a developmental impact.

The first wConnect community system was a skeleton website created with an ex-
isting toolkit already in use for a variety of projects in our research lab. The website
was not built by members, but was intentionally simplistic and “empty” so as to en-
courage and accept their contributions (see #1 in Figure 1). The supporting toolkit is
quite rich and can support many different styles of collaboration, privacy manage-
ment, content objects, and so on [10]. However, we soon learned that the core mem-
bers of wConnect (female undergraduates) found the toolkit to be too unfamiliar and
challenging to use even for simple tasks like web content creation.

The undergraduate members suggested instead that the community use Facebook,
at that point an emerging but already very popular social networking site. On their
own, they created a closed Facebook group and started recruiting members (#2 in the
figure). This strategy led to a rapid growth in membership, but the group found them-
selves frustrated with the dearth of community features in Facebook; as a social net-
working site Facebook is focused primarily on person-to-person links and exchanges,
not community relationships or interactions.

The group next explored a compromise solution – still leveraging the popularity of
Facebook but through an independent application that operated in parallel with the
main social networking site (#3 in the figure). In this way they hoped to leverage
members’ familiarity with the popular networking site, but still design their own
community-centered activities (e.g., member profiles, job boards, group chats and
blogs). The Facebook application was received well but ultimately did not sustain
much activity – when we probed the reasons for this, we found that Facebook is expe-
rienced as a personal and highly social site, not a place for planning or discussing
more “serious” topics of education or professional preparation. In fact, we noted that
some advanced undergraduate members who were preparing to interview and launch
their own careers had a tendency to withdraw from the community, at least partly
because it was associated with Facebook.

4 M.B. Rosson

In the fourth phase, a small group of community members used the Drupal CMS to
built a site that combined features that we had observed to be important for online
interaction by wConnect members. First, the site is attractive and familiar, with a look
and feel that is not the same as but similar to other online spaces. Second, it is open,
with relatively few constraints imposed by the API (e.g., compared to Facebook),
enabling and encouraging innovation and appropriation. Third, Drupal programming
can take place at multiple levels of abstraction; even members who have modest skill
levels can contribute “code”. Fourth, it has a rich infrastructure for role differentiation
and management, so that members can operate at levels and in roles that are conso-
nant with their technical sophistication and associated community identities. Finally,
Drupal works seamlessly with our institutional authentication system, simplifying the
creation of accounts and credentials, while at the same conveying that the privacy
protection mechanisms of the university are in place to ensure a safe and comfortable
context for interaction.

3 Design Implications for Developmental Community Systems

We positioned wConnect as an action research project, in that a primary goal was to
work with a specific group of young women to support community building and
developmental activities. However, the concept of developmental learning community
is a general one and should hold whenever 1) a group of individuals relate to a skill or
knowledge domain at different levels of expertise; and 2) they come together to
develop their own and each others’ expertise. Thus one question is whether and how
the lessons we draw from the wConnect project have more general implications for
the design of developmental learning community systems.

3.1 Open Tool Sets That Are Rich, but Extensible on Multiple Levels of
Abstraction

Many designers have argued for the importance of open software infrastructures in
situations where communities are emerging and growing [2]; importantly, an open
system enables tool customization and appropriation [13]. The wConnect experience
reinforces this general characteristic as a goal for developmental learning communi-
ties. However, for a learning community whose domain skills can be enhanced by
EUD, our experience emphasizes the importance of software development at multiple
levels of abstraction. The toolset should provide simple “hooks” for the most junior
members that guide them gradually to more complex activities and contributions.

For example, in a Drupal-based community, a novice member can begin by creat-
ing and uploading content, move to a role as a page editor (using basic HTML), to
website maintenance (understanding user tables, roles, etc.), to theme installation
(open source investigation and installation), to module editing or even module crea-
tion (Php or SQL programming). When different members operate in parallel at these
varying levels, there can be a fluid give-and-take that promotes personal development.

 Evolutionary Design of a Developmental Learning Community 5

3.2 Member Profiles That Encode and Mediate Developmental Roles

In a developmental learning community, junior members receive guidance and sup-
port from their more advanced peers. In physical settings, members have many
options for expressing developmental roles and expectations (e.g., a badge at a profes-
sional meeting, an elected position in a student club), but in an online community the
tools mediate the expression of one’s developmental identity and trajectory. For ex-
ample, the Facebook group had no distinctions among members; middle school girls
were “equals” to university students or educators. In the third and fourth phases,
members created community profiles that included their current roles, and these were
a constant reminder of why members had joined, and how they might behave toward
others. Although we used these roles primarily to convey who might be looking for
help and who might be offering it, once the distinctions are in the system they can
also be used to manage access to different services and functionalities.

Note that one consequence of encoded developmental roles is that the roles should
evolve as members develop and acquire more expertise. In our community system we
were unable to develop automated methods for accomplishing this; role shifts were
possible only through the initiative and profile editing of individual members. Ma-
chine learning techniques for “observing” a member’s online activities and interac-
tions and drawing inferences could be very useful in this regard.

3.3 Emulation of Familiar User Interaction Styles

Finding an effective user interaction style was a constant challenge when building the
wConnect community system. On the one hand, our early experiences with Bridge-
tools emphasized that an interaction style that is distant from everyday activities is a
deterrent, even if the system is not “difficult” to use per se. When attraction and en-
gagement is a critical first step in building community, the perceived cost of using a
novel system must be very low, and members must immediately feel comfortable and
rewarded. On the other hand, we also observed that moving too far toward what is
familiar and comfortable has its own costs – members felt awkward building and
interacting within a separate “professional” community that was part of a comfortable
Facebook world. In the end, we suggest that an interaction style designed primarily to
attract the most junior members might be a good general solution, with the under-
standing that more advanced members might choose to customize their experience.

3.4 Authenticated Access to a Private Space for Developmental Interactions

Developmental learning communities form and operate to support the personal
growth of their members; joining such a community may be a significant investment,
in that members transit through different roles and consequently behave in different
ways over time. Depending on the domain of development, some of these behaviors
and exchanges might be sensitive, perhaps seen as appropriate only within the context

6 M.B. Rosson

of the community. For instance, wConnect members discussed strategies for negotiat-
ing salaries or managing work-life balance – these are topics that they would not
choose to discuss in a public setting but that were natural and expected in their private
space. For all these reasons, it is important to protect member’s community identities
by a robust authentication practice. This creates the corresponding cost of maintaining
yet another online identity; however this cost can be reduced by using existing identi-
ties (e.g., an institution or a generic social networking service like Facebook).

3.5 Activities That Invite Relaxation and Recreation in Parallel with Development

When we began the wConnect project, we focused on activities that might help girls
develop their understandings and skills in CIS – for example, video blogs with more
accomplished women, forums discussing career options, or blogs from members who
were adjusting to an internship or new job. As the project grew however, the team
recognized that community building was not only about development; we found that it
was important to have activities where members could just “hang out”, participating
in simple and familiar social behaviors like sharing photos or playing games that had
nothing to do with CIS education and careers. More generally, a developmental learn-
ing community must offer a variety of options for attracting new members. Interac-
tions aimed specifically at development are one possibility, in that some members will
join simply because they want to help or be helped. But others may join simply to
check out the community, and the system should always offer activities that are rela-
tively undemanding yet rewarding for these more casual members.

4 Final Words

In this brief paper, I have outlined the exploration of a design space for an online
system created to support the wConnect developmental community. I described our
efforts to meet the developmental goals of this community while also attracting and
engaging members at multiple levels of sophistication. In the course of balancing our
multiple design goals, we evolved toward a community system that was familiar – but
not too familiar – and that was open and extensible at multiple levels of abstraction. I
have proposed that some characteristics we explored in wConnect might also be use-
ful to others who are seeking to initiate and promote personal development within an
online group. I hope that in the future, other researchers will join me in to applying,
validating and extending these concepts.

Acknowledgements. This research was supported by the U.S. National Science
Foundation (CNS-0634337). I thank my collaborators John Carroll, Elizabeth Thiry,
Dejin Zhao, Hansa Sinha, Craig Ganoe, Heather Fawcett, Nicole Harshbarger, and
Anastasia Ioujanina as well as many other contributing members of the wConnect
community.

 Evolutionary Design of a Developmental Learning Community 7

References

1. Carroll, J.M., Rosson, M.B., VanMetre, C.A., Kengeri, R., Kelso, J., Darshani, M.: Black-
sburg Nostalgia: A Community History Archive. In: Sasse, M.A., Johnson, C. (eds.) Pro-
ceedings of Seventh IFIP Conference on Human-Computer Interaction, INTERACT 1999,
Edinburgh, August 30-September 3, pp. 637–647. IOS Press/IFIP, Amsterdam (1999)

2. Fischer, G., Ostwald, J.: Seeding, Evolutionary Growth, and Reseeding: Enriching Partici-
patory Design with Informed Participation. In: Binder, T., Gregory, J., Wagner, I. (eds.)
Proceedings of the 7th Biennial Participatory Design Conference 2002, Malmo, Sweden,
June 23-25, pp. 135–143. CPSR, Palo Alto (2002)

3. Guzdial, M., Tew, A.: Imagineering Inauthentic Legitimate Peripheral Participation: An
Instructional Design Approach for Motivating Computing Education. In: Anderson, R.,
Fincher, S., Guzdial, M. (eds.) Proceedings of the 2nd International Workshop on Compu-
ting Education Research, ICER 2006, Canterbury, UK, September 9-10, pp. 51–58. ACM
Press, New York (2006)

4. Leonard, E.B.: Women, Technology, and the Myth of Progress. Prentice Hall, New York
(2003)

5. Margolis, J., Fisher, A.: Unlocking the Clubhouse: Women in Computing. MIT Press,
Cambridge (2002)

6. McDowell, C., Werner, L., Bullock, H., Fernald, J.: The Impact of Pair Programming on
Student Performance, Perception, and Persistence. In: Clarke, L., Dillon, L., Tichy, W.
(eds.) Proceedings of ICSE 2003: The 25th International Conference on Software Engi-
neering, Portland, OR, May 3-10, pp. 602–607. IEEE Computer Society, Washington,
D.C. (2003)

7. Rosson, M.B., Carroll, J.M.: Developing an online community for women in computer and
information sciences: A design rationale analysis. Transactions on Human-Computer Inte-
raction (in press, 2013)

8. Rosson, M.B., Carroll, J.M., Sinha, H.: Orientation of Undergraduates Toward Careers in
the Computer and Information Sciences: Gender, Self-efficacy and Social Support. ACM
Transactions on Computing Education 11(3), Art. 14 (2011)

9. Rosson, M.B., Carroll, J.M., Zhao, D., Paone, T.: wConnect: A Facebook-based Develop-
mental Learning Community to Support Women in Information Technology. In: Proceed-
ings of Communities and Technology 2009, State College, PA, June 25-27, pp. 125–134.
ACM, New York (2009)

10. Rosson, M.B., Dunlap, D., Isenhour, P., Carroll, J.M.: Teacher Bridge: Building a Community
of Teacher Developers. In: Sprague, R. (ed.) Proceedings of HICSS 40: Hawaii International
Conference on System Sciences, CD-ROM, Waikoloa, Big Island, HI, January 3-7, 10 pages.
IEEE Computer Society, Washington, D.C. (2007)

11. Rosson, M.B., Ioujanina, A., Paone, T., Sheasley, G., Sinha, H., Ganoe, G., Carroll, J.M.,
Mahar, J.: A Scaffolded Introduction to Dynamic Website Development for Female High
School Students. In: Fitzgerald, S., Guzdial, M., Lewandowski, G., Wolfman, S. (eds.) Pro-
ceedings of the 40th Technical Symposium on Computer Science Education, Chattanooga,
TN, March 4-7, pp. 226–230. ACM Press, New York (2009)

12. Rosson, M.B., Sinha, H., Zhao, D., Carroll, J.M., Ganoe, C., Mahar, J.: wConnect: Culti-
vating a Landscape of Online Places for a Developmental Learning Community. Educa-
tional Technology & Society 12(4), 87–97 (2009)

13. Wulf, V., Pipek, V., Won, M.: Component-based Tailorability: Enabling Highly Flexible
Software Applications. International Journal of Human-Computer Studies 66(1), 1–22
(2008)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, p. 8, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The End of the User – The Computer as a Thing

Pelle Ehn

School of Arts and Communication, Malmö University, Sweden
pelle.ehn@mah.se

We may all agree on the importance of end users, as in end user programming, human
centred design or user driven innovation. But are there theoretical limits with political
implications to this anthropocentric understanding of our engagement with users,
technology and the artifacts we call computers? Has the end user been patronised by
contemporary progressive design and taken hostage by neo-liberal capitalism? In
sociology it is becoming clear that society is not just social, but also material. The
neglected objects strike back. Just think of global environmental crises. With design
research it might be just the same. We know design cannot be reduced to the shaping
of dead objects, as in object oriented programming, but humans are neither users liv-
ing external to objects. Where sociology have had to acknowledge that society is a
collective of humans and non-humans, design might have to do away with both users
and objects to remain socially and politically relevant. This talk explores the conse-
quences of replacing the object and the user with the thing. Etymologically the thing
was originally not an objective matter, but a political assembly dealing with matters
of concern. Which humans and non-humans should be invited to participate in con-
temporary design things? Who invites? Who is marginalised or excluded? What
issues should be dealt with? Which designarly and parliamentary technologies should
be invoked in prototyping futures? If the computer is to become a controversial thing,
is that a well-grounded end of the user?

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 9–24, 2013.
© Springer-Verlag Berlin Heidelberg 2013

“Human Crafters” Once again: Supporting Users
as Designers in Continuous Co-design

Monica Maceli and Michael E. Atwood

Drexel University, College of Information Science and Technology
3141 Chestnut St, Philadelphia, Pa 19104 USA
{Monica.Maceli,Atwood}@drexel.edu

Abstract. Designers can never anticipate all future uses of their system. Meta-
design theory emphasizes that systems should therefore be designed to adapt to
future conditions in the hands of end users. As our technological environments
increase in complexity, designers must provide the flexibility for users to shape
their technologies. This paper describes a series of experiments, from a
laboratory study to a digital library design exercise, exploring the use of meta-
design inspired guidelines as design heuristics in an iterative, participatory
design process. The meta-design inspired guidelines were found to help
designers and end users shift the types of design ideas generated towards
building features supporting end-user customization and modification in use.
While true meta-design systems are highly complex, we intend to demonstrate
that “discount” methods at design-time can help to shift design thinking towards
future modifications in the hands of end users and that such methods have
application in real-world contexts.

Keywords: design methods, co-design, meta-design, context, heuristics.

1 Introduction

In the past, design and use were closely entwined activities: human crafters designed
tools through use and there was no distinctly separate design process [21]. People
designed to meet their needs and as their needs changes, so did their designs [24]. As
technology advanced, industrialization introduced a divide between the setting of
design (design time) and the setting of use (use time). Design time focused on experts
creating a completed design artifact, while use time was oriented towards gradual
user-driven evolution and change, responsive to environment and context. This
tension between what could be accomplished at design time and what unpredictable
situations the system would encounter during use has been an ongoing challenge to
the evolving field of HCI.

This divide, between design time and use time, has driven our approach to design
and our resulting design methods and paradigms. As detailed in previous assessments
of the field of HCI [e.g. 4, 6, 25] this progression has happened in waves, moving us
away from the earliest days of design when we were all human crafters. These early
human crafters were followed post-industrialization by a human factors approach,
which eventually yielded to a human actors focus. This human actors approach, in

10 M. Maceli and M.E. Atwood

which users contribute to design activities at design time, continues to dominate our
current design theories and methodologies. However, as will be discussed further in
this section, our technologies and our attitudes towards technologies have come full
circle, taking us back to the days of human crafters. We will briefly discuss each of
these phases next.

When environments of use were constrained to the workplace, our early HCI
methodologies could strive to match known work tasks with suitable interfaces; this
human factors approach focused on the line between man and machine and the
interfaces that afford interactions between the two. In the 1990s, when technology
moved into the home and into more complex environments of use and practice, HCI
methodologies began to take a broader view of interaction, supporting human actors
who controlled the technologies used in their daily lives and participated in design-
time activities [4]. Our current HCI methodologies and theories are largely oriented
towards this “human actors” relationship between technology, users, and use.

However, recently developed technologies have allowed for complex and shifting
contexts of use [6] as well as empowered users to design their own technological
environments. Novel means of information and technology production (e.g. open
source software development, mash-ups, commons-based peer production [5]) have
radically changed the technological landscape. Users are again behaving as human
crafters – controlling, designing, and developing not only their relationships with
technology, but the very form and function of this technology.

As a result, our traditional HCI design time activities have become increasingly ill-
suited to the unpredictability of real life use. As users become more empowered to
design their own technology environments, HCI theory and methodology must shift
as well to better support and shape these activities. In order to address these
challenges, the conceptual framework of meta-design [13] suggests redirecting our
attention towards bridging the differences between design time and use time through
systems and techniques allowing for real-time co-design of systems. Users function as
both consumers and designers of their environment and the boundaries of system
design are extended from one original system to an ongoing co-design process
between users and designers [e.g. 20].

1.1 The Challenge to Today’s Designers

In order to fully realize the vision of meta-design which is increasingly becoming a
reality, we must take our participatory design practices further. Instead of focusing on
the known present, we must shift our focus to the unknown future, one in which the
users of the system will drive design. Our current technologies, while supporting
some end-user customization, are not true meta-design systems. Further evolution in
technology tools and design methods is required to reach a future state in which end
users can take on greater levels of responsibility for system modification; this future is
coming, but it is not here yet.

In the present, however, there is an opportunity to shift our design methods towards
the vision of meta-design, in orienting design time conversations towards future use time
and beginning to have these conversations over time. As meta-design theory reinforces,
future use can never be entirely anticipated, yet some work must happen at design time.

 “Human Crafters” Once again 11

This raises the key questions: what techniques in the present can help anticipate some use
time possibilities at design time? And how can designers and users communicate around
the inevitable future changes that will arise over the life of the system?

In this research study, a series of guidelines aimed at orienting design time
activities towards future use, as well as providing a frame for users and designers to
communicate changes across the entire life of the system are explored. These
guidelines are based primarily on literature and recent technological trends and were
validated with real world designers and users through studies in both the laboratory
and real-world contexts. In this study, we begin to address the challenge of continuous
co-design and explore how such guidelines can help anticipate future changes in the
hands of end users. This is a complex problem with no easy solution. However, this
study begins to fill in the gap between design time and use time, moving design
towards use time and towards end users designing-in-use. Design power is shifting
towards the end user; as designers and as researchers we must design for such a
world, one in which designing-in-use becomes increasingly commonplace.

2 Perspectives on Designing-in-Use

The challenge and necessity of designing-in-use is not new; the problem of designing
for unpredictable futures has existed since design time and use time diverged. These
ideas were highlighted in earlier influential works: notably Christopher Alexander‘s
vision of an “unselfconscious culture of design” [2] where users had the skills and
confidence to tailor their environment, Ivan Illich‘s concept of convivial technology
tools [19] that would empower people to conduct creative and autonomous actions,
and Henderson and Kyng‘s [17] vision of “designing in use” such that end users could
tailor their environments to fit their emergent needs. These largely theoretical works
described a fundamentally different culture of design, one which introduced complex
questions around the goal of allowing and encouraging users to act as (and with)
designers.

However, many open questions exist around how to practically support users
during the process of designing in use. Anticipatory techniques explored what could
be done at design time (often by designers alone) to endow the system with the
properties to be flexible in use. Architect Stewart Brand‘s process of scenario-
buffered design [7] encouraged users and designers to strategize around potential
future uses for the building and space, yielding a final design that could respond well
to multiple futures, not just the “official future” that was initially envisioned. In the
field of information systems, Fischer‘s research has explored how systems can be user
modifiable such that they might be designed in use [e.g. 15]. Early work focused on
building knowledge-based design environments [10] (or DODEs) which provide a
constantly evolving space in which users can create, reflect, and shape the system.
Fischer‘s Seeding, Evolutionary Growth, and Reseeding (SER) Model [12, 16]
attempted to address the changing nature of use as the system evolved. In this model,
a participatory design (or co-design) process between environment developers and
domain designers yielded a “seed” within which as much information as possible is

12 M. Maceli and M.E. Atwood

designed. This seeded environment is then used by domain designers on real projects.
Fischer, in more recent work [e.g. 11, 13, 15], addresses these issues and endeavors to
take HCI beyond the limitations of participatory design methods and towards a future
of meta-design systems. Meta-design describes a future state of co-design consisting
of open systems that evolve during use, with design activities redistributed across
time and levels of interaction with the environment.

The idea of co-design has gained momentum in participatory design practices
wherein users and designers work together to envision future environments of use, in
a variety of contexts (e.g. designing for children, people with disabilities, workers in
companies, etc. [23]). Indeed, co-design has become increasingly desirable as the
role of “user” and “designer” and use time and design time become blurred.
However, a future of continuous co-design necessitates a change in “how we design,
what we design, and who designs” [26]. Although participatory design methods and
practices have existed for decades and their contributions have been critically
assessed over time [e.g. 26, 27], practical co-design techniques that can be applied
continuously throughout the life of the system remain a complex challenge. One
approach to this problem, explored by Costabile et al. [9], are software environments
called Software Shaping Workshops (SSWs); these environments allow end-user
domain experts to design their environments using a high-level visual language [e.g.
9]. The SSW methodology has yielded the Hive-Mind Space (HMS) model which
describes multiple levels of participation and design activities [30]. The HMS model
has been applied in systems such as MikiWiki which empowers end users to
customize the system during use [e.g. 30].

In further exploration of these challenges, recent work by Fischer and Hermann
[15] has identified the following key guidelines for the meta-design of socio-technical
systems: provide building blocks, under-design for emergent behavior, establish
cultures of participation, share control, promote mutual learning and the support of
knowledge exchange, and structure communication to support reflection on practice.
A key principle for the meta-design of socio-technical systems, included in this series
of guidelines, is to provide building blocks for the eventual end users of the system to
“freely combine, customize, and improve these components or ask others to do so”
[15]. This principle offers a natural connection to practical meta-design methods that
can bridge the gap between theory and practice in this area.

2.1 Guidelines for Designing-in-Use

As discussed earlier, the concept of designing-in-use is not new – in both theoretical
and practical work, researchers have noted these ideas over time [e.g. 4, 6] and they
are increasingly emerging in the technological behaviors and expectations of our end
users [e.g. 5]. New products and technologies are showing these trends as well (e.g.
open source systems, mobile app development, customizable tools, personalization,
etc.) In the following guidelines, we seek to consolidate and build on these ideas such
that they can be applied to practical design activities. Our highly complex
environments of use, consisting of rapidly evolving technologies and new means of
information production, require a new focus for design activities.

 “Human Crafters” Once again 13

Designing-in-use supports users acting as designers, as well as systems that must
continuously evolve to conform to future, unpredictable needs. It requires design
time thought to be focused away from immediate needs and towards common
emergent behaviors that users engage in over time. These behaviors center around:
connecting – to people with similar interests or needs, having conversations – in real-
time across space and time, combining – the system with other tools and systems they
use, getting up to speed quickly – so undue time is not spent learning the system, and
tailoring and adapting – such that the system is molded to their personal needs. These
behaviors originate from our growing understanding of real world environments of
use, informed both by theory and practice, and the many perspectives and
complexities of this use time. Looking at how interactive systems are currently used
suggests that these behaviors are already beginning to emerge. We suggest the series
of guidelines that follow (summarized in Table 1, below) – aimed at orienting design
time activities towards future use, as well as providing a frame for users and designers
to communicate changes across the entire life of the system.

Table 1. Guidelines for Designing in Use

People like to use systems where they can:

1. Connect with other people with similar needs and interests, both
nearby and far away.

2. Reach out and converse with other people in real-time, while they
are using the system.

3. Combine it with other tools and systems they use regularly.
4. Begin using it quickly, without a lot of help or instruction.
5. Adapt it to their personalized needs.

These guidelines are derived from consolidating the broad literature on participatory
co-design and technological and social trends. The rationale behind the inclusion of
each guideline is described briefly below:

Guideline 1. Connect with other people with similar needs and interests, both nearby
and far away.

John Thackara’s [29] series of design frameworks for complex worlds emphasizes the
increasing importance of systems that allow people to connect and communicate both
locally and across the boundaries of time and space. This guideline intends to
encourage these possibilities by focusing designers on how users can use the system
to connect to similar people, and how they might attempt to extend the system.

Guideline 2. Reach out and converse with other people in real-time, while they are
using the system.

Research prior to meta-design has explored modifiable systems that allow for
reflective use-time conversations to occur, between designers and users [e.g. 10]. This

14 M. Maceli and M.E. Atwood

guideline seeks to emphasize how users can have live experiences and conversation
with other people within, or around, the system. This may be with other users, with
designers, or with knowledgeable users acting as designers. And, more generally,
people use their social networks to accomplish their goals and answer questions, even
if it means ignoring “formal” channels [e.g. 28].

Guideline 3. Combine it with other tools and systems they use regularly.

The new (or redesigned) system may be only one of several tools and systems they
use on a daily basis or even at the same time. Designing for these complex
environments is a challenge facing HCI today and many theoretical frameworks (e.g.
distributed cognition [18], situated action [28]) describe the intensely combinatory
and situated nature of real life use. While designers can never anticipate exactly how
their system might be used, they can view it as only one piece of a larger, evolving
puzzle and not assume it to be a discrete system with 100% of the user’s focus. This
focus, to the surrounding edge and combinatory effects, may spark new ideas [29].

Guideline 4. Begin using it quickly, without a lot of help or instruction.

Alexander’s unselfconscious culture of design [2] requires systems users can
understand relatively quickly and then contribute to confidently. This breaks down
mental and physical barriers that prevent users from understanding the space or
system well enough to have opinions and take actions to modify it. The goal of this
design exercise is not to overload users with a multitude of features; this guideline is
oriented towards envisioning ways in which novice users could begin using systems
quickly and confidently, potentially becoming empowered to act as designers.

Guideline 5. Adapt it to their personalized needs.

Henderson and Kyng’s [17] early writings on designing in use identified tailorability
as essential to systems supporting users acting as designers. There are many ways in
which systems can be tailorable or adaptable: the system may tailor itself to the
particular individual’s needs automatically or through the user’s tailoring actions.
Successful systems, at this stage of technological development and users expectations,
will likely all require some level of personalization and tailoring. It is the intent of this
guideline to bring these needs to the forefront of design discussions and decisions.

3 Research Study Design

The guidelines (Table 1) are based on literature and recent technological trends and
require further validation with real world designers and users. A laboratory study was
first conducted to assess the usefulness and understandability of the guidelines to both
designers and end users. A subsequent design exercise was undertaken in which the
guidelines were used with an existing website’s design team working with end users.

3.1 Laboratory Study

In a laboratory setting, 32 participants were used in a two-factor between subjects
design, exploring the main effects of participation (including end users or designers

 “Human Crafters” Once again 15

only) and the guidelines (working with or without guidelines). The participants were
graduate and undergraduate students from a variety of majors, with roughly equal
numbers of male and female participants. The mean age of participants was 25 years
(SD = 5.5 years). Individual participants were first asked to rate their systems
development and design skills on a five-point scale. Participants categorized as
“users” had not taken any courses in design or had any formal training in design
methodology. Participants categorized as “designers” were enrolled in information
technology programs and had completed at least one design course. Participants,
working in pairs of either two designers or one designer and one user, were asked to
conduct ideation using the meta-design inspired guidelines. Participants were asked
to design a “textbook trading website” for college students. This particular design
challenge was chosen as participants could easily generate ideas for potential features
but had little experience using a site with that exact functionality. They were first
asked to brainstorm and identify key issues and trend that may affect their website in
the future (e.g. – “The price of textbooks keeps going up and students want cheaper
options”). Participants were then given the guidelines to review individually, and
asked to work together to write down any design ideas for the website that were
sparked by the various guidelines, as well as any ideas they felt fell outside them.

3.2 Design Exercise – The ipl2

In order to explore the use of the guidelines in a real world context a design exercise
was then undertaken involving the ipl2. The ipl2 is a digital public library, hosted by
the iSchool at Drexel University, and continuously developed by faculty and students
at a consortium of colleges and universities with information science programs [1].
The participants in the design exercise consisted of two ipl2 designers, one ipl2
designer/developer, and two end users. All participants had worked on the ipl2 for a
minimum of 6 months. The design exercise participants met in two iterative sessions
to conduct ideation using the meta-design inspired guidelines, in a similar design
process as in the laboratory study. Additionally, the end user participants maintained
diaries recording their design suggestions while they used the website in the context
of their daily lives. The diaries were kept over the course of the several weeks
spanning the two design sessions.

4 Results

4.1 Laboratory Study

In the laboratory study, working with 16 groups (32 participants in total, as detailed in
section 3.1 above), the dependent variables collected included the number of ideas
generated, the time spent talking by each participant, and the quality of the ideas
generated, as assessed by design experts after the session on a 7-point scale. Quality
rating means were slightly higher in the groups without guidelines, however, neither
factor (guidelines or participation) was found to be statistically significantly different
in a univariate analysis of variance for any of the dependent variables collected (p >
.05). There was a strong positive correlation between the overall quality rating of

16 M. Maceli and M.E. Atwood

design ideas and the number of words written by participants (r=.856, n=16,
p < .001). The ideas were then explored in more depth, using inductive qualitative
analysis to code text and identify themes from the idea data [22], in order to
understand the semantic differences between the treatment groups. Although many
ideas were common to all treatments (e.g. user profiles, book reviews), several themes
emerged as being more common to one or another treatment group. The emerging
themes were rated by the researcher across a the key principle of customizable
building blocks for meta-design as described by Fischer and Hermann [15].

Table 2. Themes and frequencies of design ideas, grouped by level of customization

 Theme

Guidelines No-Guidelines

High Customization
(Functional Changes)

Finding/searching 19 7
Localization 5 7
Personalization 21 12
Real-time communication 6 6
Recommendations 8 5
Social networking 10 7

Total 69 44
Medium
Customization
(Display Changes)

Course content 0 6
Digital materials 8 5
Helping users 6 0
Layout & design 11 1
Mobile access 5 4
Personal cataloging 1 0
Reputation/trust 10 8

Total 41 24
Low Customization
(Fixed Features)

Accessing site 2 0
Book metadata 16 27
Marketplace rules 1 17
Purchasing tools & options 7 16
Technical details 2 4

Total 28 64

In general, ideas characterized as low customization referred to fixed features with

little to no user contribution or customization. Medium customization ideas typically
allowed for users to contribute content or customize on a content or display basis.
High customization ideas were oriented towards ways of allowing users to customize
or extend the website in order to make it functionally different or improved in some
way. The design ideas were then grouped according to their ability to support end-
user customization; each theme was ranked high (e.g. “Personalization”), medium
(e.g. “Mobile access”), or low customization (e.g. “Book metadata”). Table 2, above,
shows the grouping of themes into high, medium, and low customization.

Table 3. Ability of idea to facilitate “combination, customization, and improvement of system
components” [15]

Treatment Group Low Ability Medium Ability High Ability Total Ideas
With Guidelines 28 (20%) 41 (29%) 69 (50%) 138
W/o Guidelines 64 (48%) 24 (18%) 44 (33%) 132

 “Human Crafters” Once again 17

The overall distribution of ideas across the treatments working with and without
guidelines was found to be statistically significantly different (Χ2(2, N=270) = 23.94,
p <.001), with a higher than expected number of ideas relating to high/medium
customization in the groups working with the guidelines (Table 3 above).
Furthermore, the groups working without guidelines showed a higher than expected
number of low-customization ideas. The implications of these significant differences
will be explored further in the discussion section of this paper.

The different treatment groups attributed ideas across guidelines similarly with the
exception of guideline #4 (“begin using it quickly”), which was more often used in
the groups that included end users (Figure 2). Participants were given the option to
identify ideas that did not relate to any of the guidelines (i.e. fell into an “other”
category) but this was not used for any of the ideas, indicating that each idea
generated related in some way to one of the guidelines.

Fig. 1. Ideas attributed to each guideline by laboratory participants

4.2 ipl2 Design Exercise

After the initial laboratory to explore the usefulness and understandability of the
meta-design inspired guidelines, an ipl2 design exercise was conducted. In the ipl2
design exercise, the group of designers and end-users generated 25 ideas in the first
session and 21 design ideas in the second session, for a total of 46 ideas. The number
of ideas generated individually in the design exercise appeared to be related to the
amount of design experience of each participant. More HCI design experience
generally meant more ideas generated. The raw data consisting of the text of ideas
generated in the ipl2 design exercise was analyzed qualitatively in order to build an
understanding of the themes addressed by participants in their proposed design ideas.
Similar to the preceding laboratory study, a process of data reduction was first
undertaken to code the concepts addressed in each idea, then a thematic analysis
explored the patterns that emerged from the data. The thematic analysis revealed that
the design ideas generated were oriented around several themes, some of which
related to current features and functionality and others oriented towards future
improvements or new features. The below table (Table 4) summarized the findings in
the thematic analysis of the ipl2 design exercise idea data.

10

5
7 7

10
9

6
7

3

10

Connect ReachOut Combine Quickly Adapt

Number of Ideas Generated by Each
Guideline in Laboratory Study

Users/Designers Designers Only

18 M. Maceli and M.E. Atwood

The themes were then evaluated against Fischer and Hermann’s principle of
customization in meta-design, as in the laboratory experiment. Due to the design exercise
approach, there were not multiple treatments to be compared; however a few general
observations were made: the majority of the themes focused on communication (e.g.
asking questions, real-time communication, social networking), adapting to personal needs
(e.g. finding and searching, personalization, new apps and platforms), and contributing
(e.g. user-contributed content). These themes are largely dedicated to allowing
opportunities for end-user modification and contribution in use. Relatively few ideas
focused on fixed features, such as the layout and design of the website.

Table 4. Themes in ipl2 design exercise ideas generated

Theme
Number of Times
Theme Observed

Asking Questions 15
New Apps and Platforms 15
Finding & Searching 9
User-Contributed Content 7
Personalization 7
Real-time Communication 6
News & History 6
Social Networking 4
Layout & Design 4
Games 3
Collections 3

For the diary keeping portion of the study, the raw data was analyzed in order to
build an understanding of the general themes addressed by the end users in their
design suggestions. In general, the ideas generated by end user participants were
oriented towards more efficient, immediate use of the system in the present. The bulk
of the participant suggestions involved functional changes to the system. The
majority of the ideas suggested changes to features (or brand new features) that the
end users would not have the technical knowledge to implement. Therefore, the ideas
were presented on a high level, without including any implementation details. The
ideas were all existing concepts, either improvements to existing features or common
features on other websites, with no novel concepts suggested.

5 Discussion

The initial laboratory study yielded some unexpected findings. Although the different
treatment groups came up with roughly the same number of ideas and spent roughly
the same amount of time talking, the qualitative analysis revealed that the concepts
covered in the design ideas differed. Of the design ideas generated by participants,
low-customization ideas (fixed features) were the majority for the groups working
without the guidelines (Table 3, above). In the treatment groups with the guidelines,
more ideas fell into the medium and high-customization categories than for groups
working without the guidelines. These mid-level customization ideas focus on ways
to modify the system on a content or display basis, with high-level customization
ideas suggesting functional changes made by end users.

 “Human Crafters” Once again 19

As the thematic analysis revealed there were significantly more ideas involving
finding/searching (e.g. “list of school’s required books per term”) and personalization
(e.g. “connection to school library”, “personal profiles”) in the groups that used the
guidelines; these themes are inherently related to end user modification and
adaptation of the system to fit their needs in use. The non-guidelines groups had a
higher number of ideas related to the specifics of the domain and purchasing (ie –
book metadata and ways of purchasing, such as payment methods) and fewer around
customization. As the chi-square test revealed these differences were significant,
indicating the guidelines were effective in shifting design-time thought towards future
opportunities for user customization.

However, it remains an open question in meta-design systems as to how to create
(and maintain) the right balance between highly modifiable and fixed elements of the
system (examples in Table 5, below). A healthy and usable system must no doubt
contain features from both ends of the spectrum, but too fixed may become overly
rigid and highly modifiable may become unusable. As the ratio of ideas generated
indicates, a system may require a great number of low-modifiable and mid-level
content modifiable ideas, with only a few features allowing for higher modifiability.

Table 5. Levels of Customization in Ideas Generated by Participants

Customization Level Description Example
Low Fixed features “Book metadata”
Medium Display or content changes “Mobile access”
High Functional changes “Personalization”

These levels of end-user customization in the technology used in the experimental
design activities are interesting and relevant to meta-design on several dimensions.
Most importantly, this indicates that the vision of meta-design systems is beginning to
be realized in common systems used on a daily basis. All groups were able to
brainstorm design ideas falling into each category, this includes the groups of
designers-only and also the groups of designers-and-users. This indicates that not
only is end-user customization becoming commonplace, but it is also expected and
desirable by users with a varying level of design and development experience. Even
those with little technical knowledge can envision ways in which technology systems
might be modifiable by future end-users.

Building on these findings from the laboratory study, the goal of the ipl2 design
exercise was to explore the use of the meta-design inspired guidelines in an
environment closer to real-world design, through using actual designers and end users
of a digital library system (ipl2). The intention was to assess whether such a process
might be suited to real-world design ideation. In general, the meta-design inspired
guidelines seem well-suited to the ipl2 design team’s ideation process. Key measures
of success in this phase of the study related to the understandability of the guidelines
(i.e. was the wording and intention of the guideline clear to all participants?) as well
as usefulness (i.e. did participants reference each guideline and employ it in
generating design ideas?). Participants were not asked to directly assess the
guidelines; rather they were provided as a general framework to spark idea
generation. The guidelines seemed to be generally well-understood by both designers
and end-users engaged in the design activity. At no point during the two design

20 M. Maceli and M.E. Atwood

Fig. 2. ipl2 design exercise ideas assigned to guidelines

sessions or the previous laboratory experiment did any participant appear to struggle
with the meaning or wording of any of the guidelines.

Both end users and designers were observed to reference the guidelines during
design discussion and relate them to the ideas generated. Each guideline was used to
generate between 3 and 9 design ideas in each session, with a generally equal
distribution across each guideline and across the two design sessions. All of the
design ideas generated were reported to relate to one or more of the five guidelines,
by the participants (Figure 2, above). This indicates that the concepts embodied by
the guidelines were relevant to all the design ideas generated by all the participants
across all of the phases of the study.

The guidelines mapped well to design ideas both in the context of the laboratory study
exercise and in a real-world design problem, in redesign of the ipl2. Furthermore, the
guidelines appeared to be sufficiently flexible to frame design discussion without being
explicitly grounded in specific, current technologies. Throughout the series of
experiments, both in the laboratory and real-world contexts, design ideas were suggested
that covered a range of technologies, both old (e.g. desktop applications) and new (e.g. cell
phone barcode scanning). These promising findings indicate that the guidelines likely
have the necessary flexibility and generalizability to support and encourage design
ideation in a variety of real-world design domains.

In addition to the design sessions with the guidelines, the end users that
participated in this ipl2 design exercise also kept diaries recording changes they
would like to make to the system while they were using it in real-world design
activities. The findings indicated that these design ideas from the end users tended to
focus on immediate improvements to the system that would provide features to
increase the efficiency of use of the ipl2; these ideas generated by end-users did not
focus on extensive customization features or future possibilities.

Overall, the ipl2 design exercise with the group of designers and end users
generated more ideas oriented towards customization, than did the end user diaries.
The diary-keeping exercise was conducted with end users working alone, in the
context of their daily work. The end users were asked to provide general suggestions
and ideas for future changes to the system. These findings suggest that future-focused
ideation may be most productive when working in pairs or larger groups, and when

9

5
6 6

5
6

3

6 6
7

Connect ReachOut Combine Quickly Adapt

ipl2 Group Exercise - Ideas Assigned to
Guidelines by Participants

Session 1 Session 2

 “Human Crafters” Once again 21

participants are asked to focus on the guidelines instead of on the system in its current
state. These findings suggest that the guidelines are best employed in environments
where they can frame thought and spark ideas between multiple designers and end
users, and where the guidelines, and not the existing system, can be the focus of
discussion. Furthermore, the ipl2 design exercise incorporated designers with
significant design experience; in this context, a high percentage of the ideas generated
covered themes oriented towards customization (Table 3, above). This indicates that
they value of the guidelines may increase with the experience of the designer.

Finally, systems that are continuously co-designed must have end users willing and
able to be active contributors. As discussed in the review of literature, this shift
requires a cultural change towards Alexander’s vision of an “unselfconscious culture
of design” [2] in which end users feel confident and knowledgeable enough to
contribute changes to their designed environments. This familiarity with the system
may, in reality, already be commonplace with our current technologies, as end users
acting as potential designers are likely already building a deep familiarity with the
system through using it in their daily activities. In both the diary keeping study and
the ipl2 design exercise including end users, lack of end user motivation was a non-
issue. The participants were confident, willing contributors to their technological
environments. However, it bears noting that the conversational channels between end
users and designers were not open during real world use. The system, as it stands,
was not able to be modified to support their needs that emerged during use. A
traditional participatory design process may have explored some of these needs and
built them into the system. But undoubtedly many of these needs would not be
known until use time. As meta-designers, we must become better not at predicting
future contexts of use, but of predicting tools that may be of use to future modifiers of
the system. These tools, combined with opening channels for continuous,
participatory co-design between designers and users, can empower end users to
modify systems in use.

All design work is necessarily bounded by multiple real-world constraints. The role
of a meta-designer cannot simply be to give future end-users the potential to design
all possible environments; the environments designed by future end-users are
bounded both by practical concerns and by the imaginations of the meta-designers.
As a fluid and ongoing co-design process, this system evolution can become a
conversation over time, and over multiple designers and users. With such a model of
meta-design, the design ideas generated by meta-designers are of upmost importance
in facilitating future modifications by end-users. This requires an understanding of
what functions such customization tools should support and how they should be
represented proportionally to the more fixed features of the system. This empirical
work begins to explore a practical approach to endowing meta-design systems with
features supporting future end-user customization.

5.1 Summary of Findings

Guidelines Shifted Themes in Design Ideas towards Those Facilitating End User
Customization: The guidelines yield a qualitative difference in ideas in all treatment
groups, including those with skilled designers. Even skilled designers may not be

22 M. Maceli and M.E. Atwood

accustomed to thinking about future opportunities for end-user customization; the
guidelines are a simple and effective approach.

No Statistically Significant Difference in Number of Ideas, Time Talking, or Quality
of Design Ideas: The output of the design activities (number of ideas generated, amount
of design conversation) were not better or worse, but the ideas were qualitatively
different in the groups working with the guidelines. This indicates that even unskilled
designers are good at envisioning solutions in today’s technologies. There is an
expectation of customization; successful systems must provide these tools.

End-Users Focused on Practical, Immediate Improvements: On their own, in the
diary keeping exercise, end users suggested small-scale, practical improvements to
the system that were beyond their technical capabilities. When working with
designers and the guidelines, end users were effective contributors to design
discussion and idea generation.

Meta-design Most Effective as Continuous, Co-design: The research study suggests
that meta-design is not something best done with designers working alone or with end-
users working alone, but rather, through a process of continuous co-design.

6 Conclusion

The framework of meta-design [13] provides a powerful vision of a future in which
we are all designers of our technology; however, empirical work is needed to build a
practical understanding of how meta-design might be conducted in real-world
contexts and to further research agendas in the area. The series of research studies
discussed in this paper have begun to explore some “discount” methods of focusing
design-time thought on future, unpredictable contexts of use through meta-design
inspired guidelines used in design ideation. The meta-design inspired guidelines were
found to be well-understood by experimental participants, in both a laboratory and
real-world context, and used to spark customization-focused design ideas oriented
towards future end-user crafters. The experiments begin to suggest the appropriate
techniques for meta-design activities as those including both end users and designers,
engaged in guideline-framed design discussions across time.

As discussed earlier, true meta-design systems are complex and require highly
modifiable technologies. While our current technologies widely in use today do not
support extensive customization by end users, this future is coming. In 1991, Brown
envisioned a future in which information technology is rendered invisible, becoming
“a kind of generic entity, almost like clay” [8] that can be molded to fit the customer’s
needs. Looking forward to the immediate future, a great deal of our design will still
happen at “design time”, with end user participants. In our exploration of meta-design
inspired guidelines, we hope to contribute a way of design-time thinking to inspire
ideas oriented around future system modification in the hands of end users. A few
simple heuristics, such as the series we have generated and begun to validate, can help
designers and users communicate and brainstorm around future functional changes to
the system. None of the guidelines are novel concepts – rather, they seek to once
again ground our relationship with technology in the same fundamental needs and
motivations that drive all our design actions. As Christopher Alexander claims, every

 “Human Crafters” Once again 23

person has the inherent ability to design their environment; “each one of us has,
somewhere in his heart, the dream to make a living world, a universe” [3]. This
vision of design can only be realized if users are acting fully as designers. As
discussed earlier, we are not quite at this point with our computer-based systems.
However, the findings from this research study point us in a promising direction that
can move us closer to facilitating users designing in use.

From the long history of conducting participatory design, we’ve learned that
designers, on their own, can’t anticipate all the changes that might occur during use
time. They do not have the users’ “lived in” experiences and knowledge.
Participatory design practices involve users such that this gap can be bridged and
designers can have a window into the user’s perspective. Designers are necessarily in
the business of predicting the future in framing and exploring design problems. In this
study, they did a better job than users at utilizing the future-focused guidelines to
generate design ideas. The users, on their own, concentrated on the immediate
modifications to the current technology, without a broader, future-focused vision.
Stewart Brand noted this tendency towards end users narrowly addressing problems
with “good enough” solutions – “The solutions are inelegant, incomplete,
impermanent, inexpensive, just barely good enough to work…It is precisely how
evolution and adaption operate in nature” [7]. As designers, we must provide the
tools for users to make these small, continuous changes to the system in use.

To that end, the goal of meta-design is to make systems that are malleable enough that
users can make their own customizations during user time. To move closer to this goal,
we need co-design activities to encourage input from users and build an understanding of
their needs. But we need guidelines, such as the ones explored in this study, to keep
design activities future-focused. This was shown to be a simple but effective addition to
current co-design practices. As this research study emphasizes, our technologies have
evolved to begin to support the creation of personalized environments. Our co-design
methodologies must evolve as well, to support today’s designers and end users to work
together in creating tools for future end-user crafters. The guidelines explored in this
research study take us one step closer to designing information technology that performs
as “clay”, to be molded in use by the emergent needs of users.

References

1. About ipl2, http://www.ipl.org/div/about/
2. Alexander, C.: Notes on the synthesis of form. Harvard University Press, Cambridge

(1964)
3. Alexander, C.: The Timeless Way of Building. Oxford University Press, New York (1979)
4. Bannon, L.J.: From human factors to human actors: the role of psychology and human-

computer interaction studies in system design. In: Greenbaum, J., Kyng, M. (eds.) Design
At Work: Cooperative Design of Computer Systems, pp. 25–44. L. Erlbaum Associates,
Hillsdale (1991)

5. Benkler, Y.: The Wealth of Networks. Yale University Press, New Haven (2006)
6. Bødker, S.: When second wave HCI meets third wave challenges. In: Proceedings of the

4th Nordic Conference on Human-Computer Interaction: Changing Roles. ACM, Oslo
(2006)

7. Brand, S.: How Buildings Learn. Viking, New York (1994)

24 M. Maceli and M.E. Atwood

8. Brown, J.S.: Research That Reinvents the Corporation. Harvard Business Review 68(1),
102 (1991)

9. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: End-User Development: the Software
Shaping Workshop Approach. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User
Development, pp. 183–205. Springer, Dordrecht (2006)

10. Fischer, G.: Domain-Oriented Design Environments. Automated Software Engineering 1,
177–203 (1994)

11. Fischer, G.: Meta-Design: Expanding Boundaries and Redistributing Control in Design. In:
Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662,
pp. 193–206. Springer, Heidelberg (2007)

12. Fischer, G.: Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and
Evolving Knowledge in Domain-Oriented Design Environments. Automated Software
Engineering 5(4), 447–464 (1998)

13. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User
Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development,
pp. 427–457. Kluwer Academic Publishers, Dordrecht (2006)

14. Fischer, G., Girgensohn, A.: End-user modifiability in design environments. In: Proc. of
CHI 1990, pp. 183–192. ACM, New York (1990)

15. Fischer, G., Hermann, T.: Socio-Technical Systems - A Meta-Design Perspective.
International Journal for Sociotechnology and Knowledge Development 3(1), 1–33 (2011)

16. Fischer, G., McCall, R., Ostwald, J., Reeves, B., Shipman, F.: Seeding, evolutionary
growth and reseeding: supporting the incremental development of design environments. In:
Olson, G.M., Malone, T.W., Smith, J.B. (eds.) Coordination Theory and Collaboration
Technology, pp. 447–472. Lawrence Erlbaum Associates, Mahwah (2001)

17. Henderson, A., Kyng, M.: There’s No Place Like Home: Continuing Design in Use. In:
Greenbaum, J., Kyng, M. (eds.) Design At Work: Cooperative Design of Computer
Systems, pp. 219–240. L. Erlbaum Associates, Hillsdale (1991)

18. Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)
19. Illich, I.: Tools for Conviviality. Harper & Row Publishers, New York (1973)
20. Maceli, M., Atwood, M.E.: From Human Crafters to Human Factors to Human Actors and

Back Again: Bridging the Design Time – Use Time Divide. In: Costabile, M.F., Dittrich,
Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 76–91. Springer,
Heidelberg (2011)

21. Mayall, W.H.: Principles in Design. Design Council, London (1979)
22. Miles, M.B., Huberman, A.M.: Qualitative analysis: An expanded sourcebook. Sage,

Thousand Oaks (1994)
23. Muller, M.J.: Participatory design: the third space in HCI. In: Jacko, J.A., Sears, A. (eds.)

The Human-Computer Interaction Handbook, pp. 1051–1086. L. Erlbaum Associates Inc.,
Hillsdale (2002)

24. Petroski, H.: The Evolution of Useful Things. Knopf, New York (1992)
25. Rogers, Y.: New Theoretical Approaches for Human-Computer Interaction. Annual

Review of Information Science and Technology 38, 87–143 (2004)
26. Sanders, E., Stappers, P.J.: Co-creation and the new landscapes of design. CoDesign 4(1),

5–18 (2008)
27. Spinuzzi, C.: The Methodology of Participatory Design. Technical Communication 52(2),

163–174 (2005)
28. Suchman, L.: Plans and Situated Actions: The Problem of Human-Machine

Communication. Cambridge University Press, Cambridge (1987)
29. Thackara, J.: In the Bubble: Designing in a Complex World. MIT Press, Cambridge (2005)
30. Zhu, L., Vaghi, I., Barricelli, B.R.: MikiWiki: A Meta Wiki Architecture and Prototype Based

on the Hive-Mind Space Model. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A.
(eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 343–348. Springer, Heidelberg (2011)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 25–39, 2013.
© Springer-Verlag Berlin Heidelberg 2013

End-User Experiences of Visual and Textual
Programming Environments for Arduino

Tracey Booth and Simone Stumpf

City University London
{tracey.booth.2,simone.stumpf.1}@city.ac.uk

Abstract. Arduino is an open source electronics platform aimed at hobbyists,
artists, and other people who want to make things but do not necessarily have a
background in electronics or programming. We report the results of an explora-
tory empirical study that investigated the potential for a visual programming
environment to provide benefits with respect to efficacy and user experience to
end-user programmers of Arduino as an alternative to traditional text-based
coding. We also investigated learning barriers that participants encountered in
order to inform future programming environment design. Our study provides a
first step in exploring end-user programming environments for open source
electronics platforms.

Keywords: End-user programmers, Arduino, Visual Programming.

1 Introduction

Open source hardware platforms such as Arduino [23] and Raspberry Pi [32] have
reinvigorated interest in hacking and tinkering to create interactive electronics-based
projects. These platforms present an opportunity for end users to move beyond being
mere consumers of technology to being producers of it. Arduino is based on a simple
microcontroller board (Figure 1) that was designed for use in personal projects, even
by people with little electronics or programming experience – artists, hobbyists, or
children.

However, although easier to learn than many other programming languages, the
Arduino programming language still requires some skill to master and for potential
end-user programmers of Arduino this means getting to grips with coding. Recently,
visual programming languages (VPLs) for Arduino have been developed and we
wondered whether a visual representation might provide an easier route of entry into
programming. This fits with the rise of other visual programming environments
aimed, for example, at children to engage them and facilitate the learning process.
Would a VPL have similar benefits for adult users beginning to learn to program an
electronics platform? Similarly, some work has started to emerge to investigate learn-
ing barriers for specific end-user programming environments [5, 11, 12]. Consequent-
ly, we wondered what barriers end users encounter when programming electronics
platforms.

26 T. Booth and S. Stumpf

In this paper we describe and discuss findings from an empirical study with adult
novice end-user programmers of Arduino, using textual and visual programming envi-
ronments. The overall aim of our research was to investigate whether a visual pro-
gramming language for Arduino offers benefits over a traditional, text-based language
for adult end-user programmers, specifically in terms of efficacy and user experience.
We were also interested in what barriers end users currently face with a view to im-
proving these environments.

Our study is the first of its kind (as far as we know) to investigate a VPL for Ar-
duino. We contribute novel insights into understanding how end users interact with
these programming environments in the growing area involving physical prototyping
and study their benefits, costs and learning barriers. Our findings can provide the
basis for improving the design of visual programming environments for the Arduino,
and potentially also programming environments suitable for other related domains.

Fig. 1. Example of a prototype using an Arduino microcontroller board

2 Related Work

A visual programming language (VPL) uses a visual representation instead of, or in
addition to, more traditional textual representations of program source code. Exam-
ples of VPLs are Forms/3 [4] in the spreadsheet paradigm, LabVIEW [31] for instru-
ment control and industrial automation, as well as Scratch [18] for teaching children
how to program using animations.

There have been numerous investigations to substantiate the benefits of VPLs, both
generally and in certain application areas. Whitley [20] found that visual notations

 End-User Experiences of Visual and Textual Programming Environments for Arduino 27

have potential for making information explicit and providing better organisation,
which may help with program design, problem-solving and performance, even more
so as the size of problems increases. However, there is still a lack of evidence that
they are generally easier to learn, understand, use and share [2] and in addition it ap-
pears that the benefits of a notation are relative to a particular application area (task
[8]).

One area where visual notations have been used with great success is in teaching
children and young people to program. Scratch uses a building-block metaphor; pro-
grams are created by snapping graphical blocks of different colours and shapes to-
gether to form “stacks” (procedures). These blocks represent commands, datatypes,
etc. and users can choose them from a palette of available blocks. The shape of the
blocks determines what they can connect with. In this way syntactically correct state-
ments and programs are encouraged: the shapes of the blocks hint as to what is ex-
pected and thus provide a guide to the user as to what is possible. There is a growing
body of research into the efficacy of Scratch as a tool for learning to program. Several
studies report that children and young people - both boys and girls - find Scratch en-
gaging and fun to use, while successfully familiarising them with fundamental
programming concepts without the distraction of syntax [7, 13, 14, 16].There is also
evidence of continued engagement with computer science. A positive first experience
with programming in an environment with a low barrier to entry, like Scratch, can
sustain enthusiasm and ease transition to more sophisticated languages, such as Java
and C [13, 21]. The visual programming environment used in our study, Modkit [27],
was heavily influenced by Scratch and uses a similar building-block metaphor. Mod-
kit has been used in workshops teaching children how to program Arduino [17]. Yet
while Scratch has been studied to some extent, so far there are no similar studies to
investigate the benefits of ModKit or other VPLs for the Arduino.

There are also some concerns about the habits Scratch engenders [15]. Following a
constructivist philosophy of learning-by-making, Scratch both supports and encourag-
es a bottom-up approach to program construction – programming by bricolage [19],
rather than design. This can lead to a trial and error approach of programming with
extreme decomposition and, in turn, this can make the code highly concurrent and
difficult to debug. However, this type of opportunistic construction – tinkering and
experimenting – is often characteristic of prototyping that involves electronic compo-
nents [3, 10], so an environment explicitly designed to support this style of program
creation may provide a good route into programming Arduino. Our work is the first
step to investigate barriers that end users encounter in the area of programming of
physical prototypes.

3 Study Design

We recruited participants for our empirical study through the MzTEK [30] and Lon-
don Hackspace [25] mailing lists. We used a within-subject, think-aloud design, com-
prising eleven participants (8 female, 3 male, mean age 36.18), exposing each

28 T. Booth and S. Stumpf

participant to both a visual and textual environment. None of the participants had
previous experience of programming an Arduino or were professional programmers
but they were required to have some previous programming experience (declaring and
using variables and ‘if statements’ in at least one procedural programming language).

Participants used both a textual and visual environment for Arduino programming
in our study. The textual environment was the default Arduino programming envi-
ronment v1.0.1 [24] (Figure 2), which contains a text editor, a message area (for
compiler messages), a text console (for text input and output during runtime), a tool-
bar containing frequently used commands and various menus for operation.

Fig. 2. Arduino IDE (textual programming environment)

The visual environment used was Modkit Alpha Editor (preview version) [28]. It
supports multiple code representations, with both a Blocks view (Figure 3), where
users manipulate coloured, graphical blocks representing code, and a Source view,
which provides a textual representation of the current program(s), also editable. The
Hardware view allows users to configure hardware setup visually. While there are a
number of other visual programming environments for Arduino, we chose to use
Modkit for this study because in terms of terminology, commands available, feature
set and code constructs it matches the Arduino language and IDE most closely, thus
facilitating isolation of the visual component to the programming experience.

 End-User Experiences of Visual and Textual Programming Environments for Arduino 29

Fig. 3. Modkit Alpha Editor IDE - Blocks view (visual programming environment)

Study sessions took place in the Interaction Lab at City University London, lasting
approximately 2 hours per participant. Each session was video-recorded using Morae
[29], capturing all on-screen activity, verbal comments and non-verbal behaviour.
Mouse-clicks, keystrokes and mouse movements (in pixels) were also logged auto-
matically. Participants were asked to ‘think aloud’, to provide us with insight into
their thought processes.

At the start of the session participants completed a background questionnaire and
semi-structured interview regarding their previous programming experience. We then
familiarized the participants with the Arduino platform and key Arduino program-
ming concepts and constructs. The tutorial also included a printed hardcopy of a list
of key commands, which the participant was able to refer to during the whole session.

For the main part of the study, participants completed two tasks (counterbalancing
was used to counter any order effects of environment). In task 1 they were asked to
modify an existing program, extending it to meet new requirements. The original
prototype contained a single LED and a proximity sensor. The goal of the original
program was to light the single LED when an object reached a specific ‘closeness’ to
the proximity sensor. The second prototype extended upon this with the addition of
four more LEDs. Each LED was associated with a specific proximity threshold and
only when that threshold was reached must the LED be lit. When an object reached
the ‘closest’ threshold, all of the LEDs must be lit. In task 2 they were asked to create
a new program from the ground up. The participant was shown a prototype that con-
tained a single LED and a tactile switch. The program must light the LED when the
switch is pushed down. Hardware prototypes of the circuits required for each task
were prepared in advance; participants therefore did not have to understand and con-
struct electronic circuits. The facilitator demonstrated the desired results using the
hardware prototype so that the participants were able to view the working prototype
and desired result. Participants were given twenty minutes to complete each task.

30 T. Booth and S. Stumpf

We captured two sets of data to investigate efficacy and user experience. We asked
participants to think-aloud while they were completing the tasks and we conducted a
qualitative analysis of transcribed video recordings for task 2, based on the set of
Learning Barriers [11]. The coding scheme used in the study is given in Table 1. Fol-
lowing each task, each participant was presented with a set of 92 word reaction cards,
based on the Microsoft Desirability Toolkit [1], capturing their user experience in a
qualitative way.

Table 1. Coding scheme used to identify learning barriers in programming the Arduino

Code Applied when… Example application in this study
Design barrier The user does not

know exactly what
they want the com-
puter to do.

A user not knowing whether they need
to connect the tactile switch pin as
input or output.

Selection barrier The user knows what
they want to do, but
does not know which
tool to use.

A user not knowing which block to
use to achieve a particular goal, which
operator to use in a conditional state-
ment, or which command to use to
read the value of a digital pin.

Coordination
barrier

The user knows what
tools to use, but not
how to make them
work together.

A user not knowing how to use blocks
or functions in conjunction with one
another. The user may know that they
need to declare variables and read
pins, but not how to get them to work
together.

Use barrier The user knows what
tools to use, but does
not know how to use
them properly.

A user not knowing how to use pin-
Mode to set input or output for a digital
pin, or how to use the digital-
Write command to write a value to
one; also not knowing how to declare
variables or use an if-else statement.

Understanding
barrier

The user thought
they know how to
use something but it
did not do what they
expected.

A user unable to correctly interpret a
compiler error or understand why
something did not happen when it was
supposed it, e.g. an LED does not light
up when a switch is pushed.

Information bar-
rier

The user has an idea
or hypothesis about
why their program
did not do what they
expected, but they do
not know how to
check.

A user not knowing how to use the
serial monitor for debugging, or
whether there is a code verification
tool they can use.

 End-User Experiences of Visual and Textual Programming Environments for Arduino 31

We used two quantitative measures to evaluate potential benefits and costs. First,
we used a self-efficacy questionnaire [6] which gathered participants’ levels of confi-
dence with regards to completing programming tasks in programming environments.
Participants filled in this questionnaire at the start of the session prior to the partici-
pant undertaking any task and then following each of the two tasks. The initial self-
efficacy questionnaire provided a baseline score against which post-task self-efficacy
could be compared. Further, the NASA-TLX questionnaire [9] was completed by
each participant following each task, which measured the perceived load of a task in
terms of mental, physical and temporal demand, performance, effort and frustration.

4 Results

4.1 Effects on End-User Programming Efficacy

We wondered if using the Arduino VPL would have any benefits in helping end-users
to program compared to the textual programming environment. We found that task
completion rates were low in both environments. Only two participants out of eleven
completed both tasks that were set in the study, two completed one task and seven did
not complete any task. However, the four participants who completed tasks were
more successful using the visual programming environment: only two tasks were
completed using the textual environment whereas four tasks were completed using the
visual environment (Figure 4, left).

Fig. 4. Participant completion using programming environments for all tasks (left) and for
create/modify task types (right)

Most of the problems, which we explore more fully in section 4.3 Learning Bar-
riers, that seemed to prevent completion, were due to difficulties with syntax in the
textual environment:

 “I just can’t remember what all the little coding mean [sic], you know, whether
it’s an exclamation mark or an equals and then the curly brackets”.

One explanation for the low task completion scores in the textual environment may
therefore be that participants were focusing more on syntax rather than on program

32 T. Booth and S. Stumpf

design. As participant 1 reflected: “I was too busy worrying about where it should go
and not what was actually in it”.

We also noticed that the kinds of tasks mattered: visual programming helped
slightly more in the modification task than the creation task (Figure 4, right) Again,
this difficulty may have been compounded by the visual programming environment,
which may encourage less focus on overall design and only encourage a trial and
error approach [19].

This suggests visual programming environments may provide a slight edge for
successful programming over textual programming environments, if users have rela-
tively little programming experience. However, visual programming may be most
helpful if users do not have to write the program from scratch.

4.2 Effects on User Experience

In addition to contributing to actual programming efficacy, the type of programming
environment may lead to perceived benefits which in turn can determine preference
and encourage continued use. We measured the effects on participants’ experience
through three aspects: their perceived workload and success, their self-efficacy ratings
and their reactions to the two programming environments.

Participants in our study generally rated their perceived workload as higher in the
textual environment, although they rated the visual environment as more physically
demanding (Figure 5; a higher score indicates either higher workload or decreased
performance). Although this may seem initially perplexing we found that participants
carried out vastly more mouse clicks and mouse movements in the visual environ-
ment, which may explain this perceived cost.

Fig. 5. Participants’ TLX scores for textual (diamonds) and visual (circles) environments. The mean
score was always higher for the textual environment, except relating to Physical demand.

 End-User Experiences of Visual and Textual Programming Environments for Arduino 33

Furthermore, as the performance scores show, in addition to being slightly more
successful in actual programming efficacy, participants also perceived themselves to
perform better using the visual programming environment. This effect on perceived
efficacy was also reflected to some extent by participants’ self-efficacy scores, which
suggest that these benefits may carry over to future tasks. We observed that while
self-efficacy scores improved from their initial self-assessments (mean 7.26) in both
environments (mean textual 7.38, mean visual 7.90), participants rated themselves as
slightly more capable of completing similar tasks after encountering the visual envi-
ronment. This is summarized well by the following comment from participant 1:

“I think I would quite happily play with that one [visual] and see if I could get
something going and if I got stuck…but I’m really confident I could make something
work without getting stuck, and, you know, be able to build from there.”

Task type mattered in participants’ self-efficacy rating (Figure 6) and echoes our
findings for observed efficacy. Participants felt more confident modifying a program
using the visual environment than creating one. In contrast, when they employed the
textual environment the reverse tended to be true; creating programs made them feel
more confident than modifying existing ones. As program reuse is a common strategy
for novice programmers, visual programming environments may therefore provide an
initial boost to learning by increasing an individual’s confidence in their ability to
successfully modify existing programs.

Fig. 6. Participants’ self-efficacy scores initially (triangles) and after completing a task using
the textual environment (diamonds) and visual environment (circles). Mean score for visual
environment is higher than textual environment in the modify task but lower in the create task.

We also noted differences in the type of reactions to the environments. From the
set of word reaction cards, to describe the textual environment, participants chose 62
positive words and 69 negative words. This means that they had a fairly balanced
experience. Contrast this to the visual environment which received 101 positive word
descriptions and only 37 negative words – participants viewed the visual program-
ming environment much more favourably.

34 T. Booth and S. Stumpf

Looking at the meaning of the words that participants chose provides further in-
sight about qualitative differences in user experience. Figures 7 and 8 show a visual
representation of the words participants selected, their frequency (size) and type
(positive vs negative). On the positive side, participants found the visual environment
‘fun’, ‘attractive’ and ‘easy to learn’, whereas they found the textual environment
‘clean’, ‘familiar’ and ‘understandable’. This suggests that the visual environment is
much more emotive, particularly for someone beginning to program, whereas the
textual environment is seen as more practical, as this comment from participant 1
suggests:

“It looks the same as every other blank bit of paper programming environment.
But I know that that’s efficient.”

On the negative side, the main complaint in the textual environment was that it was
‘unsupportive’; the visual programming environment was seen as ‘confusing’. Part of
the challenge in the visual environment may have been due to the “puzzle-like” nature
of the screen elements which lock together, mentioned by both participant 9 and 4:

“At the same time, for me, it’s like a puzzle on top of a puzzle.”
“You feel like you’re solving a puzzle here, but yeah, I’m not sure what the solu-

tion to the puzzle is.”

Fig. 7. Textual environment reactions, positive (in grey) and negative (in black)

Fig. 8. Visual environment reactions, positive (in grey) and negative (in black)

 End-User Experiences of Visual and Textual Programming Environments for Arduino 35

When asked in the post-session debriefing interview which of the environments
they would choose to use for learning to program Arduino, the participants were
overwhelmingly in favour of the visual environment, with seven of the eleven
choosing it. However several participants commented that graphical and textual repre-
sentations of the same program – like the Blocks view and the Source view in Modkit
- might prove useful for different activities or stages of a programming project.

4.3 Learning Barriers

We wanted to explore the reasons for some of the negative user experiences reported
and also how to facilitate improvements to these programming environments. We
therefore looked at what learning barriers our participants faced in the creation task
(recall that this was the more “difficult” task to complete). Recall that we randomised
the order of programming environments over tasks; this means that six participants
encountered the visual environment whereas only five used the textual environment in
the creation task. On average, participants encountered 16.82 learning barriers (15.4
textual, 18 visual). Figure 9 shows the percentage of occurrences of each learning
barrier in the respective environments; in the remainder of the paper we show raw
counts of barriers encountered. In our analysis we will focus on four learning barriers
– Use, Understanding, Coordination, and Selection – because this is where the main
differences between the environments occurred.

Fig. 9. Percentage of learning barriers observed during the create task for texual (grey) and
visual (black) environment

Use barriers proved to be a big challenge for participants but more so in the textual
environment (40/77 textual, 46/108 visual). As already mentioned in section 4.1, a lot
of instances for this type of barriers were caused by a lack of familiarity with the syn-
tax of the textual notation, for example:

“If, then, else… It’s a standard, conditional thing which you use in every single
programming language, but it’s always different. It always appears to come with
some extra thing which you don’t know about.” (Participant 2)

36 T. Booth and S. Stumpf

This barrier is somewhat lessened by the visual environment but still, both envi-
ronments could provide users with better instructions for correct usage, possibly
through context-sensitive instructions which some other IDEs already provide. (The
most recent version of Modkit - Modkit Micro - now provides tooltips).

Similarly, understanding barriers encountered in the textual environment outnum-
bered those found in the visual environment (15/77 textual, 12/108 visual), as this
quote from participant 3 demonstrates:

“So it’s doing output of zero and one. Oh, ok. So now it’s obvious that the problem
is that [squints at the screen and shakes her head slightly] it needs some sort of delay.
But that still doesn’t make sense, because it shouldn’t be doing anything; it should
just be in an off state. So why is it flashing on and off?”

This suggests that the textual environment could provide more support to users in
understanding information received at runtime or on compile, and making them aware
how to check any hypothesis they may have about the reason for a compiler or run-
time error, including the facilities available for testing.

Coordination barriers proved to be a more challenging aspect for participants in the
visual environment than the textual environment (2/77 textual, 15/108 visual). Several
of these related to the unsuccessful docking together of blocks, which some partici-
pants struggled with, suggesting that this interaction could perhaps be improved. In
some cases participants were not sure whether blocks had connected, for example
participant 5 remarked:

“Did it fit? Yes…No… I’m not sure if it’s fitting in the loop, in the If case. It
doesn’t look like it does.”

Some participants, such as participant 2, also did not understand why some blocks
did not fit together when they thought they should:

“What I really want to do is put it there, in the forever loop, [tries to dock digita-
lRead again unsuccessfully…] but that’s not going to happen is it?”

A frequent barrier for participants in the visual environment proved to be a selec-
tion barrier (12/77 textual, 27/108 visual), as this participant stated:

 “It’s a shame you can’t find anywhere like a help or thingy what’s… what those
[the operator blocks] are.” (participant 4)

This is somewhat surprising, as we had anticipated that making the blocks explicit-
ly available might make it easier for people to decide what to use. However, it may be
that in fact people felt confused because the tool provided both a proliferation of
choices yet no clue as which one was the right one – again, a “puzzle on top of a puz-
zle”. Future work could concentrate how to guide users in selecting the right blocks to
use.

5 Discussion and Future Work

Our study suggests that task type, such as creation and modification, play a role in the
success of using a programming environment. Participants in our study also felt more
confident using the visual programming environment in the modification task. This
may explain the effectiveness of using VPLs for teaching: often novices start out by

 End-User Experiences of Visual and Textual Programming Environments for Arduino 37

reusing existing solutions and modifying them – a task for which a visual environ-
ment may be better suited. Consequently, there may be an additional “boost” to learn-
ers to continue using VPLs for this and similar tasks. Arduino draws in adults with
little programming experience and how best to teach these individuals to develop
physical prototypes, possibly through ‘prototype repositories’ which they can reuse,
would be an interesting area for further study.

We have started to identify the barriers end users may encounter when program-
ming an electronics platform, however, this work could benefit from comparative
studies both between application areas (e.g. intelligent agents, spreadsheets, etc.), as
well as other visual programming environments for Arduino, such as S4A (Scratch for
Arduino) [33], Minibloq [26], ArduBlock [22] and Modkit. The Blocks view in Mod-
kit, while graphical, uses similar terminology to the default Arduino IDE. Other visual
environments, such as Minibloq, differ more radically in their presentation of pro-
gramming constructs and their approaches to program construction. It would be useful
to evaluate these empirically for learning barriers, usability and user experience.

Finally, our participants hinted at the effect of visual and textual environments on
programming activities, stating that visual may be good to get them started but that
they may want to switch. It could be that debugging in particular is hampered in
VPLs: our findings show that Coordination barriers were especially more frequent in
the visual environment. One possible solution is to provide both representations at the
same time, to provide information to the end user in combination in order to over-
come this learning barrier. Future work may be able to explore this solution on
programming effectiveness, or how certain programming activities could be better
supported in visual programming environments.

6 Conclusion

The overall objective of this project was to investigate whether a visual programming
language for Arduino offers benefits over a traditional, text-based language for adult
end-user programmers. We learned that:

• Visual environments seemed to help but possible more to modify programs than
create them. Further studies are necessary to look into this in more detail.

• Visual environments provided a more positive user experience, alongside a re-
duced perceived workload and higher perceived success, both for the tasks in the
study as well as future tasks. This may entice beginners to continue using these
environments even in the absence of actual benefits.

• Both environments are not perfect, and may be perceived as unsupportive or
confusing. We showed that this may be due to Use, Understanding, Selection and
Coordination barriers. Addressing these may help to improve support for end-
user programmers.

Taken together, visual programming languages appear to hold promise for adult no-
vice end-user Arduino programmers but further work is needed to fully understand

38 T. Booth and S. Stumpf

how best to support end users to achieve both actual and perceived benefits. Our study
is a first step in this direction.

Acknowledgements. We thank Ed Baafi and the Modkit team, who kindly gave us
access to the Modkit Alpha Editor for use in our study. Thank you also to our study
participants.

References

1. Benedek, J., Miner, T.: Measuring Desirability: New methods for evaluating desirability in
a usability lab setting. Presented at the Usability Professionals’ Association Conference
2002, Orlando, Florida, USA (July 8, 2002)

2. Blackwell, A.F.: Metacognitive Theories of Visual Programming: What do we think we
are doing? In: Proceedings of the IEEE Symposium on Visual Languages, pp. 240–246
(1996)

3. Brandt, J., et al.: Opportunistic Programming: How Rapid Ideation and Prototyping Occur
in Practice. In: Proceedings of the 4th International Workshop on End-user Software Engi-
neering, pp. 1–5. ACM, New York (2008)

4. Burnett, M., et al.: Forms/3: A First-Order Visual Language to Explore the Boundaries of
the Spreadsheet Paradigm. Journal of Functional Programming 11(02), 155–206 (2001)

5. Cao, J., et al.: End-User Mashup Programming: Through the Design Lens. In: Proceedings
of the 28th International Conference on Human Factors in Computing Systems, pp. 1009–
1018. ACM, New York (2010)

6. Compeau, D.R., Higgins, C.A.: Computer Self-Efficacy: Development of a Measure and
Initial Test. MIS Quarterly 19(2), 189–211 (1995)

7. Franklin, D., et al.: Assessment of Computer Science Learning in a Scratch-Based Out-
reach Program. In: Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, pp. 371–376. ACM, New York (2013)

8. Gilmore, D.J., Green, T.R.G.: Comprehension and Recall of Miniature Programs. Interna-
tional Journal of Man-Machine Studies 21(1), 31–48 (1984)

9. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of
empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental
Workload, pp. 239–250. North Holland, Amsterdam (1988)

10. Hartmann, B., et al.: Hacking, Mashing, Gluing: Understanding Opportunistic Design.
IEEE Pervasive Computing 7(3), 46–54 (2008)

11. Ko, A.J., et al.: Six Learning Barriers in End-User Programming Systems. In: Proceedings
of the 2004 IEEE Symposium on Visual Languages - Human Centric Computing, pp. 199–
206. IEEE Computer Society, Washington, DC (2004)

12. Kulesza, T., et al.: Fixing the Program My Computer Learned: Barriers for End Users,
Challenges for the Machine. In: Proceedings of the 14th International Conference on Intel-
ligent User Interfaces, pp. 187–196. ACM, New York (2009)

13. Malan, D.J., Leitner, H.H.: Scratch for Budding Computer Scientists. In: Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education, pp. 223–227.
ACM, New York (2007)

14. Maloney, J.H., et al.: Programming by Choice: Urban Youth Learning Programming with
Scratch. In: Proceedings of the 39th SIGCSE Technical Symposium on Computer Science
Education, pp. 367–371. ACM, New York (2008)

 End-User Experiences of Visual and Textual Programming Environments for Arduino 39

15. Meerbaum-Salant, O., et al.: Habits of Programming in Scratch. In: Proceedings of the
16th Annual Joint Conference on Innovation and Technology in Computer Science Educa-
tion, pp. 168–172. ACM, New York (2011)

16. Meerbaum-Salant, O., et al.: Learning Computer Science Concepts with Scratch. In: Pro-
ceedings of the Sixth International Workshop on Computing Education Research, pp. 69–
76. ACM, New York (2010)

17. Millner, A., Baafi, E.: Modkit: Blending and Extending Approachable Platforms for Creat-
ing Computer Programs and Interactive Objects. In: Proceedings of the 10th International
Conference on Interaction Design and Children, pp. 250–253. ACM, New York (2011)

18. Resnick, M., et al.: Scratch: Programming for All. Commun. ACM 52(11), 60–67 (2009)
19. Turkle, S., Papert, S.: Epistemological Pluralism and the Revaluation of the Concrete.

Journal of Mathematical Behavior 11(1), 3–33 (1992)
20. Whitley, K.N.: Visual Programming Languages and the Empirical Evidence for and

Against. Journal of Visual Languages & Computing 8(1), 109–142 (1997)
21. Wolz, U., et al.: Starting with Scratch in CS 1. In: Proceedings of the 40th ACM Technical

Symposium on Computer Science Education, pp. 2–3. ACM, New York (2009)
22. ArduBlock, http://blog.ardublock.com/
23. Arduino, http://www.arduino.cc/
24. Download the Arduino Software, http://arduino.cc/en/Main/Software
25. London Hackspace, https://london.hackspace.org.uk/
26. Minibloq, http://blog.minibloq.org/
27. Modkit, http://www.modk.it/
28. Modkit Alpha Club, http://www.modk.it/alpha
29. Morae usability testing software, http://www.techsmith.com/morae.html
30. MzTEK: A learning community in technology and arts for women,

http://www.mztek.org/
31. National Instruments LabVIEW, http://www.ni.com/labview/
32. Raspberry Pi, http://www.raspberrypi.org/
33. S4A: Scratch for Arduino, http://seaside.citilab.eu/scratch/arduino

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 40–55, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Enabling End Users to Create, Annotate and Share
Personal Information Spaces

Carmelo Ardito1, Paolo Bottoni2, Maria Francesca Costabile1, Giuseppe Desolda1,
Maristella Matera3, Antonio Piccinno1, and Matteo Picozzi3

1 Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro
Via Orabona, 4 – 70125 – Bari, Italy

{carmelo.ardito,maria.costabile,giuseppe.desolda,
antonio.piccinno}@uniba.it

2 Dipartimento di Informatica, Sapienza Università di Roma
Viale Regina Elena, 295 – 00161 – Roma

bottoni@di.uniroma1.it
3 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

Piazza Leonardo da Vinci, 32 – 20134 – Milano, Italy
{matera,picozzi}@elet.polimi.it

Abstract. The revolutionary advances of Information and Communication
Technology push towards the evolution of end users from passive information
consumers to information producers. In many contexts, end users are increa-
singly willing to manipulate content they get from various resources in the
Web, move it across the boundaries of their original applications, and integrate
it in Personal Information Spaces (PISs), where they can tailor it to their per-
sonal needs, use it, and possibly share it with other people. This paper extends
our previous work on the definition of paradigms and tools for lightweight con-
struction of PISs, and shows how to address the need for communicating and
sharing information with other stakeholders, which emerged during a field
study performed in November 2012 with the previous version of our platform.

Keywords: End-User Development, Personal Information Spaces, Annotation.

1 Introduction

Recent research and technology advances are pushing end users toward a more active
role in their interaction with systems, evolving from passive information consumers to
information producers. Supporting this evolution requires changes in the way systems
are designed and developed, and primarily demands for a new interaction paradigm
that should enable end users to access content from various resources in the Web,
move it across the boundaries of their original applications, and integrate it in Person-
al Information Spaces (PISs), where they can manipulate it to create new content,
tailor it to their own personal needs, use it, and possibly share it with others [1, 2]. In
this way, content becomes accessible independently of a particular application, and
can be integrated in different applications depending on the specific situational needs.

 Enabling End Users to Create, Annotate and Share Personal Information Spaces 41

This vision requires new mechanisms to let data objects (content) interact with
their contexts and to leverage this flexibility to enable end users to compose and
transform content as required from task situations [3]. It also demands new models
and techniques for content extraction, integration and reuse, due to the content and
functionality dynamics, differing from their fixed nature in traditional applications.

We are currently working on the definition of new paradigms for lightweight con-
struction of Personal Information Spaces (PISs) by end users, i.e., integrated work-
spaces able to satisfy situational needs, which can be accessed through different
devices. The main concepts and some preliminary results of this on-going, long-term
research have been published in [4], where specific requirements in the construction
of PISs have been addressed and a first prototype of a software platform has been
described: it implements a new composition paradigm to allow end users, not neces-
sarily experts of technologies, to retrieve contents from heterogeneous sources and
use them to compose their PISs. According to the culture of participation [5, 6] and to
End-User Development approaches [7-10], the developed platform can provide
people with the means to integrate data, services and tools, playing an active role in
solving their every-day problems. The platform is general and may be relevant
in several application domains. In our current research, it is used in some case studies
in the Cultural Heritage domain, with the aim of bringing practical value to different
stakeholders in the context of visits to archaeological parks and other sites of cultural
interest. We have implemented different software solutions that allow professional
guides to create and use PISs in the archaeological context through different devices.
While working at home or at the office, each guide can retrieve and compose, via a
desktop application, the material for his/her PIS to be shown to a group of visitors
during a visit of an archeological park [4]. As a further step, we have recently imple-
mented two new solutions to support the access to and the interaction with the created
PIS on large multi-touch displays and tablets. This required the development of an
execution engine to deploy and run the PIS on each specific device.

A field study has been performed last November in order to evaluate the different
prototypes (desktop, multi-touch display, tablet) with guides and visitors of the
archeological park of Egnathia, in Southern Italy. The detailed analysis of the results
will be reported in a forthcoming paper. Here, we discuss some new requirements that
emerged during the study, related to the cooperative composition of the PIS and to the
use of annotations on the content of the PIS, on some of its services, or on some parts
of the user interface. Finally, we describe our proposal to meet these requirements.

The paper is organized as follows. Section 2 illustrates our composition paradigm
and the platform for composing and using PISs. Section 3 describes the use of PISs in
the cultural heritage domain and briefly illustrates the field study recently performed
with real users. Section 4 discusses PIS annotation and sharing, and describes how
such possibilities have been implemented in high-fidelity prototypes. Section 5 re-
ports related work. Finally, Section 6 concludes the paper also outlining future work.

2 Composition of Personal Information Spaces by End Users

We have been working on the development of a platform implementing a new com-
position paradigm to allow end users, who may not be technology experts, to retrieve

42 C. Ardito et al.

contents from heterogeneou
information needs in specif
devices. We started from a
be adopted in different con
requirements identified w
platform allows users to ac
such services creating their
guide’s work during the vis
PISs and to share PISs with

Fig. 1. Architecture of

Fig. 1 shows the platform
here all the architectural co
execution which are invol
overall architecture, and in
position schemas, can be f
grey if printed in black and
and presented in this pape
based on a general-purpose
tion of interactive spaces

us sources and use them to compose PISs that satisfy th
fic situations and can be ubiquitously executed on differ
generic composition platform, which is flexible enough

ntexts of use [11, 12], and we adapted it with respect to
ithin the specific communities of users. The result

ccess services offering heterogeneous contents, to comp
own PISs to support specific activities (e.g., to support

sit of an archaeological park), to store remotely the crea
h others, who may access them from multiple devices.

f the platform for PIS composition, sharing and annotation

m architecture. For the sake of brevity, we do not illustr
omponents, and focus especially on those elements for
lved in PIS sharing and annotation. More details on
particular on the modules supporting the creation of co

found in [4]. Architectural elements colored in green
d white) relate to annotation features, recently introdu

er, which will be described in Section 4. The platform
e Web mashup environment [7, 11], in which the compo
exploits a “lightweight” paradigm for the integration

heir
rent
h to
the

ting
pose

the
ated

rate
PIS
the

om-
(in

uced
m is
osi-

n of

 Enabling End Users to Create, Annotate and Share Personal Information Spaces 43

heterogeneous resources, mainly adopting visual mechanisms through which end
users, without any need to program or adopt complicated design notations, can ex-
press desiderata about the orchestration of different services. The accessible services
have to be registered and described into the platform by means of Service Descrip-
tors. Each descriptor specifies properties, such as the service URI and the values of
parameters that the platform has to know for querying that service. Service registra-
tion is needed to prevent end users from dealing with technical properties when
accessing a service. Service description is however kept very simple and is created by
inputting data in visual forms. Therefore, the addition of a new resource in the
platform could be performed even by non-technical users.

Based on the registered services, end users easily compose, by means of a Web
composition environment and through visual mechanisms, contents, functions and
visualizations, thus creating composition schemas, stored in the Composition Schema
Repository. An execution engine, which can run on different client devices, interprets
the created schema and dynamically generates the corresponding PIS. In particular, a
Model Interpreter parses the composition schema. It then invokes the UI Controller
that, based on the Visual Template selected by the user during the PIS composition,
dynamically generates the PIS user interface. The UI controller also invokes the Data
Manager module, which in turn, based on the specification in the composition sche-
ma, queries the involved remote services through the Service Controller. The Data
Manager is also in charge of storing (and managing the access to) possible user per-
sonal data stored in local repositories. The UI controller finally manages the rendering
of the retrieved data through the visual elements of the adopted Visual Template.

A relevant characteristic of our approach is the interleaving of the design and ex-
ecution phases: users can define their compositions, immediately experience the effect
of their composition actions (i.e., the composition schema is immediately interpreted
and executed), and iteratively and interactively refine the resulting applications [7].

3 PISs in the Cultural Heritage Domain

The flexibility offered by the proposed approach for PIS construction is beneficial in
several application domains. To validate our choices with respect to both their tech-
nological feasibility and their compliance with the user requirements, we developed
prototypes for archaeological park guides, to allow them to flexibly create and use
their PISs. In particular, we implemented different software solutions that allow pro-
fessional archaeological guides to create and use PISs in the archaeological context
via a desktop application and interact with their PISs during visits to an archaeologi-
cal park using multi-touch displays and tablets. The multi-touch display enables a
briefing phase during which the guide can explain the history of the park to visitors
and show them media contents, such as photos, videos and wiki pages, associated
with artifacts and areas that will be seen during the guided tour. The tablet is used by
guides during the walk through the ruins to show media contents, in order to
“augment” and enhance their explanation. Each media content is represented by an
icon and a title placed on a Google map centered on the archeological park of

44 C. Ardito et al.

Egnathia. By tapping on the icon, a pop-up window visualizes the corresponding
media in the middle of the display (this effect is shown in Fig. 1).

A field study was conducted in two different phases to assess composition and use
of PISs in real conditions. The first phase aimed at assessing the effects of PIS com-
position with two professional tourist guides (Achille and Conny), who composed
their PISs relative to the archaeological park of Egnathia using the desktop applica-
tion, accessible through a PC placed in their office (Fig. 2).

Fig. 2. Achille is composing a PIS for visiting the archaeological park of Egnathia

A few days later, we experimented use and update of PISs with a large multi-touch
display (46-inch) and a tablet device (7-inch) in a real context at the archaeological
park of Egnathia during two guided visits, involving 28 visitors randomly divided into
two groups of 14 persons. The groups were heterogeneous with respect to age (from
21 to 50 year-old, plus an 8-year old child), gender and cultural background.

Each guide first interacted with his/her PIS on the multi-touch display during a
briefing phase carried out at the entrance of museum associated to the park to intro-
duce the history of Egnathia and the ruins that they would see later in the park (Fig.
3a). During the tour of the park, the guides used tablet devices to show visitors the
contents of their PISs regarding what they were looking at. The guides could also seek
for new contents, if and when the opportunity arose (Fig. 3b), by dynamically formu-
lating new queries to the services integrated in their PISs.

Six HCI experts followed every phase of the field study, taking notes of the most
important episodes. At the end of the visit, three experts conducted a focus group with
each group of visitors; the discussion addressed the overall visit experience. A third
focus group was conducted with the two guides to discuss in more details their
experience in using the systems, highlighting pros and cons.

 Enabling End Users to Create, Annotate and Share Personal Information Spaces 45

 a) b)

Fig. 3. a) Achille using the multi-touch display during briefing to visitors; b) Conny interacting
with the tablet while walking through the ruins

The detailed analysis of the field study results is still going on and will be reported
in a forthcoming paper. However, during the field study, the need emerged to add
annotations of various nature within the PIS, through which the user would communi-
cate and share information with other stakeholders. For example, users expressed the
need to communicate with software engineers managing the platform, to ask for
modifications of the user interface structure or the introduction of new visual tem-
plates for information visualization. Users would also like to communicate with their
peers (e.g., other guides), for example to ask advice about new services that can
provide material they are not able to find through the services they have access to.

Another important requirement that the field study revealed concerned the sharing
of PISs and annotations: guides would appreciate collaborating with their colleagues
during PIS composition. They would also like to share their PISs with visitors to
allow them to view and possibly add contents.

In the rest of the paper we specifically concentrate on this last requirement and de-
scribe the platform extensions we have designed to address it.

4 PIS Annotation

The availability of annotations at different levels has been identified as a key feature
in the interaction with the PIS, as well as in PIS composition and update. Annotations
can be used as personal memos, e.g.: remembering – by highlighting the most
significant parts of a PIS; thinking – by adding one’s own ideas, critical remarks,
questions; and clarifying – by reshaping the information contained in the PIS into
one’s own verbal representations. Annotations are also useful for sharing information,
by supporting discussions among users having access to a same information space, as
well as communications among PIS stakeholders.

We now contextualize annotations within the interaction with a PIS. A PIS docu-
ment is here considered as an online resource identified by a URI. A document is
made up of several objects with different types of content: online services (APIs),
text, hyperlinks, images, audio and video files. A digital annotation consists of two

46 C. Ardito et al.

main components: metadata and content [13]. Metadata are a set of attributes: author,
title, creation date, modification date, location (a reference to the position of the
annotated object in the document, typically an XPath expression), URL (of the origi-
nal document), sharing level (private, group, public), type of the annotation, which
describes its intent, e.g. comment, clarification, query.

In this view, we consider the annotation process as the construction of an addi-
tional structure, parallel to that of an original document, on top of which personalised
contents can be added with reference to the original ones. Hence, the annotation of a
digital document D results in a set A of digital documents. Each document ai in A is
typically formed by textual comments on some content ci in D, possibly associated
with external references to links, services, or multimedia files. Moreover, each ai is
associated with ci. By considering that the structure of D conforms to some Document
Object Model, expressed through an XML Schema, the connection between ai and ci
is maintained via the location attribute. Each ai is then identified by a URI and be-
comes an annotatable document in its turn. An initial formal treatment of the notion of
annotation is in [14]. Users can perform annotations at each of these three levels:

• Service: the online services available in the platform, for example Flickr, YouTube
and Wikipedia, that the users access to retrieve content, can be annotated with
comments giving suggestions to help other users to choose the most appropriate
services. In this case, the location for the annotation can be a <service> tag in the
PIS composition schema, specifying the way the PIS is structured, if the annotated
service is already included in the annotated PIS; otherwise, it can be a <service>
tag in the service registry including pointers to the descriptors of the different ser-
vices registered into the platform. The content of a service annotation could also be
a request to the software engineers to modify some service properties, e.g., setting
new query parameters to access further content.

• Content: the PIS content can be annotated freely. Users can indicate fragments of
texts, images or videos as objects of their annotations. The location of such annota-
tion will be an XPath expression to navigate within the result set returned by the
PIS services and identify the corresponding content fragment, or a reference to a
“materialized” data item in case of annotations addressing objects managed or
stored by the users in personal repositories. The content of the annotation can then
be additional text as well as links to web pages or multimedia documents.

• User interface (UI): users can annotate parts of the PIS user interface to ask for
modifications of structure, widgets, and functionalities. In this case, a special mod-
ality has to be entered, in which a glass is superimposed on the PIS UI and
sketches are drawn on top of it. In this case, the value of the location attribute re-
fers to the whole PIS document – not to a specific element composing it, but also
includes cross-references to elements of the visual template adopted for the PIS
rendering on a given template (e.g., a map-based template for Android tablets),
which will have to be adapted in accordance with the annotated request, every time
the annotated PIS is executed. The annotation content, besides the user request in
textual form, incorporates an SVG description of the drawn sketch.

 Enabling End Users to Create, Annotate and Share Personal Information Spaces 47

To manage these different levels of annotation, an attribute level has been added to
the original model introduced in [13], and used to drive the interpretation of which
object has been annotated, namely to specify if the annotation is performed on ser-
vice, content or user interface. New elements to allow users to share PISs and to faci-
litate the management and storage of annotations have also been introduced in the
system architecture for PIS composition and execution presented in [4]. Such
modules, colored in green in Fig. 1, are described in the following.

The Annotation Controller is in charge of interpreting the user annotation actions,
identifying the annotation location and establishing whether it is related to services
internal to the PIS composition, to services generally available in the platform -- and
not necessarily included in a specific PIS -- or to specific content items or UI elements.
The Annotation Controller communicates with the different modules managing the
different levels the annotations can refer to. For example, when a user annotates a
photo, the Annotation Controller retrieves the photo URI from the result set managed
by the Data Manager (e.g., a Flickr result set with photos and their metadata), asso-
ciates with this URI the note inserted by the user, and stores the created annotation to
the Annotation Repository. The latter is used to store all the produced annotations and
their associations with the original annotated PIS documents. In order to contextualize
the annotation within the specific situation of use where it is created, the Annotation
Controller receives a state representation from the different modules. The state
representation makes it possible to present the annotations during later executions of
the PIS, by reconstructing the original context where the annotation was created. For
example, when a UI annotation is created, a set of properties of the template the UI is
based on are also stored, such as the type of the template (e.g., a map), and the notable
visualization elements that characterize the template (i.e., markers showing points on a
map) that can be objects of annotations. Also when the annotation refers to a service or
to the service result set, the service settings and the specific query executed at the time
when the annotation is created are stored.

4.1 Sharing PISs and Annotations

Besides PIS annotation, another important feature is the sharing of annotations among
guides, to allow the collaboration during the PISs composition, and between guides
and visitors to allow them to view and possibly add contents.

For these reasons, as highlighted by the share symbol in the architecture of Fig. 1,
the Annotation Repository and the Composition Schema Repository are shareable
among users. In fact, when a user creates a PIS s/he can decide whether to share it,
part of it, and its annotations according to three different level:

• Public: PIS and annotations are shared with every users registered in the platform.
• Specified users or user groups: PIS and annotations are shared with specific users

indicating their email or, if they are already registered in the platform, their
username. Sharing can also occur within groups the PIS owner belongs to.

• Private: PIS and annotations are private to the owner.

48 C. Ardito et al.

A user can decide to share the PIS, but not annotations. Moreover, when a user shares
a PIS or some annotations, s/he can specify the actions other users can perform: with
the view option, invited users can view only the shared PIS or the shared annotations;
with comment, invited users can view and put comments; with edit, users can view,
put comments, and modify PIS contents and annotations.

4.2 Scenarios for PIS Annotation and Sharing

To demonstrate the use of the platform for composing and using PISs in the Cultural
Heritage domain, in [4] a usage scenario was proposed, in which Tony, a professional
guide working in several archaeological parks in Apulia, used the Web platform to
create a PIS to be shown, through a large multi-touch display and a tablet, to a group of
tourists during a guided visit to the Egnathia archeological park. The PIS consisted of
contents (photos, videos, web pages) collected from public sources (Flickr, YouTube,
Wikipedia) and linked to various points of the virtual map of the park. As discussed in
the previous sections, the field study highlighted new needs in PIS management,
illustrated in the following through three further scenarios extracted from the
requirement analysis phase, to better understand the use of annotations for service,
content and UI in the cultural heritage domain.

Service annotation. Tony is not totally satisfied with the PIS he has just composed. In
fact, he would need other contents, but these cannot be retrieved through the services
currently included in his composition environment. Tony, however, does not know
which services, among all those offered by the platform, might respond to his need.
He issues a call for help to his colleague Conny, who is more experienced in the use
of the platform. Conny accesses the platform and visits the section showing the list of
the services already registered in the platform. Each service in the list has associated a
name, an icon and a short description. In addition, annotations (e.g., opinions, com-
ments) provided by the whole community of platform users could be associated with
it. According to Tony’s requests, Conny chooses some services, specifies the reason
for the choice, and gives some suggestions. She can decide to redirect the annotation
exclusively to Tony, to the group of colleagues working at the same place, or to make
it publicly available to any platform user. When Tony accesses the service section, he
focuses his attention on the services annotated by Conny and adds some of them to his
composition environment. Now Tony has new sources from which to extract contents
for his PISs.

Content annotation. A group of visitors arrives at an important location in the park,
namely the Trajan Way, a paved road that, at Roman times, connected the two cities
of Benevento and Brindisi. A visitor, Mary, who has visited many archaeological
parks, reports to Tony that in Portugal she visited the park of an ancient Roman city
whose streets are paved with mosaics of very high quality. Tony is curious and would
like to know more, but Mary does not remember the name of the park. The next day,

 Enabling End Users to Create, Annotate and Share Personal Information Spaces 49

Mary is back home; she finds the brochure of the archaeological park of Conimbriga,
an ancient city about 17 km south of Coimbra, Portugal. She accesses Tony’s PIS,
which the guide had previously shared with her, and annotates the Trajan Way by
entering the name of the park of Conimbriga, the link to the Wikipedia page about
Conimbriga and some pictures from her Flickr account she took during the visit to
that park. Now Tony can include the new content in his PIS.

UI annotation. During the visit, Tony wants to make comparisons with other Italian
archaeological parks. For example, the walls of Egnathia were impressive and inside
there were routes organized on several levels. Instead, those of Monte Sannace,
another archaeological park of Apulia, were much simpler. Tony searches and finds
an image of the walls of Monte Sannace, but does not know where to place it on the
PIS. In fact, if he put the photo on the map at the park of Monte Sannace, he would be
forced to reduce the scale of the map, find Monte Sannace, centre the map on it and
then zoom in again. Instead, if he puts the image of the walls of Monte Sannace on the
map of Egnathia this could be confusing. He would need a PIS that shows on the
screen, in addition to the map, a list of optional contents, such as contents relating to
other parks, or to objects displayed in the museum. Tony draws a circle to highlight
an area at the bottom right of the information space and writes a message in a text box
to specify the problem to the software engineer. The software engineer will get the
message and change the structure of the information space.

4.3 The Prototypes

With reference to the scenarios in the previous section, we describe how annotation
and sharing functionalities have been implemented in high-fidelity prototypes of PIS
user interface.

At the top of the interface a menu bar is displayed. It contains the items for inte-
racting with the PIS (new, open, close, share, etc.), managing annotations and using
other tools. Fig. 4 shows an example of service annotation. The first level of the An-
notation menu allows the user to select the object to be annotated (i.e., Service,
Content, User Interface). The second level presents the actions that can be performed
on the selected object, namely Highlight to draw a freehand sketch, Comment to add a
text, Save or Delete an annotation, and Undo the last action. The same actions can be
performed on service, content and user interface objects. In Fig. 4, the user (a male)
has previously performed a search using “Fornace” (Italian for “kiln”) as a keyword,
but he is not satisfied with the results. He would refine the search by specifying fur-
ther query parameters for filtering by upload date, duration, and resolution the results
returned by the video sources. Thus, he highlights the video icon on top of the search
widget and writes a note for the software engineers managing the platform, asking
them to improve the search features by adding further filters for querying video
sources. The annotation can be saved via the icon on the top right of the comment text
box.

50 C. Ardito et al.

Fig. 4. Service annotation: the user asks for more flexibility in querying services

Fig. 5. User interface for defining sharing policies

Another possibility is that the user needs to modify and/or annotate the set of
services currently registered into the platform, which can be displayed by selecting
the “Services” item in the PIS menu. The services already available in the PIS of the
user can be removed by means of the trash icon, while those registered in the plat-
form, but not yet in the PIS, can be added using the “+” icon (see Fig. 6). The user can
search for new services not available in the platform by typing keywords in the text
box and, when found, possibly register them. The service annotation modality allows
the user to highlight a service in the list, annotate it and share the annotation as in the
previous example. For example, in Fig. 6 the user has received a note from Conny,
who suggests him to add the Vimeo video service to his PIS.

 Enabling End Users to Create, Annotate and Share Personal Information Spaces 51

Fig. 6. Service annotation: Conny, another user, suggests including the Vimeo video service

Fig. 7 shows an example of content annotation. The user, Maria, has been pre-
viously invited to join the displayed PIS with “edit” permission by its owner; she has
highlighted the Wikipedia page about the Trajan Way (“Via Traiana” in Italian) and is
adding a text comment suggesting the PIS owner to visit the Wikipedia page about the
archaeological park of Conimbriga. She also included some pictures of that park.

Fig. 7. Content annotation: the user is annotating the Wikipedia page about Via Traiana

Fig. 8 shows how a user can annotate an area of the interface to request possible
changes to the software engineers who administer the platform. In particular, it refers
to the UI annotation scenario, where Tony uses an annotation to ask the software en-
gineers a window to show a list of contents that he does not want to show on the map.

52 C. Ardito et al.

Fig. 8. Example of PIS User Interface annotation

The three scenarios were validated with representative of guides and tourist users
in order to perform a formative evaluation of the prototypes being implemented.

5 Related Work

Our research focuses on empowering people to flexibly create applications with tools
that can let them to actively and flexibly compose contents and functionality. This is
also in line with the so-called culture of participation [5, 6] that promotes a shift from
consumer cultures, where produced artifacts are passively consumed, to participatory
approaches that greatly exploit computational media to support collaboration and
communication, providing users with the means to become co-creators of new ideas,
knowledge, and products [1]. In this scenario, Web mashup methods and technologies
can provide a viable solution. Web mashups are composite applications, where the
“components” are as heterogeneous as SOAP/WSDL Web services, RESTful Web
services, RSS/Atom feeds, user interface widgets, JavaScript libraries, or simply con-
tent extracted (wrapped) from common HTML Web pages (and many more). What
makes mashup composition different from the more traditional Web service composi-
tion is the potential as a paradigm through which end users, not necessarily skilled in
computer science, are empowered to develop their own applications. Mashups indeed
specially promote integration at the UI level, giving to the end users the possibility to
achieve, with few efforts, full-fledged applications even by non-programmer users
[15]. However, this potential is rarely exploited. So far the research on mashups has
focused on enabling technologies and standards, with little attention to easing the
mashup development process – in many cases mashup creation still involves the ma-
nual programming of the service integration. Some recent user-centric studies also
found that, although the most prominent platforms (e.g., Yahoo!Pipes) simplify the
mashup development, they are still difficult to use by non-technical users [16].

 Enabling End Users to Create, Annotate and Share Personal Information Spaces 53

Our work tries to combine EUD principles with the potential of mashup models
and technologies, to create paradigms and tools, based on intuitive visual composition
mechanisms. A visual composition paradigm strongly characterizes our approach
[17], especially with respect to others requiring the adoption of specific design
notations (as for example in [18]) or scripting languages (as for example in [19]).
Also, to our knowledge, the aspect of sharing and annotating mashup applications has
been scarcely investigated.

The use of annotation in the context of Web services has been typically introduced
to integrate quality criteria in the service composition process [20], e.g., specifying
quality attributes to guide service selection, or to add semantic information on what a
service does and functional information on how it behaves [21]. The use of annota-
tions for the automatic generation of user interfaces for Web services has been one of
the topics of the ServFace project1, as documented for example in [22]. In all these
cases, annotations are intended for use by automatic systems generating specific
configurations of a service, based on the features described via the annotations, which
need then to be expressed with formal languages, e.g., OWL.

An approach to the creation of personalised versions of a service, based on some
information on the results it can give, is presented in [23]. The approach is supported
by the adaptation of a planning algorithm able to gather information during the ser-
vice composition phase [24].

The approach presented here moves from previous work on annotation of content
as a way to focus the production of user-generated content with reference to generally
available documents, rather than specific web-sites [13] and on annotation of parts of
the user interface as a way to foster co-evolution of software implementation and user
requirements [25]. In the integration presented in this paper, the user can exploit
annotations for several purposes: for annotating existing content and adding new one,
for reasoning about the current composition and interaction of a personalised
information space, for communicating with other people providing or requesting in-
formation on contents, services and interface features.

6 Conclusion and Future Work

This paper has reported recent work on the construction by end users of Personal
Information Spaces, which are integrated work-spaces that satisfy end users’ situa-
tional needs and that can be accessed through different devices. Specifically, we have
shown how to address the need for communicating and sharing information with other
stakeholders, which emerged during a field study performed in November 2012.
Thus, our platform for PIS composition has been extended with features that allow
users to make annotations on services, content and user interfaces.

The prototypes implementing the annotation features described in this paper have
been created by a participatory design team, involving the two professional guides
and eight visitors who had previously participated in the field study. In the meetings

1 http://www.servface.org/

54 C. Ardito et al.

they contributed to elaborate new ideas and to sketch paper mock-ups. Finally, some
of them have been involved in formative evaluations of such prototypes.

We are interested in investigating about the appropriation of the system we pro-
pose. We have planned to provide a tablet device to the two guides and to allow them
to use the platform for a period of two months. During this period, they will be asked
to write a diary, they will be regularly interviewed and observed in some occasions in
order to detect possible problems and analyze the evolution of their work habits.

Moreover, we will investigate the possibility to integrate the facilities for multi-
selection proposed in [26], allowing users to select arbitrary groups of objects, even of
different nature, and provide a single annotation for the resulting multi-structure.
Awareness mechanisms will be also investigated, for example to notify the users
about the availability of new annotations, and of PIS modifications responding to
previous annotation-based requests.

References

1. Latzina, M., Beringer, J.: Transformative user experience: beyond packaged design. Inte-
ractions 19(2), 30–33 (2012)

2. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything.
Portofolio, Penguin Group, New York (2006)

3. Daniel, F., Matera, M., Weiss, M.: Next in Mashup Development: User-Created Apps on
the Web. IT Professional 13(5), 22–29 (2011)

4. Ardito, C., Costabile, M.F., Desolda, G., Matera, M., Piccinno, A., Picozzi, M.: Composi-
tion of situational interactive spaces by end users: a case for cultural heritage. In: 7th Nor-
dic Conference on Human-Computer Interaction: Making Sense Through Design (Nordi-
CHI 2012), Copenhagen, Denmark, pp. 79–88. ACM Press, New York (2012)

5. Fischer, G.: End User Development and Meta-Design: Foundations for Cultures of Partici-
pation. Journal of Organizational and End User Computing 22(1), 52–82 (2010)

6. Jenkins, H.: Confronting the Challenges of Participatory Culture: Media Education for the
21st Century. MIT Press, Cambridge (2009)

7. Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M.: Enabling end user develop-
ment through mashups: Requirements, abstractions and innovation toolkits. In: Costabile,
M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 9–
24. Springer, Heidelberg (2011)

8. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-
User Development: A Model-Based Design Methodology. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans 37(6), 1029–1046 (2007)

9. Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.): IS-EUD 2011. LNCS,
vol. 6654. Springer, Heidelberg (2011)

10. Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development, vol. 9. Springer, Dor-
drecht (2006)

11. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C.: Dash-
Mash: A Mashup Environment for End User Development. In: Auer, S., Díaz, O., Papado-
poulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166. Springer, Heidelberg
(2011)

12. Cappiello, C., Matera, M., Picozzi, M., Caio, A., Guevara, M.T.: MobiMash: end user de-
velopment for mobile mashups. In: 21st International Conference Companion on World
Wide Web, Lyon, France, pp. 473–474. ACM, New York (2012)

 Enabling End Users to Create, Annotate and Share Personal Information Spaces 55

13. Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E., Trinchese, R.: MADCOW: a
multimedia digital annotation system. In: Advanced Visual Interfaces (AVI 2004), Galli-
poli, Italy, pp. 55–62. ACM, New York (2004)

14. Bottoni, P., Levialdi, S., Rizzo, P.: An Analysis and Case Study of Digital Annotation. In:
Bianchi-Berthouze, N. (ed.) DNIS 2003. LNCS, vol. 2822, pp. 216–230. Springer, Heidel-
berg (2003)

15. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding UI
Integration: A Survey of Problems, Technologies, and Opportunities. IEEE Internet Com-
puting 11(3), 59–66 (2007)

16. Namoun, A., Nestler, T., De Angeli, A.: Conceptual and Usability Issues in the Composa-
ble Web of Software Services. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS,
vol. 6385, pp. 396–407. Springer, Heidelberg (2010)

17. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool design. In:
4th ACM SIGCHI Symposium on Engineering Iteractive Computing Systems (EICS
2012), Copenhagen, Denmark, pp. 211–220. ACM, New York (2012)

18. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Mod-
els, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano, S., Dayal, U.,
Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 428–443. Springer,
Heidelberg (2009)

19. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language for
Web APIs and Services Mashups. In: Krämer, B., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

20. Nagarajan, M.: Semantic Annotations in Web Services. In: Jorge, C., Amit, P.S. (eds.)
Semantic Web Services, Processes and Applications, New York, NY, vol. 3 (2006)

21. Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and Open Prob-
lems. In: ICAPS 2003 Workshop on Planning for Web Services, pp. 28–35 (2003)

22. Feldmann, M., Janeiro, J., Nestler, T., Hübsch, G., Jugel, U., Preussner, A., Schill, A.: An
Integrated Approach for Creating Service-Based Interactive Applications. In: Gross, T.,
Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.)
INTERACT 2009, Part II. LNCS, vol. 5727, pp. 896–899. Springer, Heidelberg (2009)

23. Sirin, E., Parsia, B., Hendler, J.: Filtering and Selecting Semantic Web Services with Inter-
active Composition Techniques. IEEE Intelligent Systems 19(4), 42–49 (2004)

24. Kuter, U., Sirin, E., Parsia, B., Nau, D., Hendler, J.: Information gathering during planning
for Web Service composition. Web Semant. 3(2-3), 183–205 (2005)

25. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: End-User Development: the Software
Shaping Workshop Approach. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User
Development, pp. 183–205. Springer, Dordrecht (2006)

26. Addisu, M., Avola, D., Bianchi, P., Bottoni, P., Levialdi, S., Panizzi, E.: Annotating Sig-
nificant Relations on Multimedia Web Documents. In: Multimedia Information Extraction,
pp. 401–417. John Wiley & Sons, Inc. (2012)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 56–71, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Identity Design in Virtual Worlds

Benjamin Koehne, Matthew J. Bietz, and David Redmiles

Department of Informatics
University of California, Irvine
Irvine, CA 92697-3425 USA

{bkoehne,mbietz,dfredmil}@uci.edu

Abstract. Designers in HCI and end user development require a good
understanding of actors in virtual interaction spaces. Persistent virtual worlds
represent a rather new but growing class of complex design and interaction
platforms. Online identities form the basis for interaction of individuals in
virtual environments. We present results from an ethnographic study of a
popular online game, and develop a socio-technical model of identity formation
that illuminates the processes of identity design in online environments. This
framework demonstrates how virtual worlds provide social and technological
structures that shape self-presentation and interaction. This allows us to explore
the relationship between the real-world identity of the game player and the
virtual-world identity of their avatar.

Keywords: Virtual worlds, design theory, end user design, user-centered
design, identity.

1 Introduction

Electronically mediated environments challenge our notions of identity and the self.
Today, end user development and collaboration increasingly takes place in virtual
collaboration contexts and across geographical distances [4, 5]. When collaborators
are not present in the same physical context, they assume a virtual identity that is
mediated through communication technology. While the end user development
community increasingly designs for distributed collaboration, relatively little is
known about how a virtual identity is assumed or perceived by end users in virtual
spaces.

Sociological and psychological understandings of identity cannot be assumed to
transfer seamlessly into online contexts. What is required is a socio-technical
framework that helps us understand issues of identity development and design. We
use an online role-playing game set in a graphical virtual world (VW) as a case study
to examine how social, psychological, and technological influences affect online
identity creation.

Virtual environments range from text-based communication spaces to complex
persistent graphical 3D environments supported by rich media applications. These
environments represent a specific class of technology-mediated spaces that allow for
particularly immersive virtual experiences and interactions with others.

 Identity Design in Virtual Worlds 57

Virtual identities have been discussed in the VW literature since the introduction of
text-based multi-user dungeons (MUDs) [29]. VWs were often regarded as
opportunities to experiment with alternate identities. At the same time, constraints of
VWs limit the possibilities of users to design an online identity. In modern VWs, such
as game-oriented systems like Lord of the Rings Online (LOTRO), a player’s online
identity is not only carefully designed but, as importantly, enacted in the VW.

This paper makes two key contributions to our understanding of identity in virtual
worlds. First, using Côté & Levine’s [3] model of identity formation, we explore the
relationship between the real-world identity of the game player and the virtual world
identity of the avatar. We extend their model to include not only the influence of
social structure, but also the influence of the technological constraints designed into
the VW. Second, by exploring a particular virtual world where identity design is an
explicit part of game play, we are able to better illuminate the mechanisms of identity
formation, self-presentation, and interpersonal interaction in virtual worlds.

To illustrate our argument, we present the results of a qualitative investigation of
the massively multiplayer online role-playing game (MMORPG) LOTRO. LOTRO is
popular game set in a mythic virtual world, similar to other games like World of
Warcraft or Everquest. LOTRO is based on the fictional world created by J.R.R.
Tolkien in his Lord of the Rings books. Players of the game use avatars to navigate
through the world, interact with other players, and complete various challenges
(which frequently involve killing computer-controlled monsters). In our investigation
of LOTRO, the theme of identity design serves as an analytic lens to unpack
individual activities and develop a model of identity formation in VWs.

The next section of the paper provides background on the concept of identity and
the theory of online identity in VWs. Following that, we describe our study and
present findings about identity in the LOTRO virtual world. The last sections of the
paper critically analyze the findings in relation to our extended model of online
identity and discuss some implications of this work.

2 Towards Online Identity

In this paper, we use identity design to refer to those practices that contribute to the
development of a particular identity. We draw on social-psychological theories of
identity that suggest that identity can be understood as a complex aggregation of an
individual’s place in a social structure, aspects of individual experience and
interactions, and personality [3]. We are specifically not focusing on the engineering
problems surrounding establishing that one is who one claims to be as talked about in
contexts of security or access. Instead, we use identity as it might be discussed in the
sociology or psychology literature.

In this section, we first discuss Côté and Levine’s [3] framework for understanding
the multiple levels of identity formation and the interactions among them. We then
use Lanzara’s [15] concept of “remediation” to understand how identity development
and design practices might move into the new context of virtual worlds. We then
survey the existing literature on identity design in virtual worlds.

58 B. Koehne, M.J. Bietz, and D. Redmiles

2.1 Sociological and Psychological Identity

A great variety of sociological and psychological perspectives on identity have been
developed in social science, but here we draw on Côté and Levine [3], who develop a
multi-level model that helps to integrate these perspectives. The framework (Figure 1)
presents a three-level taxonomy of identity. Social identity is defined by the
individual’s position in the social structure. Existing cultures and social roles affect
this position. Still under the influence of social structure, the personal identity
develops based on an individual’s interaction in the world. Individuals act with the
goal to fit in societal structures and roles. Ego identity refers to the psychological
structures related to individual personality.

The power of this model lies in understanding the ongoing and iterative paths of
influence among the layers. Social structures influence everyday interactions through
processes of socialization and social control (Arrow 1). Interaction in the everyday
world, over time, leads to the internalization of social norms and values (2). Influence
simultaneously moves outward from the individual to the world. The personal ego
produces a self-presentation that influences interactions with others (3). Ultimately,
social structure is changed or maintained through active performance in the everyday
world (4).

Fig. 1. Identity formation (adapted from Côté & Levine [3], p.7)

Self-identity is increasingly a product of critical reflexivity [8]. Humans living in
modernity are increasingly faced with making choices concerning who they
eventually want to be. More choices may give individuals more liberties, but they also
contribute to an increasingly complex identity formation process. Information systems
that connect people over large distances and make vast amounts of information
readily accessible have contributed to this development. We believe that this
reflexivity can be observed and theorized in VWs where players carefully design an
online character’s identity. Players need to make important choices and plan their
characters’ performances in the game. They actively reflect on their appearance and
standing in the social system created by the VW, and how that VW identity relates to
their real-world selves.

Social Structure

Interaction

Personality

1

2

4

3

Socialization
&
Social Control

Internalization Presentation
of Self

Social
Construction
of Reality

Social Identity

Personal Identity

Ego Identity

 Identity Design in Virtual Worlds 59

2.2 Mediation of Identity

The formation of identity can be understood as a mediated activity in the real world,
just like any other human practice. Human practices are mediated through physical
objects and systems of conventions that determine the use of these objects [12]. The
growing availability of novel online media has led to the migration of many everyday
practices to virtual environments. Use of online systems frequently requires actors to
establish a technologically-mediated online identity. The introduction of new media to
established practices can lead to a process that Lanzara defines as the ‘remediation of
practice’:

“Switching medium produces a discontinuity in the smooth flow of familiar
routines and a displacement in the practitioners’ perceptions and understandings of
what they do and how they do it. […] The new medium opens up a window for novel
things to happen in a new space of possibilities, revealing features of the domain that
were not visible, or not easily accessible, or rather not paid attention to, in the
traditional medium.” [15]

We draw from this remediation perspective to analyze the formation processes of
identity in LOTRO. Even though VWs, such as LOTRO and Second Life, simulate a
realistic environment with human-like characters, real-world identities do not move
effortlessly into virtual worlds. Players must “remediate” their identities through
active redesign of identity presentation and interactions.

The relationship that develops between the individual playing the game and the
controlled character is an important part of the remediation process. Players form a
long-term relationship with the virtual characters and are highly immersed in the VW.
The rich VW medium offers the tools and social context within which identity is
created. The individual’s goals and actions are mediated through the interface
software. Players project their individual intentions and values onto the online
character to create the desired online identity.

2.3 Identity in Virtual Worlds

Identity has been an important concern throughout the literature on virtual worlds.
In her book, Life on the Screen, Sherry Turkle examines the creation of identity in
text-based MUDs:

On MUDs, one’s body is represented by one’s own textual description, so the
obese can be slender, the beautiful plain, the “nerdy” sophisticated […]. MUDs make
possible the creation of an identity so fluid and multiple that it strains the limits of the
notion. Identity, after all, refers to the sameness between two qualities, in this case
between a person and his or her persona. But in MUDs, one can be many. [29]

Whether produced through text description or through social interaction [13], this
ability to experiment with alternate identities intrigued many early writers on the
subject, who debated the degree to which one’s on-line identities could be separated
from real-life identity [26, 27].

As a consequence, scholars began to focus on how virtual environments constrain
the kinds of identity choices that users can make. For example, McDonough explores
how “virtual environment designers wield a certain degree of power over users’
ability to represent themselves and interact within virtual worlds” [19].

60 B. Koehne, M.J. Bietz, and D. Redmiles

Avatar design choices are also influenced by the social environment of the virtual
world. Neustaedter and Fedorovskaya [22] found that users of Second Life felt stigma
about using the default avatar design, and felt pressure from other players to change
their appearance. They created a typology of appearance and identity around four
types of players: realistics, ideals, fantasies, and roleplayers. Realistics worked to
match their online identity to their real-life identity—the virtual was an extension of
the real. Ideals had a similar outlook, but designed their avatars to make up for
perceived inadequacies in their real identities. Fantasies saw their online identity as
distinct from their real identity, but worked to maintain a consistent avatar identity
over time. Roleplayers also see their online identities as distinct from real-life, but
frequently change their online identities to explore new situations. This typology is
useful for highlighting the difference between a VW like Second Life and a game-
based VW like LOTRO. Where Second Life provides the breadth of choices to allow
all of these types, LOTRO constrains users mostly to the Fantasy role by making it
difficult to have realistic avatars or to make major identity changes to an avatar after it
has been created.

Kolko [14] is also interested in how design choices constrain users, especially
around the ways that they are able to communicate through their avatars.

“Designing an avatar is never solely the act of an end user […]. In text-based
MOOs, for example, end users can set an @gender category because the designers of
the database decided that having knowledge of specific gender was important to
discursive interaction […]. Those same designers (as multiple and dispersed as they
were) decided that an @race characteristic was not essential to discursive social
interaction […]. This is exactly the kind of control that designers of [virtual worlds]
hold. ” (p.184)

This control carries over to graphical virtual environments, where the degrees of
freedom given to users over their avatar’s identity, how they look or the ways they
can move affects what and how they can communicate. The design space for users to
create their online identity is thus often limited by the structure of the VW.

A key aspect of identity presentation involves the degree to which it is intentional.
In his dramaturgical approach to identity presentation, Goffman [9] refers to cues that
are “given” and those that are “given off.” The given cues include those that are
intentionally controlled by the “performer.” An example in the virtual world is the
chosen appearance of an avatar that reflects a character class or other specialization of
the player. Cues given off are those that are “inaccessible” to our control, including
not only physical appearance, but also many non-verbal cues like gestures and vocal
timbre. In the virtual world, given off cues become noticeable during group play and
over longer periods of interactions in the game when players learn to read other
players based on their behavioral patterns and communication styles.

Technically mediated communication environments shift the balance in
communication away from “cues given off” to “cues given”. Geser [7] claims that in
virtual worlds like Second Life, all self-presentation is intentional: “While my
physical body is shaped by exogenous biological factors, my avatar is completely the
product of my explicit decisions.” While we agree that many virtual worlds can offer
greater and different kinds of freedom of self-presentation than real life, we side with

 Identity Design in Virtual Worlds 61

earlier authors who find that VWs do enforce certain choices that are inaccessible to
the user. How these constraints are enacted shapes the ways that self-presentation
takes place in these virtual worlds.

Tayler begins to explore virtual identity creation process in virtual worlds and
notes that technological structures can limit design choices, a concept that we also
find reflected in our research [29]. In this paper we contribute to this literature by
exploring the relationship between the real-world identity of the game player and the
VW identity of the avatar. We develop a model of identity development that includes
the influence of both social structure and technological constraints imposed by the
VW system. We investigate how the design of virtual worlds affects the possibilities
for identity design and how self-presentation and interaction in virtual worlds can
inform our thinking about user engagement and its limitations in virtual contexts.

3 Method

Our study draws on methods used in previous ethnographic explorations of virtual
words. Virtual ethnography [11] provides us with a method to analyze activities in the
digital, virtual spaces. Multi-sited ethnography [17] allows for the inclusion of the
virtual field site LOTRO, online forums and interviews in the physical world.

In his investigation of the culture of Second Life, Boellstorff [1] provides thick
description [6] of everyday encounters in Second Life based on his own participation.
Nardi has also conducted extensive ethnographic studies of virtual worlds (e.g. [20,
21]). In her account of the MMORPG World of Warcraft, a game related to LOTRO
but set in a different fantasy narrative, Nardi also investigates the relationship
between player and virtual representation in the game [17].

For our study, one author actively immersed himself in LOTRO and joined a
community of players, conducting more than 80 hours of participant observation over
a four-month period. The goal was to develop an understanding of the culture of the
game and the activities that defined the players’ identities.

Additionally, we conducted 6 semi-structured interviews with players of the game.
Interviews lasted from 40 minutes to 1 hour. Informants were recruited through
snowball-sampling in the player community. The interviews focused on topics that we
related to the character’s appearance and capabilities. Additionally, we asked about
personal motivations of the players to conduct certain design-related activities. We
used open-coding techniques [16] to discover patterns and themes in our observations.
Observations in the VW helped us to contextualize the interview data.

Our research site was the “Lord of the Rings Online”, a popular massively
multiplayer online role-playing game produced by Turbine, Inc. The concept of the
game can be compared to other MMORGs such as the current market leader World of
Warcraft and Dungeons & Dragons Online. LOTRO is aimed at the online gaming
market at large and more specifically at the online role playing game market.

62 B. Koehne, M.J. Bietz, and D. Redmiles

4 Identity Design in LOTRO

In this section we investigate the process of identity formation in virtual worlds by
examining occasions for identity design work. These occasions are periods in the
game when the player is faced with choices about who his or her avatar will be. Some
of these occasions occur at precise moments and with a great deal of predictability.
Others occur at various points in the game and may extend over many cycles of play.

4.1 Initial Character Creation

The first occasion for identity design occurs immediately when players begin playing
the game. As part of the setup process, a player must create an avatar and make
choices about who that avatar will be. The choices made here at the very outset of the
game can irreversibly affect the future experience and the development possibilities of
the envisioned online identity.

At this stage, LOTRO structures identity around two key concepts. First, the player
must choose a “race.” Because the VW is based on Tolkien’s novels, the possible
races are man, dwarf, hobbit and elf. The player must also choose gender (although all
dwarves are male). Each race has defining characteristics which are summarized for
the player. For example, man is described, “Not as long-lived as Elves, sturdy as
Dwarves, or resilient as Hobbits, Men are renowned for their courage and
resourcefulness.”

The player must also choose a “class” for the avatar. Character classes define the
basic characteristics of the avatar. Champions, for instance, master warfare in the
game, whereas minstrels specialize on supportive healing activities instead of fighting
in the front line of the battle. After choosing race and class, the avatar can be further
customized with a specific area of origin (e.g. Gondor or Rohan), skin color, hair
style, and other physical features. Race, character class, and most basic physical
properties of the avatar cannot be changed later in the game.

Design requires making choices. The decision making process in LOTRO is
prompted by the structure of the game. Choices about identity at a very early stage
during the creation of the character define future roles and development possibilities.
These choices can also profoundly affect the players’ experience of the virtual world
itself. For example, the choice of race determines where the avatar is initially placed
in the VW (based on the story line of Tolkien’s novels). One player described how
after choosing the Hobbit race, his avatar was placed into a part of the world called
the Shire:

“You don’t know what’s out there. I started a Hobbit. And I thought the Shire [an
area mostly inhabited by the Hobbit race] was a really huge world. But then I found
out it’s not the end of it.”(player_1)

Here, the player confronts the boundaries of the virtual environment from the
perspective of the character. Players were drawn in to the story lines and felt an
identification between their avatars and the home areas in the game. Interestingly,

 Identity Design in Virtual Worlds 63

these aspects of identity were chosen and locked in before players had a sense of what
the ramifications of their choices might be.

LOTRO allows players to create up to 7 avatars per subscription account. Many
advanced players have at least 2 avatars and in many cases even more. Most players
maintain one ‘main’ avatar and several other ‘toons’. Usually, the main avatar is best
equipped and at a high level. Players have varying motivations to create toon avatars.
One player in our kinship switched between his avatars almost every 5 minutes. It
turned out that he maintained 7 avatars. Each of them specialized on certain skills. By
switching between classes he was able to become completely self-sufficient in terms
of resources for his different professions. Avatars are not visibly linked to the account
of the player. It is thus possible that a player maintains multiple completely isolated
virtual identities.

Creating a new avatar requires considerable effort, since it means starting over
with the character development from the very beginning. One player explained to us
why he chose to play more than one avatar. He wanted to understand the playability
and specifics of all different classes in LOTRO:

“The reason I play the classes is, when you are playing in groups, you would
understand what everybody had to do. You just understand the game more by playing
the classes.” (player_5)

Players recognize the complexity of the game. Playing together with other players
not only requires knowledge about your own skills and abilities, but also about the
identity and capacity of other players in your team.

4.2 Kinships and Social Identity

Like many other recent MMORPGs, the design of LOTRO encourages not only social
interaction, but coordinated and collaborative behavior. The primary social groupings
in LOTRO are fellowships and kinships. Fellowships are temporary groups, formed to
compete as a team and master a challenging undertaking. Kinships can also perform
in-game challenges as a group, but have a more permanent character.

One of the authors played in a kinship from the day it was initially founded. Over
time, members became familiar with each other. Players support each other by
providing resources for game play or by giving advice related to the game content.
Different social roles develop in these communities. The game structure prescribes
the role of the kinship leader. The kinship leader has control over the administrative
functions. He can promote kinship members to officers and manage the members.
Officers can also recruit other players into the kinship. Taking on leadership roles can
be a demanding task and not everyone is willing or capable to take on the
responsibility. A kinship leader reflects on his experiences:

“Everybody wants to be on the winning team but nobody wants to build it. […] It’s
the nature of people.” (player_1)

Creating kinships takes work, and not everyone is cut out for the task. We can see
in this comment that the player is thinking about identity—who would and would not
be a good leader? Identity does not reside in just the avatar or the real-world player.
At times the in-world character has an identity that is clearly distinct from the

64 B. Koehne, M.J. Bietz, and D. Redmiles

real-world player (e.g. a hobbit in the Shire vs. a grandmother in Hoboken). But at the
same time, the search for a good leader has as much to do with the player’s identity as
the avatar’s.

The complexity of the social identity, avatar identity, and real-world personal
identity can be seen when one player describes switching characters to serve the needs
of the kinship:

“I started with one [avatar] and leveled it right to the top. And then I started on
another because I saw the need for the kin to have a Loremaster. […] So I developed
a Loremaster. And now I see the kin needs a Runekeeper. So that will be my next
character.” (player_2)

The kinship is both a social and functional structure. It brings people together in
interaction, but frequently the grouping is goal directed (accomplishing group
challenges in the game) and requires having the right mix of characters skills. This
player is willing to give up a well-developed character identity in the world to start
new characters that meet his kinship’s needs. However, this type of character
switching only works if membership in the kinship inheres in the real-world player
more than the in-game character.

4.3 Identity Presentation

The appearance of the character in the VW is an important concern for the players of
LOTRO. However, appearance is not a static feature. The appearance of a character is
tied to the performative action of characters in the VW. Basic character elements,
such as height and facial details, remain unchanged throughout the lifetime of a
character. However, the clothing of an avatar can be changed by the player at any
time. Avatars can also wear their weaponry and battle gear that they have
accumulated. More powerful items with higher value usually appear more visually
appealing to observers in the VW. For instance, a powerful sword glows when
wielded and worn by the avatar.

An impressive appearance of the character signals an experienced player. The
game has some popular gathering places that serve as travel hubs and meeting points.
Here, players can easily catch a glimpse of others. Many players strive for unique
gear that they can wear to stand out:

"I wear the armor for my burglar because nobody else does." (player_1)
LOTRO allows players not only to observe others visually but to inspect other

characters in detail. This inspection reveals details about the worn gear and its
properties.

"It's pretty cool to inspect some players. And you think: Wow, this person has been
playing a lot - they have fricking all blue [powerful and rare] items. You get inspired
to get that one day. It keeps the drive in it." (player_3)

As this example shows, players tend to compare themselves to other characters in
the game which in turn can motivate them to reach higher goals.

Avatars can also choose (usually in “safer” environments) to wear cosmetic
wardrobe items that do not have functional properties (e.g. armor) but only serve to
provide a different visual appearance in the world. But clothing and visual appearance
is not the only way that a character’s identity is presented to the world.

 Identity Design in Virtual Worlds 65

Regularly, groups of players team up to face powerful enemies in various
adventures. In these groups, players take on different roles based on their character
class. For instance, playing a minstrel means that the character takes a supportive role
in the group and is generally assigned tasks that aim at keeping the other group
members alive. However, this role, as it is prescribed by the game mechanics, can be
performed in multiple ways. Players communicate over voice chat; they use different
tactics and show their emotions during battle via the voice chat system. The way the
game is played and the vocal communication present not only the intentional identity
cues, but also the unintentional “cues given off.” Players can learn about who the
character is by the way they act and speak in the world.

The character’s identity is a complex amalgam of avatar and player. Identity in
LOTRO is expressed in the avatar’s clothing, how players perform actions with their
avatars, and the voice of the player during battle. In terms of identity, self, character,
etc., trying to cleanly separate what is in the game from what is real-life is
counterproductive. Our observations also suggest that these distinctions are fluid for
players, and that they move easily between different and sometimes multiple identity
orientations.

We could see this clearly when real-life concerns intruded into the world of
LOTRO. When playing in larger groups it is common to run into situations where
players need to arrange for time in their real life to play LOTRO. Some group
challenges in the game require many hours of concentrated commitment to the game.
In one of the author’s kinships the personal life of the players was often openly
discussed. Well-known kinship members were rarely reduced to his or her online
character alone.

During long challenges, the group would take breaks to wait for another kinship
member when he had to attend to his newly born son at night. Another particular
member, a truck driver in real life, could only play during breaks on the road with his
internet-enabled laptop computer. In our experience, players were very much aware of
other players’ real life circumstances despite the immersive character of the game.

Players held varying attitudes about the relationship between real world and virtual
world experiences. Reflecting on the experience of the game, a player told us:

“To me it is just a game. This is really about having fun. We all have personal lives
that we might need to get away from and kind of get into the game as an escape from
the real life.” (player_04)

From this perspective, the game becomes an escape from real life and an
opportunity to engage in an exciting and enjoyable environment. But in other ways,
the virtual world was part of or an extension of the real world. One player reflected on
what motivates her to help out other players.

"I'm a big believer in spreading around more goodness than everything else. A lot
of people don't have many friends in the game. So I’m just kind of trying to - not that I
am into karma or anything - but it's more that I'm trying to be nice because many
people are not very nice." (player_4)

This player strives to project her personal values on her character’s actions in the
game.

66 B. Koehne, M.J. Bietz, and D. Redmiles

5 Discussion

Our findings demonstrate the complexity of identity formation in the LOTRO virtual
world. Character identity design sometimes takes the form of atomistic choices of
skin color or character class, but it also occurs over longer time scales as players work
to develop their characters’ capabilities, reputations, and social relationships. In this
section we provide a more general discussion of facets of identity design in virtual
worlds and draw some implications for end user development and design.

5.1 A Socio-technical Model of Identity Formation

The identity formation model introduced in Figure 1 is a purely social model, drawing
on understandings from sociology and psychology. However, the analysis of VWs
requires a slightly different model with a more socio-technical understanding. Figure
2 shows our conceptual model of identity information in virtual worlds that extends
Côté & Levine’s [3] model.

This new model captures several aspects of identity formation specific to virtual
worlds. First, the model recognizes the distinction between the player and the in-
world character. This makes the relationship between the player’s identity and the
possibly numerous virtual identities more complex. Online characters interact in the
virtual world on behalf of the player. In our model, we recognize that the relationship
between the personality and interaction levels of identity is mediated through the
avatar.

Online
Interaction

Personality

1

2

4

3

Social and
Technological
Control

Internalization
Identity
Design

Social
Construction
of Reality

Socio technical
Identity

Character
Identity

Ego Identity

Mediation

Virtual World

Technological Structure

Social Structure

Fig. 2. Formation of Online Identity

 Identity Design in Virtual Worlds 67

The second addition to the model is that the high-level structures that influence
identity formation are both social and technological. Explicit technological constraints
on identity design are obvious in the first interactions a player has with the LOTRO
VW. Similar to the way that social structures in the real world influence what kinds of
identities are acceptable for men and women, the technological rules of the virtual
world do not allow Dwarves to be female, or a Man to be a rune-keeper. However, we
feel that it is important to recognize the distinction in the model between social and
technological structures. Whereas social structures affect interaction through various
processes of social influence (e.g. validations and challenges of identities),
technological structures control identity possibilities through more absolute means.
Whereas a character can decide not to join a kinship, a player cannot decide to have a
race-less avatar. Additionally, while social structures emerge, are reinforced, and
change through social interaction, the technological structures are much more rigid.
While it may be possible to change the technological structures of identity (perhaps
by petitioning the game’s designers or hacking the interface), these changes must be
affected outside the virtual world.

What was a social model of identity has become socio-technical by recognizing the
high-level technological constraints on identity and the mediation of the avatar. While
the mechanisms of identity control represented in arrows 1 and 3 have become more
explicit, the feedback mechanisms in arrows 2 and 4 have been problematized. Côté
& Levine claim that the personal identity influences ego identity through “ego
synthesis of self-presentations and others’ appraisals” [3] (p.135), but it is not clear to
what extent multiple online identities will have the same effect on the player’s ego.
And as we discussed above, the rigidity of the virtual world’s programming makes it
difficult if not impossible for new socio-technical identities to emerge.

5.2 Designing Identity in Virtual Worlds and EUD Contexts

Discussions of identity in the social sciences have typically not invoked the word
“design.” Sociologists tend to discuss identity as endowed from outside, a set of
categorical bins in which the individual is placed. Psychologists focus on the ways
that identity develops/is developed in the individual. Côté and Levine provide a model
that allows us to understand the relationships between the top-down sociological and
the bottom-up psychological views.

However, virtual worlds provide a unique set of tensions that are not revealed by
these earlier approaches. The avatar is simultaneously one with the player and a
separable persona. The identities in the world are multiple (avatars) and one (player).
The avatar is both a product of the player’s ambition, and preconfigured by the
constraints of the world. The avatar is both identity and artifact. Seeing identity
formation as a process of design helps us understand how these tensions play out.

The field of socio-technical design in HCI advocates the direct participation of end
users in information system design process [25]. The focus lies on the socio-technical
system that needs to co-evolve with the user base [24]. In LOTRO, we see the
development of a socio-technical identity design circle. However, the technological
constraints do not necessarily co-evolve with the social dynamics of the game. Social

68 B. Koehne, M.J. Bietz, and D. Redmiles

and technological structures form a unity that can only function in a dual mode: social
structure evolves dynamically around technological constraints. We can see this
socio-technical model underlying much work in the field of end-user development
(EUD). EUD Tool developers require an understanding of how users can be
constrained and at the same time liberated by technology. At the same time, the social
structures that we saw evolve around groups of players in the virtual world, also need
to be considered when designers aim to engage users in virtual EUD collaboration
contexts.

At first glance, the constraints imposed by the LOTRO environment on the design
possibilities in the virtual world might appear to limit sophisticated identity design.
However, the constraints create a design space that makes choices in the VW
meaningful. Specific choices, such as choosing a rare or difficult profession, can
create strong identity cues. A high-level character in the game, that is not equipped
with at least some clothes representing its high standing can signal a lack of
commitment or disinterest in a ‘serious’ approach to the game.

The technological and social structure of LOTRO imposes a complex rules system
on its players. For instance, regulations limit character design, and group activities.
Characters in the VW cannot attack other non-hostile characters. Some zones on the
virtual map cannot be accessed without successfully completing a series of quests that
unlocks the area. Nardi describes rules in digital environment as “resources
preserving good design” ([21], p. 74). The designers of LOTRO have defined rules to
preserve a carefully designed system which provides a balanced and exciting game
experience to the players. From this perspective, the structure of LOTRO provides
coded rules that, when executed, recreate the imagined multi-facetted VW experience.
Through performative action in LOTRO, players preserve the design and maintain the
structure for identity design.

For EUD environments, rules can provide an interesting metaphor describing the
tension between open-ended meta-design systems and systems that provide sufficient
seeds and structures for enabling end-users to become designers. The challenge is to
preserve a good design that allows for EUD activities with the right rules and
technological structures.

The constraints and rules of the game also shape how players understand identity
and make it meaningful. LOTRO constrains identity choices such as race and physical
appearance to such a degree that players seemed to find them relatively meaningless
as opportunities for self-presentation. Instead, players felt that they came to know
who characters really were when they saw how they acted in quests and how they
interacted in kinships.

Avatar design in LOTRO is a sophisticated activity that requires knowledge about
the mechanics of the game and the context of planned future activities with the
created character. Players learn that certain visual elements, such as glowing
equipment, represent the cue for a more powerful artifact. In LOTRO, activity
contexts can change rapidly. Confronted with the new situation, players need to make
conscious choices how to adapt their online identity to the new design space.
Remediation processes are occurring frequently and become part of the game. An
online character represents a complex identity that undergoes constant changes and

 Identity Design in Virtual Worlds 69

inherits properties that are only partially visible to observers. In agreement with
Newman [23] we found that, for the most part, the capabilities and activities of the
online character define the player’s identification with the avatar. A strong connection
develops between the player and the performances in the VW. By performing skillful
activities in the virtual world, players create live identities for the given context that
brings the desired identity cues to the foreground of the avatar presentation.

While the avatar identity can never equal the player identity, it is quite possible for
players to project personal beliefs on the performance of their online characters. Our
investigation showed that players do look beyond the avatar and recognize a real
person behind the virtual figure. For instance, the long-term absence of a character
from the kinship caused concern because many of his friends knew that in real life he
was only recently deployed to Iraq. Playing the game represents a highly immersive
experience but most players are very much aware of the person behind the virtual
identity. Other cues, such as difficult to obtain sets of equipment, can signal observers
the commitment of individuals to the game and the potential skills of the person
playing the game. The boundaries between avatar and player become blurry and the
real person controlling the avatar is recognized as acting through the avatar while still
maintaining a real-world identity [10].

For Boellstorff, this kind of virtuality is part of human nature. Virtual worlds
represent an opportunity to express selfhood and identity in enhanced, virtual
dimensions. This perspective reaffirms our finding that even in the fantasy word of
LOTRO, the real person behind the avatar is still consciously present for most players
we encountered.

“The relationship between the virtual and the human is not a “post” relationship
where one term displaces another; it is a relationship of coconstitution. Far from it
being the case that virtual worlds herald the emergence of the posthuman, […] it is in
being virtual that we are human. Virtual worlds reconfigure selfhood and sociality,
but this is only possible because they rework the virtuality that characterizes human
being in the actual world.” [1]

With more and more interactions moving to virtual spaces this virtuality aspect of
human life is moved to the forefront in order to understand human behavior.
Designing technology for humans increasingly requires an understanding of identity
formation in virtual spaces.

Thinking about EUD practices in mediated contexts requires designers to think
about the consequences of virtual spaces for end-users. Providing users with multiple
virtual identities to exercise different levels of participation in system design
processes can be seen as a way to democratize the end-user development process,
while maintaining the overall flexibility of the system.

5.3 Limitations and Open Questions

We have proposed a model that we believe can serve as a useful framework for
understanding identity development in a number of different mediated contexts.
However, the current study focused on a single gaming-oriented VW, and the
robustness of the model remains to be seen. While we found advantages in looking at

70 B. Koehne, M.J. Bietz, and D. Redmiles

this more controlled environment, an undirected VW, such as Second Life, may
provide different insights about identity.

Our approach to identity in this paper has focused on the mechanisms of identity
construction without significant attention to the social and psychological effects of
particular identity choices. We do not analyze specific identities such as gender, race,
etc., and we have not considered important processes such as stigma and
discrimination. There is much work that remains to be done on understanding how
socio-technical identities are constructed, interpreted, and used in virtual worlds.

6 Conclusions

Virtual worlds allow us to see identity formation not as a process of passive
development but as an active process of design. Designers create artifacts to meet
particular goals given a set of resources and constraints. This study helps us
understand the ways that identities take shape in virtual environments, where
resources and constraints are frequently explicit and rigid.

This approach gives us deeper understanding into issues of online identity and end
user development. Identity is particularly salient in LOTRO and similar VW games,
but the question of how users design their identities and how systems constrain those
design choices are equally (if not more) important in other kinds of systems.
Consider, for example, the ways that social-networking sites like Facebook enforce
particular identity choices on user profile pages [2], or how Wikipedia editors manage
their identities to establish their authority [18]. The relationship between the real
person and the online identity can be understood as one of remediation. This context
change—from “real life” to the virtual environment—opens a new design space for
identity exploration.

References

1. Boellstorff, T.: Coming of age in Second Life: an anthropologist explores the virtually
human. Princeton University Press, Princeton (2008)

2. Brubaker, J.R., Hayes, G.R.: SELECT * FROM USER: infrastructure and socio-technical
representation. In: Proceedings of the ACM 2011 Conference on Computer Supported
Cooperative Work, pp. 369–378. ACM (2011)

3. Côté, J.E., Levine, C.: Identity formation, agency, and culture: a social psychological
synthesis. L. Erlbaum Associates, Mahwah (2002)

4. Díez, D., Díaz, P., Aedo, I.: Meta-design Blueprints: Principles and Guidelines for Co-
design in Virtual Environments. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A.
(eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 276–281. Springer, Heidelberg (2011)

5. Fogli, D., Parasiliti Provenza, L.: End-User Development of e-Government Services
through Meta-modeling. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.)
IS-EUD 2011. LNCS, vol. 6654, pp. 107–122. Springer, Heidelberg (2011)

6. Geertz, C.: Thick Description: Towards an Interpretive Theory of Culture. In: The
Interpretation of Cultures. Basic Books (1973)

7. Geser, H.: Me, myself and my avatar: Some microsociological reflections on Second Life.
In: Sociology in Switzerland: Towards Cybersociety and Vireal Social Relations (2007)

 Identity Design in Virtual Worlds 71

8. Giddens, A.: Modernity and self-identity: self and society in the late modern age. Stanford
University Press, Stanford (1991)

9. Goffman, E.: The presentation of self in everyday life. Anchor Doubleday, Garden City
(1959)

10. Haraway, J.: Manifesto for cyborgs: Science technology and socialist feminism in the
1980s. Socialist Review 80, 65–108 (1985)

11. Hine, C.: Virtual ethnography. SAGE, London (2000)
12. Kallinikos, J.: Mediated action and representation on the vicissitudes of human

signification. Homo Oeconomicus 19(4), 607–622 (2003)
13. Kauppinen, K., Kivimäki, A., Era, T., Robinson, M.: Producing identity in collaborative

virtual environments. In: Proceedings of the ACM Symposium on Virtual Reality Software
and Technology. ACM, Taipei (1998)

14. Kolko, B.E.: Representing Bodies in Virtual Space: The Rhetoric of Avatar Design. The
Information Society: An International Journal 15(3), 177–186 (1999)

15. Lanzara, G.F.: Remediation of practices: How new media change the ways we see and do
things in practical domains (2010)

16. Lofland, J.: Analyzing social settings: a guide to qualitative observation and analysis, 4th
edn. Wadsworth/Thomson Learning, Belmont (2006)

17. Marcus, G.E.: Ethnography in/of the World System: The Emergence of Multi-Sited
Ethnography. Annual Review of Anthropology 24, 95–117 (1995)

18. O’Neil, M.: Wikipedia and authority. In: Lovink, G., Tkacz, N. (eds.) Critical Point of
View Reader, pp. 309–324. Institute of Network Cultures, Amsterdam (2010)

19. McDonough, J.P.: Designer selves: Construction of technologically mediated identity
within graphical, multiuser virtual environments. Journal of the American Society for
Information Science 50(1), 855–869 (1999)

20. Nardi, B.A., Harris, J.: Strangers and friends: collaborative play in world of warcraft. In:
Proceedings of the 2006 20th Anniversary Conference on Computer Supported
Cooperative Work. ACM, Banff (2006)

21. Nardi, B.A.: My life as a night elf priest: an anthropological account of world of warcraft.
The University of Michigan Press, Ann Arbor (2010)

22. Neustaedter, C., Fedorovskaya, E.: Capturing and sharing memories in a virtual world. In:
Proceedings of the 27th International Conference on Human Factors in Computing
Systems. ACM, Boston (2009)

23. Newman, J.: The Myth of the Ergodic Videogame. The International Journal of Computer
Game Research 2(1) (2002)

24. O’Day, V.L., Bobrow, D.G., Shirley, M.: The social-technical design circle. In:
Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work.
ACM, Boston (1996)

25. Scacchi, W.: Socio-Technical Design. In: Bainbridge, W.S. (ed.) The Encyclopedia of
Human-Computer Interaction, p. 659. Berkshire Publishing Group (2004)

26. Stone, A.R.: Will the real body please stand up? Boundary stories about virtual cultures.
In: Trend, D. (ed.) Reading Digital Culture, pp. 185–198. Blackwell, Malden (1991)

27. Takayoshi, P.: Building new networks from the old: Women’s experiences with electronic
communications. Computers and Composition 11(1), 21–35 (1994)

28. Taylor, T.L.: Living Digitally: Embodiment in Virtual Worlds. In: Schroeder, R. (ed.) The
Social Life of Avatars Presence and Interaction in Shared Virtual Environments, pp. 40–62.
Springer (2002)

29. Turkle, S.: Life on the screen: Identity in the age of the Internet. Simon & Schuster, New
York (1995)

Using Meta-modelling for Construction
of an End-User Development Framework

Erlend Stav1, Jacqueline Floch1, Mohammad Ullah Khan2, and Rune Sætre2

1 SINTEF ICT, NO-7465 Trondheim, Norway
{Erlend.Stav,Jacqueline.Floch}@sintef.no

2 NTNU, NO-7491 Trondheim, Norway
mukhan@item.ntnu.no, satre@idi.ntnu.no

Abstract. A main activity in meta-design is the creation of design
spaces allowing problem owners to act as system developers. Meta-design
is a conceptual framework; it does not provide concrete design space solu-
tions or engineering guidelines for constructing tools that support design
spaces. This paper discusses the applicability of a model-driven engi-
neering approach for the realization of an end-user service composition
framework, in line with the conceptual meta-design framework. We re-
port our experience of using meta-modelling techniques as supported by
the Eclipse Modelling Framework (EMF) family of tools. In our work we
found that meta-models are well-suited to formalize the composition lan-
guage, and the core parts of the EMF framework are useful to represent
the language elements and user-made compositions both at design and
runtime. Although EMF-based tools exist for creating visual editors, we
found that in our case these did not map well to the visual notation we
selected for our end-users.

Keywords: End-User Development, Meta-Design, Meta-Modelling,
Model driven Engineering, Eclipse Modeling Framework.

1 Introduction

Our research starts with the vision of mobile pervasive computing, i.e. envi-
ronments where objects are becoming increasingly intelligent and provide in-
formation and services to the user when and where needed. Tailoring the user
environment to exactly what the user wants is challenging and requires a good
understanding of individual needs. While several ambient intelligence approaches
combine gathering of context and user activities with reasoning techniques to
adapt environments to users, the vision where computers act as intelligent assis-
tant ”agents” is still an unrealistic promise [1] . We propose instead to empower
the users so that they themselves can develop or adapt applications to their own
needs and tasks in mobile pervasive environments. More specifically, we seek to
develop a framework for end-user service composition. We see two main rea-
sons for selecting services as a basis for end-user development. One is technical:
the principles of the Service Oriented Architecture (SOA) are widely applied

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 72–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Meta-modelling for Construction of an EUD Framework 73

in the construction of software systems in mobile pervasive environments. SOA
supports the dynamic composition of systems from loosely coupled functional en-
tities (specified as services), which fits the needs of pervasive computing where
resources can be represented as discoverable services and dynamically added to
a system as they appear. The other reason relates to user understanding. SOA
provides a paradigm shift in the way we think of software systems. Services are
decoupled from the system realization and rather represent activities or results
(i.e. a kind of consumables). Thus services are close to a human way of thinking
in the real world, and SOA has the potential to reduce the gap between idea and
system construction also for people without IT expertise.

In order to provide support for end-user composition, we adopt a meta-design
approach [2]. Meta-design is a conceptual framework that extends the traditional
notion of system development to include users as co-designers, not only at design
time, but throughout the entire life-cycle of the system [3]. An important concern
is that the user needs are not static. The users learn while using a system, and
their needs evolve. It is therefore important to involve the users not only dur-
ing system design, but also after system deployment. Meta-design describes an
ecosystem for the collaboration between developers and users, with the seeding,
evolutionary growth and reseeding (SER) process model as a central element.
Seeds are initial system entities designed through participatory design activities
involving developers and users. Seeds can grow, i.e. evolve, following the tailor-
ing of the system by users. Finally, reseeding is about the enhancement of the
initial system to integrate changes. The concepts of meta-design fit well in the
context of end-user service composition: services map to the concept of seeds,
user extensions through service composition map to evolutionary growth, and
finally the creation of new services based on user compositions and new needs
emerging during composition map to re-seeding.

A main activity in meta-design is the creation of a design space that supports
the ecosystem for collaborative design. Meta-design is a conceptual framework.
It does not provide concrete design space solutions or engineering guidelines for
constructing tools that support design spaces. This paper discusses the appli-
cability of a model-based approach for the realisation of an engineering frame-
work for end-user service composition, in line with the conceptual meta-design
framework. We describe our approach to the development of the model-based
framework UbiSys and illustrate the usage of UbiSys for the end-user extension
of a case application. Finally we discuss our experience of using meta-modelling
techniques as well as the EMF technology.

2 Related Work

Various technical approaches have been exploited for the creation of End-User
Development (EUD) frameworks [4]. Task specific Programming Languages,
TSPLs, were advocated by Nardi [1] for two main reasons: 1) The concepts of
the language relate to the task domain and thus are easy to understand by users
familiar with the domain; 2) The language supports high-level operations related

74 E. Stav et al.

to the task domain and thus the user can express the desired system functionality
without using low-level operations. Nardi also points out two main drawbacks
of TSPLs: 1) It is expensive to build different TSPLs for different needs and
computer usages; 2) The definition of multiple languages may require the users
to learn different interfaces. In our work, we define a Domain-Specific Language
(DSL) to support the development of applications adapted to the user tasks in
mobile pervasive environments. The proposed DSL is therefore close to a TPSL.
We may benefit from the advantages of using TSPLs, but have to face similar
drawbacks. The complexity of realising a DSL-based end-user framework is one
of the main issues in our work: we investigate the application of model-driven
software engineering approaches and technologies for that purpose. Related to
the second drawback, we differentiate between the composition concepts com-
mon across several domains, e.g. sequential service execution, and the service
concepts of the application domain. In other words, we provide a single compo-
sition interface to the end users. The variation lies in the service abstractions (we
call them building blocks) that need to be parameterized during composition.

Several approaches can be applied to develop a DSL [5]. We exploit existing
techniques. A first issue is the identification of the domain concepts. Our work
has addressed three application domains: city exploration [6], mobile telecom ser-
vices [7] and mobile asset management. The separation between the composition
concepts and the application domain services is a bit similar to that introduced
in AgentSheets [8]. Although the agent-based approach of AgentSheets differs
from ours, it also supports two programming levels: a domain-oriented language
for defining the behaviour of agents, and domain-oriented agents to be used in
domain-construction kits. The former corresponds to our composition, the latter
to the building blocks.

A second issue in the development of a DSL is the design of the language itself.
Since the composition model is to be transformed to an executable program that
orchestrates the composed services, precise language semantics are important.
Precise semantics are also needed for the construction of advanced end-user
engineering tools, such as simulation and validation tools. We exploit meta-
modelling that was found to be a good tool for the specification of DSLs in
terms of expressive power, flexibility, constraints and clarity of the semantics [9].
We thereby avoid building a notation upon any existing software engineering
modelling language, e.g. UML, because their focus on software professionals is
likely to not suit non-IT experts.

Finally, a third issue is the construction of tools. To that end, we explore
model-driven engineering (MDE) frameworks. MDE is an approach to software
development where models are given a central role in the development process,
and where the models are used directly to derive implementation artefacts [10].
Meta-modelling is usually used to define the modelling language in MDE ap-
proaches. Transformations, both model-to-model and model-to-text, are used to
generate implementation artefacts. Recently, using models directly at runtime
has also received some attention from the research community [11]. While MDE
has principally been used in a professional software engineering context, [12,13]

Meta-modelling for Construction of an EUD Framework 75

are examples of work closer to our own, where MDE is applied for to the creation
of an end-user development framework.

Also related to our work, a number of end-user frameworks have newly been
launched empowering mobile users to develop mobile applications themselves, for
instance Google’s App Inventor framework1, Microsoft’s TouchDevelop2, NFC
Task Launcher3 or atooma4. As mobile devices are becoming more powerful in
terms of computing and memory resources, and touchscreen technologies facil-
itate the construction of user-friendly interfaces, we expect that mobile soft-
ware development will also get more accessible for all. Similar to the end-user
frameworks for desktop environments, the mobile frameworks currently proposed
adopt different language abstraction levels, i.e. programming vs. composition,
and different development platforms, i.e. desktop vs. mobile tools. None of them
explicitly support the extension of the framework by domain developers (i.e. the
re-seeding step in the SER model).

3 Research Approach

Our research follows the design science paradigm [14]. While behavioural-science
approaches focus mainly on the use and benefits of a system implemented in an or-
ganization, design science approaches develop and evaluate IT artefacts intended
to solve identified organizational problems. Developing such artefacts requires do-
main knowledge and justification in form of proper evaluations. Design-science
suggests an iterative work process allowing a gradual understanding of the prob-
lem to be solved and improvement of the solutions. It does not impose any concrete
research and evaluation method since choice of method depends on the nature of
the research problem and the type of the artefact being created.

The first step in our work was the specification of a set of scenarios that
illustrate the concept of end-user service composition in mobile ubiquitous en-
vironments, and their evaluation and improvement through focus groups. The
scenarios were used to: 1) elaborate the idea of end-user service composition
and understand how it is perceived by the users; 2) identify an initial set of
functionalities that users wish to create and a set of reusable services needed to
create these functionalities. The scenarios were developed for three application
domains related to the business areas of the research partners (see Section 2).

Following the specification of scenarios, our work has investigated alterna-
tive end-user notations. The notation for UbiComposer was selected to support
both mobile-based and web-based scenarios. After the initial testing of a more
complex notation through paper-prototyping, we decided to use a simple trigger-
action sequence notation for the composition and a form-based presentation for
the parameterisation of the services in a composition (see Section 5.4 for more

1 The Site for Learning and Teaching App Inventor: http://www.appinventor.org
2 TouchDevelop (Microsoft Research): https://www.touchdevelop.com
3 NFC Task Launcher available on GooglePlay: https://play.google.com
4 atooma: http://atooma.com

http://www.appinventor.org
https://www.touchdevelop.com
https://play.google.com
http://atooma.com

76 E. Stav et al.

details). While the concepts of the proposed notation are inspired from the un-
derlying concepts of visual flow languages that have proven to be successful in
a number of end-users development environments, e.g. Lego MindStorm5, the
form-based approach is widely used for the parameterisation of online services
and mobile applications. We have avoided a pure visual notation since it does
not fit the pocket-size screens of mobile environments. As we will discuss later in
this paper, the proposed UbiSys framework supports the realization of different
end-user editors, and thus different notations may be provided in the future.

The focus of this paper, though, is on the development of engineering tools for
end-user service composition. The main research problem is to find out what tools
and technologies are well suited to building service composition environments for
end users. This paper addresses the following questions:

1. How applicable is meta-modelling in the design of an engineering framework
for end-user service composition?

2. Is it feasible to realize composition environments with existing model-driven
engineering technologies, as exemplified by the Eclipse Modelling Framework
(EMF) family of tools?

3. What are the architectural implications of meta-modelling and model-driven
engineering technologies?

To answer these questions, we have prototyped and applied the service compo-
sition environment UbiSys. This paper discusses the experience we gained.

4 Overall Architecture

Figure 1 gives an overview of the UbiSys architecture, with the stakeholders in
end-user service composition that we have identified, and with the tools and arte-
facts they use and create. We distinguish between two roles for meta-designers:

1. The environment developers create the service composition framework and
the runtime environment for a specific composition approach, e.g. UbiSys.
They are meta-designers that create tools for the composition design space.

2. The domain developers create reusable software services adapted to the needs
of a particular domain, e.g. by adaptation of generic solutions. The ser-
vices are created to fit the service composition framework. For instance,
generic calendar services may be adapted to the needs of elderly people and
to UbiSys. The domain developers are meta-designers that create seeds for
composition in the design space, either as part of seeding or re-seeding steps.

These roles are motivated by the fact that creating tools for a design space
requires different skills from creating services for composition by end-users. Ac-
cording to this separation, the developers in our own research activities were
also organized in two teams: one on UbiSys and one on the City Explorer ap-
plication example (see Section 6). In that way, we were able to identify initial
difficulties that domain developers may face when taking the tools in use. Beyond
developers, we also define two roles for the users:
5 LEGO MINDSTORMS: http://mindstorms.lego.com

http://mindstorms.lego.com

Meta-modelling for Construction of an EUD Framework 77

UbiSys

UbiCompPro

UbiComposer

UbiCompRun

External
services

[Composition]

Component
repository

[Runtime]

Component
repository

Compositions
ref

create

use

use

use

use

create

Environment
developer

Service
composer

Primary service user

Domain
developer

use

create

create
create

Domain
Components

use

Fig. 1. System model

1. The service composers compose and tailor services into applications for ser-
vice users. They test the service composition and eventually deploy it (or
part of it) to one or several devices or servers.

2. The primary service users install, configure and use the services and appli-
cations created by service composers.

Similarly to [15], we consider end-user service composition to be an activity
related to the development of software for personal use - unlike professional
development targeting public use. It is, however, useful to differentiate between
service composers and service users in several application domains. For instance,
a caregiver may play the former role to create a service adapted to the needs of
an assisted person, or a teacher to create a game for pupils. A user may play
both the composer and user roles, e.g. a caregiver may participate in a service
composed for assisted persons.

Our approach explores the application of a meta-modelling framework for the
creation of a service composition framework by environment developers. The
service composition framework itself, depicted as UbiSys in Figure 1, consists of
three components:

1. UbiCompPro is a tool for domain developers allowing the creation of reusable
components for composition. The domain developers implement components
compliant with the runtime system in the framework, invoking domain ser-
vices as needed. In addition they provide component descriptors that appear
as building blocks for service composers to specify compositions from.

2. UbiComposer is a composition editor used by the service composers to select
among the set of components defined using UbiCompPro and combine them
into user-defined services and applications.

78 E. Stav et al.

3. UbiCompRun is a runtime system for executing the services composed by the
service composers. The runtime system interprets the composition models
created using UbiComposer to control service execution, and invokes the
right runtime components for the building blocks used in the composition.

The components developed using UbiCompPro correspond to the seeds of the
meta-design framework. Both UbiComposer and UbiCompRun contribute to
evolutionary growth by supporting the modelling and execution of user-created
functionalities.

5 Framework Realization Using Meta-modelling

This chapter describes the meta-models defined by the UbiSys framework, and
how these meta-models are used in the realization of UbiCompPro, UbiComposer
and UbiCompRun. We chose to use the Eclipse Modeling Framework (EMF)6 as
the foundation for our realization because it is a mature open source framework
with a whole family of tools built on top of it (e.g., it is the foundation of
several commercial Eclipse based UML tools, including IBM’s Rational Software
Architect). In the first sub-section we give as background a short description of
the EMF family of tools. We then describe the meta-models, before we give
further details about our framework realisation based on these meta-models and
EMF. The UbiSys framework and the City Explorer example application (See
Section 6) are available as open source and documented on github7.

5.1 EMF at a Glance

The Eclipse Modeling Project8 is a top-level project in the Eclipse community
that organizes the model-based development activities in the community. The
foundation for most of tools that are sub-projects within Modeling is the Eclipse
Modeling Framework (EMF). The core of EMF consists of three parts:

– eCore [16], the meta-meta-model of EMF, with supporting Java runtime
libraries. The libraries contain APIs for managing model elements, and sup-
port for XMI-based persistence. EMF supports instantiation of meta-models
based on generated Java classes, but also dynamic instantiation of non-
generated classes using a generic, reflective API. This foundation provides
interoperability between the tools based on EMF.

– EMF.Edit, a framework foundation for creating editors and views on top of
the EMF models. This framework includes a command framework with a set
of pre-defined commands that can be used to provide undoable operations on
the model, like adding, deleting or moving model entities. Also, it provides
facilities for defining the viewable structure and textual labels for model
elements, giving a generic foundation for creating model views and editors.

– tools for the generation of runtime parts and a default model editor.

6 Eclipse Modeling Framework (EMF): http://www.eclipse.org/modeling/emf/
7 UbiSys and City Explorer source code: https://github.com/UbiCompForAll
8 Eclipse Modeling Project: http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/emf/
https://github.com/UbiCompForAll
http://www.eclipse.org/modeling/

Meta-modelling for Construction of an EUD Framework 79

The runtime libraries and EMF.Edit were designed for use within the OSGi and
Eclipse frameworks, but can also be used in stand-alone Java applications. From
an EMF model, the generator tools of EMF enable the generation of:

– a Java representation of the model, including Java interfaces representing
the model entity, implementation classes for these interfaces, and support
classes including factories for creating instances.

– adapters based on EMF.Edit for presentation of the model elements.
– a fully functioning tree-based model editor that can be used from within

Eclipse or in a stand-alone application using Eclipse Rich Client Platform.

While EMF can be considered to be a technology for developing abstract syntax,
the Eclipse Modeling Project contains several tools for developing concrete syn-
taxes using EMF as their foundation. Among these are the Graphical Modeling
Framework (GMF)9 and Graphiti10 for developing graphical modelling tools,
and xText and EMF Text for developing tools using textual syntaxes.

5.2 The UbiSys Meta-models

The meta-models shown in this section were developed using EMF (using the
standard EMF editors), but are conceptually independent of EMF and could be
realized using other meta-modelling frameworks with a meta-meta-model similar
to EMF’s eCore. For the UbiSys tools, two meta-models were developed:

– The component descriptor meta-model (Figure 2) is used to model libraries
of building block descriptors using the UbiCompPro tool. These libraries are
used for providing the palette of building blocks in the UbiComposer tools.

– The user service meta-model (Figure 3) defines the abstract syntax for com-
posing user services. The UbiComposer tool uses this to edit compositions,
and the compositions are further used by UbiCompRun during runtime.

As shown in Figure 2, a descriptor library for components consists of a set of
elements, which are building blocks, data types, or descriptors for domain objects
(i.e. objects from the application domain). The main types of building blocks are
triggers and steps, and each building block defines a set of properties. Elements
and properties have user-friendly names that will be shown in UbiComposer.

The meta-model of the end-user’s language is shown in Figure 3. It is used to
represent the user services composed by the service composer. As shown in the
figure, a user service is composed of one or more tasks, where each task has a
trigger and a sequence of steps (actions). This corresponds to the trigger-action
sequence used in the notations (see Section 5.4 for more details). Each building
block (including trigger and step) has a number of property assignments, which
can either be constant values, references to other properties, or references to
domain objects. As shown in the figure, some concepts from the component de-
scriptor meta-model are referenced to from this meta-model – e.g. each building
block refers to its corresponding building block descriptor.
9 Graphical Modeling Framework (GMF): http://wiki.eclipse.org/GMF

10 Graphiti - a Graphical Tooling Infrastructure: http://www.eclipse.org/graphiti/

http://wiki.eclipse.org/GMF
http://www.eclipse.org/graphiti/

80 E. Stav et al.

Fig. 2. Component descriptor meta-model

Fig. 3. User service meta-model

Meta-modelling for Construction of an EUD Framework 81

Fig. 4. UbiCompPro editor

5.3 UbiCompPro Implementation

UbiCompPro (Figure 4) is fully generated from the component descriptor meta-
model. The tool is an example of the standard tree-based editor generated by
EMF. As the target users of UbiCompPro are software developers, our assump-
tion is that the generated tree-based editor is suitable for the task of creating
component descriptors. The descriptor files created using the tool are used di-
rectly in UbiComposer for displaying the palette of building blocks that are
available to create compositions from.

Figure 4 shows a screenshot for the UbiCompPro editor where the developer
can create entries for each building block in the library. The editor as shown
in the figure is running in the Eclipse environment, with the current project
expanded in the view at the left. In the figure, the descriptor library developed
for the City Explorer example application case is selected and the property
”toPoiName” of the building block ”GetBusTimeStep” is being edited. The data
type for that descriptor is a domain descriptor ”PoI” that supports access to
data shared by the City Explorer application.

5.4 UbiComposer Implementation

UbiComposer is implemented in a mobile version for the Android platform
(Figure 5) and in a web version (not depicted in this paper). At the top level of
the composition, the service composer can define one or more tasks, where each

82 E. Stav et al.

Fig. 5. UbiComposer for Android

task represents a sequence of actions that will be performed (automatically)
when a specific trigger occurs. The set of tasks are shown in a list (left-most
screenshot of Figure 5). When editing the details of a task, its trigger and the
actions can be selected from the set of available building blocks available in the
tool (as provided by the domain developer), and the actions can be organized
into the sequence in which they should occur. This is done in a task detail editor
with pop-up menus for building block selection (middle screenshot of Figure 5).
Form-based editing is used for setting the parameters of each building block. Pa-
rameter values can be typed in, selected among constants, or linked to properties
of other building blocks or domain objects from applications. This is done in a
detail editor for each building block. The right most screenshot of Figure 5 illus-
trates different cases: while ”Current place.poiName” is a reference to another
building block, ”Nidaros cathedral” is a value from the City Explorer application
(see Section 6). The editors perform some validation, e.g. actions with missing
values for required parameters are highlighted in red in the Android version.

The Android implementation of UbiComposer is partially generated and uses
the core EMF libraries without EMF.edit. The in-memory representation of
the composition directly uses the Java classes generated from the EMF meta-
model, and the default EMF persistence mechanism is used to load and save the
compositions to a file-based storage. Also, UbiComposer uses the EMF-generated
classes for the component descriptors to provide the palette of building blocks,
and for setting up the detail editors for each component. The rest of the editor,
including the user interface providing the concrete notation is hand-coded using
standard Android libraries.

The implementation of the web version uses the Google Web Toolkit (GWT)11.
A main criterion for the selection of GWT is the availability of end-user friendly
widgets such as text boxes, selection boxes, forms, Google Maps, calendars etc.
In addition to GWT, third party widgets from SmartGWT and the Google
Map library were also integrated on the client side. GWT RPC was used for
the communication with the server. Tools exist that generate tree-based editors
11 Google Web Toolkit (GWT): https://developers.google.com/web-toolkit/

https://developers.google.com/web-toolkit/

Meta-modelling for Construction of an EUD Framework 83

(like UbiCompPro) for GWT from EMF meta-models12. However, the gener-
ated editor is far from our selected end-user notation, and we found it difficult
to adapt the generated code for our purpose. The current implementation of
the web-based version of UbiComposer was therefore hand-coded based on the
concepts of the meta-models. It can directly use component descriptor libraries
created using UbiCompPro.

GMF was initially considered for implementing UbiComposer, but we found
that its strength primarily lies in the development of notations such as UML
class-diagrams that are different from the form-based notation we wanted for
UbiComposer. Graphiti was not yet available at the time of our choice, and
textual syntax tools such as XText were not an option for our notation.

5.5 UbiCompRun Implementation

Two runtime approaches are supported: interpretation of compositions and trans-
formation to code. The former was realised on Android as UbiCompRun for An-
droid. The latter was realised as a transformation (currently manual) to Drools
rules since the Drools engine is used by one of our industry partners. This paper
does not provide further details on the transformation to Drools because this is
a proprietary solution of our industry partner.

Although the implementation of UbiCompRun on Android is mostly hand-
coded, it also exploits the core EMF libraries. More specifically, it also uses the
same Java classes generated from the user service meta-model as UbiComposer.

The hand-coded parts include the definition of the Java interfaces and abstract
classes of the runtime framework that the domain developers use to implement
their runtime components. Also, they include the classes performing the inter-
pretation of the service compositions and the invocation calls to the runtime
components. As part of the implementation of runtime components, the domain
developer must also provide a simple map between component descriptors and
component implementation classes.

6 Application Example: City Explorer

City Explorer is a mobile Android application that was developed in order to as-
sess the UbiSys composition framework. City Explorer supports the management
and sharing of contents for city exploration, e.g. places and itineraries, and the
navigation to places. In addition, it supports the creation of new functionalities
by the user. For example, the user may add tasks for sharing information through
social media, getting bus information to a place defined by City Explorer, or set-
ting up a lunch meeting place with friends. To support such creation, a number
of components (and building blocks) that the user can compose together were
defined. Respective to the meta-design framework, both City Explorer and the
set of building blocks map to seeds. New building blocks, i.e. new seeds, may be

12 EMF SDK for GWT: http://wiki.eclipse.org/EMF/GWT

http://wiki.eclipse.org/EMF/GWT

84 E. Stav et al.

gradually added depending on the emergence of new ideas and needs. Support
for end-user extension of City Explorer is realised using UbiSys:

– UbiCompPro is used to create building blocks. In our experimentation, we
have created event triggers, e.g. ”at a specific time”, ”at a specific place” or
”at any place in a specific itinerary”, and steps, e.g. ”send SMS”, ”add post
on Facebook” or ”get bus time”.

– The UbiComposer Android library is integrated in the mobile application
code. Thus, UbiComposer can be invoked from the application.

– The UbiCompRun Android library is also integrated in the mobile applica-
tion code. Thus the composed services can be activated from the application.

An important requirement in the extension of City Explorer was the ability to
access to application data both during composition and runtime:

– The service composer may wish to specify an extension for a particular entity
or set of entities defined by City Explorer, e.g. ”when arriving at a church,
switch my phone to the silent mode.” To do so, the service composer needs
access to the place classifications defined by the application during service
composition.

– The executing code extension may also need to access application data, e.g.
”when arriving close to one of my favourite places, give me a notification and
display information about that place.” The executing code needs to retrieve
the set of favourite places (and possibly listens to changes made to that set).
It also needs to retrieve information about a place when getting close to it.

UbiSys introduces the concept of ”domain descriptor” that supports the cre-
ation of building blocks that access application data. Access to data requires
the application to expose its data in compliance to the rules defined by UbiSys.
Currently, UbiSys supports the Android Content Provider mechanism. In that
way, Android application developers do need to learn any new mechanism to
expose application data.

7 Discussion

The discussion provided in this chapter is based on our own experiences in
applying meta-modelling and EMF to the development of the UbiSys framework
and example applications. While the team working on UbiSys have obviously
had a personal interest in succeeding with development, we do not have any bias
regarding the use of meta-modelling or the EMF family of tools.

Most of the attention of the MDE research community has been on simplifying
development for different groups of software developers. In our work, we found
that MDE is also useful for the realization of end-user development tools:

– Meta-models were found useful for discussing the realization of the com-
position language for the selected end-user notation. The development of
meta-models requires a precise definition of notation concepts. In addition
it is a tool for seeking simplification of the models.

Meta-modelling for Construction of an EUD Framework 85

– MDE simplifies the task of environments developers, i.e. the realisation of
the end-user composition framework.

– When meta-models are used all the way from design of building blocks,
via composition, to runtime, consistency is enforced. This contributes to
a smooth transition between the activities of domain developers and the
activities of service composers in the design space.

On the other hand, we found meta-modelling inadequate for the rapid explo-
ration of alternative notation concepts. Instead, visual prototypes (paper and
quick SW mock-ups) are in our experience better suited for discussing and agree-
ing on the end-user composition language because they also provide the concrete
syntax elements of the language. The different application domains addressed
in our research gradually raised new requirements on the structural concepts
needed for service composition. For instance the telco case added a require-
ment for if-then-else structures (not needed by other cases), while the mobile
asset management case added a requirement related to the use of conditions
in association with triggers. We were able to extend the initial meta-models to
support these concepts, but have completed implementation of them. We have
no experience so far on supporting extensions that would require more complex
adjustments of the meta-model.

The basic EMF technology selected in our work to realize the model-driven
engineering approach was found to be suitable for the ”invisible” parts of the
composition and runtime tools (i.e. the parts not exposed to end users):

– EMF supports the instantiations of meta-models (i.e. the creation of mod-
els) and persistent storage. We use EMF libraries and generated Java classes
to support the specification of compositions based on the composition nota-
tion, and to implement import and use of component descriptor libraries in
UbiComposer.

– Based the specification of a meta-model, EMF supports the generation of
a tree-base editor for the creation of models. UbiCompPro is such an edi-
tor. The domain developers can easily install UbiCompPro as a plug-in in
their development environment and create descriptors for the building blocks
descriptors the service composer will choose among during composition.

– The EMF cross-platform support worked between Eclipse-based / Desktop
Java, and Android. In the case of Android some repackaging of the EMF
libraries was required, and also the full potential of EMF was not used.
Although there is also support for automatic generation of GWT projects
from EMF meta-models, we found it too difficult to integrate this with the
end user-friendly widgets that we needed, and thus EMF libraries were not
used in the web-based UbiComposer.

When starting the development of UbiComposer, we also looked for tools based
on EMF that could assist in developing the visual parts of our notation. The main
candidate we found at that time was GMF, but it was not selected because it did
not match well to our selected notation. Also, it does not support the Android
and web-based platforms, and thus would only have been useful on the desktop.

86 E. Stav et al.

The different industry partners involved in our work had different require-
ments on composition and runtime. Using a MDE approach, the proposed no-
tation models remain platform-independent and we were able to integrate the
tools with other applications and middleware. The adoption of a meta-modelling
approach and the EMF technology has provided us the flexibility to fulfil various
architectural needs:

– Composition editors were developed both in native code for Android and as
a web-based solution. The former enables integration of the editor with any
Android app. The latter enables access to the editor on any platform.

– The compositions were both interpreted at runtime on Android and trans-
formed to Drools rules. In the former case, as the editor is also available on
Android compositions can be modified at runtime.

8 Conclusion and Further Work

The EUD community have mostly focused on the end-user perspective of EUD,
and not so much on technical realization of the required tools. This paper de-
scribes a MDE approach to the realisation of such tools. It positions the approach
with respect to the meta-design framework and reports our experience, mostly
positive, in adopting MDE and the EMF technology. Our work is a first step in
the realisation of end-user tools. Relevant future areas of work include:

– Validation support. End-users lack knowledge in software engineering prac-
tices. Support for creating correct compositions and avoiding errors is there-
fore a critical concern. We intend to investigate how the EMF validation
framework can be exploited to check the models.

– Simulation support. Most service compositions created for mobile pervasive
computing do not occur at once, but are triggered in a specific context. Thus,
differently from spread-sheet applications or EUD game environments, the
end user cannot observe the effect of a composition at once. We intend to
build simulation and debugging tools allowing end users to test the compo-
sitions and search for the causes of eventual errors.

– Guidance to domain developers. The proposed framework does not provide
any guidelines for the specification of building blocks adapted to the level
of expertise of non-IT experts. Few software developers are familiar with
the discipline of end-user development. We intend to enhance the tools with
guidelines based on earlier experience such as found in [17, 18]

– Adaptation to emerging technologies. Another relevant work is the explo-
ration of new tools to realize visual notations, such as the recent additions
to the EMF family of tools, including Graphiti and Extended Editing Frame-
work.

– End-user evaluation. The tools were improved based on feedback from project
participants. A more extensive evaluation including both external developers
and end-users is required.

Meta-modelling for Construction of an EUD Framework 87

Acknowledgement. Our research has been performed in the Norwegian Re-
search Council (NFR) project UbiCompForAll in cooperation with the EU IST
project SOCIETIES (contract 257493).

References

1. Nardi, B.A.: A small Matter of Programming. The MIT Press (1993) ISBN:
9780262140539

2. Fischer, G.: End-User Development and Meta-Design: Foundations for Cultures of
Participation. Journal of Organizational and End User Computing 22(1), 52–82
(2010)

3. Fischer, G., et al.: Meta-design: a manifesto for end-user development. Communi-
cation of ACM 47(9), 33–37 (2004)

4. Sutcliffe, A., Mehandjiev, N.: Special issue on End-User Development. Communi-
cations of the ACM 47(9) (2004)

5. Mernik, M.: When and How to Develop Domain-Specific Languages. ACM Com-
puting Surveys 37(4) (2005)

6. Floch, J.: A Framework for User-Tailored City Exploration. In: Costabile, M.F.,
Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654,
pp. 239–244. Springer, Heidelberg (2011)

7. Sanders, R.T., Mbaabu, F., Shiaa, M.M.: End-user Configuration of Telco Services.
In: Proc. of 16th Int. Conf. Intelligence in Next Generation Networks: Realising
the Power of the Network (ICIN 2012). IEEE (2012) (10.1109/ICIN.2012.6376036)

8. Repenning, A., Ioannidou, A.: Agent-based End User Development. Communica-
tions of the ACM 47(9) (1994)

9. Weisemöller, I., Schürr, A.: A Comparison of Standard Compliant Ways to Define
Domain Specific Languages. In: Giese, H. (ed.) MoDELS 2007 Workshops. LNCS,
vol. 5002, pp. 47–58. Springer, Heidelberg (2008)

10. Stahl, T., Völter, M.: Model-driven software development: technology, engineering,
management. Wiley, Chichester (2006)

11. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer 42(10)
(2009)

12. De Silva, B., Ginige, A.: Meta-model to support end-user development of web based
business information systems. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.)
ICWE 2007. LNCS, vol. 4607, pp. 248–253. Springer, Heidelberg (2007)

13. Fogli, D., Parasiliti Provenza, L.: End-user development of e-government services
through meta-modeling. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A.
(eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 107–122. Springer, Heidelberg (2011)

14. Hevner, A.R., March, S.T., Jinsoo, P.: Design Science in Information Systems Re-
search. MIS Quarterly 28, 75–105 (2004)

15. Ko, A.J., et al.: The State of the Art in End-User Software Engineering. ACM
Computing Surveys 43(3) (2011)

16. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional (2008)

17. Myers, B.A., Pane, J.F.: Natural Programming Languages and Environments.
Communication of ACM 47(9), 47–52 (2004)

18. Repenning, A., Ioannidou, A.: What makes end-user development tick? 13 design
guidelines. In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End-User Development.
Springer (2006) ISBN 1-4020-4220-5

Sheet-Defined Functions: Implementation

and Initial Evaluation

Peter Sestoft and Jens Zeilund Sørensen

IT University of Copenhagen
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

Abstract. Spreadsheets are ubiquitous end-user programming tools,
but lack even the simplest abstraction mechanism: The ability to encap-
sulate a computation as a function. This was observed by Peyton-Jones
and others [14], who proposed a mechanism to define such functions using
only standard spreadsheet cells, formulas and references.

This paper extends their work by increasing expressiveness and em-
phasizing execution speed of the functions thus defined. First, we sup-
port recursive and higher-order functions, while still using only standard
spreadsheet notation. Secondly, we obtain fast execution by a careful
choice of data representation and compiler technology.

The result is a concept of sheet-defined functions that should be un-
derstandable to most spreadsheet users, yet offer sufficient programming
power and performance to make end-user development of function li-
braries practical and attractive.

We outline a prototype implementation Funcalc of sheet-defined func-
tions, and provide a case study with some evidence that it can express
many important functions while maintaining good performance.

1 Introduction

Spreadsheet programs such as Microsoft Excel, OpenOffice Calc, Gnumeric and
Google Docs provide a simple, powerful and easily mastered end-user program-
ming platform for mostly-numeric computation. Yet as observed by several au-
thors [12,14], spreadsheets lack even the most basic abstraction mechanism: The
creation of a named function directly from spreadsheet formulas.

Many spreadsheet programs allow function definitions in external languages
such as VBA, Java or Python, but those languages present a completely different
programming model that many competent spreadsheet users do not master.

Here we present a prototype implementation, called Funcalc, of sheet-defined
functions that (1) uses only standard spreadsheet concepts and notations, as
proposed by Peyton-Jones et al. [14], so it should be understandable to compe-
tent spreadsheet users, and (2) is very efficient, so that user-defined functions can
be as fast as built-in ones. Furthermore, the ability to define functions directly
from spreadsheet formulas should (3) permit gradual untangling of data and
algorithms in spreadsheet models and (4) encourage the development of shared
function libraries; both of these in turn should (5) improve reuse, reliability and
upgradability of spreadsheet models.

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 88–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sheet-Defined Functions: Implementation and Initial Evaluation 89

Our implementation is written in C# and achieves high performance thanks
to portable runtime code generation on the Common Language Infrastructure
(CLI) [6], as implemented by Microsoft .NET and the Mono project.

Our ultimate motivation is pragmatic. A sizable minority of spreadsheet users,
including biologists, physicists and financial analysts, build very complex spread-
sheet models. This is because spreadsheets make it convenient to experiment with
both computations and data, and because the resulting models are easy to share
and distribute. We believe that one can advance the state of the art by giving
spreadsheet users better tools, rather than telling them that they should have
used Matlab, Java, Python or Haskell instead.

We do not think that spreadsheets will make programming languages redun-
dant, but we do believe that they provide a computation platform with many
useful features that can be considerably improved by fairly simple technical
means.

2 Sheet-Defined Functions

2.1 A Small Example

Consider the problem of calculating the area of each of a large number of triangles
whose side lengths a, b and c are given in columns E, F and G of a spreadsheet,
as in Fig. 1. The area is given by the formula

√
s(s− a)(s− b)(s− c) where s =

(a+b+c)/2 is half the perimeter. Now, either one must allocate column H to hold
the value s and compute the area in column I, or one must inline s four times in
the area formula. The former pollutes the spreadsheet with intermediate results,
whereas the latter would create a long expression that is nearly impossible to
enter without mistakes. It is clear that most realistic problems would require
even more space for intermediate results and even more unwieldy formulas.

Fig. 1. Triangle side lengths and computed areas; intermediate results in column H

Here we propose instead to define a function, TRIAREA say, using standard
spreadsheet cells and formulas, but on a separate function sheet, and then call
this function as needed from the sheet containing the triangle data.

Fig. 2 shows a function sheet containing a definition of function TRIAREA, with
inputs a, b and c in cells A3, B3 and C3, the intermediate result s in cell D3,
and the output in cell E3.

90 P. Sestoft and J.Z. Sørensen

Fig. 2. Function sheet, where DEFINE in E4 creates function TRIAREA with input cells
A3, B3 and C3, output cell E3, and intermediate cell D3

Fig. 3 shows an ordinary sheet with triangle side lengths in columns E, F and
G, function calls =TRIAREA(E2,F2,G2) in column H to compute the triangles’
areas, and no intermediate results; the latter exist only on the function sheet.
As usual in spreadsheets, it suffices to enter the function call once in cell H2 and
then copy it down column H with automatic adjustment of cell references.

Fig. 3. Ordinary sheet calling TRIAREA, defined in Fig. 2, from cells H2:H5

2.2 Expected Mode of Use

A user may develop formulas on a function sheet and interactively experiment
with input values and formulas until satisfied that the results are correct. Subse-
quently the user may turn these formulas into a sheet-defined function by calling
the DEFINE built-in (see Sect. 2.3); the function is immediately ready to use from
ordinary sheets and from other functions.

Within a project, company or scientific discipline, groups of frequently used
functions can be turned into function libraries, distributed on function sheets.
This makes for a smooth transition from experiments and ad hoc models to
more stable and reliable libraries of functions, without barring end-users from
adapting library functions to new scientific or business requirements, as may be
the case with libraries created by external “professional” developers.

Moreover, improving the separation between “mostly data” ordinary sheets
and “mostly model” function sheets provides a way to mitigate the upgrade and
consistency problems sometimes caused by the strong intermixing of model and
data found in many spreadsheets.

Sheet-Defined Functions: Implementation and Initial Evaluation 91

2.3 New Built-In Functions

Our Funcalc prototype implementation uses the standard notions of sheet, cell,
formula and built-in function. It adds just three new built-in functions to support
the definition and use of sheet-defined functions. As illustrated by cell E4 in
Fig. 2, there is a function to create a new function:

– DEFINE("name", out, in1..inN) creates a function with the given name,
result cell out, and input cells in1..inN, where N >= 0.

Two other functions are used to create a function value (closure) and to apply
it, respectively:

– CLOSURE("name", e1..eM) evaluates e1..eM to values a1..aM and returns
a closure for the sheet-defined function "name". An argument ai that is an
ordinary value gets stored in the closure, whereas an argument that is NA()
signifies that this argument will be provided later when calling the closure.

– APPLY(fv, e1..eN) evaluates fv to a closure, evaluates e1..eN to values
b1..bN, and applies the closure by using the bj values for those arguments
in the closure that were NA() at closure creation.

The NA() mechanism provides a very flexible way to create closures (partially
applied functions), which is rather unusual from a programming language per-
spective, but fits well with the standard spreadsheet usage of NA() to signify a
value that is not (yet) available.

3 Interpretive Implementation

Our prototype implementation is written in C# and consists of a rather straight-
forward interpretive implementation combined with a novel compiled implemen-
tation of sheet-defined functions, described in Sects. 4 and 5.

As in most spreadsheet programs, a workbook contains worksheets, each work-
sheet contains a grid of cells, and each cell may contain a constant or a formula
or nothing. A formula contains an expression and a value cache. A worksheet
is represented as a “lumpy” sparse array data structure that is space-efficient,
highly scalable, and performs very well on modern CPUs.

Since spreadsheet formulas are dynamically typed, runtime values are repre-
sented by concrete subclasses Number, Text, Error, Array, and Function with a
common of abstract superclass Value.

A formula expression e in a given cell on a given worksheet is evaluated in-
terpretively by calling e.Eval(sheet,col,row), which returns a Value object.
Such interpretive evaluation involves repeated wrapping and unwrapping of val-
ues, where the most costly in terms of runtime overhead is the wrapping of IEEE
64-bit floating-point numbers (C# type double) as Number objects, and testing
and unwrapping of Number objects as IEEE floating-point numbers. One goal
of the compiled implementation presented in Sect. 4 is to avoid this overhead.

92 P. Sestoft and J.Z. Sørensen

4 Compiled Implementation

Our prototype is written in C# and compiles a sheet-defined function to CLI
bytecode [6] at runtime, so that functions can be created and edited interactively,
like everything else in the spreadsheet.

This section outlines the compilation process and some of the steps taken to
ensure good performance.

4.1 Compilation Process Outline

1. Build a dependency graph whose nodes are the cells transitively reachable,
by cell references, from the sheet-defined function’s output cell.

2. Perform a topological sort of the dependency graph, so a cell is preceded by
all cells that it references. It is illegal for a sheet-defined function to have
static cyclic dependencies.

3. If a cell in the graph is referred only once (statically), inline its formula at
its unique occurrence. This saves a local variable at no cost in code size.

4. Using the dependency graph, determine the evaluation condition (see Sect. 5)
for each remaining cell; build a new dependency graph that takes evaluation
conditions into account; and redo the topological sort.

5. Generate CLI bytecode for the cells in forward topological order. For each
cell c with associated variable v_c, generate code corresponding to this as-
signment: v_c = <code for c’s formula>;

4.2 No Value Wrapping

The simplest compilation scheme generates code to emulate interpretive evalu-
ation. The code for an expression e leaves the value of e on the (CLI virtual
machine) stack top as a Value object.

However, wrapping every intermediate result as an object of a subclass of
Value would be inefficient, in particular for numeric operations. In an expression
such as A1*B1+C1, the intermediate result A1*B1 would be wrapped as a Number,
only to be immediately unwrapped. The creation of that useless Number object is
slow: it requires allocation in the heap and causes work for the garbage collector.

Therefore, when the result of an expression e will definitely be used as a
number, we use a second compilation method. It generates code that, when
executed, leaves the value of e on the stack as a 64-bit floating-point value,
avoiding costly allocation in the heap. If the result of e is an error (or a non-
number such as a text or array), the resulting number will be a NaN [8].

4.3 Efficient Error Propagation

When computing with naked 64-bit floating-point values, we represent an error
value as a NaN and use the 51 bit “payload” of the NaN to distinguish error
values, as per the IEEE standard [8, section 6.2], which is supported by all mod-
ern hardware. Since arithmetic operations and mathematical functions preserve

Sheet-Defined Functions: Implementation and Initial Evaluation 93

NaN operands, we get error propagation for free. For instance, if d is a NaN,
then Math.Sqrt(6.1*d+7.5) will be a NaN with the same payload, thus rep-
resenting the same error. As an alternative to error propagation via NaNs, one
could use CLI/.NET exceptions, but that would be vastly slower.

4.4 Compilation of Comparisons

According to spreadsheet principles, a comparison such as B8>37must propagate
errors: If B8 evaluates to an error, then the entire comparison evaluates to the
same error. When compiling a comparison we cannot rely on NaN propagation;
a comparison involving one or more NaNs is either true or false, never undefined,
in CLI [6, section III.3].

Therefore we introduce a third compilation method. It takes an expression e

and two code generators ifProper and ifBad. It generates code that evaluates
e; and if the value is a non-NaN number, leaves that value on the stack top as a
64-bit floating-point value and continues with the code generated by ifProper;
otherwise, continues with the code generated by ifBad.

The code generators ifProper and ifBad generate the success continuation
and the failure continuation [20] for the evaluation of e.

4.5 Compilation of Conditions

Like other expressions, a conditional IF(e0,e1,e2) must propagate errors from
the condition e0, so if e0 gives an error value, then the entire conditional ex-
pression must give the same error value.

To achieve this we introduce a fourth compilation method, for expressions
that are used as conditions. The method takes an expression e0 and three code
generators ifT, ifF and ifBad, and generates code that evaluates e0; and if
the value is a non-NaN number different from zero, it continues with the code
generated by ifT; if it is non-NaN and equal to zero, continues with the code
generated by ifF; otherwise, continues with the code generated by ifBad.

For instance, to compile IF(e0,e1,e2), we compile e0 as a condition whose
ifT and ifF continuations generate code for e1 and e2.

5 Evaluation Conditions

Whereas most of the compilation machinery described in Sect. 4 would be appli-
cable to any dynamically typed language in which numerical computations and
error propagation play a prominent role, this section addresses a problem that
seems unique to recursive sheet-defined functions.

5.1 Motivation and Outline

Consider computing sn, the string consisting of n ≥ 0 concatenated copies of
string s, corresponding to Excel’s built-in REPT(s,n). The sheet-defined function

94 P. Sestoft and J.Z. Sørensen

Fig. 4. Recursive function REPT4(s,n) illustrates the need for evaluation conditions

REPT4(s,n) in Fig. 4 is optimal, using O(log n) string concatenation operations
(written &) for a total running time of O(n · |s|), where |s| is the length of s.

If n = 0, that is B67=0, then the result is the empty string and there is no
need to evaluate cell B68. In fact, it would be horribly wrong to unconditionally
evaluate B68 because it performs a recursive call to the function itself, so this
would cause an infinite loop. It would be equally wrong to inline B68’s formula
in the B69 formula, since that would duplicate the recursive call and make the
total execution time O(n2 ·|s|) rather than O(n·|s|), thwarting the programmer’s
intentions.

A cell such as B68 must be evaluated only when actually needed by further
computations. That is the reason for step 4 in the compilation process outline
in Sect. 4.1, which we flesh out as follows:

4.1 For each cell in the sheet-defined function, compute its evaluation condition,
a logical expression that says when the cell must be evaluated; see Sect. 5.2.

4.2 While building the evaluation conditions, perform logical simplifications; see
Sect. 5.3.

4.3 If the cell’s formula is trivial, for instance a constant or a cell reference,
then set its evaluation condition to constant true, indicating unconditional
evaluation.

4.4 Rebuild the cell dependency graph and redo the topological sort of cells,
taking also the cell references in the cell’s evaluation condition into account.

4.5 Generate code in topological order, as in step 5 of Sect. 4.1, modified as
follows: If the cell’s evaluation condition is not constant true, generate code
to evaluate and cache (Sect. 5.4) and test the evaluation condition, and to
evaluate the cell’s formula only if true:

if (<evaluation condition for c>)

v_c = <code for c’s formula>;

5.2 Finding the Evaluation Conditions

A cell needs to be evaluated if the output cell depends on the cell, given the
actual values of the input cells. Hence evaluation conditions can be computed
from a conditional dependency graph, which is a labelled multigraph.

Sheet-Defined Functions: Implementation and Initial Evaluation 95

B66

B67

B68 B69
NOT(B67=0)

NOT(B67=0)

Fig. 5. Evaluation dependencies in REPT4. Output cell B69 depends on B66 and on
B68 if NOT(B67=0), and depends unconditionally on B67.

Fig. 5 shows the conditional dependency graph for function REPT4 from Fig. 4.
A node represents a cell, and an edge represents a dependency of one cell on
another, arising from a particular cell-to-cell reference. An edge label is the
condition under which the cell reference will be evaluated.

Now the evaluation condition of a non-input cell c is the disjunction, over all
reference paths π from the output cell to c, of the conjunction of all labels �p
along path π. More precisely, if Pc is the set of labelled paths from the output
cell to c, then the evaluation condition bc of c is

bc =
∨

π∈Pc

∧

p∈π

�p

Note that when c is the output cell itself, there is a single empty path in Pc =
{〈〉}, so the evaluation condition is true (must evaluate). Also, if there is no path
from the output to c, then the evaluation condition is false (need not evaluate).

The labels, or cell-cell reference conditions, on the conditional dependency
graph arise from the non-strict functions IF(p,e1,e2) and CHOOSE(n,e1..en).
For instance:

– If a cell contains the formula IF(q,A1,A2+A3), then it has an edge to A1
with label q, and edges to A2 and A3 both with label ¬q. Also, if q is e.g.
B8>37, then the cell has an edge to B8 with label true, because the condition
must always be evaluated.

– If a cell contains CHOOSE(n,A1,A2,A3), then it has an edge to A1 labelled
with the assertion n=1, an edge to A2 labelled n=2, and an edge to A3 labelled
n=3.

– In general, if a cell contains the formula IF(q,e1,e2), then edges arising
from references inside e1 will have labels of form q ∧ r, and edges arising
from references inside e2 will have labels of form ¬q ∧ r.

We can compute the evaluation conditions of all cells in backwards topological
order. We start with the output cell, whose evaluation condition is constant
true, and initially set the evaluation condition of all other non-input cells to
false. To process a cell whose evaluation condition p has already been found, we
traverse the abstract syntax tree of the cell’s formula and accumulate (conjoin)
conditions q when we process the operands of non-strict functions. Whenever
we encounter a reference to cell c, we update that cell’s evaluation condition bc
with bc := bc ∨ (p ∧ q).

96 P. Sestoft and J.Z. Sørensen

5.3 Simplification of Evaluation Conditions

Since an evaluation condition must be evaluated to control the evaluation of a
formula, efficiency could suffer dramatically unless the evaluation condition is
reduced to the simplest logically equivalent form.

A subexpression of an evaluation condition itself may involve a recursive call
or effectful external call, and therefore should be evaluated only if needed, so
any logical simplifications must preserve order of evaluation. Hence we use order-
preserving simplification rules, rather than reduction to disjunctive or conjunc-
tive normal form.

The approach outlined above finds the evaluation condition NOT(B67=0) for
B68 in REPT4 from Fig. 4, which is exactly as desired.

5.4 Caching Atomic Conditions

An evaluation condition is built from logical connectives and from the condi-
tions in non-strict functions such as IF(B67=0,...); we call such a condition an
atom. An atom may appear in the evaluation condition of multiple cells, but for
correctness it must be evaluated at most once, because it may involve a call to
a volatile function such as RAND() that would produce different results on each
evaluation.

Hence each occurrence of an atom is compiled to a cache that tests whether
the atom has already been evaluated, and if so just returns the cached value;
and if not, evaluates the atom and saves the value. In the cache, an evaluated
atom is represented by its value, and an unevaluated one is represented by a
special NaN.

5.5 Reflection on Evaluation Conditions

Why don’t we simply use the caching mechanism for all cell values (instead of
bothering with evaluation conditions), as in lazy functional languages [13]? One
reason is that unlike atom caching, general expression caching may lead to an
exponential code size increase: one lazily evaluated cell may contain multiple
references to another lazily evaluated cell, and the code for that cell’s formula
will be duplicated at each possible use. Moreover, this exponential code size
blowup is likely to happen in practice.

6 Some Example Functions

Distribution Function of the Normal Distribution. Sheet-defined func-
tions may be used to define statistical functions, such as Excel’s NORMSDIST(z),
the cumulative distribution function F (z) of the normal distribution. A widely
used approximation due to Hart [7] can be implemented as shown in Fig. 6.
Depending on z, it either computes a quotient between two polynomials (in
A14:B20 and C14:D21) or a continued fraction (in B11). Our implementation

Sheet-Defined Functions: Implementation and Initial Evaluation 97

Fig. 6. Sheet-defined function NORMDISTCDF(z), with input cell B6 and output cell B7,
computes the cumulative distribution function of the normal distribution N(0, 1)

compiles this sheet-defined function to fast bytecode that is faster than Excel’s
built-in one.

Sheet-Defined Functions as Predicates. The ability to create a (sheet-
defined) function and treat it as a value gives much expressive power as is known
from functional programming, with operations such as a map, fold/reduce, filter
and tabulate. Here we focus on the added value for more common spreadsheet
operations.

For instance, Excel’s COUNTIF function takes as argument a cell area and a
criterion, which may be a string that encodes a comparison such as ">= 18.5".
However, one cannot express composite criteria such as "18.5 <= x < 25".
Passing the criterion as a string imposes arbitrary restrictions and also raises
questions about the meaning of cell references in the criterion.

Passing the criterion as a sheet-defined function makes COUNTIFmore powerful
and avoids these unclarities. For instance, assume we want to count the number of
peoples’ weights in range C1:C100 whose body mass index (BMI) is between 18.5
and 25, that is, “normal”. Then we can create a sheet-defined function NORMALBMI
with some input cell A1 and output cell containing =AND(18.5<=A1, A1<25),
and then use COUNTIF(C1:C100, CLOSURE("NORMALBMI",NA())) to obtain that
count.

Numerical Equation Solving. Perhaps more surprisingly, we can implement
Excel’s Goal Seek feature as a sheet-defined function. Goal Seek is a dialog-
based mechanism for numerical equation solving, such as “set cell C1 to 100
by changing cell B1”, which really means to find a solution B1 to the equation
f(B1) = 100 where f expresses the contents of cell C1 as a function of B1.
Clearly, this f can be expressed as a sheet-defined function, just because C1
depends on B1 through standard spreadsheet functions and so on.

A sheet-defined function GOALSEEK(f,r,a) that returns an x so that f(x) = r,
if one exists, can be defined as follows. The input is a function f , a target value r,

98 P. Sestoft and J.Z. Sørensen

and an initial guess a at the value of x. Function GOALSEEK first calls an auxiliary
function to find a value b so that f(a) and f(b) have different signs, if possible.
Then it uses a finite number of explicit bisection steps, expressed in the usual
spreadsheet style of copying a row of formulas.

Once GOALSEEK has been encapsulated as a function, we can numerically solve
multiple equations by ordinary copying of formulas, whereas Excel’s dialog-based
Goal Seek would have to be manually invoked for each equation.

Adaptive Integration. To compute the integral of a function f(x) on an in-
terval [a, b], we can use a combination of higher-order functions and recursion.
Compute m = (a + b)/2 and two approximations to the integral, for instance
by Simpson’s rule (b − a)(f(a) + 4f(m) + f(b))/6 and the midpoint formula
(b − a)f(m). If the approximations are nearly equal, return one of them; oth-
erwise recursively compute the integral on [a,m] and the integral on [b,m] and
add the results. Such higher-order adaptive integration can be implemented by
a user-defined function using just seven formula cells; it cannot be implemented
using only standard spreadsheet functions or VBA.

Correct and Comprehensive Calendar Functions. The calendar functions
in many spreadsheet programs do not handle ISO week numbers, calculation of
holidays (such as Easter), finding the first Monday of a given month, and so
on. Such computations are easily and efficiently implementable as sheet-defined
functions, starting from a source such as [5].

7 Case Study: Financial Functions

The second author [21] evaluated the feasibility of using sheet-defined functions
instead of built-in ones, by implementing many of the financial functions that are
built into Microsoft Excel 2010. This case study was chosen because (1) finance
is an important application domain for spreadsheets, and (2) a faithful imple-
mentation of Excel financial functions is available in the functional language F#,
complete with source code and thousands of test cases [2].

This evaluation was carried out by a software development student, and we
do not claim that it says much about the ease of programming with sheet-
defined functions. However, we do claim that it demonstrates that sheet-defined
functions can be expressive and fast enough to replace built-in ones.

7.1 Performance of Sheet-Defined Financial Functions

Fig. 7 lists some of the implemented financial functions. In most cases the sheet-
defined functions are faster than the corresponding Excel built-ins, or compara-
ble to them. Two notable exceptions are functions RATE and IRR, marked by an
asterisk (*) in the figure. The reason for their poor performance probably is that
they use the rather simplistic general binary search procedure GOALSEEK men-
tioned in Sect. 6, instead of a faster Newton-Raphson root-finding algorithm,
for instance. This is a question of choice of algorithm, not a problem of the
sheet-defined function implementation itself.

Sheet-Defined Functions: Implementation and Initial Evaluation 99

Function Excel Funcalc Note

PV 1461 804
FV 1445 1138
NPER 1055 472
RATE 2297 44864 *
PMT 1523 664
FVSCHEDULE 2960 928

IMPT 1593 1732
PPMT 1805 1292
CUMIPMT 3117 3400
CUMPRINC 2742 4072
ISPMT 468 170

IRR 4750 79804 *
NPV 2156 2060
MIRR 3515 8328

SLN 125 158
SYD 453 212
AMORLINC 14921 2054
AMORDEGRC 16343 4444

Fig. 7. Execution time for Excel 2010 built-in functions and Funcalc sheet-defined
functions (ns/call). For the *-marked cases, see text.

7.2 Ideas for Improvement Arising from Case Study

The process of implementing the financial functions generated several ideas for
improving our prototype Funcalc (none of which have yet been implemented),
including these:

– Proposal: Add a simple scope mechanism.
Problem: Funcalc, like other spreadsheet programs, has a single scope, so all
names are visible anywhere in a workbook. This pollutes the global name-
space with auxiliary functions and may lead to name clashes.
Possible solutions: (1) Name-based scope. A function FOO whose name be-
gins with a single underscore is a global auxiliary and can be called only from
function sheets, not from an ordinary sheet; a function FOO whose name
begins with two underscores is sheet-local and can be called only from the
function sheet in which it is defined; a function BAR FOO is function-local
and can be called only from public function BAR and from other function-
local auxiliaries such as BAR BAZ. (2) Visual scope. A global function and all
its auxiliaries are surrounded by a graphical “fence”, restricting the scope of
the auxiliaries.

– Proposal: Avoid infinite recursion, especially when loading workbooks.
Problem: A recursive function may fail to terminate (go into an infinite loop),
a mistake that is especially nasty during the loading of a workbook from file.
Possible solutions: (1) Allow manual interruption of computations, for in-
stance by pressing ESC or Ctrl-C. Such interruption may leave a computa-
tion (a recursive call) unfinished; in this case its result might be a special

100 P. Sestoft and J.Z. Sørensen

kind of error such as #BREAK or #LOOP, which would propagate as usual to
any cell depending on it. (2) Set a function call limit for each recalculation,
and make it low when recalculating a workbook upon reloading. The same
error mechanism could be used as for manual interruption. It would be more
useful to limit the call depth rather than the total number of calls, but the
latter may be simpler to implement, and faster.

– Proposal: Error messages should be made more informative.
Problem: According to spreadsheet semantics, an error value propagates from
operand to result. In an ordinary spreadsheet where all cells are manifest, it is
fairly easy to trace an error back to the cell containing the original offending
formula. With sheet-defined functions, the error may have originated in a
deeply nested auxiliary function, and tracing this can be very cumbersome.
Possible solutions: (1) Make error values carry the address of the cell contain-
ing the original offending computation, for instance, as #NUM!#Sheet1!A1,
instead of just #NUM!. (2) For errors originating from within a sheet-defined
function, make the error value carry the entire argument vector of the (in-
nermost) function call that caused the function to return an error value. This
would enable “replaying” that call and hence enable debugging.

8 Evaluation

8.1 Simplicity

We believe we have obtained a dramatic extension of the expressiveness and
user-programmability of spreadsheet models, despite using no new syntax, only
two new concepts, namely sheet-defined function and function value, and only
three new built-in functions DEFINE, CLOSURE and APPLY, described in Sect. 2.3.

The prototype implementation is relatively compact, comprising less than
13,000 lines of C# code.

8.2 Expressiveness

Sects. 6 and 7 show that many useful functions can be implemented efficiently
as sheet-defined functions, including functions that must be built-in black boxes
in Excel and other spreadsheet programs. Also, by writing predicates as higher-
order functions, Excel built-ins such as COUNTIF and SUMIF can be both much
more powerful and have a less obscure (less text-based) semantics.

Although not illustrated here, sheet-defined functions can take array (range)
values as arguments and return them as results. Since the “language” of sheet-
defined functions supports recursive and higher-order functions, and is dynami-
cally typed, it is conceptually similar to a pure (side-effect free) version of Lisp
[10] or Scheme, albeit with a very unusual syntax.

Some computations are difficult or impossible to express as sheet-defined func-
tions, chiefly because we have ruled out side-effects and destructive array up-
date. Yet we do not want to support side-effects, because that would ruin the
simplicity of the model and the compiler’s freedom to rearrange computations.
In particular, it would complicate parallelization; see Sect. 10.

Sheet-Defined Functions: Implementation and Initial Evaluation 101

8.3 Performance

According to micro-benchmarks (not shown here) a non-trivial numerical sheet-
defined function such as that in Fig. 6 can be considerably faster than a corre-
sponding user-defined function in VBA (the macro language of MS Excel), and
only 2–3 times slower than a function written in a “proper” programming lan-
guage such as C, Java or C#. This is quite satisfying, given that our sheet-defined
functions are dynamically typed and that the compiler is quite compact.

Moreover, benchmarking results from the case study in Sect. 7 show that fi-
nancial functions built in to Excel can be implemented as sheet-defined functions
without loss of efficiency. This is important because it shows that such libraries
of functions need not be built-in, and hence controlled by the spreadsheet ven-
dor, but could be developed and maintained by the relevant user communities,
without resorting to external programming languages.

9 Related Work

Peyton-Jones, Blackwell and Burnett proposed [14] that user-defined functions
should be definable as so-called function sheets using ordinary spreadsheet for-
mulas. Similar ideas are found in Nuñez’s spreadsheet system ViSSh [12, section
5.2.2]. What we have implemented is strongly inspired by Peyton-Jones et al.,
but extends expressiveness by permitting recursive and higher-order functions.

Cortes and Hansen in their 2006MSc thesis [4] elaborated the concept of sheet-
defined function and created an interpretive implementation. However, being
based on the interpretive CoreCalc implementation [17], it did not achieve the
performance goals we have set in the present work.

Resolver One [15] is a commercial Python-based spreadsheet program with
a feature called RUNWORKBOOK that allows a workbook to be invoked as a func-
tion, similar to a sheet-defined function at a coarser granularity. Invocation of a
workbook is implemented by loading it from file, setting the values of some cells
in it, and recalculating it, which is slow. It does not appear to support recursive
invocation, nor higher-order functions. Hence it does not achieve the efficiency
and expressiveness goals of the present work.

We believe that the concept of evaluation condition (Sect. 5) is original with
this work. The other compilation techniques presented in Sect. 4 are similar to
those used by other dynamically typed languages [16].

Preliminary reports of this work includes an oral presentation [18] and a rough
draft of a book-length manuscript [19]. None of these includes the case study
reported in Sect. 7.

10 Perspectives and Future Work

Currently, our prototype implementation passes arguments and results of sheet-
defined functions as wrapped objects. A global unboxing analysis or type-based

102 P. Sestoft and J.Z. Sørensen

unboxing [9] could further improve performance by avoiding such wrapping,
especially for simple numerical functions.

While Peyton-Jones, Blackwell and Burnett verified that sheet-defined func-
tions are understandable to spreadsheet users [14], our design deviates from
theirs in several ways, so our design needs to be revalidated empirically.

Spreadsheets exhibit quite explicit parallelism, in contrast to Fortran, Java
and C# where it is only implicit and where alias analyses are required to deal
with shared data and destructive update. Chandy proposed already in 1984 to
exploit spreadsheet parallelism [3], and today multicore processors and graphics
processors provide the required technological platform. Sheet-defined functions
may play an interesting role here: since a function may be called thousands of
times in each recalculation, it is a more interesting target for optimization and
parallelization than an ordinary spreadsheet formula, which is evaluated at most
once in each recalculation. If parallelization is near automatic and performance
is adequate, spreadsheets could become an even better framework for scientific
and financial simulation [1]; a framework for “end-user high-performance com-
puting”. In fact, spreadsheets with sheet-defined functions constitute a dataflow
language in the style of Sisal [11], so it may be possible to leverage the 1990es
work on automatic parallelization of such languages.

Our prototype is a standalone spreadsheet implementation with a simplistic
user interface. It provides very little of the ancillary functionality—graphics,
formatting, auditing, pivot tables, data import—expected of a spreadsheet pro-
gram, so it would be interesting to turn it into a plugin for one that does, such
as Excel.

11 Conclusion

We have shown that a spreadsheet implementation can accommodate user-
defined functions with sufficient convenience and performance that previously
built-in functions can be user-defined instead.

By allowing more functions to be user-defined, we soften the separation be-
tween users and developers, and empower end-users. This may lead to the de-
velopment of user-created function libraries and more expressive, more reliable
and faster spreadsheet models.

The main technical innovation required to achieve this is probably the concept
of evaluation conditions (Sect. 5).

Moreover, we have demonstrated that sheet-defined functions considerably
increase the expressiveness of spreadsheets while preserving their dynamic in-
teractive behavior, and with conceptual parsimony, requiring only a few new
concepts and built-in functions, and no new notation.

Acknowledgments. Thanks to Bob Muller for valuable comments, and to
IT University MSc students Iversen, Cortes, Hansen, Serek, Poulsen, Ha, Tran,
Xu, Liton, Brønnum, Hamann, Patapavicius, Salas and Nielsen who investigated
many aspects of spreadsheet technology.

Sheet-Defined Functions: Implementation and Initial Evaluation 103

References

1. Abramson, D., Roe, P., Kotler, L., Mather, D.: Activesheets: Super-computing
with spreadsheets. In: 2001 High Performance Computing Symposium (HPC 2001),
Seattle, USA, pp. 110–115 (2001)

2. Bolognese, L.: Excel financial functions for .NET. MSDN webpage (2009),
http://archive.msdn.microsoft.com/FinancialFunctions

3. Chandy, M.: Concurrent programming for the masses (PODC 1984 invited ad-
dress). In: Principles of Distributed Computing 1985, pp. 1–12. ACM (1985)

4. Cortes, D.S., Hansen, M.: User-defined functions in spreadsheets. Master’s thesis,
IT University of Copenhagen (September 2006)

5. Dershowitz, N., Reingold, E.M.: Calendrical calculations, 3rd edn. Cambridge Uni-
versity Press (2008)

6. Ecma TC39 TG3. Common Language Infrastructure (CLI). Standard ECMA-335,
6th edition. Ecma International (June 2012)

7. Hart, J., et al.: Computer Approximations. Wiley (1968)
8. IEEE. IEEE standard for floating-point arithmetics. IEEE Std 754-2008 (2008)
9. Leroy, X.: The effectiveness of type-based unboxing. In: Types in Compilation

Workshop, Amsterdam (1997)
10. McCarthy, J., et al.: Lisp 1.5 Programmer’s Manual. MIT Press (1962)
11. McGraw, J., et al.: Sisal. Streams and iteration in a single assignment language.

Language reference manual, version 1.2. Technical report, Lawrence Livermore Na-
tional Labs (March 1985)

12. Nuñez, F.: An extended spreadsheet paradigm for data visualisation systems, and
its implementation. Master’s thesis, University of Cape Town (November 2000)

13. Peyton Jones, S.: The Implementation of Functional Programming Languages.
Prentice-Hall (1987)

14. Peyton Jones, S., Blackwell, A., Burnett, M.: A user-centred approach to functions
in Excel. In: ICFP 2003: Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, pp. 165–176. ACM (2003)

15. Resolver Systems. Resolver one. Homepage, http://www.resolversystems.com/
16. Serpette, B., Serrano, M.: Compiling scheme to JVM bytecode: a performance

study. In: International Conference on Functional Programming (ICFP 2002),
pp. 259–270. ACM (2002)

17. Sestoft, P.: A Spreadsheet Core Implementation in C#. Technical Report ITU-TR-
2006-91, IT University of Copenhagen, 135 pages (September 2006)

18. Sestoft, P.: Implementing function spreadsheets. Oral presentation, Fourth Work-
shop on End-User Software Engineering (WEUSE IV), Leipzig, Germany (May
2008), http://www.itu.dk/people/sestoft/papers/weuse-sestoft.pdf

19. Sestoft, P.: Spreadsheet Technology. Version 0.12 of 2012-01-31. Technical Report
ITU-TR-2011-142, IT University of Copenhagen (January 2012)

20. Strachey, C., Wadsworth, C.: Continuations: a mathematical semantics for han-
dling full jumps. Higher Order and Symbolic Computation 13, 135–152 (1974);
Reprint of Oxford PRG-11 (January 1974)

21. Sørensen, J.Z.: An evaluation of sheet-defined financial functions in Funcalc. Mas-
ter’s thesis, IT University of Copenhagen (March 2012)

http://archive.msdn.microsoft.com/FinancialFunctions
http://www.resolversystems.com/
http://www.itu.dk/people/sestoft/papers/weuse-sestoft.pdf

End-User Development

of Information Visualization

Kostas Pantazos1, Soren Lauesen2, and Ravi Vatrapu1,3

1 Computational Social Science Laboratory (CSSL), Department of IT Management,
Copenhagen Business School, Copenhagen, Denmark

2 Software and Systems, IT University of Copenhagen, Copenhagen, Denmark
3 Norwegian School of Information Technology, Oslo, Norway

Abstract. This paper investigates End-User Development of Informa-
tion Visualization. More specifically, we investigated how existing vi-
sualization tools allow end-user developers to construct visualizations.
End-user developers have some developing or scripting skills to perform
relatively advanced tasks such as data manipulation, but no formal train-
ing in programming. 18 visualization tools were surveyed from an end-
user developer perspective. The results of this survey study show that
end-user developers need better tools to create and modify custom vi-
sualizations. A closer collaboration between End-User Development and
Information Visualization researchers could contribute towards the de-
velopment of better tools to support custom visualizations. In addition,
as empirical evaluations of these tools are lacking both research commu-
nities should focus more on this aspect. The study serves as a starting
point towards the engagement of end-user developers in visualization
development.

Keywords: End-User Development, Information Visualization, Visual-
ization Tools.

1 Introduction

Information Visualization attempts to reduce the time and the mental effort
users need to analyze large datasets by visually presenting abstract data (e.g.
medical information such as patient name, age, treatment, dose, intake, etc) that
“has no inherent mapping to space” [1]. Unlike scientific visualization such as
radiology, in information visualization there is no spatial correspondence between
the physical information and the conceptual domain. Information Visualization
is an important topic in many domains: clinicians want a complete picture of
patient data; project managers need to obtain an overview and identify the
bottlenecks in a project; database analysts look for visualizations that can locate
trends in large datasets. Traditionally, visualization development is collaboration
between domain experts and professional programmers. Both parties spend time
and resources to design a good visualization. Usually, there are communication
problems between users and programmers [2]; users have the domain knowledge

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 104–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

End-User Development of Information Visualization 105

but no programming skills, while programmers do not have the domain expertise.
Consequently, the process may require time and resources. From a management
perspective, this collaboration can become very expensive. One solution to this
problem would be to allow different domain users to construct visualizations.
As a result, the cost would be significantly reduced, and better visualizations
would be developed as users know their own domain-specific analytical needs
and demands better.

In the last decade, a new research discipline has emerged, called End-User
Development (EUD). EUD has its roots from the field of End-User Programming
[3–5]. However, EUD is not limited to programming [6] and the main goal of EUD
is to empower end-user developers – users who “may have little or no formal
training or experience in programming” [7]– create, modify and extend software
artifacts, and as a result gain more control over their applications by engaging
them in the development process [8]. In 1995, Boehm et al. [9] estimated that
by 2005, there would be 55 million end-user developers in the United States. In
2005, Scaffidi et al. [10] used and improved Boehm’s method to estimate that
in 2012 there will be 90 million end-user developers. They predicted that 55
million will be users of spreadsheets or databases. Some of end-user developers
are: system administrators, interaction designers, teachers, accountants, health
care workers, managers, etc.

This paper investigates End-User Development of Information Visualizations.
More specifically, it investigates how end-user developers can create visualiza-
tions with existing visualization tools. We selected 18 Information Visualization
tools form research and industry. The results of this study showed that end-user
developers need more and better tools to create visualizations. Furthermore, the
results of this study serve as a starting point in introducing End-User Develop-
ment of Information Visualization. Also, the study aims at driving the attention
of both communities towards research paths that may lead to the discovery of
new development approach for end-user developers.

The remaining of this paper is structured as follows. Section 2 and 3 provide
a summary of End-User Development and Information Visualization. Section 4
discusses the importance of users in visualization development. Section 5 presents
a brief summary of 18 development tools from Information Visualization field
focusing on how end-user developers can create visualizations. The paper con-
cludes with a discussion of the limitations of the study and conclusions.

2 End-User Development

The End-User Development (EUD) field is a new research discipline, which has
emerged from research in Human-Computer Interaction, Cognitive Science, Re-
quirements Engineering, Software Engineering, CSCW, Artificial Intelligence,
Information Systems, and the Psychology of Programming [11]. As a relatively
young discipline, the field is not mature enough when it comes to definition,
terminology, approaches and subject areas [11]. However, Lieberman et al. [8]
defines EUD as “a set of methods, techniques, and tools that allow users of soft-
ware systems, who are acting as non-professional software developers, at some

106 K. Pantazos, S. Lauesen, and R. Vatrapu

point create, modify and extend a software artifact”. Consequently, end-user
developers are not professional programmers, but users who “may have little
or no formal training or experience in programming” [7]. EUD aims at better
users efficiency and effectiveness as it allows users ”to develop and evolve their
computer based working tools to support their specific tasks in an efficient way”
[12]. Therefore, the main goal of EUD is to empower these users create, mod-
ify and extend software artifacts, and as a result gain more control over their
applications by engaging them in development.

EUD takes a broader perspective than End-User Programming because it is
not limited to programming when it comes to adjust application to users’ needs
[6]. Lieberman et al. [8] defines two types of end-user activities: parametrization
or customization (activities that allow end-users to parametrize or customize
their applications using the available presentations or interactive mechanisms)
and program creation and modification (activities that allow end-users to cre-
ate or modify software artifacts). In order to support these types of end-user
activities, the system should be flexible and expressive enough to changes (e.g.
set parameters, compose objects, etc.) [8]. Simple changes are not difficult, but
things become more complicated as the level of complexity for a change increases.
MacLean et al. [13] suggested a “gentle slope” to reduce the level of complexity
and support changes on different levels. However, in cases of extensive change
actions a programming language should be used [13]. EUD does not focus only
on how to support end-users create an application, but also focuses on the use
and adaption of the application in existing environments [14]. The second means
customizing, configuring and tailoring a application, but not direct changes in
the source code [15]. Customizing, configuring and tailoring are performed be-
yond the stage of creating a new application, and take place after the application
is implemented within its organizational infrastructure. Bolmsten and Dittrich
[12] presented two case-studies and discussed the challenges that infrastructure
context poses to EUD. In this study, we primarily focus on program creation
and modification.

As there is not an EUD taxonomy which categorizes development techniques
for end-user developers, several techniques developed from the psychology of
programming are inherited, and some of the main techniques useful for end-user
developers are [6]: Scripting Language, Visual Programming, Spreadsheet and
Programming by Example.

Rode et al. [16] investigated EUD of web application. Their study showed
that web development tools focus more at supporting developers with a wide
range of functionalities, and less attention is paid to ease-of-use. Further, the
authors say that ideally a web development tool “would provide ease-of-use with
the appropriate abstractions, absence of jargon, a library of examples and tem-
plates, wizards for complicated tasks and take a holistic approach by integrating
all aspects of web development” [16]. Investigating how end-users think may
help in designing better tools. Similar to this study, we investigate visualization
development tools.

End-User Development of Information Visualization 107

3 Information Visualization

Information visualization (InfoVis) enhances human cognition by visually pre-
senting abstract data and revealing patterns, trends and outliers [1]. The InfoVis
field has enabled development of visualization systems that enhance human cog-
nitive processes by visually presenting abstract data [1]. Although, the InfoVis
field emerged during the 1980’s with the availability of computers, InfoVis ev-
idence can be tracked long before. Florence Nightingale’s diagram designed in
1858 shows the death rates in the hospital of Scutari, and how the rates reduce
by the changes introduced by nurse Florence Nightingale [17]. Thus visualiza-
tions (when designed by a domain expert) allows viewers to get a clear picture
of the situation, and derive results without any detailed explanation.

The InfoVis community has done considerable work in order to develop the
field into a mature discipline. Shneiderman [18] presented a task by data type
taxonomy for InfoVis. This popular taxonomy classifies visualization data types
(1D Linear, 2D Map, multidimensional, temporal, tree and network) and iden-
tifies the tasks (overview, zoom, filter, details-on-demand, relate, history and
extract) that have to be supported. The reference InfoVis model described by
Card et al. [1] highlights end-user interactions, and it consists of three steps:
(1) Data Transformations : convert the raw data to data tables; (2) Visual Map-
pings : convert the data tables into visual objects; (3) View Transformations :
transform visual objects into views by means of visual objects properties. The
first step is mainly related with data, while the last two have a direct impact on
the visual form.

Several visualizations have been developed to present data. LifeLines [19] is
an interactive visualization that presents an overview of a patient’s medical
record. LifeLines 2 [20] and LifeFlow [21] are two other examples of temporal
data. Aigner et al. [22] provide an overview of 101 visualizations techniques
for temporal data. Among them are Arc Diagrams, Circel View, Circos, Flow
Map, Prespective Wall, TimeTree, etc. Many of them have been developed in
close collaboration with domain experts. This collaboration has contributed in
producing useful visualizations.

4 Users in Visualization Development

Considering the variety of data and user tasks, it is obvious that new visual-
izations are needed. However, developing new visualizations is not an easy task.
Several InfoVis toolkits and tools [23–30] have been developed to improve visu-
alization development and provide better presentation of data. Providing good
data visualization is challenging as visualization creators should have a good
understanding of the data, and then properly design representations that allow
users to accomplish tasks effectively and efficiently. This is usually a problem ac-
cording to Thomas and Cook [31], who say that: “Most visualization software is
developed with incomplete information about the data and tasks. New methods
are needed for constructing visually based systems that simplify the development
process and result in better targeted applications.”

108 K. Pantazos, S. Lauesen, and R. Vatrapu

To facilitate the visualization development process and ensure that visual-
izations provide complete information about the data and tasks, several In-
foVis applications (e.g. [19, 32–34]) have been developed applying the user-
centered method, where users participated during the entire development pro-
cess. Norman[35] and Nielsen[36] describe user-centered design as the early and
continuous involvement of end-users in the design and development process.
Considerable work has been conducted by Slocum et al. [32], Robinson et al.
[33], Roth et al. [34], and Koh et al. [2] to define the activities applied in the
user-centered model for the design and implementation of InfoVis tools. For ex-
ample, Robinson et al. [33] describe a six-stage user-center design process (work
domain analysis, conceptual development, prototyping, interaction and usability
studies, implementation, and debugging) where users are involved and provide
input in each stage. Using this model [33], Roth et al. [34] present a modified
user-centered design approach, which starts with prototyping, followed by in-
teraction and usability studies, work domain analysis, conceptual development,
implementation and ends with debugging. Although, the user-centered model
helps producing better visualizations, still it is challenging to bridge the gap of
knowledge between end-users and programmers. This gap can influence commu-
nication and create challenges such as: programmers should understand end-user
needs, end-users should gain some knowledge regarding InfoVis, end-users should
be devoted and actively participate in the process, etc. In their study Koh et
al. [2] experienced similar challenges where simple users where more interested
in the tool than on questions about their tasks and data. Also, when they tried
the tool they found it limited compared to the prototypes defined during the
process. The authors [2] suggested that an iterative approach may address these
issues.

Although a user-centered method is a successful approach, researchers envis-
age approaches to facilitate visualization development and assure that visual-
izations provide complete information about the data and tasks. Aigner et al.
[37] discuss how to support user-centered visual analysis that consists of three
factors: the visualization, the analysis, and the user. They suggest that future
research should focus on these three factors and lead to the convergence of user-
centered visual analysis. Their vision matches the universal usability challenge
defined by Plaisant [38]. According to Plaisant [38] visualization tools should
be accessible to diverse users that do not have the same background, technical
knowledge, or personal abilities. Other InfoVis researchers seek ways of introduc-
ing new audiences in InfoVis. Heer et al. [39] say that designing visualizations
is not an easy task for users, but “we have to provide them tools that make it
easy to create and deploy visualizations of their datasets” [39].

5 InfoVis Development Tools - A Survey

The purpose of this survey is to investigate how end-user developers are sup-
ported by InfoVis tools in visualization development. To the best of our knowl-
edge, no prior study has looked at EUD of InfoVis. The results of this survey

End-User Development of Information Visualization 109

may serve as a starting point towards the engagement of end-user developers
in visualization development. Before we present the tools, we describe the tool
selection process and how the tools were assessed. The purpose of this study
is not to analyze and compare implementation details, but to investigate the
way end-user developers construct visualizations. For a deeper understanding of
implementation details we encourage readers to refer to the references.

5.1 Analysis Approach

We used two professional and popular sources to find InfoVis tools and toolkits:
the ACM Portal and the IEEE website. We searched for related work by com-
bining these keywords: “information visualization”, “tool”, “toolkits”, “graph-
ical user interface”. Initially, we ranked the results based on the total number
of citations, and then we selected only the most relevant ones by reading the
abstracts. Next, we read all the papers and selected the most appropriate tools
and toolkits. They are: APT [40], SAGE & SageBrush [41–43], DEVise [44, 45],
The InfoVis Toolkit [23], GeoVISTA Studio [46], Piccolo [47], Improvise [48],
Prefuse [24], Protovis and ProtoViewer [49, 50], and Data-Driven Documents
(D3) [25]. During the process of reviewing the existing literature, we identified
two more tools from research that were relevant to the investigation and decided
to include them in the analysis, because of their popularity and approach. They
are: Processing [51] and Flare [29]. In total, we selected 12 tools from the re-
search area. As we were reviewing the existing literature, we also found several
industry tools that we decided to use. At the end we selected six popular tools:
Spotfire [26], Tableau [27], Omniscope [28], MS Excel [30], Google Chart Tools
[52] and Many Eyes [53]. In total, we chose only 18 tools and toolkits and we
believe that the selected ones are a good sample that represents the wide-range
of InfoVis tools from research and industry.

In this study, we investigated how end-user developers can construct visualiza-
tions with existing development tools. We conducted our tool analysis focusing
on three main questions:

1. Can end-user developers create and modify a visualization?
2. How do end-user developers create and modify visualizations with a tool; Do

they specify language specifications (e.g. Java, JavaScript, etc.), use wizards
or drag-and-drop actions?

3. Can tools support development of predefined and custom (not-predefined)
visualizations? A predefined visualization, for instance a bar chart in MS
Excel, uses a chart where only a few visual attributes can be assigned to
data. While LifeLines [19], a custom visualization, combines bars, triangles,
labels, etc., into a complex visualization.

Investigating these questions will provide an overview of the current status of
InfoVis development tools and reveal their accessibility to end-user developers.
The assessment of the tools from academia is based on the published papers. The
commercial tools were assessed using the trial or the full versions, and informa-
tion from their websites. A full-fledged usability study is currently scheduled for
Fall 2013 and will be reported in subsequent publications.

110 K. Pantazos, S. Lauesen, and R. Vatrapu

5.2 Tools and Toolkits

In this section, we briefly describe the selected tools. First, we present InfoVis
tools and toolkits from research, and then the ones from industry.

APT (A Presentation Tool) [40] is one of the earliest tools that automatically
creates effective graphical presentation of relational data. Presentations are gen-
erated in a linear model where data are extracted, synthesized and then the tool
handles the rendering process to create the final output. Users of APT use prede-
fined visual objects (e.g. bar charts, scatter plots or connected graphs) and write
their graphical specifications (sentences of a graphical language that has exact
syntax and semantics), and the tool creates the graphical presentation. The vi-
sual mapping is defined through APT specifications and automatically handled
by the tool. Probably, end-user developers, would be able to specify graphical
designs, but still they cannot create visualizations other than the supported ones.

SAGE & SageBrush: Early 1990’s, Roth and Mattis [41] presented SAGE,
“an intelligent system which assumes presentation responsibilities for other sys-
tems by automatically creating graphical displays which presents the results
they generate” [41]. This tool uses graphical techniques to express the applica-
tion data characteristics and fulfill the presentation needs. Users of SAGE query
the database, and the result is used by SAGE. Based on the data, SAGE au-
tomatically defines the visual mappings and generates the visualization. After
a presentation is generated, users can adjust the visual mappings of the auto-
generated visualization by setting layout constraints for the data. SAGE can
probably be used by end-user developers.

SAGE was extended with an interactive design tool called SageBrush [42, 43].
SageBrush aims at removing the complexity introduced by SAGE representations
and operations [43]. It allows users to sketch by dragging and dropping primitives
or partial controls from a palette. The sketches are used by SAGE to create a
visualization. SageBrush facilitates visualization development and can be used
by end-user developers. They can create predefined and custom visualizations
with drag-and-drop actions.

DEVise [44, 45] allows users to create visualizations by creating, modifying or
connecting visual objects. DEVise maps the data to visual objects and displays
them in a view. At the end, the view uses the data and visual filters to draw
the result in a window. DEVise users use a step-by-step approach to create
visualizations: select an input, choose a file type for the input file, select an
existing mapping or define a new mapping using tcl language expressions [54],
select a view to display the data, select initial values for the visual filter, and
finally select a window to display the view. In DEVise, end-user developers can
create custom visualizations by combining and linking visual objects using the
predefined visual mappings. In order to create new visual mappings, they have
to use the tlc language. The authors says that DEVise is a powerful exploration

End-User Development of Information Visualization 111

framework, “but to appreciate this power fully, one must work with the system
or at least look at several applications in some details” [45].

Processing was developed initially “to teach fundamentals of computer pro-
gramming within a visual context” to newcomers, but it has grown into a more
complete tool for constructing images, animations and interactions [51]. Pro-
cessing has a development environment similar to a regular one. Programmers
specify visual mappings by writing code in the code editor. They view the visu-
alization in a new window after having executed the code. To create predefined
and custom visualization, users have to know a programming language called
Processing. This tool cannot be used by end-user developers via direct manipu-
lation in the WYSIWYG (What You See Is What You Get) paradigm.

GeoVISTA Studio is a development environment designed to support geosci-
entific data analysis and visualizations [46]. It is built in Java and uses JavaBeans
technology. A visualization in GeoVISTA Studio is composed by connecting vi-
sual objects (implemented as Java beans components). GeoVISTA Studio con-
sists of three windows: the Main window shows the menus and JavaBeans visual
object palette; the Design window where visual objects are placed and connected;
the Graphical User Interface (GUI) window shows “live” the output of the used
beans. Programmers can use the Property Editor to customize the appearance
and behavior of a visual object. The application programmers (probably end-
user developers) are the main users of the Studio, and they follow the following
steps to construct an application: list the requirements, select the appropriate vi-
sual objects from the palette menu (new visual objects can be developed outside
of the Studio and imported), place visual objects in the Design, link the visual
objects to meet the requirements, customize a visual object using the Property
Editor, and test the design in the GUI.

The InfoVis Toolkit [23] is a Java based visualization toolkit that uses several
interactive controls to construct visualizations. This toolkit allows programmers
to program visualizations. It allows programmers to extend the toolkit with
new controls and to integrate visualization techniques into interactive applica-
tions. However, creating visualizations requires experienced programmers. Con-
sequently, this toolkit is not appropriate for end-user developers.

Piccolo [47] is mainly used for developing graphical applications with rich user
interfaces. It is developed in Java and C# and supports the development of
visualizations indirectly, as it does not support visualization techniques [24].
Nevertheless, novel visualizations are based on this toolkit. Programmers can
create visualizations in Java or C# and use visualization functionality and con-
trols, such as zooming, animation and range slider. This toolkit can be used only
by programmers, and the fact that it does not support visualization techniques
directly, makes it challenging even for them. End-user developers cannot use this
tool.

112 K. Pantazos, S. Lauesen, and R. Vatrapu

Improvise [48] is a visualization toolkit for creating multi-view coordination vi-
sualizations for relational data. It is written in Java. Visualizations are created by
specifying expressions for simple shared-object coordination mechanism. Shared-
objects in Improvise, which are responsible for visual mappings, are graphical
attributes such as color, font, etc. Improvise has a specialized development envi-
ronment where users apply a step-by-step approach interacting with four editors
and creating views by adding frames, controls, defining variables and attaching
data using the lexicon work area (a central repository where information related
to the data and database are saved). Users of Improvise can construct visu-
alizations based on the predefined controls. Programmers create visualizations
by specifying expressions for simple shared-object coordination mechanism. Al-
though we believe that Improvise can be used by end-user developers, this has
not been empirically evaluated.

Prefuse [24] is another toolkit developed in Java. Visualizations in Prefuse are
programmed in Java. Programmers construct them using a set of fine-grained
building blocks and specifying operators that define the layout and behavior of
these blocks. The purpose of this tool is to facilitate programmers’ work, but
end-user developers cannot use this toolkit.

Flare [29] is a successor of Prefuse [24], but is written in ActionScript. Flare sup-
ports programmers develop visualizations. To construct visualizations, program-
mers specify in ActionScript the properties of the visual objects and sequential
commands. Programmers can also define new operators and visual objects, but
advanced programming knowledge is required. Flare cannot be used by end-user
developers.

Protovis & ProtoViewer: Protovis [49] is implemented in JavaScript and
helps programmers construct visualizations using a domain specific language.
They can combine primitive visual objects, called marks, bind them to data,
and specify visual properties. Programmers can create visualizations by specify-
ing Protovis specifications. The authors of Protovis have compared the specifica-
tions for a simple pie chart in Protovis, Processing and Flare, showing that the
visualization in Protovis is specified in fewer lines of code [49]. This shows the
simplicity of Protovis language, which has a high potential of engaging end-user
developers in visualization development. Although we believe that Protovis can
be used by end-user developers, there is no empirical evidence that proves it.

ProtoViewer [50] extends Protovis with a development environment. The
screen is divided in three parts: Data, Design and Code. Programmers choose
a dataset, select a visualization template and automatically the code is shown
in the Code editor. They execute the code to view the results in the Design.
Programmers can either use predefined visualization templates, and the code is
automatically shown in the Code editor, or start from scratch and write Pro-
tovis specifications to specify controls. Constructing custom visualizations by
end-user developers in Protovis becomes even more realistic by means of its

End-User Development of Information Visualization 113

development environment – ProtoViewer. However, neither Protovis nor Pro-
toViewer has been evaluated with end-user developers.

Data-Driven Documents (D3) [25] is a successor of Protovis [49]. Visualiza-
tions are constructed using SVG, HTML 5 and CSS. In D3 the data transfor-
mation, the immediate evaluation and the browser’s native representation are
handled in more effective and transparent way than Protovis, which uses more
succinct specification for static presentations [25]. However, these improvements
introduce an overhead for users: the knowledge of SVG, HTML 5 and CSS. This
toolkit is not suitable for end-user developers as it requires advanced program-
ming skills.

MS Excel [30] is a spreadsheet program that allows end-user developers to
analyze and visualize data. With simple steps, end-user developers can construct
visualizations based on predefined visualization templates (e.g. bar chart, pie
chart, etc.) They select a visualization template (e.g. bar-chart) and specify
spreadsheet formulas or use standard wizards to map the data to the visual
object in the worksheet area. In MS Excel, visual mappings are limited and
end-user developers can set only predefined visual properties.

Tableau [27] is a commercial visualization tool, a successor of Polaris [55] de-
veloped at Stanford University. Tableau allows end-user developers to construct
visualizations by dragging and dropping fields onto axis shelves (vertical and
horizontal areas) and using visual specifications. This tool provides drag-and-
drop features and several wizards to facilitate development. Further, it has a
powerful interactive development environment where end-user developers can
interact, filter, sort data and create interactive dashboards. Tableau is a “black
box” system and constructing visualizations other than the predefined ones is
not possible.

Spotfire [26] is another commercial tool for data visualizations. It supports end-
user developers with a number of visualization techniques. End-user developers
interact with the development environment and construct visualizations based on
predefined ones. Once they select the data and choose a visualization template,
the tool automatically generates the visualization. Users can sort, filter and re-
arrange data by simply dragging and dropping fields in the design area. Users
can also create dashboards, by combining different predefined visualizations (e.g.
bar chart, scatter plot, etc.) in a single screen. As in Tableau, end-user developers
can only create predefined visualizations.

Omniscope [28] is in the same category as Tableau and Spotfire, and shares
similar features such as interactive dashboard, drag and drop features, etc. It
supports end-user developers in constructing predefined visualizations, as Spot-
fire and Tableau do. Custom visualizations cannot be constructed with this tool.

114 K. Pantazos, S. Lauesen, and R. Vatrapu

Google Chart Tools [52] is a library written in JavaScript that provides sev-
eral predefined simple (line chart, scatter chart, etc.) and advanced chart types
(Image multi-color bar chart, Motion Chart Time Formats, etc.) Visualizations
can be constructed by end-user developers in the web-based development envi-
ronment named Code Playground. In addition, Google Chart Tools has another
environment named Live Chart Playground, to test charts already created in the
Code Playground. In Live Chart Playground, end-user developers can change
some parameters and see how the visualization changes. End-user developers
are limited to predefined visualizations.

Many Eyes [53], developed at IBM Research Center, is a web-based visual-
ization platform that can be used by end-user developers. In Many Eyes, vi-
sualizations are implemented in Java Applets. End-user developers construct
visualizations in three steps: upload a dataset; choose a visualization template;
customize and publish the visualization. Many Eyes automatically generates and
shows the visualization on the screen. Custom visualizations are not supported.

Results

In this study, we surveyed 18 visualization tools from an end-user developer
perspective. Based on published papers and subjective evaluation of the selected
the tools, we found 12 InfoVis tools that have the potential to be used by end-user
developers. 11 tools allow end-user developers to construct visualizations with a
programming language (e.g. Java, ActionScript, JavaScript, etc.), and six with
a wizard or drag-and-drop actions. Furthermore, 11 tools support development
of predefined and custom (not predefined) visualizations, but only five of them
can be used by end-user developers. Figure 1 provides an overview of the results.

There is a tendency that researchers mainly focus on developing visualiza-
tion tools that allows users to construct predefined and custom visualizations,
but users need advanced programming skills. End-user developers would not be
able to benefit from these tools. Some examples are: Prefuse, Flare, D3, etc. On
the other hand, industry produce visualization tools for large audiences without
advanced programming skills, but at the same time limit them with predefined
visualization templates. Although both communities can benefit from the en-
gagement of end-user developers in constructing custom visualizations, they are
overlooked. Only five visualization tools (SAGE/SageBrush, DEVise, GeoVISTA
Studio, Improvise and Protovis/ Protoviewer) may support them in construct-
ing visualizations other than predefined. To the best of our knowledge, none of
the selected tools were empirically evaluated with potential users. As a result, it
remains debatable if the five tools can support end-user developers in visualiza-
tion development. This indicates that InfoVis community has to focus more on
evaluation of development tools with users. In addition, a future collaboration
between EUD and InfoVis researcher may address this issue and lead to better
tools for the advancement of both communities.

The results also show that commercial tool provide interactive development
environments where users can use wizard and/or drag-and-drop actions. These

End-User Development of Information Visualization 115

Tools
End User
Developer

Visualization
Development

Predefined
Visualizations

Custom
Visualizations

Processing Programming Language x x

InfoVis Toolkit Programming Language x x

Piccolo Programming Language x x

Improvise x Programming Language x x

Prefuse Programming Language x x

Flare Programming Language x x

D3 Programming Language x x

SAGE / SageBrush x
Programming Language &
Drag and Drop Approach

x x

Protovis / Protoviewer x
Programming Language &

Wizard Approach
x x

GeoVISTA Studio x
Wizard & Drag and Drop

Approach
x x

DEVise x Wizard Approach x x

ATP
x Programming Language x

Google Chart Tools
x Programming Language x

Tableau x
Wizard & Drag and Drop

Approach
x

Spotfire x
Wizard & Drag and Drop

Approach
x

Omniscope x
Wizard & Drag and Drop

Approach
x

MS Excel x Wizard Approach x

Many Eyes x Wizard Approach x

18 11

Predefined
Visualizations

Custom
Visualizations

12
6

End user
developers

Programmers

a. b. 9
5 4

Programming
Language

Drag and Drop
Approach

Wizard
Approach

c.b.

Fig. 1. 18 InfoVis surveyed from an end-user developer perspective. Classification by:
a. end-user developer and programmers, b. predefined and custom visualizations, and
c. visualization development approach.

environments aim at handling the gulf of execution (How do I do something?)
and evaluation (What happened?) identified by Norman [35] by allowing users
to easily map data to visual objects and obtain immediate feedback.

Custom visualizations in Prefuse, InfoVis Toolkit, D3, Flare, Processing and
Picolo are created and modified through code. This makes them less accessible
to end-user developers. Improvise and DEVise use a step-by-step approach to
lower the barriers to development introduced by code and become accessible by
end-user developers. While, SageBrush and GeoVISTA Studio take a different
approach. Similar to commercial tools, in these two tools, end-user developers
interact with visual components using drag-and-drop actions.

6 Limitations

This study investigates 18 visualization development tools. Instead of all existing
InfoVis tools, we decided to include only 18 tools as that are representative of
the InfoVis field and that have contributed significantly to it.

To identify InfoVis tools we searched two popular and comprehensive pro-
fessional sources IEEE and ACM. InfoVis tools published in other sources such

116 K. Pantazos, S. Lauesen, and R. Vatrapu

as Springer, Elsevier, Sage, etc., were not included. As a result, the findings of
this study may be debatable as there might be other tools published in these
sources for end-user developers. Another limitation of the selection is that we
investigated tools published before 2012.

Our investigation was based on the published papers and subjective evaluation
of the selected the tools. However, we do not have the knowledge that authors of
these tools have. This should have facilitated the analysis process. Furthermore, a
task-based evaluation with end-user developers would have enriched the results of
this study, which, however, provides a first orientation towards what tools might
be suitable for visualization development. Also, this study does not investigate
visualization and interaction techniques a tool may support.

7 Conclusion

This paper presents a study that investigates EUD of InfoVis. We investigated
how existing InfoVis tools can support end-user developers create and modify
visualizations. The results of this study indicate that EUD and InfoVis commu-
nity has to focus more on developing new approaches and tools to allow end-user
developers create visualizations other than the predefined ones. Supporting them
with more tools that provide direct manipulation, immediate feedback may be a
potential research path. Furthermore, the study provides a high-level overview of
the available visualization tools, which may facilitate the tool selection process
for new audiences.

To the best of our knowledge, no tool has been empirically evaluated with
users. Therefore, both research communities should collaborate more on this
aspect in order to better address the ease-of-use and understand what makes vi-
sualization tool popular for end-user developers. In this respect, we are planning
to conduct task-based usability studies and evaluate InfoVis tools with end-user
developers.

References

1. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in information visu-
alization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

2. Koh, L.C., Slingsby, A., Dykes, J., Kam, T.S.: Developing and applying a user-
centered model for the design and implementation of information visualiza-
tion tools. In: 2011 15th International Conference on Information Visualisation,
pp. 90–95 (2011)

3. Nardi, B.A.: A small matter of programming: perspectives on end user computing.
MIT Press, Cambridge (1993)

4. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A. (eds.): Watch what I do: programming by demonstration.
MIT Press, Cambridge (1993)

5. Lieberman, H.: Your wish is my command: programming by example. Morgan
Kaufmann Publishers Inc., San Francisco (2001)

End-User Development of Information Visualization 117

6. Lieberman, H., Paternò, F., Wulf, V.: End User Development (Human-Computer
Interaction Series). Springer-Verlag New York, Inc., Secaucus (2006)

7. Pane, J., Myers, B.: More natural programming languages and environments.
In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development. Human-
Computer Interaction Series, vol. 9, pp. 31–50. Springer, Netherlands (2006)

8. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-user development: An emerg-
ing paradigm. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Develop-
ment. Human-Computer Interaction Series, vol. 9, pp. 1–8. Springer, Netherlands
(2006)

9. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost
models for future software life cycle processes: Cocomo 2.0. Annals of Software
Engineering, 57–94 (1995)

10. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user
programmers. In: Proceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, VLHCC 2005, pp. 207–214. IEEE Computer So-
ciety, Washington, DC (2005)

11. Klann, M., Paternò, F., Wulf, V.: Future perspectives in end-user development.
In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development. Human-
Computer Interaction Series, vol. 9, pp. 475–486. Springer, Netherlands (2006)

12. Bolmsten, J., Dittrich, Y.: Infrastructuring when you don’t – end-user develop-
ment and organizational infrastructure. In: Costabile, M.F., Dittrich, Y., Fischer,
G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 139–154. Springer,
Heidelberg (2011)

13. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: press-
ing the issues with buttons. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 1990, pp. 175–182. ACM, New York (1990)

14. Dittrich, Y., Lindeberg, O., Lundberg, L.: End-user development as adaptive main-
tenance. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development.
Human-Computer Interaction Series, vol. 9, pp. 295–313. Springer, Netherlands
(2006)

15. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaf-
fidi, C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G.,
Shaw, M., Wiedenbeck, S.: The state of the art in end-user software engineering.
ACM Comput. Surv. 43(3), 21:1–21:44 (2011)

16. Rode, J., Rosson, M.B., Quinones, M.A.P.: End user development of web appli-
cations. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development.
Human-Computer Interaction Series, vol. 9. Springer, Netherlands (2006)

17. Spence, R.: Information Visualization: Design for Interaction, 2nd edn. Prentice-
Hall, Inc., Upper Saddle River (2007)

18. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information
visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages,
VL 1996, pp. 336–343. IEEE Computer Society, Washington, DC (1996)

19. Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., Shneiderman, B., Colorado,
K.P.: Lifelines: Using visualization to enhance navigation and analysis of patient
records. In: Proceedings of the 1998 American Medical Informatic Association An-
nual Fall Symposium, pp. 76–80 (1998)

20. Wang, T.D., Plaisant, C., Quinn, A.J., Stanchak, R., Murphy, S., Shneiderman,
B.: Aligning temporal data by sentinel events: discovering patterns in electronic
health records. In: Proceedings of the Twenty-Sixth Annual SIGCHI Conference
on Human Factors in Computing Systems, CHI 2008, pp. 457–466. ACM (2008)

118 K. Pantazos, S. Lauesen, and R. Vatrapu

21. Wongsuphasawat, K., Guerra Gómez, J.A., Plaisant, C., Wang, T.D., Taieb-
Maimon, M., Shneiderman, B.: Lifeflow: visualizing an overview of event sequences.
In: Proceedings of the 2011 Annual Conference on Human Factors in Computing
Systems, CHI 2011, pp. 1747–1756. ACM (2011)

22. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-
Oriented Data, 1st edn. Springer Publishing Company, Incorporated (2011)

23. Fekete, J.D.: The infovis toolkit. In: Proceedings of the IEEE Symposium on In-
formation Vizualization 2004, pp. 167–174 (2004)

24. Heer, J., Card, S.K., Landay, J.A.: prefuse: a toolkit for interactive information
visualization. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2005, pp. 421–430. ACM (2005)

25. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Transac-
tions on Visualization and Computer Graphics 17(12), 2301–2309 (2011)

26. Spotfire, http://spotfire.tibco.com/ (accessed August 2011)
27. Tableau, http://www.tableausoftware.com/ (accessed August 2011)
28. Omniscope, http://www.visokio.com/ (accessed August 2011)
29. Flare, http://flare.prefuse.org/ (accessed August 2011)
30. Microsoft Excel, http://office.microsoft.com/en-us/excel/ (accessed August

2011)
31. Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Comput. Graph.

Appl. 26(1), 10–13 (2006)
32. Slocum, T.A., Cliburn, D.C., Feddema, J.J., Miller, J.R.: Evaluating the Usability

of a Tool for Visualizing the Uncertainty of the Future Global Water Balance.
Cartography and Geographic Information Science, 299–317 (October 2003)

33. Robinson, A.C., Chen, J., Lengerich, E.J., Meyer, H.G., MacEachren, A.M.: Com-
bining usability techniques to design geovisualization tools for epidemiology. Car-
tography and Geographic Information Science 32(4), 243–255 (2005)

34. Roth, R., Ross, K., Finch, B., Luo, W., MacEachren, A.: A user-centered approach
for designing and developing spatiotemporal crime analysis tools. In: GIScience
2010 (2010)

35. Norman, D.A.: The Design of Everyday Things. Doubleday Business (1990)
36. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-

cisco (1993)
37. Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visual methods

for analyzing time-oriented data (January 2008)
38. Plaisant, C.: The challenge of information visualization evaluation. In: Proceedings

of the Working Conference on Advanced Visual Interfaces, AVI 2004, pp. 109–116.
ACM (2004)

39. Heer, J., van Ham, F., Carpendale, S., Weaver, C., Isenberg, P.: Creation and
collaboration: Engaging new audiences for information visualization. In: Kerren,
A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS,
vol. 4950, pp. 92–133. Springer, Heidelberg (2008)

40. Mackinlay, J.: Automating the design of graphical presentations of relational in-
formation. ACM Trans. Graph. 5(2), 110–141 (1986)

41. Roth, S.F., Mattis, J.: Automating the presentation of information (1991)
42. Roth, S.F., Kolojejchick, J., Mattis, J., Chuah, M.C.: Sagetools: an intelligent en-

vironment for sketching, browsing, and customizing data-graphics. In: Conference
Companion on Human Factors in Computing Systems, CHI 1995, pp. 409–410.
ACM (1995)

43. Chuah, M.C., Roth, S.F., Kerpedjiev, S.: Intelligent multimedia information re-
trieval, pp. 83–111. MIT Press (1997)

http://spotfire.tibco.com/
http://www.tableausoftware.com/
http://www.visokio.com/
http://flare.prefuse.org/
http://office.microsoft.com/en-us/excel/

End-User Development of Information Visualization 119

44. Cheng, M., Livny, M., Ramakrishnan, R.: Visual analysis of stream data. In: Pro-
ceedings of SPIE/The International Society for Optical Engineering, vol. 2410,
pp. 108–119 (1995)

45. Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Donjerkovic, D., Lawande, S.,
Myllymaki, J., Wenger, K.: Devise: integrated querying and visual exploration of
large datasets. In: Proceedings of the 1997 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 1997, pp. 301–312. ACM (1997)

46. Takatsuka, M., Gahegan, M.: Geovista studio: a codeless visual programming envi-
ronment for geoscientific data analysis and visualization. Comput. Geosci. 28(10),
1131–1144 (2002)

47. Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit design for interactive structured
graphics. IEEE Trans. Softw. Eng. 30, 535–546 (2004)

48. Weaver, C.: Building highly-coordinated visualizations in improvise. In: Proceed-
ings of the IEEE Symposium on Information Visualization, pp. 159–166. IEEE
Computer Society (2004)

49. Bostock, M., Heer, J.: Protovis: A graphical toolkit for visualization. IEEE Trans-
actions on Visualization and Computer Graphics 15(6), 1121–1128 (2009)

50. Akasaka, R.: Protoviewer: a web-based visual design environment for protovis. In:
ACM SIGGRAPH 2011 Posters, SIGGRAPH 2011, p. 85:1. ACM (2011)

51. Processing, http://www.processing.com/ (accessed August 2011)
52. GOOGLE CHART TOOLS, http://code.google.com/apis/chart/ (accessed

October 2011)
53. Viegas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: Manyeyes:

a site for visualization at internet scale. IEEE Transactions on Visualization and
Computer Graphics 13, 1121–1128 (2007)

54. Welch, B.B.: Practical programming in Tcl and Tk, 2nd edn. Prentice-Hall, Inc.,
Upper Saddle River (1997)

55. Stolte, C., Hanrahan, P.: Polaris: a system for query, analysis and visualization
of multi-dimensional relational databases. In: IEEE Symposium on Information
Visualization, InfoVis 2000, pp. 5–14 (2000)

http://www.processing.com/
http://code.google.com/apis/chart/

Resolving Data Mismatches in End-User Compositions

Perla Velasco-Elizondo1, Vishal Dwivedi2, David Garlan2, Bradley Schmerl2,
and José Maria Fernandes3

1 Autonomous University of Zacatecas, Zacatecas, ZAC, 98000, Mexico
pvelasco@uaz.edu.mx

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
{vdwivedi,garlan,schmerl}@cs.cmu.edu

3 IEETA/DETI, University of Aveiro, 3810-193 Aveiro, Portugal
jfernan@ua.pt

Abstract. Many domains such as scientific computing and neuroscience require
end users to compose heterogeneous computational entities to automate their pro-
fessional tasks. However, an issue that frequently hampers such composition is
data-mismatches between computational entities. Although, many composition
frameworks today provide support for data mismatch resolution through special-
purpose data converters, end users still have to put significant effort in dealing
with data mismatches, e.g., identifying the available converters and determining
which of them meet their QoS expectations. In this paper we present an approach
that eliminates this effort by automating the detection and resolution of data mis-
matches. Specifically, it uses architectural abstractions to automatically detect
different types of data mismatches, model-generation techniques to fix those mis-
matches, and utility theory to decide the best fix based on QoS constraints. We
illustrate our approach in the neuroscience domain where data-mismatches can
be fixed in an efficient manner on the order of few seconds.

1 Introduction

Computations are pervasive across many domains today, where end users have to com-
pose heterogeneous computational entities to perform and automate their professional
tasks. Unlike professional programmers, these end users have to write compositions
to support the goals of their domains, where programming is a means to an end, but
not their primary expertise [10]. Such end users, often form large communities that
are spread across various domains, e.g., Bioinformatics [23], Intelligence Analysis [26]
or Neurosciences.1 End users in these communities often compose computational en-
tities to automate their tasks and in silico2 experiments. This requires them to work
within their domain-specific styles of construction, following the constraints of their
domain [8]. They often treat their computations and tools as black boxes, that can be
reused across various tasks. Developers in these domains have been using approaches
based on Service-Oriented Architecture (SOA) [9] to enable rapid composition of com-
putations from third-party tools, APIs and services. There exist large repositories of

1 http://neugrid4you.eu
2 Tasks performed on computer or via computer simulation.

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 120–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://neugrid4you.eu

Resolving Data Mismatches in End-User Compositions 121

Table 1. Common types of data mismatches

Type Description

DataType Results from conflicting assumptions on the signature of the data and the compo-
nents that consume it, e.g., a computation requires different data type.

Format Results from conflicting assumptions on the format of the data being interchanged
among the composed parts, e.g., xml vs. csv (comma separated values).

Content Results from conflicting assumptions on the data scope of the data being inter-
changed among components, e.g., the format of the output carries less data content
than is required by the format of the subsequent input.

Structural Results from conflicting assumptions on the internal organization of the data being
interchanged among the composed parts, e.g., different coordinates system such as
Polar vs. Cartesian data or different dimensions such as 3D vs. 4D.

Conceptual Results from conflicting assumptions on the semantics of the data being inter-
changed among the composed parts, e.g., brain structure vs. brain activity or dis-
tance vs. temperature.

reusable services such as BioCatalogue, BIRN and INCF,3 and supporting domain-
specific environments to compose them, e.g., Taverna [11] and LONI Pipeline.4

However, despite the popularity of such composition environments and repositories,
the growing number of heterogeneous services makes composition hard for end users
across these domains. Often end users have to compose computational entities that have
conflicting assumptions about the data interchanged among them (as shown in Table
1).5 That is, it is common for their inputs and outputs to be incompatible with those
of the other computational entities with which they must be composed. This claim is
supported by recent studies that have shown that about 30% of the services in scientific
workflows are data conversion services [28]. Some composition frameworks today pro-
vide data mismatch detection facilities and special-purpose data converters that can be
inserted at the point of the mismatch. In spite of this, data mismatch detection and res-
olution continues to be time-consuming and error-prone for the following reasons: (a)
most current composition environments detect only type mismatches, while other mis-
matches are often undetected (e.g., format, content, structural, and conceptual), (b) due
to the prevalence of converters in repositories such as BioCatalogue or BIRN, end users
frequently have several converters to select from, often manually, (c) instead of a single
converter, a solution might involve a combination of converters. This results in a com-
binatorial explosion of possibilities, and (c) among several repair alternatives, end users
need to choose the best one with respect to multiple QoS concerns, e.g., accuracy, data
loss, distortion. Today, this assessment is done by “trial and error,” a time-consuming
process often leading to non-optimal solutions.

The key contribution of this work is an approach that automates the detection and
resolution of data mismatches, thus reducing the burden to end users. Specifically, our

3 www.biocatalogue.org, www.birncommunity.org and www.incf.org
4 pipeline.loni.ucla.edu
5 We studied the literature in data mismatches and organized them in common types. However,

this should not be considered as a complete list.

www.biocatalogue.org
www.birncommunity.org
www.incf.org
pipeline.loni.ucla.edu

122 P. Velasco-Elizondo et al.

approach uses: (i) architectural abstractions to automatically detect different types of
data mismatches, (ii) model-generation techniques to support the automatic generation
of repair alternatives, and (iii) utility theory to automatically check for satisfaction of
multiple QoS constraints in repair alternatives. We demonstrate the efficiency and cost-
effectiveness of the approach for workflow composition in the neuroscience domain.
The remainder of this paper is organized as follows. In Section 2 we introduce the
background and related work. In Section 3 we describe the proposed approach and in
Section 4 we demonstrate it in practice via an example. In Section 5 we present a dis-
cussion and evaluation of the approach. Finally, in Section 6, we discuss the conclusions
and future work.

2 Background and Related Work

Garlan et al. [14] introduced the term architectural mismatch to refer to conflicting as-
sumptions made by an architectural element about different aspects of the system it is
to be a part of, including those about data. Regarding data-related aspects, there is work
focused on: (a) categorizing and detecting (architectural) data mismatches and (b) au-
tomatically resolving them. In this section, we relate our work to other literature in these
two categories.

Categorizing and Detecting Data Mismatches. There have been numerous efforts in
the categorization and formal definition of data mismatches. Cámara et al. [5] defined
the term “data mismatch” while in [3] Bhuta and Boehm defined “signature mismatch”;
both mismatches highlight the differences that occur among two service components’
interfaces with respect to the type and format of their input and output parameters. Sim-
ilarly, Grenchanik et al. [19] defined “message data model mismatch” to describe differ-
ences in the format of the messages to be interchanged among components. Mismatch
42 in [13] refers to “sharing or transferring data with differing underlying representa-
tions.” Previously, Belhajjame et. al. [2], Bhuta and Boehm [3] and Li et. al. [24] de-
scribed mismatches for service compositions. Our data-mismatch resolution approach
extends these previous efforts on categorizing data mismatches and formalizes them as
rules to detect them amongst architectural components. In particular, we: (i) identify
a set of relevant classes of data mismatches as constraint failures, (ii) use this error
information to characterize the mismatches in an architectural style, (iii) build specific
analyses to support the detection of the identified mismatches, and (iv) have constructed
a prototype tool to detect them during system composition. In contrast to these works,
we can detect more specialized data mismatches such as the ones shown in Table 1 us-
ing an architectural approach that is more suitable for automated formal analysis.

Resolving Data Mismatches. There exists some literature that addresses data-mismatch
through automatic resolution approaches. The common approach across this work has
been to use adapters, which are components that can be plugged between the mis-
matched components to convert the data inputs and outputs as necessary. Kongdenfha
et al. [22] and Bowers and Ludascher [4] used adapters to convert among formats and
internal structures of services’ data. Several end-user composition environments today
also use adapters for data mismatch resolution. For example, Taverna introduces shims

Resolving Data Mismatches in End-User Compositions 123

that could implement data conversion services6. Similarly, LONI Pipeline provides the
notion of smartlines [25] that encapsulate data conversion tools that resolve data for-
mat compatibility issues during workflow composition. However, unlike our approach,
these works primarily focus on the automatic generation of adapters rather than on the
selection and composition of existing ones. Besides that, these approaches work only
for specific data types and formats (e.g., XML) and do not provide support for han-
dling QoS concerns of end users to drive the selection of converters. Even when some
environments provide selection support, they do not consider the scenario of having
multiple adapters to choose from to solve the same data mismatch.

In the following sections, we describe how our approach addresses the shortcomings
in the above discussed works.

3 Approach

As depicted in Figure 1, the approach presented in this paper is comprised of three main
phases: (Data) Mismatch Detection, (Data) Mismatch Repair Finding and (Data) Mis-
match Repair Evaluation. These three phases use (i) architectural descriptions for com-
ponents and compositions to automatically detect different types of data mismatches,
(ii) model-generation techniques to support the automatic generation of repair alter-
natives, and (iii) utility theory to automatically check for satisfaction of multiple QoS
constraints in repair alternatives.

Quality

...

Mismatch

Engine
Detection

Repair

Engine
Finding

Engine

Repair
Evaluation

Profile

Components

......

Repair Alternatives

R4

R1

R2

(1) Mismatch Detection Phase (2) Repair Finding Phase (3) Repair Evaluation Phase

Specifications
Mismatched Components
Conversion Components

Input Port
Output Port

Architectural Connector
Process Data Flow Program

Java

Alternatives

Ranking
of Repair

C1

R4

R3C1 C2

C1

C2
C1

R1
C2

C2

Fig. 1. The three main phases of the approach to data mismatch detection and resolution

Note that it is not the end users who create such architectural descriptions; such
descriptions already exist and are created by component developers and domain ex-
perts through means like SCORE [8] and SCUFL (from Taverna) [11]. We build on
our previous work on the SCORE architectural style, which provides a generic mod-
eling vocabulary for the specification of data-flow oriented workflows that comprises
the following elements: component types –which represent the primary computational
elements, connector types –which represent interactions among components, proper-
ties –which represent semantic information about the components and connectors, and
constraints –which represent restrictions on the definition and usage of components or
connectors, e.g., allowable values of properties and topological restrictions.

6 www.taverna.org.uk/introduction/services-in-taverna/

www.taverna.org.uk/introduction/services-in-taverna/

124 P. Velasco-Elizondo et al.

SCORE can be specialized to various domains through refinement and inheritance.
This requires style designers and domain experts to construct substyles that extend the
SCORE style and add properties and domain-specific constraints that allow end users
to correctly construct workflows within that domain. In the example presented in this
paper we use the FSL (Sub)Style, which includes components, properties, and con-
straints specific to neuroscience compositions. Figure 2 illustrates the specialization of
some of SCORE’s components types (i.e., Data Store, Service and User Interface) for
the neuroscience domain via inheritance. The FSL (Sub)Style, shown on the left-hand
side of the figure, includes specializations of service components that provide the func-
tionality of some of the tools offered by the FSL neuroscience suite.7 In previous work
we have also demonstrated the refinement of SCORE for the dynamic network analy-
sis domain [8]. Figure 2 shows some of the components in the resulting substyles, i.e.,
Dynamic Network Analysis and SORASCS.

User Interface

fslview AutoMap ORA DyNet ... Krackplot

SCORE Style

Neuroscience (Sub)Style

FSL (Sub)Style SORASCS (Sub)Style

Dynamic Network Analysis (Sub)Style

Data Store

......

...

... ...

...

...

Tool

Service

Visualization VisualizeUI...Registration Third−partySet of
Volumes

Text
Extractor

... Network
Analysis

... Visualization VisualizeUI

flirt fnirt dnifty dcom2nii

Fig. 2. Component refinement by inheritance

Program 1 shows a snippet of an ADL-like8 specification that illustrates specializa-
tion of FSL Style elements. Data format and data structure information are added as
properties of the ports of the flirt service component.9 Note also that the flirt

Program 1. Example of data ports with format and structural information

Property Type l e g a l F o r m a t s = Enum {NIfTI , DICOM} ;
Property Type l e g a l I n t e r n a l S t r u c t u r e = Enum {Aligned , NotAl igned } ;
Port Type In = {

Property f o r m a t : s e t o f l e g a l F o r m a t s ;
Property s t r u c t u r e : l e g a l I n t e r n a l S t r u c t u r e ;

}
Port Type Out = {

Property f o r m a t : s e t o f l e g a l F o r m a t s ;
Property s t r u c t u r e : l e g a l I n t e r n a l S t r u c t u r e ;

}
Component Type f l i r t extends R e g i s t r a t i o n = {

Port In : in ;
Port Out : o u t ;

}

7 http://www.fmrib.ox.ac.uk/fsl/
8 We assume familiarity with Architectural Description Languages (ADL) syntax.
9 In various architectural styles data ports are used to denote data elements produced (output)

and consumed (input) by components.

http://www.fmrib.ox.ac.uk/fsl/

Resolving Data Mismatches in End-User Compositions 125

service component inherits from the Registration service component in the Neuro-
science (Sub)Style, which in turn inherits from the Service component in the SCORE
Style as shown in Figure 2. The specialization of the SCORE style can be as detailed
as needed in a particular domain. The resulting architectural specifications can be used
to automatically check constraints to detect various types of violations in compositions.
As we will show later, in this work we take advantage of all these aspects to detect data
mismatches and construct legal repair alternatives.

3.1 Mismatch Detection Phase

End users are often constrained by their domain-specific styles of construction while
composing computations. By enforcing constraints that restrict the values of the prop-
erties of a composition, end-user compositions can be analyzed for data mismatches.
Architectural specifications are particularly useful for such a verification, as they embed
constraints that are evaluated at design time. In our approach, the Mismatch Detection
Engine analyzes compositions with respect to the mismatches described in Table 1 by
using the properties and constraints defined by SCORE (and the additional substyles).
For example, this predicate can be used to define an analysis to detect a data mismatch
involving both format and structural aspects:
f o r a l l c1 , c2 : S e r v i c e | c o n n e c t e d (c1 , c2) −>

s i z e (i n t e r s e c t i o n (c1 . o u t . fo rma t , c2 . in . f o r m a t)) > 0
AND (c1 . o u t . s t r u c t u r e == c2 . in . s t r u c t u r e)

The predicate states that it is not enough for a pair of connected Services c1 and c2
to deal with data of the same format (e.g., DICOM or NIfTI10), but the data must also
have the same structural properties (e.g., Aligned or NotAligned). Predicates are imple-
mented as type checkers that take end-user specifications and detect data mismatches.
Once a mismatch is detected via the defined analyses, the Mismatch Detection Engine
retrieves the architectural specifications of the pair of mismatched components and out-
puts this to the repair finding phase.

3.2 Repair Finding Phase

Selecting correct composition elements with appropriate properties, with right connec-
tions, has always been a tricky process, as people often make mistakes. In this phase, our
approach attempts to solve this problem by taking declarative specifications of the pair
of mismatched composition elements, along with the constraints in which they could be
combined, and use a model generator to find a configuration that satisfies them.

Fig. 3 outlines how our approach uses the Alloy Analyzer [18] (as a model genera-
tor) to generate valid compositions that satisfy the domain-specific constraints. These
form the repair alternatives for the compositions. The Repair Finding Engine takes
architectural specifications of both the (pair of) mismatched components and a set of
conversion components as input and translates them into Alloy specifications. For an
accurate model-generation, our approach also requires an Alloy model of the archi-
tectural style of the target system to which the mismatched components belong, that
includes the constraints in which the components can be used (as denoted in Fig. 3).

10 DICOM and NIfTI are data formats used to store volumetric brain-imaging data.

126 P. Velasco-Elizondo et al.

Data Flow

Alloy Models

(A
rc

hi
te

ct
ur

al
 S

pe
ci

fi
ca

tio
ns

)
C

on
ve

rs
io

n
C

om
po

ne
nt

s
M

is
m

at
ch

ed
 a

nd

(A
rc

hi
te

ct
ur

al
 S

pe
ci

fi
ca

tio
ns

)
R

ep
ai

r
A

lte
rn

at
iv

es

Architectural Style

run for 1

Components

Repair
Alternatives

(set of .xml files)
(set of .als files) A

llo
y

A
na

liz
er

Program
Java

Process

T
ra

ns
la

tio
n

Sc
he

m
e

(A
D

L
 to

 A
llo

y)

T
ra

ns
la

tio
n

Sc
he

m
e

(t
o

a
pa

rt
ic

ul
ar

 A
D

L
)

Fig. 3. The Repair Finding Engine

In recent years, various approaches to model architectural constructs in Alloy have
been developed, e.g., [20,17]. In our work, we have adopted the approach in [20] where
architectural types are specified as signatures (sig) and architectural constraints are
specified as facts (fact) or predicates (pred). To provide a general idea of this trans-
lation method, consider the following ADL-like specification of the dinifti service
component shown in the FSL (Sub)Style in Figure 2:

Component Type d i n i f t i extends T h i r d P a r t y T o o l = {
in . f o r m a t = DICOM;
. . .

}
The component extends the generic component type ThirdPartyTool and defines one
port of the type In with a DICOM format value. Using the adopted translation method,
results in the Alloy specification shown in Program 2. In this specification the extends
keyword specifies style-specific types extending the signatures of generic ones, while
the format and in relations model containment relations among types.

Program 2. A component specification in Alloy

s i g l e g a l F o r m a t s {}
s i g NIfTI , DICOM extends l e g a l F o r m a t s{}
s i g In { f o r m a t : l e g a l F o r m a t s}
s i g T h i r d P a r t y T o o l extends S e r v i c e { in : In , . . . }
s i g d i n i f t i extends T h i r d P a r t y T o o l {}

f a c t { d i n i f t i . in . f o r m a t = {DICOM} . . . }

While generating the legal repair, we use the constructibility of specific architectural
configuration analysis described in [20]. A simple version of this analysis can be per-
formed by instructing the Alloy Analyzer to search for a model instance that violates
no assertions and constraints within the specified scope number (using the run for 1

command). The Repair Finding Engine thus finds all the valid instances of a repair al-
ternative by having multiple runs of this command. As depicted in Fig. 3, the Alloy
Analyzer stores these instances as XML files. These files are then automatically trans-
formed to architectural specifications to be processed in the next phase of the approach.

3.3 Repair Evaluation Phase

Service repositories often have a large number of converters available that could lead
to multiple repair choices for a data mismatch. In this phase, our approach automates a

Resolving Data Mismatches in End-User Compositions 127

solution for such scenarios through a utility based strategy. We assume that most com-
position scenarios have some quality of service criteria such as speed, number of com-
putation steps, quality of output etc., which can enable the selection of an appropriate
repair strategy that maximizes the utility value of the resulting composition. Therefore,
architectural specifications of the set of repair alternatives and a QoS Profile are inputs
to the Repair Evaluation Engine (see Figure 4). This information is used to calculate an
overall QoS value for each repair alternative by using utility theory [12].

We implemented a simple repair evaluation strategy using QoS profiles for compo-
sitions. A QoS Profile is a XML-based template that is meant to be filled in by the
end user with two main types of QoS information: (i) QoS expectations for a repair
alternative and (ii) importance of each QoS concern in the profile compared to other
concerns. QoS concerns are defined as quality attributes and expectations on them are
characterized as utilities. Here, utility is a measure of relative satisfaction –received by
the consumer of a service that explains some phenomenon in terms of increasing or de-
creasing such satisfaction. For instance, let x1, x2, x3 be in a set of alternative choices.
If the decision-maker prefers x1 to x2 and x2 to x3, then the utility values uxi assigned
to the choices must be such that ux1 ≤ ux2 ≤ ux3. In utility theory, a utility function of
the form: u : X → R can be used to specify the utility u of a set of alternatives, where
X denotes the set of alternative choices and R denotes the set of utility values. For
example, the “accuracy” quality attribute could have a utility function defined by the
points 〈(Opt, 1.0), (Ave, 0.5), (Low, 0.0)〉 to represent that an optimal accuracy (Opt)
gives an utility of 1.0, an average accuracy (Ave) gives the utility of 0.5, and a low accu-
racy (Low) gives no utility. An end user might need to specify preferences over multiple
quality attributes to denote their relative importance. For example, in some situations
the designer may require the urgent execution of the workflow. Thus, a repair alterna-
tive should run as quickly as possible, perhaps at the expense of fidelity of the result.
Conversely, when converting among data formats, minimizing distortion can also be an
important concern. In the QoS Profile this information is specified as weights.

Sp
ec

if
ic

at
io

ns
)

(.
xm

l f
ile

)
Q

oS
 P

ro
fi

le

QoS Values

Q
oS

 V
al

ue
s

E
xt

ra
ct

io
n

A
gg

Q
A

 C
al

cu
la

tio
n

AggQoS
Values

O
ve

ra
ll

U
til

ity
 C

al
cu

la
tio

n

R
an

ki
ng

 o
f

R
ep

ai
r

A
lte

rn
at

iv
es

(.
tx

t f
ile

)

(A
rc

hi
te

ct
ur

al

R
ep

ai
r

A
lte

rn
at

iv
es

Process
Data Flow

Java
Program

Fig. 4. The Repair Evaluation Engine

To calculate the utility of a repair alternative, it is necessary to first calculate a set
of aggregated quality attribute values (aggQA) for a repair alternative. These values,
computed via a set of built-in domain-specific functions, are analogous to the quality
attributes values exposed by each converter but they apply to a whole repair alternative.

128 P. Velasco-Elizondo et al.

For example, suppose that a repair alternative comprises a sequence of three convert-
ers C exposing the following values for the distortion quality attribute: Average (e.g.,
0.5), Average (e.g., 0.5) and Optimal (e.g., 1.0). A distortion aggregated value for the
whole repair alternative in this case could be Average (i.e., 0.5) when using the follow-

ing domain-specific function:11 aggQADist : 1/m
k∑

i=1

= Dist(Ck), with m = n + 1.

There is one function for each quality attribute in the QoS Profile. In this approach, con-
verters must define values for the quality attributes to be considered in the QoS Profile
in order to apply these functions.

Using the above information, and based on the ideas presented in [6], we have de-
fined a straightforward way to compute the overall utility of a repair alternative. Given
a set of repair alternatives, each defining a set of q quality attributes, a set of aggregated
quality attributes values aggQA, a utility function u that assigns an utility value to each
aggQA and an importance value w for each one of these q quality attributes; a utility

function U of the form: U :
q∑

i=1

= wi ∗ u(aggQAi), with
q∑

i=1

wi = 1, can be used

to calculate the overall utility for each repair alternative. The utilities for the alterna-
tives are used to provide a ranking that the end-user can use to select the best repair
alternative to the detected mismatch.

4 Example

In this section we illustrate our approach with an example of workflow construction
in the neuroscience domain via a prototype tool called SWiFT [8], which provides a
graphical workflow construction environment. The tool uses a simplified version of
the SCORE architectural style to drive workflow construction and incorporates some
analyses to verify their validity at design time. We have extended it, as described in
Section 3, to allow for data mismatch detection. In this example we use both Data
Services (to access data stores) and FSL Services.

4.1 The Neuroscience Domain

In the neuroscience domain, scientists study samples of human brain images and neural
activity to diagnose disease patterns. This often entails analyzing large brain-imaging
datasets by processing and visualizing them. Such datasets typically contain 3D vol-
umes of binary data divided to voxels, as shown in Figure 5 (a).12 Across many such
datasets, besides the geometrical representation, brain volumes also differ in their ori-
entation. Therefore, when visualizing different brain volumes a scientist must “align”
them by performing registration. When two brain volumes A and B are registered, the
same anatomical features have the same position in a common brain reference system,
i.e., the nose position in A is in the same position in B, see Figure 5 (b). Thus, registra-
tion of brain volumes allows integrated brain-imaging views.

11 Dist stands for distortion.
12 A voxel is a unit volume of specific dimensions, e.g. width, length and height.

Resolving Data Mismatches in End-User Compositions 129

Fig. 5. (a) Volumes in voxels and (b) registered volumes with same brain reference

Processing and visualizing data sets require scientists in this domain to compose a
number brain-imaging tools and services provided by different vendors. The selection
of tools and services is carried out manually and often driven by analysis-dependent
values of domain-specific QoS constraints, e.g., accuracy, data loss, distortion. In this
context, the heterogeneous nature of services and tools often leads to data mismatches;
thus, scientists also need to select conversion tools and services to resolve them.

4.2 Workflow Composition Scenario

Consider that during workflow composition a scientist needs to visualize a set of brain-
image volumes. These volumes store brain images of the same person as 3D DICOM
volumes. The volumes are not registered, i.e., they are not aligned to the same brain ref-
erence system. To visualize this data, the scientist tries to compose the Set of Volumes
data service – which can read the actual store where the volumes are, and the Visualize
Volumes service – which enables their visualization. Table 2 shows an excerpt of the
specifications of the operations’ parameters of these two services. As can be seen, the
Visualize Volumes service requires data that is already registered and in ‘NIfTI’ format
(see its registered=‘Yes’ and format=‘NIfTI’ input parameters). Thus, these two ser-
vices cannot be composed as they have both a format and a structural mismatch, i.e.,
the interchanged data has both a different format and internal organization.

Table 2. An excerpt of the parameter specifications of the services in the example

Service Operation Input parameters Output parameters

Set of read name=‘out’ type=‘files’ format=‘DICOM’
Volumes Volumes registered=‘No’ sameSubject=‘Yes’
Visualize view name=‘in’ type=‘files’ format=‘NIfTI’
Volumes registered=‘Yes’ sameSubject=‘Yes|No’

dinifti DICOM name=‘in’ type=‘files’ name=‘out’ type=‘files’
toNIfTI format=‘DICOM’ registered=‘No|Yes’ format=‘NIfTI’ registered=‘Yes|No’

dcm2nii dc2nii name=‘in’ type=‘files’ format=‘DICOM’ name=‘out’ type=‘files’ format=‘NIfTI’
registered=’No|Yes’ sameSubject=‘Yes|No’ sameSubject=‘Yes|No’ registered=‘Yes|No’

flirt register name=‘in’ type=‘files’ format=‘NIfTI’ name=‘out’ type=‘files’ format=‘NIfTI’
registered=’No’ sameSubject=‘Yes|No’ registered=’Yes’ sameSubject=‘Yes|No’

fnirt register name=‘in’ type=‘files’ format=‘NIfTI’ name=‘out’ type=‘files’ format=‘NIfTI’
registered=’No’ sameSubject=‘Yes|No’ registered=’Yes’ sameSubject=‘Yes|No’

130 P. Velasco-Elizondo et al.

Table 3. Some brain-imaging tools to perform registration and format conversion

Operation Description Name

LINEAR REGISTRATION Align one brain volume to another using linear transformations opera-
tions, e.g., rotation, translations.

flirt

NON-LINEAR REGISTRATION Extends linear registration allowing local deformations using non-linear
methods to achieve a better alignment, e.g., warping, local distortions.

fnirt

FORMAT CONVERSION Converts images from the DICOM format to the NIfTI format used by
FSL, SPM5, MRIcron and many other brain imaging tools.

dinifti,
dcm2nii

4.3 Data Mismatch Detection and Resolution

Figure 6 (a) shows how the data mismatch is presented to the scientist in our tool once
it is detected by an analysis based on the predicate presented in Section 3.1. In order to
compose these two services, the scientist should invoke the Repair Finding Engine by
clicking on the “Resolve Data Mismatch” button in the tool interface (shown on the left
hand side of Figure 6 (a)). We illustrate the case of a repair involving a combination of
converters, see Table 3. Format conversion can be performed by using either the dinifti
or the dcm2nii service converters. Registration can be performed by using the either the
flirt or the fnirt FSL services. Part of the operations’ parameter specifications of such
services is also shown in Table 2. Based on these specifications and the corresponding
Alloy Models, the Repair Finding Engine finds the following repair alternatives (RA):

RA1: Set of Volumes - dinifti - flirt - Visualize Volumes
RA2: Set of Volumes - dinifti - fnirt - Visualize Volumes
RA3: Set of Volumes - dcm2nii - flirt - Visualize Volumes
RA4: Set of Volumes - dcm2nii - fnirt - Visualize Volumes

All of these alternates are legal, as they obey the architectural style’s constraints that
restrict their structure and properties. However, because the constituent conversion ser-
vices have different quality attribute values –see Program 3, the overall QoS of each
repair alternative is different. Let’s assume that the scientist has specific QoS require-
ments for a repair. He would like to have no distortion in the brain-image; he would
like to have an optimal speed and accuracy, but would be OK with their average val-
ues. However, low value of speed or accuracy, or distortion is not acceptable for this
composition. This information, specified in the QoS Profile, can be summarized as fol-
lows: Accuracy: 〈(Optimal, 1.0), (Average, 0.5), (Low, 0.0)〉, Speed: 〈(Optimal, 1.0),
(Average, 0.5), (Low, 0.0)〉 and Distortion: 〈(Y, 0.0), (N, 1.0)〉, with the 0.5, 0.1 and 0.4
weight values respectively.

Based on the QoS information, and using a set of built-in domain-specific functions,
the Repair Evaluation Engine calculates the following aggregated quality attribute
values:13

RA1: aggQADist = N, aggQASp = Ave, aggQAAcc = Opt.
RA2: aggQADist = Y, aggQASp = Ave, aggQAAcc = Opt.
RA3: aggQADist = N, aggQASp = Opt, aggQAAcc = Opt.
RA4: aggQADist = Y, aggQASp = Ave, aggQAAcc = Opt.

13 Dist = Distortion, Sp = Speed, Acc = Accuracy, Opt=Optimal, Ave=Average.

Resolving Data Mismatches in End-User Compositions 131

Program 3. QoS specifications of the FSL services
<QoSSpecification> <!-- dinifti -->
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Average</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>

</QoSSpecification>
<QoSSpecification> <!-- dcm2nii -->
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Optimal</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>

</QoSSpecification>
<QoSSpecification> <!-- flirt -->
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Optimal</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>

</QoSSpecification>
<QoSSpecification> <!-- fnirt -->
<att><name>Distortion</name><val>Y</val></att>
<att><name>Speed</name><val>Average</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>

</QoSSpecification>

With all this available information, the Repair Evaluation Engine can compute the over-
all utility of each repair alternative via the utility function U described in Section 3.3.

URA1 = wDist ∗ u(aggQADist) + wSp ∗ u(aggQASp) + wAcc ∗ u(aggQAAcc)

= 0.5 ∗ 1.0 + 0.1 ∗ 0.5 + 0.4 ∗ 1.0 = 0.95

URA2 = wDist ∗ u(aggQADist) + wSp ∗ u(aggQASp) + wAcc ∗ u(aggQAAcc)

= 0.50 ∗ 0.00 + 0.10 ∗ 0.50 + 0.40 ∗ 1.0 = 0.25

URA3 = wDist ∗ u(aggQADist) + wSp ∗ u(aggQASp) + wAcc ∗ u(aggQAAcc)

= 0.5 ∗ 1.0 + 0.1 ∗ 1.0 + 0.4 ∗ 1.0 = 1.0

URA4 = wDist ∗ u(aggQADist) + wSp ∗ u(aggQASp) + wAcc ∗ u(aggQAAcc)

= 0.5 ∗ 0.0 + 0.1 ∗ 0.50 + 0.4 ∗ 1.00 = 0.45

Fig. 6. (a) Data mismatch detection in our tool, (b) Workflow after mismatch resolution

132 P. Velasco-Elizondo et al.

The obtained results are ranked and alternative 3, which has the highest utility, allows
automatic generation of the workflow shown in Figure 6 (b). This mismatch resolu-
tion strategy not only generates a correct workflow, but it also alleviates the otherwise
painful task of manual search and error resolution by the end users.

5 Discussion and Evaluation

In this section we discuss and evaluate our approach with respect to (a) its usefulness for
the targeted end users, (b) its implementation cost and flexibility, and (c) the efficiency
and scalability of the used techniques.

Usefulness for the Targeted End Users. Traditional composition requires low-level
technical expertise, which is not the case for many end users in some domains. For soft-
ware systems, architectural abstractions for components and composition help to bridge
the gap between non-technical and technical aspects of the software. We exploit this to
address the problems in end-user composition. Our approach is aided by architectural
abstractions, which allow a generic system modeling vocabulary that does not deal with
low-level technical aspects, and therefore can be more easily understood and used by
non-technical users. Such abstractions are designed once (by experts and component
developers) and can be reused multiple times by the end users.

Another aspect of our approach is the need for end users to specify multiple QoS
values. Although end users do not think explicitly about QoS attributes, they certainly
think implicitly about them. Informal discussions with end users highlights that they are
concerned about how long an analysis will take (i.e. performance), whether information
will leak (i.e. privacy), whether resulting images are suitable for a particular diagnostic
goal (i.e. precision, data loss) and the like. Our approach asks them to think about and
quantify these explicitly to help them identify better compositions for their requirements.

Implementation Cost and Flexibility. Because of the nature of our approach, its im-
plementation cost can be significantly minimized by reusing or refining several arti-
facts such as the architectural styles, the analyses, the translation rules to Alloy, the
domain-specific aggregation functions and the overall QoS utility function. Although
some effort is needed for creating these artifacts, this effort is required only once by
a style designer and a domain expert and the resulting artifacts can be reused later
many times by end-users during workflow construction. Moreover, as discussed before,
many of these artifacts can be reused through refinement. Note that the modeling con-
structs of languages such as BPEL or the domain-specific ones used by composition
environments such Taverna and LONI Pipeline can be reused many times, but cannot
be refined to specific domains, like ours. Moreover, our approach is flexible enough to
be integrated in composition tools; for example the SWiFT tool, used in the examples
described in Section 4.

Efficiency and Scalability. A large number of languages today support the composition
of computational elements. Examples include, BPEL, code scripts, and domain-specific
composition languages (DSCLs) used by Taverna and LONI Pipeline. However, most
of these provide very low-level and/or generic modeling constructs, and hence are not
very efficient for end-user tasks [8]. Architectural specifications, in contrast, provide

Resolving Data Mismatches in End-User Compositions 133

high-level constructs that can be reused and refined to address composition in specific
application domains. The formal nature of architectural specifications enables various
analyses to be performed automatically. We illustrated this by reusing and refining some
architectural definitions in SCORE; specifically by adding properties to data ports and
constraints on them, we were able to handle a bigger scope and tackle data mismatch
detection in the neuroscience domain. Thus, as shown in Table 4, we claim that archi-
tectural specifications are more efficient and scalable than BPEL, code scripts or the
mentioned domain-specific languages.

Table 4. Efficiency and scalability aspects for some composition specification languages

Architectural Specifications BPEL, Scripts, DSCLs

Efficiency (in terms of): Robust Limited
Automated Analysis
Scalability (in terms of): Robust No support
Refinement of abstractions

In comparison, several formal methods have been used to support the automated
composition of architectural elements at design time. A majority of existing work in
web-service automation focuses on using Artificial Intelligence (AI) planning tech-
niques [1].14 Although, many such AI planning techniques guarantee correctness of
the generated compositions based on logic, a correct composition might not be the op-
timal composition, as it is recognized that planners tend to generate unnecessarily long
plans [21] and little consideration is given to QoS aspects while selecting the services
in a plan [1]. Additionally, AI planning based service composition tools such as SHOP2
[27] do not consider the scenario of having more than one service for a plan’s action.
Therefore, multiple composition plans cannot be generated. Another interesting line of
work has been towards assisted mash-up composition using pattern-based approaches,
e.g. [7] –despite the fact that not all the evaluation aspects presented in Table 5 apply
for them. A mashup consists of several components, namely mashlets, implementing
specific functionalities. Thus, pattern-based approaches to mashup composition aim at
suggesting pre-existing “glue patterns”, made of mashlets, in order to autocomplete a
mashup. Most of this work relies on an autocompletion mechanism based on syntactic
aspects of the signatures of the mashlets and the “collective wisdom” of previous users
that have successfully use the glue patterns. Thus, optimal composition generation is
limited. Moreover, the number of composition alternatives depends on the number of
existing patterns rather than the number of individual mashlets. Finally, approaches us-
ing ontologies based on description logic are also used to assist users in selecting and
composing workflow components, e.g. [16]. However, most of these approaches offer
limited support for resolving mismatches that require a collection of converters.

We address the limitations of existing work in automated composition through model
checking and model generation using Alloy. Two important aspects motivated its use
in our work. First, by using the model finder capabilities of Alloy Analyzer it is easy

14 Service composition based on AI planning considers services as atomic actions that have ef-
fects on the state. Given a list of actions that have to be achieved and a set of services that
accomplish them, a plan is an ordered sequence of the services that need to be executed.

134 P. Velasco-Elizondo et al.

Table 5. Efficiency and scalability aspects of some approaches to automated composition, i.e.
Model Checking with Alloy (MC), Artificial Intelligence Planning (AIP) and Pattern-based (PB)

MC AIP PB

Efficiency (in terms of):
- Automated composition Robust Robust Robust
- Composition correctness Robust Robust Robust
- Optimal composition generation Limited Limited Limited
- Multiple composition alternatives Robust Limited Limited
- Translation to architectural constructs Robust No Support Not Apply
Scalability (in terms of):
- Processing large models Limited Limited Not Apply

Table 6. Results of the scalability experiment. All times are measured in milliseconds.

No. of Converters No. of Signatures Translation Time (TT) Solving Time (ST) TT + ST

4 13 256 47 303
10 21 827 141 968
15 26 1,077 234 1,311
25 36 1,575 453 2,028
50 61 9,376 2,215 11,591

to generate multiple alternative compositions. Secondly, Alloy provides a simple mod-
eling language, based on first-order and relational calculus, that is well-suited for rep-
resenting abstract end-user compositions. Additionally, we used several ADL to Alloy
automated translation methods developed in recent years, e.g. [20,17,29].

One of the widely known problems of using model checking is the combinatorial
explosion of the state-space that limit their scalability when working with large models.
We believe that it is not a major concern in our case. To support this claim, we performed
an experiment in which we increased the number of converters from 4 to 50 to work
with bigger models.15 Table 6 summarizes the results obtained, including those for the
example presented in this paper with 4 converters. TT is the translation time, ST is the
solving time, and the summation of TT+ST is the total time to generate the first possible
solution –following solutions take negligible time.16 Note that the time to generate a
repair alternative in a scenario with 50 converters is about 11 secs. This time is a drastic
improvement over the complexity of resolving such mismatches manually.

6 Conclusions and Future Work

Many composition frameworks today provide support for data mismatch resolution
through special purpose data converters. However, as end users often have several con-
verters to select from, they still have to put significant effort in identifying them and

15 The experiment was performed on a 2.67 GHz Intel(R) Core i7 with 8 GB RAM.
16 TT is the time that the analyzer takes to generate the Boolean clauses; ST is the time it takes

to find a solution with these clauses.

Resolving Data Mismatches in End-User Compositions 135

determining which meet their QoS expectations. In this paper we presented an approach
that automates these tasks by combining architectural modeling, model-generation and
utility analysis. We demonstrated our approach with SWiFT –a web-based tool for
workflow composition, using a simple data-flow composition scenario in the brain
imaging domain. However, we have been working with other domains with different
computation models [15].

Our future work includes exploring the integration of our approach with popular
composition environments and performing usability studies on these environments. We
also plan to study means to make QoS specification more approachable to end users
by considering more real-life situations in specific domains, e.g. in the neuroscience
domain, distortion could refer to a situation in which a converter obscures tumours
of certain diameter. Similarly, as new converters and quality attributes may appear over
time, we plan to define means to evolve the domain specific-functions and QoS profiles.
We are also considering to explore applying the techniques used in this work to other
forms of repairs. e.g. service substitution in workflows with obsolete services.

Acknowledgments. This material is based upon work funded by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and devel-
opment center. Further support for this work came from Office of Naval Research grant
ONR-N000140811223, the Center for Computational Analysis of Social and Organi-
zational Systems (CASOS) and the FCT Portuguese Science and Technology Agency
under the CMU-Portugal faculty exchange program. The authors would like to thank
to Aparup Banerjee, Laura Gledenning, Mai Nakayama, Nina Patel, and Hector Rosas
–MSE students at CMU, and Diego Estrada Jimenez –MSE student at the CIMAT for
their contributions in development of the SWiFT tool and the integration of the engines
into it respectively.

References

1. Baryannis, G., Plexousakis, D.: Automated Web Service Composition: State of the Art and
Research Challenges. Technical Report ICS-FORTH/TR-409, ICS-FORTH (2010)

2. Belhajjame, K., Embury, S.M., Paton, N.W.: On characterising and identifying mismatches
in scientific workflows. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS
(LNBI), vol. 4075, pp. 240–247. Springer, Heidelberg (2006)

3. Bhuta, J., Boehm, B.: A framework for identification and resolution of interoperability mis-
matches in COTS-based systems. In: Proc. of the Int. Workshop on Incorporating COTS Soft.
into Soft. Syst.: Tools and Techniques. IEEE Comp. Soc. (2007)

4. Bowers, S., Ludäscher, B.: An ontology-driven framework for data transformation in scien-
tific workflows. In: Rahm, E. (ed.) DILS 2004. LNCS (LNBI), vol. 2994, pp. 1–16. Springer,
Heidelberg (2004)

5. Cámara, J., Martı́n, J.A., Salaün, G., Canal, C., Pimentel, E.: Semi-automatic specification
of behavioural service adaptation contracts. ENTCS 264(1), 19–34 (2010)

6. Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the presence of
multiple objectives. In: Proc. of the Int. Workshop on Self-adaptation and Self-managing
Systems, pp. 2–8. ACM (2006)

7. Chowdhury, S.R.: Assisting end-user development in browser-based mashup tools. In: Proc.
of the Int. Conf. on Software Engineering, pp. 1625–1627. IEEE Press (2012)

136 P. Velasco-Elizondo et al.

8. Dwivedi, V., Velasco-Elizondo, P., Fernandes, J.M., Garlan, D., Schmerl, B.: An architectural
approach to end user orchestrations. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011.
LNCS, vol. 6903, pp. 370–378. Springer, Heidelberg (2011)

9. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River (2005)

10. Ko, A.J., et al.: The state of the art in end-user software engineering. ACM Comput.
Surv. 43(3), 21 (2011)

11. Hull, D., et al.: Taverna: A tool for building and running workflows of services. Nucleic
Acids Research 34(Web Server Issue), W729–W732 (2006)

12. Fishburn, P.C.: Utility theory for decision making. Pub. in operations research. Wiley (1970)
13. Gacek, C.: Detecting architectural mismatches during systems composition. PhD thesis, Uni-

versity of Southern California, Los Angeles, CA, USA (1998)
14. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is so hard. IEEE

Software 12, 17–26 (1995)
15. Garlan, D., Dwivedi, V., Ruchkin, I., Schmerl, B.: Foundations and tools for end-user ar-

chitecting. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539,
pp. 157–182. Springer, Heidelberg (2012)

16. Gil, Y., Ratnakar, V., Deelman, E., Spraragen, M., Kim, J.: Wings for Pegasus: A semantic
approach to creating very large scientific workflows. In: Proc. of the Int. Conf. on Innovative
Applications of Artificial Intelligence, pp. 1767–1774. AAAI Press (2007)

17. Hansen, K., Ingstrup, M.: Modeling and analyzing architectural change with Alloy. In: Proc.
of the ACM Symposium on Applied Computing, pp. 2257–2264. ACM (2010)

18. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press (2006)
19. Grechanik, M., Bierhoff, K., Liongosari, E.S.: Architectural mismatch in service-oriented

architectures. In: Proc. of the Int. Workshop on Systems Development in SOA Environments.
IEEE Comp. Soc. (2007)

20. Kim, J.S., Garlan, D.: Analyzing architectural styles. Journal of Systems and Software 83,
1216–1235 (2010)

21. Klusch, M., Gerber, A.: Evaluation of service composition planning with OWLS-XPlan. In:
Proc. of the Int. Conf. on Web Intelligence and Intelligent Agent Technology, pp. 117–120.
IEEE Comp. Soc. (2006)

22. Kongdenfha, W., Motahari-Nezhad, H.R., Benatallah, B., Casati, F., Saint-Paul, R.: Mis-
match patterns and adaptation aspects: A foundation for rapid development of web service
adapters. IEEE Transactions on Services Computing 2, 94–107 (2009)

23. Letondal, C.: Participatory programming: Developing programmable bioinformatics tools
for end-users. In: End User Development. Human-Computer Interaction Series, vol. 9,
pp. 207–242. Springer, Netherlands (2006)

24. Li, X., Fan, Y., Jiang, F.: A classification of service composition mismatches to support ser-
vice mediation. In: Proc. of the Sixth Int. Conf. on Grid and Cooperative Computing, pp.
315–321. IEEE Comp. Soc. (2007)

25. Neu, S.C., Valentino, D.J., Toga, A.W.: The LONI debabeler: a mediator for neuroimaging
software. Neuroimage 24, 1170–1179 (2005)

26. Schmerl, B., Garlan, D., Dwivedi, V., Bigrigg, M.W., Carley, K.M.: SORASCS: a case study
in SOA-based platform design for socio-cultural analysis. In: Proceedings of the Int. Conf.
on Software Engineering, pp. 643–652. ACM (2011)

27. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition
using SHOP2. Web Semant. 1(4), 377–396 (2004)

28. Wassink, I., van der Vet, P.E., Wolstencroft, K., Neerincx, P.B., Roos, M., Rauwerda, H.,
Breit, T.M.: Analysing Scientific Workflows: Why Workflows Not Only Connect Web Ser-
vices. In: Proc. of the Congress on Services, pp. 314–321. IEEE Comp. Soc. (2009)

29. Wong, S., Sun, J., Warren, I., Sun, J.: A scalable approach to multi-style architectural mod-
eling and verification (2008)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 137–152, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Co-production Scenarios for Mobile Time Banking

John M. Carroll

Center for Human-Computer Interaction/College of Information Sciences and Technology
The Pennsylvania State University

University Park, Pennsylvania 16803 USA
jmcarroll@psu.edu

Abstract. Time banking facilitates generalized reciprocity among neighbors by
rewarding contributions in proportion to the time entailed in contributing.
Contributions can be person-to-person services, such as driving another person
to an appointment. They can also be co-productions, in which the provider and
recipient jointly enact a service, such as giving/receiving a guitar lesson.
Co-production is an important category of time banking interaction; it has been
identified as a key to strengthening the core economy of home, family,
neighborhood and community, and is becoming integrated into government so-
cial service schemes. As part of a requirements analysis for mobile timing bank-
ing infrastructures, we identified and analyzed co-production scenarios. Our
objective is to contribute to the social movements of co-production of social
services and of time banking through designing and developing a socio-
technical infrastructure that mutually leverages both to build up the core
economy and to enable societal-scale time banking.

Keywords: time banks, co-production (social services), scenario based design,
community informatics, ubiquitous computing, socio-technical infrastructures.

1 Introduction

In this paper, we consider co-production of social services as a time banking
interaction, drawing upon our on-going work developing new models for mobile time
banking, and new software infrastructures and tools for time banks. Time banking is
valuing contributions by the time it takes to produce them, and mediating exchanges of
effort and other contribution among community members by adjusting time credit
balances (Cahn, 2000; Cahn & Rowe, 1992; Seyfang, 2004a,b; Seyfang & Smith,
2002). For example, one person might have a car, and can drive neighbors to
appointments and grocery shopping, while another knows how to garden. Each can
contribute their effort to the time bank, and also draw against their time balances to
make requests, for example, having someone mow their lawn. Time banking is an
alternative economic paradigm to exchanges of money. Because it emphasizes person-
to-person interactions, and because everyone’s contributions are valued on the same
scale (time), time banking strengthens local social ties and social capital, enhances
personal dignity in ways that the money-based economy does not (Coleman, 1988;
Collom, 2005, 2008b; Putnam, 2000; Ozanne, 2010; Molnar, 2011; Seyfang, 2002,
2003, 2009).

138 J.M. Carroll

In the context of modern market economies and government bureaucracies, time
banking is radical. It is a generalized exchange economy not based on money, and
values everyone’s contribution on the same scale (time expended). Although ac-
counts, debits and credits are explicitly managed in time banks, there is a high level of
consensual self-management on the part of time bank members, based on moral obli-
gation. Thus, although time credits can be used to obtain goods and services, they also
serve to recognize engagement in and contribution to the community (Glynos &
Speed, 2013). Time banking has spread rapidly in recent years; for example, the non-
profit organization, TimeBanks USA facilitates 276 time banks in North America
through 27,000 members, as well as in other countries, including Australia, Canada,
Costa Rica, Italy, the Netherlands, New Zealand, Portugal, Russia, Saint Martin,
Ukraine, the United Arab Emirates, Uruguay, and Vietnam (TimeBanks USA, 2013).
The number of time banks in Spain has doubled during the past three years, to about
300 (Moffett & Brat, 2012); the number of time banks in the United Kingdom is also
about 300 (TimeBanking UK, 2013).

Co-production of social services is producing social service outcomes through col-
laborations of recipients, social service professionals, and other stakeholders, in which
all the stakeholders have power and responsibility to identify and achieve successful
outcomes, and in which recipients or clients of services work directly with service
providers to produce services. The concept of co-production originated in the obser-
vation that effective delivery of social services sometimes depends upon the active
involvement of the service recipients. The signature example is Ostrom’s (1993,
1996) analysis of the increase in Chicago street crime that coincided with police
switching from walking a neighborhood beat to patrolling in cars. Ostrom argued that
patrolling in cars reduced contact with residents, and thereby diminished the extent to
which neighborhood safety could be effectively pursued as a joint project of police
(service providers) and residents (service recipients/clients). The police officer in the
street is in a better position to co-produce public safety with active involvement of the
public: Police and residents can get to know one another better, trust one another
more, share and display awareness of events, and directly and indirectly collaborate to
provide neighborhood safety.

Co-production is not passive cooperation, such as a patient answering a doctor’s
diagnostic questions in a medical interview. And it is more than participation in plan-
ning what will be done. It is direct sharing in the work itself; it makes a service provi-
sion into reciprocal support in which the client works with the service provider to
achieve an outcome better for both. An institutional example is Habitat for Humanity,
an international non-governmental organization that builds low-income housing with
volunteer labor, including the labor of the people who will later live in the house be-
ing built and of people who previously received housing assistance from group.

Edgar Cahn (2010) extended the concept of co-production arguing that effective
co-production involves partnerships among communities and agencies, as well as
among individual community members and service professionals. In this view, co-
production relies on individual initiatives and relationships but in the context of a
broader transformation of roles and responsibilities, including roles and responsibili-
ties of municipal and other government entities. In Cahn’s notion, social service

 Co-production Scenarios for Mobile Time Banking 139

professionals are facilitators more than providers, and services themselves are nego-
tiated and produced by all stakeholders working toward collective goals. Time bank
credit and peer recognition is a key social regulatory mechanism in this conception
(Glynos & Speed, 2013).

In fall of 2011, we proposed to TimeBanks USA the project of creating smart
phone software to support mobile time banking. TimeBanks USA agreed to work with
us; they were in the midst of defining and developing a new version of the web-based
Community Weaver platform, used by hundreds of time banks throughout the world
(Community Weaver, 2013). Initially, our effort was focused on designing and
developing a mobile client or clients that could access the database server of the
Community Weaver platform. We began to envision and analyze mobile time banking
scenarios. Design scenarios are intended to represent and to problematize designs, that
is, to both initially codify and also raises issues about design approaches. As part of a
requirements analysis for mobile timing banking infrastructures, we identified and
analyzed co-production scenarios (Carroll, 2000).

In this paper, we describe scenario development for mobile time banking. We be-
gan inspired by the idea that community members could leverage one another to carry
out small tasks, reducing the overall busyness of the ensemble of people throughout
the community. In the course of developing and analyzing this idea and our initial
scenarios for envisioning it, we discovered time banking as a pre-existing concept for
what we had in mind, and reconceived our idea as mobile time banking. Coming at
mobile time banking from the angle of reducing busyness probably biased us toward a
somewhat task oriented notion of the services that community members might
exchange in a time bank.

Our partners in TimeBanks USA were pleased with our initial prototyping work,
and indeed asked us to consider that the mobile platform might be the new default
platform for time banking. But they also urged us to emphasize co-production scena-
rios, scenarios in which time banking services and social effects are more collective.
Initially it seemed to us that co-production scenarios were just a broadening of para-
meters for community-based exchanges. However, the logic and the motivational
dynamics underlying co-production are entirely different. We operationalized this
transition as one from scenarios that emphasize “doing for” to scenarios that also
emphasize “doing with”. We present our experience both as a concrete instance of
shifting from an individual to a collective perspective in service design, and as a
general reflection on the potentially cascading effects of what at first seem small
refinements in a design concept.

2 Scenarios for Mobile Time Banking

Our initial scenarios for mobile time banking sought to identify ways people can do
things for other people (1) with relatively minimal effort, (2) leveraging the
affordances of mobile devices, such as GPS (Global Positioning System) information
and being pre-situated in a flow of embodied activity. We saw this as a source of new
value for time banking, which we understood to be highly transactional and managed

140 J.M. Carroll

through a web-based content management system, Community Weaver (2013). Our
reasoning was that small favors at just the right time and place might generate
outsized benefit for the recipient to the actual time and trouble they cost the producer.
We saw this as a novel and opportune approach to generating and strengthening social
ties and social capital in a local community (Carroll, Bellotti & Han, 2013).

Our initial touchstone scenario for mobile time banking is the Get Aspirin scenario
in Table 1.

Table 1. Get Aspirin scenario (from Carroll et al. 2013)

Mary was in the market to buy some groceries. While she was shopping, she
quickly checked Mobile Time Bank (MTB) requests. One of her neighbors,
John, had posted a request for a bottle of aspirin an hour ago. John was at home
with his daughter, who had a cold. Mary would be driving right past his home
anyway. Since she already knew John, she called him up and told him the aspi-
rin was on the way. She also accepted the request in her MTB app. She had a
brief chat with John while dropping off the aspirin. As she left, she felt good
about helping someone, but also was struck by how easy it was to do, earning
time bank credit as well.

This scenario was effective in evoking ubiquitous interaction possibilities, but also
in raising requirements issues. On the upside, it conveys a new possibility for John to
both get his aspirin quickly, and without having to drag his daughter to the store, and
also to experience social support from his neighbor, Mary. On the downside, the
scenario emphasizes how stringent the timing relationships are: If Mary has more
shopping to do, and arrives three hours later, John may be frustrated. He may have
made other arrangements for the aspirin and no longer need it. It also emphasizes the
social risks implicit in such interactions. Perhaps John will be anxious about posting
such a request to a community time bank, depending on a stranger for something vital
like aspirin, and inviting a stranger to his home. On Mary’s side, she may be reluctant
to accept John’s request, if she does not already know him.

We generated and analyzed a set of scenarios that emphasize needs and opportuni-
ties that involve relatively small efforts whose value is magnified by being timely and
co-located. For example, someone’s car breaks down on a highway as they are
driving across town, or they miss the last bus, and they post a time bank request to get
picked up.

We identified a type of scenario that involves transactions in which one person’s
efforts can be almost entirely leveraged by another person. For example, one person
might want to get tickets to a Bruce Springsteen concert, or purchase a textbook for
the Psychology 101 course. She/he could post a request to the time bank asking for
someone else, who is already planning to carry out that transaction, to do it for both of
them, that is, to get an extra ticket or textbook. In this type of scenario, the extra work
is only the work required to manage the time banking transaction itself (e.g., ex-
change money for ticket or book), the person was going to wait on line and go
through the purchase protocol anyway. We imagined real time versions of these

 Co-production Scenarios for Mobile Time Banking 141

scenarios that could depend more critically on mobile interactions, such as arranging
for someone to buy your ticket while you are in the queue, and so that you can leave
the queue and still get the ticket. These scenarios have downsides in that money is
involved: Someone buys something for someone else and either must front them the
money, or must collect it advance, and then be trusted to deliver the purchase.

These first scenarios for mobile time banking, modeled on time banking scenarios
but emphasizing finer grained coupling of participants with respect to time and place,
all involve voluntary service provision, in which a doer provides a service to a reci-
pient). We communicated regularly with our partners in TimeBanks USA as we de-
veloped our first set of scenarios, and implemented an Android prototype for a user
study. Our prototype closely models the dialogs of Community Weaver (2013):
Members can post requests and offers for other time bank members to accept. Accept-
ing a request/offer initializes a handshake in which the original requestor/offeror
confirms the arrangement. The confirmation step could include message exchanges,
setting times and places, and checking one another’s profile information (profiles
include a summary of previous requests, offers, and accepts, though with names of
other members involved). After the service exchange, the recipient notifies the time
bank to award time credit to the service provider’s account, and to debit the reci-
pient’s account (see Bellotti, Carroll & Han, 2013; Carroll et al., 2013, for details).

3 Co-production Scenarios

Our partners were pleased with our initial work, but also suggested that we consider
including co-production scenarios. In fact, we had included co-production scenarios,
but not emphasized co-production. Indeed, any interaction that involves tutoring or
coaching is ipso facto a co-production scenario. This is because in any kind of
teaching, the learner is an agent and collaborator in the activity. Once co-production
had been specifically called out to us, we noticed that most time banks included these
interactions in their basic descriptions of how time banking works. For example, in its
overview description on the Web, Community Exchange (a large time bank located in
Allentown, Pennsylvania, USA) describes several “typical” time banking interactions,
as quoted in Table 2 (next page). Tony installs an air conditioner for Carol and drives
Ellen to the doctor; these are both service contributions that are good examples of
concrete helping, but are not co-productions. However, Tony helps Linda move
furniture; this is a co-production, because Linda is involved too. Tony uses his time
dollars to have Frank help him install tile; this is also co-production. Carol teaches
drawing, though her students are not named in the scenario sketch, those students are
co-producers of the drawing lessons. Linda assists time bank members with word
processing; again, this is co-production.

Once we “got” the general co-production schema, it was, of course, everywhere. It
suggested variations on the person-to-person mobile time banking interactions we had
already identified. For example, in the Get Aspirin scenario, if Mary is a neighbor
who is going shopping anyway, and takes John along so that he can get aspirin, that
is co-production in that the two actors jointly achieve the outcome. Similarly, if

142 J.M. Carroll

someone’s car has broken down and they request help to get it started (e.g., to borrow
jumper cables for a battery charge up), that could be co-production. And for the sce-
nario of waiting online for tickets and books, if instead of asking someone to wait for
you, you ask someone to wait with you, that is co-production. We summarized the
general distinction to ourselves as “doing for” (service provision) versus “doing with”
(co-production).

Table 2. Co-production scenarios illustrating the lessons pattern and the helping pattern (from
the overview of Community Exchange, 2013)

“Tony needed help tiling his bathroom before his new baby arrived. He earned
“time dollars” by installing an air conditioner for Carol, driving Ellen to the doc-
tor and helping Linda move furniture. He earned enough “time dollars” to have
Frank help him with the tiling.

In exchange for Tony’s help, Carol teaches drawing and transports Community
Exchange members to the grocery store. Linda uses her computer skills to assist
members with word processing, and Ellen serves on Community Exchange’s
advisory board and offers telephone assistance and companionship.

Over and over and over, members exchange their time and skills, building
healthy community connections, while learning that receiving is as valuable as
giving.”

Co-production initially appeared to us as an elaboration of the service contribution
scenarios we had been developing. The examples we found on websites of
TimeBanks USA members overwhelmingly were instances of what we might call the
“lessons” pattern (using the term pattern, loosely, in the sense of a schematic design
solution; Alexander et al., 1977), as in Table 2 where Carol and Linda actually pro-
vide instruction to time bank members, and the “helping” pattern, where Tony helps
Linda move furniture, and Frank helps Tony install tile: In both patterns, the doer
provides a service to the recipient, but the service entails close collaboration, and thus
the recipient also must be a doer. The lessons and helping patterns illustrate “doing
with” in contrast to “doing for”.

We found examples in which helping co-productions were integrated into govern-
ment social service provision (Ryan-Collins, Stephens & Coote, 2008). For example,
in the Rushley Green time bank in London, members receive credit for accompanying
elderly members who are shopping, visiting elderly people in their homes, etc. to
enable the elderly to live on their own. In this case, local doctors, working for the
British National Health Service, refer their patients to the time bank for co-produced
social support, in effect, having their patients do their own social services with the
help of fellow citizens. Current policy debate in the United Kingdom is considering
broader incorporation of co-production into social service programs (Glynos & Speed,
2013; Seyfang, 2006).

 Co-production Scenarios for Mobile Time Banking 143

Table 3. Pay-forward co-production pattern (from Stephens, Ryan-Collins & Boyle, 2008)

If you are discharged from the Lehigh hospital outside Philadelphia, you will be
told that someone will visit you at home, make sure you’re OK, if you have
heating and food in the house. You are also told that the person who will visit
you is a former patient, not a professional, and that – when you are well – you
will be asked if you could do the same for someone else.

As we focused on co-production, we were able to identify further patterns. For
example, we call the time banking interaction described in Table 3, the pay-forward
pattern: A doer renders a service contribution to a recipient (while mobile), but
subsequently that recipient becomes a doer with respect to an analogous service pro-
vided to another recipient. In this example the service co-production is mediated by a
community institution, the hospital; it is not an interaction between two community
members, as in the helping and lessons examples of Table 2.

Also, the service that is produced and exchanged is quite specific, not generalized;
the recipient is expected to do something more specific than just contribute the same
amount of time to the time bank, though it is important to emphasize that in this inte-
raction, as in all time banking interactions, the reciprocity is based only on moral
obligation. Habitat for Humanity is another example of the pay-forward pattern; the
organization helps you build your home with the expectation that in the future you
will help others to build their homes. As is also the case with participation in Habitat
for Humanity, recipients in this pay-forward service exchange often become longer-
term doers, providing visits not just for one other patient, but adopting the role of
patient visitor and visiting many other patients (Stephens, Ryan-Collins & Boyle,
2008). Note also that the lessons pattern and the helper pattern become versions of the
pay-forward pattern if the recipient goes on to share what they learned through the
lessons or helping interactions (e.g., Frank helps Tony with tiling, then Tony
helps someone else; Carol teaches someone drawing, and then that person teaches
someone else).

Another interesting fact about this example is that it was based upon practices in
the Community Exchange time bank, from whose website Table 2 was excerpted.
Thus, the more radical form of co-production that is very much a part of the time
bank’s practice (Table 3) is nevertheless invisible in the short examples they present
on the overview page (Table 2). Community Exchange is affiliated with TimeBanks
USA and this type of mobile time banking scenario was one of their specific motiva-
tions for establishing the partnership with our group.

We identified another example of co-production in which members initiate a ser-
vice for other members, in this case sharing telephone conversations with housebound
people who may be lonely (Ryan-Collins, Stephens & Coote, 2008). As described in
Table 4, the service is intended to be reciprocated (and thereby is a co-production),
but we might go further and consider that the interaction could be a social model for
the housebound members to reach out to community members beyond the specific
people who initiated the contact. Because many people have mobile telephone ser-
vice, these interactions can be mobile time banking scenarios; indeed, this is the type

144 J.M. Carroll

Table 4. Cascading communication co-production pattern (from Ryan-Collins, Stephens &
Coote, 2008)

Volunteers telephone an older person regularly for a chat. Many of the volun-
teers receive as well as make phone calls providing opportunities for reciprocity
and enabling house bound people to make a contribution.

of telephone interaction many people now carry out in interstitial time (Dimmick,
Feaster & Hoplamazian, 2011). We call this the cascading communication pattern.

This pattern is like the pay-forward pattern in that the service exchange is specific
to telephone chats. Indeed, to the extent that the recipients (the housebound people)
return calls only to those who first called them, it is entirely dyadic, generalized
neither with respect to what service is rendered nor to whom it is rendered. However,
we suggest that housebound people might come to see that telephone chatting is a role
they can play, and a general way they can contribute. In that case, seeding the
initiation of the calls could create a cascade of (co-produced) support network activity
throughout the community.

Another category of co-production scenarios involves community programs that
aggregate and focus collective effort on various community interests and concerns.
Timebanking Wales created the “Time for Young People” program through which
young people helped to run a summer festival, participated in environmental projects,
and produced concerts for the community, earning time credits, and contributing di-
rectly to the community (Ryan-Collins, Stephens & Coote, 2008). As in the Rushley
Green and Community Exchange examples above, this is an example where time
banks are becoming integrated with public services. The young people in Wales are in
effect co-producing their own social service program, which in turn is producing ser-
vices to the broader (festivals, concerts, environmental projects). This is a good ex-
ample of Cahn’s (2010) elaborated view that effective co-production involves
partnerships between communities and agencies, as well as between particularly
community members and service professionals, co-production can also be taken as a
policy and design principle, urging that recipients, providers and society all benefit
more when recipients play an active role in the services they receive.

The community program pattern does not require direct involvement of govern-
ment. In our Nostalgia project (Carroll et al., 1999), we helped a group of community
elders carry out a community program in which they posted stories about community
life when they were young adults, and other community members commented on
these posts, creating an online discussion about community history by the community
itself, and enhancing awareness, knowledge and engagement in community history.
The elders co-produced this service with all those who posted comments, or even read
posts and comments. The community program pattern has a mobile time banking
variant through services like Lost State College (Carroll & Ganoe, 2008), which al-
lows participants to tour community heritage sites, to access site-specific heritage
information via GPS coordinates, and to participate in social media interactions
referring to the heritage sites.

 Co-production Scenarios for Mobile Time Banking 145

We also reconsidered two examples of co-production that are widely cited as
touchstone examples: Ostrom’s example of the help residents provide to police when
the police walk a beat (cited above), and Jacobs’ (1961) example of the contribution
longtime residents make in awareness of street activity for ensuring neighborhood
safety. In Ostrom’s example, policemen and community members casually interacted,
neither classified most of that interaction as instrumental, but it nonetheless has the
consequence of building trust between the police and the community and of keeping
police apprised of what was going on. This is an example of community work, of
community members playing an active role in maintaining their own safety, but in the
example no one is really being called upon to do anything beyond being sociable. In
Jacobs’ (1961) example older residents in a neighborhood keep an eye on what is
going on more so than residents who have recently arrived. The older neighbors
would be able to do this because they know more about what is normal for a given
day of week or time of day (Table 5). This is not the same as a neighborhood watch,
where a community member is designated and actually patrols; it is more a matter of
vigilance or active awareness.

Table 5. Street life vigilance (based on Jacobs, 1961)

Harry and Maude are a retired couple who have lived in neighborhood for many
years. They walk their dog several times a day, and like to sit on their porch in
good weather. They recognize many of their neighbors, and like to say Hello.
They have a sense of what is normal and keep an eye on things.

These examples seem to be instances of a community awareness pattern: Commu-
nity members, especially long-term residents, have rich local knowledge; they recog-
nize neighbors, and they know what is normal activity. These resources allow them to
co-produce safety and security with service professionals, like the police, and collec-
tively with their fellow community members. In Ostrom’s example, the residents are
human sensors to inform the police, but the interaction works best when the police
walk a beat, and regularly chat with the residents, in effect pulling information. In
Jacobs’ example, the long-time residents are acting as push sensors; they incidentally
see and hear what is going on in the street in front of their homes, and in the commu-
nity around them. If something is amiss, they can detect it early and report it.

Mobile time banking variants of the community awareness pattern are easy to iden-
tify. Community members who are out and about in the community space and
carrying mobile devices are all potentially human sensors. They can report suspicious
activity to police or other authorities, and they can in principle be directly queried. As
in Jacobs’ example (Table 5), more established and connected neighbors would be
expected to make especially good mobile human sensors.

4 Institutionalizing Co-production

Our analysis of co-production scenarios for time banking raises questions about
valuing contributions in time banking. The principle that contributions are valued by

146 J.M. Carroll

the time required to perform the contribution makes clear sense for lessons and
helping: Recipients are collaborating to produce the services but it is also clear that
they are receiving services and from whom they are receiving services. Time-based
valuing seems somewhat less relevant to pay-forward and cascading communication
cases since these are specifically targeted, and also include a sort of “chain letter”
logic to achieve a fan out of reciprocated service contributions. Looking specifically
at the economic exchange, pay forward and cascading communication are really
barters of specific acts of social support. Thus, the issue of time credits, of generalized
exchange, seems secondary. The time bank in such cases seems to be functioning
more as an instrument of recognition than of value exchange.

In the community program pattern it seems like all the active participants – teenag-
ers, counselors/advisors, people who participate in or attend program, elder storytel-
lers, younger story commenters, story and comment readers – are providing services
for one another. Indeed, although these seem to be good examples of co-produced
community services, it is difficult to pin down all the recipients of the service in these
cases, raising the question of who or what would be debited for time credits for the
service exchange. This problem of identifying the service recipient also seems critical
for Ostrom’s and Jacobs’ community awareness co-productions; these are co-
productions because the human sensors are both recipients and providers of the ser-
vice. However, many other residents are also recipients of enhanced neighborhood
safety, but would never even realize that they had received this benefit. Indeed, many
of the co-producers of the services – people who chat with police on the beat, neigh-
bors who keep an eye on cars pulling into driveways – might not even realize that
they are in fact participating in producing a community service.

One way to think about this is that the exact magnitude of the valuation of a time
bank contribution matters less than the fact that it is valued at all. Thus, in many of
the more difficult examples, those beyond the lessons and helping patterns, people
generally receive nothing at all for doing this, and yet they do it. The key to Ostrom’s
example was not that the police paid for this service, but merely that they made them-
selves available to it by being in the streets walking a neighborhood beat, instead of
insulated from residents by riding in a patrol car. In this analysis, time credit for co-
production is an issue of community visibility and validation, that is, of making com-
munity contributions more visible to the community, including those that participate
in producing the contributions, and conveying to community members that such
active participation is indeed valued by the community.

This reconception, however, has design implications for time banking infrastruc-
tures. The logic of recognition is different than the logic of generalized exchange. The
latter emphasizes that the time required to make a contribution is a general way of
valuing contributions, and regulating exchanges of contributions through the time
bank. The former emphasizes making contributions visible and legitimate to the
community. One way to achieve recognition is to award significant time credit,
though as discussed above, complications arise in co-production scenarios as to who
was a recipient of the contribution. But achieving recognition goals through award of
time credits also undermines the generalized exchange of time credits. Thus, if Harry
and Maude (Table 5) get 6 time credits for merely being home and occasionally

 Co-production Scenarios for Mobile Time Banking 147

looking out their front window, will it seem equitable to you to wash my car for one
time credit? Conflicts between the logic of recognition, which seems critical to im-
plement co-production scenarios for time banking, and the logic of generalized ex-
change, which is the basis for person-to-person scenarios like Get Aspirin (Table 1).

We have confronted the tension around recognition and exchange with respect to
co-production scenarios both by trying to envision designs that could mitigate the
tension, and by investigating how this issue manifests and is managed in current time
banking practices. One approach to this challenge is to award nominal time credit for
relatively continuous co-production for which it is difficult to identify a specific
recipient. Thus, Harry and Maude might receive just one time credit. In many cases,
indeed in Ostom’s and Jacobs’ original observations, community members are already
making these contributions with neither recognition nor reward; a nominal reward
publicly and tangibly acknowledges the contribution, makes what might have been
invisible more visible, and does not disturb the overall economy of generalized
exchange “too much”.

Another design approach would be a separate mechanism for time banks to manage
recognition. In this approach, Harry and Maude would not get time credits for co-
producing neighborhood safety through their street life vigilance. They would instead
receive recognition for contributing to community awareness. This might be imple-
mented as a notification subsystem in the time bank to apprise members of recogni-
tions. This approach has the advantage of avoiding the “deficit spending” of awarding
time credits when there is recipient account to debit, but it has the great downside of
disaggregating contributions into categories, which is economically chaotic and
socially fragmenting.

In addition to envisioning design interventions, we consulted research literature
and best practices in time banking. There is a well-documented tendency for time
bank members to provide more services than they request (Ozonne, 2010; Seyfang,
2006). In some respects, this is a flaw with respect to the logic of exchange, and sig-
nals some sort of problem with respect to reciprocity. However, just with respect to
tallying time credits, it suggests that time banks may often run a surfeit, and therefore
could fund the “deficit spending” approach of awarding nominal, or perhaps more
than nominal credit for co-production interactions in which the recipients were diffi-
cult to enumerate. This is complicated by observation of the opposite pattern among
minority users of one time bank; namely, receiving more services than they provided
(Collom, 2008).

Cahn (personal communication) added to this his observation that members often
do not bother to account for services they render to or participate in producing with
other members who they regard as personal friends. He also mentioned that time bank
members may donate time credits that they have eared back to the time bank, and that
this is a standard practice in time banks. Both of these points also identify sources of
unused time credit that could be invested in generalized co-productions. Finally, Cahn
mentioned that the pay-forward pattern (Table 3) technically requires deficit spending
in that people are provided services first, and then subsequently are given an
opportunity to co-produce and earn time credits.

148 J.M. Carroll

Our analysis of co-production scenarios for time banking indicated that co-
production is already pervasive in time banking, that it is not a single pattern or inte-
raction, and that it can be problematic. Time banking is not just the substitution of
hours for dollars; it is intended to signal an alternative foundation for exchange and
for services. We all already have time; we can invest it, exchange it, share it, and
donate it. Doing with is more inclusive, participatory, and empowering. It affirms
skills and knowledge, efficacy and control. Nevertheless, in a global context in which
governments are reducing resources for social services there is an inherently coercive
edge to co-production if one must cooperate with the development regime to get ser-
vices; there is the risk that “empowering” recipients to co-produce their own social
services will encourage government bureaucrats not to encourage and support
co-production, but to use it as justification for further resource reductions. These
downsides must be monitored by socio-technical designers.

Our scenario analysis of requirements for mobile time banking initially focused on
individual value exchanges, person-to-person interactions. Identifying the importance
of co-production specifically strengthens and simplifies some of our problematic ini-
tial ideas. For example, we had identified having someone else wait in line to pur-
chase tickets as a plausible mobile time banking interaction, but also identified as one
downside the fact that a significant amount of money might be involved. An interest-
ing co-production variant of the purchase ticket scenario is finding someone to wait
with you in the queue: Viewed as a service, the doing with alternative is more modest,
but it is also more social, and does not put anyone’s money at risk.

The other co-production patterns we identified provide specific ideas to explore in
design. One implication of co-production is that the time bank itself should hold time
credits that it can invest on behalf of the community to provide recognition for gene-
ralized co-production contributions, to support pay-forward interactions, etc. The
exact way this should be implemented is not clear at all, but it is an important
direction for us to investigate through prototyping.

5 Discussion and Implications

Contemporary life can be busy and alienating. Putnam (2000) detailed the decline of
civic and political participation, neighborliness, sociality, and volunteerism, as well as
citizen perceptions of trust, honesty, interdependence, and social and moral values in
contemporary American society. Putnam analyzes these patterns as evidence of a
decline in social capital, defined as societal norms of generalized reciprocity
(Coleman, 1988; Putnam, 2000: 18-27). The famously dystopian title of his book,
Bowling Alone (Putnam, 2000), depicts a world of solitary individuals who trust, care
about, depend upon, and interact with one another less than their parents did. Time
banking is a remarkable counter-current to this dismal social trajectory.

Co-production and time banking are key elements of an alternative social/economic
paradigm for social service provision, community service exchange, and person-
al/community health and well being in which community members collaborate with

 Co-production Scenarios for Mobile Time Banking 149

one another and with service professionals and institutions to produce and exchange
services and other contributions throughout the community. Our objective is to contribute
to these social movements through designing and developing a socio-technical infrastruc-
ture that mutually leverages both to build up the core economy (Cahn, 2010) of family
and local community, and to enable societal-scale time banking.

In this paper, we described the scenario analysis front-end of a project to develop
mobile time banking infrastructures, focusing on the distinction between service ex-
change scenarios and co-production scenarios. As we began this work, we focused on
service exchange scenarios, and from that perspective, broadening consideration to
co-production scenarios seemed at first a modest elaboration. However, through the
scenario work and our prototyping (still underway) we have come to regard this dis-
tinction as more fundamental. Service provision scenarios can surely strengthen an
alternate economy of people helping people in a value framework of unusual equity
that gauges contributions to the collective good purely with respect to the time re-
quired to make the contribution. Strengthening networks of such person to person
helping generates social capital and enhances communities. Better software infra-
structures to support such service exchanges can contribute to this social innovation.

However, co-production scenarios of mobile time banking are more than a modest
elaboration of this paradigm. Co-production seems to be governed by a logic of rec-
ognition not contribution: Members who contribute to a collective good are recog-
nized, but not necessarily compensated hour-for-hour. Thus, the elderly neighbors
who keep an eye on street activity and enhance neighborhood safety are not actively
producing a service for someone in particular; rather, through their awareness and
local knowledge, they are co-producing a generalized public good. Publicly recogniz-
ing such co-production is itself a generalized public good – a validation and
encouragement for civic responsibility.

Our analysis of co-production scenarios for mobile time banking has specific de-
sign implications for our prototype. Our current approach, as described earlier, was
based directly on Community Weaver (2013). It involves a closed exchange loop
initialized by posting of service requests and offers for time bank members to accept,
followed by a confirmation handshake (optionally including dyadic message ex-
changes, setting times and places, and checking one another’s profile information),
the service exchange itself, and then closed with the service recipient notifying the
time bank to award time credit to the service provider’s account, and to debit the reci-
pient’s own account (Bellotti et al., 2013; Carroll et al. 2013).

Based on the foregoing analysis of co-production scenarios we suggest that all
stakeholders in a service be enabled to allocate credit – for co-production. Thus, as in
Table 2, after Frank helps Tony with the tiling, Tony would notify the time bank to
award credit to Frank, and to debit Tony’s own account; this is standard time bank
protocol. In our design proposal, Frank would be also be able to notify the time bank
to credit Tony’s account for his co-production of the tiling. Similarly, as in Table 4,
the housebound member would award time credit to the person who called him/her
for a chat, but that person, the caller, could also award credit to the housebound
person who reciprocates and calls back.

150 J.M. Carroll

Interestingly, and more challengingly, the notion of “stakeholders” in the service
appears to be broader than that of stakeholders in the exchange itself, as in the origi-
nal co-production scenarios from Ostrom and Jacobs. The retired couple in Table 5
are co-producing safety for their neighborhood but, in our example, have neither ac-
cepted an explicit request or made an explicit offer. They have not initiated or
responded to a time bank interaction. Similarly, as in our mobile extension of com-
munity awareness scenarios, members who are out and about throughout the commu-
nity, whose presence is continually co-producing community safety, are not doing so
because of an explicit time bank interaction. In our design proposal, any member can
assign nominal time bank credit for this sort of generalized co-production. For exam-
ple, any of the neighbors up and down the street can assign Harry and Maude credit
for their street life vigilance. As in a standard time bank interaction, the service that
was co-produced (e.g. street life vigilance) would be entered into the system, and the
co-producer(s) would be notified of the time credit.

Time credits earned through co-production interactions would appear, categorized
as such, in a member’s profile. Thus, when any member was checking another mem-
ber’s profile in the course of confirming a service arrangement (or in the course
awarding co-production credit), he/she would see prior time bank activity, including
prior co-production contributions. This elaboration of the basic time bank interaction
is our initial design proposal for responding to the challenge of co-production. Al-
though it seems odd at first to contemplate the approach of having exchanges of time
credits beyond the basic recipient-to-provider exchange, broadening the concept of
legitimate credit is, we believe, what the logic of recognition is telling us. Perhaps it is
just odd in the context of a lifetime of socialization into a hard currency world of
zero-sum economic games.

Community informatics is action research; it does not merely seek to understand
community and technology, it seeks to transform and enhance community through
new information infrastructures (Gurstein, 2007). Time banking and co-production
are social concepts and mechanisms, but also social movements; they are alternative
paradigms for economic exchange and social service provision, respectively, and they
both entail and require new information infrastructures. By pushing beyond the basic
“doing for” mobile time banking scenarios, as in Table 1, and extending our tools and
infrastructure to address co-production scenarios, Tables 2-5, we are moving, in the
terms of Glynos and Speed (2013), from additive to transformative conceptions of
time banking. That is, we are investigating not just how voluntary time banking ex-
changes can exist within the broader context of a bureaucratic and market-based
framework for social services and exchange, but how time banking and co-production
could change our sense of value and valuation, and the ways we exchange services,
appreciate one another, and develop as human beings.

Acknowledgements. We thank Edgar Cahn for generously answering the same
questions several times. This research was supported by the US National Science
Foundation (IIS 1218544) and by the Edward M. Frymoyer Chair Endowment.

 Co-production Scenarios for Mobile Time Banking 151

References

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
pattern language. Oxford Univ. Press (1977)

2. Bellotti, V., Carroll, J.M., Han, K.: Random acts of kindness: The intelligent and context-
aware future of reciprocal altruism and community collaboration. In: Proceedings of IEEE
CTS 2013: International Conference on Collaboration Technologies and Systems, San Di-
ego, CA, May 20-24, pp. 1–12. IEEE (2013)

3. Burrows, K.: Signs of health & emerging culture: Stories of hope and creative change from
2010 and 2011. In: Censored 2012. Seven Stories Press, New York (2012)

4. Cahn, E.S.: No more throw-away people: The co-production imperative. Essential Books,
Washington, D.C. (2000)

5. Cahn, E.S.: Co-production 2.0: Retrofitting human service programs to tap renewable
energy of community. Community Currency Magazine, 36–39 (March-April 2010)

6. Cahn, E.S., Rowe, J.: Time dollars: The new currency that enables Americans to turn their
hidden resource-time-into personal security and community renewal. Rodale Press, Em-
maus (1992)

7. Carroll, J.M.: Making Use: Scenario-Based Design of Human-Computer Interactions. MIT
Press, Cambridge (2000)

8. Carroll, J.M.: The neighborhood in the Internet: Design research projects in community in-
formatics. Routledge, New York (2012)

9. Carroll, J.M., Bellotti, V., Han, K.: Mobile time banking: Building social capital through
ubiquitous interactions (submitted, 2013)

10. Carroll, J.M., Ganoe, C.H.: Supporting Community With Location-Sensitive Mobile Ap-
plications. In: Foth, M. (ed.) Handbook of Research on Urban Informatics: The Practice
and Promise of the Real-Time City, pp. 339–352. Information Science Reference, IGI
Global, Hershey, PA (2008)

11. Carroll, J.M., Rosson, M.B., VanMetre, C.A., Kengeri, R., Kelso, J., Darshani, M.: Black-
sburg Nostalgia: A Community History Archive. In: Sasse, M.A., Johnson, C. (eds.) Pro-
ceedings of Seventh IFIP Conference on Human-Computer Interaction, INTERACT 1999,
Edinburgh, August 30-September 3, pp. 637–647. IOS Press/IFIP, Amsterdam (1999)

12. Collom, E.: The motivations, engagement, satisfaction, outcomes, and demographics of
time bank participants: survey findings from a U.S. system. International Journal of Com-
munity Currency Research 11, 36–83 (2007)

13. Collom, E.: Engagement of the elderly in time banking: The potential for social capital
generation in an aging society. Journal of Aging & Social Policy 20(4), 414–436 (2008)

14. Coleman, J.S.: Social capital in the creation of human capital. American Journal of Sociol-
ogy 94, S95–S120 (1988) (Supplement: Organizations and institutions: Sociological and
economic approaches to the analysis of social structure)

15. Community Exchange, Overview page, http://www.lvhn.org/
wellness_resources/classes_support_groups_and_events/
community_programs/community_exchange (accessed January 4, 2013)

16. Community Weaver, http://groups.drupal.org/node/180979 (accessed January
8, 2013)

17. Dimmick, J., Feaster, J.C., Hoplamazian, G.J.: News in the interstices: The niches of mo-
bile media in space and time. New Media & Society 13(1), 23–39 (2011)

18. Garfinkel, H.: Studies in ethnomethodology. John Wiley & Sons (1987, 1991) (Original
work published 1967)

152 J.M. Carroll

19. Gasser, L.: The integration of computing and routine work. ACM Transactions on Office
Information Systems 4, 257–270 (1986)

20. Glynos, J., Speed, E.: Varieties of co-production in public services: Time banks in a UK
health policy context. Critical Policy Studies 6(4), 402–433 (2013)

21. Gregory, L.: Spending time locally: The benefit of time banks for local economies. Local
Economy 24(4), 323–333 (2009)

22. Gurstein, M.: What is community informatics (and why does it matter)? Polimetrica, Mila-
no (2007)

23. Jacobs, J.: The death and life and great American cities. Random House, New York (1961)
24. Lasker, J., Collom, E., Bealer, T., Niclaus, E., Keefe, J.Y., et al.: Time banking and health:

The role of a community currency organization in enhancing well-being. Health Promotion
Practice 12(1), 102–115 (2011)

25. Moffett, M., Brat, I.: For Spain’s jobless, time equals money. The Wall Street Journal, A1
(August 27, 2012)

26. Ostrom, E.: A communitarian approach to local governance. National Civic Review, 226–233
(Summer 1993)

27. Ostrom, E.: Crossing the great divide: Co-production, synergy, and development. World
Development 24(6), 1073–1087 (1996)

28. Ozanne, L.K.: Learning to exchange time: benefits and obstacles to time banking. Interna-
tional Journal of Community Currency Research 14, 1–16 (2010)

29. Putnam, R.: Bowling Alone: The Collapse and Revival of American Community. Simon &
Schuster, New York (2000)

30. Ryan-Collins, J., Stephens, L., Coote, A.: The new wealth of time: How time banking
helps people build better public services. New Economics Foundation, London (2008),
http://www.neweconomics.org (accessed January 4, 2013)

31. Seyfang, G.: Tackling social exclusion with community currencies: learning from LETS to
Time Banks. International Journal of Community Currency Research 6(3), 1–11 (2002)

32. Seyfang, G., Smith, K.: The time of our lives: Using time banking for neighbourhood re-
newal and community capacity-building. New Economics Foundation, London (2002)

33. Seyfang, G.: “With a little help from my friends.” Evaluating time banks as a tool for
community self-help. Local Economy 18(3), 257–264 (2003)

34. Seyfang, G.: Time banks: rewarding community self-help in the inner city? Community
Development Journal 39(1), 62–71 (2004a)

35. Seyfang, G.: Working outside the box: community currencies, time banks, and social in-
clusion. International Journal of Social Policy 33(1), 49–71 (2004b)

36. Seyfang, G.: Harnessing the potential of the social economy? Time banks and UK public
policy. International Journal of Sociology and Social Policy 26(9-10), 430–443 (2006)

37. Seyfang, G.: The New economics of sustainable consumption: Seeds of change. Palgrave
Macmillan, New York (2009)

38. Stephens, L., Ryan-Collins, J., Boyle, D.: Co-production: A new manifesto for growing the
core economy. New Economics Foundation, London (2008),
http://www.neweconomics.org (accessed January 4, 2013)

39. Timebanking UK, http://www.timebanking.org (accessed January 1, 2013)
40. TimeBanks USA, http://timebanks.org/ (accessed January 8, 2013)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 153–168, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Co-evolution of End-User Developers and Systems
in Multi-tiered Proxy Design Problems

Daniela Fogli1 and Antonio Piccinno2

1 Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy
fogli@ing.unibs.it

2 Dipartimento di Informatica, Università degli Studi di Bari, Bari, Italy
antonio.piccinno@uniba.it

Abstract. This paper aims at analyzing the category of multi-tiered proxy design
problems, where end-user developers do not necessarily coincide with the actual
end users of the system, but can be considered as end users’ proxies. This situation
can be found in a variety of application domains, from home automation, where
electricians defining home automation systems for energy saving are different from
house occupants, to e-government, where administrative employees creating
e-government services are different from citizens using those services. The analysis
leads to the definition of a new interaction and co-evolution model, called ICE2,
which, on the basis of the model discussed in a previous work, considers not only
the case of end users that directly make their system evolve by means of end-user
development activities, but also the case where a proxy figure is present, namely an
expert in the application domain that creates and modifies software artifacts for
others (the actual end users). Finally, a design approach is proposed, which aims at
generalizing the solutions suggested in different application domains, and at
sustaining the interaction and co-evolution processes that involve end users,
end-user developers, and systems.

Keywords: interaction model, co-evolution, end-user developer, meta-design,
meta-model, multi-tiered proxy design problem.

1 Introduction

The communication gap often existing between users and developers usually leads to
developing interactive systems that are difficult to use and to learn. To cope with this
problem, since the eighties, the human-computer interaction (HCI) community is
promoting design approaches that give users a voice, such as user-centered design [1]
and participatory design [2], just to mention the most widespread approaches.

Another phenomenon has however been observed around HCI: users evolve by us-
ing software systems, and, to satisfy new users’ needs, designers must make systems
evolve. Carroll and Rosson describe this phenomenon as the task-artifact cycle [3];
while, subsequently, others (see [4], [5]) characterize this phenomenon as the
co-evolution of users, systems, and organization, highlighting that also a technology-
organization cycle occurs, beyond the task-artifact one.

154 D. Fogli and A. Piccinno

To synthesize the communication gap and co-evolution phenomena, the Interaction
and Co-Evolution (ICE) model has been defined in [6]; then, on the basis of this mod-
el, End-User Development (EUD) has been suggested as the most suitable solution to
cope with co-evolution [5]. Actually, EUD encompasses techniques and applications
that empower end users to develop and adapt systems themselves, by carrying out
activities that are traditionally performed by software developers [7]. Moreover, ac-
cording to [8], enabling end users to act as designers and contribute to the evolution
of their systems requires to conceive design as a meta-design activity. Indeed, “meta-
design extends existing design methodologies focused on the development of a sys-
tem at design time by allowing users to become co-designers at use time” [9].

This view on EUD and meta-design is usually focused on those situations where
end users create or adapt software artifacts for personal rather than public use, thus
distinguishing it from professional programming, which has the goal of developing
code for others to use [10]. For instance, in [11], the situation of a geoscientist is de-
scribed: he decided to spend three months in acquiring programming knowledge, in
order to be able to develop software for himself to analyze the data he collected; even
though the geoscientist declares that software development is now an essential task
for his research, he is aware that he is not a software developer, but just an end-user
developer. As in many other application domains (e.g., medical diagnosis [12], me-
chanical engineering [5], business intelligence [13], CAD [14]), the end-user develop-
er is a domain expert that, to cope with her/his specific problems, needs to adapt or
create software artifacts. With reference to workgroups, Gantt and Nardi call this
domain expert a local developer or gardener [14], namely a person who customizes a
software environment and creates programmatic extensions of applications for her/his
purpose that, possibly, will be made available to other users working in the same
group with a shared objective.

However, there are also several situations, in different application domains, where
the communities of end users and end-user developers remain separated: on the one
hand, there are the actual end users that cannot be required to carry out EUD activities
because of their specific goals, interests, and abilities; on the other hand, there are
domain experts, not knowledgeable in information technology, who are called to play
the role of end-user developers and create and/or adapt programs for end users by
means of EUD environments and tools. A typical example is the case of e-
government (discussed in detail in Section 3.4), where citizens using e-government
services constitute the community of end users, whilst administrative employees de-
veloping services for citizens belong to the community of experts in government is-
sues. Obviously, an administrative employee is a citizen as well, and it may happen
that s/he will use at some point an e-government service s/he has created (for instance,
to enroll her/his children at the municipality school through a proper online service);
in this case s/he is changing role from end-user developer to end user.

This paper analyzes a variety of such cases by framing them in the category of
multi-tiered proxy design problems [15]. We argue that this kind of problems deserves
additional reflection in the EUD field, in order to:

 Co-evolution of End-User Developers and Systems 155

1. characterize the role, competencies, and objectives of end-user developers, with re-
spect to software developers and actual end users;

2. generalize EUD techniques and meta-design activities to face multi-tiered proxy
design problems.

As to point (1), we propose ICE2 (ICE square) model, an extension of the ICE model;
as to point (2), we provide a design approach that aims at generalizing the different
experiences discussed as case studies.

Furthermore, we would like to provide a reflection on the role played by meta-
designers in multi-tiered design problems with respect to the role they play in ‘stan-
dard’ EUD situations, also with reference to the co-evolution cycles.

The paper is organized as follows. Section 2 analyses existing work and presents
the starting point of the research; Section 3 describes different multi-tiered proxy
design cases; Section 4 presents the model of co-evolution of end users, end-user
developers and system (ICE2); Section 5 discusses the design approach proposed for
multi-tiered proxy design problems; Section 6 provides an additional discussion on
the themes presented in the paper; Section 7 concludes the paper.

2 Background and Related Work

The Interaction and Co-Evolution (ICE) model discussed in [6] is at the basis of a
model-based approach to the design of usable and easy-to-tailor interactive systems.
This model provides a synthesis of the interaction and co-evolution models proposed
in HCI literature.

Interaction models aim to identify the causes of interaction difficulties affecting
software systems, namely usability issues. For example, the seminal model proposed
by Hutchins, Hollan and Norman focuses on the human side of the interaction process
and identifies the existence of evaluation and execution gulfs as the primary sources
of usability difficulties [16]. The model proposed by Abowd and Beale highlights, on
the other hand, the problems arising on the computer side, i.e. capturing and interpret-
ing the events generated by the user [17]. Finally, the model proposed in [18] aims at
balancing the roles that both human and system play in the interaction. Here, HCI is
described as a cyclic process, in which the user and the system communicate by mate-
rializing and interpreting a sequence of messages (e.g., the images on the screen in
visual interaction) at successive points in time. Materialization and interpretation are
performed by the user, depending on her/his role in the task, as well as on her/his
culture, experience, and cognitive and physical skills; whilst, on the other side, inter-
pretation occur internally to the system, which associates the message with a compu-
tational meaning, as determined by the programs implemented in the system, and
reacts to user events accordingly by materializing a new message.

This last model gives emphasis to the two different interpretation processes occur-
ring inside the human and the machine. These interpretation processes are considered
as the main source of usability problems and are related to the communication gap
existing between users and designers [5]. Indeed, users need to perform their tasks
by reasoning in accordance to their mental models, and to express this reasoning in

156 D. Fogli and A. Piccinno

notations familiar to them; whilst, designers usually develop the systems by focusing
primarily on the computational and management aspects; therefore, the message in-
terpretation performed by the system reflects the designers’ understanding of the task
at hand, rather than the users’ point of view. User-centered and participatory design
approaches are being promoted by the HCI community for more than twenty-five
years [1], [2], with the purpose to cope with the communication gap phenomenon and
favor the development of systems that end users find easy to use and to learn.

A further important phenomenon observed in HCI is the co-evolution of users and
systems, namely the possibility that the users evolve by using the systems and that the
systems evolve - through designers’ work - to satisfy the new users’ needs. Specifical-
ly, Carroll and Rosson describe this phenomenon as the task-artifact cycle [3], which
highlights how the software artifacts created to support some user’s tasks usually
suggest new possible tasks; to support these new tasks, new artifacts must be created.
Other HCI scholars provide a wider view of the co-evolution phenomenon: since
technology advances give computer scientists new possibilities of improving interac-
tive systems once they are already in use, new interaction possibilities occur that
might change users’ working habits, thus making their social and work organization
evolve itself with technology [4], [5].

The three cycles – interaction cycle, task-artifact co-evolution cycle and organiza-
tion-technology co-evolution cycle – are illustrated in Figure 1 (adapted from [6]).

Fig. 1. Interaction and Co-evolution cycles (adapted from [6])

Both co-evolution cycles can be sustained and favored by EUD techniques, which
empower end users to develop and adapt systems themselves [7]. In this way,
whenever end users would like to carry out new or different tasks, they can directly
modify the artifact by means of EUD activities, ranging from simple selection among
alternative behaviors already available in the artifact (customization), to actual

 Co-evolution of End-User Developers and Systems 157

program creation carried out through programming-by-example, incremental pro-
gramming, model-based development, and extended annotation. Due to the task-
artifact co-evolution cycle, end users also improve their knowledge, update their
procedures in the real world, and modify their working organization, possibly requir-
ing the adoption of more advanced technologies. The organization-technology
co-evolution is thus itself a long-term side effect of end-user development.

The ICE model is able to describe the several proposals that can be found in EUD
and End-User Software Engineering (EUSE) [10] literature. For example, component-
based techniques allow end users tailoring their own systems, thus making them
evolve [19]. More recently, scholars studying tools for mash-up creation adopt com-
ponent-based approaches as well [13], [20]. Another technique widely used in EUD is
extended annotation [12]: a number of EUD tools based on this technique have been
recently proposed (e.g., [21], [22]).

As far as EUSE is concerned, a methodology is presented for instance in [23],
which supports end-user programmers to carry out testing and debugging in spread-
sheet environments. Many other proposals in this field are discussed in [10].

In all these works, emphasis is given to end users developing software per se and
not for third or public use; indeed, EUD activities are usually distinguished from pro-
fessional programming, which has the goal of developing code for others to use. In
this paper we would like to analyze case studies that can be framed in the category of
multi-tiered proxy design problems [15], where end users and end-user developers
may form different communities, with different goals, skills, and competences. As we
will discuss in Section 6, considering this kind of problems pushes further in the di-
rection of adopting a meta-design approach: indeed, meta-design aims at creating the
socio-technical conditions that empowers end users to behave as end-user developers
[8]; in multi-tiered proxy design problems, meta-design should have a wider perspec-
tive by providing all stakeholders (including domain experts) with suitable languages
and tools to foster their personal and common reasoning about the development of
software systems that support end users [5].

The following section discusses multi-tiered proxy design problems and some lite-
rature case studies.

3 Multi-tiered Proxy Design Problems

The main purpose of EUD is to support new needs at use time, by taking into account
changing tasks. In many application domains, however, end users cannot act as devel-
opers, but a third figure must accept this role. This is the case of the so-called multi-
tiered proxy design problems [15]. They can be characterized by the identification of
the following figures:

• end users, who are usually not able to completely describe their needs and design
requirements;

• end-user developers, who are able to articulate what should be developed, even if
they have no software programming competencies;

158 D. Fogli and A. Piccinno

• software developers, who know how to develop the required system, but are unable
to completely satisfy end users’ needs without the help of end-user developers,
since they are not expert in the domain as end-user developers are.

In the following, several case studies in very different domains, which can be framed
in this problem category, are presented.

3.1 Cognitive Disability Support

Memory Aiding Prompting System (MAPS) [15], [24] aims at supporting the inde-
pendence and safety of people with cognitive disabilities in their daily activities, such
as going to the grocery or taking a bus. MAPS is a platform that provides a simple,
wireless prompting system for individuals with cognitive disabilities (end users),
along with an editing tool that allows caregivers to customize the prompting system
for the end users. This is a typical case in which the adoption of a multi-tiered proxy
design approach has to be adopted, since the end users cannot act as end-user devel-
opers and caregivers are called to play this role.

More precisely, the system comprises the following components:

• MAPS-Design-Environment (MAPS-DE): a PC-based interface that enables the
caregiver (usually a family member) to edit, store, and reuse multimedia scripts
that prompt instructions for task support (i.e., sequences of video and verbal in-
structions); this environment is designed according to the needs and capabilities of
caregivers;

• MAPS-Database: an information storage space that is accessible both at the level
of the local PC where the MAPS-DE is installed and via the Internet. It stores
script images and sounds, user and task modeling metadata, and a repository of
tested scripts to be used as templates by caregivers using their MAPS-DE;

• MAPS-Prompter: a PDA-based device that prompts instructions supporting the
person with cognitive disabilities in the accomplishment of her/his daily tasks.

Software developers have created the infrastructure to make these three components
work together and to allow end-user developers, i.e., caregivers, to create instances of
the PDA-based application for specific end users.

3.2 Cultural Heritage

In [25], the authors present an approach to the design of interactive art guides, where
cultural domain experts are provided with a proper design environment to organize
and tailor multimedia content of heterogeneous nature by instantiating a set of prede-
fined templates on actual visit paths for a wide range of end users. The role of visitors
of interactive exhibitions (end users) is obviously distinguished from that of cultural
domain experts (end-user developers), since the latter are the persons in charge of
developing guides for the former people.

In this approach, the development of the structure for multimedia art guides is based
on an abstract model, represented by a directed graph specification, which exploits the

 Co-evolution of End-User Developers and Systems 159

notions of “topic” and “visit”. Each topic is in turn specified as a finite state automa-
ton, whilst the visit is the sequence of automaton states experienced by the visitor.
Each art guide page will thus correspond to a node of the graph: the cultural domain
expert can act on node data and external multimedia files to create content that will be
applied to the pre-existing templates, in order to generate new node instances. S/he can
also compose data files to insert new nodes and, by defining relationships between
them, create new thematic, spatial, or logical organizations of artworks in the guide.
Cultural domain experts work with interface designers and programmers to design the
guide conceptual structure; instead, they are more independent in the organization of
the multimedia material, by using a customized Content Management System (CMS).

In the traditional development of interactive guides, knowledge about art exhibi-
tions possessed by cultural domain experts is usually transferred, with many ambigui-
ties and misunderstandings, to software programmers; the adoption of a multi-tiered
proxy design approach allows overcoming this problem, by transforming cultural
domain experts into end-user developers.

3.3 Home Automation

The paper [26] presents an approach and a tool (Pantagruel), which supports the de-
velopment of home automation environments dedicated to helping house occupants
(end users) in their everyday life, e.g. for home security, energy consumption, or as-
sisted living. A domain expert, for example a caregiver expert in assisted living or an
electrician expert in energy consumption, who knows end users’ needs, plays the role
of end-user developer: s/he provides an environment description, which consists of a
declaration of entity classes along with their attributes and methods; this description is
then used to define a concrete environment by instantiating entity classes.

A visual language is provided in the Pantagruel tool to create orchestration rules,
which are based on the environment description and foster environment composition.
More precisely, the development process starts when the end user expresses her/his
requirements to the domain expert. On the basis of requirements analysis, the domain
expert defines the application goals and entities. The latter are then further specified
into a Pantagruel taxonomy by the entity expert, based on the needs expressed by the
domain expert. Once specified, the entities are used as the building blocks to be or-
chestrated by Pantagruel. The domain expert, using the Pantagruel visual develop-
ment editor, ensures application development.

3.4 E-Government

A novel approach to the development of e-government services has been presented in
[27]. In this approach, administrative employees (end-user developers) first collabo-
rated with software engineers and HCI specialists to define the characteristics of on-
line services to be made available to citizens (end users). In particular, the design
team examined the class of services for reserving appointments at the different
counters of a government agency, in order to speed up identity card release, deal with

160 D. Fogli and A. Piccinno

foreign people permits, and so on. Such services have been characterized by a form-
based, step-by-step interaction style, thus recalling the traditional way of communica-
tion between citizens and government agencies. The design activity led to define a
meta-model representing the considered class of services, which was then represented
by software engineers through an XML schema [28]. In addition, the team designed
an EUD environment able to support administrative employees in creating instances
of the XML schema, namely XML documents describing the steps of specific
appointment reservation services. The EUD environment does not require end-user
developers to write any XML code, neither to know the underlying meta-model: they
only have to fill in some forms that define the requests for citizens in each step of the
service. A form generator exploits XML documents created through the EUD envi-
ronment to generate the actual service pages for citizens.

Also in this case, the need for a multi-tiered proxy design approach emerged from
existing work practice: the idea of transferring to administrative employees the re-
sponsibility of developing e-government services allows avoiding misunderstandings
with software engineers and better satisfying citizens’ needs [27].

3.5 Electronic Patient Record

The case study discussed in [29] about the development of the Electronic Patient
Record (EPR) can be regarded as a multi-tiered proxy design problem as well. Patient
records are official artifacts that practitioners write to preserve the memory or know-
ledge of facts and events that occurred in the hospital ward [30]. The patient record is
a many-sided document: it is read by very different people, not only physicians and
nurses, but also the patients themselves, their relatives, etc., thus it must have the
ability to speak different “voices” to convey different meanings according to people
using it [31]. The patient records are actually composed of modules, each one contain-
ing specific fields for collecting patient data. Various hospital employees are only
interested in a subset of such modules, and use them to accomplish different tasks, i.e.
the nurse records the patient’s measurements, the reception staff records the patient’s
personal data, the physician examines the record to formulate a diagnosis, and so on.
The following main stakeholders who are involved in the EPR management were
identified: (1) practice manager; (2) head physicians; (3) physicians; (4) nurses; and
(5) administrative staff. In particular, the head physician has the right and the respon-
sibility of the EPR to be adopted by physicians and nurses of her/his ward.

EPR project has been managed by applying the software shaping workshop metho-
dology [5], [32]. A team composed of software engineers, HCI experts and physicians
designed the software environments (software shaping workshops) for the different
stakeholders, as well as the data modules, which are the basic component of the EPR,
and the application template to allow each head physician to design the EPR for
her/his ward by directly manipulating data modules in her/his software environment.
In this case study, end users are physicians and nurses of a specific ward, while the
head physician is the end-user developer in charge of creating the EPR for them. The
adoption of a multi-tiered proxy design approach is here required because the head
physician is the only stakeholder responsible for the EPR adopted in the ward.

4 The ICE2 Model

As already mentioned in S
techniques that aim to supp
modify and adapt software
sign problems, end-user de
since they are not professio
software environment to c
users.

The ICE2 model present
in the ICE model, the thr
technology have with end u

The co-evolution proces
same as in the ICE model;
described by the right-hand
artifact is the boundary ob
can be regarded as compos
user, and 2) the EUD tools
nents as building blocks of
end-user developer to gener

Interesting interactions b
they are discussed in the f
sections 3.4 and 3.5, where

Requests for system evo
who may directly operate o
turn ask software developer
task-artifact cycle of Fig. 2
end-user developers. For ex
service, administrative emp
includes that type of service

Co-evolution of End-User Developers and Systems

l

Section 2, EUSE and EUD are usually intended as des
port the development of systems enabling people to cre

artifacts per se. However, as observed in multi-tiered
evelopers are often called to develop for others; therefo
nal developers, they should be able to interact easily wi

create, modify or adapt software systems devoted to

ted in Fig. 2 encompasses this second type of end user.
ree cycles model the mutual influence that systems
users, end-user developers, and respective organizations.

Fig. 2. The ICE2 model

ss involving end users (left-hand side of the figure) is
this process is sustained by the other co-evolution proc

d side of the figure and involving end-user developers. T
bject [33] between the two co-evolution processes, wh
ed of two parts: 1) the software system devoted to the
 (including the EUD environment and/or software com
the software system being developed) that are used by

rate and/or adapt the software system for end users.
between the two co-evolution processes occur at use tim
following with reference to the case studies illustrated
authors of this paper have been personally involved.

olution coming from end users reach end-user develop
on the system through EUD tools or, if necessary, may
rs for the evolution of their own tools. In this way, the
(involving end users) affects the right task-artifact cycle
xample, when citizens ask for an additional e-governm
ployees may create it, if their EUD environment alre
e (e.g., appointment reservation); otherwise, administrat

161

sign
eate,

de-
ore,
th a
end

. As
and
.

the
ess,
The
hich
end

mpo-
the

me;
d in

pers,
y in
left
e of

ment
eady
tive

162 D. Fogli and A. Piccinno

employees will ask software developers to extend the EUD environment to include
the new type of service (for example, paying local taxes). In the EPR case, ward phy-
sicians can get aware that new data are needed (for example, in case of specific pa-
thologies), but they cannot find the related module in the EPR. Thus, they have to ask
for a new specific module to the head physician, who, using EUD tools, will evolve
the current EPR accordingly or make a request to software developers for creating the
new type of module.

The external cycle in the right-hand side of Fig. 2 may influence the organization-
technology cycle that involves the end-user community. Indeed, technology advances
give new possibilities for improving systems during their use, bringing to new interac-
tion possibilities that might change working habits and organization of end users, and
possibly lead to include new end users in the end-user community. For example, in
the e-government case, new online services may be devoted to further categories of
citizens formerly not encompassed (e.g., healthcare services for old people), or differ-
ent versions of services (e.g., mobile versions of existing services) may make citizen
community evolve in number and in the user classes.

In addition, each internal cycle of a co-evolution process affects the external one
and vice versa. For example, the task-artifact cycle involving end-user developers
may in turn affect the organization-technology cycle, in that it may call for the exten-
sion of the end-user developer community with further members, and possibly require
the introduction of new technologies for supporting them. In the e-government case
study, the request for additional e-government services that current administrative
employees cannot provide may require that new administrative employees (from dif-
ferent agency departments) be engaged in service design and creation; in this way, the
organization of the end-user developer community will change in terms of composi-
tion, power, and relationships; the artifact may change in turn, as a consequence of a
possible extension of the EUD environment to cope with the new end-user develop-
ers’ needs. The task-artifact cycle also means the end-user developers may evolve
during their interaction with the EUD environment, since they may acquire new skills
related to software technology and discover new possibilities for enhancing end users’
tasks. For example, in the EPR case, it has been observed that the head physician
involved in the project has been strongly affected by the technology advances: whilst
in the beginning he was almost scared by the EPR system, he is now using regularly
advanced mobile devices and asks to adapt EPR tools to be used in mobility.

Finally, the organization-technology co-evolution cycle can have an impact on the
task-artifact one, since rules and guidelines may change over time, especially as a
consequence of a consolidation or other types of re-organization. For example, in the
EPR case, rules about data visualization in the EPR changed after the recent consoli-
dation of ‘‘Giovanni XXIII’’ Children Hospital of Bari with the Polyclinic of Bari.

Beside the communication, mediated by the system, between end users and end-
user developers, a further communication channel always exists (see arrows at the
bottom of Fig. 2) that is outside the system. In fact, end users and end-user developers
usually exchange information also through traditional means, e.g., face-to-face,
phone, email, etc.

 Co-evolution of End-User Developers and Systems 163

5 Addressing Multi-tiered Proxy Design Problems

In [9], the authors discuss an approach to the meta-design of socio-technical systems.
In particular, the conceptual framework for meta-design is described through a three-
level model including: 1) a meta-level, which contains the beliefs and concepts of
meta-design; 2) an intermediate level, which refers to a framework to be meta-
designed in accordance with the higher level and that serves as an environment within
which socio-technical systems are developed; 3) a basic level, including socio-
technical systems developed within the framework in the intermediate level.

In order to cope with the co-evolution processes represented in the ICE2 model, we
deepen the three-level model in the case of multi-tiered proxy design problems, by
generalizing the solutions encountered in the case studies described in section 3 (and
in many others) and making the above three levels more concrete in terms of design
activities.

The resulting design approach here proposed develops along three main phases:

1. the meta-design phase: in this phase, a multidisciplinary team carry out meta-
design activities to create an environment for end-user development able to gener-
ate software systems for end users;

2. the design phase: in this phase, end-user developers carry out design activities in a
creative but guided way, by using the EUD environment;

3. the use phase: in this phase, the system generated through EUD is used by end us-
ers, who possibly personalize it by setting some parameters, in order to choose
among alternative behaviors (or presentations or interaction mechanisms) already
available in the system [12].

At a beginning, these phases are carried out sequentially; whilst, along the system
lifecycle, they are more entwined: for example, new needs emerging at the use phase
may ask for new design activities, which in turn, in some cases, may require further
meta-design activities. In order words, the three phases influence each other and allow
responding to co-evolution requests. These phases are illustrated in the following.

5.1 The Meta-design Phase

In the meta-design phase, a multidisciplinary team, including at least software engi-
neers, HCI specialists and domain experts, defines at first the conceptual model of the
software systems devoted to end users. This activity could be carried out through
participatory design techniques, for example by means of scenario-based analysis or
mock-up development. The metaphor and interaction style of the systems for end
users are thus defined; they will strongly depend on domain characteristics and users’
habits. For example, different conceptual models have been defined in the case stu-
dies discussed in Section 3: video help in MAPS, guide tour in cultural heritage, com-
position of virtual sensors and actuators in home automation, form-based interaction
in e-government and EPR systems.

164 D. Fogli and A. Piccinno

After the conceptual model definition, the design team defines a meta-model that
describes and generalizes the structure and properties of the software systems for end
users. This meta-model can be formally represented as a UML class diagram, an on-
tology, an XML schema, a finite state automaton, etc., or informally, as a natural
language description of the application domain. For example, in MAPS, script tem-
plates and script rules constitutes the meta-model; in the cultural heritage case study,
the meta-model is composed of the graph and the finite state automaton; class dia-
grams are used in Pantagruel (home automation); an XML schema is adopted in the e-
government case; the conceptual schema of the underlying database is the meta-model
in the EPR case.

Then, members of the design team will collaborate to the development of the EUD
environment that supports the creation of instances of the meta-model, namely of
models that will play the role of specification for the software systems devoted to end
users. For example, in the e-government case study, the EUD environment created for
administrative employees allows them to generate instances of the meta-model, name-
ly XML documents, which specify form-based web applications for citizens; whilst in
the culture heritage case, cultural domain experts collaborate to design the guide con-
ceptual structure, which will be then instantiated with multimedia material; in the
MAPS project, MAPS-DE supports caregivers in creating multimedia scripts through
the instantiation and composition of available templates.

Finally, software engineers must create an interpreter of the meta-model instances,
capable of generating the actual software systems described by such instances. This
interpreter must generate systems that satisfy the conceptual model previously defined
by the design team.

5.2 The Design Phase

In the second phase of the approach, end-user developers use the EUD environment
developed during the meta-design phase to create the software systems for end users.
As end-user developers, they should be able to easily interact with the EUD environ-
ment, possibly by following their traditional way of reasoning and operating when a
similar service was supplied to end users without the help of information technology
(e.g. paper-based forms in e-government, human tourist guide in art exhibitions, pa-
per-based patient record in an hospital). For example, MAPS-DE allows caregivers to
easily generate scripts that are instances of the meta-model, from which videos for
disabled persons are automatically generated. In a similar way, in the cultural heritage
domain, end-user developers may use the CMS to create a guide for visitors, which is
actually an instance of the graph, namely the meta-model previously defined. In the
home automation case, the visual development editor allows domain experts to create
a taxonomy that models a specific domain and is used to generate the application for
end users. In the EPR case, the software shaping workshop devoted to the head physi-
cian of a specific ward allows her/him to create EPRs customized to the different
stakeholders of the ward.

 Co-evolution of End-User Developers and Systems 165

5.3 The Use Phase

Finally, in the third phase, end users use the software systems designed for them by
end-user developers. Thanks to meta-design and meta-modeling, such systems may
have some flexibility degrees, and thus be personalized by end users. For example, in
the e-government case, citizens can change service forms on the basis of their input;
in the cultural heritage case, visitors can provide their profile, and the tourist guide
adapts itself accordingly; in the EPR case, ward nurses, who primarily input data
about patients, can modify the layout of the EPR modules by moving, for example,
the parts they are interested in to the top, in order to find them quickly.

Mechanisms for providing feedback to end-user developers at use time should be
integrated in the systems for end users, in order to foster more rapidly the co-
evolution processes modeled by the ICE2 model. These mechanisms could be based
for example on annotation tools, as reported in [6].

6 Discussion

End-User Software Engineering proposes a variety of methods to adequately manage
the code quality of software artifacts created by end-user developers [10]. However,
usability of such software artifacts is usually considered an immaterial issue, since the
underlying assumption is that end users carry out development activities to adapt or
develop software artifacts for their personal use. In few words, end users who develop
per se may create unusable systems. However, in multi-tiered proxy design problems
this is not true anymore: end-user developers who develop software artifacts for
others must develop usable systems [34].

These different needs lead to a reflection on the meta-design activity and the role
of meta-designers. In the former case, meta-designers work for end users and must
sustain the interaction and co-evolution cycles encompassed by the ICE model
(Figure 1). To this aim, many meta-design guidelines have been proposed [9], [11];
among them, it is interesting to remember that meta-designers must i) provide end
users with building blocks to be composed freely and in unexpected manners, ii) un-
derdesign for emergent behavior during use, ii) establish cultures of participation, so
that end users should be encouraged to make their contributions, and iv) reward
and recognize contributions, in order to motivate end users to participate in system
evolution.

In multi-tiered proxy design problems, meta-designers work for people having dif-
ferent characteristics, needs and objectives with respect to the actual end users. In-
deed, meta-designers are called to provide end-user developers with domain-oriented
design tools that allow them, not only to co-evolve with such tools, but also to support
the co-evolution cycles involving end users (Figure 2).

In the design approach proposed in this paper the meta-design phase plays a crucial
role to guarantee the usability and modifiability of the software artifacts to be created
by end-user developers. Here, the meta-design team has the responsibility to define
the conceptual model and the meta-model of a class of systems for end users. The
team is then called to develop an EUD environment suitable to the knowledge and

166 D. Fogli and A. Piccinno

capabilities of end-user developers, as well as a generator of software systems for end
users that reflect the defined conceptual model. In this way, EUD is not conceived as
a mere code creation or adaptation, but as the “instantiation of a meta-model”, carried
out by end-user developers through an easy and natural interaction with the EUD
environment.

We argue that the multi-tiered structure of the described problems, due to the di-
versity of the involved communities and the specific nature of EUD activities pro-
posed in the design approach, should lead to additional reflections on the meta-design
guidelines.

7 Conclusion

The contribution of this paper is three-fold. First, we have analyzed a set of case stu-
dies in different application domains that can be classified as multi-tiered proxy de-
sign problems, which, in our opinion, deserve a special attention within the EUD
community. Second, we have proposed a novel interaction and co-evolution model for
this kind of problems. Beyond the interaction and co-evolution cycles referred to the
end-user community, the ICE2 model also encompasses the co-evolution cycles that
explicitly involve end-user developers. Indeed, in multi-tiered proxy design problems,
end-user developers form a separated community, whose activity supports the co-
evolution of end users and systems, and who may in turn co-evolve with EUD tools
and the technology used to develop them. Third, we have presented a design ap-
proach, structured in three phases, to address multi-tiered proxy design problems.

The design approach is based on a deep understanding of the domain of end users
and end-user developers, which can be accomplished by adopting traditional user-
centered and participatory design during the meta-design phase. However, suitable
software tools to support meta-designers in carrying out their activities are still lack-
ing. We are planning to study and develop in the near future a proper meta-design
environment that supports the definition of the conceptual model of artifacts to be
created, the specification of meta-models, and the development of domain-dependent
EUD environments.

Acknowledgments. The authors wish to thank Maria Francesca Costabile and Ger-
hard Fischer for their insightful comments and suggestions to an earlier version of this
paper.

References

1. Norman, D.A., Draper, S.W.: User Centered System Design; New Perspectives on Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale (1986)

2. Schuler, D., Namioka, A.: Participatory Design: Principles and Practices. Lawrence Erlbaum
Associates, Inc. (1993)

3. Carroll, J.M., Rosson, M.B.: Getting around the Task-Artifact Cycle: How to Make Claims
and Design by Scenario. ACM Trans. Inf. Syst. 10(2), 181–212 (1992)

 Co-evolution of End-User Developers and Systems 167

4. Bourguin, G., Derycke, A., Tarby, J.C.: Beyond the Interface: Co-Evolution inside Interactive
Systems - a Proposal Founded on Activity Theory. In: IHM-HCI, pp. 297–310. Springer
(2001)

5. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-
User Development: A Model-Based Design Methodology. IEEE T. Syst. Man Cy. A 37(6),
1029–1046 (2007)

6. Costabile, M.F., Fogli, D., Marcante, A., Piccinno, A.: Supporting Interaction and Co-
Evolution of Users and Systems. In: International Conference on Advanced Visual Inter-
face, pp. 143–150. ACM Press (2006)

7. Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development. Springer, Dordrecht
(2006)

8. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User Develop-
ment. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 427–457.
Springer, Dordrecht (2006)

9. Fischer, G., Herrmann, T.: Socio-Technical Systems: A Meta-Design Perspective, pp. 1–33.
IGI Global (2011)

10. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M., Wieden-
beck, S.: The State of the Art in End-User Software Engineering. ACM Comput.
Surv. 43(3), 1–44 (2011)

11. Fischer, G., Nakakoji, K., Ye, Y.: Metadesign: Guidelines for Supporting Domain Experts
in Software Development. IEEE Software 26(5), 37–44 (2009)

12. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: End-User Development: The Software
Shaping Workshop Approach. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User
Development, pp. 183–205. Springer, Dordrecht (2006)

13. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C.: Dash-
mash: A Mashup Environment for End User Development. In: Auer, S., Díaz, O., Papado-
poulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166. Springer, Heidelberg
(2011)

14. Gantt, M., Nardi, B.A.: Gardeners and Gurus: Patterns of Cooperation among Cad Users.
In: CHI 1992, pp. 107–117. ACM, New York (1992)

15. Carmien, S., Dawe, M., Fischer, G., Gorman, A., Kintsch, A., Sullivan Jr., J.F.: Socio-
Technical Environments Supporting People with Cognitive Disabilities Using Public
Transportation. ACM T. Comput.-Hum. Int. 12(2), 233–262 (2005)

16. Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct Manipulation Interfaces. In: Norman,
D.A., Draper, S.W. (eds.) User Centered System Design: New Perspectives on Human-
Computer Interaction, pp. 87–124. Lawrence Erlbaum, Hillsdale (1986)

17. Abowd, G., Beale, R.: Users, Systems and Interfaces: A Unifying Framework for Interac-
tion. In: VI Conference of the British Computer Society Human Computer Interaction
Specialist Group - People and Computers (HCI 1991), pp. 73–87. Cambridge University
Press, Cambridge (1991)

18. Bottoni, P., Costabile, M.F., Mussio, P.: Specification and Dialogue Control of Visual In-
teraction through Visual Rewriting Systems. ACM T. Progr. Lang. Sys. 21(6), 1077–1136
(1999)

19. Mørch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V.: Component-Based
Technologies for End-User Development. Commun. ACM 47(9), 59–62 (2004)

20. Ghiani, G., Paternò, F., Spano, L.D.: Creating Mashups by Direct Manipulation of Existing
Web Applications. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.)
IS-EUD 2011. LNCS, vol. 6654, pp. 42–52. Springer, Heidelberg (2011)

168 D. Fogli and A. Piccinno

21. Avola, D., Bottoni, P., Genzone, R.: Light-Weight Composition of Personal Documents
from Distributed Information. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A.
(eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 221–226. Springer, Heidelberg (2011)

22. Dittrich, Y., Madsen, P., Rasmussen, R.: Really Simple Mash-Ups. In: Costabile, M.F.,
Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 227–232.
Springer, Heidelberg (2011)

23. Burnett, M., Rothermel, G., Cook, C.: An Integrated Software Engineering Approach for End-
User Programmers. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development,
pp. 87–113. Springer, Netherlands (2006)

24. Carmien, S.P., Fischer, G.: Design, Adoption, and Assessment of a Socio-Technical Envi-
ronment Supporting Independence for Persons with Cognitive Disabilities. In: CHI 2008,
pp. 597–607. ACM (2008)

25. Celentano, A., Maurizio, M.: An End-User Oriented Building Pattern for Interactive Art
Guides. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011.
LNCS, vol. 6654, pp. 187–202. Springer, Heidelberg (2011)

26. Drey, Z., Consel, C.: Taxonomy-Driven Prototyping of Home Automation Applications: A
Novice-Programmer Visual Language and Its Evaluation. J. Vis. Lang. Comput. 23(6),
311–326 (2012)

27. Fogli, D., Parasiliti Provenza, L.: A Meta-Design Approach to the Development of E-
Government Services. J. Vis. Lang. Comput. 23(2), 47–62 (2012)

28. Fogli, D., Parasiliti Provenza, L.: End-User Development of E-Government Services
through Meta-Modeling. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.)
IS-EUD 2011. LNCS, vol. 6654, pp. 107–122. Springer, Heidelberg (2011)

29. Ardito, C., Buono, P., Costabile, M.F., Lanzilotti, R., Piccinno, A.: End Users as Co-
Designers of Their Own Tools and Products. J. Vis. Lang. Comput. 23(2), 78–90 (2012)

30. Berg, M.: Accumulating and Coordinating: Occasions for Information Technologies in
Medical Work. Comp. Support. Coop. W. 8(4), 373–401 (1999)

31. Cabitza, F., Simone, C.: LWOAD: A Specification Language to Enable the End-User De-
veloment of Coordinative Functionalities. In: Pipek, V., Rosson, M.B., de Ruyter, B.,
Wulf, V. (eds.) IS-EUD 2009. LNCS, vol. 5435, pp. 146–165. Springer, Heidelberg (2009)

32. Costabile, M.F., Fogli, D., Marcante, A., Mussio, P., Parasiliti Provenza, L., Piccinno, A.:
Designing Customized and Tailorable Visual Interactive Systems. Int. J. Softw. Eng.
Know. 18(3), 305–325 (2008)

33. Star, S.L.: The Structure of Ill-Structured Solutions: Boundary Objects and Heterogeneous
Distributed Problem Solving. In: Gasser, L., Huhns, M.N. (eds.) Distributed Artificial In-
telligence, vol. II, pp. 37–54. Morgan Kaufmann Publishers Inc., San Mateo (1989)

34. Fogli, D., Piccinno, A.: Enabling Domain Experts to Develop Usable Software Artifacts.
In: Organization Change and Information Systems. Springer, Heidelberg (2013)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 169–184, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Meta-design in Co-located Meetings

Li Zhu1 and Thomas Herrmann2

1 Dipartimento di Informatica, Università degli Studi di Milano
Via Comelico 39/41 20139 Milano, Italy

zhu@dico.unimi.it
2 Information and Technology Management, Ruhr-University of Bochum,

Universitaetsstr. 150, 44780 Bochum, Germany
thomas.herrmann@rub.de

Abstract. In this paper we present a web-based design-environment – MikiWiki –
which demonstrates how the concept of meta-design can be practically supported.
It enables and fosters collaboration between meta-designers, designers and end-
users. By running a case study to evaluate the appropriateness of MikiWiki in a co-
located setting, the effects on interaction between these roles and the support of
creativity were observed to derive socio-technical options for improvement.
Conducting such an evaluation requires clarifying the basic properties of meta-
design in a way that makes its effects observable.

Keywords: Meta-design, creativity, Creativity Barometer, MikiWiki, Hive-Mind
Space Model, co-located collaborative design.

1 Introduction

Meta-design is a powerful concept that helps designers and end-users to elaborate
needs and requirements, but also to iteratively specify what a software solution should
look like. We characterize meta-design by referring to the following principles
(Fischer and Herrmann 2011):

• Support of a fluid transition between design for use and design in use.
• Underdesign: representations of solutions (e.g. models or prototypes) do not only

include determined specifications but also preliminary, incomplete or imprecise
specifications so that designers and end-users are inspired to think about varia-
tions or to add further ideas.

• Cultures of participation where several roles and stakeholders can contribute with
respect to their interests and find a space of communication and collaboration to
exchange their perspectives.

• Empowerment of adaptation by helping end-users or their supporters (software-
developers, administrators, power-users, facilitators etc.) to modify a software
design with respect to their needs.

By complying with these principles we expect that meta-design provides a framework
within which end-user and designer closely interact to conduct the development of a
system. The advantage of meta-design can become evident with respect to:

170 L. Zhu and T. Herrmann

• Creativity support covering divergence (the generation of multiple ideas) as well
as convergence (Guilford 1950) (building synergy and merging a variety of ideas)
which leads to a concrete design.

• Integration of the knowledge and experience of meta-designers, designers and
end users.

The role of the meta-designers is to provide an environment, which is used by design-
ers to draft or develop a solution and to demonstrate it as immediately as possible so
that end users can directly influence the design of the solution by communicating with
the designer or by interacting with electronic media.

The research challenge is to give examples for concrete meta-design environments
to demonstrate how it can be brought to reality, and how its features and benefits can
be specified in a way that helps to make them observable within an empirical
evaluation. This is necessary to understand the extra effort, which is caused by offer-
ing flexibility and multiple solutions with the meta-design approach, and whether the
resulting benefits justify an additional workload.

In this paper a concrete web-based meta-design environment – MikiWiki (Zhu
2011) is introduced and evaluated within a co-located meeting support setting
(Herrmann 2010). The leading question is how far small groups of people with
various roles (such as meta-designer, designer or end user) can use MikiWiki as a
collaboration space, how far they are supported to express and to creatively elaborate
their needs and ideas, and what hints can be derived for improving socio-technical
meta-design environments. Focusing on co-located design is guided by the intention
to understand how situated creativity in action (comparable with reflection in action
(Schön 1983)) can become possible when people can easily describe their ideas to
others by using various tools and material.

The next section will introduce the Hive Mind Space model, a meta-design concep-
tual model focused on supporting collaborative design. It serves as a framework to
summarize related work in the context of meta-design. Subsequently, this model will
be illustrated by a concrete environment – MikiWiki. On this basis, the following
sections will describe the methodology of a case study being based on five co-located
meeting sessions using MikiWiki, our findings and the conclusion.

2 Mikiwiki

In order to evaluate a meta-design model and provide some concrete guidelines for
implementing a meta-design model, we implemented MikiWiki (Zhu 2011) as an
Hive-Mind Space model (HMS) model prototype.

2.1 The Hive-Mind Space Model

The HMS-model is grounded on several paradigms and frameworks. It aims to bring
collaborative design and social creativity together to achieve better collaboration.

The Hive-Mind Space model is a meta-design framework derived from the Soft-
ware Shaping Workshop methodology (SSW) (Costabile et al. 2007) that integrates

 Meta-design in Co-located Meetings 171

the “seeding, evolutionary growth, reseeding” model (Fischer et al. 2001). The bot-
tom-up approach inherent in this framework breaks down static social structures so as
to support richer ecologies of participation. It provides the means for structuring
communication and appropriation. The model’s open mediation mechanism tackles
unanticipated communication gaps among different design communities (Zhu 2012).

2.2 Deriving Features of the MikiWiki from the HMS-Model

MikiWiki is a structured programmable wiki, with a hierarchical page organization
made of “pages” and “folder pages”.

Table 1. Feature of MikiWiki derived from HMS model

HMS conceptual model (Model) MikiWiki (System features)
Habitable environments Folders, Environment Page, Lookup mechanism
HMS – boundary objects (Star
and Griesemer 1989)

Nuggets (Social application units)

Communication channel
(Konkola 2001)

Accessible pages, open environments (folders
accessible by design communities)

Mediation mechanism (Ardito
et al. 2011)

Format page, environments and Lookup me-
chanism

Different levels of participa-
tion (Costabile et al. 2007)

Different levels of tailoring
(Mørch 1997)

Meta-design level: design environments, creat-
ing format page with JavaScript editor
Design level: use design environment, brows-
ing, editing visualization pages, data pages and
format pages with JavaScript editor or rich-text
editor
Use level: browse visualization pages, creating
visualization pages with rich-text editor

Open infrastructure (Fischer
and Giaccardi 2006)

End-user development approach to allow client-
side programming and programming by
examples
Enabling flexible switching between different
design levels
Extensibility to the existing Web ecosystem

SER model (Fischer et al.
2001)

Providing just enough features to be useful, and
at the same time leaving code short and simple
to be quickly understood and modifiable so that
the set of features can be easily extended.

Table 1 depicts how each feature of the HMS model maps to MikiWiki. A habita-
ble environment can be seen as a folder containing an environment page. In the envi-
ronment page, users can specify certain behaviors and attributes that apply to all
pages in the environment. Within MikiWiki, nuggets are drafted in analogy to boun-
dary objects. Open environments accessible to all groups or communities can be seen

172 L. Zhu and T. Herrmann

as the boundary zone. The mediation mechanism and support for the different levels
of participation and tailoring are also reflected in MikiWiki. This might not be
precisely a one-to-one mapping, as many theoretical concepts, such as boundary ob-
jects, cannot be reduced to simple software system components.

Collaborative and communication features in MikiWiki are not in-built in the
system, but they are made available as underdesigned “nuggets” on top of the system.
Hence, they are also seeds (Fischer et al. 1994) for encouraging appropriation and
modification.

2.3 Nuggets

In MikiWiki, nuggets are explicitly designed to support the instantiation of the HMS
model’s boundary objects. A nugget is a page, which can be used as an embeddedable
component within another page, in order to create sharable remixable components.

Fig. 1. Using the note nugget for brainstorming

Nuggets are MikiWiki pages, written in HTML, CSS and JavaScript. Non-
programmers can easily start using and remixing existing nuggets, while advanced users
can clone and modify these nuggets and consequently introduce new behaviors. To sup-
port collaborative design, we categorize nuggets in order to address collaborative design
from different perspectives - for instance, chat, comment and wall nuggets support com-
munication; notify and activeuser nuggets can be used to enhance awareness among de-
sign communities; and todo and list nuggets can be used to coordinate co-located and
distributed activities (Hutchins 1995). Figure 1 gives an example of a nugget which sup-
ports participants creating PostIt notes, writing down their ideas and clustering them in
different colors, while Figure 2 demonstrates participants designing a mobile interface
with various nuggets, e.g. different toolbox, canvas and trash nuggets, etc. A decisive
characteristic of nuggets is that the representation of ideas, which can be created with
different nuggets, can be interrelated to each other. Therefore nuggets can intertwine the

 Meta-design in Co-located Meetings 173

Fig. 2. Designing a mobile interface with various nuggets

various perspectives of different participants and they can bridge various phases of the
design (see also Table 3).

3 A Case Study

The design study was done in collaboration with the Information and Technology
Management Group at the Ruhr-University of Bochum, Germany. Meta-designers,
designers and users were tasked to collaboratively design an Android phone version
of a micro-survey tool, the creativity barometer (Herrmann et al. 2011) which is
currently under development. The purpose of the creativity barometer is to conduct
surveys to continuously understand and assess the climate of employee creativity.

Increasing economic pressure, competition and emergent project problems require
employees to come up with creative campaigns, services or strategies in a very short
time and cope with high workload under high pressure. However, these very high
workloads and employee uncertainty about continued employment are major ob-
stacles to creativity (Amabile 1999).

The creativity barometer allows companies to periodically repeat surveys and get
immediate feedback. It can also provide a good opportunity for employees to reflect
on the development of their own attitude and comprehend how their colleagues perce-
ive the creativity climate. After a pre-specified time period (e.g. eight months), the
company can summarize the feedback and plan interventions to improve the creativity
climate. Since continuous surveying can disturb the employees, the idea is to support
them to post their answers as “en passant” as possible, e.g. with smart phones. To
draft the design of an appropriate smart phone solution seemed to be a reasonable task
to test the meta-design concept by employing MikiWiki.

174 L. Zhu and T. Herrm

The case study was inten

1) Whether MikiWiki su

in use, as well as the interpl
2) Whether MikiWiki su

means to allow participants
and share their ideas, which

A decisive criterion with re
ployed:

• Do design environments
ipants continuously adap
design tasks at that mom
immediately?

• Does it allow designing
level, in that the meta-de
session and constantly e
technical issues without n

3.1 Environment Settin

The design study was cond
Management Group. It was
facilitated, co-located meeti
setting for five collaborativ

mann

nded to evaluate:

upports a fluid transition between design for use and des
lay between meta-designers, designers and users.
upports cultures of participation by providing lightwei
s with different background and different roles to articu
h in turn enhance social creativity.

espect to these questions is creativity is supported or e

support the creativity of designers and users, in that par
pt nuggets to form a design space in order to perform th
ment and use the design space to externalize their thoug

the design environment as an activity at the meta-des
signer sets up the initial design environment for the des

evolves it opportunistically to cope with emergent soc
needing to change server-side code?

ng: Features of the Modlab

ducted in the modlab of the Information and Technolo
s established to develop and evaluate computer support
ings. The following characteristics provided an appropr
e design sessions supported with MikiWiki:

Fig. 3. Environment setting

sign

ight
ulate

em-

rtic-
heir
ghts

sign
sign
cio-

ogy
t for
riate

 Meta-design in Co-located Meetings 175

• A large, high-resolution interactive wall (4,80m x 1,20m; 4320x1050 pixels) which
seamlessly integrates three rear projection boards (see Figure 3). The touch screen
displayed the MikiWiki mockup environment. Touch is recognized via six cameras
which view the reflection of infrared light caused by fingers (Herrmann 2010). The
view cones of the cameras are overlapping to support uninterrupted dragging ac-
tions over the entire wall.

• A table for users to sit down and get an overview of the design stage;
• A lectern where designers could use a keyboard to input text and interact with the

screen;
• iPads as additional input devices which are connected via WLAN, since the interac-

tive wall does not support multi-user interaction. This allows participants to input
text and operate actions directly on the screen or via iPads.

• Three cameras recording the sessions from different angles to support observational
analysis.

The screen-capture software records all the interactions on the interactive wall and
outputs video clips, which can be used to further reflect on the design process, and on
how users create new artifacts, interact, reuse, arrange and extend them.

While MikiWiki works for synchronous as well as asynchronous and distributed
design collaboration, the modlab is focused on synchronous, co-located meetings.
This focus has the advantage that the interaction between the participants and the
possibilities of observing them are very direct. Furthermore, less coordination is
needed and more attention is available for the actual design task. The disadvantage of
co-located meetings is that people cannot freely switch between working in solitude,
communication or incubation phases. However, the focus on co-location is a reasona-
ble start for gathering immediate feedback on the strengths of MikiWiki and the
underlying meta-design concept or on needs for improvement,

3.2 Methodology

The evaluation approach is an empirical and explorative observation-based field me-
thod. A design session follows these steps:

• Meta-designers (in this case the authors) prepare an environment for gathering ideas
and sketching mockups in MikiWiki, with which designers drafted the Creativity
Barometer user-interface for Android phones.

• Designers and users employ the environment to design the interface. Designers are
participants who have designed applications, while users are participants who do not
have design experiences, but have used the desktop version of the Creativity Barometer.

• Afterwards, meta-designers observe and interview designers and users to collect
feedback on how to improve the design environment. Furthermore, the interviews
trigger the reflection among the participants and help the meta-designer to under-
stand how the participants have perceived the design process.

• Based on the empirical data, meta-designers refine the design environment for im-
proving the next design cycle.

Semi-structured Interviews: After each design session, the meta-designer conducts
follow-up semi structured interviews, for a total of 13 interviews. Open-ended ques-
tions are used in qualitative research rather than to quantify the answers. We aim to
find out what participants think about MikiWiki, their design experiences and the
rationale behind their opinions (Dawson 2002).

176 L. Zhu and T. Herrmann

These are the guiding questions for the interviews:

• How does MikiWiki support participants in generating, expressing, structuring
and connecting their ideas with respect to different design phases?

• What is the level of the satisfaction with their design results? How does MikiWiki
support participants’ creativity on an individual level and on a collaborative level?

• Do participants have any difficulties in using MikiWiki, how do they cope with
them and what can be improved for the next design sessions?

• How do participants reach final agreement on design decisions?
• What are the important differences between MikiWiki and other groupware and

what are the best parts of using MikiWiki?
[In01] to [In13] are used in the text to identify the 13 interviews.

Observation: Furthermore, we focus on observing and reflecting upon situations
related to meta-design principles. Therefore the meta-designer took notes during the
sessions with respect to the following questions.

1) How do participants and the meta-designers cope with the transition between
meta-design, design and use?

2) Do nuggets encourage participants’ appropriation with respect to underdesign?
3) How do participants with different perspectives exchange their ideas and find a

balance between individual preferences and collective decisions?
4) How do participants shape their design space?
5) How do participants brainstorm, articulate and finalize their creative ideas via

different nuggets at different design phases with respect to divergence and convergence of
ideas?

It was possible to refine these notes by employing the video recordings afterwards.

3.3 Participants

The design sessions involved 11 participants (P), all with the following characteristics
(Table 2):

Table 2. Participants Profile Information

Education and Expertise (Age)
Master in Sociology and Historical Science; Organizational and Migration Research, Urban
Planning, Qualitative Research Methods (26-30)
Master in Political Science & Oriental Science; German Policy Development; Cooperation
Development in the Middle East/ North Africa (26-30)
Master in Computer Science (CS); Privacy, CSCW, CSCL (26-30)
Master in CS; Creativity, User-Experience Design, Ubiquitous Computing (26-30)
Bachelor in CS; Video Analysis, Interaction and Experimental Design with Groups (26-30)
Master in CS; CSCW, Collaborative modeling, End-user Participation (31-35)
Master in CS; CSCW, Creativity, Collaborative Modeling (31-35)
Master in Social Science; Storytelling; Ambient Assisted Living (36-40)
Master in Engineering; Communication Technologies, Computer Sciences and Business
Administration, CSCL, New Media (41-45)
Master in Computer Science; Interfaces, Interaction, Usability, Cognition, CSCW (41-45)
PhD in Engineering; Applied Work Science, Innovation and Process Modeling (50-)

 Meta-design in Co-located Meetings 177

1) Researchers who are involved in innovation, creativity, CSCW and CSCL re-
lated research and are willing to try out new technology

2) All participants have some experience with interdisciplinary creative collabora-
tions, and are used to use different groupware systems

3) Some participants are directly involved in creativity related research.
4) Every participant has interdisciplinary focus, ranging from computer science,

usability engineering to social, history and political science.
Design sessions were organized to involve different types of participants. Group 1 and

2 consisted of designers; group 3 consisted of users and designers from the previous
design session; group 4 was made purely of users; group 5 consists of one designer and
two users.

The meta-designer introduced participants the use of MikiWiki to participants and
answered any usage question during the design process. Between design sessions, the
meta-designer improved the design environment according to feedback given by the
latest group.

Two participants from group 1 also attended the third design session in order to
validate the previous experience and evaluate improvements of the mockup design
environment.

Table 3 lists the main initial nuggets used to create the design environment for
design session 1 (DS1).

Table 3. Initial nuggets

Design phases Nuggets Usage
Collaborative Writing note Creates PostIt notes

sync-imagenote Translate text into images

Collaborative Sketching doodle A sketch canvas for users
to sketch

Collaborative Design toolbox Contain Android design
elements

canvas Android phone canvas
trash Deletes design elements
iconsearch Searches for icons from

the web

3.4 Design Phases

Each design session lasted approximately 60 minutes and it was divided into three
phases.

Phase 1: Brainstorming and Collaborative Writing (15 minutes)
1) Define the design needs and goals of the design of Creativity Barometer for mo-
biles
2) Agree on suitable categories to describe design elements, structure, requirements,
and pages
3) Create a mood-board and agree on the proposed "look and feel"

178 L. Zhu and T. Herrmann

Phase 2: Sketching Ideas and Collaborative Drawing (15 minutes)
1) Basic illustrations of the structure and components of web pages
2) Focus on the interaction and navigation structure

Phase 3: Designing with the Mockup Environment and Collaborative Design (30 minutes)
1) Use the mockup environment to design the creativity barometer interfaces
2) Final wrap up: suggest possible elements for improving the design process

4 Selected Findings: Creative Interaction

This section describes some of our findings with respect to participants’ creative inte-
raction with MikiWiki.

Interplay between Artifacts and Communication: We observed that using
MikiWiki leaves continuous traces of the participants’ interaction to support their
knowledge sharing. The nuggets offered various modes of externalizing and docu-
menting their ideas. Referring to these externalizations on the large screen allowed
them to explain their design rationale and to intertwine their perspectives and foster
synergy building. Furthermore, the documented ideas were a continuous basis for
refining and extending them.

However, starting to work with the interactive wall and the MikiWiki-environment
presented some barriers: at the beginning, designers were mostly talking rather than inte-
racting with the wall, not leaving a trace of their thoughts and discussion on the system.
After a while they forgot what they had said or had in mind previously. Others (e.g. de-
signer 2) were goal oriented and questioned the benefits of creating something such as a
moodboard for their mobile application design. In these situations, it became obvious that
the meta-designer has an influential role as a facilitator since her interventions helped the
participants starting to use the environment. After this initial phase, no further interven-
tion was necessary – the participants continued to use the wall.

The sharing of perspectives led to negotiations and to creative proposals. For ex-
ample, the participants had different opinions about the “look and feel” of the baro-
meter interface. Eventually they designed two different mockup styles: a robotic style

Fig. 4. Two different perspectives

 Meta-design in Co-located Meetings 179

Fig. 5. Repurposing color icons

and a hello kitty pink style (Figure 4). The difference between these two styles also
demonstrates that the participants were encouraged to transfer their moods, and their
emotional attitudes towards the interface, as well as their feelings about the expected
context of use to the design.

Another example demonstrates the wide range of possibilities for externalizing
ideas: In DS2, designers wanted to use a vertical slider to symbolize the barometer.
However, the existing toolbox only provided a horizontal slider. P3 proposed that
“maybe it would be easier to just try to draw something like a box, just tell that it’s a
vertical slider...” He then used colored box icons (Figure 5) to create a vertical gradu-
ated slider.

This case demonstrates the advantage of meta-design. On the one hand a wide
range of features and materials is offered to inspire the participants and to promote the
expressing of ideas. For example, the meta-designer intended the color toolbox to
provide simple and more generalized design elements. On the other hand she meta-
designed them to be easily appropriated and to be used in many different situations, so
that the initial set of design elements could be spontaneously extended.

Meta-design before and in between: The interplay between meta-designers,
designers and users also which benefitted from the MikiWiki approach: after each
design cycle, in accordance with the participants’ feedback and the meta-designer’s
observations, nuggets were modified and evolved for the next cycle to better support
the collaborative design process. As such the nuggets were constantly evolving
and improving, which also demonstrates how the meta-designer coped with the
emerging socio-technical issues via bricolage (Lévi-Strauss 1968) and opportunistic
programming (Brandt et al. 2008).

As an example Figure 6 illustrates from the meta-design level how a doodle nugget
was evolved in-between each design session based on the meta-designer’s observa-
tions as well as the feedback given by participants, e.g. adding the auto-saving
function in DS2, combining the page nugget and the doodle nugget to provide better

180 L. Zhu and T. Herrm

dragging, and hiding and e
progression of design sess
designers and meta-designe

The evolution of the me
re-enforced and perpetuate
meta-designer, MikiWiki s
possible and easy to adapt
cyclical process that meta-
derstanding by interacting w

Fig. 6. Ev

Tools for Creativity Supp
support creativity througho
use to fill the gaps being le
that MikiWiki provided va
combination of MikiWiki w
tivity criteria (Herrmann 20
tive screen is especially us
posed so that nothing is los
variations, played around w
features were identified as c

Simple Tools: a whole pal
enough to foster appropriat
used together to achieve new

Ease of use: low threshold
auto-saving feature meta-d
satisfaction [In01, In07, In

mann

expanding interaction in DS3. Figure 6 also presents
ions and the co-evolution that took place between us

ers.
ta-design environment took place iteratively, and was a
d by designers’ and users’ creative contributions. For
strongly supported a design-in-use option making it b
the design space from session to session. It is through

-designers, designers and users enhanced their mutual
with the concretely available tools and materials.

olving the doodle nugget in between sessions

port: An essential aspect of meta-design is to continuou
out the whole span between design-for-use and design
eft by underdesign. During the sessions, it became appar
arious features, which supported creativity in design. T
with an interactive large wall meets several published cr
010; Hailpern et al. 2007; Resnick et al. 2005). The inter
seful to provide an overall picture of what has been p
st and the various ideas can be flexibly grabbed to gener
with or become the basis for following ideas. The follow
creativity support:

ette of tools is offered [In02, In07, In13]; they are sm
ion (Pipek 2005) and adaptation; and different tools can
w behaviors [In04, In11].

of use, simple interactions, system trust (e.g. given by
designed in DS3) [In05] and perceived feasibility br
13]. The appropriate tools can also greatly reduce the r

the
sers,

also
the

both
this
un-

usly
n-in-
rent
The
rea-
rac-
pro-
rate

wing

mall
n be

the
reed
risk

 Meta-design in Co-located Meetings 181

of misunderstanding, and unproductive discussions (Mamykina et al. 2002) as well as
provide each individual with suitable means to be creative [In01, In07, In08, In09].

Reconfigurable spaces: restructuring personal workflow [In04], coping with and ex-
ploiting the initial lack of structure. As nuggets are independent and loosely coupled,
participants can recombine them to create either a structured design space [In01] or a
more chaotic space on the canvas [In03].

Adding structure: users can structure and transform ideas by connecting them and
indicating their relationships (Figure 1)[In10]. This process also supports reflection
and the articulation of previous creative ideas towards a convergent design result
[In04].

Perceptibility: providing an overview of all ideas and the big picture they compose
[In01, In06, In11]; inspection of details is possible and process history can be recon-
structed from the traces left in the design environment [In04].

Quick experimentation: it is possible to explore what-if scenarios with easy drag-and-
drop actions (Figure 2)[In01, In11]. As undo is also available, both creating and eras-
ing content could be safely conducted [In09, In12].

One shortcoming of the environment that emerged from the interviews is that there
was no private space where participants could draft ideas in isolation, without being
observed by others – as required by Lu and Mantei (Lu and Mantei 1991). Currently
MikiWiki does not support the differentiation between various layers which can be
assigned to certain participants of design aspects and can be easily hidden or shown,
although it could be extended on the client side to do so.

A Sandbox for Tinkering: One shared reason for appreciation was that MikiWiki
acted as a sandbox that the users could play with, tinker and try things out. It is impor-
tant to support participants to explore solutions and “what-if” scenarios (Shneiderman
2000; Mamykina et al. 2002) scenarios, trying out assumptions to assess design pro-
posals. One participant [In02] stated: “It was quite nice that we didn’t jump from tool
to tool to do different things. Brainstorming feels more like a different tool, starting
from simple GUI. We just tried what we had there to achieve what we want. It really
felt like a little playground, when you had quite many possibilities. […]” Therefore,
using MikiWiki with an interactive large screen can be characterized as a ‘sandbox
for tinkering’ which allows the participants to collaboratively prototype design pro-
posals, try out, evaluate, and eventually discard or use them as a basis for ongoing
work. We believe that the perception of the sandbox is supported by the easy reach
and availability of a range of small tools and the easiness of designing by selecting,
dragging and dropping ready-made design elements.

From Reciprocal Inspiration to Convergence: When participants were seeing the
wealth of icons made available by the meta-designer, they were inspired even if the
icons were not related to their actual ideas. Those items that were not in the initial
center of the participants’ interest yet acted as a stimulus for creative thought and
enriched participants’ design ideas. For instance, in DS3 they noticed the audio icon,
and subsequently had the idea to use audio input. The possibility to visualize abstract

182 L. Zhu and T. Herrmann

concepts helped them to detect similarities between their design approaches and to
refine them thus supporting a process of convergence. It could be observed that Mi-
kiWiki promoted the building of relations between design ideas and the merging of
individual approaches. Therefore, in MikiWiki it is not only feasible to support diver-
gent phases of brainstorming but also building synergy in a later phase by using the
initial results from the brainstorming process.

Appropriation Kits: Not only were designers and end-users inspired but also the
creativity of meta-designers was stimulated. By observing how nuggets were appro-
priated by participants, what they tried to do with them and which expectations came
up, the meta-designer developed new ideas on how to enhance or modify the nuggets.
Nugget pages act as a mechanism and interface for supporting the creation and evolu-
tion of software artifacts and are themselves subject to creative redesign. Moreover,
nuggets capture and embody knowledge via their continuous adaptation process. In a
reflexive process, this knowledge affects the medium itself by triggering its adapta-
tion. Participants can incrementally construct knowledge via nuggets during collabo-
ration and communication between themselves and with the meta-designer.

5 Summary and Implications for Design

The empirical evaluation of co-located MikiWiki sessions and of the underlying HMS
reveals that meta-design is not only an abstract concept but can be instantiated in real
settings. The instantiation is not only a technically issue (MikiWiki, large screen etc.)
but also relies on the whole socio-technical context - e.g.: the influence of a facilita-
tor, who has to encourage the participants to sketch their ideas, and to get them
initially used to employing the variety of the meta-design features available. Further
influential factors are the duration of sessions, their cyclical repetition, the appropriate
mixture of the participants with respect to their abilities and experiences, and the cha-
racteristics of the design task. The facilitator must be able to act as a meta-designer
who can instantaneously add new features to the design-environment or modify its
features. If the meta-designer’s activities do not only include bug fixes or simple
adaptations but are the result of a more substantial reflection, they can be considered
as re-seeding in terms of the SER-model. The adaptability of the design-environment
is the most central characteristic of meta-design and can be achieved by flexibly
combining small components. This is exemplarily demonstrated with the MikiWiki
nuggets. Each of them represents an independent aspect of the design process and
they can be closely related to each other and easily connected to a network.

The way MikiWiki instantiates meta-design does not only support rational problem
solving, but also takes emotions and moods into account. It offers participants an
asset to transfer their mood and emotional approach to the product being under design
– and therefore supports a design outcome that is highly compliant with cultural is-
sues or aspects of experience. This is a relevant aspect for further research.

MikiWiki provides a collaborative design environment for a broad spectrum of ap-
plication areas, for instance iteratively prototyping interactive system design with a
focus on evolutionary participatory design. MikiWiki could be used to rapidly proto-
type new UI designs and bring different design teams together. It is a web-based

 Meta-design in Co-located Meetings 183

platform, allowing design results to be easily stored and shared by communities. The
wide design corridor, which is opened by MikiWiki, became obvious by the way par-
ticipants used it and how their design focus was broadened and enriched.

The validity of the empirical findings is limited since meta-design usually covers a
much longer period than was observable within the case study. Ongoing empirical
investigation and clarification of the meta-design concept should take a whole series
of design cycles into account, and also include phases of asynchronous and dislocated
collaboration. Furthermore, a longer time period can be taken into account where
design outcomes are used and adapted during use. However, it appeared reasonable
to start with short cycle experiments to get an immediate feedback on:

• The needs for adapting the MikiWiki environment or increasing its adaptability.
• The characteristics of the socio-technical context into which MikiWiki has to be

embedded.
• The kinds of explanations and interventions that have to be provided by the meta-

designer.
• The characteristics of the design task and of the involved participants.

The chosen setting is a reasonable basis to proceed with the empirical investigation of
meta-design. Further design studies can help in concretizing and exploring meta-
design principles and their interplay with collaborative creativity in participatory de-
sign processes.

References

Amabile, T.M., Conti, R.: Changes in the work environment for creativity during downsizing.
Academy of Management Journal, 630–640 (1999)

Ardito, C., Barricelli, B.R., Buono, P., Costabile, M.F., Piccinno, A., Valtolina, S., Zhu, L.:
Visual mediation mechanisms for collaborative design and development. In: Stephanidis, C.
(ed.) Universal Access in HCI, Part I, HCII 2011. LNCS, vol. 6765, pp. 3–11. Springer,
Heidelberg (2011)

Brandt, J., Guo, P.J., Lewenstein, J., Klemmer, S.R.: Opportunistic programming: how rapid
ideation and prototyping occur in practice. Paper Presented at the Proceedings of the 4th In-
ternational Workshop on End-User Software Engineering, Leipzig, Germany (2008)

Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for
End-User Development: A Model-Based Design Methodology. IEEE Transactions on Sys-
tems, Man and Cybernetics, Part A: Systems and Humans 37, 1029–1046 (2007),
doi:10.1109/TSMCA.2007.904776

Dawson, C.: Practical Research Methods: A User-Friendly Guide to Mastering Research Tech-
niques and Projects. How to Books Ltd. (2002)

Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User Develop-
ment. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 427–457.
Kluwer Academic Publishers, Dordrecht (2006)

Fischer, G., Herrmann, T.: Socio-Technical Systems: A Meta-Design Pers-pective. Internation-
al Journal of Sociotechnology and Knowledge Development (IJSKD) 3(1), 1–33 (2011)

184 L. Zhu and T. Herrmann

Fischer, G., McCall, R., Ostwald, J., Reeves, B., Shipman, F.: Seeding, Evolutionary Growth
and Reseeding: Supporting Incremental Development of Design Environments. In: Adelson,
B., Dumais, S., Olson, J. (eds.) Proceedings of ACM Conference on Human Factors in
Computing Systems (CHI 1994), vol. 1, pp. 292–298. ACM, New York (1994)

Guilford, J.P.: Creativity. American Psychologist 5, 444–454 (1950)
Hailpern, J., Hinterbichler, E., Leppert, C., Cook, D., Bailey, B.P.: TEAM STORM: demon-

strating an interaction model for working with multiple ideas during creative group work.
Paper Presented at the Proceedings of the 6th ACM SIGCHI Conference on Creativity &
Cognition, Washington, DC, USA (2007)

Herrmann, T.: Support of Collaborative Creativity for co-located Meetings. In: Randall, D.S.,
Pascal (eds.) From CSCW to Web 2.0: European Developments in Collaborative Design.
Computer Supported Cooperative Work, pp. 65–95. Springer, London (2010),
doi:10.1007/978-1-84882-965-7_4

Herrmann, T., Carell, A., Nierhoff, J.: Creativity barometer: an approach for continuing micro
surveys to explore the dynamics of organization’s creativity climates. Paper Presented at the
Proceedings of the 8th ACM Conference on Creativity and Cognition, Atlanta, Georgia,
USA (2011)

Hutchins, E.: Cognition in the Wild. The MIT Press, Cambridge (1995)
Konkola, R.: Harjoittelun kehittämisprosessi ammattikorkeakoulussa ja rajavyöhyketoiminta uu-

denlaisena toimintamallina. In: Tuomi-Gröhn, T., Engeström, Y., Young, M. (eds.) Koulun ja
Työn Rajavyöhykkeellä. Uusia Työssäoppimisen Mahdollisuuksia, pp. 148–186. University
Press, Helsiniki (2001)

Lévi-Strauss, C.: The Savage Mind. University of Chicago Press (1968)
Lu, I.M., Mantei, M.M.: Idea management in a shared drawing tool. Paper Presented at the

Proceedings of the Second Conference on European Conference on Computer-Supported
Cooperative Work, Amsterdam, The Netherlands (1991)

Mamykina, L., Candy, L., Edmonds, E.: Collaborative creativity. Commun. ACM 45(10), 96–99
(2002)

Mørch, A.: Three Levels of End-User Tailoring: Customization, Integration, and Extension. In:
Kyng, M., Mathiassen, L. (eds.) Computers and Design in Context, pp. 51–76. MIT Press,
Cambridge (1997)

Pipek, V.: From tailoring to appropriation support: Negotiating groupware usage. University of
Oulu, Oulu (2005)

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., Eisenberg, M.:
Design Principles for Tools to Support Creative Thinking. In: IJHCI, 36th edn.

Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic Books,
New York (1983)

Shneiderman, B.: Creating creativity: user interfaces for supporting innovation. ACM Transac-
tions on Computer Human interaction 7(1), 114–138 (2000)

Star, S.L., Griesemer, J.R.: Institutional Ecology, ’Translations’ and Boundary Objects: Ama-
teurs and Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907-1939. Social
Studies of Science 19(3), 387–420 (1989)

Zhu, L.: Cultivating collaborative design: design for evolution. Paper Presented at the Proceed-
ings of the Second Conference on Creativity and Innovation in Design, Eindhoven, Nether-
lands (2011)

Zhu, L.: Hive-Mind Space: A Meta-Design Approach for Cultivating and Supporting Collabor-
ative Design. Università degli Studi di Milano, Milano (2012)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 185–200, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Designed by End Users: Meanings of Technology
in the Case of Everyday Life with Diabetes

Anne Marie Kanstrup

Aalborg University, Department of Communication, Nyhavnsgade 14, 9000 Aalborg, Denmark
kanstrup@hum.aau.dk

Abstract. This paper presents end users’ ability to work across boundaries in
design. The point of departure is a research project in which 60 end users par-
ticipated as co-designers of ICT to support their everyday lives with the chronic
illness diabetes. In additional to a series of digital co-designs, 22 mock-ups de-
signed by the end users emerged from the project. These mock-ups/end-user de-
signs are analyzed, with a focus on boundaries. This design case presents end
users’ ability to create continuities across boundaries through their willingness
to step into the unknown territory of ICT design and through their fusion of
meanings of technology, diabetes, and everyday life experience in their designs.
The paper concludes with reflections on engagement in boundary relations and
call for embracing end users’ contributions to design by focusing on horizontal
and hybrid cooperations.

Keywords: End-user design, diabetes, eHealth, boundaries, dichotomies.

1 Introduction

We have taken three pictures: where and when we want to learn. The first one is in
relation to relaxing and reading. That one gets the data directly into the brain. Like
with the Internet...

The quote above and the related photo (Fig. 1) are from Marie Glasemann’s work

with the design of mobile technology support for children living with the chronic
illness diabetes. Glasemann participated in two diabetes youth camps in Germany –
14-day camps where children with type 1 diabetes (T1D) stayed over the summer
holiday to learn about their illness, have a good time, and meet new friends. Glase-
mann explored designs to support the youngsters’ learning and cooperated with the
children via participant observation, interviews and questionnaires, design workshops,
and prototyping [16-18].

The photo in Fig. 1 presents three boys’ design of a mobile diabetes supporter. It
was designed at a design workshop at the camp. The theme of the workshop was
learning. The children were aided by materials like Polaroid cameras, paper, pens,
stickers, cardboard boxes, Plasticine, and toys, to create mock-ups of designs for mo-
bile devises to support their learning about diabetes [15]. The three photos in Fig. 1
are visualisations of where and when the boys would like to learn – they prefer areas

186 A.M. Kanstrup

for “relaxing and reading” (cf. quote). The green mobile devise created in Plasticine is
the boys’ design of a mobile supporter for learning about diabetes: “That one gets the
data directly into the brain“, they explain (cf. quote). You put the headphones in your
ears, and then whatever you need to know about diabetes goes into your brain.

Fig. 1. Photo taken by Marie Glasemann at a design workshop at a diabetes youth camp. Three
boys’ design of a mobile diabetes supporter.

Marie Glasemann’s work with the design of mobile technology support for chil-
dren living with diabetes is a wonderful example of how end users of all ages can
contribute to the design of technology for their everyday practices if this is facilitated
in an appropriate language. However, it is also an example of how difficult it can be
to understand end users’ designs and cooperate with them. This is especially true if
we, as professional designers, think and work in terms of traditional production, thus
trying to understand designs like those above as merely technological products.

In this paper, I will elaborate on this challenge. Along with Glasemann and col-
leagues at Aalborg University, I have supervised the creation of a series of mock-ups
designed by end users at design workshops. In this paper, I reflect on the quality of
these designs. First, I present perspectives on design as working across boundaries
(section 2). Second, I offer the example of end-user designs, which are characterised
by their ability to work across boundaries, here in the case of design of Information
and Communication Technology (ICT) for everyday living with diabetes (section 3).
Third, I discuss and offer some conclusions on challenges of engaging in boundary
relations (section 4).

 Designed by End Users: Meanings of Technology in the Case of Everyday Life 187

2 Design as Working across Boundaries

In 1964 Alexander [1] presented a view of end users as “unselfconscious” designers
whose designs were characterised by “a dynamic process in which both form and context
change continuously, and yet stay mutually well adjusted all the time” [1: 37]. Alexander
presented examples of designs made in “unselfconscious cultures”, for example,
buildings and clothing, and called attention to the puzzling fact that these designs were
characterised by a “good fit” between “form” and “context”, in contrast to most designs
made by professionals. Work by “selfconscious” designers, taught academically, was
often characterised by a mismatch between form and context. Alexander argued that the
difference in quality between these two types of design cultures could not be explained
by the increased complexity in professional “selfconscious” design alone [1: 32]. Nor can
the nature of “unselfconscious” design be boiled down to a story of “adaptation” [1: 37].
Instead, we need to understand the “self-organizing” process, which supports “dual
coherence” – processes in which, e.g., operations, maintenance, constraints, surround-
ings, and daily life are “fused in the form” [1: 31]. Alexander argued that the common
problems of misfit in designs made by “selfconscious” designers were caused by design
processes, which are often “broken down”, thereby cutting the production of the form off
from its context [1: 38].

Alexander’s “notes” from 1964 still contribute to the research on how to bridge es-
tablished boundaries between form and context, technology and use, and professional
designers and end users. The field of End User Development (EUD) is occupied by
bridging the dichotomies of “design time” and “use time” [13], and designers and
users [31], and in general working “across boundaries” [35]. As presented by Such-
mann, the reconstruction of the relationship between technology production and use is
an enormously difficult task, since boundaries defining professional practices of tech-
nology production are institutionalised arrangements. Boundary crossing involves
“encountering difference; entering into territory with which one is unfamiliar and, to
some significant extent therefore, unqualified to act” [35: 93]. EUD research presents
rich examples of end users’ steps into unknown terrain through engaging in software
design despite a lack of formal education. With this research, EUD also presents the
need for professional software designers to be able to understand end users’ designs in
order to participate in and facilitate the bridging of boundaries in design. This might
sound simple, but even in recent literature we find examples of how difficult it is to
break free from the traditional perception of users as receivers of technology who
need help from professional designers. One honest example is Buxton’s own admis-
sion of the assumption that end users exposed to multiple designs would be the most
creative and constructive, i.e., the assumption that end users come to the design proc-
ess “empty” and therefore need to be given ideas by professional designers from
which to choose or upon which to elaborate. Buxton carried out a systematic analysis
of 48 sketches made by end users [6: 396-399]. Some of these designs were made by
end users who had been exposed to multiple designs, while other users had not.
Buxton concluded that his hypothesis had been wrong. He wrote: “What is clear in
these sketches, even to a lay-person, is that the users did have original ideas about
alternative designs. What we had not done in the first study, however, was let them

188 A.M. Kanstrup

communicate them to us in an appropriate language” [6: 394]. Buxton’s honesty is
venerable and important to share. It reminds us to keep a perspective of users as
competent designers (in contrast to testers or elaborators of ideas presented by
professional designers, cf. [20]). Moreover, it reminds professional designers of our
responsibility to communicate in an appropriate manner with end users – to make a
true effort to work across boundaries and to understand the meanings of technology
for end users (in contrast to anticipating use without local grounding [35]). Despite
more than 40 years of work with engaging end users in the design of ICT, we still fall
short in understanding end-user design and, consequently, in knowing how to facili-
tate cross-boundary work on design and use. The constant technological development
of platforms supporting end-user design is, on the one hand, a contribution and, on the
other hand, a critical challenge to software designers’ goal of re-conceptualising de-
sign towards “dual coherence”, as called for by Alexander [1: 31]. Returning to
Suchmann, we need to move “beyond simple dichotomies in our understanding of
who and where we are within the divided terrain of technology production and use,
we need to begin by problematizing the terms ‘designer’ and ‘user’ and reconstructing
relevant social relations that cross the boundaries between them” [35: 94].

My interest in conceptual understandings of end-user designs comes from concerns
found in the literature and from my experiences in research projects. In both cases, I
am concerned about understandings of end-user designs as merely products. Litera-
ture in business studies on how to “open innovation” and work across borders in
companies [7] and on how to “democratize innovation” by offering lead users infor-
mation and tool-kits to innovate has drawn important attention to end(/lead) users’
value in design [36], though this is from a market-oriented perspective. The focus is
on how to support end users in their construction of forms that hit the market in form
of increased sales [37]. As argued by Björgvinsson, Ehn, and Hillgren, attention to
how end users’ designs contribute to “open[ing] up […] possibilities and questions” is
missing [5: 42]. In practice, I have seen software developers and even researchers
become frustrated if it was difficult to see the line connecting the end-user design to
the final product. In these frustrations lies a desire for a 1:1 correspondence between
end-user designs and a final product. This technical-functional rationality assumes
that if we provide end users with tool kits to innovate, then products that will hit the
market will emerge. Of course, there are best practice examples of lead users design-
ing such products [37]. However, these processes do not tend to follow causal lines of
activity. In most cases, design, including when it involves and/or is carried out by end
users, is far more complex. This is because most people, and also most projects [14],
are not based on rationality alone.

During a series of research projects on how to support end users in design [23], it
was clear that the end-user designs – the forms that surfaced in these projects from the
hands of end users – were not just products (cf. Fig. 1). In practice, in many cases it
was impossible to implement them in formal language, which especially frustrated the
software engineers. Because of this clash of understandings and expectations about
end-user design, it has become important to find conceptual understandings that can
support professional design teams in their cooperative work with end users as co-
designers. In this conceptual and analytical work, the end users’ designs came to be

 Designed by End Users: Meanings of Technology in the Case of Everyday Life 189

understood not as products, but rather as some type of artefacts of meanings. As such,
the end-user designs from such research projects are wonderful examples of how
unsound (and frustrating) it is to insist on a division between the objective and the
subjective.

Because the end-user designs from the research projects expressed meanings
(rather than functionality), they recall Krippendorf’s definition of design as “making
sense (of things)”, emphasising the sense-making role of products, in contrast to a
focus on making objectively existing products [27: 9]. Thus, I suggest understanding
these end-user designs as “expressions”, and, therefore, working with end-user de-
signs as communicative artefacts, as suggested several years ago by, e.g., Ehn and
Kyng [11]. Additionally, I have suggested to understand the end-user designs as
“partly unconscious communications” [22]. This suggestion is made in reference to
Bateson’s definition of messages communicated in art as falling in between the self-
conscious and unself-conscious, a kind of expression that Bateson termed “partly
unconscious communication” [4]. Such “partly unconscious” messages would be
“falsified” if made fully conscious. Instead, to understand them, we must engage in a
particular sort of “partly unconscious communication” [4: 138]. Returning to Such-
mann [35], this is a call for professional designers to step into unknown territory, and
to leave the comfort zone of “making” and step into the zone of “sense”, as suggested
by Krippendorf [27: 9]. This means leaving behind the frustrated attempts to translate
end-user designs like those in Fig. 1 as conscious specifications. On the contrary,
professional designers must engage in partly unconscious communication and, as
emphasised by Buxton in his reflections, work on how to facilitate communication “in
an appropriate language” [6: 394].

In the following section, I will present how we worked through these challenges of
bridging boundaries in design in a case of ICT for everyday living with diabetes.

3 ICT for Living with Diabetes – Boundary Challenges

The data presented in this paper are from the maXi project, an acronym for “master-
ing chronic illness with information technology”. Since 2007, the maXi project
(www.maxi-projektet.dk) has worked on the design of interactive systems to support
everyday living with the chronic illness diabetes. During the course of the project, this
came to include explorations of prototypes for grocery shopping, restaurant visits,
glucose simulation, and training tools [24]. 17 Danish families (60 family members in
total) participated in the project. Glasemann’s work with learning technology at a
diabetes youth camp was part of the maXi-project. The research focused on re-
thinking health, and user-driven innovation was explored as a method to bring end
users, normally excluded from the design of technology for their everyday lives with
chronic illness, to the forefront of the design process. The ambition was to bring new
perspectives to technology production in eHealth, which is traditionally driven by
healthcare professionals and engineers [26]. EUD perspectives on end users as com-
petent designers – the genuine belief in end users’ contribution to design and an insis-
tence in opening up the world of technology production to end users [31] – has

190 A.M. Kanstrup

formed the basis for the empirical research in the maXi project. The design process
was organised according to three themes [23]:

• Cooperation: focused on finding end users for participation, establishing coopera-
tion, and planning the process.

• Context: focused on insights on current practice and visions for future practices.
• Concept: focused on materialising concepts as sketches and presentations.

Two iterations were carried out. Eight families participated in the first iteration in
year 2008. Nine families participated in the second iteration, in year 2009. All fami-
lies participated in: 1) two-hour home interviews; 2) a three-hour workshop at the
University; and 3) one weekend of exploring prototypes for digital health services in a
living laboratory. The participants were selected to represent a broad variety of the
target group. Diabetics were between 4 and 68 years old. Approximately 50% had
T1D and 50% had T2D. Some were newly diagnosed diabetics, while others had more
than 20 years of experience with diabetes. Additionally, 9 service providers (restau-
rants, bakeries, supermarket, tourist office, and butcher shops) from the city of
Skagen in North Denmark participated in establishing a living laboratory for digital
health services [25].

A series of co-designed digital prototypes were designed and explored [24]. Addi-
tionally, the users designed a series of low-fi prototypes on their own at the conclud-
ing design workshops. It is this activity – the end users’ design of low-fi prototypes at
design workshops – that is presented here. These design workshops concluded the
design iteration (both in 2008 and in 2009). At the workshops, the users formed
groups of 5-8 people. All groups worked to design one or more IT-service to support
everyday living with diabetes. To express their ideas, all users had access to several
objects, including paper, pencils, Plasticine, post-its, cardboard imitations of com-
puters and mobile phones, stickers, and Polaroid cameras.

The design workshop took place over 60 minutes followed by 30 minutes of joint
sharing and reflection on the designs. The design workshop concluded the end users’
participation in the maXi project. It was organised and presented as the end of the
design inquiry, with the goal of summing up the needs and ideas that emerged through
the design activities in the project. All groups presented their designs to each other
and participated in a concluding qualitative interview on their experiences as design-
ers in the project.

The data that form the basis of the analysis of the end-user designs are photos and
recordings of end users’ presentations of designs. This was further supported by tape
recording of end users’ conversations during the 60-minute design activity and of
their reflections in follow-up interviews. The 22 end-user designs are numbered be-
low. I will refer to these numbers in my discussion of how the end-user designs work
across boundaries.

1. A PC solution that supports daily use for monitoring
2. A mobile application for grocery shopping combined with personal glucose man-

agement and social community
3. A necklace and earrings to monitor and measure glucose level

 Designed by End Users: Meanings of Technology in the Case of Everyday Life 191

4. A watch to monitor and measure glucose level
5. A monster that helps to remember medicine
6. A variety (14 designs) of mobile applications that support communication between

family members on glucose levels and everyday activities like sports, groceries,
friends, whereabouts, etc.

7. An information infrastructure that supports data catch-up and use from supermar-
ket systems (via bar-codes) to mobile phones, refrigerators, interactive cookbooks,
and personal glucose management systems

8. Two beepers that monitor and send an alarm to family members if glucose levels
get too low.

Fig. 2. At a design workshop, end users design mock-ups of ICT to support their everyday lives
with diabetes

The maXi project faced a series of boundary challenges in the design of ICT for eve-
ryday living with diabetes. The following section will summarise the core boundary
challenges and illustrate how end-user designs from the design workshops worked
across boundaries.

3.1 Boundaries of Individual and Cooperative Practice

A core challenge faced in the maXi project was how to bridge the boundary between
the medical practice of self-management, on the one hand, and the cooperation prac-
tised in families and communities, on the other. Diabetes is a serious illness for
which, at present, there is no cure. From a medical perspective, a diabetic, especially
with T1D, needs strict control of blood glucose levels, obtained by balancing the trio
of food, exercise, and insulin. This includes measuring blood glucose levels several
times a day, calculating carbohydrate, insulin doses, and physical activity. These

192 A.M. Kanstrup

activities are termed “self-management”. In Denmark, those diagnosed with diabetes
consult a physician only twice a year unless complications occur.

Between these consultancies (i.e., over six months), the diabetic manages her own
illness, typically with help from blood glucose meters, applications on mobile phones
or personal computers, cookbooks with information on carbohydrates, and simple
tools to support ongoing monitoring and calculation, like watches with alarms and
mobile calculators. The growth in social media over recent years has supported user
contributions to everyday life services. There is an endless array of networking possi-
bilities for diabetics (e.g., forums, chats, weblogs, and video or picture-sharing sites).
In these network facilities, information is primarily user-generated. Through such
networks, people strengthen and encourage each other by articulating thoughts, prob-
lems, and fears, but also by sharing their experiences and offering advice for a better
life. The term “health 2.0” has emerged [21]. What had emerged through 2.0 tech-
nologies shows that diabetes is not simply an individual activity focused on the illness
from a purely medical or rational perspective. In practice, diabetes is a cooperative
activity that takes place in groups, like among families, friends, trusted people at
institutions like school and work, and even through “reaching out across the web” in
“emphatic communities” [33].

Figure 3 presents a design of a beeper that monitors the glucose level and sends an
alarm to family members if it gets too low (left) and a design of a mobile application
to support communication between family members regarding glucose levels and
everyday activities like sports, groceries, friends, and whereabouts (right).

Fig. 3. Left: end-user design 8: a design of a beeper that monitors glucose level and sends an
alarm to family members if it gets too low. Photo right: end-user design 6: a design of a mobile
application to support communication between family members regarding glucose levels and
everyday activities like sports, groceries, friends, and whereabouts.

End-user designs 8 and 6 are examples of how mock-ups designed by end users
work across boundaries of individual self-management and co-operative communities
of practice. These designs represent the primary types of end-user designs (with 14
examples of end-user design 6 and two examples of end-user design 8), and they
were characterised by a focus on creating and supporting relations across communi-
ties of practice, such as healthcare professionals, family members, friends from the
diabetes community, friends from school, colleagues at work, associations, and

 Designed by End Users: Meanings of Technology in the Case of Everyday Life 193

service providers of interests. The designs all touched upon the diabetics’ need to feel
safe and connected to trusted people in relation to their illness. A child explains
design 6 to his mother as follows:

Child: “It is a mobile beeper where you can see how I am”
Mother: “so I can see if you are ok or not?”
Child: “Yes”

At the same time, the designs emphasise the need for privacy and to break free from
interactions related solely to diabetes – to step across communities and integrate in-
teractions involving fun, friendship, and work. One child emphasises the need for
privacy: “I don’t want the school to see my data”. An adult points out the need for
integration with non-diabetic activities: “It has to support me at work. Not make it
more complicated”. The end-user designs focus on relationships at the community
level, with an emphasis on membership in multiple communities of practice, i.e., con-
nection to a wide range of relations without requiring a specific shared practice. The
end-user designs are types of boundary objects [34], calling for a nexus of interpreta-
tions, objectives, structures, and scales. These end-user designs call attention to the
importance of designing for participation across boundaries, rather than just use. As
Wenger noted, on boundary objects, such perspectives are important:

The crucial issue is the relationship between the practices of design and the prac-
tices of use. Connecting the communities involved, understanding practices, and
managing boundaries become fundamental design tasks. It is then imperative to
consider a broader range of connections beyond the artifact itself, both to reconcile
various perspectives in the nexus and to take advantage of their diversity. [38: 108]

3.2 Boundaries of Clinical and Everyday Life Settings

Another core challenge in the maXi project was to work across the boundaries be-
tween clinical settings and the settings of everyday life. In general, and not only in
relation to diabetes, there has been growing interest in how to decrease hospitalisation
time and treatment costs by supporting patients with ICT in their homes and everyday
life environments. New technologies and practices of telemedicine [32] and self-
management tools are expanding, and the private sphere has become a design setting
for eHealth. Rules and practices in what here I broadly term “everyday life”, such as
private households and service settings like restaurants and supermarkets, are differ-
ent from clinical settings like hospitals. Following Barker’s studies of “Ecological
Psychology” [3], “the environment is seen to consist of highly structured, improbable
arrangement of objects and events which coerce behavior in accordance with their
own dynamic patterning” [3: 4]. The clinical setting and the private setting have
different styles, agendas, and, in general, different “patterns” [3: 4].

Fig. 4 illustrates the differences in structure, arrangements, objects, and patterns
between a clinical setting and everyday life settings. The first photo (left) shows a
clinical setting, while the middle and right photos are two examples of everyday life

194 A.M. Kanstrup

settings in the maXi project: the city of Skagen and a bakery. Even a layperson can
see that these settings call for different designs and can foresee the danger of “misfit”
[1] if we attempt merely to fuse clinical settings onto the settings of everyday life.

Fig. 4. Left: a clinical setting – a Danish hospital ward. Middle: a maXi setting, end users on a
city tour in Skagen. Right: a maXi setting, end users at a bakery.

Fig. 5 presents examples of end-user designs in which the home setting is ad-
dressed, with emphasis on the designs’ ability to support a home-like atmosphere.
End-user design 5 (left photo), which is a monster to help remember treatment, was
designed by a child who envisioned this design as a decoration in her room. End-user
design 2 is a kind of collage of functionality, combining a mobile application for gro-
cery shopping with personal glucose management and social community.

Fig. 5. Left: end-user design 5: a monster helping to remember medicine. Right: end-user design 2:
a mobile application for grocery shopping combined with personal glucose management and social
community.

When designing mock-up 2, the end users (women aged 40 to 65) placed candles
in the middle of the design and had the following conversation:

End user 1: let’s put these candles in the middle ‘cause we want it to be cosy
End user 2: candles, yes, we need candles
End user 1: ok, so we want candles, let’s place them in the centre like this. Cosy
we write like that. It must not be too technical. Cosy.

Aarhus and Ballegaard’s studies of professionally designed technology to assist with
self-care at home showed how end users engage in boundary work “to maintain the

 Designed by End Users: Meanings of Technology in the Case of Everyday Life 195

order of the home when managing disease and adopting new healthcare technology”
[2]. End-user designs 2 and 5 are examples of how mock-ups designed by end users
work across boundaries of clinical settings and everyday life settings, such as home.

3.3 Boundaries of Illness and Identity

Fig. 6 presents examples of end-user designs in which lived life and identity are put at
the forefront, and diabetes is integrated into this life and identity. The photo on the
left shows one of the project participants’ technologies for diabetes management: a
professionally designed insulin pen with a self-administering clinical focus: it can
inject the suggested dosage of insulin and display insulin dosages. In contrast with
this are two end-user designs, shown in the middle and right photos. The former
shows jewellery and the latter a watch; both were designed to wear for fashion and to
monitor blood glucose levels. The end users who designed these were teenagers who
emphasised the need for technology that is not just designed for illness or medical
activities. One of these end user designers stated: “I say, ‘I am Anna’. I don’t say ‘I
am diabetic’” (teen diabetic). Emphasis in these designs was on how to blend into
everyday life with friends at school, in the city, at sport activities, cafés, etc. Anna
explains: “I would prefer not to say that I am diabetic” (teen diabetic). The end user
who designed the watch explained: “It has to be fashionable” (teen diabetic). Similar
examples are found in Glasemann’s end-user designs, e.g., covers for diabetes tech-
nology inscribed with “love”, unlike to existing professional designs, which are typi-
cally black or blue with medical business logos [19].

Fig. 6. Left: a professionally designed insulin pen. Middle: end-user design 3: jewellery to
monitor and adjust glucose levels. Right: end-user design 4: a watch to monitor blood glucose
levels.

Studies of how people experience living with a chronic condition have shown that
they feel predominantly healthy [28]. When expressing how it feels to be healthy,
they report central themes like honouring the self, being connected with others, creat-
ing opportunities, and celebrating life. Studies like these support an understanding of
health and illness as coexistent. A predominant focus on illness will mean that “a
large part of a person’s whole is missing and therefore denied” [28: 466]. End-user
designs 3 and 4 are examples of how mock-ups designed by end users work across
boundaries of illness and identity.

196 A.M. Kanstrup

3.4 Coherent Connections between Objects and Context

It is important to remember that the motivations and values of diabetics and health-
care professionals differ. Generally speaking, there is a boundary between medical
ideals and everyday life practices. Healthcare is evidence–based, with clinical proce-
dures as the fundamental rationale for decisions and actions. In contrast, research in
ICT support for diabetes shows that it is naïve to assume that such health rationales
are a fundamental part of people’s everyday lives [9, 29].

Krippendorf has shown evidence of how people’s sense-making is primarily re-
lated to non-causal relationships, like family belonging, associations, and harmony.
Simply put, “The perception of how something fits into a cognitively constructed
context has no causal base” [27: 13]. Krippendorf was referring here to Csikszentmi-
halyi, who carried out a study with nice examples of such a lack of causal base. Csik-
szentmihalyi was interested in the psychological effects of art. However, in his study
of 82 homes, he found that these homes contained “a symbolic ecology, a network of
objects that referred to meanings that gave sense to the lives of those who dwelt
there” [8: 119]. Even when art and design objects were clearly visible in the house-
hold, they played an insignificant role. In contrast, respondents showed strong at-
tachments to several other artefacts, such as a cheap plastic statuette appreciated for
its memory of success, an old bible, which symbolised family continuity, a stereo that
was helpful when the person felt depressed, and a trombone used when responsibili-
ties felt overwhelming [8: 119]. From this observation, Csikszentmihalyi asked if it
actually mattered how objects looked – if people were attached to experiences related
to objects, rather than to the colour or form, then what was the importance of art and
design? He ended up concluding that “our reactions are not direct ‘natural’ responses
to color and form. They are responses to meanings attached to configurations of color
and form” [8: 124-125]. Csikszentmihalyi concluded that there was good design and
art with an impact on society and on people’s lives, but that “most people create their
own private set of references singling out objects that will give order to what they
have experienced”. The nuances of layers of technology are visible in Csikszentmiha-
lyi’s studies, where objects that are merely objects are only the ground (or environ-
ment) of people’s lives, while objects with meaning form the figure of their lives.

During home visits in the maXi project, we asked the 17 participating families to
show us what they used as support in their everyday life with diabetes. They all found
cookbooks from the diabetes association, glucose meters, and insulin pens; most also
showed their mobile phones, and some a personal computer. In addition, they showed
artefacts with indirect functions in the task of monitoring and regulating glucose lev-
els. One such example is seen in Fig. 7, where the family has added a photo of their
dog because “I love the dog. He makes me so happy”. The red watch at the table was
presented as the diabetic’s favourite technology. It was a private item (not a medical
devise), and its best feature was its look, which made it “cool”, and its alarm, which
was invisible to others but was set to remind the diabetic to measure glucose levels.

It is clear which objects make meaning for this family (the dog and the watch) and
which objects are “merely objects” (presented to us and used every day in the ongoing
tasks of monitoring and regulating glucose levels). As elaborated by Krippendorf

 Designed by End Users: Meanings of Technology in the Case of Everyday Life 197

[27], meaning is a cognitively constructed relationship. It selectively connects fea-
tures of an object and features of its (real environment or imagined) context into a
coherent unit. The end-user designs from the maXi project, and the end users’ sharing
of objects and meanings of technology provide insight into already existing and po-
tential coherent connections between objects and context.

Fig. 7. At this home visit, the family has displayed technology they use in their everyday living
with diabetes. They insist on showing a photo of the dog and presenting a personal watch as
their favourite technology.

4 Engagement in Boundary Relations – Concluding Remarks

The aim of this paper has been to present:

• design as working across boundaries. The case is a glimpse into how engagement
in boundary relations can be fruitful in terms of ideals of dual coherence.

• end users’ ability and contributions in working across boundaries in design, here
specifically in relation to the design of ICT support for everyday life with diabetes.

• the variety of meanings found in end-user designs and, consequently, the need for
professional designers to go beyond offering end users tools and platforms for de-
sign and step into unknown terrains of meanings of technology.

• the notion that communication in and about design is not purely conscious and
causal, i.e., directed towards product development. Instead, it is flexible when it
comes to interpretation across boundaries and dual when it comes to the meanings
of technology.

Design is occupied with creating qualitative transformations of form and context,
aimed at transcending existing practices by fomenting new and better ones.

198 A.M. Kanstrup

Engeström et al. [12] and Wenger [38], among others, have shown how boundary
crossing is a crucial theoretical concept in the processes of innovation and learning.
These authors emphasised the horizontal, hybrid character of boundary crossing:
“Boundary crossing entails stepping into unfamiliar domains. It is essentially a crea-
tive endeavour which requires new conceptual resources. In this sense, boundary
crossing involves collective concept formation” [12: 333].

Working across boundaries in design – to bridge and blur dichotomies of design
and introduce horizontal and hybrid cooperations – calls for new ways of thinking.
Ehn [10] has suggested that we work with design as “staging”, in contrast to envision-
ing a project as including the phases of analysis, design, construction, and implemen-
tation. Ehn explained: we could then ask: How to construct the initial object of design
for the project? That is, how to align the participants around a shared, though prob-
lematic, object of concern? [10: 93].

In this paper, I have presented examples of end users’ engagement in boundary
work. My encounters with professional designers’ frustrations with translating end-
user designs directly into product chains, along with the business literature’s presenta-
tion of traditional production-oriented end-user design, are my primary concerns as I
call attention to boundaries and boundary concepts in design. I argue that such re-
conceptualisation will support the fluency, flexibility, heterogeneity, and dynamic
organisation of ICT design, meaning, and use.

References

1. Alexander, C.: Notes on the synthesis of form. Harvard University Press (1964)
2. Aarhus, R., Ballegaard, S.A.: Negotiating Boundaries: Managing Disease at Home. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
2010, Atlanta, Georgia, USA, April 10-15, pp. 1223–1232 (2010)

3. Barker, R.G.: Ecological Psychology: Concepts and methods for studying the environment
of human behavior. Stanford University Press (1968)

4. Bateson, G.: Steps to an ecology of mind. University of Chicago Press, Chicago (2000)
5. Björgvinsson, E., Ehn, P., Hillgren, P.A.: Participatory design and “democratizing

innovation”. In: PDC 2010, Sydney, Australia, pp. 41–50 (2010)
6. Buxton, B.: Sketcing User Experiences – getting the design right and the right design.

Morgan Kaufmann (2007)
7. Chesbrough, H.W.: Open Innovation – The new imperative for creating and profiting from

technology. Harvard Business Press (2003)
8. Csikszentmihalyi, M.: Design and Order in Everyday Life. In: Margolin, V., Buchanan, R.

(eds.) The Idea of Design – A design Issues Reader, pp. 118–126. The MIT Press (1995)
9. Danholt, P.: Interacting Bodies: Posthuman Enactments of the Problem of Diabetes –

Relating Science, Technology and Society-studies, User-Centered Design and Diabetes
Practice. PhD thesis. Computer Science, Department of Communication, Business and
Information Technology, Roskilde University, Denmark (2008)

10. Ehn, P.: Participation in Design Things. In: PDC 2008 Proceedings of the Tenth
Anniversity Conference on Participatory Design 2008, pp. 92–101. Indiana University
(2008)

 Designed by End Users: Meanings of Technology in the Case of Everyday Life 199

11. Ehn, P., Kyng, M.: Cardboard Computers: Mocking-it-up or Hands-on the Future. In:
Greenbaum, J., Kyng, M. (eds.) Design at Work: Cooperative Design of Computer
Systems. Lawrence Erlbaum Associates, New Jersey (1991)

12. Engeström, Y., Engeström, R., Kärkkäinen, M.: Polycontextuality and boundary crossing
in expert cognition: Learning and problemsolving in complex work activities. Learning
and Instructions 5, 319–336 (1995)

13. Fischer, G., et al.: Meta-design: a manifesto for end-user development. Communications of
the ACM 47(9), 33–37 (2004)

14. Flyvbjerg, B.: Rationality & Power: Democracy in Practice. The University of Chicago
Press (1998)

15. Glasemann, M., Kanstrup, A.M.: Evoking Creativity: Young Diabetics Design Their Own
Mobile Diabetes Supporter. In: Proceedings of the Eighth Danish Human-Computer
Interaction Research Symposium, Aalborg University, November 20, pp. 37–41 (2008)

16. Glasemann, M., Kanstrup, A.M., Ryberg, T.: Design and Exploration of a Mobile Game
Scenario in a Diabetic Youth Camp. In: Proceedings of the IADIS International
Conference Mobile Learning 2010, Porto, Portugal, pp. 132–140 (2010)

17. Glasemann, M., Kanstrup, A.M., Ryberg, T.: Making Chocolate-covered Broccoli:
Designing a Mobile Learning Game about Food for Young People with Diabetes. In:
Halskov, K., Petersen, M.G. (eds.) Proceedings of the 8th ACM Conference on Designing
Interactive Systems, pp. 262–271. Association for Computing Machinery (2010)

18. Glasemann, M., Kanstrup, A.M.: IT for Learning Diabetes. Studies in Health Technology
and Informatics 157, 154–159 (2010)

19. Glasemann, M., Kanstrup, A.M.: Emotions on diabetes: a design case of user mock-ups by
young living with diabetes. CoDesign 7(2), 123–130 (2011)

20. Greenbaum, J., Kyng, M. (eds.): Design at Work: Cooperative Design of Computer
Systems. Lawrence Erlbaum Associates, New Jersey (1991)

21. Hughes, B., Joshi, I., Wareham, J.: Health 2.0 and Medicine 2.0: Tensions and
Controversies in the field. Journal of Medical Internet Research 10(3), e23 (2008)

22. Kanstrup, A.M.: A small matter of design: an analysis of end users as designers. In: PDC
2012: Proceedings of the 12th Participatory Design Conference: Research Papers, vol. 1,
pp. 109–118. ACM, New York (2012)

23. Kanstrup, A.M., Bertelsen, P.: User Innovation Management – a handbook. Aalborg
University Press (2011)

24. Kanstrup, A.M., Glasemann, M., Nielsby, O.: IT-services for everyday life with diabetes:
learning design, community design, inclusive design. In: Proceedings of the 8th ACM
Conference on Designing Interactive Systems, DIS 2010. ACM Press (2010)

25. Kanstrup, A.M., Bjerge, K., Kristensen, J.: A Living Laboratory Exploring Mobile Support
for Everyday Life with Diabetes. Wireless Personal Communications 53(3), 395–408
(2010)

26. Kanstrup, A.M., Bertelsen, P., Glasemann, M., Boye, N.: Design for more – an ambient
perspective to diabetes. In: Proceedings of the Tenth Anniversary Conference on
Participatory Design, PDC 2008. Indiana University, Indianapolis (2008)

27. Krippendorf, K.: On the Essnetial Contexts of Artifacts or on the Proposition that “Design
Is Making Sens (of Things)”. In: Margolin, V., Buchanan, R. (eds.) The Idea of Design –
A design Issues Reader, pp. 156–184. The MIT Press (1995)

28. Lindsey, E.: Health within illness: experiences of chronically ill/disabled people. Journal
of Advancd Nursing 24, 465–472 (1996)

29. Mamykina, L., Mynatt, E., Kaufman, D.: Investigating Health Management Practices of
Individuals with Diabetes. In: CHI 2006, Montéal, Québec, Canada, April 22-27 (2006)

200 A.M. Kanstrup

30. Muller, M.: Participatory Design: The Third Space in HCI. In: Jacko, J., Sears, A. (eds.)
Handbook of HCI, 2nd edn. Erlbaum (2007)

31. Nardi, B.: A small Matter of Programming – Perspectives on end user computing. MIT
Press (1993)

32. Norris, A.C.: Essentials of Telemedicine and Telecare. Wiley (2001)
33. Preece, J.: Empathic Communities: Reaching Out Across the Web. Interactions, 32–43

(March + April 1998)
34. Star, S.L.: This is Not a Boundary Object: Reflections on the Origin of a Concept. Science,

Technology, & Human Values 35(5), 601–617 (2010)
35. Suchman, L.: Located accountabilities in technology production. Scandinavian Journal of

Information Systems 14(2), 91–105 (2002)
36. Von Hippel, E.: Democratizing Innovation. MIT Press (2005)
37. Von Hippel, E.: The Sources of Innovation. Oxford University Press (1988)
38. Wenger, E.: Communities of Practice: Learning, Mearning, and Identity. Cambridge

University Press (1998)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 201–216, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cultures of Participation in Community Informatics:
A Case Study

Daniela Fogli

Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Brescia

Via Branze 38, 25123 Brescia, Italy
fogli@ing.unibs.it

Abstract. This paper describes a participatory design project aimed at
developing FirstAidMap, a collaborative web mapping application to be used
by an Italian non-profit association for public assistance and first aid.
Volunteers of this association, and specifically ambulance drivers, need to
know the characteristics of the territory where the association ensures its
assistance, in order to reach a given place quickly and in a safe manner. Despite
the new opportunities offered by Web 2.0 technologies, paper-based maps are
the only means used by volunteers to spread and share knowledge within the
association, while training sessions through PowerpointTM presentations are
regularly held to train novice drivers about the dangers existing in the territory
and possible changes to traffic and road signals. The two design cycles carried
out to develop FirstAidMap, which are described in this paper, gave the chance
to observe how a culture of participation may progressively emerge in a
community informatics domain and how the related issues may be addressed.

Keywords: collaborative web mapping, meta-design, cultures of participation,
community informatics.

1 Introduction

In many application domains, managing and sharing knowledge is a fundamental
activity that needs to be sustained by favoring a culture of participation [3-4], namely
by providing all actors in the application environment with the proper means to
participate in activities of their interest. Creating and exchanging up-to-date
knowledge about the territory is a crucial need at COSP (Centro Operativo Soccorso
Pubblico), a non-profit association that provides first aid and public assistance in a
wide area near Brescia, in Italy, to a population of more than 20000 inhabitants. The
association has grown over the years from 10 to 220 volunteers, providing today
about 5000 first aid interventions a year. At COSP, volunteers play different roles,
from driving ambulances to acting as rescuers, to coordinating the activities of other
volunteers at the switchboard. COSP volunteers actually constitute a ‘community of
practice’ [27], and share a high motivation and a strong desire to participate in the
achievement of an important goal, namely saving human lives.

202 D. Fogli

The activities at the non-profit association could be naturally sustained by Web 2.0
technologies, and especially by collaborative web mapping systems, which may help
COSP volunteers obtain detailed and up-to-date information about the territory.
Nevertheless, members of COSP still prefer keeping on using traditional paper-based
maps to plan their interventions, as well as going on taking training sessions through
PowerPointTM presentations to transfer knowledge about the territory from senior to
novice drivers. The reasons underlying this situation are manifold. First of all, most
volunteers come from different professional fields, have different cultural
background, and are generally not so confident in computer-based systems. Lack of
trust in new technologies is often the main problem for this type of user communities.
As reported in [22], with reference to the fire response domain, firefighters still keep
on using printed A5 cards representing parts of the city map, instead of using GPS
navigators. Similarly, COSP volunteers do not rely on navigator satellite systems the
ambulances are equipped with, because they do not generally suggest optimum routes
for emergency vehicles. Some COSP volunteers currently use Google Maps, but they
would not use it for COSP activities since it is considered too general and not well-
suited to their domain and needs: they would fear making mistakes while using it or
loosing precious time while preparing an intervention, if they do not find quickly the
necessary indications to reach the target place.

Consolidated paper-based practices, lack of trust in information technologies,
inexperienced and heterogeneous users, need for self-sufficiency, and limited budget
are some of the typical problems that one usually finds in ‘community informatics’,
intended as the design and management of computer-based systems for non-profit
communities, non-governmental social service providers and local government
agencies [1].

A first goal of our design project was thus to develop, with the collaboration of
COSP volunteers, a web mapping application, which, on one hand could exploit
existing web mapping services (including Google Maps), but, on the other,
encapsulate relevant knowledge of COSP domain, being customized to the first aid
domain and the skills of COSP volunteers. During the design of the first version of
the application, volunteers’ expectations on the system under design increase. In
particular, a more collaborative application was required: volunteers asked for a
virtual space they could directly shape and enrich to actively build their knowledge
about the territory and share it within the COSP community. In other terms,
volunteers felt the natural need of transforming themselves from mere consumers to
producers of knowledge useful to their domain, namely, with Fisher’s words, they
required “a shift from consumer cultures to cultures of participation” [4, p. 42]. A
second design cycle was thus carried out to obtain a collaborative web mapping
system satisfying these new demands.

The paper presents the experience concerning the design and development of this
system, called FirstAidMap. It illustrates how the components of the culture-of-
participation framework discussed in [4] – meta-design, social creativity, and richer
ecologies of participation – progressively emerged in the project. The considered case
study shows that, in community informatics more than in other domains, users must
be directly involved in system design, and called to be active participants at use time.

 Cultures of Participation in Community Informatics: A Case Study 203

The paper is organized as follows: Section 2 discusses related work. Section 3
presents the first design cycle of the application. Section 4 illustrates the second
design cycle, carried out to integrate functionality for knowledge creation and system
adaptation in FirstAidMap. Section 5 aims to draw the main lessons learnt from this
experience and delineate future research directions.

2 Related Work

Geographic maps are one of the most ancient and useful tools for displaying and
creating knowledge about the places where we live [17]. This characteristic is
emphasized in the digital era, where maps become dynamic and interactive. They are
dynamic since they usually display data from a database and, if these data change,
map visualization changes accordingly. Maps are also interactive in that different
users working on the displayed map can add, reorganize or change the information to
be displayed, thus creating new knowledge about a territory.

Geographic information systems (GIS) are the early software systems introducing
digital maps as displays for information located in databases. They allow one to
perform sophisticated operations on geographic information organized in map layers.
However, GISs are usually designed for communities of geographers or expert in
geographic information generally, whilst inexperienced users are often unable to use
them [26], [12]. Even though GIS usability has been considered in some studies (e.g.,
[20]) and methods have been proposed for user-centered design of GISs [14], [24], the
research in this area is mainly focused on effective knowledge visualization and
retrieval, also called ‘geovisualization’ [18], rather than on the design of easy-to-use
GISs. Particularly, geovisualization is playing an important role in the emergency
domain (see for example: [18], [25], [2], [11]). In this context, geovisualization tools
are aimed at representing cartographic content about the occurrence of certain events
(e.g. a fire, a chemical disaster, a flu epidemic) and their evolution. Less emphasis is
given to the representation of territory knowledge necessary to reach a given place
with an emergency vehicle, with the exception of the study presented by Nadal-
Serrano [22] for the design of web cards that resemble the printed cards used by
firefighters for incident response preplanning.

As an alternative to GISs and geovisualization systems, collaborative web mapping
systems can be used for free by a vast population of users, because they do not require
particular competencies and they are generally usable. Collaborative web mapping
systems allow users to visually define spaces by enabling them to choose what to map
according to their own goals, knowledge and practices [10]. Furthermore, web maps
can be regarded as virtual spaces created by end users and totally evolved at their
hands and thus become social media [19]: while accessing and managing the
information associated with the map, users interact directly or indirectly with other
people, by sharing and exchanging knowledge related to the territory.

Among collaborative web mapping systems, Google Maps is certainly the most
famous and used worldwide. It enables users to create personalized maps and share
them with relatives and friends. Particularly, users can create their own maps by using

204 D. Fogli

place markers, shapes, and lines to define a location, an entire area, or a path.
However, the interaction with tools for map personalization is still too much
programmer-oriented, with terminology and interaction style that often intimidate
some users. Furthermore, working on a shared map, possibly with different roles, is
not supported adequately. Last but not least, Google Maps is not domain-oriented,
being general enough to address the needs of different user communities, and
enabling a wide range of activities and different kinds of knowledge to be represented
on the map.

Other systems, like WikiMapia (www.wikimapia.org), allow map sharing, even
though their main goal seems the creation of social networks rather than virtual places
where to accumulate and share knowledge for specific and common purposes. User-
generated street maps are supported in OpenStreetMap as well, an extensive and
effective project involving a user community that is increasing exponentially [13].
Anyway, in these applications, users constitute informal groups, characterized by
common interests in a same place. In other terms, they are aimed at supporting
communities of interest; whilst, according to the characterization presented in [15], in
our case, there is a need for a system to be used by a community of practice that has
to share knowledge about territory for faster first aid [9]. Furthermore, it must be
regarded as a system that belongs to the community informatics tradition.

Community informatics is characterized by an increasing need of participation on
behalf of community members, due both to the continuing growth in the request for
services by the community and to limited budget flexibility reserved in such
organizations to information technology. Therefore, in a community informatics
domain, an interactive system must be inexpensive, easy to use, and customizable by
the community members; moreover, its configuration, management and enhancement
must be carried out within the community, by limiting as much as possible the
intervention of software professionals. However, as observed in several projects [1],
[7-8], community members do not usually have high competencies and expertise in
information technologies; in addition, their motivation to learn a new work practice or
technical skills strongly depends on the goal value with respect to the individual
effort.

To cope with these problems, a culture of participation [3-4] should be adopted, in
order to provide users “with the means to participate and to contribute actively in
personally meaningful problems” [4, p. 42]. Particularly, three major components
constitute the theoretical framework for cultures of participation [4]: 1) meta-design,
that is the creation of a socio-technical infrastructure in which new forms of
collaboration can come alive by allowing systems to be modified at use time [5]; 2)
social creativity, which allows all voices being heard to frame and solve a complex
problem and to support people interacting each other and through shared artefacts; 3)
richer ecologies of participation, which foresee the creation of different levels of
participation on the basis of the different roles that community members can play or
would like to play.

In the following, we illustrate how these three components progressively emerged
in the FirstAidMap project as a consequence of an iterative design work carried out
with representative end users.

 Cultures of Participation in Community Informatics: A Case Study 205

3 Supporting Driver Training: First Design Cycle

In the FirstAidMap project, two participatory design cycles have been carried out: the
former to build a first version of the application to support ambulance drivers and
driver instructors in training activities; the latter to cope with the new emerged
requirements and collaboration needs. In both design cycles, three volunteers of the
COSP association participated in the design process. They have a deep knowledge of
the non-profit association and its needs. Two out of them are experienced ambulance
drivers, also playing the role of instructors of new drivers. The last volunteer is an
ambulance driver who has been collaborating with the association for more than 5
years. In this section we present the main results of the first design cycle.

3.1 User Profile and Task Analysis

Interviews and brainstorming sessions with the three COSP volunteers allowed
exploring the characteristics of the COSP association, identify the profiles of the
intended users, analyze their tasks, and define the requirements for the new system.

At the beginning of the project, FirstAidMap was intended for ambulance driver
instructors who possess deep knowledge of the territory and have a long experience in
driving ambulances as volunteers. It was also intended for all ambulance drivers and
driver assistants interested in keeping themselves up-to-date. These volunteers share a
common motivation in helping others, offering their time to COSP activities, but their
primary job ranges among a variety of possibilities. Most of them are not young
people and have no specific competence in information technology. Usually, they are
able to browse the web and use web mapping applications, such as Google Maps.
Furthermore, driver instructors are able to use office applications as novice users,
especially PowerPointTM.

As emerged from the interviews, navigator satellite systems are not considered
sufficient and satisfactory to carefully assist ambulance drivers and the whole
emergency crews in bringing medical care to serious patients timely. Navigator
systems, indeed, do not take into account critical issues when suggesting quickest
paths to a place, such as roads with humps or uneven road surfaces (really dangerous
in case of patients on board), road yards in progress or weekly open-air markets
causing detours that can irreparably delay the provision of first aid. Due to these
limitations, COSP volunteers do not rely on navigator systems, but they rather prefer
trusting in their knowledge and expertise of the territory to decide how to reach a
given place quickly and in a safe manner. For this reason, driver instructors regularly
carry out training sessions for the other volunteers. During a training session,
instructors describe the most important characteristics of the territory where COSP
operates (including about fifteen different villages), and show possible changes
occurred since the last training session. Driver instructors carry out training sessions
by preparing PowerPointTM slides with annotated maps of the different villages that
they comment and illustrate in detail.

206 D. Fogli

3.2 Data and Functional Analysis

Representative volunteers participating in the domain and task analysis revealed soon
their interest in a system for map navigation similar to Google Maps, but customized
to the specific needs and characteristics of their community.

Therefore, the first requirement was to develop a web application based on existing
mapping services, which could be specifically suited to the training of new ambulance
drivers.

The digital map should have been the main component of the application; its
interactive nature obviously should have increased the ability of instructors to explore
the map with respect to the static versions.

Furthermore, the map should have been easy to explore by users with limited
experience and competencies in information technology. Particularly, map zooming
and panning activities should have been facilitated. In this respect, a ‘direct zoom’
function to a selected set of villages was explicitly required, because instructors,
during training sessions, are used to present and describe all the characteristics of a
single village simultaneously.

Finally, the map should have contained all the information the specific community
requires about the territory. Three types of information were recognized as crucial for
COSP work: zones, points of interests and notifications. Such information are all
necessary to guide ambulance drivers to the place where a medical assistance is
needed. A zone is an area on the map with common characteristics; it groups together
several points of the map satisfying some condition, namely a set of roads or
neighborhoods reachable through a same ambulance route from the COSP offices. A
point of interest, or briefly POI, is a place on the map, more precisely a fixed and
stable element on the territory that acts as a reference point for ambulance drivers and
can help drivers to find their way to a place. As in navigator satellite systems, a POI
can be a church, a sports ground, a square and so forth. However, it can also be a
more specific reference point for an ambulance driver such as a bridge, a dangerous
road or a traffic light. Finally, a notification provides alert information about a critical
situation that can interfere with first aid interventions. It describes a critical condition
occurring in a given place and for a period of time that may hamper the attainment of
a certain place, e.g. the work in progress in a specific area of interest or the temporary
modification of the road network of a neighborhood due to a demonstration.
Differently from zones and POIs, notifications:

1. Often convey critical information about the territory;
2. May have a limited validity, e.g. the closing of a motorway tollbooth due to

work in progress that may last one week;
3. May refer to events occurring with a certain frequency, e.g. the open-air

market that takes place in a square each Wednesday morning.

All these types of information should enrich the map with semantics relevant for the
COSP domain. However, they can constitute a lot of information, which altogether may
confuse the map user. Therefore, to avoid information overload, such information should

 Cultures of Participation in Community Informatics: A Case Study 207

have been organized in different levels to be enabled/disabled, according to users’ needs
and preferences.

3.3 Design

After the requirements analysis, a set of static mock-ups have been prepared and used
during the meetings with representative COSP volunteers to discuss whether the
needs they had previously expressed have been satisfied, to obtain their suggestions
for improving the system look-and-feel and possibly to collect new requirements.

An interactive prototype was then designed and developed. Figure 1 shows a
screenshot of this first version of FirstAidMap.

Fig. 1. The first version of FirstAidMap

As the reader can notice, the screen space is almost totally filled with the map.
Different types of map (road, satellite, or hybrid) can be selected and retrieved on the
fly through different web mapping services (Google Maps, Yahoo! or Visual Maps).
The information relevant for the COSP domain is included within proper information
levels: zones are represented as interactive semi-transparent orange polygons; POIs
are represented through icons that resemble POI meaning (a church, a soccer balloon
to indicate a soccer field, a train to indicate the railway, etc.); notifications are
represented by square red icons with an exclamation mark inside.

The map is surrounded by a variety of widgets to carry out the following activities:

• Navigate the map through the common tools for panning and zooming in/out
(widget no. 1 in Figure 1), or by using the mouse left button and wheel;

• Search for a place, by inserting an address in the search bar (widgets no. 2) or
selecting a village from the combo box through the ‘direct zoom’ component
(widget no. 3);

• Personalize the visualization (through the selector widgets no. 4) to choose the
type of map to be displayed or the web mapping service;

208 D. Fogli

• Enable/disable the information levels for zones, POIs and notifications
(selector widgets no. 5);

• Select an element (zone, POI, or notification) by a mouse click on the element
itself, in order to access a pop-up presenting some detailed information about
the selected element.

3.4 Evaluation

To gather preliminary user feedback and assess to which extent this first prototype
satisfied COSP needs and expectations, an experiment has been conducted with a
group of seven COSP volunteers (five males and two females). Their ages ranged
from 24 to 49 years. They held different education degrees, from middle to high
school, till laurea degree, and represented various professional backgrounds: the
sample included two civil servants, an artisan, a housewife, a student and a software
developer. They all had at least two years of experience at COSP by playing the role
of ambulance driver and/or driver instructor. Five of them were using the computer
daily and had already accessed online maps, using Google Maps mainly. Two
volunteers declared to use the computer only a few times in a week.

Participants were asked to carry out two tasks for evaluating the searching and
exploration functionality offered by the system. The test was performed at the COSP
office at the end of participant shifts. An introduction session was carried out before
the experiment to show test participants the main functionality of the application.
During task execution, qualitative data about FirstAidMap usability have been
collected through direct observation. Then, an anonymous post-questionnaire was
submitted to participants to investigate their opinions about the easiness of the
interaction with the application, the effectiveness and efficiency of its components,
and the application aesthetics. Further questions have been also included in the
questionnaire to gather additional user comments and ideas for improving the
application.

In the experiment, all participants were able to interact soon with the map and the
tools offered by the system. They successfully completed both the assigned tasks.
The most significant problems experienced by test participants were related to the
identification of a target point within the map (its marker was hardly distinguishable
from POIs), and the map dragging when information levels were active.

User opinions gathered through the post-questionnaire provided the design team
with important feedback. Participants expressed their desire to contribute to content
insertions, with the aim of sharing their knowledge of the territory with other
volunteers and thus contributing to improve the COSP service. They also recognized,
in some cases, the need of defining new types of POIs and notifications.

4 Fostering Cultures of Participation: Second Design Cycle

After the evaluation of the first prototype, the design team, including the three
representative volunteers, met again to discuss the results of the test with users. In that

 Cultures of Participation in Community Informatics: A Case Study 209

meeting, the design team reflected on the emerging motivation of users to participate
in content creation and system evolution.

As a consequence, representative volunteers realized that a system where users
could apply their knowledge of the territory in a more extensive and collaborative
way would have better supported their daily practice. They realized that what they
need was not simply a training system through which they could learn and teach the
characteristics and the dangers of the territory, but also an interactive space that all
volunteers could shape to build and share their knowledge on the territory, and thus
collaborating to bring first aid to patients timely.

The emerging idea, which subsequently permeated the second phase of the project,
was therefore considering all COSP volunteers as a fundamental source of knowledge
related to the management and provision of first aid in a given territory.

This opened up a different perspective on system design where the components of
the framework for cultures of participation described in [4] naturally emerged.

4.1 Meta-design

Sustaining and encouraging COSP volunteers to participate in shaping the map
according to their needs and preferences became the new goal to be pursued, and thus
led to the adoption of a meta-design approach.

Indeed, it was necessary to provide users with proper tools for enriching the map
with significant and up-to-date information, along with functionality for customizing
map visualization and monitoring users’ activities. Moreover, this should have been
achieved without forcing COSP volunteers to become expert neither in information
technology nor in cartography, as many commercial geographic information systems
require [26], [12]. The aim was to create a community able to manage and evolve the
system without the intervention of software professionals.

A new usage scenario has been identified, beyond driver training: using
FirstAidMap as a support tool while preparing an emergency intervention, in order to
identify the characteristics of the area around the ambulance destination place. Indeed,
to carry out this task, ambulance drivers still use traditional paper-based maps
available at COSP offices and annotated with their comments and notes.

Thus, the design team started to study how ‘to transform’ COSP volunteers from
passive users into co-designers of map content. The aim was to design and develop a
new version of FirstAidMap enriched with end-user development (EUD) [16] features
that, not only could support users in creating and sharing knowledge on the territory
in an easy and natural way [9], but also that could encourage and motivate them to
participate. To this end, the level of complexity of activities should have been
appropriate to the COSP volunteers’ individual skills and situations, and possibly
allow them to easily move up from less complex to more complex activities. In this
way, advanced functionalities should have been made available to users
progressively, without forcing them to learn such functionalities soon. Advanced
functionalities should not have been intrusive and distract users from their primary
task; at the same time, they should have encouraged users in experimenting system
adaptation and modification. Moreover, some form of acknowledgement should have
been foreseen, such as a clear association between contents and their creators.

210 D. Fogli

4.2 Towards a Rich Ecology of Participation

For the new version of FirstAidMap different user roles have been identified, which
correspond to the different roles that volunteers may play in contributing content.

All COSP volunteers should be able to access the system easily, without any
authentication mechanism1, as visitor users, just to explore the map-based content,
visualize the map based on their needs and interests, and eventually point out a danger
or a real-time update (e.g. a detour, an hazard), which can interfere with first aid
interventions, by adding a new notification.

Like visitor users, ambulance drivers can access the map and the associated
information, visualize active notifications, and possibly insert new ones. However,
they are required to log in FirstAidMap and consult the map before each emergency
intervention, in order to check possible alert situations in the route to the emergency
site. This organization rule suggested by volunteers that participated in design was a
consequence of the new usage scenario of FirstAidMap.

A volunteer logged in the system as contributor user is provided with advanced
tools and functionality to create and modify zones, POIs and notifications in addition
to access and explore the knowledge base as visitors or drivers.

Finally, more active and experienced COSP volunteers should be able to perform
activities to let both the content and the whole system evolve according to the COSP
community's needs, thus acting as administrator users. An administrator is a power
user who manages user profiles, system accesses and all the information associated
with the map (POIs, zones and notifications). Furthermore s/he is responsible for
configuring the system according to the COSP volunteers' needs.

This classification of end-user roles (see Figure 2) is characterized by a gradual
increase in the complexity of the activities assigned to them, according to the principle of
“gentle slope of complexity” [21]. The usage of the application should motivate and
encourage COSP volunteers to become more active in their collaboration to map
enrichment. It is worth noticing that a migration path of users [3] is foreseen in this
classification: after a first period of basic interaction with the system as visitor or driver
users, COSP volunteers may wish to become contributors to add and manage zones and
POIs, beyond inserting notifications only. In a similar way, a contributor could wish to
become an administrator, possibly collaborating with other administrators in the
definition of new kinds of POIs and notifications.

The different participation mechanisms may foster a mutual support for knowledge
accumulation and sharing. Volunteers that are more knowledgeable of some particular
area, or that occasionally discover some new information, may make their knowledge
available to the community as soon as possible, even accessing the system just as
visitors to add notifications. Each volunteer’s contribution may stimulate reciprocity,
especially when information is regarded as crucial to find the best path for an
intervention. The idea of associating zones and POIs with the authors’ name allows
recognizing not only each volunteer’s contribution, but also the relationships that the
different volunteers have with specific places. In this way, knowledge on the map
may stimulate interactions among volunteers, beyond the use of the system for first
aid interventions, and re-enforce the sense of belonging to the community.

1 The underlying assumption is that the system is accessible only on the COSP intranet.

 Cultures of Participation in Community Informatics: A Case Study 211

Fig. 2. The rich ecology of participation of FirstAidMap

4.3 Encouraging Social Creativity

To include functions concerned with insertion of new content and system
administration, it was necessary redesigning the layout of FirstAidMap and enriching
its interaction experience. The three representative COSP volunteers have been
involved again in the participatory design of the new version of FirstAidMap. In this
way, system appropriation by volunteers further increased, while considering their
perspective helped designing the EUD mechanisms to be made available to the
different user roles.

In this second version of the application, after selecting the map consultation
button in the home page, a visitor or a driver user accesses the map view page shown
in Figure 32. Here, the user can interact with the map by clicking on the zoom in/out
and pan widgets or using the mouse wheel and left button. S/he can also select an icon
on the map, so as a pop-up window appears to display its textual details (in the
example, it is a notification informing about traffic deviation due to the construction
of a new roundabout). On the right of the map there is a navigation panel where the
user can: i) customize the map visualization by selecting its type (road, hybrid or
satellite map) and the web mapping service (Google, Yahoo!, Visual Maps); ii) filter
the map-related information to be displayed (zones, POIs, notifications); iii) search a
specific place by specifying its address or selecting a village from a list.

2 The figure refers to a driver user authenticated in the system. A driver is allowed to perform

the same activities of visitor users, but FirstAidMap logs his/her activities. This feature allows
checking a posteriori if drivers consulted the map before starting their interventions.

212 D. Fogli

Fig. 3. The map view page of FirstAidMap

Under the navigation panel in Figure 3, there is a notification manager panel
allowing the user to insert notifications by characterizing them with a name, a
description, a validity period, a frequency and a severity degree. This feature is a
result of the social creativity in design: indeed, it was an explicit request of
representative end users, because every COSP volunteer should have the possibility to
notify to the community new dangerous situations. This also allows volunteers to
become confident with content creation, according to the idea that providing everyone
with (few) tools for participating encourages changes in human behavior and social
organization, and thus social creativity at use time.

Obviously, social creativity increases if a consistent number of volunteers log in
the system as contributor users. To this end, these users find in the interface three
more panels to manage zones, POIs and notifications respectively (Figure 4). Each
item in these panels can be selected by the user to perform a specific action, namely
insertion, modification or deletion of zones, POIs and notifications respectively; the
corresponding sub-panel is thus expanded to show all the information necessary to
carry out the selected action. Only a sub-panel, and thus only one functionality, can be
active at any time. This allows reducing errors and increasing user performance while
updating content. For example, to insert a new zone (Figure 4), the user should select
the ‘manage zones’ panel, and within this panel, open a sub-panel for zone insertion.
In this state of the application, the interaction with the map allows drawing a new
zone, and a simple form allows completing the data about the zone being drawn.

Finally, most experienced and skilled COSP volunteers can log in the system as
administrator users. As a member of the COSP staff, an administrator user will not
necessarily be an expert in system administration, but just a power user, with some
deeper knowledge in information technology with respect to the other volunteers.
Therefore, s/he must be supported by easy-to-use tools and user-oriented terminology.
To this end, a separate section of the application has been created to carry out
monitoring activities, manage user profiles, configure and adapt the application.

 Cultures of Participation in Community Informatics: A Case Study 213

Figure 5 shows the page devoted to system adaptation. At the top, the user can select
the base map to be loaded when the application starts. Then, s/he can manage the
types of POIs and notifications by changing the existing ones or defining new types.
In this way, the visual aspect of POIs and notifications can change at use time. The
administrator can define a new type of POI or notification by inserting a name and
selecting an icon from those available in a group of radio buttons. If the user does not
find a suitable icon, s/he can load a new image on the system (Figure 5).

Fig. 4. Adding a zone to FirstAidMap

Fig. 5. The page for managing POI and notification types

214 D. Fogli

4.4 Evaluation

Two outside evaluators have carried out a heuristic evaluation [23] of the second
version of FirstAidMap. They identified 60 usability problems, which were then
discussed with the design team, in order to identify possible solutions and their
priorities. During this meeting, four usability problems were judged false positives.
More precisely, evaluators classified as usability problems the appearance and
behavior of some widgets that were explicitly discussed and decided during the
requirements analysis and design phases. Finally, designers considered five problems
as technical bugs and not as actual usability issues.

Designers have then fixed the problems and installed the system at COSP, in order
to allow the representative users that participated in the design to test the system.
Even though these users declared their appreciation for the new version of
FirstAidMap, they reported us a list of problems, most of them related to code bugs
emerging under some specific conditions, which need to be solved before performing
an extensive experimentation with a significant number of COSP volunteers.

Users took also the chance to suggest further features to be added to the
application. Particularly, users asked for the possibility i) to visualize the path from
the COSP offices to the target point, ii) to print the map and all selected information
levels, iii) to filter POIs and notifications according to their type, and, last but not
least, iv) to enjoy the application on a portable device in the ambulance, with real-
time data updating based on GPS.

Unfortunately, the development of these additional features requires a third design
cycle pushing further on meta-design. This confirms once again the need of creating
systems that are flexible enough to cope with the requirements emerging at use time.

5 Discussion and Conclusion

The experience gathered in this case study has been useful to deepen the concept of
culture of participation in community informatics. Meta-design contributed to create
FirstAidMap as a living entity [6], composed by a software system (the technical
component) and its users (the social component). A rich ecology of participation has
been established, giving rise to different responsibilities and collaboration
possibilities for COSP volunteers. Moreover, social creativity has been sustained at
design and use time. Indeed, a participatory design activity with COSP volunteers led
to create EUD features that may engage, encourage and motivate users in contributing
and sharing their knowledge on the territory. In particular, usability aspects and social
issues have been carefully considered in the design of such features.

On the technical side, all the functionalities for inserting new data and modifying the
existing ones on behalf of each kind of user (visitor, driver, contributor, administrator)
have been designed to be simple and intuitive, in order to foster the participation of as
much volunteers as possible. At the same time, users are not forced to become
contributors when they are not willing to: for example, they can first approach the system
as simple visitors, then try to add notifications and finally ask for the possibility to access
more sophisticated functionalities. Moreover, in FirstAidMap, objects and tools are
properly grouped and presented to the users only when needed, thus limiting error
possibilities and supporting a more efficient interaction.

 Cultures of Participation in Community Informatics: A Case Study 215

On the social side, it is crucial to let each user contribute her/his knowledge as in
the traditional paper-based practice. The main motivation for this activity - underlying
also the traditional practice - is that it is carried out for an important cause, namely
saving lives. However, FirstAidMap creates further opportunities for social rewards:
for example, the contributor’s name is associated with zones, points of interests and
notifications, and this can be recognized by all volunteers using that information.
Participation may yield personal, social and professional benefits: personal benefit is
achieved when “I feel better” by realizing the importance of my participation; social
benefit can emerge from the fact that “colleagues may use and appreciate my
contribution” or, more importantly, that “lives are saved also thanks to myself”;
professional benefit could be a consequence of approaching a software system as a
non-expert in information technology, who progressively migrates from the role of
visitor to that of administrator (“I can learn some more IT”).

For the future, we plan to integrate the system with further mechanisms for the
evolution of its technical and social components. Thus, on the one hand, EUD tools
must be implemented to extend the system with advanced functionalities, such as the
possibility for users to create new information levels or develop content filters; on the
other hand, different forms of rewarding must be studied to encourage user migration
path towards co-developing roles. Personal, social and professional benefits must be
understood better and sustained by studying further EUD mechanisms, by going
beyond the mere technological aspects. Finally, we would like to test the system in
other application domains where knowledge about territory is a fundamental source
for problem solving, e.g. logistics, transport by courier, and so on.

Acknowledgments. The author wishes to thank Loredana Parasiliti Provenza for her
support in carrying out the FirstAidMap project. The volunteers of COSP Mazzano
are also acknowledged. I am then grateful to Francesca Facchetti, Paolo Melchiori,
Maddalena Germinario and Annamaria Percivalli for their contribution to the design,
implementation, and evaluation of the prototypes.

References

1. Carroll, J.M., Rosson, M.B.: Participatory design in community informatics. Design
Studies 28(3), 243–261 (2007)

2. De Groeve, T., Riva, P.: Early flood detection and mapping for humanitarian response. In:
Proc. of the 6th Int. ISCRAM Conference, Gothenburg, Sweden (2009)

3. Fischer, G.: End-User Development and Meta-Design: Foundations for Cultures of
Participation. J. of Organizational and End User Computing 22(1), 52–82 (2010)

4. Fischer, G.: Understanding, Fostering, and Supporting Cultures of Participation.
Interactions XVIII(3), 42–53 (2011)

5. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User
Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp.
427–457. Kluwer Academic Publisher, Dordrecht (2006)

6. Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B., Shipman, F.:
Seeding, Evolutionary Growth and Reseeding: The Incremental Development of
Collaborative Design Environments. In: Coordination Theory and Collaboration
Technology, pp. 447–472. Lawrence Erlbaum Associates, Mahwah (2001)

216 D. Fogli

7. Fogli, D., Colosio, S., Sacco, M.: Managing Accessibility in Local E-government Websites
through End-User Development: A Case Study. Int. J. Universal Access in the Information
Society 9(1), 35–50 (2010)

8. Fogli, D., Parasiliti Provenza, L.: A Meta-Design Approach to the Development of E-
Government Services. J. of Visual Languages and Computing 23(2), 47–62 (2012)

9. Fogli, D., Parasiliti Provenza, L.: Knowledge Sharing in the First Aid Domain through
End-User Development. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds.) IC3K 2010.
CCIS, vol. 272, pp. 307–321. Springer, Heidelberg (2013)

10. Giaccardi, E., Fogli, D.: Affective Geographies: Towards Richer Cartographic Semantics
for the Geospatial Web. In: Proc. AVI 2008, Naples, Italy, pp. 173–180 (2008)

11. Gupta, S., Knoblock, C.A.: Building Geospatial Mashups to Visualize Information for
Crisis Management. In: Proc. of the 7th Int. ISCRAM Conference, Seattle, USA (2010)

12. Haklay, M., Jones, C.: Usability and GIS – why your boss should buy you a larger
monitor. In: AGI GeoCommunity 2008, Stratford-upon-Avon, UK (2008),
http://discovery.ucl.ac.uk/13850/1/13850.pdf

13. Haklay, M., Weber, P.: OpenStreetMap: User-Generated Street Maps. Pervasive
Computing, 12–18 (October-December 2008)

14. Haklay, M., Zafiri, A.: Usability Engineering for GIS: Learning from a Screenshot. The
Cartographic Journal 45(2), 87–97 (2008)

15. Herranz, S., Diez, D., Diaz, P., Hilz, S.R.: Classifying Communities for Design – A review
of the Continuum from CoIs to CoPs. In: Proc. COOP 2012, Marseille, France (2012)

16. Lieberman, H., Paternò, F., Wulf, V. (eds.): End-User Development. Kluwer Academic
Publishers, Dordrecht (2006)

17. MacEachren, A.M.: How Maps Work. The Guilford Press, New York (1995)
18. MacEachren, A.M.: Geovisualization for knowledge construction and decision support.

IEEE Computer Graphics and Application 24(1), 13–17 (2004)
19. Marcante, A., Parasiliti Provenza, L.: Social Interaction through Map-based Wikis.

PsychNology Journal 6(3), 247–267 (2008)
20. Masud, M., Hossain, D.: Usability Analysis of Geographic Information System Software:

A Case Study. Int. J. of Software Engineering 2(2), 1–22 (2009)
21. Myers, B.A., Smith, D.C., Horn, B.: Report of the End-User Programming Working

Group. In: Languages for Developing User Interfaces, pp. 343–366. Jones and Bartlett,
Boston (1992)

22. Nadal-Serrano, J.M.: Towards very simple, yet effective on-the-go incident response
preplanning: using publicly-available GIS to improve firefighters’ traditional approach. In:
Proc. of the 7th Int. ISCRAM Conference, Seattle, USA (2010)

23. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection
Methods. Wiley. New York (1994)

24. Sebillo, M., Tortora, G., Vitiello, G.: Special Issue on Visual Languages and Techniques
for Human-GIS Interaction. J. of Visual Languages and Computing 18, 227–229 (2007)

25. Schafer, W.A., Ganoe, C.H., Carroll, J.M.: Supporting Community Emergency
Management Planning through a Geocollaboration Software Architecture. Computer
Supported Cooperative Work 16, 501–537 (2007)

26. Traynor, C., Williams, M.G.: Why are Geographic Information Systems Hard to Use. In:
Proc. CHI 1995 Mosaic of Creativity, Denver, CO, pp. 288–289. ACM Press (1995)

27. Wenger, E., McDermott, R., Snyder, W.: Cultivating communities of practice: a guide to
managing knowledge. Harvard Business School Press, Boston (2002)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 217–222, 2013.
© Springer-Verlag Berlin Heidelberg 2013

End-User Development: From Creating Technologies
to Transforming Cultures

Gerhard Fischer

Center for LifeLong Learning & Design (L3D)
 Department of Computer Science and Institute of Cognitive Science

University of Colorado, Boulder USA
gerhard@colorado.edu

Abstract. In a world that is not predictable, improvisation, evolution, and inno-
vation are more than luxuries: they are necessities. The challenge of design is
not a matter of getting rid of the emergent, but rather of including it and making
it an opportunity for more creative and more adequate solutions to problems.
End-User Development (EUD) provides the enabling conditions for putting
owners of problems in charge by defining the technical and social conditions
for broad participation in design activities. It addresses the challenges of foster-
ing new mindsets, new sources of creativity, and cultural changes to create
foundations for innovative societies.

Grounded in the analysis of previous research activities this paper explores
(1) conceptual frameworks for EUD (including: socio-technical environments;
meta-design; and cultures of participation), (2) models guiding and supporting
EUD (including: the seeding, evolutionary growth, reseeding process model;
and richer ecologies of participation). These frameworks and models are briefly
illustrated in one specific application domain.

The paper concludes by articulating new discourse concepts and design-
tradeoffs to shape the future of EUD being understood as a cultural transformation
rather than only as a technology in creating software artifacts.

Keywords: socio-technical environments, meta-design, cultures of participation,
personally meaningful problems, control, participation overload, future research
agenda for EUD.

1 Introduction

In a world where change is the norm, EUD is a necessity rather than a luxury because
it is impossible to design artifacts (including software systems, socio-technical envi-
ronments, and learning environments) at design time for all the problems that occur at
use time. The co-evolution of systems and users’ practices requires socio-technical
environments that can evolve and be tailored continuously. An important objective for
the EUD perspective articulated in this article is that design as a process is tightly
coupled to use and it continues during the use of the system [1]. It sees the “unfi-
nished” as an opportunity (by extending design time indefinitely) rather than as an

218 G. Fischer

obstacle or as something to
the structure of this paper t
ly-supported vision for the
as a technology to create so

Fig. 1. Con

2 EUD: From Cre

EUD is instrumental for th
knowledge rather than sim
verse audiences by support
situating computation in ne
that democratize design, inn
EUD complements and tra
from End-User Programmi

Addressing Important Pr
includes technological dev

o be avoided. Figure 1 provides an overview and illustra
that tries to articulate a theoretically-guided and empiric
future of EUD as a cultural transformation rather than o

oftware artifacts.

nceptualizing EUD as Cultural Transformation

eating Technologies to Transforming Cultur

he ability to create, reformulate, externalize and share n
mply to comprehend existing knowledge. It appeals to
ting them in designing and building their own artifacts
w contexts, by generating content, and by developing to
novation, and knowledge creation [2]. This broad vision
anscends a technological perspective of EUD [3] deri
ng (EUP) and End-User Software Engineering (EUSE).

roblems. A cultural transformation perspective of E
velopments as essential components but transcends th

ates
cal-

only

res

new
di-

s by
ools
n of
ived
.

UD
hem

 End-User Development: From Creating Technologies to Transforming Cultures 219

with additional objectives addressing requirements derived from the following fun-
damental problems [4]: (1) problems of a magnitude which individuals and even large
teams cannot solve thus requiring the contribution of all interested citizens; (2) prob-
lems of a systemic nature requiring the collaboration of many different minds from a
variety of backgrounds; and (3) problems modeling changing and unique worlds
supported by open and evolvable systems based on fluctuating and conflicting
requirements.

Inspirations, Perspectives and Influences for Conceptualizing EUD as a Trans-
formational Culture. An early inspiration for conceptualizing EUD as a transforma-
tional culture was articulated by Ivan Illich with convivial systems envisioned to “give
each person who uses them the greatest opportunity to enrich the environment with
the fruits of his or her vision” [5]. To cope with the unattainable challenge of fully
anticipating or envisioning use before actual use takes place, participatory design
(“design for use before use”) needs to be complemented with meta-design (“design
for design after design”) [6].

Related Research Efforts. The conceptualization of EUD as a transformational cul-
ture has been explored by a number of research activities including: (1) the Software
Shaping Workshops environment [7]; (2) the hive-mind space (HMS) model [8]; (3)
the exploration of meta-design in virtual worlds [9]; and (4) the impact of different
relationship between design and use [10].

3 Frameworks and Models for EUD as a Transformational
Culture

Our research over the last decade has articulated and assessed different conceptual
frameworks and models providing foundations to explore, to foster, and to support
EUD as a transformational culture, including:

• Socio-technical environments [11] are focused on the systematic integration of two
sets of design requirements: (1) technical components (computers, networks, build-
ing materials, and software substrates) and (2) social components (people, proce-
dures, laws, collaboration, and communication policies).

• Meta-design is “design for designers” [12]: (1) allowing systems to be flexible and
to evolve because they cannot be completely designed prior to use and (2) empo-
wering end-users to drive the evolution.

• Cultures of participation providing all people with the means to participate and to
contribute actively in personally meaningful problems [4].

• the Seeding, Evolutionary Growth, Reseeding (SER) Process Model is a descriptive
and prescriptive model for creating the social and technical infrastructures in which
new forms of collaborative design (designing seeds that can grow rather than com-
plete systems) can take place that best fit an emerging and evolving context.

• Rich Ecologies of Participation break down the strict designer-user distinction. For
cultures of participation to become viable and be successful, it is critical that a

220 G. Fischer

sufficient number of participants take on the more active and more demanding
roles. EUD research needs to analyze the necessary requirements associated with
the more active roles, and develop social and technical interventions to support
participants in their migration paths towards more demanding roles.

These developments support moving away from a world in which a small number of
people define rules, create artifacts, make decisions for many consumers towards a
world in which everyone has possibilities to actively participate by creating widely
accessible artifacts.

4 Application: “Courses-as-Seeds”

The conceptual frameworks and models articulated in the previous sections have been
explored (1) in a large number of major applications (including: open source software,
Wikipedia, YouTube, Instructables, etc.), (2) by other members of the EUD research
community (see section “Related Research Efforts” above), and (3) in our own work
[4, 12]. One specific application illustrating the cultural transformation perspective of
EUD is teaching courses at a university. Providing learners of all ages with the means
to become co-creators of new ideas, knowledge, and products in personally meaning-
ful activities presents one of the most exciting innovations and transformations in
education with profound implications in the years to come.

Courses-as-seeds [13] is an educational approach that explores EUD in the context
of fundamentally changing the nature of courses taught in universities (a large number
of them being available at: http://l3d.cs.colorado.edu/~gerhard/courses/). It comple-
ments the currently increasingly popular approach of Massive Open Online Courses
(MOOCs) with their promise and hype that online learning will give millions of stu-
dents access to the world’s best teachers. The goals of courses-as-seeds are (1) to
overcome the impoverished conception that a course provides a learning experience in
which an all-knowing teacher tells or shows unknowing learners something they
presumably know nothing about; and (2) to foster cultures of participation [4] by
providing all students with the opportunity to contribute.

5 New Discourses and Design Trade-Offs

EUD: Establishing New Discourses. EUD can and should establish new discourses,
including an exploration of the following concepts:

• Motivation: Human beings are diversely motivated beings acting not only for ma-
terial gain, but for psychological well-being, social integration, connectedness, so-
cial capital, recognition, and for improving their standing in a reputation economy.
The motivation for going the extra step to engage in cultures of participation is
based on the overwhelming evidence that people are more likely to like a solution
if they have been involved in its generation; even though it might not make
sense otherwise. Creating something personal (such as hand-knitted sweaters,

 End-User Development: From Creating Technologies to Transforming Cultures 221

home-cooked meals, etc.) even of moderate quality, has for many people a differ-
ent kind of appeal than consuming something of possible higher quality made by
others.

• Control: EUD supports users as active contributors who can transcend the functio-
nality and content of existing systems. By facilitating these possibilities, control is
distributed among all stakeholders in the design process. EUD erodes monopoly
positions held by professionals, educational institutions, experts, and high-tech
scribes. Empirical evidence gathered in the context of the different design activities
indicates that EUD is less successful when users are brought into the process late
(thereby denying them ownership) and when they are “misused” in fixing problems
and in addressing weaknesses of systems that the developers should have taken
care of themselves.

• Changing Human Behavior: Technology alone does not determine social structure
nor does it change human behavior, but it can create feasibility spaces for new so-
cial practices [14] and can persuade and motivate changes at the individual, group,
and community level.

Design Trade-Offs. There are numerous trade-offs to consider in establishing a EUD
culture. Two important ones are:

• Division of Labor versus Empowerment of Individuals: Democratizing design by
putting owners of problems in charge does not mean that there is no place for pro-
fessionals in the future. By arguing for the independence of owners of problems
from high-tech scribes, a legitimate question to ask is whether this will reverse the
division of labor that has been a major driving force in advancing our societies.
Professional designers play an important role in our society: most people are not
able to and nor want to build their own houses, design their own cars, or write their
own software systems or sorting routines. People do not have the time to
participate equally in all aspects of human life in order to become fully engaged
and informed, and therefore they rely on intermediaries to act in their interests.

• Participation Overload and Personally Meaningful Problems. Information over-
load has been discussed as a fundamental problem for the information society. Par-
ticipation overload will be one of the most serious problems for EUD societies.
Two pitfalls should be avoided: individuals (1) should not be forced to act as active
contributors in situations where they want to be consumers (this is mostly the case
in the context of problems and activities which are irrelevant to people); and (2)
should not be restricted to consumers when they want to be active contributors and
decision makers (this is mostly the case in personally meaningful situations).

6 Conclusions

EUD has moved from nonexistent to center stage. EUD perceived as a cultural transfor-
mation will create new social realities: public and private media will co-exist and blend
together and professional and amateur contributions will complement each other. Provid-
ing all citizens with the means to become co-creators of new ideas, knowledge, and

222 G. Fischer

products in personally meaningful activities presents one of the most exciting innovations
and transformations with profound implications in the years to come. This objective
characterizes the vision behind EUD as a cultural transformation.

Acknowledgements. The author thanks (1) the members of the Center for LifeLong
Learning & Design who have made major contributions to the frameworks, models,
and systems described in this paper, and (2) Daniela Fogli, Monica Maceli, Julie Zhu,
David Diez, Ben Koehne, Stefano Valtolina, and Tony Piccino who provided
insightful comments and suggestions to an earlier version of this paper. The research
was supported in part by several grants from the National Science Foundation. The
writing of this article was facilitated by the support of a “Chair of Excellence” fellow-
ship granted to the author by the University Carlos III of Madrid.

References

1. Henderson, A., Kyng, M.: There’s No Place Like Home: Continuing Design in Use. In:
Greenbaum, J., Kyng, M. (eds.) Design at Work: Cooperative Design of Computer Sys-
tems, pp. 219–240. Lawrence Erlbaum Associates, Inc., Hillsdale (1991)

2. von Hippel, E.: Democratizing Innovation. MIT Press, Cambridge (2005)
3. Burnett, M.M., Scaffidi, C.: End-User Development. In: Soegaard, M., Dam, R.F. (eds.)

The Encyclopedia of Human-Computer Interaction, 2nd edn. The Interaction Design
Foundation, Aarhus (2013)

4. Fischer, G.: Understanding, Fostering, and Supporting Cultures of Participation. ACM In-
teractions XVIII(3), 42–53 (2011)

5. Illich, I.: Tools for Conviviality. Harper and Row, New York (1973)
6. Binder, T., et al.: Design Things. MIT Press, Cambridge (2011)
7. Costabile, M.F., et al.: End User Development: The Software Shaping Workshop Ap-

proach. In: Lieberman, H., et al. (eds.) End User Development, pp. 183–205. Springer,
Dordrecht (2006)

8. Zhu, L.: Hive-Mind Space: A Meta-design Approach for Cultivating and Supporting Col-
laborative Design, PhD, Dipartimento di Informatica e Comunicazione, Università degli
Studi di Milano, Milano (2012)

9. Koehne, B., Redmiles, D., Fischer, G.: Extending the Meta-design Theory: Engaging Partici-
pants as Active Contributors in Virtual Worlds. In: Costabile, M.F., Dittrich, Y., Fischer, G.,
Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 264–269. Springer, Heidelberg (2011)

10. Maceli, M.G.: From Human Factors to Human Actors to Human Crafters: A Meta-Design
Inspired Participatory Framework for Designing in Use, Ph.D. Dissertation, Drexel Uni-
versity (2012)

11. Fischer, G., Herrmann, T.: Socio-Technical Systems: A Meta-Design Perspective. Interna-
tional Journal of Sociotechnology and Knowledge Development 3, 1–33 (2011)

12. Fischer, G.: End-User Development and Meta-Design: Foundations for Cultures of Partic-
ipation. Journal of Organizational and End User Computing 22, 52–82 (2010)

13. dePaula, R., et al.: Courses as Seeds: Expectations and Realities. In: Dillenbourg, P., et al.
(eds.) Proceedings of the European Conference on Computer-Supported Collaborative
Learning, Maastricht, Netherlands, pp. 494–501 (2001)

14. Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and
Freedom. Yale University Press, New Haven (2006)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 223–228, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Objects-to-think-with-together

Rethinking Papert’s Ideas of Construction Kits for Kids in the Age
of Online Sociability

Gunnar Stevens, Alexander Boden, and Thomas von Rekowski

University of Siegen, Human Computer Interaction, Siegen, Germany
{gunnar.stevens,alexander.boden,
thomas.vonrekowski}@uni-siegen.de

Abstract. The spread of the Internet has led to a change from a TV-childhood
to a computer-childhood. We investigate how this shift towards networked
forms of communication is reflected in constructionist learning environments
and elaborate the concept of objects-to-think-with-together in the context of
using computers as tool and social medium at the same time. In doing so, we
propose four design aspects that should be considered in the context of socially-
oriented constructionist learning environments: providing an integrated plat-
form for construction and socializing, supporting re-mixing and re-using as well
as self-expression and appreciation, allowing collaborative projects of non-
collocated learners, and supporting enculturation and team-building.

Keywords: End User Development, Constructionism, Social learning, Social
Media, Scratch, Logo, Constructionist Learning Environments.

1 Introduction

Several representative empirical studies have shown that children’s media use has
been changing over the last years. For example, in Germany a majority of children’s
households provide Internet access and 50% of children state that they are using the
Internet on a regular basis; furthermore, 31% of the children state to (rather) conduct
this activity on their own. This trend has been described by Hammer and Schmitt
(2002) as a change from a TV-childhood to a computer-childhood, indicating the
replacement of television as the lead medium in favor of computers and the Internet.
At the same time, there has been a significant increase of social networks usage in the
last years. One out of three children regularly use communication services such as
online communities, chats and instant messengers and assert those as their online
favorites.

These empirical findings demonstrate that online sociability has become a common
part of children’s everyday life worlds. Based on this situation, it is important to in-
vestigate how this shift towards networked forms of communication and creat-
ing/sharing could be integrated into collaborative learning environments for children,
especially with regard to artifact-centered approaches of supporting learning such as
constructionism.

224 G. Stevens, A. Boden, and T. von Rekowski

2 The Social Turn in Constructionist Learning

Constructionism as a learning approach has been developed by Seymour Papert in the
1970ies, adopting ideas from Piaget’s constructivism as well as from Activity Theory
(Papert 1980). His key thought is that knowledge cannot be exchanged in abstract
forms. Instead, knowledge exchange is considered to be dependent on practical and
cognitive re-construction on behalf of the learner. Hence, the construction of tangible
and personally meaningful artifacts plays a seminal role for the learning process.
Against this backdrop, a number of computer based environments for supporting con-
structionist learning have been developed, called constructionist learning environ-
ments (CLE, see for example Figure 1b, left).

The initial focus of Papert’s work lay on the domain of technical sciences and indi-
vidual learning approaches, where the computer serves as an “object-to-think-with”
(Papert 1980) that allows learners to realize their personal objectives. At that time, it
was a common necessity to edit the source code in one tool, then use another tool for
compiling the code, and afterwards execute it manually. This cycle created a “gulf”
between code and behavior analog to the gulf of evaluation and execution as outlined
by Norman (1986). The seminal innovation of Papert’s Logo environment was to
bridge that gulf, by making the effects of coding directly visible for the learner.

Beyond the individual focus, recent research has a stronger focus on communities
and social aspects of constructionist learning (Bruckman 1997; Chapman 2004; Shaw
1995). One example of this second generation approaches the concept of distributed
constructionism elaborated by Resnick (1996) as a socially oriented enhancement of
Papert’s work. Intellectually, this second generation of constructionism is shaped by
learning theories that emphasize the social and distributed nature of learning in
practice (Wenger 1998; Salomon 1997). They are typically focused on collaborative
learning efforts in communities, where the constructionist learning activities include
several participants. In such settings, learning becomes richer and more effective, as

Fig. 1. Social learning in (a) co-located learning environments and (b) computer mediated
environments

 (a) What happened? How did we do it?: The natural fusion within a co-located setting of
 the construction world and the social world (pictures taken from Badilla-Saxe 2004)

gulf of individual and
social construction

 (b) Gulf of individual and social construction created by separating
 the construction environment Scratch (left) and community environment Scratch online (right)

 Objects-to-think-with-together 225

affective, social and cognitive development is fostered reciprocally through the inte-
raction with one’s social environment (see Badilla-Saxe 2004 and Figure 1a).

Within settings such as schools, a shared social context is naturally given. The
question of how to establish and support constructionist learning environments
beyond this context, for instance on a local community level, has been a recent topic
in research. Institutions like the Intel Computer Clubhouses (Resnick and Rusk 1996)
or the Come_IN Computer Clubs (Stevens et al. 2005) in Germany demonstrate that
by providing local, publicly accessible places to use computers, the participation of
educationally deprived groups of society can be improved. In addition, several con-
structionist learning systems (e.g. Barricelli et al. 2011; Bruckman 1997; Shaw 1995)
have been designed following the concept of distributed constructionism (Resnick
1996). The aim of these systems is to enhance computer based learning environments
by incorporating social and cultural aspects (see also Figure 1b, right).

2.1 Providing Objects-to-think-with-together

So far we have outlined two topics that are mainly studied independently: the in-
creased online sociability of children and the new insights about the social contexts of
constructive learning. Bringing these topics together, we believe that it is time to re-
consider Papert’s influential idea in the light of the mentioned developments.

Given the potentials of the collaborative web, we think that it is time to extend this
principle with regard to the mentioned social turn of education science represented
e.g. by Wenger (1988). According to this view, social constructionism should be fos-
tered by making the social relations that are conciliated by the artifacts visible in the
learner’s use context, embedding the children’s online sociability into the context of
the construction activities (much similar to the upheaval of initial constructionist ap-
proaches resolving the detachment between the design and use of learning artifacts).
The integration of the social context is meant to transform the objects-to-think-with of
individual community members to objects-to-think-with-together for the whole com-
munity, addressing both individual and community-contexts of learning in a unified
approach where the computer serves as a medium and tool at the same time.

This thought is also related to recent threads in Activity Theory (Engeström 2005)
which consider artifacts as boundary objects which have to be sufficiently tangible in
order to be adoptable by users of various backgrounds, and at the same time robust
enough to establish a common identity among social worlds. In this regard, digital
construction kits as computational boundary objects can serve two major purposes, as
noted by Fischer (2001): “(1) they can serve as objects to support the interaction and
collaboration between different communities of practice, and (2) they can support the
interaction between users and (computational) environments”.

2.2 Bridging the Gulf between the Individual and the Social Construction

In the following, we want to elaborate the concept of “objects-to-think-with-together” in
terms of design by using the concept as an analytic lens to study existing approaches
discussed in the literature. Based on our considerations outlined above, we propose four
design aspects that illustrate how the social dimension of artifacts could be supported.

226 G. Stevens, A. Boden, and T. von Rekowski

Integrated Platform for Construction and Socializing

At a basic level, there is a need for an integrated platform that supports socializing
between different learners and fosters the sharing of ideas and artifacts in a project based
learning environment. In this platform, the construction editor and social tools should be
tightly integrated with each other to avoid a gap between the social activities and the
construction activities (see also the gap mentioned in Fig 1b). In the literature, we find
game-oriented approaches that extend multi-player games by integrating collaborative
game construction kits like MOOSE Crossing (Bruckman 1997) or that discuss
multi-player construction games like Minecraft (Zuzanna 2011) as collaborative learning
environments. Such approaches illustrate how construction and social interaction can be
integrated with each other. However, existing work in this area is usually limited to
games and does only support highly specific kinds of design projects.

Concerning this topic, the evolution of Scratch and Scratch online (Resnick et al.
2009) to Scratch 2.0 (see http://beta.scratch.mit.edu/) is highly interesting. Like
Scratch, the new approaches rest on traditional programming ways of sharing projects
that group code blocks and additional resources. However, Scratch 2.0 aims at devel-
oping this idea further by integrating Web 2.0 features, most notably by integrating an
online code editor into their social platform. Other notable examples from outside the
domain of CLE are Mash-up platforms such as Yahoo Pipes that combines mash-up
editors with community services, thus minimizing the divide between editing and
sharing of mash-ups (Grammel und Storey 2010).

Re-mixing, Re-using, Self-expression and Appreciation

Kids learn from observing and mimicking actions of others. In this context, artifacts
of others typically serve as inspiration and blueprints for one’s own project. This
“monkey see-monkey do” style of construction (Gamma and Beck 2004) implies a
need for supporting re-using and re-mixing of digital artifacts as well as a need for
supporting their appropriation. In addition, the created artifacts also have an emotion-
al side as these artifacts serve kids as a way for self-expression. Hence, in becoming
an object of discourse, artifacts are used to share common interests, perspectives and
ideas. In particular, they allow appreciating each other by appreciating each other’s
work. With regard to design, this implies a need for reusing artifacts made by others
as well as commenting and rating them.

The first solutions that explicitly support the “monkey see monkey do” were the
mentioned mash-up platforms, which allow users to re-use and -assemble existing
web services to create their own solutions. In addition, users can tag and receive rec-
ommendations during construction activities based on the tagging information
(Grammel und Storey 2010). With regard to CLE, Scratch online (Resnick et al.
2009) was maybe the first to provide tagging as well as re-mixing support. In addi-
tion, the system allows kids to comment and rate projects as well as inspect which
project was re-mixed by whom in order to support the promote mutual appreciation
among the community.

However, in a further step to realize the vision of objects-to-think-with-together,
these features should also be embedded into the context of the construction activities
(in order to provide for instance awareness about expertise and artifacts that fit the
situated context). Regarding this aspect, CLE design might learn from newer Software

 Objects-to-think-with-together 227

Engineering approaches. For instance, the tool STeP_IN (Nishinaka et al. 2007) uses
existing recommendation algorithms to make software developers aware about local
experts and documentation to Java components that are used in the actual context.

Collaborative Projects

Creating artifacts is a common goal and motivation for joint projects, in which the
artifact will be constructed in a collaborative manner. This implies a need for syn-
chronous and/or asynchronous environments for collaborative construction. There is a
long vast body of work on supporting collaboration in synchronous and asynchronous
contexts (for example in environments such as Wikipedia or Google Docs). Because
of this, we were quite surprised that most of the existing project-oriented solutions
like Scratch 2.0 or Mash-up editors do not support this social dimension of artifacts.
Instead, projects are still owned by one person and collaboration can only be orga-
nized by sharing copies which each other.

However, quite interestingly, the situation is totally different in the case of game
oriented CLE like MOOSE Crossing or construction-oriented games such as Mine-
craft. In these environments, kids can create virtual objects, spaces, and characters
while interacting with one another e.g. through chats. Therefore, ethnographical stu-
dies would be highly interesting, how kids appropriate these systems and use them to
work together.

Enculturation and Team Building

Last but not least, CLE 2.0 platforms should support enculturation and team building,
as well as further aspects of social learning in the sense of Communities of Practice
(Wenger 1998). For example, CLE should allow legitimate peripheral participation,
enable gentle transitions from being a lurker to becoming a core team member, and
allow scaffolding as well as seeking and offering help within the community. This
topic is sporadically discussed in the literature, for example by Bruckman (1997) who
notes that such ideas inspired her. In addition, Korn and Veith (2009) outline how
Scratch could be extended through scaffolding mechanisms into that direction. Yet,
what is missing is a systematic investigation of the design patterns that support encul-
turation and team building in online communities for kids as well as empirical studies
about how such features are used in practice.

3 Discussion and Conclusion

In this paper, we have outlined that computational constructions are social artifacts
that can serve as boundary objects between the self and the computational environ-
ment and the social world. Yet, this quality is hardly covered by the current CLE
designs. In order to bridge the gulf between individual and social constructionist
learning in communities, we have outlined the concept of objects-to-think-with-
together that rethinks Papert’s original idea in the age of online sociability and brings
together the different facets of computational boundary objects by means of an inte-
grated collaboration infrastructure within the application (Stevens 2009). We further

228 G. Stevens, A. Boden, and T. von Rekowski

identified a number of interesting examples that show steps towards how the concept
could be realized. In our future work, we have to study how the different design con-
cepts could be integrated in a coherent framework to improve the boundary object
quality of artifacts mediating social relations. In particular, we plan on conducting
ethnographical studies on how these features are being appropriated to understand the
concept from within the construction and learning practices of the children.

References

Barricelli, B.R., von Rekowski, T., Sprenger, M.A., Weibert, A.: Supporting Collaborative
Project Work in Intercultural Computer Clubs (2011)

Badilla-Saxe, E.: Constructionism, Complex Thinking and Emergent Learning. Construction-
ism 2010, Paris (2004)

Bruckman, A.S.: MOOSE Crossing. PhD Thesis, MIT, USA (1997)
Chapman, R.: Pearls of wisdom. In: Social Capital and Information Technology, pp. 301–331

(2004)
Engeström, Y.: Developmental work research. Bd. 12. Lehmanns Media (2005)
Fischer, G.: External and shareable artifacts as opportunities for social creativity in communi-

ties of interest. In: Computational and Cognitive Models of Creative Design (2001)
Gamma, E., Beck, K.: Contributing to Eclipse. Add.-Wesley (2004)
Grammel, L., Storey, M.-A.: A survey of mashup development environments. In: Chignell, M.,

Cordy, J., Ng, J., Yesha, Y. (eds.) The Smart Internet. LNCS, vol. 6400, pp. 137–151.
Springer, Heidelberg (2010)

Korn, M., Veith, M.: Learning support through scaffolding collaborative project work. In: Proc.
of CSCL 2009 (2009)

Hammer, V., Schmitt, C.: Computer in der Familie. Staatsinst. für Familienforschung an der
Univ., Bamberg (2002)

Nishinaka, Y., Asada, M., Yamamoto, Y., Ye, Y.: Please STeP_IN: A Socio-Technical Plat-
form for in situ Networking. In: Proc. of APSEC 2005 (2005)

Norman, D.A.: Cognitive engineering. In: User Centered System Design, pp. 31–61 (1986)
Papert, S.: Mindstorms: Children, computers, and powerful ideas. Basic Books (1980)
Resnick, M.: Distributed constructionism. In: Proc. of the 1996 International Conference on

Learning Sciences, pp. 280–284 (1996)
Resnick, M., et al.: Scratch: programming for all. CACM 52(11), 60–67 (2009)
Resnick, M., Rusk, N.: The Computer Clubhouse: Preparing for life in a digital world. IBM

Systems Journal 35(3.4), 431–439 (1996)
Salomon, G.: Distributed cognitions. Cambridge Univ. Pr. (1997)
Shaw, A.: Social constructionism and the inner city. Ph.D. Thesis, MIT (1995)
Stevens, G.: Understanding and Designing Appropriation Infrastructures. PhD Thesis, Universität

Siegen, Germany (2009)
Stevens, G., Veith, M., Wulf, V.: Bridging among ethnic communities by cross-cultural com-

munities of practice. In: Proc. of C&T 2005, pp. 377–396 (2005)
Wenger, E.: Communities of practice. Cambridge Univ. Pr. (1998)
Zuzanna, M.: Constructing identity in games: a case study of Minecraft on YouTube, University

of York

End-User Development
in Tourism Promotion for Small Towns�

Augusto Celentano, Marek Maurizio, Giulio Pattanaro, and Jan van der Borg

Università Ca’ Foscari Venezia, Italy
{auce,marek,giulio.pattanaro,vdborg}@unive.it

Abstract. This paper discusses the design and implementation of a system for
promoting small towns based on the mash-up of various data sources for person-
alized mobile access. The positive issues and the open problems are discussed
and evaluated in the frame of an experiment made in a region in Northern Italy.

1 Introduction

The increasing popularity of the Web has considerably affected the way business and
marketing are conducted in every sector. Tourism is no exception: more and more trav-
elers use Internet services to plan, document, and share their journeys; furthermore,
they are often active contributors of social networks and personal blogs. Thanks to
their richness in personal experiences and trustworthiness of electronic word-of-mouth,
social contents are a very influential factor in travellers decision-making [1,2]: contri-
butions (feedbacks, videos, etc.) uploaded by other web users are increasingly accessed
during the vacation planning process [3]. These direct contributions add up to already
existing sources like the official websites of a local tourism board; as a consequence, it
is often difficult for a tourist to analyze and compare information available in several
sources.

Central for the success of online tourism promotion are two behaviors of tourism op-
erators: they need to provide complete and up-to-date information about a destination,
and encourage a constant exchange of information with tourists [4,5]. This situation is
particularly relevant when the chosen destination is a small town or a village, i.e., it is
not among the most famous and discussed locations in a region. Such minor locations
could, however, benefit from suggestions coming from shared information on the web
more profitably than well known places who are adequately “self-promoting” at one
side, and often overloaded with almost useless repeating standardized comments at the
other side.

Here Web 2.0 applications may be very helpful: thanks to mash-up, third-party re-
sources can be presented in a different way or used to create new web contents. Web-
sites can make their information accessible via Application Program Interfaces (APIs),
which define the way data can be retrieved and re-used. Although being a fairly re-
cent topic, mash-ups have gained more and more importance in both the academy and
industry. They are becoming an important instrument in the field of End-User Devel-
opment (EUD), where experts who are not professional developers can use tools to

� Project supported by Regione Veneto, Italy, under the FSE programme.

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 229–234, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 A. Celentano et al.

Client
Application

tourism info

Mash-up environment

Internal
Database

Component
Data Interfaces

Authoring
System

Domain-Expert

TouristTourism boards
websites

Wikis
Social

networks

Private operators
websites

Web 2.0

content

User environment

Presentation
interface

Mobile Desktop

Fig. 1. The system architecture

create or modify software and organize complex data structures mixing existing infor-
mation according to their needs. In tourism, mash-ups and EUD technologies are used
to make the information about a destination easier to access and integrate [5]. Actu-
ally, although tourism destinations tend to be perceived and consumed by tourists as
“a brand comprising of a collection of suppliers and services” [1], different actors are
involved in the provision of tourism services. There are direct players like, e.g., hotel
owners, but also community members and associations. As it has been underlined by
public funding schemes as well [6], collaboration among these stakeholders is a general
precondition for the successful development and promotion of a tourism destination. In
such a scenario, domain experts can play a relevant role in integrating and delivering
the information produced by the different actors.

This project wants to give tourism players the possibility to find, filter, aggregate,
merge, and organize syndicated contents coming from different and heterogeneous
sources. Three main issues are addressed: (1) the creation of an environment promoting
tourism through the collaboration of different stakeholders; (2) the use of EUD tech-
niques to implement such an environment; (3) the generation of a virtuous cycle to
improve the quality of the information provided on the web. The system is expected
to be cost-effective (already existing and open contents are extracted and re-used) and
easy to maintain (if the integrated contents are updated in the original source, there
will be an automatic update in the system as well). Since material directly generated by
tourists (e.g., WikiTravel guides) is also integrated, the system is also expected to adopt
a user-friendly language.

One could argue that, for small towns and villages, the information available on the
Internet is not sufficient to provide a complete and up-to-date overview of these desti-
nations. While in some cases this statement is valid, this is considered as an opportunity
rather than as a definitive limit: if the required information is not present, it is easier and

End-User Development in Tourism Promotion for Small Towns 231

more effective to create it by using collaborative websites authoring tools, promoting
the usage of well-know social networks from visitors, or accessing the already existing
infrastructures (e.g. a regional tourism boards website content management system).
In fact, the generation of open and accessible contents rather then that of closed and
platform-specific ones is encouraged.

2 System Architecture

Figure 1 shows the systems architecture and actors. A domain expert accesses Web
resources to be included in the guides through a set of component data interfaces to
Internet websites and services, either by wrapping their APIs or by employing ad-hoc
parsing solutions. An authoring system allows him/her to retrieve, organize, and classify
web contents related to destinations. An internal database stores the parameters used
to retrieve information from the web and the structure given to information, along with
an updatable cache of the extracted contents. The application runs on different desktop
and mobile devices, allowing the user to experience the content in a user-friendly and
visually rich environment.

Data Model and Component Data Interface. The system data model is built around
the concept of tour: each tour is an abstract subject of interest, such as “The Medieval
Tour of Veneto” or “A Food & Wine Journey”. Each tour is made of one or more places
(i.e. cities or towns such as “Marostica” or “Castelfranco Veneto”); each place is asso-
ciated with a set of topics; each topic represents a theme or object of possible interest
to tourists (e.g. “Local Food”, “Local Markets”, or “Onara Marsh”). Topics are orga-
nized hierarchically to allow sub-specialization of broader subjects. Each tour, place,
and topic has a set of properties — such as name, description, picture, and so on —
which are stored in a local database. However, topics have also a set of attached ob-
jects, called components, whose content is extracted from web sources.

The component data interfaces are responsible for collecting tourism contents from
heterogeneous web sources, such as destination marketing organizations’ web pages,
other official on-line documents, collaborative websites, personal pages, and social net-
works. Each interface can be based either on the source’s APIs protocol or, if the source
does not allow the use of APIs, on ad-hoc parsing solutions. The component data in-
terface system is designed to be modular: each interface is an object that responds to a
set of predefined methods. With this architecture new components can be added to the
system without requiring remarkable efforts. The current implementation of the system
features a set of component data interfaces to interact with some of the web sites and
services considered as the most relevant for tourism purposes, in particular, for a visit
to the locations of interest.

More specifically, a set of tourism promotion websites which are run by different lev-
els of local authorities was looked at (the regional tourism board for Veneto, the seven
provincial tourism authorities, and the different municipalities involved). Privately run
websites (e.g., tour operators’ websites) were analyzed as well, although priority was
given to public authorities’ ones.

Two component interfaces were developed to interact with such sources: web ar-
ticle and web fragment. A web article has a standardized format, hence it can be

232 A. Celentano et al.

fully parsed to automatically extract only the relevant content; web fragments of-
fer a more focused way to extract contents, using regular expressions written in
the XPath language. At the time of writing, the component requires knowledge of
XPath and must be considered a work-in-progress, not yet tailored for end users.
Both component data interfaces were successfully used to extract data from institu-
tional websites such as Veneto Tourism (http://veneto.to), Veneto Natural Parks
(http://www.parchiveneto.it) as well as personal blog posts.

From a customer’s point of view, the value of using personal and collaborative web
sites as a source of tourism information lies in both the trustworthiness of personal ex-
periences, and the familiarity users have with known sites. The system allows domain
experts to interact with a number of collaborative web sites such as Wikipedia, Wiki-
travel, Flickr, YouTube and Google Maps.

Social networks have recently become an important asset in the tourism industry.
When they are planning their journey, travelers trust the personal experience and opin-
ion of relatives and friends, but also make use of social networks during and after their
trip, thus generating interest in viewers that can easily become travelers themselves [7].
The system allows to leverage such potential by including contents from some of the
major social networks such as Twitter and Facebook. Finally, links to other tourism
mash-up applications allow domain experts to benefit from other authors’ results. Al-
though the selected sources are only a small portion of the available Internet tourism
web sites and services, they appear to provide a good selection of contents for domain
experts to mash-up a high quality overview of the selected destinations. To extend the
system’s possibilities, the object-oriented approach used to build the system enables an
easy integration of new components into the system once a correct and stable interface
has been defined.

The Authoring System. The authoring system allows domain experts to create, orga-
nize and manage tours. It is accessed through a web-based application, requiring nei-
ther a specific installation nor specialized plugins, with a graphical interface based on
common knowledge and clear action feedback, thus allowing domain experts to easily
operate it. It is worth pointing out that the authoring system’s capabilities only cover
the structure and classification of the model elements. The system does not work as a
middleware to edit the components’ data. Should, for instance, a domain expert feel the
need to edit a destination’s Wikipedia page, there is no reason not to use directly the
website authoring tools, or any other application the domain expert is comfortable with.
The system provides a direct link to such tools.

In the tourism domain, a number of different taxonomies and catalogues already
exist. Each one is designed and used to manage heterogeneous tourism data. Ontolo-
gies facilitate the semantic integration of such heterogeneous data, and several publicly
available formal tourism ontologies have been identified [8]. The project employes a
simple, two-level, hierarchical ontology allowing domain experts to classify the con-
tents. When an expert inserts a new topic in the system, he/she has to select one or
more themes to describe it: each theme is a specialization of a category. The categories
and themes taxonomy was developed by the domain experts themselves and is made
specifically for the current project.

http://veneto.to
http://www.parchiveneto.it

End-User Development in Tourism Promotion for Small Towns 233

Topics are organized hierarchically: the classification of a topic is given by an algo-
rithm that takes into consideration the themes the domain expert selects for the topic,
and the classification of the topic’s subtopics, recursively. Domain experts can classify
directly only topics. Each place will be automatically classified by an algorithm that
takes in consideration how that place’s topics were classified. In the same way, tours
are classified automatically according to their related places’ classification. This mech-
anism ensures that, at any given moment, tours and places are classified by the actual
content present in the guide.

The User Application. Tourists access the contents through a web application. Partic-
ular care is put on the mobile version of the application, since most tourists now travel
with their own devices. Users can browse the available tours and select the one that best
suits their needs, or just browse the different destinations individually. Tours, places,
and topics are classified following the taxonomy presented above; in the user’s appli-
cation each category is characterized by a specific color, while each theme has its own
icon to offer an immediate, clear, and visual contextualization to each of the proposed
destinations and attractions.

3 Implementation

The authoring system was implemented as a web application using Rails 3, a framework
based on the Ruby programming language. The administration system is accessible by
multiple users with the adequate privileges. The component interface of the mash-up
environment is designed according to the object-oriented paradigm, so that it is easy
to develop and add new components. If domain experts need to gather data from a
new service, it is sufficient to program a new component and notify the system. The
component must define: a name; a method to extract data, either using the service’s
APIs or by ad-hoc parsing; a web form to input the data extraction parameters; a way
to visualize the extracted data in HTML; a link to the original content.

Each component is allowed to save data in the main database to allow content caching,
since fetching data for each request would not have been practical. For the automatic
update of the information, each component instance can define how often the fetch op-
eration must be performed by the system. While some data, like Wikipedia pages, are
quite static and can be safely updated every week or month, other data, like twitter
streams, need to be updated almost in real time.

The client-side application is a set of HTML pages interfacing with the server to
allow tourists to browse the different tours, places, and topics. The Twitter Bootstrap
2.0 web library was used for rapid prototyping.

4 Discussion

Mash-ups allow for the combination and integration, within the same online tool, of
different web sources, thus providing complete information about a specific destination.
Furthermore, once original sources are modified, the periodical update of the mash-up
process makes these modifications almost immediately visible in the system. Updates

234 A. Celentano et al.

are visible in real time in the case of the social networks integrated into the system,
thus making these sources the direct interaction channel between visitors and tourism
players but also between different groups of tourists.

For the completeness of content it provides, the system here illustrated differs from
already existing tourism websites and open-access information repositories. In these ex-
isting sources, one or more types of information (e.g., sport activities or cultural events)
tend to predominate; users must access, compare and combine several sources with in-
formation styled in different ways. Only the information integration within the same
system can provide a complete overview of what a destination can offer. Furthermore,
an online system integrating social networks and wikis may also contribute to involve
in local tourism development and promotion some categories of traditionally excluded
stakeholders, like local associations and individual citizens.

Being these ones the main advantages of the system, some potential implementation
issues need to be taken into account. For example, it may happen that an insufficient
number of sources to mash up are available. It may also turn out that existing contents
do not fully satisfy adequate quality standards. It is here believed that local tourism
players can successfully cope with these potential issues: e.g., local players may decide
to amend wiki contents by acting as individual editors.

Finally, as confirmed by some early informal talks with regional tourism stakehold-
ers, it is important to highlight that this system can be fully successful only if the dif-
ferent categories of local tourism stakeholders do actually cooperate and collaborate.
If no agreement is reached on the selection of the online sources to be mashed up, the
system will not meet its objectives in terms of the quality of the information provided
and interaction between tourists and local players.

References

1. Buhalis, D.: Marketing the competitive destination of the future. Tourism Management 21(1),
97–116 (2000)

2. Corigliano, M., Baggio, R.: On the significance of tourism website evaluations. In: Informa-
tion and Communication Technologies in Tourism, pp. 320–331 (2006)

3. Kim, H., Fesenmaier, D.: Persuasive design of destination web sites: an analysis of first im-
pression. Journal of Travel Research 47(1), 3–13 (2008)

4. Giannopoulos, A., Mavragani, E.: Traveling through the web: A first step toward a compara-
tive analysis of European national tourism websites. Journal of Hospitality Marketing & Man-
agement 20(7), 718–739 (2011)

5. Linaza, M., Lölhöffel, F., Garcia, A., Lamsfus, C., Alzua-Sorzabal, A., Lazkano, A.: Mash-up
applications for small destination management organizations websites. In: Information and
Communication Technologies in Tourism 2008, pp. 130–140 (2008)

6. European Commission: Agenda for a sustainable and competitive European tourism. Techni-
cal report, Communication of the European Communities, COM (2007) 621 Final, Brussels
(2007)

7. White, L.: Facebook, friends and photos: A snapshot into social networking for generating
travel ideas. In: Sharda, N. (ed.) Tourism Informatics: Visual Travel Recommender Systems,
Social Communities, and User Interface Design, pp. 115–129. IGI Global (2010)

8. Prantner, K., Ding, Y., Luger, M., Yan, Z., Herzog, C.: Tourism ontology and semantic manage-
ment system: state-of-the-arts analysis. In: IADIS International Conference WWW/Internet,
pp. 111–115 (2007)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 235–240, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Get Satisfaction: Customer Engagement
in Collaborative Software Development

Renate Andersen and Anders I. Mørch

Department of Educational Research and InterMedia
University of Oslo, Norway

{renate.andersen,anders.morch}@intermedia.uio.no

Abstract. This paper presents an empirical study of social media integrated in a
product development process to support mutual software development. The
case is Get Satisfaction, a company and crowd-sourcing community for cus-
tomer engagement employed by many product development companies as an
alternative to traditional customer relationship management (CRM) systems.
We have studied user-developer interactions through the company’s public sup-
port tools to identify how the company enhances its own productivity tools.
The method we employ is interaction analysis. We focus on some productive
interactions and analyze them in detail, including: “User request and developer
implementation” (a long term activity, involving many users, sometimes lead-
ing to a new version of the tool). We refer to this form of user involvement in
collaborative software development as “distributed EUD,” and discuss the
strengths and weaknesses of using social media to mediate the activities.

Keywords: Collaborative software development, distributed EUD, empirical
study, interaction analysis, mediating artifacts, mutual development, social
media.

1 Introduction

The object of study is an empirical analysis of collaborative software development
involving user participation and social media (Get Satisfaction tools). Get Satisfaction
is a customer engagement platform with tools that go beyond socializing by centering
interaction around a shared artifact (a software product to be developed). The research
question guiding the data collection and analysis is: How can social media be inte-
grated in a product development process and how may it mediate the mutual software
development process? The paper is organized as follows. First, we present related
work, emphasizing the theoretical notion of artifact mediation. We then describe the
case, explaining Get Satisfaction as an online community. Next, we explain our me-
thods for data collection and analysis and our empirical findings. We describe in de-
tail one excerpt, showing one distinct feature of collaborative software development
(user request and developer implementation). Next, we discuss the research question.
We conclude with some open issues and directions for further work.

236 R. Andersen and A.I. Mørch

2 Artifact Mediation

Vygotsky defined mediation as the way tools and signs provide the means for inte-
racting with the sociocultural environment. Wertsch developed the concept further by
stating that tools or signs mediate all human activity and that cultural mediation is
central to both social interaction and mental development [8]. Mediation as an exter-
nal activity refers to the relationship between humans and their objects of activity,
which is supported by tools [4]. Tools are thus the carriers of cultural knowledge and
social experience [8].

Mediation as a theoretical concept needs to be operationalized in specific applica-
tion domains. Mutual development is a model of mediation for how customers and
professional developers can collaborate in order to create new functionality and im-
prove upon existing products [1, 5]. In previous work we have investigated the cha-
racteristics of mutual development in small communities [1, 5], and in this paper we
study the same relationship in mass collaboration [7], as profiled in user-developer
collaborations and in user-user collaborations.

Furthermore, new activities such as negotiating contributions from multiple users
become important, like filtering out bad proposals and prioritizing those that can be
transformed into product features. We follow a process that starts with end users in-
itiating changes, and identify one pattern of interaction leading to a new product fea-
ture: user request and developer implementation.

3 The Case

The data we present in this paper are from an ongoing case study in a company named
Get Satisfaction. The company was founded in 2007. The main products, Get Satis-
faction tools, are bundled as an online community software and customer engagement
platform. It has today more than 63,000 online communities and boasts 9.600,000+
visitors a month. The support community is structured around questions and answers,
organized in four different topic threads: 1) ask a question, 2) share an idea, 3) report
a problem, and 4) give praise. The participants (regular users, experienced users or
champions, and professional developers) contribute in the community by posting
messages (replying to questions and refining answers) and can express engagement by
giving praise, pressing “like” on postings, and giving good points to other people’s
contributions. Figure 1 shows a screenshot of a part of one of the discussion threads
of Get Satisfaction.

4 Methods

We have used a combination of quantitative and qualitative methods as part of a case
study, but for space reasons we focus on the qualitative methods here, in particular
interaction analysis. Interaction analysis is an interdisciplinary method for empirical
investigation of the interactions of human beings with each other and with objects in
their environments [3]. Conversational turn taking is the unit of analysis we use in our
interaction analysis. We followed the postings on the support community from March

 Get Satisfaction: Customer Engagement in Collaborative Software Development 237

2012 to July 2012, as well as reading earlier postings that have been marked as “com-
pleted ideas.” In addition to this, two email interviews with two of the community
managers at Get Satisfaction were conducted. In the data section, we present data
from one discussion thread at the Get Satisfaction support community.

Fig. 1. Two screenshots of a discussion thread in Get Satisfaction: “Add notification prefe-
rences that are product specific.” The topmost screen image shows the message that spawned
the thread, and the bottom shows some replies.

238 R. Andersen and A.I. Mørch

The participants themselves, when updating their personal profiles, specify their
role as champion, user/customer, or employee, whereas the distinction between insid-
er and outsider are our own, between unpaid contributors (outsiders) and paid contri-
butors (insiders). Champions take on both roles: They are outsiders who later become
recruited by the company because of outstanding skills and endurance as measured by
the number of highly rated postings. Champions are part-time employees.

5 Data and Findings

We have chosen one interaction sequence for its relevance, based on first running a
social network analysis on the larger data set and then zooming in on a productive
thread involving all stakeholders. The excerpt illustrates what we mean by “distri-
buted EUD.” It involves two insiders, eight outsiders, and three champions, who share
an idea for how to improve the product. Their names are fictive for anonymity. The
title of the shared idea is “Add notification preferences that are product-specific,”
which is about organizing customer improvement requests according to the product
features.

1 Champion Steven Fox: Allow notification preferences for topics in a particular product,

rather than all topics from a company. Like this: see picture: [See Figure 1].
2 Insider/employee: Alan (CTO) over 3 years ago: I agree, Jamie. We have this as a planned

feature, along with email digests for both whole community and specific products.
3 Outsider/customer Janet over 3 years ago: You know what else would be pretty awe-

some and not hard to do? If the emails had the product name in the subject so I could at
least set up mail filters.

4 Outsider/customer Tony Wilkins 2 years ago: Please please please... this has been in
progress for over 3 years! Come on guys... this is seriously limiting our organizations
adoption of Get Satisfaction.

5 Outsider/customer Jon Long 2 years ago: I like Tony Wilkins idea. That feature would
really make my life easier!!!

6 Outsider/customer Andy Barnes 2 years ago: Yes please!
7 Champion Lisa responds with a smiley face and states: “I’m grateful for the suggestion!

“1 year ago: I've got this idea loaded up into our feature request queue, and I'll update
all y'all once I know a bit more.

8 Outsider/customer Tony Wilkins 2 years ago: Hey Lisa, is there any update on getting
product specific notifications into the product?

9 Champion: Lisa 1 year ago: I'm checking in on the status of this one - I like this idea,
too, but I'm not sure how complex/expensive it gets when it comes to our email system.
I'll let y'all know when I know more.

10 Outsider/customer Ted Evans 2 years ago: We have numerous products and they all
arrive as emails to "Roadrunner Records" - it'd be great if there was some differential
based on what product the feedback pertained to. Even changing the line within the
body of the email where it says: "Ted Evans just shared this idea in Roadrunner
Records:" for instance to say "Ted Evans just shared this idea in Roadrunner Records
about this product: XXXXXXXXXXXXXXXX" I could then easily set up filtering
rules in Gmail (where I catch all these emails) to forward them through to other people
in my organization. It's worth noting that you already do this with respect to private
feedback (i.e. it states which product the feedback was in relation to) so it would seem
like a super simple thing for you guys to add to the regular, non-private email alerts.

 Get Satisfaction: Customer Engagement in Collaborative Software Development 239

11 Outsider/customer Tony Wilkins 2 years ago: In our organization, different people are
responsible for each product and/or service listed in our Get Satisfaction installation.
As the local GS admin, I'm happy to receive all notifications but the people who look
after each product have often asked me if they can limit their notifications to just the
product they are responsible for. I eagerly await the development!

12 Outsider/customer Tony Wilkins 2 years ago: Alan, Mary, any update on the progress of
this?

13 Champion Sarah Williamson 2 years ago: It looks like this feature is bundled into our
notification improvements, but sadly I don't have an exact time frame for when this get
released.

14 Inside/Employee: Mary (Director, Product Management) 18 months ago I’m thankful
that everyone has been so patient while we worked on other stuff): Hi everyone, I'm
really glad to say that we finally launched a Product follow feature. Learn more about it
on our blog: url: http://product.getsatisfaction.com/2011/07/follow-products-on-get-
satisfaction

The conversation in this excerpt begins with a champion sharing an idea for how to
improve the product further. The suggestion is about how to organize ideas for im-
provements with respect to the artifacts they refer. Two outsiders support the idea in
turns 3 and 4. In turn 4, the outsider Tony points out that this discussion has been
ongoing for more than two years, indicating a very long-term user-development
process. In response, champion Lisa answers (turn 7) by saying she is grateful for the
suggestion and that “this idea is loaded up in the feature request queue.” Following
this, Tony asks Lisa for some feedback on the status of the idea, and champion Lisa
answers (turn 9) that she does not know when it will be followed up, as it depends on
“how complex/expensive it gets.” In turn 10, another outsider (Ted) gives a detailed
description for how to develop the feature, which is supported by outsider Tony (turn
11). When Tony in turn 12 asks for the status, the champion Sarah answers in turn 13
that she does not know, and finally in turn 14 an insider and director Mary replies that
the proposal has finally been accepted and launched as a new product feature. Excerpt
1 thus illustrates end-user development as a collaborative effort between less techni-
cally skilled end users (customers) and technically skilled developers (insiders), bro-
kered by informed end users (champions).

6 General Discussion and Directions for Further Work

The research question raised in the beginning of the paper is discussed here: How can
social media be integrated in a product development process and how may it mediate
mutual software development?

We have showed an example of collaborative software development initiated by
users, which can be considered a type of “distributed EUD,” a long-term effort of
collaborative software development involving end users. The data show how a user-
oriented feature request initiated by an active member of the community may be
transformed from an issue within the user support community to become a feature
implemented in the shared product, available to all customers of the company. The
data show how different stakeholders take part in this process and how the Get Satis-
faction tools (the forum, good point, mood and likes) mediate interaction [8].

240 R. Andersen and A.I. Mørch

Mediation is supported by both textual and emotional means. The textual means
are expressed through publishing reply messages, whereas likes, good points, and
mood represent the non-textual mediation. It can be seen at the top of Figure 1 that 29
people like the suggested idea in turn 1. This is likely to influence developers when
they listen to, pick up, and implement the suggested idea.

However, only those who contributed with textual postings and replies are taken
into consideration in our analysis. There may be “lurkers” also playing a role in the
collaborative software development we have studied, who raise their voice anony-
mously, clicking “like” and giving out good points. Lurkers are participants that hang
around, observing and reading postings posted by community members, but not expli-
citly raising their own voice by replying or issuing new postings [6]. Further studies
(and technological features) ought to find ways to get access to lurkers.

We have scaled our previous efforts from a small group study of user-developer
collaborations [1, 5] towards mass collaboration. Whether or not we see a similar
phenomena occurring in large groups, as in small, depends on several conditions,
some of which have been passed on lightly here, involving a new type of mediating
artifact (social media rather than CRM system), and choosing new research methods
(from interview to interaction analysis to social network analysis).

Open issues for further work include: how do we prevent an evolving product from
being overspecialized and feature excessive, making its own use cumbersome; and
will it as a result of this process also accumulate erroneous behavior and become
more faulty? Can outsiders continue to request improvements of a product for the
duration of its lifetime, and expect to be satisfied? What motivates the non-paid par-
ticipants to contribute and spend much of their time to improve products belonging to
a company that may profit from non-paid users’ contributions?

References

1. Andersen, R., Mørch, A.I.: Mutual development: A case study in customer-initiated
software product development. In: Pipek, V., Rosson, M.B., de Ruyter, B., Wulf, V. (eds.)
IS-EUD 2009. LNCS, vol. 5435, pp. 31–49. Springer, Heidelberg (2009)

2. Fischer, G.: End-user development and meta-design: Foundations for cultures of participa-
tion. In: Pipek, V., Rosson, M.B., de Ruyter, B., Wulf, V. (eds.) IS-EUD 2009. LNCS,
vol. 5435, pp. 3–14. Springer, Heidelberg (2009)

3. Jordan, B., Henderson, A.: Interaction analysis: Foundations and practice. IRL Technical
Report, Palo Alto (1995)

4. Mifsud, L.: Learning with mobile technologies: Perspectives on mediated actions in the
classroom. PhD thesis. University of Oslo, Norway (2012)

5. Mørch, A.I., Andersen, R.: Mutual Development: The Software Engineering Context of End-
User Development. Journal of Organizational and End User Computing 22(2), 36–57 (2010)

6. Nonnecke, B., Preece, J.: Lurker demographics: Counting the silent. In: Proceedings CHI
2000, pp. 73–80. ACM, New York (2000)

7. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything.
Penguin Group, New York (2008)

8. Wertsch, J.: Voices of the mind: A sociocultural approach to mediated action. Harvard
University Press, Cambridge (1991)

Lightweight End-User Software Sharing

Cristóbal Arellano and Oscar Díaz

ONEKIN Research Group, University of the Basque Country (UPV/EHU),
San Sebastián, Spain

{cristobal.arellano,oscar.diaz}@ehu.es

Abstract. This paper looks into the sharing of end-user software
(referred to as “script”). Based on this study four implications are
drawn: reduce the effort to make scripts shareable, minimize deployment
burdens, less stringent protection mechanisms, and tap into communities
of practice as for sharing. To attend these implications, we introduce a
URL-based distribution schema for scripts combined with an IP-address-
based authorization model. This makes scripts URL-addressable and
easy to install, because choosing to install a script means that all of the
necessary frameworks, plug-ins, etc. that are needed to make this script
run are simultaneously installed. On the other hand, IP-based protection
uses IP network prefixes as cypher keys. A script language is used as a
proof of concept.

Keywords: End-User Development, Social Sharing, Domain Specific
Languages, Web 2.0.

1 Introduction

Software sharing might promote three aspect of relevance in an end-user setting:
(1) participatory design between producers and consumers; (2) community
building; and (3), producer engagement as a result of the potential recognition
from consumers. This begs two questions: how the sharing of end-user software
differs from the sharing of commercial software, and (2), how these differences
might impact the way end-user software is delivered. This work looks at these
matters, and introduces a URL-based distribution schema for end-user software
combined with an IP-address-based authorization model. As a proof of concept,
we outline the realization of this schema for a script language.

2 End-User Software and Commercial Software:
Differences on Sharing

For our purposes, sharing implies the exchange of a resource (i.e. the software)
from a producer to a consumer. Two dimensions are then established: (1) the
profile of the stakeholders, and (2), the characteristics of the resource (see
Figure 1).

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 241–246, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

242 C. Arellano and O. Díaz

Fig. 1. Sharing: Commercial software versus End-user software

Stakeholder Dimension. Stakeholders differ in their commitment to share. In
a commercial setting, producers make a leaving out of sharing/selling software
while consumers are somehow compelled to use the company software. Their
commitment is high. This is not the case for end-user software (hereafter refer
to as “scripts”). First, producers are not forced to share their scripts while, on the
other hand, sharing might be cumbersome (e.g. documenting, protecting, making
it accessible). We should then aim at reducing the barriers for sharing scripts,
ideally, making sharing “a click away”. Therefore, producers’ low commitment
advices scripts to be “shareable by construction”.

Second, consumers are not forced to deploy someone-else’s scripts. Rather,
affiliation and membership become main inductors [4]. However, these incentives
should be cautiously balanced with the availability of time and skills. In this
setting, consumability turns into a main enabler. Consumable scripts are scripts
that facilitate their consumption, i.e. they are easy to configure, license, share,
enact, etc. When users are not obliged to consume one’s software, we risk “the
consumability effort” to go above the endeavour users are willing to accept to
enjoy the software. Therefore, consumers’ low commitment advices to minimize
the script deployment burdens.

Resource Dimension. It includes two features: the software value and the
software scope (i.e. the potential consumer base). As for the value, scripts are
generally not as valuable as commercial software. Hence, there are no economic
restrictions to constrain their flow. Therefore, the lower value of scripts permits
less rigorous protection mechanisms in honour of a lower footprint.

Second, the software scope. It is commonly agreed that end-user programmers
are focused on developing programs that fulfil some personal goal that exists in

Lightweight End-User Software Sharing 243

Table 1. Impact of End-User Software specifics into software sharing

Script
characterization

Implications for script
sharing

Realization strategy

Producers’
commitment: low

Minimize the effort to make a
script shareable

URL-based distribution

Consumers’
commitment: low

Minimize deployment burdens Deployment-leveraged URLs

Value: low Less stringent protection
mechanisms

IP-based authorization
leveraged URLs

Scope: narrow Sharing through communities
of practice

Inline social media share
buttons

their domains of expertise [6]. This delimits the scope of interest to communities
of practices. Script sharing is mainly bounded within the local team at the
workplace or the mates at the social network [4]. In this setting, resources are
traditionally shared through Web-based repositories. Example abounds: Flickr
for pictures, YouTube for videos, etc. This option is certainly also possible for
scripts. Indeed, www.userscripts.org is a repository for JavaScript scripts. This
repository assigns a URL to each uploaded script. This URL can later be shared
or bookmarked. However, software repositories impose an additional burden to
end users (e.g. signing up, learning a new interface). In addition, the functionality
of the script might be too focused to be of interest for a general audience while at
the same time, end users might be intimidated by putting their code under public
scrutiny. Indeed, studies indicate an increase in software sharing if conducted
within smaller groups [1]. We can then conclude that the limited scope of scripts
favours social networks rather than repositories as sharing conduits.

Table 1 summarizes the characterization of end-user software and the
implications for software sharing. Next section looks at how these differences
impact the practice of sharing, i.e. the means and ways to share scripts.

3 Implications for Software Sharing

Minimize Sharing Burdens. Our vision is for scripts to be shared as
easily as other resources such as pictures (e.g. JPG resources) or documents
(e.g. PDF resources). The sharing of pictures is normally achieved through
the Web by turning pictures into Web resources, i.e. making pictures URL
addressable. Clicking on such URLs makes the associated resources readily
available. Basically, this scenario introduces two main requirements: MIME types
and plugins. A MIME type is an identifier for file formats on Internet that
permits user agents (e.g. browsers) understand what the associated Web resource
is about. In this way, the browser is able to associate the correct behaviour to
each MIME type. This is commonly achieved through a plugin. A plugin adds
specific abilities (e.g. handling a PDF file) to the browser (e.g. once the Adobe
plugin is installed, browsers know how to handle PDF -typed Web resources).

244 C. Arellano and O. Díaz

Likewise, turning scripts into Web resources would imply (1) making scripts
URL addressable, and (2), making script file extensions become MIME types.
The latter basically implies the existence of a plugin that takes over when a
script is retrieved.

Minimize Deployment Burdens. Software deployment is all of the activities
that make a software system available for use. Previous paragraph argues about
the sharing benefits of making scripts URL addressable. The deployment cost of
this solution would be limited to install first the MIME plugin and next, click
on the script’s URL. Despite its simplicity, this option still requires the user
to locate and install the plugin before clicking on the script’s URL. An even
simpler approach is to code the location of the plugin as part of the URL. In
this way, clicking on the script’s URL not only install the script but, first, install
the plugin. Consumers do no longer need to be aware of locating/installing the
plugin (and checking the configuration). All is needed is the script’s URL. We
refer to this second kind of URLs as “deployment URLs”.

Less Stringent Protection Mechanisms. Unlike commercial software, scripts
tend to be for self consumption or to be shared in private scopes [4]. We propose
the use of IPs as a lightweight license-like approach to sharing control. IP
structure tends to reflect the structure of the organization. Different studies
indicate how user software tends to be distributed among co-workers within
the boundaries of the organization [4]. This permits the use of IP network
prefixes to denote the range of IPs within a given cluster/department/unit of
the organization. User scripts can be associated with IP network prefixes and,
in so doing, restricting the range of IPs which is allowed to install the script. In
this way, sharing is IP scoped. The advantage is that neither the producer nor
the consumer need to remember the cypher key (i.e. the IP network prefix) as
it can be automatically obtained from the computer configuration.

The scenarios that can benefit from this approach should exhibit two
characteristics. First, IP network prefixes are known in advance. If sharing
happens within an organization, the IP structure should mimic the sharing
boundaries. If sharing happens among different organizations, their respective
IP network prefixes should be introduced as configuration parameters of the
cryptographic algorithm. The second aspect to keep in mind is that IP network
prefixes as encryption keys are weak. That is, the number of possible IP network
prefixes is limited, and hence, it is possible for brute-force crackers to eventually
come up with a correct IP network prefix. More to the point, this mechanism
does not prevent an authorized IP subnet to download a script, and next,
email it to unauthorized users on other networks. Therefore, this mechanism
fits those scenarios where sharing limitations come not so much for security
reasons but the renounce from disclosing immature work to the public. In this way,
this mechanism supports more a boundary rather than a security instrument.
Implementation wise, a deployment URL now stands for a request to install a
given piece of code provided the IP of the petitioner meets a given IP network
prefix that plays the role of the cypher key.

Lightweight End-User Software Sharing 245

Fig. 2. Sharing in Sticklet : inline sharing (top) and a deployment URL at work
(bottom). Have a go by typing: http://tinyurl.com/a8qdl4y.

Sharing Limited to Communities of Practice. Previous paragraphs evolved
the notion of the URL. First, URLs were mere script identifiers. Next, URLs
encoded the script code, and they were re-phrased as requests for the script’s
installation. Finally, last paragraph makes these requests IP-aware by encrypting
the content of the URL with the IP network prefix of the producer. Therefore,
generating a deployment URL requires (1) the script’s code, (2) the producer’s
IP network prefix, and (3), the location of the plugin. Since deployment URLs
are born to facilitate sharing, we advocate for this “url-ization” process to be
provided as part of the sharing process. Since, as we believe, this sharing process
will become common practice, we advocate for sharing utilities to be integrated
within the script editors (e.g. through share buttons to social media). As a proof
of concept, next section outlines how these sharing concerns were realized for the
script language Sticklet.

4 Sharing in Sticklet

Sticklet is a JavaScript internal domain-specific language [3]. Broadly, a Sticklet
expression stands for a high-level description of a JavaScript program. Along
the aforementioned strategies, the Sticklet editor includes share button for
Facebook and Twitter (see Figure 2). Clicking on the Twitter button generates
a tweet whose content includes the deployment URL for the script at hand
(e.g. http://tinyurl.com/a8qdl4y). On receiving the tweet, the consumer can
click on this URL to readily start consuming the script. If so, the user is
assisted in the installation process provided his IP network prefix matches the

246 C. Arellano and O. Díaz

script’s IP network prefix. For a first-time deployment (see Figure 2), the process
includes (1) the installation of the Sticklet plugin, (2) the installation of the
companion software (e.g. Greasemonkey and the Sticklet interpreter), and (3),
the deployment of the script itself.

5 Related Work and Conclusions

The sharing of end-user software has been studied with a focus on the practices
of sharing rather than on how to give technical support to these practices [4].
In general, these studies assume sharing to be conducted through the same
mechanisms available for commercial software. Therefore, inspiration should be
look at the sharing of artefacts other than software. In the area of video gaming,
12seconds.tv is a platform for 12second-length end-user videos [2]. This platform
is yet another example of the use of social networks as an appropriate conduit
for the sharing of end-user generated resources. Another interesting example
is that of YouServ, a P2P Web-based content sharing system [5]. This platform
also targets end users. User centricness comes from the facilities in deploying the
P2P infrastructure. Unlike other http servers, YouServ automatically provides
a domain name, replicates the content in other Web servers, and automatically
secure content without accounts or passwords. That is, they considerably reduce
the user burden to deploy this P2P solution. The main difference with Sticklet
rests on the communication paradigm. Our approach is push, i.e. the producer
decides in a script basis when and to whom the script is to be shared without
requiring the consumer to be part of the P2P network.

References

1. Bogart, C., Burnett, M.M., Cypher, A., Scaffidi, C.: End-User Programming in
the Wild: A Field Study of CoScripter Scripts. In: Proceedings of the 24th IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2008,
pp. 39–46 (2008)

2. Bornoe, N., Barkhuus, L.: Video Microblogging: Your 12 Seconds of Fame. In:
Proceedings of the 28th ACM Conference on Human Factors in Computing Systems,
CHI 2010, pp. 3325–3330 (2010)

3. Díaz, O., Arellano, C., Azanza, M.: A Language for End-user Web Augmentation:
Caring for Producers and Consumers Alike. Accepted for Publication at ACM
Transactions on the Web (2013)

4. Huang, X., Ding, X., Lee, C.P., Lu, T., Gu, N.: Meanings and Boundaries of Scientific
Software Sharing. Proceedings of the 16th Conference on Computer Supported
Cooperative Work and Social Computing, CSCW 2013 (2013)

5. Bayardo Jr., R.J., Agrawal, R., Gruhl, D., Somani, A.: YouServ: A Web-Hosting
and Content Sharing Tool for the Masses. In: Proceedings of the 11th International
Conference on World Wide Web, WWW 2011, pp. 345–354 (2002)

6. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi,
C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Shaw,
M., Wiedenbeck, S.: The State of the Art in End-User Software Engineering. ACM
Computing Surveys 43, 21:1–21:44 (2011)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 247–253, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Decision-Making Should Be More Like Programming

Christopher Fry and Henry Lieberman

MIT Media Lab
20 Ames St., Cambridge, MA 02139 USA
{cfry,lieber}@media.mit.edu

Abstract. Justify is an interactive “end-user development environment” for
deliberation. Justify organizes discussions in a hierarchy of points, each ex-
pressing a single idea. Points have a rich ontology of types, such as pro or con,
mathematical, or aesthetic arguments. “Programs” in this environment use
 inference rules to provide assessments that summarize groups of points. Inter-
active browsing modes serve as visualizers or debuggers for arguments.

1 Introduction

Online social media have given us a new opportunities to have large-scale discussions
that help us understand and make decisions. But large-scale discussions can quickly
get too complex. Who said what? Did anybody reply to a particularly devastating
criticism? Is this redundant? Do the pros outweigh the cons?

Most people know basic concepts in decision-making, like weighing evidence, vot-
ing, or understanding dependencies. But an intuitive understanding is not enough to
express ideas unambiguously, or when situations get complex.

We are proposing, essentially, an end-user development environment for online de-
liberation. Just like Eclipse is a development environment for Java, and Excel is a
development environment for numerical constraints, we introduce the Justify system
as an end-user development environment for rational arguments.

2 The Analogy between Deliberation and Programming

The analogy between deliberation and programming runs deep. Discussions are
hierarchies of ideas. Programs are hierarchies of statements. In a discussion, people
express reasons for believing or rejecting a single idea. Each of those reasons can,
recursively, have reasons for accepting or rejecting it. Justify calls each idea, a point.

2.1 Points and Point Types

Since an argument is frequently a hierarchy, we adopt an outline view for the user
interface. A point is shown as a single line in the outline, but it can be selected to see
details or expanded to see subpoints.

248 C. Fry and H. Lieber

Fig. 1. An argume

Programming has data ty
precede the one-line point
mark icon) which introduce
pro (thumbs-up icon) and c

Fig. 1 shows a Justify a
question is “Should we acc
tive”, and a con point, “No,

Below that appears anot
recursive. This refutes the c
because it is arguing again
accepting the paper.

2.2 Assessments

What does it mean to “eval
ing a subtree of the discuss
sessments for subpoints are

rman

ent about whether or not to accept a conference paper

ypes. Justify has point types. These are shown by icons t
description. Common point types are question, (quest
es an issue to be debated, and, for subpoints of a questi
on, (thumbs-down) for positions on the question.

argument about the acceptance of a conference paper. T
cept Paper X?”. Below it are a pro point, “Yes, it’s inno
, it is poorly written”.
ther con, “The mistakes are easily fixed”. Arguments
criticism of poor writing directly above it. It is a con po

nst the criticism, so therefore it is an argument in favor

Fig. 2. Justify point types

luate” a discussion? An assessment is the result of evalu
sion, and can be computed by arbitrary program code.
e like intermediate values in programming.

that
tion
ion,

The
ova-

are
oint
r of

uat-
As-

 Decision-Making Should Be More Like Programming 249

Fig. 3. Documentation on the question/pro_or_con point type, and a particular question’s
details

Assessments summarize their subtrees. A user can read an assessment and learn the
result of the sub-arguments without reading through them.

Assessments appear to the left of the arrow on each line. Each point type has its
own rules to compute its assessment. For example, an objection, with no subpoints,
is assessed as refuted. So the “poorly written” criticism is refuted by the assertion
that the “mistakes can be fixed”.

The moot point type asserts that its superpoint is worthless, trumping any other as-
sessment of that argument. Here we have a moot point, “It’s been published else-
where”. Thus, the entire “Should we accept Paper X?” question is marked refuted.

2.3 Justify’s Computational Model Is Like a Spreadsheet

The computational model of Justify is like a spreadsheet. Each Justify point is like a
spreadsheet cell. The assessment, to the left of the arrow, is like the value of a cell. To
the right of the arrow, the point type, represented by its icon, is like a spreadsheet
formula that determines how the value of the cell is computed. The subpoints of a
point, appearing below, are like the arguments to the computational rule that is
represented by the point type. The point title is essentially a domain-specific com-
ment.

For example, the math point type has subtypes that apply a given function to its
subpoints; they can perform arithmetic makeing end-user programming in Justify like
spreadsheet programming.

Like spreadsheets, Justify has a continuous computation model. When a point is
changed, everything that depends on it is immediately recomputed. Assessments,
which represent intermediate values, are always visible, facilitating debugging, as in
the ZStep debugger [Lieberman and Fry 97].

250 C. Fry and H. Lieber

Like other domain-speci
primitives for common pro
others so users can compose

2.4 Programming Conc

Table 1.

3 A More Substan
Meeting

Let's return to the example
the Program Chair. The init
Program Committee meetin

Many conferences use p
syChair or Precision Confe
work well. But with Justif

3.1 Papers Reviewed b

Reviewers can use Justify
rating (on the conventional

Fig

���������	�
��	��� �	����
������� �	
��

��������	��
 ��
�	���
 �	��!	�����
����

�
 ��	����
��#���

�
 ��	��

����	�
 �

�

�
+#,����
�
��� �������
$-���

	��	�
���������� ��	��	

rman

ific programming languages, Justify presents a small se
ocedures. The design helps procedures “play nicely” w
e new capabilities on the fly.

cepts and Justify Concepts

Programming concepts and Justify concepts

ntial Example: A Program Committee

e about reviewing conference papers. Imagine that you
tial paper are completed. You would like to prepare for
ng.
prepackaged conference management software, such as
erence. If the users follow the software's workflow, th
fy, conference organizers can program their own.

y External Reviewers

to identify pro or con points about the paper, or asse
1-5 scale).

g. 4. Reviewers’ discussion of Paper 17

�
�	
������� ���������	�
��	��� �	����
�	
�������

	� ������������� �

�

���

����������
	���� ��������
� ���������	�

���
 "	
���������� ���������	�
�#����
 $���������������� �������	��%�	'��
�����
�
��������
)�$ ��*
�������
�	���*�#�

�����#,���
�������	�
 ��#����� $-��������������	�

��	
��

	���	������� /	�*��

�

���

et of
with

are
the

Ea-
hese

ert a

���(
	��

3.2 Program Committe

Author rebuttal and review
the Program Committee di
sion point type, allowing c

Fig. 5. Program Committee dis
by one of the reviewers, who t

Rebuttals or PC discussio
whole discussion for easy p

An author can rebut a re
ences what the reviewer ha
first pro point is a use_asse

3.3 Categories

Finally, the whole discussio

Fig. 6. Paper categ

The Program Chair has
consider, and rejected. We
to short paper. The result i

4 Usability Evalua

We conducted a small usab
Justify? What is its intende

Decision-Making Should Be More Like Programming

ee Discussion

er discussion can be implemented as Justify points, as
iscussion itself. Justify has access control via the disc
comments visible to the Program Committee only.

scussion. A PC member argues in favor, referencing a point m
hought it uses “important work”.

ons can target specific points of a review, packaging up
perusal by the Program Committee.
viewer point by creating a use_assessment point that re

ad to say in a different part of the hierarchy. In Fig. 5,
ssment point references the “important work” point.

on is organized by using the categorize point type.

gories established by the Program Chair, and decisions

set up four categories, accepted, accepted with revisi
might add other categories, for example, demote from lo
is to put each paper in one of the four categories.

ation

ility study to answer: Did people understand the concep
d purpose? Would they use Justify ? We were worried t

251

can
cus-

made

 the

efer-
the

ion,
ong

pt of
that

252 C. Fry and H. Lieberman

the complexity of Justify's ontology of point types might limit usability. Although we
only tested a few point types, results were positive. The point types, and hierarchical
structure, did not prove a barrier to usability.

4.1 Experimental Method

Participants were shown a demonstration, then walked through two examples:
“Should I subscribe to a public bicycle sharing system? Should I purchase an iPad?
They then used Justify on whether or not to take a vacation in Hawaii.

4.2 Experimental Results

We tested 8 college students in their 20s. 88% said they understood the purpose of
Justify (agree/strongly agree), 100% were confident in the basic operations on points,
while 75% felt that way about using the more advanced point types. Respondents
were split halfway about whether the ease of use was appropriate to the complexity of
the example discussions, perhaps not surprising considering the example discussions
were simple and Justify shines mainly in more complex discussions. 63% said they
would be willing to use Justify for their own (presumably more complex) discussions.
The one participant who strongly disagreed later clarified that her answer was due to
the simplicity of the examples. Later work will test more complex scenarios.

5 Related Work

Argumentation systems have a long history, though we believe that this paper is the
first to explicitly draw an analogy between argumentation and end-user programming.
[Conklin, et al 2003] surveys landmark systems from Doug Engelbart’s work on
Augmentation and Hypertext from 1963 through NoteCards, gIBIS [Conklin 1988]
and QuestMap through Compendium [Conklin 2003]. Conklin’s work on Compen-
dium incorporates the best ideas of the previous systems.

Compendium employs a 2-D graph of “icons on strings” showing links between
nodes. This is semantically flexible, but requires more work in graphical arrangement
and declaring link types than Justify’s outline/hierarchy. We like Buckingham’s work
on Cohere and the conceptual framework described in [Buckingham Shum 2010].

We also like SIBYL [Lee 91] by Jintae Lee at the Center for Coordination Science
directed by Thomas Malone. Fry worked in the early 1990’s there. Malone’s work of
planet-wide importance continues at MIT’s Center for Collective Intelligence.

Iyad Rahwan [Rahwan 11] tackles representing argumentation in the Semantic
Web technologies of XML, RDF and OWL. This can standardize and share an ontol-
ogy across the web, but pays little attention to the accessibility of the interface.

 Decision-Making Should Be More Like Programming 253

References

1. Buckingham Shum, S., De Liddo, A.: Collective intelligence for OER sustainability. In:
OpenED 2010: Seventh Annual Open Education Conference, Barcelona, Spain, November
2-4 (2010)

2. Conklin, J., Selvin, A., Buckingham Shum, S., Sierhuis, M.: Facilitated Hypertext for Collec-
tive Sensemaking: 15 Years on from gIBIS. In: Weigand, H., Goldkuhl, G., de Moor, A. (eds.)
Keynote Address, Proceedings LAP 2003: 8th International Working Conference on the Lan-
guage-Action Perspective on Communication Modelling, Tilburg, The Netherlands, July 1-2
(2003), http://www.uvt.nl/lap2003

3. Conklin, J., Begeman, M.L.: gIBIS: a hypertext tool for exploratory policy discussion. In:
Proceedings of the 1988 ACM Conference on Computer-Supported Cooperative Work
(CSCW 1988), pp. 140–152. ACM, New York (1988)

4. Lee, J.: SIBYL: A qualitative decision management system. In: Winston, P.H., Shellard,
S.A. (eds.) Artificial Intelligence at MIT Expanding Frontiers, pp. 104–133. MIT Press,
Cambridge (1991)

5. Lieberman, H., Fry, C.: ZStep 95: A Reversible, Animated, Source Code Stepper. In:
Stasko, J., Domingue, J., Brown, M., Price, B. (eds.) Software Visualization: Programming
as a Multimedia Experience. MIT Press, Cambridge (1997)

6. Malone, T.W., Lai, K.Y., Fry, C.: Experiments with Oval: A radically tailorable tool for
cooperative work. ACM Transactions on Information Systems 13(2), 177–205 (1995)

7. Mason, C., Johnson, R.: DATMS: A Framework for Assumption Based Reasoning. In:
Distributed Artificial Intelligence, vol. 2. Morgan Kaufmann Publishers, Inc. (1989)

8. Malone, T.W., Klein, M.: Harnessing Collective Intelligence to Address Global Climate
Change. Innovations 2(3), 15–26 (2007)

9. Minsky, M.: The Society of Mind. Simon & Schuster, New York (1988)
10. Rahwan, I., Banihashemi, B., Reed, C., Walton, D., Abdallah, S.: Representing and Classify-

ing Arguments on the Semantic Web. The Knowledge Engineering Review 26(4), 487–511
(2011)

11. Speer, R., Havasi, C., Lieberman, H.: AnalogySpace: Reducing the Dimensionality of
Commonsense Knowledge. In: Conference of the Assocation for the Advancement of Ar-
tificial Intelligence (AAAI 2008), Chicago (2008)

Back to the Future of EUD: The Logic

of Bricolage for the Paving of EUD Roadmaps

Federico Cabitza, Carla Simone, and Iade Gesso

Università degli Studi di Milano - Bicocca
Viale Sarca 336, 20126 Milano, Italy

{cabitza,gesso,simone}@disco.unimib.it

Abstract. Several recent approaches to EUD increasingly recognize an
active role of users in the construction of the tools that support their daily
practices. However, there is still a lack of a general framework that could
play a role in the comparison of existing proposals and in the development
of new EUD solutions. The paper proposes a conceptual framework and
a related architecture, called Logic of Bricolage, that aims to be a step
further in this direction. The concluding remarks point to the potential
value of this conceptualization effort in the EUD field.

1 Introduction

Irrespective of the different underlying disciplinary stances and of the historical
evolution of the approaches that promote an active participation of end-users in
the construction of the applications supporting their work practices [16, 11, 13],
we see researchers reach an increasing agreement upon a set of tenets that are
common in their solutions. First, the awareness that approaches to design that
are rooted in the so called “rational mould” have to be abandoned in favor of a
more collaborative relationship between designers and actual end-users. Second,
the awareness that there is a continuity between design and use of a technology
and that times are ripe for a re-interpretation of the traditional roles of “user”
and “designer”, in the light of the new understanding of what can guarantee a
better technological outcome. Third, the awareness that there is a need for meth-
ods and environments that coherently support the involved stakeholders in EUD
activities in light of the former two principles. See for example, the notion of
meta-design proposed by Fischer et al. [e.g., 10]; and the hierarchical framework
described in [9], in which the concept of Software Shaping Workshops (SSW)
allows for the definition of environments that are shaped according to specific
user communities and where users can use or tailor the software tools that sup-
port their working practices. Besides this widespread awareness, also some terms
have been (increasingly) used in the related literature and have so far become
familiar to EUD researchers: terms like bricolage [12, 3], facilitator [11], appro-
priation, task-artifact cycle and the like (although often with slightly different
interpretations by different authors).

The paper aims to contribute a step further in this direction to fill an ap-
parent gap in current EUD debate, where a purposely general framework has

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 254–259, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Back to the Future of EUD: The Logic of Bricolage 255

not yet submitted as a concrete reference that could help interested researchers
bridge existing EUD initiatives, as well as help EUD practitioners use concepts
that are unambiguous in meaning and definite in scope. We call this still intrin-
sically on-progress conceptual framework for the conception of EUD enabling
environments “Logic of Bricolage” (LOB), after Lanzara seminal contribution
to the field [12]. This short paper presents the LOB framework and the related
conceptual architecture. The concluding section discusses the advantages of such
a conceptual framework and the research agenda that is necessary to make it a
common reference for truly EUD environments.

2 Toward a Logic of Bricolage for EUD Systems

The expression Logic of Bricolage was used by Lanzara [12] to point to some
general features that the “environments” supporting bricolage as a collaborative
practice should provide. We chose this expression to denote a framework by
which to characterize EUD environments that support this collaborative practice,
namely both the editing and execution environments where tools are co-defined,
and used, respectively. The framework and the environments with the underlying
platform constituting the LOB conceptual architecture are described in what
follows (see also Figure 1).

The LOB conceptual framework: Constructs, Structures and Annotations - Un-
like traditional approaches that aim to provide users with sophisticated (i.e.,
semantically rich) modeling tools and facilitate the top-down construction of ap-
plications, the LOB framework takes a clear bottom-up approach starting from
the basic building blocks that users deem as necessary to conceive – and possibly
build – their working spaces and the related behaviors. These latter are called
structures : these are discussed in the next paragraph together with the related
editing environment. The LOB framework calls end-users bricolants (i.e., people
actively involved in bricolage activities), and constructs the basic building blocks
used to build more complex structures in such activities.

The LOB framework further distinguishes between Operand Constructs and
Operator Constructs : operands are the most atomic data structures, constants
and variables that make sense in a work setting and application domain; opera-
tors are all the operations that users deem necessary to be performed over the
operands in their setting; these latter can be either functional or actional to
indicate something either akin to the evaluation of a function, or related to the
production of some actual effect in the computational environment: for example,
the evaluation of a predicate and the storing or retrieving of a piece of informa-
tion, respectively. In particular, functional Operator constructs can be applied
to operands to allow for the recursive construction of more complex operands
from simpler ones. What the users consider as“atomic”(black box) constructs at
their own level of description to use and invoke while working with their artifacts
can be of increasing complexity: for this reason, the community of end-users may
request the assistance of IT professionals to implement the constructs that they
want to employ.

256 F. Cabitza, C. Simone, and I. Gesso

Fig. 1. A conceptual architecture for environments supporting EUD bricolage. LOB
keywords are in italics.

Moreover, the LOB framework contains annotations as a first-class concept,
as they play a central role in collaborative work articulation, knowledge shar-
ing and mutual understanding [14, 8, 2, 9, 1, 4]. In order to play these roles
annotations can be either stigmergic signs and marks attached to the contents
of a document or any extempore comment and semantic tag chosen by users
from either domain specific taxonomies or setting-specific folksonomies; notably
annotations can have multiple targets and can express also various relationships
among (elements of) Layout Structures. In addition, in LOB annotations can
be increasingly nested, that is users should be able to annotate annotations, so
as to allow for nested threads of comments and tags [7] to support informal
communication.

The LOB Editing and Working Environment and the underlying Platform -
Arranging constructs into suitable structures requires an editing environment

Back to the Future of EUD: The Logic of Bricolage 257

by which to shape both the information structures and the logic that are needed
for the desired application: then we distinguish between Layout structures and
Control structures. The former ones are the above mentioned working spaces that
a community of users recognizes as the physically inscribed and computationally
augmented artifacts supporting the accomplishment of its work. For this reason,
Layout structures result from the topological arrangement of Operand constructs.
In the domain of computer-aided design and collaborative drawing/editing, a
Layout Structure is the working space where users arrange the docking bars of
their preferred commands, symbol stencils and predefined configurations of el-
ements that must be set up before the actual work begins. In document-based
information systems, Layout Structures are the document templates of forms
and charts that are used to both accumulate content and coordinate activities.

Control structures specify the behaviors of Layout structures, i.e., how the
artifacts act on the content inscribed therein, e.g., in response to events gener-
ated at interface level, and how this level interacts with users during the use
of the application. Control structures can be of arbitrary complexity, ranging
from simple Rewriting Rules (among which there are input-output transforma-
tions), to (recursively defined) set of instructions that are articulated by means
of Connectors to express both sequential and concurrent processes.

The LOB platform underlying the editing environment offers an (extensible)
set of Primitives, that is domain-independent functionalities that are expressed
in terms of lower level Application Programming Interfaces. Examples of primi-
tives characterizing the LOB framework are: Read and Write, that represent the
conceptual operations at the basis of any computation; Bind, which assigns con-
stants to variables; Aggregate, by which to build complex operands from simpler
ones;Compose, to build complex operators in terms of functional composition; and
Place, to associate an operand construct to a position within a Layout structure.

Moreover, the platform exposes primitives for the creation, addition, deletion,
etc. of annotations; and primitives implementing the Connectors to be used in
the definition of the Control structures.

The LOB conceptual architecture: between transiency and permanency -
The LOB conceptual architecture depicted in Figure 1 encompasses the different
layers described above. In so doing it recognizes the main point made by Mans-
field [15, p. 25] who submits the adoption of a layered architecture where some
layers are allowed to change at different rates (see the column called dynam-
ics in Figure 1). Going from the upmost layer where structures and constructs
are defined and instantiated together with their annotations to support situated
practices, down to the technological infrastructure through the editing and exe-
cution environments and their supporting platform, the change rate decreases in
normal conditions: this implies that the layers have to guarantee the correspond-
ing degree of flexibility to manage the occurring changes and their propagation,
irrespective of the layer at which they occur.

At each layer, the tasks and the reaction to changes (either generated by
technological evolution or users’ needs) are in charge of specific roles (see the
column called main roles). Beside the role of bricolant end-users and that of

258 F. Cabitza, C. Simone, and I. Gesso

meta-designer (who “designs for designers” [10]) we envision also a specific role,
the maieuta-designer (see [6] for a detailed characterization of this particular
meta-designer), to help bricolant users “help themselves”and reach an increasing
level of autonomy with respect to traditional IT professionals (i.e., designers,
architects and programmers).

3 Concluding Remarks

We are convinced that in EUD “the best is yet to come”. This is not to discard
what has been done so far in this research field, but rather to recognize that the
last ten years or so of proposals and solutions that have been brought forth to
allow end-users to create and maintain their computational tools autonomously
have now reached a maturity level that requires a sort of backward reflection, as
well as an effort to generalize local solutions and intuitions into general insights
and concepts for future reuse and discussion. To this aim, we have presented
a general framework, called Logic of Bricolage. According to [11, p. 308], who
provides a lens through which to consider the utility of conceptual proposals,
we propose the LOB framework to: i) facilitate EUD researchers in describing
their and others’ solutions (descriptive power); ii) help them talk about their
solutions by providing them with a common vocabulary (rhetorical power), i.e.,
a very concise lexicon whose available terms cover few but essential aspects that
often recur in EUD models and solutions, and are defined with some degree of
unambiguous formalization (see [6] for the formal grammar associated with the
LOB framework). Lastly, iii) both inform and guide the design of the next EUD
proposals to come in heterogeneous application domains (applicative power), or
at least to foster discussion on the need of such a framework in the EUD field.

The LOB framework is intended as one step toward a shared systematization
of technological approaches that could soon reach enough simplicity and gener-
ality by progressively abstracting and formalizing the lessons learned and best
solutions that the field has so far proposed and discussed. This systematization
would be of some value both for the designer and the informed user of new EUD
solutions, as they could either conceive or address those heterogeneous solutions
within a more homogeneous conceptual framework. Our current efforts are aimed
toward the development of an EUD platform and related environments that are
fully compliant with the LOB tenets and concepts: a preliminary version of such
an effort is represented by the WOAD framework initially presented in [5].

References

[1] Ardito, C., Buono, P., Costabile, M.F., Lanzilotti, R., Piccinno, A.: End users
as co-designers of their own tools and products. Journal of Visual Languages &
Computing 23(2), 78–90 (2012)

[2] Bringay, S., Barry, C., Charlet, J.: Annotations: A functionality to support coop-
eration, coordination and awareness in the electronic medical record. In: COOP
2006: Proceedings of the 7th International Conference on the Design of Coopera-
tive Systems, France, Provence (2006)

Back to the Future of EUD: The Logic of Bricolage 259

[3] Buescher, M., Gill, S., Mogensen, P., Shapiro, D.: Landscapes of practice: Brico-
lage as a method for situated design. Computer Supported Cooperative Work
(CSCW) 10(1), 1–28 (2001)

[4] Cabitza, F., Colombo, G., Simone, C.: Leveraging underspecification in knowl-
edge artifacts to foster collaborative activities in professional communities. Inter-
national Journal of Human - Computer Studies 71(1), 24–45 (2013)

[5] Cabitza, F., Gesso, I.: Web of active documents: An architecture for flexible elec-
tronic patient records. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2010.
CCIS, vol. 127, pp. 44–56. Springer, Heidelberg (2011)

[6] Cabitza, F., Simone, C.: Design ltd.: Renovated myths for the development of
socially embedded technologies. arXiv:1211.5577v2 [cs.HC] (2012)

[7] Cabitza, F., Simone, C., Locatelli, M.P.: Supporting artifact-mediated discourses
through a recursive annotation tool. In: GROUP 2012: Proceedings of the 17th
ACM International Conference on Supporting Group Work, pp. 253–262. ACM,
New York (2012)

[8] Cadiz, J.J., Gupta, A., Grudin, J.: Using web annotations for asynchronous col-
laboration around documents. In: CSCW 2000: Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work, pp. 309–318. ACM Press,
New York (2000)

[9] Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual interactive systems for
end-user development: A model-based design methodology. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans 37(6) (November
2007)

[10] Fischer, G., Scharff, E.: Meta-design: Design for designers. In: DIS 2000: Proceed-
ings of the 3rd Conference on Designing Interactive Systems, pp. 396–405. ACM,
New York (2000)

[11] Halverson, C., Ackerman, M., Erickson, T., Kellogg, W.A. (eds.): Resources, Co-
Evolution and Artifacts: Theory in CSCW. Computer Supported Cooperative
Work, 1st edn. Springer, Berlin (2008)

[12] Lanzara, G.: Between transient constructs and persistent structures: designing
systems in action. Journal of Strategic Information Systems 8, 331–349 (1999)

[13] Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development. Human-
Computer Interaction Series, vol. 9. Springer, Netherlands (2006)

[14] Luff, P., Heath, C., Greatbatch, D.: Tasks-in-interaction: paper and screen based
documentation in collaborative activity. In: CSCW 1992: Proceedings of the 1992
ACM Conference on Computer-Supported Cooperative Work, pp. 163–170. ACM
Press, New York (1992)

[15] Mansfield, J.: The nature of change or the law of unintended consequences. Impe-
rial College Press, London (2010)

[16] Simonsen, J., Robertson, T.: Routledge International Handbook of Participatory
Design. Routledge (2012)

Guidelines for Efficient and Effective End-User

Development of Mashups

Saeed Aghaee and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Switzerland
first.last@usi.ch

Abstract. End-User Development (EUD) is an emerging research area
aiming at empowering non-technical users to somehow create or design
software artifacts. Mashups provide a high potential for EUD activities
on the Web. Users on the Web can tap into a vast resource of off-the-
shelf components in order to rapidly compose new lightweight software
applications called mashups. In this paper, we provide a set of guidelines
to design EUD systems for mashups that are widely referred to as mashup
tools. The guidelines are derived from our experience with the (ongoing)
design and evaluation of NaturalMash, a novel mashup tool targeted for
a wide range of users to create feature-rich mashups.

Keywords: Mashup, End-User Development, Mashup Tool.

1 Introduction

Mashups are a popular type of Web applications built out of the composition
of heterogeneous components available through the Web [1]. End-User Develop-
ment (EUD) [2] of mashups aims at exploiting them by a wide range of users
on the Web. EUD systems for mashups are referred to as Mashup tools. They
usually provide users with an intuitive composition language and environment
for the code-free development of mashups. Despite the excessive number of ma-
shup tools emerging form both academia and industry [3], only a few of them
have been successful. Tools from academia are mostly research prototypes that
rarely reach a large user community. Also, many industrial mashup tools, such
as Microsoft Popfly and Google Mashup Editor have been discontinued.

The designers of mashup tools face a number of key challenges, including
the need for defining high level, intuitive descriptions of computations and inte-
gration logic to be combined with suitable abstractions to represent Web wid-
gets, Web services and Web data sources as reusable components. In this paper,
based on our experience with the (ongoing) design and usability evaluation of
NaturalMash [4], we propose a set of guidelines informing the design of next-
generation mashup tools.

2 NaturalMash: A Natural Mashup Tool

NaturalMash (Figure 1) is a mashup tool targeted to support a wide range of
users, including specially non-programmers, to build sophisticated, feature-rich

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 260–265, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Guidelines for Efficient and Effective End-User Development of Mashups 261

mashups. The goal behind the design of NaturalMash was to enable an optimal
learning experience, where not only the challenges imposed by the activities at
hand are properly balanced with the users’s skills, but also the users gradually
learn to master new challenges and skills [5]. Also, we intended to ensure an
intuitive form of interaction that users feel comfortable and familiar with.

To these ends, we have followed a formative user-centered approach in order
to have access to users’ feedback at a very early stage of development and make
sure users were kept central in our design so as to avoid as much as possible
mismatches between users’ expectations versus system behavior.

NaturalMash introduce a novel composition technique based on What You
See Is What You Get (WYSIWYG), Programming by Demonstration (PbD) [6],
and controlled natural language programming [7]. The WYSIWYG interfaces,
augmented with PbD (visual field), enables a natural means for the design and
manipulation of the presentation layer, and partially the application logic layer,
of mashups. Natural language programming compensates the shortcoming of
WYSIWYG and PbD to express the application logic of mashups. The choice
of structured natural language also fits with the need to ease the tool’s learning
curve. The mashup descriptions written in natural language are readable and
understandable by any English-speaking end user.

One important deficiency of programming in structured natural languages,
however, is that it is cumbersome to learn the restrictions of these languages. To
overcome this issue, NaturalMash introduces an autocomplete menu that pro-
vides suggestions as the users types in the text field. Autocompletion also enables
incidental learning. While browsing the suggestions provided by the menu, users
gradually discover what are the available components that can be mashed up.

NaturalMash incorporates a stack bar that represents the components that
can be used as the “ingredients” for the mashup. The stack gives an overview
of the functionalities offered by the tool, representing them with an icon and a
name, thus making them easy to recognize and memorize. From there, users can
drag-and-drop ingredients on the visual field or text field. The list of components
used by the mashup being created is shown by the component dock.

In the design of NaturalMash, we have adapted the paradigm of live program-
ming based on WYSIWYG, in which the life-cycle of edit/compile/run is fully
automated by the system. As a result, users will be able to more easily bridge
the gulf of evaluation (the degree of difficulty of assessing and understanding
the state of the system [8]) to incrementally validate and learn from their small
steps one at a time. This in turn leads towards an optimal learning experience.

To non-professional users, data flow is a very challenging concept to grasp
when learning how to develop mashups [9]. NaturalMash semi-automates the
data flow design using a semantic data integration framework.

Up to now, we have successfully completed two design iterations and evalua-
tions. The results of the two usability evaluations were promising and provided
us with valuable analytical insights on the ongoing design of NaturalMash. In
this paper, we used the results to develop a set of design guidelines that will be
presented in the next section.

262 S. Aghaee and C. Pautasso

(i) Visual field: includes the output
of the mashup being described. The
output can also be modified in terms
of layout and view configurations.

Widgets: are resizable and can be
moved around. Interacting with
widgets triggers event suggestions
in the text field.

(iv) Stack: includes
ingredients, mashups
created by the user,
and personalized
Information (e.g.,
location)

In the ingredients stack
users can search for
components and drag
and drop them into the
visual or text field.

(ii) Text field: contains the imperative
description of the mashup. An autocomplete
menu helps users editing the text.

(iii) Component dock:
shows the list of components
used by the mashup.

Fig. 1. NaturalMash environment: the ingredients stack gives an overview of the tool
functionalities (available mashup components). From there, users can drag-and-drop
ingredients to start building mashups. Alternatively, they can use the text field to
discover desired components. With the help of the autocomplete menu, users type
in the text field the imperative description of the mashup in natural language, and
immediately see the result in the visual field.

3 End-User Development of Mashups: Guidelines

The design of effective and efficient mashup tools requires to trade-off abstrac-
tion against expressiveness and generality against specificity. From a technical
perspective, one of the main tasks of mashup tools is to hide the heterogeneity
and complexity of Web technologies behind an easy-to-understand abstraction.
From a user modeling perspective, the challenge lies in the broad diversity of
user skills that need to be targeted and in the large number of domains in which
mashups can be applied to.

In the following we enumerate a set of guidelines resulting from our experience
with the design and evaluation of NaturalMash. We believe these guidelines can
help addressing the mentioned tradeoffs towards the design of efficient and effec-
tive mashup tools letting non-professional users create sophisticated mashups.

– Use natural metaphors: Bringing the user interface closer to the user’s
way of thinking and working can significantly increase usability. This can be
achieved by, for instance, reconciling the semantics of the presentation objects
with the semantics of the target application domain (domain-specific metaphors),
or using metaphors that are well understood by non-professional users. For exam-
ple, a recent study on the understandability of service composition languages [10]
shows that the visual wiring paradigm (i.e., visual control flow and data flow
diagrams) that is widely utilized by existing mashup tools, is not a familiar
metaphor for non-professional users.

Guidelines for Efficient and Effective End-User Development of Mashups 263

The NaturalMash interface adopts the generic metaphor of visual context and
textual content, where the visual field contains the actual mashup output and
the text field consists of the imperative descriptions of the output in natural lan-
guage. Provided that the imperative natural language descriptions are abstract
enough, this metaphor is understandable by almost everyone. This hypothesis
was also supported by the results from our user studies.

– Design at meta-level:Mashups can be built and used in different domains
of applications. These domains range from daily utilities of Web users (i.e.,
consumer market) to narrowly specialized domains and enterprise environments.
It is important to identify the application domain in which users are willing to
and have shown a clear need to develop mashups [11]. This is a well known
problem in EUD, as the importance of task and domain specificity was already
pointed out by Nardi [12] in the context of end-user programming. From the point
of view of the tool designer, a closed approach which narrowly targets a single
application domain may present some limitations. Application domains usually
change over time. This may results in changes of the initial requirements and
assumptions based on which the mashup tool was designed. Also, a mashup tool
targeting a specific domain may not perfectly fit into, or be easily transformed
into, a tool targeting another domain. Therefore we advocate a meta-design
approach [13], whereby a generic mashup meta-tool is designed and from it
domain-specific mashup tools can be derived by it users.
The meta-design elements in NaturalMash include (i) selection of the available
ingredients (components), (ii) the look and naming of ingredients, and most
importantly (iii) the language style used to describe them. In the latter case, the
description of each ingredients used in the text field can be changed by users to
tailor the “language” of the tool to their domain.

– Support different levels of expressiveness: Being able to only create
so-called “toy” mashups is the main criticism against existing mashup tools.
An effective mashup tool should provide enough expressive power to allow the
creation of sophisticated mashups. On the other hand, the usability of a system
may be affected by the degree of expresivenss it offers. To avoid this issue, [14]
proposes three levels of user tailoring including customization, integration, and
extension. In case of mashups, all these three levels are relevant and thus should
be supported by a mashup tool. Customization means modifying an existing
mashup through parameterization or user interface manipulation. Integration
is the process of creating new mashups and should be allowed at all the levels
of data, business logic, and presentation tiers. Extension allows extending the
functionality of the mashup tool by developing new components.
In NaturalMash, customization is enabled through the visual field. Integration is
mainly supported by natural language programming. The plan is to also enable
extension for professional users to create and add components the tool library.

– Avoid complex user interfaces: Simple user interfaces can largely de-
crease the learning cost. We emphasis simplicity in terms of elements, content,
and language used in the user interface of a mashup tool. Many existing mashup
tools have a complex tab-based environment with nested user interface elements.

264 S. Aghaee and C. Pautasso

They also commonly use very technical terms (e.g., “regular expressions”, “ma-
shup components”, etc.) in their user interface.
These are issues that we tried to avoid in the design of NaturalMash.We intended
to keep the user interface as simple and easy-to-use as possible. As illustrated in
Figure 1, the interface is composed of only four non-nested components (visual
field, text field, component dock, stack). We also attempted to use non-technical
and easily understandable terms in the interface (e.g., “ingredients” vs. “com-
ponent library”).

– Build an online community: Online communities are of importance in
boosting the ability of users to learn how to use the tool through creating,
sharing, and reusing mashups, knowledge, and experience [12]. Crowdsourcing
can also be applied in an online community to persuade professional users to
enrich the component library for non-professional users [15].
We plan to investigate the mentioned impacts of online communities in the
context of mashup EUD. More importantly, we are interested in in-the-wild
testing of our meta-design using an online community.

– Adopt user-centered design: We have realized that a formative user-
centered design is a promising method to design “natural” mashup tools. This
method ensures receiving early feedback from users and applying it on every
step of the design process.

4 Related Work

Stemming from both academic and industrial research and development, a num-
ber of mashup tools have been designed. Most of existing industrial mashup
tools, such as Yahoo! Pipes (http://pipes.yahoo.com/), IBM Mashup Center
(http://www.ibm.com/software/info/mashup-center), and JackBe Presto
(http://www.jackbe.com/), as well as early academic tools (e.g., Marmite [16])
are designed for expert users with advanced technical knowledge.

Recently, however, the attempt in academia has been to design mashup tools
supporting non-programmer users as well. For instance, ServFace builder [17],
DashMash [18], and RoofTop [19] provide a full WYSIWYG approach, which,
however, does not provide as much expressive power as NaturalMash (thanks
to natural language programming). In terms of natural language programming,
IFTTT (https://ifttt.com) is a similar system, which, even though it is solely
based on natural language, restricts the user’s input using a structured visual
editor. Also, IFTTT only allows to create mashups based on a single control-flow
pattern (if this then that).

5 Conclusion

Mashups provide a vast potential for EUD activities on the Web. In this pa-
per, we proposed a set of guidelines to design next-generation EUD systems for
mashups (mashup tools). The guidelines were a result of our experience with the
design and evaluation of NaturalMash. The next big step is to bring the tool to
the real world and conduct in-the-wild testing.

http://pipes.yahoo.com/
http://www.ibm.com/software/info/mashup-center
http://www.jackbe.com/
https://ifttt.com

Guidelines for Efficient and Effective End-User Development of Mashups 265

Acknowledgments. This work has been supported by Swiss National Science
Foundation with the SOSOA project (SINERGIA grant nr. CRSI22 127386).

References

1. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: The new generation of
web applications. IEEE Internet Computing 12, 13–15 (2008)

2. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An
Emerging Paradigm. In: End User Development. Springer, Netherlands (2006)

3. Aghaee, S., Nowak, M., Pautasso, C.: Reusable Decision Space for Mashup Tool
Design. In: Proc. of EICS (2012)

4. Aghaee, S., Pautasso, C.: EnglishMash: Usability Design for a Natural Mashup
Composition Environment. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE Work-
shops 2012. LNCS, vol. 7703, pp. 109–120. Springer, Heidelberg (2012)

5. Repenning, A., Ioannidou, A.: What Makes End-User Development Tick? 13 De-
sign Guidelines. Springer (2006)

6. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A. (eds.): Watch What I Do: Programming by Demonstration.
MIT Press (1993)

7. Petrick, S.R.: On Natural Language based Computer Systems. IBM J. Res. Dev. 20,
314–325 (1976)

8. Norman, D.A., Draper, S.W.: User Centered System Design; New Perspectives on
Human-Computer Interaction. L. Erlbaum Associates Inc. (1986)

9. Mehandjiev, N., Lecue, F., Wajid, U., Namoun, A.: Assisted Service Composition
for End Users. In: Proc. of ECOWS 2010 (2010)

10. Namoun, A., Nestler, T., Angeli, A.D.: Service Composition for Non-programmers:
Prospects, Problems, and Design Recommendations. In: Proc. of ECOWS (2010)

11. Casati, F., Daniel, F., Angeli, A.D., Imran, M., Soi, S., Wilkinson, C.R., Marchese,
M.: Developing Mashup Tools for End-Users: On the Importance of the Application
Domain. IJNGC 3 (2012)

12. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Comput-
ing. MIT Press (1993)

13. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-design: A
Manifesto for End-User Development. Commun. ACM 47, 33–37 (2004)

14. Mørch, A.: Three Levels of End-user Tailoring: Customization, Integration, and
Extension. In: Computers and Design in Context. MIT Press (1997)

15. Nebeling, M., Leone, S., Norrie, M.C.: Crowdsourced web engineering and design.
In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387,
pp. 31–45. Springer, Heidelberg (2012)

16. Wong, J., Hong, J.I.: Making mashups with marmite: towards end-user program-
ming for the web. In: Proc. of CHI 2007 (2007)

17. Nestler, T., Feldmann, M., Hübsch, G., Preußner, A., Jugel, U.: The ServFace
Builder - A WYSIWYG Approach for Building Service-based Applications. In: Be-
natallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189,
pp. 498–501. Springer, Heidelberg (2010)

18. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: DashMash: A Mashup Environment for End User Development. In: Auer, S.,
Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166.
Springer, Heidelberg (2011)

19. Hoyer, V., Gilles, F., Janner, T., Stanoevska-Slabeva, K.: SAP Research RoofTop
Marketplace: Putting a Face on Service-Oriented Architectures. In: Proc. of
SERVICES (2009)

Software Development for the Working Actuary�

David Raymond Christiansen

IT University of Copenhagen
drc@itu.dk

Abstract. We present an in-progress domain-specific language for ac-
tuaries. Due to the mathematical sophistication of actuaries and the
relatively high degree of formalization of the field, we conjecture that a
dependently-typed functional language with special support for actuar-
ial models will enable actuaries to develop software that is robust and
understandable.

1 Introduction

The demands on insurers and actuarial software are increasing. New rules from
the European Union, called Solvency II [6], pose new challenges that require
significant changes to pension infrastructures. The Actulus project, a collabora-
tion between the University of Copenhagen, Edlund A/S and the IT University
of Copenhagen, seeks to solve this problem through a combination of actuarial
science and programming language research, taking advantage of Edlund’s po-
sition as a market-leading vendor of software to the life insurance and pension
industry in Denmark.

Key to our approach is empowering actuaries to develop their own analysis
tools. We aim to do this by developing a domain-specific language that sup-
ports actuarial models and yet is sufficiently general to express a wide variety of
programs.

Actuaries are an interesting target for end-user software development for a
number of reasons:

– Actuarial science is a highly-formalized field with well-understood terms and
ideas.

– Actuaries are used to formal notation and mathematical thinking.
– Many actuaries write software already in the course of their day-to-day work.

This paper describes ongoing work on a domain-specific language for actuaries
that will enable them to safely develop models of life insurance and pension
products that can be analyzed either with a standard set of utilities or with
tools that the actuaries construct themselves. Sect. 2 presents just enough of the
theory in question to explain the features of the language. Sect. 3 presents our
preliminary solutions. Finally, Sect. 4 discusses our plans for further developing
our language.

� Work supported by the Danish Advanced Technology Foundation
(Højteknologifonden) (017-2010-3).

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 266–271, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Software Development for the Working Actuary 267

2 Actuarial Theory

In this section, the basics of actuarial mathematics as relevant to Actulus are laid
out. Note that the mathematical models influence the development of new prod-
ucts, as only products that can be effectively modeled are sold, while pressures
from the market can lead to new models. It is far beyond the scope of this pa-
per to provide a proper introduction to actuarial mathematics, but Promislow’s
textbook [5] contains a discussion of the multi-state, continuous-time models
that are used.

An insurance or pension product is a collection of states that one or more
people can inhabit, combined with repeating payments due during sojourn in
these states and lump-sum payments due on transition from one state to another.

Both pricing of products and determination of solvency rely on calculating
what is known as the reserves of a product. The reserve is the present value of
the expected future payments, both benefits and premiums.

Two simple products will be used as running examples in this discussion: the
pure endowment and the temporary life annuity.

Pure Endowment. If the policy holder is alive at some time t, then he or she
receives a payment.

Temporary Life Annuity. The policy holder receives a continuous payment
from time 0 until some time n or until his or her death, whichever occurs
first.

More complicated products can depend on multiple related lives (such as those
of a married couple and their children), track more events (such as disability),
and have more complicated specifications of payments.

In Actulus, products are modeled within continuous-time Markov processes.
Continuous-time Markov processes are similar to the perhaps more familiar
discrete-time Markov processes, except instead of defining state-transition prob-
abilities as a function of time, we define state-transition intensities. Integrating
a transition intensity over an interval yields the probability of transition in that
interval.

Sometimes, we also want to make use of semi-Markov models, in which tran-
sition intensities can depend on duration of sojourn in the present state. The
optimal treatment of these models in the context of Actulus is ongoing work.

In addition to the Markov model representing the events in the life or lives of
the insured, the payments mandated by the product must be specified. These are
customarily specified in differential form, so that integrating them over an inter-
val gives the payments due in that interval. Additionally, products can specify
lump-sump payments due at state transitions.

Combining the Markov model with the payment streams and lump-sum pay-
ments allows us to construct Thiele’s differential equations, a system of equations
whose solution represents the statewise reserves for the product. The statewise
reserves are the contribution of each state in the Markov model to the whole of
the reserves, and the current reserve is the statewise reserve for the present state
of the insured.

268 D.R. Christiansen

3 Actulus Modeling Language (AML)

According to the experience of Edlund A/S in the Danish insurance software
industry, the present activities of the Danish life insurance and pension industry
are largely centered around a compendium of well-understood products with
standardized mathematical models, called G82. This rules out broad classes of
interesting products and it can lead to the use of models that ignore important
features of the actual products being modeled if these stray too far from G82.

When a fitting model has been chosen or developed, actuaries send the model
to professional software developers. The professional programmers then imple-
ment the necessary calculations. Many actuaries are familiar to an extent with
programming, especially using languages such as R or Matlab, but they are not
typically skilled in modern programming languages and software development
practices. Because of this disconnect, the correspondence between the model and
the resulting code is not necessarily readily apparent.

By using a numerical differential equation solver combined with a domain-
specific language for describing products and the calculations involving them,
the Actulus project aims to make insurance calculation both more accurate
and more understandable. Actulus consists of the following components: a high-
performance numerical solver for differential equations called the calculation ker-
nel, a language for declaratively defining the products described in Sect. 2 called
the product language or AML-P, and a language for describing calculations called
the calculation language or AML-C. While it is extremely important in practice
for Actulus, the calculation kernel is not the focus of this paper. Instead, we
describe AML, as it is the primary interface between the user and the system.

There have been a number of examples of DSLs for financial applications in the
literature, dating at least back to Risla in 1995 [1]. One particularly interesting
line of research is a number of Haskell-based combinator libraries for defining
derivatives products that are based on work by Peyton Jones, Eber and Seward
[4]. A paper by Mogensen that describes the use of a novel type system for a
financial DSL [2] is also highly relevant.

While other pension administration and calculation systems present forms or
tables to the actuary as a primary interaction model, Actulus will present the
user with a programming language. While work on AML is not yet complete, the
broad outlines of its structure are apparent. We believe that making it easy for
actuaries to program their systems themselves will allow them to receive many
of the benefits of modern programming languages, such as modular construc-
tions, code re-use, and the safety provided by an advanced type system, when
constructing their models.

AML is a dependently-typed total functional language with special support
in the type system for checking specific properties of insurance products. These
insurance products are defined using a special syntax that is designed to be
particularly readable for domain experts.

Because the dedicated product syntax adheres closely to the actuarial theory
described in Sect. 2, we expect that actuaries who are not skilled software de-
velopers will be able to read and write these descriptions with little additional

Software Development for the Working Actuary 269

training. This will be empirically evaluated when an implementation is ready.
Additionally, we expect that the presence of a mathematically-inspired program-
ming language will allow users to incrementally build on their knowledge of the
modeling language. However, the product modeling notation alone is at least as
expressive as existing forms-and-tables interfaces. All products from G82 can be
expressed in AML-P.

The AML product language consists of three primary constructions: state
models, products, and risk models. Products represent a collection of (condi-
tional) payments. Risk models describe the transition intensities. State models
simply ensure that products and compatible risk models are used together. Both
of our example products in Sect. 2 mention only two states: alive and dead. We
call this state model LifeDeath:

statemodel LifeDeath where
states = alive | dead

transitions = alive → dead

When we define a product, we must specify the state model within which it is
defined. Syntactically, this resembles a type ascription.

product PureEndowment(expiry : TimePoint) : LifeDeath where
obligations = at t pay ¤1 when (t = expiry) provided (alive)

product TempLifeAnn(expiry : TimePoint) : LifeDeath where
obligations = at t pay ¤1 per year provided (alive and t < expiry)

In the above DSL, at binds the variable t representing the current point in
time, the operator ¤ constructs currency, per year constructs a constant-rate
payment stream from an amount of money, when constructs a payment stream
that delivers a lump sum at a particular point in time, and provided makes a
payment stream conditional on a particular set of states or Boolean conditions.

The other half of our model, the transition intensities, is described by a risk
model. An example risk model for LifeDeath follows:

riskmodel Mortality(p : Person) : LifeDeath where
intensities = alive → dead by gm(p)

In the above, gm is a library function that takes a representation of a person
(presumably some sort of record structure with fields for age, sex, and so forth) as
its argument, returning a mortality intensity according to the industry-standard
Gompertz-Makeham formula. As described in Sect. 2, a transition intensity is
the continuous-time analog of a transition probability in discrete-time Markov
chains.

The statewise reserves are the contributions that each state makes to the over-
all reserve. We can compute it for these two products by calling the appropriate
library function:

statewiseReserves(PureEndowment(TimePoint(2035, 1, 1)), Mortality)

270 D.R. Christiansen

There are a few important details in the call to statewiseReserves. First, the
fact that PureEndowment and Mortality are defined according to the same state
model - LifeDeath - can be statically checked. Second, we don’t need to write
that the state model in question is in fact LifeDeath, because it can be inferred
from the other two arguments.

One of the main features that distinguishes our work on AML from other
domain-specific languages is that it is a total language with dependent types.
A total language is one in which every function returns a result for every type-
correct input. In other words, infinite loops are impossible and no pattern-match
may miss a case. By construction, this prevents a number of errors, and it results
in a language that more closely matches mathematical notions of functions. For
example, we don’t need to worry about the potential for an infinite recursion in
a transition intensity.

Perhaps the most daring design choice in AML is the inclusion of full depen-
dent types. Dependent types are types that can be abstracted over values, and
not just other types as in traditional functional programming. In many ways,
dependent types represent a quite radical departure from traditional functional
programming, and a full introduction to them is beyond the scope of this pa-
per. Oury and Swierstra [3] offer an accessible introduction to the expressive
capabilities of dependent types.

Dependent types allow the type system to be much more precise. For example,
a list type can encode the length of the list, and the head function can then, in
its type, require that the list is non-empty.

For perhaps a more relevant example of the kinds of invariants that can be
enforced through dependent types, consider discounting of money. Discounting
is the process of using information about interest rates to compute the value of
an amount of money at some other time. Because one euro in 2003 is worth a
different amount than one euro in 2013, we can’t simply add currency. Instead,
we must discount the value, converting from one time to another.

For the sake of simplicity, assume that the interest rate is some constant r
through the entire period. In that case, we discount from t0 to t1 by multiplying
the value at t0 by er(t1−t0). In AML, we can force this discounting by adding a
point in time to our currency type. We then require that these time points be
equal in the types of arguments to our addition function.

We begin by defining a data type Money which is indexed by a point in time.
Two instances of Money only have the same type if they are indexed by the
same point in time, just as a Java ArrayList<String> has a different type than
ArrayList<File>. Note that the types of a and b refer to the value of the param-
eter t – this is a feature of a dependent type system. The compiler will reject
calls to add for which it cannot prove that a and b have the same time index.

type Money(time : TimePoint) : Type where
Amount(x: Real) : Money(time)

function add(t : TimePoint, a : Money(t), b : Money(t)) : Money(t) where
add(t, Amount(x), Amount(y)) = Amount(x + y)

Software Development for the Working Actuary 271

We now have the ability to represent currency at a particular point in time. We
can define a discounting function according to the above formula as follows:

function discount(t0 : TimePoint, t1 : TimePoint,

interest : Real, m0 : Money(t0)): Money(t1) where
discount(TimePoint(t0’), TimePoint(t1’), r, Amount(x0)) =

Amount(exp(r * (t1’ - t0’)) * x0)

By controlling the scope of the Amount constructor, the library author can prevent
explicit pattern-matching on the value as was done in the definition of discount.
An important potential source of errors is eliminated entirely through judicious
use of dependent types in three short, readable definitions.

4 Future Work

The ongoing development of AML has two primary aspects:

– We want to ensure that AML is on a strong theoretical footing, with a
sound type system. Users should not be able to circumvent the typechecker,
whether through malice or by accident.

– We need to ensure that AML is actually usable by actuaries.

We plan to achieve the first goal through a combination of explaining the unique
features of AML in terms of well-understood systems and through a mixture of
machine-checked and manual mathematical reasoning. The second goal, however,
requires empirical evaluation. Implementation work on an AML interpreter has
begun. We will soon be in a position to begin testing the language and associated
tools with actuaries.

References

1. Arnold, B.R.T., van Deursen, A., Res, M.: Algebraic specification of a language for
describing financial products. Technical report, Eindhoven University of Technology
(1995)

2. Mogensen, T.Æ.: Linear Types for Cashflow Reengineering. In: Broy, M., Zamulin,
A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 13–21. Springer, Heidelberg (2004)

3. Oury, N., Swierstra, W.: The power of pi. In: Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2008, pp. 39–50. ACM,
New York (2008)

4. Peyton-Jones, S., Eber, J.M., Seward, J.: Composing contracts: an adventure in
financial engineering (functional pearl). SIGPLAN Not. 35(9), 280–292 (2000)

5. David Promislow, S.: Fundamentals of Actuarial Mathematics, 2nd edn. Wiley
(2011)

6. Directive 2009/138/EC of the European Parliament and of the council

Automated Test Case Generation

in End-User Programming

Nysret Musliu1, Wolfgang Slany2, and Johannes Gärtner3

1 DBAI, Technische Universität Wien, Austria
musliu@dbai.tuwien.ac.at

2 IST, Technische Universität Graz, Austria
wolfgang.slany@tugraz.at

3 Ximes GmbH, Austria
gaertner@ximes.com

Abstract. Generation of test cases for end-user programmers is crucial
to assure the correctness of their code. In this paper we investigate the
automatic generation of test cases for programs that are written in Vi-
sual Basic for Applications and are used in MS Excel. We implement a
metaheuristic search method to generate tests that achieve a satisfac-
tory statement and branch coverage. Furthermore, in our methodology
the code coverage is visualized. The generated test cases and the vi-
sualization enable end users to better understand the behavior of the
programs and increase the probability of detecting errors when the code
is changed at a later time.

1 Introduction

Nowadays the end-users who are not professional programmers write sometimes
small programs to do their work more efficiently. A typical case is the writing of
small programs in Microsoft Office using Visual Basic for Applications (VBA).
In this paper we investigate the testing of VBA programs written in MS Excel,
which is one of widely used spreadsheet applications.

Testing of spreadsheets has attracted the interest of many researchers working
in area of end-user software engineering. Although spreadsheets contain many
errors it has been shown that end-users are overconfident that their applica-
tions are working correctly ([7], [9]). Therefore, several methodologies have been
proposed to minimize the number of errors in spreadsheets. Examples of such
approaches include the What You See Is What You Test (WYSIWYT) method-
ology for white box testing ([8], [2]), the methodology proposed in [1] etc. We
refer the reader to the recent survey [5] that describes different other existing
approaches for testing spreadsheets.

In this paper we propose a methodology that enables end-user programmers
that write VBA programs in Excel to test their code. To this aim, we propose
a heuristic based search procedure to generate automatically test cases that
achieve high coverage (statement and branch coverage). The test cases ensures
that most parts of the code are executed and enables end-users to inspect whether

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 272–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automated Test Case Generation in End-User Programming 273

the code is giving the appropriate results by analyzing generated test cases.
Furthermore, in the proposed methodology the code is also shown in the Excel
sheet and is visualized with different colors to show the parts of code that are
covered with the generated tests.

2 Methodology

In Figure 1 the main parts of the proposed methodology are presented. In the
first step users can select the procedure for which test cases should be generated.
Additionally, the range of input variables can be determined. In the current
implementation our methodology enables the user to determine the range for
integer variables. The specification of other type of data (e.g. strings) is also of
importance and should be considered in the future.

In the next step the selected procedure is instrumented to store the informa-
tion for the statements and branches that are reached by a particular test case
when the instrumented code is executed during the search process for test cases.

2.1 Automatic Generation of Test Cases

The main component of our methodology automatically generates test cases.
We propose a heuristic based procedure that starts from a random solution. The
current solution is further improved until all statements/branches are covered or
the maximum number of iterations is reached. Note that automatic generation
of test cases with other metaheuristic techniques (e.g., genetic algorithms [4],
tabu search [3], etc.) for imperative languages has been extensively investigated
by researchers working in the area of search based software engineering. The
algorithms based on simulated annealing framework have been also used for
test case generation in different domains ([10], [11]). A recent review on search
based software techniques has been given by Harman et al [4]. We implemented

Fig. 1. Main steps in our methodology

274 N. Musliu, W. Slany, and J. Gärtner

a simple algorithm which is also based on the ideas of simulated annealing to
show that even simple heuristics can be used succesfully to generate test cases
in end-user programming. Our procedure is presented below:

1. Generate an initial random test case (solution) and store it.
2. Initialize the parameter called temperature (T).
3. Generate a random solution in the neighborhood and evaluate it.
4. Accept the neighborhood solution if it fulfills the acceptance criteria.
5. Store the neighborhood solution if it covers at least one uncovered statement

or branch.
6. Decrease the parameter T. If the temperature reaches the value 0 assign to

it the initial value.
7. Go to step 3 if the number of maximum iterations is not reached.
8. Return the generated test cases.

The algorithm first generates a solution that initializes all input variables ran-
domly in the range given by the user. This solution is further stored as one test
case and is used as current solution. The algorithm also initializes the temper-
ature T in this phase. This parameter is used later when the decision is made
whether the new test case should be accepted as the current solution. In step
3 the algorithm generates a new solution in the neighborhood of the current
solution. To generate this solution one of the input variables is selected ran-
domly. The selected variable gets another random value in its domain. The new
test case is evaluated with an evaluation function that consists of two compo-
nents. The first component gives the information whether the new case covers a
new branch/statement or part of condition of the branch. If the test case covers
at least one uncovered statement/branch, it is accepted for the next iteration.
Otherwise, the second component of the fitness function is calculated from the
degree of fulfillment of the conditions. This component is an aggregated sum
of all distances for uncovered branches. The new generated solution is accepted
if the second component is better than the component of the current solution.
In other cases the solution is accepted with some probability that depends on
the temperature T. In the beginning when T is large there is a higher chance
that also a bad solution is accepted, whereas when T is low this probability
decreases. The new accepted solution is stored as a new test case, if it covers
at least one new branch (or statement). In the next step the temperature T is
decreased, and if it has value 0 it is reinitialized. Steps 3 to 7 are repeated until
the maximum number of iterations is reached. The stored test cases during the
search are finally returned by the algorithm.

2.2 Visualization of Code Coverage

After the test cases are generated they are shown to users, and the code coverage
is visualized. An example of such test cases is shown in Figure 3. These test
cases are generated automatically with the described algorithm for a simple
program called myGrade that is introduced in the next section. Given these test

Automated Test Case Generation in End-User Programming 275

Fig. 2. The program that determines a grade based on input points and the visualiza-
tion of statement coverage (the last test case in Figure 3 is not taken into consideration).
The light gray color corresponds to green, and the dark gray color corresponds to red
color.

cases, end-users can check if the program is performing as expected. The selected
procedure is also presented in the spreadsheet and the statement coverage is
visualized. Statements with the green color are covered by the test cases whereas
statements that are not covered are presented with the red color. With the
generated test cases all statements of myGrade would have the green color, but
if we remove the last test case the visualization would look like in Figure 2.

The visualization of code coverage is not new, and different applications that
visualize the code coverage exist. The effect of code visualization on professional
programmers has been investigated in [6]. In our approach the aim of visualiza-
tion is limited to give more information to end-user regarding the code coverage.
We believe that this information is important for the end-users, because it makes
them aware regarding the parts of code that are not tested enough.

3 Preliminary Experiments

In our first experiment we wrote a program that is called myGrade. Although
this is a very simple program, it is a good example to illustrate our approach.
This program takes three integer variables (that can take values from 0 to 100)
that represent the points students obtained in midterm exam, final exam, and
assignments. The total number of points is calculated based on the weights of
each variable. The function assigns a grade A, B, C, D, or F, to the global variable
Grade. This function is represented in Figure 2. Our algorithm generates in less
than a second the test cases presented in Figure 3.

To show the usefulness of our method for more complex functions we further
experimented with an example from the literature that is used as a benchmark
problem for code coverage. This program is called triangle classifier (see Figure 4)
because it classifies the triangle in one of several types based on the lengths of
its sides. The program has three input variables. Our current tool can deal only
with integer values and in our experiment these variables can take values from 1
to 1000. Our algorithm has been able to generate test cases in less than 1 second

276 N. Musliu, W. Slany, and J. Gärtner

Fig. 3. Test cases generated by the heuristic algorithm

Fig. 4. The code for triangle classifier ([3])

that cover almost all statements and branches. We have also experimented with
a more complex program (line rectangle classifier) used for example in [3] that
has 8 input variables and much more branches. With our approach we could also
generate test cases with satisfactory branch/statement coverage for this problem
in a time that should be acceptable by end-users.

4 Conclusions

We proposed a methodology for automatic generation of test cases for VBA
programs written in Excel. Our search procedure has shown good results in
the preliminary experiments, and the visualization of code coverage gives users
information regarding those parts of code which are (not) covered.

For the future work, it will be interesting to extend our search procedure to
deal with any type of variables. Furthermore, more extensive experiments are

Automated Test Case Generation in End-User Programming 277

needed, and other search techniques may also be considered. Providing users
with the possibility to easily run the test cases is also an important issue.

Acknowledgments. The research herein is partially conducted within the
competence network Softnet Austria II (www.soft-net.at, COMET K-Projekt)
and funded by the Austrian Federal Ministry of Economy, Family and Youth
(bmwfj), the province of Styria, the Steirische Wirtschaftsfrderungsgesellschaft
mbH. (SFG), and the city of Vienna in terms of the center for innovation and
technology (ZIT).

References

1. Abraham, R., Erwig, M.: Ucheck: A spreadsheet type checker for end users. J. Vis.
Lang. Comput. 18(1), 71–95 (2007)

2. Burnett, M.M., Sheretov, A., Ren, B., Rothermel, G.: Testing homogeneous spread-
sheet grids with the ”what you see is what you test” methodology. IEEE Trans.
Software Eng. 28(6), 576–594 (2002)

3. Dı́az, E., Tuya, J., Blanco, R., Javier Dolado, J.: A tabu search algorithm for
structural software testing. Computers & Operations Research 35(10), 3052–3072
(2008)

4. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45(1), 11 (2012)

5. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M.M., Erwig, M.,
Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B.A., Rosson, M.B., Rothermel,
G., Shaw, M., Wiedenbeck, S.: The state of the art in end-user software engineering.
ACM Comput. Surv. 43(3), 21 (2011)

6. Lawrance, J., Clarke, S., Burnett, M.M., Rothermel, G.: How well do profes-
sional developers test with code coverage visualizations? An empirical study. In:
VL/HCC, pp. 53–60 (2005)

7. Panko, R.: Spreadsheet errors: What we know. What we think we can do. arXiv
preprint arXiv:0802.3457 (2008)

8. Rothermel, G., Li, L., DuPuis, C., Burnett, M.M.: What you see is what you test: A
methodology for testing form-based visual programs. In: ICSE, pp. 198–207 (1998)

9. Ruthruff, J.R., Prabhakararao, S., Reichwein, J., Cook, C.R., Creswick, E., Burnett,
M.M.: Interactive, visual fault localization support for end-user programmers. J. Vis.
Lang. Comput. 16(1-2), 3–40 (2005)

10. Tracey, N., Clark, J., Mander, K.: Automated program flaw finding using simulated
annealing. ACM SIGSOFT Soft. Eng. Notes 23, 73–81 (1998)

11. Waeselynck, H., Thévenod-Fosse, P., Abdellatif-Kaddour, O.: Simulated annealing
applied to test generation: landscape characterization and stopping criteria. Emp.
Soft. Eng. 12(1), 35–63 (2007)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 278–283, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Component-Based Design and Software Readymades

Anders I. Mørch1 and Li Zhu2

1 Department of Educational Research and InterMedia, University of Oslo, Norway
anders.morch@intermedia.uio.no

2 Department of Computer Science, Università degli Studi di Milano, Milan, Italy
zhu@dico.unimi.it

Abstract. End-user developers need access to tools and techniques that allow
them to create, modify, and extend software artifacts without programming.
Previous research has shown that visual software components can provide the
right level of abstraction. However, component-based design (CBD) will
succeed only if there is a good balance of standardization and flexibility
(software issues) and a good balance of usefulness and usability (HCI issues).
We present a vision for CBD and two approaches toward achieving it: 1) design
by composition and 2) design by redesign. We claim that the latter is more user
friendly but lacks the flexibility of the former. We propose the notion of
“software readymade” as a theoretical concept to integrate them, inspired by the
role of the “spectator” in the work of the artist Marcel Duchamp. We propose
stand-alone multiperspective tailorable software components to instantiate the
concept, and we give two examples (application units and nuggets).

Keywords: Application units, component-based design, nuggets, readymades,
software components, tailorable components.

1 Introduction

At the 2011 EUD conference in Brindisi, Italy, Fabio Casati gave a keynote
describing failed attempts of end-user application composition environments (e.g.,
component-based design environments, workflows, service composition, and mashup
builders). A reason for the failure is that these technologies expose low-level
(software program) features that are difficult for end users to make sense of.
However, it is difficult for developers to anticipate end-user developers’ needs
because the needs are emergent and circumstantial (based on use), and arguably, more
network-oriented (rooted in human relations and work organizations) than
hierarchical (software organization). This discrepancy can be addressed by software
engineering methods that allow applications to be modified during development in
response to user requirements, but users should also be actively engaged in the
process, drawing on their domain expertise and creativity. We discuss the pros and
cons of component-based design (CBD) for end-user development (EUD), addressing
both professional and end-user developer needs. We present a vision and two
approaches to CBD toward that end: 1) design by composition and 2) design by
redesign. Next, we propose a theoretical perspective to integrate the two approaches,

 Component-Based Design and Software Readymades 279

and we summarize our efforts at developing tools and techniques based on this
perspective (multiperspective, tailorable, autonomous software components).

2 Vision of Component-Based Design

We present an illustrative example for balancing standardization and flexibility
(technical issues) and for usefulness and usability (user-oriented issues). Furniture
design, and chair design in particular, is a good analogy because chair designers are
concerned with many of the same issues that user interface designers and software
developers deal with: producing flexible variations of a generic product informed by a
design concept. Figure 1 shows a picture of how we envision flexibility incorporated
in CBD: enabling end-user developers to create new applications based on an
application platform (generic application), without making the same application
twice. In this way EUD-enabled applications will also be creativity support tools.

Fig. 1. A vision of component-based design: combining standardization and flexibility within a
constrained design space of creative reconfiguration. Reprinted with permission from the
artists: Martino Gamper (100 chairs in 100 days) and Angus Mill (photo) [7].

3 Component-Based Design of Software Applications

Our idea of component-based design (CBD) of software applications has been
influenced by Fischer’s notion of a domain-oriented design environment (DODE) [2].
He proposed that the basic building blocks are domain-oriented components that are
connected by meaningful relations as defined by external criteria, ranging from design
rules to user preferences. More commonly, component-based design (CBD) means to
create new functionality (e.g., applications) by combining existing functionality (e.g.,
software components). We distinguish two approaches to CBD: 1) design by selecting
from a library of basic components and a work area for composing them and 2) design

280 A.I. Mørch and L. Zhu

by modifying a generic (tailorable) application to create new applications. We briefly
review work in each of the two areas below.

3.1 Design by Composition

The FreeEvolve platform developed by Wulf, Pipek, and Won provides a palette of
basic search application functionality for stitching small database applications within
the domain [8]. A user study of the system revealed the strength of direct activation of
tailoring functionality and the weakness of manually connecting two components.
User-assistance techniques such as 3D visualization and organization (part/whole
structures) were added to resolve the weaknesses.

Web services are a more recent innovation of software component integration,
associated with web applications. A study conducted by Mehandjiev [3], comparing
three different web service integration models, found that users preferred one with a
logic that abstracted features of programming and more easily aligned with the users’
mental model of the task (flowchart model) [3]. However, most application
composition environments require developers to follow another logic (dataflow),
exposing the various sources and sinks of data required for composition, which
prevented end-user developers to participate beyond simple applications.

Mashup components are the latest trend in application composition, as they are
more flexible by allowing user interfaces and data in addition to software
functionality to be composed. Muhammad and colleagues [5] found evidence that
domain-oriented mashup builders are more usable for end-user developers than
generic builders and demonstrate this by developing a domain-oriented builder for
scientific publication ratings and comparing it with Yahoo Pipes (a generic builder).

3.2 Design by Redesign

Many domain-independent application environments have turned out to be successful
EUD environments. Arguably, the most famous is the spreadsheet application. With
the use of a formula language (e.g., Excel macros), numerous applications of the same
basic user interface have been created [6]. Several hybrid application/application
builders have since been proposed (e.g., MS Office with Visual Basic for
Applications), but none of them have achieved the same fame as the spreadsheet
when it comes to supporting EUD. A key to success has been a combination of a
generic (multipurpose) user interface and a mechanism for producing variation at a
scale that is both useful and usable by application users.

Google Maps shares many of the characteristics of a spreadsheet in so far as it
provides a combination of multipurpose user interface and a mechanism for
generating variation without an excessive amount of programming. An early
application (arguable comparable to VisiCalc in fame) is HousingMaps, a “mashup”
created by Paul Rademacher in 2005. He integrated a housing-rental and for-sale
listing (craigslist) with Google Maps to form a new kind of application
(http://www.housingmaps.com/). Numerous Google mashups have since followed.

 Component-Based Design and Software Readymades 281

The variability mechanism provided by Google Maps differs from the spreadsheet
formula language. Integrating the Google Map API with data sources and related
components in a mashup builder is one way to create applications. Another way is to
make custom maps by manually typing in addresses. The latter is more time
consuming for large data sets but simpler for users without technical expertise (e.g.,
the My Places wizard and tutorial in Google Maps).

The tradeoff between flexibility and usability is only partially resolved by each of
the two approaches. The success of “design by redesign” depends on “killer apps,”
and the success of the “design by composition” depends on access to a sufficient
number of interesting components to choose from. We propose a framework for
combining them and addressing the vision described in section 2, combining a generic
application with a set of components to extend it. This framework is presented below
in two parts, first as a theoretical concept (software readymade) that is later
operationalized in two prototypes (application units and nuggets). This work is
continually evolving and is not yet finished.

4 Software Readymade as a Theoretical Concept

The artist Marcel Duchamp coined the term readymade in 1913 when he started to
transform everyday manufactured objects into art by a series of operations performed
by the artist. He suggested how spectators should perceive, react, and make sense of
the artwork. Duchamp’s famous and provocative Bicycle wheel and Fountain are two
examples of readymades, the latter borrowing and appropriating a porcelain urinal,
the former using a bicycle wheel mounted on a kitchen stool. Despite the readymades
being “locked” from conventional use, Duchamp was an advocate of active and
continuous use, and he explained it by the following quote: “After all, the artist alone
does not perform the creative act. The spectator brings the work in contact with the
external world by deciphering and interpreting its inner qualities and thus adds his
contributions to the creative act” [1].

Duchamp’s concept of readymades and how they can be interacted with provides
clues for how end users can be involved in composition and redesign. For example,
across the two domains of art and end-user development, we find the following
common themes: 1) acts of intervention in established practice (manufacturing), 2)
opening-up functional objects for introspection, and 3) revealing relations and
viewpoints that have previously been hidden. We have developed prototypes for
exploring the second and third themes that aim to reveal hidden relations and
viewpoints of functional objects (software components) in order to increase end users’
awareness of modification options.

5 Tailorable Autonomous Software Components

The software components we have developed are “small applications” that can be
used separately, opened up for viewing, and modified within an application
framework. The first author developed “application units” [4], and the second author

282 A.I. Mørch and L. Zhu

more recently developed “nuggets” inspired by the former [9]. We present a brief
summary of our past and current work.

5.1 Application Units

Application units are components of conventional application, creating cognitive
chunks that are easier to comprehend than complete applications. To support
“opening up,” each component is organized into views or aspects: 1) user interface, 2)
design rationale, and 3) program code. Users can access each aspect by holding down
a modifier key (alt, ctrl, or shift) when clicking on the application unit. Each aspect
can be modified in a separate editor, and the data is then stored in an initialization file
[4]. The goal of application units is to simplify access to the different parts of UI
components that have to be modified during end-user tailoring.

Another goal of the application units is to support learning on demand and
incremental mastery of computational complexity. We conducted a video-recorded
usability test of BasicDraw with twelve users and asked them to perform end-user
development modifications to the application, and we found that customization
(modifying user interface) and integration (updating design rationale) could be
achieved without much instruction or help. The extension (writing program code in
method bodies), however, required assistance, or knowledge of programming and
basic skills in object-oriented programming [4].

5.2 Nuggets

MikWiki is a user-extensible wiki [9] where the components of the system are
represented by a set of web pages, referred to as nuggets. Nuggets are independent of
each other and bundled with EUD tools. As code executes on the client side, users can
change the behavior of existing nuggets or create new nuggets from and within the
wiki and thus evolve the wiki at use time.

Similar to the “multiple aspects” of application units, each nugget has three
perspectives: 1) visualization, 2) format, and 3) data representation. An example is the
Imagenote nugget that allows end users to create “Post-it-like” image notes, which are
synchronized between users. The data page contains the wall data in JSON format, the
format page defines how to represent the JSON data in JavaScript, and the
visualization page embeds the macro-like code that expands to the visible nugget on
the screen.

MikiWiki provides a set of stand-alone components. These are components to
support communication, coordination, and localization that track history, enhance
awareness, and provide authentication and annotation services.

Empirical studies of MikiWiki extend applications units by demonstrating that
EUD can be achieved in naturalistic settings (outside usability laboratory). They are
uncomplicated to use once familiar with editing web pages and wiki articles [9].

One shortcoming we have found is that EUD using JavaScript still imposes a steep
learning curve for many end-user developers. Additional components, user
documentation, tutorials, and templates must be provided to flatten the learning curve.

 Component-Based Design and Software Readymades 283

6 General Discussion and Directions for Further Work

We distinguished between design by redesign and design by composition. A
challenge for design by composition is specifying communication protocols between
components and resolving unambiguous input-output ports. A challenge of design by
redesign is to enable end-user developers to extend generic applications to create
something new. We proposed a vision for CBD by the creative reconfiguration of
chairs and provided a theoretical account of the vision by the notion of software
readymades. Our own efforts to instantiate the concept with multiperspective,
tailorable application units and nuggets revealed strengths and weaknesses. The
strength is that it can give end users access to multiple aspects of a software
component (e.g., user interface, code, and data) in order to simplify end-user tailoring.
A weakness is that having access to code may not help, as many end-user developers
find programming difficult, and scripting languages is also difficult in this regard.

Directions for further work include exploring how small applications can expose
hooks, open points, and reconfiguration options, starting with what manufacturers
refer to as sizes and models of standard components, and extending this to
modularized generic applications that can be taken apart and recombined to make new
applications. Moreover, future work should address what it means for stand-alone
components to be integrated without sending or receiving data. For example,
integration can be approached from a domain-oriented perspective as in the work of
Fischer and colleagues (defined by design rules, perspectives, and preferences).
Integration can also be achieved within a social-technical framework, being less about
component interfaces and more about new tools for viewing, modifying, and sharing.

References

1. Duchamp, M.: The Creative Act. In: Lebel, R. (ed.) Marcel Duchamp, pp. 77–78.
Paragraphic Books, New York (1959)

2. Fischer, G., Girgensohn, A., Nakakoji, K., Redmiles, D.: Supporting Software Designers
with Integrated, Domain-Oriented Design Environments. IEEE Trans. on Soft. Eng. 18(6),
511–522 (1992)

3. Mehandjiev, N., Namoune, A., Wajid, U., Macaulay, L., Sutcliffe, A.: End User Service
Composition: Perceptions and Requirements. In: Proceedings ECOWS 2010, pp. 139–146.
IEEE Computer Society, Washington, DC (2010)

4. Mørch, A.I.: Aspect-Oriented Software Components. In: Patel, N. (ed.) Adaptive
Evolutionary Information Systems, pp. 105–122. Idea Group, Hershey (2003)

5. Muhammad, I., Florian, D., Fabio, C., Maurizio, M.: ResEval Mash: A mashup tool that
speaks the language of the user. In: Proc. CHI 2012, pp. 1949–1954. ACM, New York
(2012)

6. Nardi, B.A., Miller, J.R.: The spreadsheet interface: A basis for end user programming. In:
Proceedings INTERACT 1990, Amsterdam, The Netherlands, pp. 977–983 (1990)

7. Thompson, H.: Remake it Home. Thames & Hudson Ltd., London (2009)
8. Wulf, V., Pipek, V., Won, M.: Component-based tailorability: Enabling highly flexible

software applications. Int. J. Hum.-Comput. Stud. 66(1), 1–22 (2008)
9. Zhu, L., Vaghi, I.R., Barricelli, B.R.: A Meta-reflective Wiki for Collaborative Design. In:

Proceedings WikiSym 2011, pp. 53–62. ACM, New York (2011)

End User Architecting

Vishal Dwivedi

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, PA, 15213, USA

vdwivedi@cs.cmu.edu

Abstract. A large number of domains today require end users to compose vari-
ous heterogeneous computational entities to perform their professional activities.
However, writing such end user compositions is hard and error prone. My re-
search explores an improved approach for design, analysis and execution of such
end user compositions. I propose a new technique called ‘end user architecting’
that associates end user specifications in a particular domain as instances of archi-
tectural styles. This allows cross-domain analyses, systematic support for reuse
and adaptation, powerful auxiliary services (e.g., mismatch repair), and support
for execution, testing, and debugging. To allow a wider adoption of this technique,
we have designed a framework that can be instantiated across a large number of
domains, with composition models varying from dataflows, pub-sub, and work-
flows. This approach can reduce the cost of development of end user composition
platforms (compared to developing them from scratch) and improve the quality
of end user compositions.

1 Research Problem

Within an increasing number of domains an important emerging need is the ability for
technically naive users to compose computational elements into novel configurations.
Examples include e-science (e.g., astronomers who create new analysis pipelines to
process telescopic data), intelligence analysis (e.g., policy planners who process di-
verse sources of unstructured text to discover socio-technical trends), and medicine
(e.g., researchers who process repositories of brain imaging data to discover new dis-
ease pathways). In these domains professionals typically have access to a large number
of existing applications and data sets, which must be composed in novel ways to gain
insight, carry out “what if” experiments, generate reports and research findings, etc.

Unfortunately, assembling such elements into coherent compositions is a non-trivial
matter [1][2]. In particular, we can identify five critical barriers.

1. Excessive technical detail: Existing languages and tools require end users to have
knowledge of a myriad of low-level technical detail such as parameters, low-level
control flow decisions, exception handling, and other programming constructs.

2. Inappropriate computational models: The computational models provided by
typical execution platforms, such as SOA, may require end users to map their tasks
into a computational vocabulary that is quite different from the natural way of de-
composing the task in that domain. For example, tasks that are logically repre-
sented in the end user’s mind as a workflow may have to be translated into the
very-different vocabulary of service orchestrations and execution scripts.

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 284–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

End User Architecting 285

3. Inability to analyze compositions: There may be many restrictions on legal ways
to combine elements, dictated by things like format compatibility, domain-specific
processing requirements, ordering constraints, and access rights to data and ap-
plications. Today, discovering whether a composition satisfies these restrictions is
largely a matter of trial and error, since there are few tools to automate such checks.
Moreover, even when a composition does satisfy the composition constraints, its
extra-functional properties — or quality attributes — may be uncertain. For exam-
ple, determining how long a given computation will take to produce results on a
given data set can often be determined only by time-consuming experimentation.

4. Lack of support for reuse: An important requirement in many communities is the
ability for professionals to share their compositions with others in those communi-
ties. For instance, brain researchers may want to replicate the analyses of others, or
adapt an existing analysis to a different setting (e.g., execute on different data sets).
Packaging such compositions in a reusable and adaptable form is difficult, given
the low-level nature of encodings, and the brittleness of the specifications.

5. Impoverished support for execution. Compared to the capabilities of modern pro-
gramming environments, end users have relatively few tools for things like compi-
lation into efficient deployments, interactive testing and debugging (e.g., setting
breakpoints, monitoring intermediate results, etc.), history tracking, and graceful
handling of run-time errors. This follows in part from the fact that in many cases
compositions are executed in a distributed environment using middleware that is
not geared towards interactive use and exploration by technically naive users.

This gap between the needs of end users and todays technology has two adverse con-
sequences: (i) The cost of producing effective compositions is high because end users
must become experts in implementation details not relevant to their primary task. (ii)
The quality is low because compositions tend to be brittle and in many cases fail to meet
their extra-functional requirements. Also, compositions are difficult to reuse, modify,
and maintain, leading to gratuitous reinvention and errors.

2 Research Approach

My approach to address this problem has been to view end user composition activity
as engaging in a high-level architectural design within a domain-specific style and to
represent those end user architectures explicitly. Figure 1 illustrates the overall organi-
zation of end user composition tools and the placement of an architectural layer.

Part (a) of the figure shows the current state of affairs: users must translate their tasks
into the computational model of the execution platform, and become familiar with the

���

��
�����	
�����	����

��
�
	
���
����
	��	���

�	�������������� ������
�

�����	
�� ����
��	
�� ����
�

��� ���

����
	��	���
�����	
�����	����

��
�
	
���

��

Fig. 1. End-user Architecting Approach

286 V. Dwivedi

low-level details of that platform and primitive computational elements (applications,
services, files, etc.) — leading to problems outlined in Section 1. Part (b) illustrates the
new approach. Here, end-user architectures are explicitly represented as architectural
models defined in a domain-specific architectural style. These models and the support-
ing infrastructure can then support a host of auxiliary services, including checking for
style conformance, quality attribute analysis, compilation into efficient deployments,
execution and debugging mechanisms, and automated repair — as shown in part (c).

By decomposing the problem in this way we identify a new field of concern, which
we term end-user architecting [3]. Similar to end-user programming [4], it recognizes
upfront that the key issue is bridging the gap between available computational resources
and the skill set of the users who must harness them — users who typically have low
programming skills. But unlike end-user programming, it seeks to find higher-level ab-
stractions that leverage the considerable advances in software architecture languages,
methods, and tools to support component composition, analysis and execution.

While we investigated the potential of this approach across various domains — and
specially the ones that already had successful end user composition platforms like Tav-
erna and Wings in e-sciences — we found effective ecosystems consisting of domain-
experts, component developers, platform developers, and end users at play. While richer
compositions environments manage this synchronization quite well (although, at a great
cost), several impoverished composition environments enforce end users to perform all
these roles by themselves. The end user architecting approach address the problems of
such end users, and the other developers in the ecosystem.

����������	

�������
�������	

����������	

�������

�����������	

����

�������	

����������	
�	���	��

����������	
��������	

�����
������������	
��
������������
���	���������	

������������
��
����
���	���������	

������������
�������	�����	

����

��	�����	��

����
������	�

�	����� ��� �	�	��
�������

���������
!�����

!����
�������

�����	�	�
�	�
����
!�����	��

�����	�	�
!�������

��������	
!�	����

�����

�����	
"	�������

�������	
������
����������

���	�����
���
�����	

������

��� ����

�������

#�$�������

�	�����������

�����������������

�	�
%���
���������

�����	
������

�����	�	�
�����	���

�������&�$�
�����	�	�#���
��

'�$(�	 ������	

!�������
!�����	��

)����	��
�	�
�	�����

��������	
�������

'�����*�

����

+����*���
�	���	������

Fig. 2. Building Blocks of End User Architecting Framework

End User Architecting 287

To allow an easier use of this approach, we have designed a customizable framework
that can be instantiated across a large number of domains. Figure 2 shows the high-level
building blocks of the framework and the larger ecosystem of developers that it helps.
For preliminary investigations, we have instantiated our framework in three domains:
dynamic network analysis, brain imaging, and geospatial analysis [3]. Across these
domains, the end users are technically naive users (such as analysts and neuroscientists)
who write compositions that are variations of dataflows and pub-sub.

Our hypothesis is that the End User Architecting framework factors out the common-
alities across different classes of composition environments and computation models.
Undoubtedly, some upfront cost is required to develop the composition components, the
architecture styles, analyses, templates, etc. However, components, styles, templates,
and analyses are reusable artifacts; thus, building libraries of them will amortize cost
and reduce End User Architecting efforts for future projects.

3 Concluding Remarks and Future Research

My current research focus is to validate the End User Architecting approach with re-
spect to i) generality, ii) quality of compositions, and iii) reduced cost of for platform
development. Apart from the three case studies mentioned in [3], I am conducting stud-
ies to determine the feasibility of applying the end user architecting approach to a larger
set of domains. Examples include astronomy, bioinformatics, digital music production
and other scientific computing and arts related domains where end user architecting
could potentially be a good fit. Additionally, I plan to conduct usability studies to eval-
uate the usability and extensibility of the framework with the entire ecosystem of users
in consideration.

If successful, this research will have many contributions to the field of end user
software engineering. End user Architecting could be an effective technique for dra-
matically reducing the time, cost and difficulty of building a significant class of end
user composition environments. This will be supported by a reusable framework that
would provide interfaces, libraries, control structures and the necessary plug-in points
for developing composition environments, as well as analyses that will improve end
user composition experience.

Additionally, this research will also contribute to the field of software architecture
through extensions to architecture description languages to support export and reuse of
architectural specifications through generalized APIs, prior compositions, and access to
repositories. The generic and reusable analytic capabilities that I am developing as a
part of this research will be another significant contribution to this field.

Acknowledgements. I thank my advisor, Prof. David Garlan, for his continuing guid-
ance and support. I also thank Bradley Schmerl, Perla Velasco Elizondo, and Ivan
Ruchkin who have closely collaborated on this research. This material is based upon
work funded by the Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University and Software Engineering Institute. Further support
for this work came from Office of Naval Research grant ONR-N000140811223 and the
Center for Computational Analysis of Social and Organizational Systems (CASOS).

288 V. Dwivedi

References

1. Casati, F.: How end-user development will save composition technologies from their contin-
uing failures. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011.
LNCS, vol. 6654, pp. 4–6. Springer, Heidelberg (2011)

2. Dwivedi, V., Velasco-Elizondo, P., Fernandes, J.M., Garlan, D., Schmerl, B.: An architectural
approach to end user orchestrations. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011.
LNCS, vol. 6903, pp. 370–378. Springer, Heidelberg (2011)

3. Garlan, D., Dwivedi, V., Ruchkin, I., Schmerl, B.: Foundations and tools for end-user ar-
chitecting. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539,
pp. 157–182. Springer, Heidelberg (2012)

4. Nardi, B.A.: A small matter of programming: perspectives on end user computing. MIT Press
(1993)

TagTrainer: A Meta-design Approach

to Interactive Rehabilitation Technology

Daniel Tetteroo

User Centred Engineering Group, Department of Industrial Design,
Eindhoven University of Technology,

Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
d.tetteroo@tue.nl

Abstract. Together with the rising demand for healthcare, the need
for assisting technology within the field of rehabilitation is increasing.
However, this technology needs to be flexible and adjustable to address
the variability and context dependency of therapy in daily practice. Cur-
rent technology is hardly adjustable and therefore often fails in regular
therapy situations. This research applies the principles of End-User De-
velopment and cultures of participation to create a socio-technical envi-
ronment in which technology providers, care providers and patients are
enabled to adjust technology to the needs of rehabilitation therapy.

Keywords: rehabilitation technology, tangible interaction, end-user de-
velopment, cultures of participation.

1 Introduction

With an ageing population, the demand for extended and improved healthcare is
a worldwide emerging trend. Amongst the consequences of an ageing population
is the rising number of patients that suffer from age-related diseases such as
stroke [11]. Stroke survivors often suffer from arm-hand impairments that can
only be treated by long and intense rehabilitation therapy. Therefore, a sector
that is particularly influenced by this trend is that of rehabilitation.

Smart use of new technologies can aid the healthcare sector to better cope
with the increasing demands. However, these technologies need to be adjustable
to the needs of individual patients, in order to offer an effective solution [2,10].
This is where End-User Development [8] and cultures of participation [4] can play
an important role, since they enable domain specialists (such as rehabilitation
therapists) to appropriate technology to the needs of their patients.

This research therefore, is situated around the central question: “How can
healthcare specialists, more specifically rehabilitation therapists, be empowered
to appropriate new technology to the needs of their patients?”.

2 Theoretical Background

This research resides on the cross-section of a number of topics: rehabilitation
technology, tangible interaction, EUD and cultures of participation. This section

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 289–292, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

290 D. Tetteroo

defines the scope of the project by identifying the relations that exist between
these topics.

Although there have been previous attempts on integrating tangible tech-
nology in the domain of rehabilitation, research has shown the importance of
extendibility such that the technology can provide patients with challenging
therapy for a prolonged period of time [10]. Many technologies that have been
designed specifically for rehabilitation offer a limited range of exercises and there-
fore have limited use in daily therapy. On the other hand, many platforms exist
(such as Nintendo’s Wii) that offer large variability, but fail to adequately ad-
dress the issues that play a role in rehabilitation therapy.

A previous project by Carmien and Fischer, showed that persons with dis-
abilities often represent a “universe of one” and that EUD and meta-design can
help to improve the lives of these persons [2]. In a similar fashion, EUD and cul-
tures of participation could be applied to create a socio-technical environment
for rehabilitation therapy. Patients could benefit from technology assisted ther-
apy, while not being subjected to the “one-size-fits-all” philosophy with which
current technology is often designed.

Fig. 1. The TagTrainer platform (left), and the Tag Exercise Creator software (right)

The basis for this research is formed by the TagTrainer: an extensible tangible
platform for rehabilitation training (see Figure 1). The platform consists of the
TagTile board, an interactive board that can locate and identify RFID-tagged
objects and provide visual and auditory feedback, and software that allows the
modification and creation of therapy exercises in an EUD approach.

3 Research

The first part of this research consisted of the evaluation [7], re-design and
implementation of the prototype TagTrainer platform, with the Tag Exercise

TagTrainer: A Meta-design Approach 291

Creator (see Figure 1) as an EUD tool that allows therapists to modify and
create exercises for rehabilitation therapy.

As has been shown before, the matter of enabling end-users to create and
modify their tools is more than just a technical endeavour [3]. Although it is
essential that end-users have appropriate tools to perform these tasks, matters
of motivation, collaboration and organization are at least equally important.
Therefore, the remaining part of the research focuses less on the development
of appropriate EUD-software, and more on the sociological, organizational and
motivational aspects that play a role in the process of creating cultures of par-
ticipation.

Throughout the research project, Action-Research (AR) [1] is being applied as
a research methodology. AR involves both action and research within the same
process and aims at generating knowledge by improving practice, and improving
practice by the application of knowledge. This methodology perfectly fits the
meta-design paradigm, since it leaves room for use-time adaptations, emergence
and co-creation [5]. Within the AR-approach, study tools such as semi-structured
interviews with therapists, observations on the creative process and collaborative
efforts, as well as log-data collection from system usage are used to gather a rich
view on the process of integrating the TagTrainer system as part of regular
therapy.

4 Results and Future Steps

As a first step in this project, a software tool (the Tag Exercise Creator, or
TEC) was developed that allows therapists to create and modify exercises for
the TagTrainer system. This EUD tool was designed on the basis of the results of
a usability study on an earlier prototype [7] and research on the implementation
of assisting technology in the domain of stroke rehabilitation [6].

In a next step, the TagTrainer system was implemented as part of daily ther-
apy within a rehabilitation clinic [9]. During the three-week implementation
process, the therapists were observed on the way they used the system as part of
daily therapy. Furthermore, data about system usage, usefulness in therapy and
factors that influenced EUD and sharing processes were recorded. The results
from this evaluation were used to prepare a new, larger scale study in which
multiple clinics are involved over a longer period of several months per clinic.

It is expected that through the implementation of the TagTrainer in additional
clinics, a foundation will be formed for a culture of participation from which an
intra-organizational community of therapists, patients and other stakeholders
can benefit. Future research should investigate the issues that play a role in the
growth, development and sustainability of such a community.

5 Expected Contributions

The expected contributions of this research are a better understanding about:

292 D. Tetteroo

1. Issues concerning the implementation of EUD tools in the healthcare context
2. How cultures of participation might develop in intra-organizational contexts
3. The feasibility of EUD in tangible, interactive systems

Finally, it is expected that the developed rehabilitation technology will increase
patients’ motivation and performance, thus improving the overall quality of arm-
hand rehabilitation.

Acknowledgements. The author acknowledges the support of the Innovation-
Oriented Research Programme ‘Integral Product Creation and Realization (IOP
IPCR)’ of the Netherlands Ministry of Economic Affairs, Agriculture and
Innovation.

References

1. Anderson, G.L., Herr, K.: The Action Research Dissertation: A Guide for Students
and Faculty. SAGE (January 2005)

2. Carmien, S.P., Fischer, G.: Design, adoption, and assessment of a socio-technical
environment supporting independence for persons with cognitive disabilities. In:
Proc. CHI 2008, pp. 597–606. ACM, New York (2008)

3. Fischer, G.: Meta-design: Expanding boundaries and redistributing control in de-
sign. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007.
LNCS, vol. 4662, pp. 193–206. Springer, Heidelberg (2007)

4. Fischer, G.: End user development and meta-design: Foundations for cultures of
participation. J. Organizational and End User Computing 22(1), 52–82 (2010)

5. Fischer, G., Giaccardi, E.: Meta-design: A framework for the future of end-user
development. In: Lieberman, H., Patern, F., Wulf, V. (eds.) End User Development,
vol. 9, pp. 427–457. Springer, Netherlands (2006)

6. Hochstenbach-Waelen, A., Seelen, H.A.M.: Embracing change: practical and theo-
retical considerations for successful implementation of technology assisting upper
limb training in stroke. J. Neuroeng. Rehabil. 9, 52 (2012), PMID: 22856548

7. Hochstenbach-Waelen, A., Timmermans, A., Seelen, H.A.M., Tetteroo, D.,
Markopoulos, P.: Tag-exercise creator: towards end-user development for tangible
interaction in rehabilitation training. In: Proc. EICS 2012, pp. 293–298 (2012)

8. Lieberman, H., Paterno, F., Klann, M., Wulf, V.: End-user development: An emerg-
ing paradigm. In: End User Development, vol. 9, pp. 1–8. Springer (2006)

9. Tetteroo, D., Timmermans, A.A.A., Seelen, H.A.M., Markopoulos, P.: TagTrainer:
Supporting exercise variability and tailoring in technology supported upper limb
training (submitted for publication, 2013)

10. Timmermans, A.A.A., Seelen, H.A.M., Geers, R.P.J., Saini, P.K., Winter, S., te
Vrugt, J., Kingma, H.: Sensor-based arm skill training in chronic stroke patients: re-
sults on treatment outcome, patient motivation, and system usability. IEEE Trans.
Neural Syst. Rehabil. Eng. 18(3), 284–292 (2010), PMID: 20388603

11. Truelsen, T., Piechowski-Jozwiak, B., Bonita, R., Mathers, C., Bogousslavsky, J.,
Boysen, G.: Stroke incidence and prevalence in Europe: a review of available data.
European Journal of Neurology 13, 581–598 (2006)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 293–297, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Socio-technical Systems That Foster
and Support Mindfulness Can Benefit
from End-User Control Mechanisms

Jason Zietz

University of Colorado Boulder, Boulder, Colorado
jason.zietz@colorado.edu

Abstract. Human beings often make decisions without fully realizing the fac-
tors that influence their choices. A woman buys the same type of car that most
of her neighbors drive. A man at a salad bar loads up on the croutons that are in
the front row of items instead of olives that are in the middle row. While these
mindless decisions aren’t always deleterious, they may not be what a person
most desires or what is best for them. Deciding mindfully, however, may pro-
vide a person the opportunity to be fully aware of their choices and select
the best outcome based on their needs. Socio-technical systems can be designed
to support mindful decision making, and these systems can benefit from the
incorporation of end-user controls. End-user controls can provide users with
opportunities to analyze new information and create new categories, two useful
techniques in fostering mindful behaviors and decisions. This paper discusses
how end-user controls that support mindful decision making will be added to
EMPIRE, a socio-technical system designed to help consumers reduce their
electricity consumption.

Keywords: mindfulness, end-user design, socio-technical systems.

1 Introduction and Theoretical Background

The ability to manipulate peoples’ behaviors over short periods of time has been
demonstrated in numerous tasks, including menu choice [1], food intake regulation
[2], and salad bar item selection [3]. The interventional strategies used to elicit the
behavior change have not been demonstrated to affect people’s choices after they
were removed, however. Social proof [4], social norms [5], and competitions [6]
have been shown to influence people’s behaviors, but their impacts have only been
observed when present; their effects after removal have not been rigorously ex-
amined. Achieving behavior change over long durations is generally the goal of be-
havior modification programs, but it is one that is often difficult to achieve. One me-
thod of establishing long-term behavior change may be to encourage individuals to
approach their behavior modification endeavors mindfully.

Mindfulness has been described as a purposeful, nonjudgmental way of paying
attention in the present moment [7]. Mindfulness is typically seen in therapeutic

294 J. Zietz

environments, but it also has the potential to assist people in their efforts to stop unde-
sirable choices [8]. It can allow people to experience greater control over and richer
options within their decisions [9] Two methods that can be used to foster mindful
decision making are the creation of new categories and the analysis of automatic be-
haviors.

We use categories to help us better interact with the world around us. Dogs and
cats are domestic animals so we can pet them without (much) fear of being attacked.
While lions and tigers are cats, they are not domesticated, thus, petting them would
likely result in injury. Categorization can keep us out of danger, but it can also foster
a sense of myopia. For example, people might categorize their electricity usage as
something they have little control over and pay for once a month, like rent or trash
removal. When a person creates a new category such as “utilities I can influence” and
assigns electricity to it, they are now free to explore ways to reduce their electricity.
Making new categories helps us to achieve mindfulness by paying attention to the
situation and context we are in [9].

Similarly, being willing to evaluate and accept new information is another way to
be mindful [9]. Over time, we may create wasteful habits such as leaving a television
on when we’re not watching it. We might do this because we feel uncomfortable
without some background noise or we simply don’t think to turn the television off.
Examining the occurrence of mindless behaviors and why we do them allows us to
observe our actions mindfully.

I seek to address the following questions with my research: (1) How do we design
socio-technical systems that facilitate mindful decision making? and, (2) How and
under what conditions do user controls affect mindful decision making? My approach
to answering these questions follows.

2 Research Approach

My research entails the continued development of the system EMPIRE (Empowering
People in Reducing Energy Consumption), a socio-technical system designed to pro-
vide consumers access to their home electricity usage as a means to reduce their ener-
gy consumption [10]. While EMPIRE is currently accessible through a web browser,
my work will include the addition of a native mobile application that will exploit the
strengths of mobile devices to support mindful behaviors, including the ability to
always be on and in-hand, utilize location awareness capabilities, and access data
regardless of geographic location.

Controls will be provided that will allow end users to tailor the presentation of their
electricity usage in such a way that it becomes more meaningful to them. Specifical-
ly, users will be able to control the content of the electricity data displayed, the fre-
quency in which it is displayed, and the mode in which the content is provided to
them, supporting individual awareness and attention needs.

Electricity usage is typically reported in kilowatt-hours, a unit of measurement that
means very little to most people. EMPIRE will allow users to modify the content of
their data by providing alternative representations of electricity usage, namely coal,
carbon dioxide, and US dollars, giving them the opportunity to view their electricity

 Socio-technical Systems That Foster and Support Mindfulness Can Benefit 295

consumption in a more personally meaningful representation. Additionally, these
representations provide users with new information about their electricity usage
which will allow them to begin to think about energy consumption more mindfully.

EMPIRE will provide users with a summary report of their electricity usage on an
hourly, daily, weekly, or monthly basis, with users deciding how frequently they re-
ceive these reports. These reports will give users information that prompts introspec-
tion in order to guide users to consider the implications of their consumption. For
example, one prompt might read: “A cable box consumes electricity even when
you’re not watching television. Turning your cable box off before you go to bed can
save approximately 300 pounds of coal from being burned a year. Do you have any
devices you can turn off when you’re not using them?” Prompts such as these help
consumers to create new categories for their electricity-consuming devices (e.g., de-
vices that can be turned off at night), further allowing them to become more mindful
of their electricity use.

Users will be able to further customize their experience through the use of alerts.
Alerts will be used to notify users when events that meet specific criteria based on
their electricity usage occur and will be created via a flexible “fill-in-the-blank” form.
Alerts will be able to notify users when their electricity spikes, remind them to switch
off power draining devices before they go to sleep, and inform them when their daily
usage exceeds a certain level, among other events. Users will be able to choose to
receive these alerts via email, SMS text message, or native notification within their
mobile device. Furthermore, EMPIRE will provide access to an alert repository,
where users can view, copy, and modify alerts created by other users as well as share
their own. Users will be able to specify where geographically they would like to re-
ceive alerts, such as only in their homes or within a certain distance of it. This feature
is important because some alerts will be actionable only within a certain context,
namely within proximity of an individual’s home. This feature will leverage GPS
functionality of mobile devices as well as location-based services where appropriate.
Users will be able to leverage what they have learned through the alternative repre-
sentations and introspective prompting to create useful alerts and, in the process, rein-
force the mindfulness these system features have fostered.

3 Results

In a series of studies, I examined how representations of electricity usage affect indi-
viduals’ willingness to commit to pro-environmental actions. In the first study, I
compared subjects’ emotional responses to different representations of electricity
consumption, namely kilowatt-hours (control), coal, carbon dioxide, and US dollars.
Subjects in the control group were given a textual definition, while subjects in the
three experimental groups were shown an image of an alternative representation of
energy consumption (coal, carbon dioxide, or US dollars) along with a description of
the pictured representation. Subjects were then asked to rate their emotive state utiliz-
ing Ekman’s six basic emotions (anger, sadness, happiness, fear, surprise, and dis-
gust) [11] on a 6-point scale (0-5) for each emotion. This first question represented
an unframed context as the experimental representations were presented without any

296 J. Zietz

specific information regarding electricity use. For the second question, the framed
context, subjects read a statement detailing how much of their respective representa-
tion of electricity usage was needed to provide electricity to an average US household
each month. Subjects were then asked to rate their emotive state as before.

In the second study, subjects were randomly assigned to groups as described above
and provided with the statement from the framed context described above for their
respective representation. Instead of asking about the subjects’ emotional responses,
however, I asked how likely they would be (on a scale from 0-5) to reduce their elec-
tricity usage by either 5% or 15%.

Given the perspective that emotions influence motivations for action [12], my hy-
pothesis was that the representations that yielded the largest shifts in reported emo-
tional reactions would be the most likely to motivate individuals to want to reduce
their electricity usage. The results from the first study demonstrated that coal and US
dollars elicited the greatest emotional shifts. The results of the second study showed
that while there wasn’t a significant difference between the representations’ impact on
subjects’ likelihood to reduce their electricity use 5%, subjects were more likely to
state that they would try to reduce their electricity by 15% after they saw coal and US
dollars than if they saw kilowatt-hours and carbon dioxide.

While these results support my hypothesis and allow us to draw some conclusions
regarding the effectiveness of certain representations in encouraging pro-
environmental behaviors, it would be short-sighted to design a system that only uses
coal or US dollars as electricity usage representations. Instead, we can use these re-
sults to suggest representations that might be most motivating but still allow end users
to decide for themselves which representations are most meaningful to them in their
endeavors to commit pro-environmental behaviors.

4 Conclusion

Socio-technical systems that foster mindfulness can benefit from the incorporation of
features that support end-user control. Providing users with the ability to customize
their experience can help them create new categories as well as analyze automatic
behaviors, two methods useful in cultivating mindfulness. The continued develop-
ment of EMPIRE as described above and subsequent evaluation of its use will help us
to better understand how and under what conditions socio-technical systems can bene-
fit mindful decision making.

References

1. Dayan, E., Bar-Hillel, M.: Nudge to nobesity II: Menu positions influence food orders.
Judgment and Decision Making 6(4), 333–342 (2011)

2. Geier, A., Wansink, B., Rozin, P.: Red Potato Chips: Segmentation Cues Can Substantially
Decrease Food Intake. Health Psychology (2012) (Advance online publication)

3. Rozin, P., Scott, S., Dingley, M., Urbanek, J.K., Jiang, H., Kaltenbach, M.: Nudge to nobesity
I: Minor changes in accessibility decrease food intake. Judgment and Decision Making 6(4),
323–332 (2011)

 Socio-technical Systems That Foster and Support Mindfulness Can Benefit 297

4. Cialdini, R.B.: Influence: Science and Practice, 5th edn. Prentice Hall, New Jersey (2008)
5. Schultz, P.W., et al.: The constructive, destructive, and reconstructive power of social

norms. Psychological Science: A Journal of the American Psychological Socie-
ty/APS 18(5), 429–434 (2007)

6. Geelen, D., et al.: Exploring the use of a game to stimulate energy saving in households.
Journal of Design Research 10(1), 102–120 (2012)

7. Kabat-Zinn, J.: Wherever you go, there you are: Mindfulness meditation in everyday life.
Hyperion (1995)

8. Johnson, E., Weber, E.: Mindful judgment and decision making. Annual Review of Psy-
chology 60, 53 (2009)

9. Langer, E.J.: Mindfulness. Addison-Wesley/Addison Wesley Longman (1989)
10. Dick, H., et al.: Empowering users to become designers: using meta-design environments

to enable and motivate sustainable energy decisions. In: Proceedings of the 12th Participa-
tory Design Conference: Exploratory Papers, Workshop Descriptions, Industry Cases,
vol. 2, pp. 49–52. ACM, Roskilde (2012)

11. Ekman, P., Friesen, W.: Constants across cultures in the face and emotion. Journal of Per-
sonality and Social Psychology 17(2), 124–129 (1971)

12. Frijda, N.: Emotions and Action. In: Manstead, A., Frijda, N., Fischer, A. (eds.) Feelings
and Emotions: The Amsterdam Symposium. Studies in Emotion and Social Interaction.
Cambridge University Press (2004)

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 298–303, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Workshop on EUD for Supporting Sustainability
in Maker Communities

Alexander Boden1, Gabriela Avram2, Irene Posch3,
Volkmar Pipek1, and Geraldine Fitzpatrick3

1 University of Siegen, Germany
{alexander.boden,volkmar.pipek}@uni-siegen.de

 2 University of Limerick, Ireland
gabriela.avram@ul.ie

3TU Vienna, Austria
geraldine.fitzpatrick@tuwien.ac.at, ireneposch@gmail.com

Abstract. Recently, there has been a proliferation of Do-It-Yourself (DIY)
communities that can be generally included in the larger all-encompassing
maker movement: Hackerspaces, FabLabs, Transition Town groups etc. Made
possible by the new horizons opened by digital fabrication and the Internet, the
maker movement has a great potential to foster sustainable living by supporting
innovation in this field, facilitating its appropriation and propagating its practi-
cal use. However, technology-driven maker communities are often perceived as
places for tech-savvy people and have difficulties to attract wider audiences. In
this workshop, we would like to discuss how can EUD concepts support sus-
tainability in maker communities by ensuring wider scale access to digital fab-
rication, supporting user innovation and leveraging knowledge sharing across
communities.

Keywords: maker communities, digital fabrication, end user development,
prosumption, culture of participation, sustainability.

1 Description

Doing things yourself, on your own initiative with your own hands and head involved
is probably one of the oldest and most natural activities of human nature. Parallel to
increasing technological advances, a culture of making things yourself—not just out
of pure necessity, but also for your own joy and fulfilment—has developed and
gained momentum starting in the second half of the 20th century until today. Recent
surveys from diverse countries around the world show that consumers spend a
significant portion of time and money to create and modify consumer products for
their own use. They demonstrate that do-it-yourself (DIY) is not just a marginal phe-
nomenon, but it is also of increasing economic and societal value. Users, as being
closest to the products they use and knowing best the needs and expectations associ-
ated with them, play an important role for advances and innovation, especially in
fields generally considered niches, and thus not pursued by big industries.

 Workshop on EUD for Supporting Sustainability in Maker Communities 299

In contrast to homemade production—which is rather focused on economic aspects
such as cost saving (in the sense of a “make or buy decision”)—DIY is about meeting
individual needs. Making in the new sense can be seen as an empowering experience
that is supported by new models of communication in communities, making it easier
(and socially recognized) to share self-made creations and related innovation. This
trend is very much connected to the communities of hobbyists and crafters that have
spawned the home computer industry. As the proliferation of digital means of con-
struction have enabled end user production and the appropriation of technologies
formerly reserved to specialized companies, the DIY movement has increased poten-
tial for innovation. Once they will become available to the general public, digital fab-
rication technologies are predicted to have an influence comparable to that of the
introduction of personal computers.

The maker movement has a great potential to foster sustainable living by support-
ing related innovations, fostering their appropriation and propagating their practical
use. Often though, technology-driven maker communities associated with FabLabs or
Hackerspaces are perceived as places for people who are knowledgeable about tech-
nology and have difficulties to maintain an open dialogue with the society at large.
Hence, attracting wider categories of public, as well as sharing innovations created by
users are still seen as challenges.

End User Development (EUD) as research field focuses on methods, techniques,
and tools that allow non-professionals to create, modify and extend technologies.
Tools for EUD include, for example, visual programming environments, mash-up
editors and service orchestration tools. EUD concepts can play a big role in support-
ing sustainability in maker communities by facilitating sustainable access to digital
fabrication, in order to support user innovation and leverage knowledge sharing
across communities. In this respect, we understand sustainability from multiple an-
gles:

• disseminating sustainable behaviour and lifestyles by supporting the diffusion of
related innovations from the maker culture to the society at large;

• improving innovation sustainability by supporting participation and knowledge
exchange across diverse communities and backgrounds;

• supporting diverse communities across the population to embrace emerging digital
technologies.

In particular, we believe that EUD research could bring a contribution at several dif-
ferent levels:

• At a technical level, EUD concepts can help to support the appropriation of DIY
by making it easier for non-professionals to create, modify or extend digital and
material artefacts in DIY projects.

• At a social level, EUD approaches can contribute to popularize DIY with the help
of social media in order to make local DIY initiatives more visible, provide new
opportunities for lurking and legitimate peripheral participation, and support
knowledge exchange and appropriation of related innovations, technologies and
ideas.

300 A. Boden et al.

• At an empirical level, EUD oriented ethnographic studies can contribute to the
understanding and analysis of DIY/maker communities practices in minute detail,
in order to get a better understanding of their practical needs and opportunities for
innovation.

During the workshop, we intend to discuss examples of DIY activities that are of
interest in the context of sustainability and End User Development. Related questions
include, but are not limited to:

• What are good examples of EUD and DIY tools that support sustainable innovation
or could be adapted in this respect?

• How can EUD principles be leveraged to include a more diverse user group, par-
ticularly across generations, cultural backgrounds and among people with different
levels of technical expertise?

• In the context of projects that address individual needs, how could more citizens
become aware and be attracted to use digital fabrication technologies? What are the
tools and infrastructure needed to achieve this?

• How can domestic activities constitute a trigger for establishing a sustainable use
of personal fabrication technologies? What potential lays in attracting new user
groups in order to reach inclusive participation and foster a broad discussion and
evaluation of challenges and opportunities?

• How can traditional crafts be integrated in the context of maker communities? How
can knowledge about crafts and traditional techniques be included, given that most
people possessing this type of knowledge are not amongst the usual users of digital
technologies?

• What tools are needed to anchor digital fabrication as a widely accepted possible
extension of current fabrication and making routines?

• What are the new production and consumption patterns developed through sharing
and collaboration by diverse groups of makers on a local and global scale? How
can these be extended to the context of repairing, extending the life cycle of exist-
ing products, recycling and upcycling?

• How can practitioners be supported in documenting their work in order to allow
knowledge sharing and diffusion of innovation? How could creative forms of
documenting be established to better fit the maker culture?

More information on the workshop can be found on our website at
http://eudforsustainability.wineme.fb5.uni-siegen.de/

2 Workshop Presentations

Hacking Sustainability: Broadening Participation through Green Hackathons.
Jorge L. Zapico, Daniel Pargman, Hannes Ebner, Elina Eriksson (Media Technology and
Interaction Design – MID, KTH Royal Institute of Technology, SE100 44 Stockholm,
Sweden).

 Workshop on EUD for Supporting Sustainability in Maker Communities 301

Abstract. Green Hackathon is an international series of coding events with sustain-
ability purpose. Developers, researchers, environmental practitioners, and anyone
interested, work for a limited and focused amount of time to create innovative soft-
ware solutions for sustainability. These events have explicitly invited broad spectra of
expertises besides technical ones. This article presents the experiences and tensions of
including these end users in a mostly technical oriented event, and discusses how end-
user development could be used for a more reflective practice empowering broad
participation and interdisciplinary collaboration in these events.

Generative Design Materials in DIY Digital Art Creation. Nicolai Brodersen Han-
sen, Kim Halskov (PIT & CAVI, Department of Aesthetics and Communication,
Aarhus University, Denmark).

Abstract. We intend to study the interplay between software tools and artefacts and
creativity. We do this through a case study of a community of DIY digital art creation
among hobbyists. Specifically we investigate how they, the so called “demo-sceners”
collaborate through the use of different design materials to create digital art and how
they in that process utilize their different skills, and outline how we intend to study
and present their work process at the workshop at IS-EUD.

End-User-Development for Smart Homes: Relevance and Challenges. Rémy
Dautriche, Camille Lenoir, Alexandre Demeure (PRIMA, INRIA, LIG, Universités de
Grenoble, France), and Joëlle Coutaz (IIHM, LIG, Universités de Grenoble, France).

Abstract. Ubiquitous computing is now mature enough to unleash the potential of
Smart Homes. The obstacle is no more about hardware concerns but lies in how in-
habitants can build, configure and control their Smart Home. In this paper, we defend
the idea that End-User-Development (EUD), which considers inhabitants as makers
rather than mere consumers, is an effective approach for tackling this obstacle. We
reflect on the lifecycle of devices and services to dis-cuss challenges that EUD system
will have to address in the Smart Home con-text: installation and maintenance, desig-
nation, control, development (including programming and testing), and sharing.

EUD@Smart Homes - Smart Refurbishment of Rented Apartments to Improve
Energy Efficiency. Timo Jakobi, Gunnar Stevens (University of Siegen, Human
Computer Interaction, Siegen, Germany), Tobias Schwartz (Fraunhofer FIT, Sankt
Augustin, Germany).

Abstract. The smart home of the future is typically researched in lab settings or
apartments that have been built from scratch. However, comparing the lifecycle of
buildings and information technology, it is evident that modernization strategies and
technologies are needed to empower residents to modify and extend their homes to
make it smarter. In this paper, we describe a case study about the deployment, adap-
tion to and adoption of tailorable home energy management systems in 7 private
households. Based on this experience, we want to discuss how hardware and software
technologies should be designed so that people could build their own smart home with
a high usability and user experience.

302 A. Boden et al.

If We Build It, Who Will Come? Considering the Who, What and Why of Web
EUD. Mary Beth Rosson (Center for Human-Computer Interaction/College of Infor-
mation Sciences and Technology, The Pennsylvania State University, University
Park, Pennsylvania 16802 USA).

Abstract. The increased access to online information, services and tools raises
many opportunities for everyday users to develop novel computational products.
However very few end users take the time to investigate and acquire skills in end-user
development (EUD), whether on the Web or elsewhere. In this brief paper, the author
draws from a series of inter-related projects to consider what it is that prompts a non-
programmer to invest time in novel technologies such as web development. Building
upon previous discussions of the Production Paradox (Carroll & Rosson, 1987) and
the Attention Investment Model (Blackwell, 2002), the author characterizes a space of
causal factors that include the activity situation, a person’s individual characteristics,
and the resources that are apparent to the user. Working within this framework, the
author summarizes findings from a series of related studies of Web EUD. The paper
argues that if we hope to engage a large and diverse population of everyday users in
the opportunities inherent in EUD, we must first understand a diverse landscape of
activity contexts, and use minimalist design techniques to both attract users’ interest
and support them in their Web EUD learning processes.

Sustainable DIY Technologies in the Service of Cultural Heritage Professionals.
Laura Maye (Interaction Design Centre, University of Limerick, Ireland).

Abstract. The paper presents a research project that aims to demonstrate how DIY
technologies can be used in the design and development of cultural heritage interac-
tive artefacts. Current digital interactive exhibits are usually created by technology
experts, with limited involvement of cultural heritage professionals. Because of the
high levels of technical knowledge required, it is almost impossible for curators to
create, re-configure or bring up-to-date such artefacts. Many interactive exhibits end
up only being used for demonstration purposes or punctual events and then never
again. However, DIY technologies are increasingly becoming easier for amateur and
novice users to use. Furthermore, developments in 3D printing and digital fabrication
have made it possible to print embedded digital circuitry and recycle used materials.
For these reasons, it should become possible for curators to create and adapt their own
exhibits with embedded digital materials. The aim of this research project (still in its
early stages) is to analyse how interactive exhibits can be created and adapted easily
by curators, using sustainable technologies.

3 Workshop Plan

The one day workshop will bring together a maximum of 20 participants. Our in-
tended audience primarily consists of researchers who are actively engaged in studies
of EUD in DIY contexts, but also of DIY enthusiasts and members of maker commu-
nities. We are encouraging a mix of practitioners, graduate students, new faculty and
established researchers to participate.

 Workshop on EUD for Supporting Sustainability in Maker Communities 303

The accepted papers will be made available to the participants in advance and dis-
cussants will be assigned to each paper. The morning session will include an introduc-
tion to the workshop objectives, followed by a working session where the discussions
will be based on the material provided by the participants. In the afternoon, we will
focus on the broad picture resulted, highlighting strengths and limitations of the mate-
rial presented. We will close the day with a session dedicated to outlining a list of
issues that need to be addressed by future research in the area.

4 Organizers

Alexander Boden has a background in Cultural Anthropology and has received his
PhD in Information Systems working at the intersection of HCI/CSCW and Software
Engineering. He is currently working as a post doc researcher at the University of
Siegen and is interested in topics such as supporting the appropriation of digital
fabrication technologies by non-professionals, and designing support systems for
distributed and co-located communities.

Gabriela Avram is lecturer in Digital Media and Interaction Design and senior re-
searcher at the Interaction Design Centre at the University of Limerick in Ireland.
Building on a CSCW and Knowledge Management background, her research cur-
rently focuses on mobile and local uses of Social Media, urban communities and fa-
cilitating technology adoption. She has an active involvement in the hackerspaces
community in Ireland, as well as in urban gardening and biodiversity groups.

Irene Posch is a lecturer and researcher with a background in Computer Science
and Media, and active member of the FabLab community. She previously worked on
making technology accessible in interactive experiences and exhibitions. Her current
research focus lies on the integration of current technological development into the
fields of art and craft as well as DIY culture and how this can be achieved in an aes-
thetic and personal fulfilling way.

Volkmar Pipek is a Professor with the Institute for Information Systems at the
University of Siegen, Germany, and chairs the board of trustees of the International
Institute for Socio-Informatics (IISI). His research focuses on arrangement and ac-
quirement of cooperative software systems in organisations, questions about commu-
nication based knowledge management as well as support of communities.

Geraldine Fitzpatrick heads the Institute for Design and Assessment of Technol-
ogy at the TU Vienna. Her research focuses on the intersection of social and computer
sciences to support social interaction/collaboration, with a particular interest in the
potential for new and emerging technologies such as mobile, wireless and sensor-
based technologies to support social and community engagement, motivation and
behaviour change.

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 304–309, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cultures of Participation in the Digital Age:
Empowering End Users to Improve Their Quality of Life

David Díez1, Anders I. Mørch2, Antonio Piccinno3, and Stefano Valtolina4

1 Universidad Carlos III de Madrid, Spain
ddiez@inf.uc3m.es

2 University of Oslo, Norway
anders.morch@intermedia.uio.no

3 Università degli Studi di Bari, Italy
antonio.piccinno@uniba.it

4 Università degli Studi di Milano, Italy
valtolin@dico.unimi.it

Abstract. The International Workshop on Cultures of Participation in the Digi-
tal Age - Empowering End Users to Improve their Quality of Life (CoPDA) fo-
cuses on how ICT can have an impact on “quality of life”, promoting new ways
of design that allow us to face these challenges.. The workshop brings together
contributions from researchers from a diverse range of interdisciplinary fields.
The aim is to establish a community of researchers and practitioners and facili-
tate the production of a coherent body of work related to this area.

Keywords: cultures of participation, digital living, end-user development, me-
ta-design, socio-technical systems.

1 Introduction

With the emergence of affordable computers and user interfaces that are increasingly
becoming more usable, useful, and engaging, computing has reached well beyond its
experimental days in engineering laboratories and into the homes and workplaces of
ordinary people (non professional computer users). New concerns and new concepts
come to the fore: digital literacy, digital divide, and digital living to name a few, it is
difficult to frame all the fundamental challenges taking place in society (e.g.: educa-
tion and learning, health, energy sustainability) without taking into account informa-
tion and communication technology (ICT). Moreover, in this digital age we should
think not only about efficiency and productivity, but also about how ICT can have an
impact on the “quality of life:”, promoting new ways of designing and using comput-
ers that allow us to face these challenges.

Cultures of participation (CP) is a key concept for understanding the transition, which
means to provide end-users with the means to actively participate in problems that are
personally meaningfully to them. An overall aim of CP is to apply collective knowledge
to address major problems facing our societies today. Although CP is not a novelty at
this point, its maturity is still far away, implying more research is needed. Examples of

 Cultures of Participation in the Digital Age 305

successful cultures of participation are OSS development and Wiki-based environments.
But even these systems have shortcomings, such as accumulation of irrelevant informa-
tion, lack of one coherent voice, and under/over consideration of some aspects of a
problem to be solved (e.g., usability aspects in free software). Therefore, a fundamental
challenge for CPs should be to conceptualize and create socio-technical environments
that not only support multiple stakeholders but also promise quality solutions and
contributions oriented toward achieving common goals.

The purpose of the workshop is to explore conceptual, methodological, and tech-
nological aspects of cultures of participation in their capacity to impact the quality of
life in the digital age. The following questions will be explored (but not limited to):

Conceptual

• How and to what extent can cultures of participation affect, positively or negative-
ly, end users’ quality of life?

• What are the strengths and weaknesses of cultures of participation for fostering
collaborative problem-solving activities?

• What does it mean to do EUD in large community and mass collaboration?

Methodological

• What are the methods to employ to study the activities of cultures of participation?
• How to support different levels of participation (e.g. interested outsiders, collabo-

rators, partial contributors, full contributors, meta-designers, etc.)?
• How to assess individual contributions in terms of contributing to a common goal?

Technological

• In what ways can EUD tools can support cultures of participation?
• What types of interactive environments can stimulate participation?
• What kind of technological platforms can support large community and mass col-

laboration EUD?

The workshop brings together researchers from a diverse range of interdisciplinary
fields, such as human-computer interaction, software engineering, artificial intelli-
gence, computer supported cooperative work and cognitive psychology. To facilitate
cross-fertilization between of latest research in the above areas, the workshop has
invited research posters in addition to academic papers.

2 Organization

Perspective participants were invited to submit an extended abstract and/or position
paper up to 500 words. The submissions were peer-reviewed for their innovation,
relevance to the workshop topics and their potential to generate interesting discus-
sions. Accepted position papers will be posted on the workshop website and the most

306 D. Díez et al.

interesting proposals will be invited to submit full papers to a special issue of an in-
ternational journal.

3 Organizers’ Background

David Díez is Assistant Professor at the Computer Science and Engineering Depart-
ment of Universidad Carlos III de Madrid. David Díez holds an MSc in Computer
Science and Technology (2007) and a PhD Thesis in Computer Science (2009) from
the Universidad Carlos III of Madrid. From 1998 to 2005, he worked as
software engineering and project manager for different multinationals companies.
Currently, he is member of the DEI –Interactive Systems research group. David’s
research interests are related to socio-technical systems design (STSD).

Anders Mørch is professor at InterMedia, University of Oslo, Norway. He received
his PhD in informatics from the University of Oslo and an M.S. in computer science
from the University of Colorado, Boulder. He developed educational software at
NYNEX Science and Technology Center, New York. His research interests are tech-
nology-enhanced learning and social media, collaboration and learning in virtual
worlds, end-user tailoring and evolutionary application development. Contact him at
http://www.uv.uio.no/intermedia/english/people/aca/andersm/

Antonio Piccinno is Assistant Professor at the Computer Science Department of
University of Bari "Aldo Moro". He is member of the Interaction, Visualization, Usa-
bility & UX (IVU) Lab. Since July 2001, after he got his laurea degree in Computer
Science, he has been working at the Department of Computer Science of University
of Bari, with different positions: research collaborator, fixed term researcher, lecturer,
and finally as assistant professor. In March 2005 he got the PhD in Computer Science
at the University of Bari. Antonio Piccinno’s research interests are in Human-
Computer Interaction, particularly on End-User Development, Visual Interactive Sys-
tems, Theory of Visual Languages, Adaptive Interfaces, Component-Based Software
Development, Multimodal and Multimedia Interaction.

Stefano Valtolina is Assistant Professor at the Computer Science (DI) Department
of Università degli Studi di Milano. He obtained his PhD in 'Informatics' from Un-
iversità degli Studi di Milano and an MSc in Computer Science from the same univer-
sity. His research interests include: Human-Computer Interaction (HCI), Creative
Design, as well as studies in semantic, social and cultural aspects of information tech-
nologies with an emphasis on the application of this knowledge to interaction design.
Stefano Valtolina’s research activity is directed toward the study of aspects of Human
Computer Interaction and Database Management investigating methods, interactive
systems, and tools for Knowledge Management and Fruition.

4 Program Committee

Ignacio Aedo (Universidad Carlos III de Madrid, Spain)
Barbara Rita Barricelli (University of West London, UK)
Maria Francesca Costabile (Università degli Studi di Bari, Italy)
Paloma Diaz (Universidad Carlos III de Madrid, Spain)

 Cultures of Participation in the Digital Age 307

Gerhard Fischer (University of Colorado at Boulder, USA)
Daniela Fogli (Università degli Studi di Brescia, Italy)
Elisa Giaccardi (Delft University of Technology, Netherlands)
Thomas Herrmann (Ruhr-University of Bochum, Germany)
Monica Maceli (Drexel University, USA)
Maristella Matera (Politecnico di Milano, Italy)
Volker Wulf (University of Siegen, Germany)

5 Accepted Papers

The full versions of the position papers accepted to the workshop are available to
download as PDFs at http://homes.di.unimi.it/cslab/copda. The abstracts of the papers
are summarized here:

Is More More or is Less More: Exploring Frames of Reference for Quality of Life in
the Digital Age, by Gerhard Fischer from the University of Colorado at Boulder USA.
The paper raises questions regarding how technology can and should support quality
of life. He poses a dilemma between the increasing tendency of technology and our
society to promote am ever increasing utilitarian lifestyle, always aiming for more
(more publications, more apps, more Facebook friends, etc.), and on the other a socie-
ty in which technology shields is from unwanted information and helps us to focus
our lives on our interests, passions and dreams.

Using Participatory Observation in End-User Development Research: A Study of
Knowledge Seeking and Contribution in an EUD Support Community. by Henri Kor-
vela from Åbo Akademi, Finland. This paper proposes participatory observation as a
method to study EUD in large communities. With this method the researcher is a full
member of the community and therefore also has full access to information in the
environments and can explain findings with first hand insight. There are both benefits
and drawbacks associated with this approach, which will be discussed. It is argued
benefits will outweigh shortcomings when a study is carefully designed.

HCI Research in Group Recommenders for Lifestyle Change, by Julian Koschwitz
and Francesco Ricci from Free University of Bozen-Bolzano, Italy. Group recom-
mender systems (GRS) aim at recommending the right items to a group of people in
order to satisfy them as a whole, on the basis of individual preferences. In this paper,
the authors aim at discussing the main aspects of the interaction design of a GRS such
as a living space and a family home, which recommends activities and items for a
healthy lifestyle. The authors considered an application that collects preferences from
the group members in order to provide recommendations for shared activities, social
entertainment as well as food.

Open Design and Medical Products: Irreconcilable Differences, or Natural Bedfel-
lows? By Matt Dexter, Sheffield Hallam University, United Kingdom. This position
paper highlights the complex nature of involving a community of people with Cystic
Fibrosis during the design and development of medical products through open design

308 D. Díez et al.

strategies. Specifically the author describes, through a real test, important aspects of
the open design such as: the role of the community of practitioners, the space in
which they meet and the vehicle by which ideas are disseminated.

Learning from the Learners: MOOCs and Cultures of Participation, by Monica Ma-
celi, Drexel University, USA. The author outlines as MOOCs (Massive Open Online
Courses) provide conceptual challenges in designing the large-scale and experimental
models of social education. Due to the character of such courses and the large number
of students involved, their success relies on meta-design of social-technical systems
based on cornerstone concepts such as: cultures of participation, mutual learning
emergent behavior and reflection strategies.

A trajectory from tools to sustainable learning and community awareness, by John
Carroll, The Pennsylvania State University, USA. More than 20 years of works has
allowed the author to have a broad view of large-scale deliberation and ideation. From
user interfaces toolkits to discussion forum tools, passing through the study of com-
munity awareness, ,the author highlight the existence of needs and opportunities for
end-user tool development. Particularly, for technological platforms that support
communities activities.

Towards “non-disposable” software architectures for participation, by Aurélien
Bénel, Pascal Salembier, and Jean-Pierrer Cahier, Université de Technologie Troyes,
France. Based on the knowledge acquired through the performance of different empir-
ical studies in a wide span of both professionals and non-professional settings, author
propose a software platform oriented to capitalize the experience gained on each de-
sign project. The paper presents a set of lessons related to the elicitation process and
the semiotic nature of “topics”.

Methods for Researching Cultures of Participation: The Role of Social Network Analysis
and the Mixed Methods Approach, by Renate Andersen and Anders Mørch, University of
Oslo, Norway. This paper argues for a “mixed methods approach” in empirical research
of cultures of participation. They suggest combining (quantitative) social network analy-
sis with (qualitative) interaction analysis in order for the former to provide a rationale for
data selection of the latter. When the aim is to understand large groups (>100), selecting a
small sample (<10), need to be combined with scientific techniques to argue for data
reduction without loss of validity.

Digital Cultural Heritage and Living Labs, by Stefano Valtolina1, Barbara Rita Barri-
celli2, Michele Sciarabba1, 1Università degli Studi di Milano, Italy and2University of
West London, UK. This position paper aims to highlight the importance of a strict
collaboration among public administrations, enterprises and citizens for preserving
and promoting Cultural Heritage. The authors claim that information systems can no
longer used only for archival and management purposes but for supporting collabora-
tive and distributed participation in a continuous research process for fostering cultur-
al and historical awareness in current and future generations of citizens. In this way

 Cultures of Participation in the Digital Age 309

the citizens can be actively involved as experts of the history and the culture of the
places they grew up in and where they live.

Toward A Successful Culture of Participation in Emergency Management, by David
Díez, Paloma Díaz, and Ignacio Aedo, Universidad Carlos III de Madrid, Spain.
Emergency Management has gradually been evolving from a top-down model, fo-
cused on professionals and governmental organizations, to a network context,
oriented to involve citizens and community members. Supporting this new reality
requires exploring different technological artifacts that promotes the effective collabo-
ration between citizens and official agencies. Crowdsourcing models, meta-design
guidelines, co-design techniques, Web-bases platforms, and new interactive technolo-
gies are necessary mechanism to transform emergency management increasing the
involvement of citizens.

Fostering Cultures of Participation through Composition of Service-Based Interactive
Spaces, by Carmelo Ardito1, Maria Francesca Costabile1, Giuseppe Desolda1, Rosa
Lanzilotti1, Maristella Matera2, Antonio Piccinno1, Matteo Picozzi2, 1Università di
Bari, Italy, 2Politecnico di Milano, Italy. The paper presents an ongoing research
aimed at investigating models, paradigms and technologies for supporting the
lightweight construction of Personal Information Spaces (PISs) by users who are not
professional developers. PISs are interactive work-spaces where people can manipu-
late the retrieved content to tailor it to their own personal needs and possibly create
new content and services to be also shared with others. The proposed platform allows
end users to retrieve contents from heterogeneous sources and use them to compose
their PISs with the means to integrate data, services and tools, playing an active role
in solving their every-day problems.

Supporting User-Designers Collaboration in Open-Source Software Projects, by
Fabiana Pedreira Simões, Simone Diniz Junqueira Barbosa. Informatics Department,
PUC-Rio. Based on the knowledge acquired in studying Open Source Software (OSS)
projects, the authors explain the opportunity provided by OSS development practices
at anyone, user or contributor, to report HCI-related bugs more efficiently. In fact,
involving end-users through user-reported HCI incidents in OSS development is one
potential approach to overcome HCI problems in OSS projects through which users
can make useful contributions without major commitments of effort and learning.

Acknowledgment. We would like to thank the organizers of the IS-EUD 2013 confe-
rence, for giving us the opportunity to organize our workshop. We would also like to
acknowledge the help and professional attitude of the Program Committee members
for their reviews within a short deadline.

Author Index

Aghaee, Saeed 260
Andersen, Renate 235
Ardito, Carmelo 40
Arellano, Cristóbal 241
Atwood, Michael E. 9
Avram, Gabriela 298

Bietz, Matthew J. 56
Boden, Alexander 223, 298
Booth, Tracey 25
Bottoni, Paolo 40

Cabitza, Federico 254
Carroll, John M. 137
Celentano, Augusto 229
Christiansen, David Raymond 266
Costabile, Maria Francesca 40

Desolda, Giuseppe 40
Dı́az, Oscar 241
Dı́ez, David 304
Dwivedi, Vishal 120, 284

Ehn, Pelle 8

Fernandes, José Maria 120
Fischer, Gerhard 217
Fitzpatrick, Geraldine 298
Floch, Jacqueline 72
Fogli, Daniela 153, 201
Fry, Christopher 247

Garlan, David 120
Gärtner, Johannes 272
Gesso, Iade 254

Herrmann, Thomas 169

Kanstrup, Anne Marie 185
Khan, Mohammad Ullah 72
Koehne, Benjamin 56

Lauesen, Soren 104
Lieberman, Henry 247

Maceli, Monica 9
Matera, Maristella 40
Maurizio, Marek 229
Mørch, Anders I. 235, 278, 304
Musliu, Nysret 272

Pantazos, Kostas 104
Pattanaro, Giulio 229
Pautasso, Cesare 260
Piccinno, Antonio 40, 153, 304
Picozzi, Matteo 40
Pipek, Volkmar 298
Posch, Irene 298

Redmiles, David 56
Rosson, Mary Beth 1

Sætre, Rune 72
Schmerl, Bradley 120
Sestoft, Peter 88
Simone, Carla 254
Slany, Wolfgang 272
Sørensen, Jens Zeilund 88
Stav, Erlend 72
Stevens, Gunnar 223
Stumpf, Simone 25

Tetteroo, Daniel 289

Valtolina, Stefano 304
van der Borg, Jan 229
Vatrapu, Ravi 104
Velasco-Elizondo, Perla 120
von Rekowski, Thomas 223

Zhu, Li 169, 278
Zietz, Jason 293

	Preface
	Organization
	Table of Contents
	Part I: Keynote Speeches
	Evolutionary Design of a Developmental Learning Community
	1 Introduction
	2 Evolution of the wConnect Online Community System
	3 Design Implications for Developmental Community Systems
	3.1 Open Tool Sets That Are Rich, but Extensible on Multiple Levels of Abstraction
	3.2 Member Profiles That Encode and Mediate Developmental Roles
	3.3 Emulation of Familiar User Interaction Styles
	3.4 Authenticated Access to a Private Space for Developmental Interactions
	3.5 Activities That Invite Relaxation and Recreation in Parallel with Development

	4 Final Words
	References

	The End of the User – The Computer as a Thing

	Part II: Long Papers
	End User Development in Theory and Practice
	“Human Crafters” Once again: Supporting Users as Designers in Continuous Co-design
	1 Introduction
	1.1 The Challenge to Today’s Designers

	2 Perspectives on Designing-in-Use
	2.1 Guidelines for Designing-in-Use

	3 Research Study Design
	3.1 Laboratory Study
	3.2 Design Exercise – The ipl2

	4 Results
	4.1 Laboratory Study
	4.2 ipl2 Design Exercise

	5 Discussion
	5.1 Summary of Findings

	6 Conclusion
	References

	End-User Experiences of Visual and Textual Programming Environments for Arduino
	1 Introduction
	2 Related Work
	3 Study Design
	4 Results
	4.1 Effects on End-User Programming Efficacy
	4.2 Effects on User Experience
	4.3 Learning Barriers

	5 Discussion and Future Work
	6 Conclusion
	References

	Enabling End Users to Create, Annotate and Share Personal Information Spaces
	1 Introduction
	2 Composition of Personal Information Spaces by End Users
	3 PISs in the Cultural Heritage Domain
	4 PIS Annotation
	4.1 Sharing PISs and Annotations
	4.2 Scenarios for PIS Annotation and Sharing
	4.3 The Prototypes

	5 Related Work
	6 Conclusion and Future Work
	References

	Identity Design in Virtual Worlds
	1 Introduction
	2 Towards Online Identity
	2.1 Sociological and Psychological Identity
	2.2 Mediation of Identity
	2.3 Identity in Virtual Worlds

	3 Method
	4 Identity Design in LOTRO
	4.1 Initial Character Creation
	4.2 Kinships and Social Identity
	4.3 Identity Presentation

	5 Discussion
	5.1 A Socio-technical Model of Identity Formation
	5.2 Designing Identity in Virtual Worlds and EUD Contexts
	5.3 Limitations and Open Questions

	6 Conclusions
	References

	End User Development Technology
	Using Meta-modelling for Construction of an End-User Development Framework
	1 Introduction
	2 Related Work
	3 Research Approach
	4 Overall Architecture
	5 Framework Realization Using Meta-modelling
	5.1 EMF at a Glance
	5.2 The UbiSys Meta-models
	5.3 UbiCompPro Implementation
	5.4 UbiComposer Implementation
	5.5 UbiCompRun Implementation

	6 Application Example: City Explorer
	7 Discussion
	8 Conclusion and Further Work
	References

	Sheet-Defined Functions: Implementation and Initial Evaluation
	1 Introduction
	2 Sheet-Defined Functions
	3 Interpretive Implementation
	4 Compiled Implementation
	5 Evaluation Conditions
	6 Some Example Functions
	7 Case Study: Financial Functions
	8 Evaluation
	9 Related Work
	10 Perspectives and Future Work
	11 Conclusion
	References

	End-User Development of Information Visualization
	1 Introduction
	2 End-User Development
	3 Information Visualization
	4 Users in Visualization Development
	5 InfoVis Development Tools - A Survey
	6 Limitations
	7 Conclusion
	References

	Resolving Data Mismatches in End-User Compositions
	1 Introduction
	2 Background and RelatedWork
	3 Approach
	3.1 Mismatch Detection Phase
	3.2 Repair Finding Phase
	3.3 Repair Evaluation Phase

	4 Example
	4.1 The Neuroscience Domain
	4.2 Workflow Composition Scenario
	4.3 DataMismatch Detection and Resolution

	5 Discussion and Evaluation
	6 Conclusions and Future Work
	References

	Collaboration in End User Development
	Co-production Scenarios for Mobile Time Banking
	1 Introduction
	2 Scenarios for Mobile Time Banking
	3 Co-production Scenarios
	4 Institutionalizing Co-production
	5 Discussion and Implications
	References

	Co-evolution of End-User Developers and Systems in Multi-tiered Proxy Design Problems
	1 Introduction
	2 Background and Related Work
	3 Multi-tiered Proxy Design Problems
	3.1 Cognitive Disability Support
	3.2 Cultural Heritage
	3.3 Home Automation
	3.4 E-Government
	3.5 Electronic Patient Record

	4 The ICE$^ 2$ Model
	5 Addressing Multi-tiered Proxy Design Problems
	5.1 The Meta-design Phase
	5.2 The Design Phase
	5.3 The Use Phase

	6 Discussion
	7 Conclusion
	References

	Meta-design in Co-located Meetings
	1 Introduction
	2 Mikiwiki
	2.1 The Hive-Mind Space Model
	2.2 Deriving Features of the MikiWiki from the HMS-Model
	2.3 Nuggets

	3 A Case Study
	3.1 Environment Settin ng: Features of the Modlab
	3.2 Methodology
	3.3 Participants
	3.4 Design Phases

	4 Selected Findings: Creative Interaction
	5 Summary and Implications for Design
	References

	Designed by End Users: Meanings of Technology in the Case of Everyday Life with Diabetes
	1 Introduction
	2 Design as Working across Boundaries
	3 ICT for Living with Diabetes – Boundary Challenges
	3.1 Boundaries of Individual and Cooperative Practice
	3.2 Boundaries of Clinical and Everyday Life Settings
	3.3 Boundaries of Illness and Identity
	3.4 Coherent Connections between Objects and Context

	4 Engagement in Boundary Relations – Concluding Remarks
	References

	Cultures of Participation in Community Informatics: A Case Study
	1 Introduction
	2 Related Work
	3 Supporting Driver Training: First Design Cycle
	3.1 User Profile and Task Analysis
	3.2 Data and Functional Analysis
	3.3 Design
	3.4 Evaluation

	4 Fostering Cultures of Participation: Second Design Cycle
	4.1 Meta-design
	4.2 Towards a Rich Ecology of Participation
	4.3 Encouraging Social Creativity
	4.4 Evaluation

	5 Discussion and Conclusion
	References

	Part III: Short Papers
	End User Development in Theory and Practice
	End-User Development: From Creating Technologies to Transforming Cultures
	1 Introduction
	2 EUD: From Cre eating Technologies to Transforming Cultur res
	3 Frameworks and Models for EUD as a Transformational Culture
	4 Application: “Courses-as-Seeds”
	5 New Discourses and Design Trade-Offs
	6 Conclusions
	References

	Objects-to-think-with-together
	1 Introduction
	2 The Social Turn in Constructionist Learning
	2.1 Providing Objects-to-think-with-together
	2.2 Bridging the Gulf between the Individual and the Social Construction

	3 Discussion and Conclusion
	References

	End-User Development in Tourism Promotion for Small Towns
	1 Introduction
	2 System Architecture
	3 Implementation
	4 Discussion
	References

	Get Satisfaction: Customer Engagement in Collaborative Software Development
	1 Introduction
	2 Artifact Mediation
	3 The Case
	4 Methods
	5 Data and Findings
	6 General Discussion and Directions for Further Work
	References

	End User Development Technology
	Lightweight End-User Software Sharing
	1 Introduction
	2 End-User Software and Commercial Software: Differences on Sharing
	3 Implications for Software Sharing
	4 Sharing in Sticklet
	5 Related Work and Conclusions
	References

	Decision-Making Should Be More Like Programming
	1 Introduction
	2 The Analogy between Deliberation and Programming
	2.1 Points and Point Types
	2.2 Assessments
	2.3 Justify’s Computational Model Is Like a Spreadsheet
	2.4 Programming Conc cepts and Justify Concepts

	3 A More Substan ntial Example: A Program Committee Meeting
	3.1 Papers Reviewed b y External Reviewers
	3.2 Program Committe ee Discussion
	3.3 Categories

	4 Usability Evalua ation
	4.1 Experimental Method
	4.2 Experimental Results

	5 Related Work
	References

	Back to the Future of EUD: The Logic of Bricolage for the Paving of EUD Roadmaps
	1 Introduction
	2 Toward a Logic of Bricolage for EUD Systems
	3 Concluding Remarks
	References

	End User Development in Technology and Society
	Guidelines for Efficient and Effective End-User Development of Mashups
	1 Introduction
	2 NaturalMash: A Natural Mashup Tool
	3 End-User Development of Mashups: Guidelines
	4 Related Work
	5 Conclusion
	References

	Software Development for the Working Actuary
	1 Introduction
	2 Actuarial Theory
	3 Actulus Modeling Language (AML)
	4 Future Work
	References

	Automated Test Case Generation in End-User Programming
	1 Introduction
	2 Methodology
	3 Preliminary Experiments
	4 Conclusions
	References

	Component-Based Design and Software Readymades
	1 Introduction
	2 Vision of Component-Based Design
	3 Component-Based Design of Software Applications
	3.1 Design by Composition
	3.2 Design by Redesign

	4 Software Readymade as a Theoretical Concept
	5 Tailorable Autonomous Software Components
	5.1 Application Units
	5.2 Nuggets

	6 General Discussion and Directions for Further Work
	References

	Part IV: Doctoral Consortium
	End User Architecting
	1 Research Problem
	2 Research Approach
	3 Concluding Remarks and Future Research
	References

	TagTrainer: A Meta-design Approach to Interactive Rehabilitation Technology
	1 Introduction
	2 Theoretical Background
	3 Research
	4 Results and Future Steps
	5 Expected Contributions
	References

	Socio-technical Systems That Foster and Support Mindfulness Can Benefit from End-User Control Mechanisms
	1 Introduction and Theoretical Background
	2 Research Approach
	3 Results
	4 Conclusion
	References

	Part V: Workshops
	Workshop on EUD for Supporting Sustainability in Maker Communities
	1 Description
	2 Workshop Presentations
	3 Workshop Plan
	4 Organizers

	Cultures of Participation in the Digital Age: Empowering End Users to Improve Their Quality of Life
	1 Introduction
	2 Organization
	3 Organizers’ Background
	4 Program Committee
	5 Accepted Papers

	Author Index

