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Abstract. The accurate prediction of the elastic modulus of concrete can be 
very important in civil engineering applications. We use gene expression 
programming (GEP) to model and predict the elastic modulus of normal-
strength concrete (NSC) and high-strength concrete (HSC). The proposed 
models can relate the modulus of elasticity of NSC and HSC to their 
compressive strength, based on reliable experimental databases obtained from 
the published literature. Our results show that GEP can be an effective method 
for deriving simplified and precise formulations for the elastic modulus of NSC 
and HSC. Furthermore, the comparison study in the present work indicates that 
the GEP predictions are more accurate than other methods.  
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1 Introduction 

In many civil engineering applications, to estimate the material properties such as 
elastic modulus is very important to meet design requirements. For example, the 
elastic modulus of normal and high strength concrete is a key parameter in structural 
engineering, and this parameter helps to determine the static and time-dependent 
deformation and system behaviour. It is also related to the assessment of other key 
processes such as creep, shrinkage, crack propagation and control in both reinforced 
concrete and prestressed concrete [1,2]. From the slope of a stress-strain curve of a 
given concrete material, we can estimate the elastic modulus of the sample.  

Despite its importance, the elastic modulus is not usually measured in situ as it is 
time-consuming and expensive. The common practice is to estimate it using empirical 
relationships, based on various codes of practice. Such models often link the elastic 
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modulus with compressive strength, which essentially eliminate the need for going 
through laborious and time-consuming direct measurements from load-deformation 
curve [2, 3]. 

In recent years, techniques such as pattern recognition systems have received much 
attention in civil engineering applications. These systems are trained based on 
empirical data and thus can extract various discriminators. Loosely speaking, in the 
context of engineering applications, Artificial Neural Networks (ANNs), Fuzzy Logic 
(FL), Adaptive Neuro Fuzzy Inference System (ANFIS), and Support Vector Machine 
(SVM) can all be referred to as pattern recognition methods. Not surprisingly, these 
techniques have been used in predicting the elastic modulus of normal and high 
strength concrete (NSC and HSC) [4-6]. Although ANNs, FL, ANFIS, and SVM are 
successful in prediction, they cannot produce explicit equations for predictions, and 
thus limiting their usage.  

In this paper, we present an alternative approach to produce explicit equations for 
elastic modulus of concrete materials by using genetic programming (GP), and this 
partly overcomes the limitations of ANNs, FL, ANFIS, and SVM for this type of 
applications. To achieve this goal, we investigate a relatively new variant of GP, 
namely gene expression programming (GEP) [7] that have been used to solve civil 
engineering applications such as concrete modeling [2,8,9]. In our predictions and 
model formulation, we have used reliable databases of previously published test 
results. A comparative study is carried out between the results obtained by GEP and 
those obtained from the buildings codes [10-13], compatibility aided [14, 15], FL [4], 
and ANN [5] models. The rest of the paper is organized as follows: Section 2 
provides a brief description of the gene expression programming. In Section 3, a 
detailed study of model prediction of concrete strength and parameters using GEP is 
presented. Further, Section 4 provides the performance comparison and analysis and 
finally we draw brief conclusions in Section 5. 

2 Gene Expression Programming 

Genetic programming is a branch of artificial intelligence techniques that creates 
computer programs to solve a problem by mimicking the evolution of living or 
biological organisms [16]. In essence, the main aim of this method is to use inputs and 
their corresponding output data samples so as to create a computer program that 
connects them with the minimum fitting or prediction errors. The major difference 
between GP and genetic algorithms (GA) is the way of representing the solutions. In 
GA, a solution is represented by a string of numbers, either binary or real, while in  
the classical GP, solutions are represented as computer programs in terms of tree 
structures and are the expressed in a functional programming language (such as LISP) 
[2, 8]. In GP, a random set or population of individuals (computer programs) are 
created and evolved in an iterative manner to achieve sufficient diversity. A 
comprehensive description of GP can be found in Koza (1992) [16]. GEP is a new 
variant of GP first proposed by Ferreira [17]. GEP has five main components: 
function set, terminal set, fitness function, control parameters, and termination 
condition. GEP uses a fixed length of character strings to represent solutions in a 
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domain of interest, which are then expressed as parse trees with different sizes and 
shapes. These trees are called GEP expression trees (ET). A main advantage of the 
GEP technique is that its creation of genetic diversity in solution is simplified and 
carried out using genetic operators that work at the chromosome level. In GEP, 
individuals are selected and copied into the next generation according to their fitness 
by the so-called roulette wheel sampling technique, together with elitism. This 
essentially guarantees the survival and cloning of the best individual to the next 
generation, which may speed up the overall convergence rate. Variations in the 
population are introduced by applying single or several genetic operators on selected 
chromosomes, and these genetic operators include crossover, mutation and rotation 
[7, 18]. The GEP algorithm has four main steps until it reaches one of the stop criteria 
[9, 17]: 

I. Randomly generating the fixed-length chromosomes as initial population. 
II. Expressing chromosomes as expression trees and evaluating fitnesses. 

III. Selecting the best individuals according to their fitnesss to reproduce with 
modification. 

IV. Repeating the steps II an III until a termination condition is reached. 

3 GEP-Based Modelling of Elastic Modulus of NSC and HSC 

The main goal of this study is to obtain the prediction equations for elastic modulus 
(Ec) of NSC and HSC in terms of compressive strength (fc) in the following generic 
form: 

( ) ffE cc =
 

(1) 

Hence, there is only one parameter that has been used for the GEP models as the input 
variable. Using reliable databases for the NSC and HSC, two different GEP-based 
formulas for the elastic modulus of NSC and HSC can be obtained. In this study, 
basic arithmetic operators and mathematical functions are utilized to obtain the 
optimum GEP models. The actual number of generation depends on the number of 
possible solutions and complexity of the problem. However, it must be set properly 
before the runs. A large number of generations has to be tested so as to find the 
models with minimum errors. The program is run iteratively until there is no longer 
significant improvement in the performance of the models, or a specified number of 
iterations is reached. The values of the other parameters are  selected, based on some 
previously suggested values [7, 18] or determined by a trial and error approach. For 
the GEP-based analysis, we adopted the computer software known as GeneXproTools 
[19]. The best GEP model is chosen on the basis of a multi-objective strategy as 
below: 

i. The simplicity of the model, although this is not a predominant factor. 
i. The goodness of the best fit on the training set of data. 
iii. The best fitness value on a test set of unseen data. 

The first objective can be controlled by the user through the parameter settings (e.g., 
head size or number of genes), while for the other two objectives, the following 
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objective function (Obj) is constructed as  a  measure  of  how  well  the  model fits 
the experimental data [2].  The selection criterion of the best GEP model is based on  
the minimization of the following function: 

2 2

2Train Test Train Test Test

All Train All Test

N N MAE N MAE
Obj

N R N R

 −= + 
 

 (2) 

where NTrain, NTest and NAll are the numbers of training, testing and whole, 
respectively, of data. R and MAE are the correlation coefficient and mean absolute 
error, respectively. The above objective function has taken into account the changes 
of R and MAE together. Higher R values and lower MAE values result in lower Obj 
and, consequently, corresponds to a more precise model. In addition, the above 
function has also taken into account the effects of different data divisions between the 
training and testing data. 

3.1 Experimental Database 

The experimental database of previously published test results consist of 89 and 70 
test results for the elastic modulus of HSC and NSC, respectively [7]. Descriptive 
statistics of the variables used in the model development are given in Fig. 1.  

    

Fig. 1. Descriptive statistics of the variables 

For the analysis, the data sets have been divided into training and testing subsets. 
The training data are applied in the learning process via genetic evolution whereas the 
validation data were used to measure the prediction capability of the obtained models 
on data that played no role in building the models. Out of 89 data sets for HSC, 69 
values were taken for training of the GEP algorithm and the remaining 20 values are 
used for the testing and prediction. For NSC, 57 values are taken for the training 
process and the remaining 13 values are used for testing of the models. Out of a the 
total 159 data sets for HSC and NSC, 126 values were used for the training, 33 values 
were used for the testing of the generic model for both HSC and NSC. From these 
simulation, training and multiple runs, the main results can be summarized in the 
following sections. 
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3.2 Explicit Formula for Elastic Modulus of HSC and NSC 

The GEP-based formulation of the Ec of HSC in terms of fc is as given below: 

( )277 3
, ++= cGEPc fE  (3) 

This proposed model for the Ec of HSC gives a value of 5.462 (Obj=5.462). The 
expression tree of the above formulation is given in Fig. 2. The comparisons of the 
GEP predicted values against experimental elastic modulus of HSC are shown in  
Fig. 3. 

 

Fig. 2. Expression tree for Ec of HSC (d0 = fc) 

 

Fig. 3. Predicted versus experimental Ec of HSC using the GEP model 

The GEP-based formulation of the Ec of NSC in terms of fc can be written as 

3 875 2100c ,GEP cE f ,= −  (4) 
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which yields an Obj value of 7.841. The expression tree of the above formulation is 
given in Fig. 4. Comparisons of the GEP predicted values against experimental elastic 
modulus of NSC are shown in Fig. 5. 

 

Fig. 4. Expression tree for Ec of HSC and NSC (d0 = fc) 

 

Fig. 5. Predicted versus experimental Ec of NSC using the GEP model 

4 Performance Analysis  

Table 1 shows the prediction performance of the GEP models, Iranian (NBS) [10], 
American (ACI 318-95) [11], Norwegian (NS 3473) [12], and Turkish (TS 500) [13] 
codes, two compatibility aided model [14, 15], FL [6], and ANN [7] models for the Ec 
of NSC and HSC, respectively. It can be clearly seen from this table that the proposed 
GEP models provide more accurate predictions than the available codes and models 
for the elastic modulus of HSC and NSC. However, the exception is the FL and ANN 
models for HSC provide better results than the GEP models.  
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Table 1. Comparisons between the GEP models and other models in the literature 

HSC  NSC 

Model MAE (%) R  Model  MAE (%) R 
FL [6] 0.0368 0.6130  FL [6] 0.1031 0.5536 
ANN [7] 0.0365 0.6354  ANN [7] 0.1032 0.5151 
ACI [11] 0.1808 0.6024  ACI [11] 0.1327 0.5784 
NS [12] 0.2124 0.5916  NBS [10] 0.1057 0.5719 
[14] 0.0412 0.5577  TS [13] 0.1411 0.5693 
[15] 0.1354 0.6002  [15] 0.1028 0.5839 
GEP 0.0374 0.6005  GEP 0.0982 0.5795 

Numerically, although the ANN and FL models have a good performance, they do 
not give any explicit function or formula. ANN has only final synaptic weights to 
obtain the outcome in a parallel manner. The determination of the fuzzy rules in FL is 
also a non-trivial task [8]. In addition, the ANN and FL approaches are appropriate to 
be used as a part of a computer program and may not be suitable for practical 
calculations such as in situ applications.   

5 Conclusion 

We have adopted a relatively new technique, GEP, to obtain best-fit equations for 
predicting the elastic modulus of HSC and NSC. Two design formulas for the elastic 
modulus have been obtained via GEP using a reliable database of previously 
published elastic modulus test results. The database is used for the training and testing 
of the prediction models. The GEP models can indeed give reliable estimations of the 
elastic modulus of HSC and NSC. The obtained formulas and proposed approach can 
outperform the other existing models in nearly all cases. In addition to the advantages 
of the acceptable accuracy, the GEP-based prediction equations are really simple to 
use, and can thus be used reliably for practical pre-planning and pre-design purposes 
by simple calculations. Such simple models for estimating elastic moduli are 
advantageous due to the demand in carrying out destructive, sophisticated and time-
consuming laboratory tests. Further studies can focus on the extension of the proposed 
approach to model prediction equations for other time-consuming tasks and key 
parameters in engineering applications with reliable databases. 
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