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Preface

This book and its companion volume, LNCS vols. 7928 and 7929, constitute the
proceedings of the 4th International Conference on Swarm Intelligence (ICSI
2013) held during June 12–15, 2013, in Harbin, China. ICSI 2013 was the
fourth international gathering in the world for researchers working on all as-
pects of swarm intelligence, following the successful and fruitful Shenzhen (ICSI
2012), Chongqing (ICSI 2011), and Beijing events (ICSI 2010), which provided a
high-level academic forum for the participants to disseminate their new research
findings and discuss emerging areas of research. It also created a stimulating
environment for the participants to interact and exchange information on future
challenges and opportunities in the field of swarm intelligence research.

ICSI 2013 received 268 submissions from about 613 authors in 35 countries
and regions (Algeria, Australia, Austria, Bangladesh, Bonaire Saint Eustatius
and Saba, Brazil, Canada, Chile, China, Czech Republic, France, Germany, Hong
Kong, India, Islamic Republic of Iran, Italy, Japan, Republic of Korea, Malaysia,
Mexico, Pakistan, Palestine, Romania, Russian Federation, Saudi Arabia, Sin-
gapore, South Africa, Spain, Sweden, Switzerland, Chinese Taiwan, Thailand,
Tunisia, Turkey, UK, USA) across six continents (Asia, Europe, North Amer-
ica, South America, Africa, and Oceania). Each submission was reviewed by at
least two reviewers, and on average 2.5 reviewers. Based on rigorous reviews by
the Program Committee members and reviewers, 129 high-quality papers were
selected for publication in this proceedings volume with an acceptance rate of
48.13%. The papers are organized in 22 cohesive sections covering all major
topics of swarm intelligence research and development.

As organizers of ICSI 2013, we would like to express sincere thanks to Harbin
Engineering University, Peking University, and Xian Jiaotong-Liverpool Univer-
sity for their sponsorship, as well as to the IEEE Computational Intelligence So-
ciety, World Federation on Soft Computing, and International Neural Network
Society for their technical co-sponsorship. We appreciate the Natural Science
Foundation of China for its financial and logistic support. We would also like to
thank the members of the Advisory Committee for their guidance, the members
of the International Program Committee and additional reviewers for reviewing
the papers, and the members of the Publications Committee for checking the
accepted papers in a short period of time. Particularly, we are grateful to the
Springer for publishing the proceedings in the prestigious series of Lecture Notes
in Computer Science. Moreover, we wish to express our heartfelt appreciation to
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the plenary speakers, session chairs, and student helpers. In addition, there are
still many more colleagues, associates, friends, and supporters who helped us in
immeasurable ways; we express our sincere gratitude to them all. Last but not
the least, we would like to thank all the speakers, authors, and participants for
their great contributions that made ICSI 2013 successful and all the hard work
worthwhile.

April 2013 Ying Tan
Yuhui Shi

Hongwei Mo
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Müggelseedamm 310, 12587 Berlin, Germany

tim.landgraf@fu-berlin.de

http://biorobotics.mi.fu-berlin.de

Abstract. Biomimetic robots can be used to analyze social behavior
through active interference with live animals. We have developed a swarm
of robotic fish that enables us to examine collective behaviors in fish
shoals. The system uses small wheeled robots, moving under a water
tank. The robots are coupled to a fish replica inside the tank using
neodymium magnets. The position of the robots and each fish in the
swarm is tracked by two cameras. The robots can execute certain be-
haviors integrating feedback from the swarm’s position, orientation and
velocity. Here, we describe implementation details of our hardware and
software and show first results of the analysis of behavioral experiments.

Keywords: biomimetic robots, biomimetics, swarm intelligence, social
behavior, social networks, swarm tracking.

1 Introduction

The use of biomimetic robots that help understanding complex biological sys-
tems has several advantages over conventional methods in behavioral biology.
Foremost the study of animal behavior in groups can benefit from biomimetic
robots. Once the robot is accepted as a conspecific, the experimenter is in full
control over the interaction with the animals, which drastically augments con-
ventional, static setups and gives access to a whole new set of manipulations.
Intriguing examples of the recent past include robotic cockroaches to explore
group shelter seeking [2], robotic bees for investigating the honeybee dance com-
munication system [3], robotic bowerbirds for the analysis of courtship behavior
[4] and a robotic fish to study group decision making [1]. Similar to [6], the
proposed system builds up on the results of the latter, a plotter-like positioning
system under a water tank that can move a single fish replica in the tank via
strong neodymium magnets. We have built a new prototype that utilizes wheeled
robots advancing the system to a multi-agent platform: with our system a swarm
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of robotic fish can interact with a swarm of real fish. A real-time shoal tracking
system is used to close the control loop and enables the robots to display specific
behaviors. With more than one fish robot we can, for instance, study which mor-
phologies or behaviors make up a better leader or a more frightening predator by
comparing the effect on the shoal in a single experiment. In the following, each
aspect of the system is described: the general setup, the hardware and software
of the wheeled robot, the procedure to building fish replicas and the computer
vision system to track the robot and the individuals of the shoal. The remainder
of this contribution will describe how we analyze the swarm behavior to find
patterns of group formation in time.

2 General Setup

Our focal animals, three-spined Sticklebacks and Guppies, are small in body size
(1 cm − 5 cm length). Thus, we use life sized fish replicas that are moved by
small wheeled robots below the water tank. The tank is positioned at about
1.40 m above the ground. The replicas are moulded using dead sample animals,
painted and finished to obtain a fish-like appearance. They stand on a small
base that integrates a neodymium magnet (see Figure 1). Below the water tank,
the wheeled robots move on a second level - a transparent polycarbonate plate.
Each of them holds up a magnet to the bottom side of the tank. Two infrared
LEDs are attached to each robots bottom side and aligned with the robot’s
forward direction. An IR-sensitive camera on the ground is used to localize each
robot’s pair of IR-LEDs. A second camera above the tank is used to track the
individuals of the shoal. The robots are controlled via a Wifi connection by a

Fig. 1. The replica is attached to the magnetic base with a thin transparent plastic
stick. The picture shows a replica that was scaled up in size to investigate the acceptance
in the group varying this parameter.
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central computer that integrates the computer vision results to enable each robot
to display various interactive behaviors in a closed control loop.

3 Fish Replica

The body of the replica is constructed from resin plaster. A mold is made using a
dead template fish using Gedeo molding alginate. The fin, made from an acetate
sheet, is set into the mold that is then filled using liquid resin plaster. The cast
is painted with acrylic to approximately match the shading of the template fish.
Afterwards, the model is coated with waterproof varnish. A thin transparent
plastic rod (0.8 mm in diameter) connects the body to its plastic base, which is
glued to two small block magnets (see Figure 1).

4 Robot Platform and Control

We have built a custom two-wheeled robot with a base area of 7 cm × 7 cm
as depicted in Figure 2. Each robot consists of a light-weight polystyrol frame.
All relevant parts are stacked in a minimal volume. Two Faulhaber gear motors
are affixed to the bottom of the base plate. The battery pack (7.2 V LiPo)
is clamped under the motors and a stack of Arduino boards (Arduino Uno,
Cupperhead WifiShield and DFRobot Motor Shield) is affixed to the top plate
of the plastic frame. A voltage supply board is distributing battery voltage to the
Arduino, the motor board and a voltage divider which scales down the battery
voltage to be read by one of the Arduino’s analog pins. The topmost plate a
rare-earth magnet.

The main control of the robots is executed on a central personal computer.
At a frequency of 20 Hz, a command packet is sent to every robot via a UDP
Wifi connection. Each robot has a unique identifier and only parses their respec-
tive packets. We use a fixed length protocol with a two bytes header, 12 bytes
data and two bytes checksum. The main program runs the computer vision and
controls each robot’s orientation and forward speed using a PID controller with
respect to a current target point in the water tank. The experimenter can either
define static paths by clicking line segments in a virtual arena or choose from
a set of interactive behaviors. The former will be executed without feedback
from the shoal. Once the respective robot has reached the next target position
the next point in the sequence is selected as the new target. The interactive
behaviors use the shoal’s centroid, its boundaries or the position of a certain
fish. Depending on the starting conditions and the behavior of the shoal, this
might result in very different trajectories. In section 6 we describe the interactive
modes in more detail. Irrespective of the control mode, for each new time step
a new motion is calculated, according to the PID controllers for forward and
rotary motion. Each motion command is translated to motor velocities and then
sent to each robot to be executed.
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Fig. 2. The wheeled robots are moving on a transparent plastic plate in a space below
the water tank. A rare-earth magnet is attached to the robot’s top. We are using a stack
of Arduino compatible extension boards (”shields”) for wifi communication and motor
control. The battery is positioned right under two Faulhaber DC gear motors that are
directly connected to the wheels. The battery connects to the Arduino and provides
voltage to the motor board. A voltage divider is used to scale down the battery voltage
to a maximum of 2.56 V such that the battery level can be read out on an analog pin
on the Arduino. A pair of infrared-LEDs is set in to the base plate for visual tracking
of the robots from below.

5 Computer Vision

There are two computer vision systems: one for tracking the robots and one for
the shoal. Without marking the replicas, the tracking from above might confuse
robots and real fish. This would result in a catastrophic loss of motion control
over those agents. In a previous work, we described fish replicas with in-built
IR-LEDs. This was shown to work with Sticklebacks but failed with the smaller
Guppies due to the resolution of our camera.

The proposed solution is to attach two IR-LEDs to the bottom sides of the
robots. Running on a transparent plate, each robot is localized in the images of
a camera on the ground. We use a standard webcam with the IR-block removed
and an IR-pass filter added to the lens. Thus, only IR-light can reach the sensor
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and the IR-LEDs produce very bright spots in the camera image. The computer
vision pipeline therefor is simply applying a global threshold to binarize the
image. The resulting binary image is denoised by an erosion operation and gaps
in the remaining blobs are filled with a dilation. Consequently, we seek connected
components that likely represent IR-LEDs. Since the distance of the LEDs on
each robot is known and constant, the distance of the blobs in the image is known
and constant as well. With this constraint we search for pairs of blobs that, if
found, define the position of the robot and two possible orientations, i.e. the real
angle or the real angle plus 180 degrees. For each robot this ambiguity has to be
removed manually in the graphical user interface in a setup phase prior to the
experiment. Once a robot is localized, an ID will be assigned: either new IDs
will be added (upon initialization) or the IDs of previously found instances will
be assigned based on the distance of their projected position (using a motion
model with forward and angular velocities) and the new measurement. The vision
system assigns each robot a duration called time to live (TTL). If a robot is lost
this property is decremented until found again in later frames or until it reaches
zero. When found again the TTL is reset to the default (15 frames), otherwise
the robots ID is deleted.

The shoal tracking system uses a camera above the tank which is connected
to a separate PC for performance reasons. The tank is built from opaque white
plastic plates. The fish appear as clear dark grey objects in the camera im-
age. In an initialization period a background hypothesis of the scene is accumu-
lated. In normal operation, each new camera frame is then subtracted from the

Fig. 3. A (cropped) screenshot of the shoal tracking system. Each individual of the
shoal is identified by a number. An ellipse and a triangular tail is depicted to mark
each fish’s position. The orange tail marks the only robot in this recording. The green
dots signify that those animals have been found to be in one subgroup, whose center is
denoted by the white dot. The circle around the dot denotes one standard deviation.
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background and the result is binarized using a global threshold. Similarly to
the robot tracking algorithm, morphological operations (erosion and dilation)
are used to remove noise and merge fragmented blobs. We then search for con-
nected components, i.e. patches of foreground pixels that form a binary large
object (i.e. blob) and that exceed a certain minimal size. Their orientation is
determined by using the the second moments (see e.g. [5]). This again yields an
ambiguous result. Since fishes usually swim forwards, the direction is extracted
by integrating the motion vector over a fixed time window. The system assigns
an ID to every fish object and tracks them using a motion model similar to the
one described above: In the new frame, each new object is labeled with the ID
of the closest projection. When fishes swim together closely they might merge
into a bigger single blob. The system recognizes this and is able to assign the
right IDs as follows: First, two merging blobs are recognized and the respective
blob is assigned a group object label. It is continuously tracked over following
frames. Once the individuals within the group object part, the new positions
of the single blobs are compared to the linearly projected locations of the in-
dividuals from their last known position. Using this simple rule, most of the
individuals keep the right ID after such close body contacts. Furthermore, the
shoal’s center is computed, as well as a number of centers of sub-groups of the
shoal. For example, a shoal might divide into two sub-groups having an equal
number of individuals. The global shoal center would be in the middle between
the two groups. We use k-Means to find those smaller clusters of individuals.
This information is sent to the main computer via an IP network connection.
This information is used when an agent operates in an interactive mode that
relies on the shoal center. If the shoal is divided the system chooses the bigger
shoal for the consecutive path planning.

6 Interactive Behaviors

Apart from using static trajectories, our system allows to assign a number of
interactive behaviors to the agents. Using the center of gravity of the shoal, a
robot or a group of robots can be set to follow a preset path maintaining (or
not exceeding) a certain distance to the shoal (”follower” mode). The ”preda-
tor” behavior drives the robot into the shoal’s centroid with maximum velocity
and the ”leader” behavior makes the robot approach to the shoal, swim past
them, make a turn and wait for them to come closer. A direction within a −90◦

and 90◦ range is chosen according to a normal distribution (of mean 0◦) and
a straight run is executed once the shoal is within a certain proximity. This is
repeatedly performed until the swarm ceases to follow. Each behavior uses a
different set of parameters, like the forward velocity in ”predator” mode and
the frequency of the change of direction in ”leader” mode. First tests confirmed
that the shoal seems to have sustained interest in the robots and follows the fish
model.
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7 Validation and Experiments with Real Fish

We have validated the motion of the robotic fish by creating reference trajectories
of various shapes. The position of the robot is measured using the robot tracker
and then compared to the target trajectory. The mean positional error is approx.
1 cm (standard deviation of 0.4 cm) and the average angular error vanishes with
a feasibly low dispersion (std: 2.5◦). The shoal tracking system was validated in
two regards: first, the positional error of static objects were calculated by placing
fish-sized metal blocks on known positions and comparing the system’s output to
the reference position. The average error is below 1 mm but might be larger when
objects are moving. Secondly, the tracking error was determined by counting the
number of individuals that were either lost by the system or assigned the wrong
ID (e.g. after swimming close to another individual). If an individual gets lost
and found again, we would only count the loss. Five different video sequences of
the same duration (1000 frames, 40 seconds) and varying number of individuals
were subject to the tracker. In average 1.2 errors per minute occur - most of them
produced in one sequence with many fishes overlapping. The acceptance of the
replicas was shown previously in [1]. The proposed robotic platform was tested
under experimental conditions with a swarm of 10 real fish. The motion of the
replica is smooth and the fish did not react differently to previous observations
as described in [1]. The interactive behaviors are still in improvement but first
tests look promising.

8 Analysis of the Formation of Sub-groups

In experiments with only one robot we traced all individuals with the shoal
tracker, as described above. The results were manually reviewed and corrected
if necessary (e.g. when IDs were switched erroneously). In order to recognize
patterns in their behavior, expressed in relative distances, we calculate a distance
matrix for every point in time, i.e. frame in the video feed. Each row and column
corresponds to an individual. The mutual distances of individual 1 to all other
individuals are tabulated in row 1, and so on. Hence, the matrix is symmetric
and shows low values for pairs that swim close to each other. Computing the
average distance matrix over all available points in time yields the averagemutual
proximity. Figure 4 shows the result of such a computation. In the given example,
individuals 1 − 4 and 5 − 8 form sub-groups that persist over time. It is also
possible to recognize temporal patterns: we have binarized the distance matrix
such that only close individuals are marked with a 1. The dynamics of this binary
function over time can be visualized for all individuals in a three dimensional
plot as depicted in Figure 5. Animals that with a mutual preference exhibit a
continuous line (or recurring lines) over time. We are currently investigating how
the shoal is reforming after disturbed by a robot predator.
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Fig. 4. Left: The figure depicts the trajectories of all individuals of the shoal in a
sample sequence. Having started from roughly the same location (denoted by small
blue squares), they end up as two separated groups. The end positions are marked with
blue circles showing the respective animal ID. Right: The matrix shows the average
mutual distance of each individual to all other members of the shoal. Individuals 1− 4
form a sub-group as well as individuals 5− 8.
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Fig. 5. By binarizing each time point’s proximity matrix one can visualize each indi-
vidual’s social behavior over time. The 3-D plot to the right depicts a line over time
for a particular pair of individuals if the two fishes were swimming closely together. In
the shown sample sequence two groups of four fishes are keeping their mutual distances
over a time of 600 frames, i.e. 30 seconds. The left figure shows the course of the binary
proximity functions for individual 1 over time.

9 Conclusion

We have built a multi-agent platform for moving robotic fish in a large water
tank. The design of the system allows biologists to investigate group decision
making in fish shoals with more than one robotic agent. The system is scalable
to a large number of agents. The replicas are accepted by the shoal and shown to
excite following behavior [1]. The tracking of the individuals of the shoal is suffi-
ciently robust and might only be improved by using markers on the animals. This
might require a higher resolution of the camera and reduce the frame rate and
therewith the smoothness of the motion control. However, the first data analysis
yields promising results and is already used in conventional (non-robotic) re-
search on collective behavior. Currently, we are preparing experiments with live
Sticklebacks and two robotic fish to investigate the swarm behavior with robotic
fish exhibiting a different morphology.
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Abstract. Firework algorithm (FWA) is a new Swarm Intelligence (SI) based
optimization technique, which presents a different search manner and simulates
the explosion of fireworks to search the optimal solution of problem. Since it
was proposed, fireworks algorithm has shown its significance and superiority in
dealing with the optimization problems. However, the calculation of number of
explosion spark and amplitude of firework explosion of FWA should dynami-
cally control the exploration and exploitation of searching space with iteration.
The mutation operator of FWA needs to generate the search diversity. This paper
provides a kind of new method to calculate the number of explosion spark and
amplitude of firework explosion. By designing a transfer function, the rank num-
ber of firework is mapped to scale of the calculation of scope and spark number
of firework explosion. A parameter is used to dynamically control the explo-
ration and exploitation of FWA with iteration going on. In addition, this paper
uses a new random mutation operator to control the diversity of FWA search. The
modified FWA have improved the performance of original FWA. By experiment
conducted by the standard benchmark functions, the performance of improved
FWA can match with that of particle swarm optimization (PSO).

Keywords: Firework Algorithm, Swarm Intelligence Algorithm, Exploration
and Exploitation, PSO.

1 Introduction

Firework algorithm (FWA) is a new intelligence optimization algorithm based on Swarm
Intelligence (SI) developed by Y. Tan and Y. Zhu [14]. Like the other SI algorithms,
such as Particle Swarm Optimization (PSO) [8], Ant System [3], Colonel Selection
Algorithm [2, 13], and Swarm Robots [1], Different Evolution (DE) [11], Artificial
Bee Colony (ABC) [7] etc., firework algorithm also is a population based optimization
technique. Firework algorithm simulates the explosion of fireworks to search the opti-
mal solution of problem. Compared to the other SI algorithms, firework algorithm has
distinctive advantages in solving many optimization problems and presents a different
search manner.
� Senior Member, IEEE
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Algorithm 1. Conventional Fireworks Algorithm.
1: Select n position for initial fireworks;
2: Calculate the number of sparks for each firework;
3: Calculate the amplitude of explosion for each firework;
4: Generate the sparks of explosion for each firework;
5: Generate the sparks of Gaussian mutation for each firework;
6: Select n location for next generation fireworks
7: If condition does not meet, algorithm turns to 2
8: Output results

Since it was proposed, fireworks algorithm has shown its significance and superiority
in dealing with the optimization problems and has been seen many improvement and
application with practical optimization problems. Andreas and Tan [5, 6] used FWA to
compute the non-negative matrix factorization and gains a little advantages compared
to SPSO, FSS, GA. Pie et al. [9] investigated the influences of approximation approach
on accelerating the fireworks algorithm search by elite strategy. In [9], they compared
the approximation models, sampling methods, and sampling number on the FWA ac-
celeration performance, and the random sampling method with two-degree polynomial
model gains better performance on the benchmark functions. Zheng et al. [16] proposed
a hybrid algorithm between FWA and differential evolution (DE), which shows supe-
riority to the previous FWA and DE. H. Gao and M. Diao [4] have designed a cultural
firework algorithm which was used to search optimal value of filter design parameters
with parallel search. Computer simulations have showed that FIR and IIR digital filters
based on the cultural firework algorithm are superior to previous filters based on the
other SI algorithm in the convergence speed and optimization results.

However, firework algorithm needs a policy that dynamically controls the explo-
ration and exploitation of searching solution of problem with iteration. In the FWA, the
calculation of number of explosion spark and amplitude of firework explosion have too
more parameter to set. Its mutation operator cannot availably control the diversity of
FWA. This paper will design a transfer function to map the rank number of firework to
percentage value in order to calculate the number of explosion spark and firework ex-
plosion, and then a rand mutation is presented to generate the diversity of FWA. By the
experitment, the modified techniques on FWA can improve the perfromance of original
FWA. The paper is organized as follows: section 2 introduces the FWA and analyzes the
drawback of FWA; the improved FWA was provided in section 3. Section 4 conducted
the experiment to test the effect of improved FWA. The section 5 is the conclusion of
this paper.

2 Fireworks Algorithm

Firework algorithm searches the optimal solution of problem using several fireworks
explosion to generate the sparks in the space of problem, where the spark and firework
are the potential solutions of problem. The procedure of original firework algorithm can
be seen in Algorithm 1.
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According to the idea of FWA, a good firework denotes the better fitness,which
means that the firework may be close to the optimal location. Therefore, the good fire-
work should generate more sparks in the smaller amplitude of explosion. In the contrast,
for a bad firework, the search radius should be larger and it should generate less sparks
in the larger amplitude of explosion. For every firework, the number of explosion sparks
and amplitude of explosion must be calculated before it explodes, which formulas are
as follows:

– Calculating the Number of Sparks:

Si = m
ymax − f(xi) + ξ

n∑
i=1

(ymax − f(xi)) + ξ
(1)

ŝi =

⎧⎨
⎩
round(a ·m) if si < am
round(b ·m) if si > bm
round(si) otherwise

(2)

Where Si is the number of the spark of the ith firework explosion, m is the total
number of sparks generated by the n fireworks. ymax is the maximum value of the
objective function among the n fireworks, and is a small constant which is utilized
to avoid zero-division-error. The constant a and b are the const parameters.

– Calculating the Amplitude of Explosion:

Ai = Ã
f(xi)− ymin + ξ

n∑
i=1

(f(xi)− ymin) + ξ
(3)

Where Ã denotes the maximum explosion amplitude and ymin is the minimum
value of the objective function among n fireworks.
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Fig. 1. The number of sparks for every firework in original FWA
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Fig. 2. The amplitude of explosion for every firework in the proposed algorithm

In order to investigate the effect which Eq.(1) and Eq.(3) impact on firework algo-
rithm, we can observe the Fig.1 and Fig.2. Fig.1 is the number of sparks generated by
eight fireworks with the FWA iteration, while Fig.2 is the amplitude of explosion gen-
erated by eight fireworks with the FWA iteration. The data in the two figures is gained
with Eq.(1) and Eq.(3) provided that every iteration of FWA has only eight fireworks.

From Fig.1, different fireworks in the different iteration have no regularity to gain the
number of sparks. The number of sparks generated by different firework all are vibrated
almost between 5 and 15.The best firework (the first firework) has not always generated
the most spark number among eight fireworks. From Fig.2, the first firework (the best
firework) explodes in the smaller amplitude than the amplitude of other firework. The
explosion amplitude of the first fireworks is always about 10−4, while the amplitude of
the other firework is about between 0 and 50. It can be found that the amplitude of first
firework is too small in the early time and constant while the other firework’ amplitude
is variable and have not regularity.

In term of Fig.1 and Fig.2, the Eq.(1) and Eq.(3) can embody random of FWA, be-
cause the explosion number and explosion amplitude of fireworks is variable with the
fitness of firework. However, spark number and amplitude of firework explosion have
not dynamically changed as the algorithm iterates. Especially, the best firework (the 1th
firework) has constant explosion amplitude and its sparks number of explosion does not
increase with iteration. Therefore,it is difficult for the formula of Eq.(1) and Eq.(3) to
effectively control the local exploration and global exploitation of FWA in the solution
space. In the next section, we will provide two new equations to modify the Eq.(1) and
Eq.(3).

3 The Improvement of FWA

3.1 The Improvement of Computing the Scope and Sparks Number of Firework
Explosion

The above drawback of FWA is account of using the fitness of firework to compute the
scope and sparks number of firework explosion. In order to improve the equations on
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calculating the number of firework sparks and the amplitude of firework explosion, we
use the sequence number of fireworks to compute the two values. Therefore, a transfer
function must be designed to map the sequence number of fireworks to function value
which is used to better calculate the amplitude and spark number of firework explosion.
The transfer function is cited from the sigmoid function as the Eq.(4):

f(x) =
1

1 + ex
(4)

The function is further improved and added a parameter a as the following Eq.(5):

f(x) =
1

1 + e(x−1)/a
(5)

Where a is a control parameter to change the shape of the above function. Eq.(5) can
transfer sequence number of firework rank of fitness to different value of function,
which is used to calculate the spark number and amplitude of firework explosion. The
function of Eq.(5) is named as transfer function. When the parameter a = 1, 5, 9, 13
and 21,the figures of the transfer function with different parameter value are plotted as
Fig.3 which x axis denotes sequence number. From the Fig.3, it can be found that the
function fitness of different sequence number is more and more mean as the parame-
ter a is increasing. So, the calculating number of explosion sparks is designed as the
following equation:

Sn = m
f(n)
N∑
n=1

f(n)

(6)

Where m is the total of number of spark, n is the sequence number of a firework. Sn
denotes the spark number of the nth firework explosion. The calculating the amplitude
of firework is designed as following equation:

An = A
f(N − n+ 1)
N∑
n=1

f(N − n+ 1)

(7)

Where A is the maximum amplitude of firework explosion, n is the sequence number
of a firework. An denotes the amplitude of the nth firework explosion. In the Eq.(6)
and Eq.(7), N is the total number of firework in FWA. The function f(x) is the Eq.(5),
which parameter a is varied with the iteration from 20 to 1. With variable parameter
a, the explosion number of spark and explosion amplitude of firework is dynamically
changed as the iteration goes on.

In order to compare Eq.(1) and Eq.(3) to Eq.(6) and Eq.(7), Fig.4 and Fig.5 plot the
number of sparks and amplitude of explosion of eight fireworks with iteration which
are calculated using Eq.(6) and Eq.(7).

Compared to the Fig.1 and Fig.2, Fig.4 shows that the number of spark generated
by the firework of FWA with the modified equation is very regular. For the sorting
front fireworks, the number of sparks is more and more with the iteration, while for
the last fireworks, the number of sparks is less and less. Fig.5 shows that the amplitude
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Fig. 3. The plotting figure of transfer function with different parameter
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Fig. 4. The number of sparks for every firework in modifying FWA
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Fig. 5. The amplitude of explosion for every firework in modifying FWA
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of the better firework explosion is smaller and smaller as the iteration goes on, while
the amplitude of bad firework explosion is bigger and bigger with iteration. The policy
can embody the idea of algorithm that a good firework has more number of generating
sparks and less amplitude of explosion while a bad firework generate less number of
sparks during the larger amplitude of explosion. There may be global optimal solution
near the good firework, so the explosion of a good firework undertakes the local search-
ing, while a bad firework exploding undertakes the global exploitation of solution space.
In the new method, the dynamic change of number of sparks and amplitude of explo-
sion with iteration can embody that the global exploitation is done in the early time of
algorithm running, while the local exploration is enhanced during the later time of al-
gorithm’s iteration. So, the new calculating equations can better control the exploitation
and exploration of firework algorithm with iteration.

3.2 The Mutation Improvement

To keep the diversity, original firework algorithm employed Gaussian mutation to gen-
erate sparks. The jth dimensions of the ith firework, xij , mutates as xij by the following
equation:

xij = xijGaussian(1, 1) (8)

However, the above mutation makes original FWA easily converged to zero point of the
search space, and it is difficult for FWA to generate the diversity. In order to add the
diversity of FWA, the random mutation is employed to make the firework mutated. The
mutation formula is as follows:

xij = xminij + rand()(xmaxij − xminij ) (9)

Where xij denotes the position of the jth dimensions of ith firework; xminij denotes the
minimal bound of the jth dimensions of the ith firework; xmaxij denotes maximal bound
of the jth dimensions of the ith firework. The function rand() gains the sampling value
in the interval [0, 1] with the uniform distribution.

3.3 The Selection of the Next Generation Fireworks

Original FWA selects n location for next generation fireworks by the Eq.(10) and
Eq.(11):

R(xi) =
∑
j∈K

d(xi, xj) =
∑
j∈K

||xi − xj || (10)

p(xi) =
R(xi)∑

j∈K
R(xi)

(11)

Where the xi is the location of ith sparks or firework, d(xi, xj) is the distance between
two sparks or fireworks. K is the set of sparks and firework generated in current gen-
eration. The p(xi) is the probability which the ith firework or spark is selected as the
firework of next generation. Eq.(10) and Eq.(11) do not consider the fitness of sparks
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or fireworks for the selection of next generation fireworks’ location. This is not con-
sist with the idea of the equations of Eq.(6) and Eq.(7). Because Eq.(6) and Eq.(7) use
the sequence number of sorting fireworks’ fitness to calculate the sparks number and
amplitude of fireworks explosion, but the Eq.(10) and Eq.(11) of original FWA don’t
consider the fitness to select the firework location. Therefore, there are two methods to
be provided to modify the selection operator.

1. Fitness Selection using the roulette
Like the original FWA, the best of the set will be selected first. Then the others are
selected base on fitness proportion using the roulette. So, the selection probability
of every spark or firework must be calculated with the following formula:

p(xi) =
ymax − f(xi)∑

i∈K
(ymax − f(xi))

(12)

Where ymax is the maximum value of the objective function among the setK which
consist of the fireworks and sparks in the current generation. The other fireworks
will be selected using the roulette according to the probability gained by Eq.(12).

2. Best Fitness Selection
In [15], Zheng et al used a random selection operator to replace the previous time
consuming one. It is as the following, when the algorithm has decided the number
of firework of every generation, all the sparks and fireworks of the current gen-
eration are sorted according to their fitness and then select the best n sparks or
fireworks with the best fitness as the location of next generation. The method is
very simple and is consistent with the new calculation of explosion number and
explosion amplitude of fireworks in the Eq.(6) and Eq.(7).

4 Experiment and Analysis

4.1 Experimental Design

In order to evaluate the performance of the improved FWA, fourteen benchmark func-
tions provided by CEC 2005 are employed [12]. These benchmark functions include
five unimodal functions, nine multimodal functions. The optimal fitness of these func-
tions is not zero and is added bias. These functions are shifted and the optimal locations
are shifted to different location from zero point in solution space. More details on the
benchmark functions can be seen in [12].

In order to test the performance of improved FWA in this paper, the improved FWA
with best fitness selection and random mutation (IFWABS) , the improved FWA with
the fitness selection using the roulette and random mutation (IFWAFS), original FWA
and global PSO are compared with each other. The global PSO is employed the de-
creasing weight w from 0.9 to 0.4 proposed in [10], and the neighbor particles of each
particle is all particles. The particle population size is 100. The factor c1 and c2 of PSO
are set as 2. The FWA and improved FWA are set the number of firework as 10, the
total number of explosion sparks S as 80 and the amplitude of explosionA as the range
length of problem space. The experiment is conducted in Matlab 2012b and executed
in windows 7.
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4.2 Experimental Results and Analysis

The experiment is conducted to compute the mean error fitness ( f(x)−f(x∗), f(x∗) is
real optimal fitness of the benchmark functions), standard square error and the best error
fitness in the 25 run on the 14 benchmark functions. Each run of all algorithm is eval-
uated l000, 10000, 10000 and D ∗ 10000(D is the dimension of benchmark function),
respectively. Each algorithm will be conducted in the 10 dimensions and 30 dimensions,
respectively. Table1 is the results of mean error fitness, standard square error and the
best fitness in the 25 run on 14 functions in 10 dimensions, which the Fitness Evaluated
number(FEs) is 1000, 10000,100000. Table2 is the results of that in 30 dimensions,
which the FEs is 10000, 100000 and 300000.

In term of Table 1, compared to FWA, the performance of IFWABS and IFWAFS is
better than that of FWA. In the 10 dimensions, the mean error finesses of FWA on 14
functions all are worse than that of IFWABS or IFWAFS whether FEs is 1000, 10000
or 100000. In term of Table2, the performance of IFWABS and IFWAFS is better than
that of FWA on all functions except for the 8th function in 30 dimensions. Therefore,
the improved FWA has improved the performance of firework algorithm. Compared
the performance of two improved FWA (IFWABS and IFWAFS), it can be found from
Table1 and Table2 that IFWABS is advantage to IFWAFS. In more part of cases, the
mean error fitness of function of IFWABS is outstanding to the IFWAFS. Compared
to PSO, improved FWA is more optimal performance on most of functions, especially
in 100000 FEs and 300000 FEs. As the FEs is more and more, the performance of
improved FWA is better and better than PSO, so the improved FWA can match with
PSO. Fig.6 plots the convergence process for four algorithms to optimize the 14 func-
tions with 300000 FEs in 30 dimensions These figures are visual to illustrate the ef-
fect of four algorithms that improved FWA is excel to original FWA and can match
with PSO.

5 Conclusion

Firework algorithm is a novel swarm intelligence based algorithm that can availably
search the optimal solution of parameter space. FWA imitates the firework explosion to
generate sparks and provide the idea that better firework can take up the local search
and the bad firework do the global exploitation. This paper modifies the calculation of
scope and amplitude of firework explosion, and designs a transfer function to map rank
number of firework fitness to allocate the total sparks number and explosion aptitude.
A parameter of transfer function was used to control the dynamical calculation of two
values with iteration. This way is more effective to control the local and global search
of FWA in solution space. In addition, a random mutation was presented to enhance the
diversity of FWA. At last, in order to accord with the new idea of calculation of scope
and amplitude of firework explosion, the best sparks selection and fitness selection was
employed to improve the selection operator of FWA. By experiment conducted on 14
standard benchmark functions in CEC 2005, the improved FWA can be superior to the
original FWA and can match with PSO.
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Table 1. Statistical Results of Mean, Std and Best of Benchmark Functions in 10 Dimension

FES No. PSO FWA IFWAFS IFWABS FES No. PSO FWA IFWAFS IFWABS

1.0E+03

f1
Mean 3.32E+03 1.86E+04 4.33E+03 3.19E+03

1.0E+03

f8
Mean 2.07E+01 2.06E+01 2.06E+01 2.06E+01

Std 1.45E+03 3.88E+03 1.67E+03 1.43E+03 Std 1.55E-01 1.49E-01 1.18E-01 1.16E-01
Best 5.17E+02 1.32E+04 1.12E+03 6.31E+02 Best 2.03E+01 2.02E+01 2.04E+01 2.04E+01

f2

Mean 1.21E+04 3.60E+04 1.23E+04 1.20E+04
f9

Mean 5.17E+01 1.21E+02 6.24E+01 5.01E+01
Std 4.25E+03 1.08E+04 6.24E+03 4.51E+03 Std 1.27E+01 2.63E+01 1.88E+01 1.37E+01
Best 4.90E+03 1.38E+04 1.32E+03 3.83E+03 Best 2.89E+01 5.54E+01 2.0E+01 2.05E+01

f3

Mean 4.38E+07 9.56E+08 7.67E+07 5.07E+07
f10

Mean 8.0E+01 1.96E+02 9.81E+01 8.66E+01
Std 3.11E+07 6.74E+08 4.73E+07 4.52E+07 Std 1.68E+01 3.46E+01 2.0E+01 2.11E+01
Best 6.85E+06 2.28E+08 1.24E+07 1.42E+06 Best 4.41E+01 1.23E+02 5.82E+01 4.32E+01

f4

Mean 1.39E+04 3.19E+04 1.49E+04 1.51E+04
f11

Mean 9.0E+0 1.25E+01 1.06E+01 9.58E+0
Std 6.63E+03 1.24E+04 5.41E+03 5.99E+03 Std 1.29E+0 1.03E+0 1.25E+0 1.09E+0
Best 3.40E+03 5.74E+03 5.63E+03 3.65E+03 Best 5.55E+0 9.54E+0 8.52E+0 6.90E+0

f5

Mean 1.09E+04 2.33E+04 1.26E+04 1.12E+04
f12

Mean 3.67E+04 2.84E+05 4.58709e+04 3.50379e+04
Std 2.62E+03 3.48E+03 3.06E+03 2.66E+03 Std 1.79E+04 8.58E+04 2.63E+04 2.36E+04
Best 5.90E+03 1.64E+04 5.43E+03 5.94E+03 Best 1.18E+04 1.04E+05 6.23E+03 7.83E+03

f6

Mean 3.10E+08 1.96E+10 1.17E+09 6.70E+08
f13

Mean 7.81E+0 2.73E+02 1.06E+01 7.76E+0
Std 3.09E+08 1.08E+10 1.23E+09 6.44E+08 Std 3.06E+0 2.95E+02 4.95E+0 2.90E+0
Best 2.11E+06 4.18E+09 3.40E+07 3.84E+07 Best 3.76E+0 5.52E+01 4.10E+0 3.27E+0

f7
Mean 1.40E+03 3.56E+03 1.65E+03 1.39E+03

f14
Mean 4.04E+0 4.37E+0 4.20E+0 4.13E+0

Std 1.18E+02 4.84E+02 2.11E+02 1.11E+02 Std 2.79E-01 2.62E-01 2.64E-01 2.33E-01
Best 1.27E+03 2.53E+03 1.31E+03 1.27E+03 Best 3.28E+0 3.63E+0 3.53E+0 3.71E+0 [b]

1.0E+04

f1
Mean 2.09E+02 3.76E+03 5.97E-01 1.08E-01

1.0E+04

f8
Mean 2.05E+01 2.03E+01 2.04E+01 2.04E+01

Std 3.75E+02 2.88E+03 4.58E-01 7.24E-02 Std 1.05E-01 1.17E-01 1.38E-01 1.05E-01
Best 5.65075e-05 2.59E+02 3.99E-02 2.0E-02 Best 2.02552e+01 2.01E+01 2.01E+01 2.03E+01

f2

Mean 1.30E+02 8.07E+03 4.09E+02 9.89E+02
f9

Mean 8.36E+0 4.61E+01 1.98E+01 2.37E+0
Std 1.31E+02 2.62E+03 2.67E+02 5.91E+02 Std 3.27E+0 1.41E+01 6.69E+0 1.23E+0
Best 1.93164e-01 1.76E+03 2.80E+01 1.99E+02 Best 2.75172e+00 1.73E+01 9.20E+0 2.01E-01

f3

Mean 3.0E+06 2.73E+07 1.37E+06 7.91E+05
f10

Mean 2.05E+01 8.50E+01 4.59E+01 5.78E+01
Std 6.57E+06 2.73E+07 1.25E+06 7.35E+05 Std 7.11E+0 1.69E+01 1.60E+01 2.42E+01
Best 1.04099e+05 2.90E+06 3.47E+04 3.65E+04 Best 8.40258e+00 5.67E+01 1.45E+01 1.41E+01

f4

Mean 1.42E+02 1.11E+04 1.99E+03 3.13E+03
f11

Mean 3.96E+0 8.50E+0 6.45E+0 6.55E+0
Std 1.42E+02 3.91E+03 1.72E+03 1.97E+03 Std 1.38E+0 1.36E+0 1.15E+0 1.39E+0
Best 1.68170e+00 3.38E+03 3.02E+02 6.60E+02 Best 1.21034e+00 6.26E+0 3.41E+0 4.71E+0

f5

Mean 7.76E-05 9.30E+03 5.88E+02 2.04E+02
f12

Mean 3.66E+03 3.12E+04 4.32E+03 2.20E+03
Std 8.06E-05 3.73E+03 6.09E+02 4.31E+02 Std 5.64E+03 1.07E+04 5.21E+03 2.37E+03
Best 8.55801e-06 8.95E+02 1.62E+01 1.12E+01 Best 1.08496e+01 1.11E+04 1.85E+02 3.77E+01

f6

Mean 7.75E+06 2.26E+08 2.49E+03 2.11E+03
f13

Mean 1.71E+0 5.62E+0 1.71E+0 8.31E-01
Std 1.80E+07 4.24E+08 3.56E+03 3.63E+03 Std 8.59E-01 3.51E+0 8.05E-01 1.88E-01
Best 4.39794e+00 2.45E+06 1.93E+01 1.07E+01 Best 6.32417e-01 2.41E+0 8.59E-01 5.84E-01

f7
Mean 1.27E+03 1.27E+03 1.27E+03 1.27E+03

f14
Mean 3.50E+0 3.86E+0 3.71E+0 3.76E+0

Std 2.54E-01 3.23E-02 7.10E-02 7.63E-02 Std 3.20E-01 2.74E-01 2.90E-01 3.05E-01
Best 1.26723e+03 1.27E+03 1.27E+03 1.27E+03 Best 2.8502e+00 3.34E+0 2.98E+0 3.02E+0

1.0E+05

f1
Mean 4.13E+01 1.28E+02 1.44E-04 1.01E-04

1.0E+05

f8
Mean 2.03E+01 2.01E+01 2.02E+01 2.02E+01

Std 5.66E+01 2.75E+02 6.73E-05 6.56E-05 Std 6.94E-02 7.53E-02 1.06E-01 8.69E-02
Best 0.0E+0 1.72E+0 3.06E-05 2.17E-05 Best 2.01566e+01 2.0E+01 2.01E+01 2.0E+01

f2

Mean 9.11E+01 2.61E+02 1.30E+0 1.26E+01
f9

Mean 5.27E+0 1.64E+01 5.86E+0 4.14E-05
Std 7.93E+01 1.38E+02 8.45E-01 8.39E+0 Std 5.93E+0 1.04E+01 2.99E+0 2.21E-05
Best 5.68E-14 1.26E+02 1.04E-01 9.45E-01 Best 0.000e+00 5.03E+0 2.98E+0 5.08E-06

f3

Mean 1.84E+06 5.86E+06 2.77E+05 3.13E+05
f10

Mean 2.03E+01 6.36E+01 3.30E+01 5.10E+01
Std 3.52E+06 3.52E+06 1.53E+05 1.60E+05 Std 8.80E+0 1.38E+01 1.19E+01 2.24E+01
Best 9.96846e+04 2.30E+06 3.24E+04 4.15E+04 Best 8.95463e+00 4.12E+01 1.79E+01 1.29E+01

f4

Mean 2.91E+02 2.65E+03 5.61E+0 2.64E+02
f11

Mean 3.50E+0 6.07E+0 5.72E+0 6.73E+0
Std 1.47E+02 1.81E+03 3.66E+0 2.56E+02 Std 1.30E+0 1.92E+0 1.69E+0 1.27E+0
Best 5.63891e+01 1.20E+03 8.97E-01 1.19E+01 Best 1.22304e+00 3.91E+0 1.83E+0 4.47E+0

f5

Mean 0.0E+0 6.63E+02 6.17E+0 1.80E+02
f12

Mean 1.66E+03 3.19E+03 1.33E+03 1.20E+03
Std 0.0E+0 8.58E+02 4.82E+0 6.25E+02 Std 3.31E+03 1.38E+03 2.04E+03 1.79E+03
Best 0.000e+00 5.69E+01 1.84E-01 1.08E-01 Best 5.41956e-02 1.82E+03 2.15E+0 7.09E+0

f6

Mean 2.35E+07 4.95E+03 1.81E+03 3.27E+02
f13

Mean 6.90E-01 1.17E+0 7.85E-01 4.50E-01
Std 6.47E+07 4.15E+03 3.46E+03 1.49E+03 Std 2.59E-01 3.87E-01 2.79E-01 1.70E-01
Best 8.90593e+00 1.57E+03 1.77E-02 1.01E+0 Best 3.66839e-01 7.80E-01 3.79E-01 1.88E-01

f7
Mean 1.32E+03 1.27E+03 1.27E+03 1.27E+03

f14
Mean 2.84E+0 3.73E+0 3.28E+0 3.46E+0

Std 1.84E+02 6.70E-05 1.09E-04 5.77E-05 Std 3.88E-01 2.42E-01 3.11E-01 3.99E-01
Best 1.26723e+03 1.27E+03 1.27E+03 1.27E+03 Best 1.74585e+00 3.39E+0 2.56E+0 2.47E+0
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Table 2. Statistical Results of Mean, Std and Best of Benchmark Functions in 30 Dimension

FES No. PSO FWA IFWAFS IFWABS FES No. PSO FWA IFWAFS IFWABS

1.00E+04

f1
Mean 4.98E+03 4.63E+04 6.64E+02 9.67E+01

1.00E+04

f8
Mean 2.11E+01 2.07E+01 2.10E+01 2.10E+01 [t]

Std 3.94E+03 9.20E+03 3.07E+02 3.18E+01 Std 6.20E-02 9.39E-02 7.81E-02 8.34E-02
Best 6.39E+02 3.47E+04 1.86E+02 4.31E+01 Best 2.10E+01 2.05E+01 2.08E+01 2.07E+01

f2

Mean 1.20E+04 5.17E+04 4.14E+04 4.78E+04
f9

Mean 1.52E+02 3.01E+02 1.88E+02 8.61E+01
Std 4.77E+03 1.00E+04 1.16E+04 8.42E+03 Std 2.52E+01 2.61E+01 2.77E+01 1.65E+01
Best 6.41E+03 3.05E+04 2.40E+04 3.42E+04 Best 1.01E+02 2.60E+02 1.37E+02 5.68E+01

f3

Mean 5.98E+07 4.92E+08 6.98E+07 3.75E+07
f10

Mean 2.51E+02 6.21E+02 3.71E+02 3.58E+02
Std 2.74E+07 2.22E+08 2.64E+07 2.02E+07 Std 2.10E+01 6.22E+01 7.13E+01 9.29E+01
Best 1.97E+07 1.16E+08 1.95E+07 8.57E+06 Best 2.15E+02 5.20E+02 2.16E+02 2.07E+02

f4

Mean 2.08E+04 6.17E+04 6.44E+04 7.11E+04
f11

Mean 3.13E+01 3.93E+01 3.32E+01 3.04E+01
Std 4.25E+03 1.14E+04 1.42E+04 2.06E+04 Std 3.56E+00 2.48E+00 4.03E+00 3.50E+00
Best 1.29E+04 4.28E+04 4.03E+04 3.42E+04 Best 2.48E+01 3.29E+01 2.40E+01 2.36E+01

f5

Mean 8.66E+03 2.98E+04 1.61E+04 1.24E+04
f12

Mean 1.15E+05 7.87E+05 1.94E+05 1.25E+05
Std 3.07E+03 3.94E+03 2.87E+03 2.89E+03 Std 5.83E+04 2.05E+05 9.81E+04 6.26E+04
Best 1.40E+03 2.35E+04 1.07E+04 7.92E+03 Best 1.66E+04 4.22E+05 4.06E+04 3.83E+04

f6

Mean 6.84E+08 1.54E+10 2.78E+07 3.88E+05
f13

Mean 2.01E+01 5.45E+01 1.89E+01 1.14E+01
Std 9.82E+08 4.39E+09 3.11E+07 2.54E+05 Std 2.30E+00 3.44E+01 3.96E+00 2.21E+00
Best 6.34E+06 5.25E+09 2.68E+06 7.02E+04 Best 1.65E+01 2.05E+01 1.25E+01 7.60E+00

f7
Mean 4.80E+03 4.77E+03 4.76E+03 4.72E+03

f14
Mean 1.35E+01 1.37E+01 1.33E+01 1.34E+01

Std 1.31E+02 4.81E+01 4.53E+01 2.20E+01 Std 2.48E-01 3.19E-01 3.58E-01 3.90E-01
Best 4.70E+03 4.73E+03 4.71E+03 4.70E+03 Best 1.30E+01 1.29E+01 1.25E+01 1.27E+01 [b]

1.00E+05

f1
Mean 5.03E+03 8.81E+03 4.21E-02 1.51E-02

1.00E+05

f8
Mean 2.09E+01 2.03E+01 2.07E+01 2.07E+01 [t]

Std 3.03E+03 5.27E+03 1.42E-02 4.64E-03 Std 6.64E-02 9.01E-02 1.12E-01 8.73E-02
Best 6.07E+02 1.32E+03 1.71E-02 6.80E-03 Best 2.08E+01 2.01E+01 2.04E+01 2.05E+01

f2

Mean 1.96E+03 2.68E+04 4.00E+03 1.34E+04
f9

Mean 6.16E+01 1.73E+02 7.16E+01 2.88E+00
Std 2.01E+03 4.56E+03 1.22E+03 3.98E+03 Std 1.72E+01 3.80E+01 1.16E+01 1.54E+00
Best 2.44E+02 1.63E+04 2.52E+03 5.93E+03 Best 2.76E+01 1.01E+02 5.39E+01 8.99E-03

f3

Mean 1.55E+07 8.68E+07 1.15E+07 7.60E+06
f10

Mean 1.34E+02 4.66E+02 2.78E+02 3.29E+02
Std 9.18E+06 3.47E+07 4.24E+06 3.79E+06 Std 4.97E+01 7.26E+01 7.11E+01 8.77E+01
Best 4.68E+06 3.57E+07 6.47E+06 3.88E+06 Best 7.14E+01 3.14E+02 1.41E+02 2.04E+02

f4

Mean 4.00E+03 3.79E+04 2.85E+04 4.26E+04
f11

Mean 2.23E+01 3.52E+01 3.04E+01 2.89E+01
Std 3.99E+03 5.14E+03 9.81E+03 1.34E+04 Std 2.92E+00 3.52E+00 3.29E+00 4.31E+00
Best 1.06E+03 2.73E+04 1.24E+04 2.35E+04 Best 1.77E+01 2.51E+01 2.27E+01 2.26E+01

f5

Mean 8.27E+03 2.15E+04 9.46E+03 8.08E+03
f12

Mean 7.12E+04 2.09E+05 5.29E+04 3.55E+04
Std 2.17E+03 4.22E+03 2.85E+03 2.10E+03 Std 6.44E+04 7.24E+04 2.80E+04 2.75E+04
Best 5.25E+03 1.37E+04 4.09E+03 4.78E+03 Best 1.15E+04 1.03E+05 1.82E+04 6.33E+03

f6

Mean 5.85E+08 3.30E+08 1.50E+03 3.36E+03
f13

Mean 4.19E+00 1.17E+01 5.65E+00 3.05E+00
Std 5.47E+08 4.12E+08 3.07E+03 4.61E+03 Std 1.76E+00 3.95E+00 1.41E+00 6.91E-01
Best 3.17E+07 6.65E+06 3.36E+01 2.71E+01 Best 1.89E+00 6.50E+00 3.24E+00 1.78E+00

f7
Mean 4.82E+03 4.70E+03 4.70E+03 4.70E+03

f14
Mean 1.27E+01 1.33E+01 1.31E+01 1.30E+01

Std 1.35E+02 7.22E-03 3.02E-01 2.80E-03 Std 3.60E-01 3.12E-01 3.78E-01 3.71E-01
Best 4.70E+03 4.70E+03 4.70E+03 4.70E+03 Best 1.16E+01 1.22E+01 1.21E+01 1.19E+01

3.00E+05

f1
Mean 3.26E+03 3.70E+03 1.45E-03 7.91E-04

3.00E+05

f8
Mean 2.09E+01 2.01E+01 2.06E+01 2.05E+01 [t]

Std 1.55E+03 3.50E+03 4.07E-04 2.88E-04 Std 5.87E-02 9.29E-02 1.22E-01 1.05E-01
Best 6.79E+02 3.29E+02 7.70E-04 3.53E-04 Best 2.07E+01 2.00E+01 2.03E+01 2.03E+01

f2

Mean 2.50E+03 1.48E+04 7.40E+02 4.05E+03
f9

Mean 6.04E+01 1.33E+02 3.99E+01 8.01E-02
Std 2.38E+03 3.93E+03 2.86E+02 1.30E+03 Std 1.98E+01 2.87E+01 9.30E+00 2.76E-01
Best 2.74E+02 8.92E+03 3.27E+02 2.02E+03 Best 3.52E+01 8.21E+01 2.59E+01 2.51E-04

f3

Mean 2.26E+07 4.52E+07 5.90E+06 3.33E+06
f10

Mean 1.28E+02 4.10E+02 3.00E+02 3.34E+02
Std 2.50E+07 1.83E+07 2.11E+06 1.39E+06 Std 2.85E+01 7.45E+01 8.15E+01 8.13E+01
Best 5.58E+06 2.29E+07 2.20E+06 9.61E+05 Best 7.28E+01 2.78E+02 1.47E+02 1.82E+02

f4

Mean 2.93E+03 3.20E+04 1.09E+04 2.77E+04
f11

Mean 2.07E+01 3.38E+01 3.02E+01 2.94E+01
Std 2.79E+03 5.03E+03 4.48E+03 1.14E+04 Std 3.59E+00 3.36E+00 3.16E+00 3.12E+00
Best 5.02E+02 2.39E+04 4.04E+03 9.32E+03 Best 1.45E+01 2.41E+01 2.51E+01 2.43E+01

f5

Mean 7.61E+03 1.62E+04 8.15E+03 7.36E+03
f12

Mean 7.35E+04 9.31E+04 2.92E+04 1.57E+04
Std 1.99E+03 3.89E+03 2.18E+03 1.66E+03 Std 3.75E+04 4.03E+04 1.87E+04 1.69E+04
Best 3.30E+03 7.42E+03 5.24E+03 4.29E+03 Best 1.48E+04 3.56E+04 1.21E+04 6.53E+02

f6

Mean 6.98E+08 2.02E+07 2.76E+03 1.50E+03
f13

Mean 3.24E+00 6.61E+00 3.45E+00 1.98E+00
Std 1.05E+09 3.72E+07 3.95E+03 3.43E+03 Std 2.14E+00 4.54E+00 6.81E-01 4.19E-01
Best 4.11E+07 1.02E+05 2.90E+01 2.75E+01 Best 1.85E+00 2.20E+00 2.40E+00 1.28E+00

f7
Mean 4.86E+03 4.70E+03 4.70E+03 4.70E+03

f14
Mean 1.23E+01 1.31E+01 1.30E+01 1.31E+01

Std 1.62E+02 2.00E-04 1.25E-04 1.55E-05 Std 4.30E-01 3.06E-01 3.37E-01 2.87E-01
Best 4.70E+03 4.70E+03 4.70E+03 4.70E+03 Best 1.13E+01 1.22E+01 1.22E+01 1.25E+01
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Fig. 6. Convergence cures on the benchmark functions
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Abstract. The diversity of population is an important indicator for measuring 
optimal performance of swarm intelligence algorithms. The effect of three  
operators of Shuffled Frog Leaping Algorithm (SFLA) on the diversity of popu-
lation and the average optimization results were analyzed in this paper by 
means of the simulation experiments. The results show that removing the global 
extreme learning operator will not only maintain the higher diversity of popula-
tion, but also improve the operating speed and the optimization precision of the 
algorithm.  

Keywords: swarm intelligence, shuffled frog leaping algorithm, diversity of 
population, function optimization. 

1 Introduction 

The diversity of population is an important indicator for measuring optimal perfor-
mance of swarm intelligence algorithms. Lower population diversity would help local 
deep exploration, while higher population diversity would help global optimization to 
avoid the premature convergence. Nowadays, many scholars have already researched 
the diversity of population from different points of view and proposed many im-
proved algorithms. Reference [1] testified the relationship between swarm diversity 
and global optimum capability through mathematical illation, and also presented a 
modified differential evolution (DE) algorithm based on a random mutation strategy 
for keeping the diversity. According to swarm diversity, reference [2] adopted a glob-
al distance disturbance strategy towards the worst particle which improves these par-
ticles’ global searching ability. Besides, to increase the diversity of population in this 
paper, a probability disturbance was introduced for the best particle in the whole 
swarm. Reference [3] proposed a new method which integrates a diversity control 
strategy into quantum-behaved particle swarm optimization (PSO) to guide the par-
ticle’s search and improve the capabilities of exploration. To overcome the premature 
convergence, exploitation ability of PSO was regulated through introducing fitness 
variance and position variance of the whole population in the evolutionary process to 
preserve the diversity of population in [4]. In reference [5], the searching behavior of 
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PSO was effectively controlled via individual random walking and high diversity 
preserving to improve its optimal performance. Besides, reference [6] proposed an 
adaptive adjusted PSO algorithm, which could maintain the swarm diversity by adap-
tively adjusting uniform distribution of fitness value. The results showed that it could 
effectively improve the global searching ability of the algorithm. A different method 
to increase the particle swarm diversity was presented in [7]. As particle swarm lost 
its diversity, a particle outside the ultra-ball containing the swarm was selected  
randomly to use for disturbing the global best particle, and a disturbance was also 
introduced to the basic PSO formula to update each particle. Finally, reference [8] 
added the fuzzy controller and location hopping strategy to the algorithm for control-
ling the swarm diversity of PSO and improving its ability to jump out of local optimal 
solution. 

Shuffled Frog Leaping Algorithm (SFLA) is one of biological evolutionary algo-
rithms based on swarm intelligence presented by Eusuff and Lansey in 2003 [9]. It 
has the characteristics such as simple concept, fewer parameters, fast calculation 
speed, powerful optimal performance and easy to realize. SFLA has been successfully 
applied to many fields such as water distribution network, function optimization, net-
work optimization of product oil pipeline, combination optimization, image 
processing, multi-user detection and power system optimization. This paper deeply 
studies the diversity of SFLA by using the concept of swarm diversity presented in 
[10], and analyzes the impact of three operators of SFLA on the swarm diversity by 
simulation experiments and propose some guidance advices for improvement of the 
algorithm. 

2 Swarm Diversity 

Swarm diversity refers to difference among individuals in population. It represents 
clustering degree of individuals in the whole searching space, and reflects the distribu-
tion of individuals to certain extent. Swarm diversity is also an important indicator to 
measure individual’s coverage areas in searching space. Common sense suggests that 
evolution inevitably leads to diversity change. As diversity is higher, individual distri-
bution is more dispersed and suitable for global detection, in addition, diversity is 
smaller, individual distribution is more concentrated and suitable for local exploration. 
It means the higher diversity is helpful for global exploration while the lower diversity 
is helpful to local search. However, as the swarm diversity reduces too low, there 
would be many similar individuals in population. Thus, the population cannot produce 
new individuals, searching would trap into local optimum and result in premature con-
vergence. In this sense, maintaining higher diversity would enable algorithm to search 
more unknown areas and to strengthen the evolutionary ability of population. And the 
global searching ability and final optimal result would also be improved. 

In this paper, the average distance from individual to the center of population is 
used to measure swarm diversity. The calculated equation was showed in eq. (1): 

 2

1

1
(P) ( ) ;

N N

ij j
i j

Diversity x x
N L =

= −
×    (1) 
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where P is the swarm; N is the swarm size; L is the length of the longest diagonal in 

the search space; n is the dimensionality of the problem; jx is the j’th value of the 

average point. The quantified diversity is the real number between 0 and 1. 

3 The Effects of Evolution Operator on Diversity 

3.1 Evolution Operator of SFLA 

SFLA treats every individual as a frog in the swarm. These frogs are divided into m 
subgroups and each group contains s frogs. The whole evolutionary process of the 
algorithm is realized by the following three operators: 

1. The operator individuals learn from subgroup extremum (short for SO)  
For each subgroup, new individual is generated by the best individual Xb and the 

worst individual Xw in current subgroup. If the fitness of this new individual is better 
than the previous Xw, the Xw will be updated by the new individual. The updating 
formula is as follows: 

 ( 1) () ( );b wD t rand X X+ = × −  (2) 

 ( 1) ( ) ( 1);w wX t X t D t+ = + +  (3) 

where， max maxD D D− ≤ ≤ ; D is each moving step length; Dmax is the maximum al-

lowable step; t is current iteration; rand() refers to a random number between 0 and 1. 
If the fitness of updated Xw(t+1) is better than Xw(t), Xw(t) will be replaced by Xw(t+1). 

2. The operator individuals learn from global extremum (short for GO) 
A new individual is generated by the global best individual Xg and the Xw of current 

subgroup when the solution of this group is not updated after learning from the sub-
group extremum. Xw will be replaced by the new individual if the new fitness is better. 
The updated strategy eq.(2) in above step is changed to eq.(4) in this stage: 

 ( 1) () ( );g wD t rand X X+ = × −  (4) 

The update strategy (4) and (3) is executed in order. Similarly, Xw(t) is updated by 
Xw(t+1) when the fitness of Xw(t+1) is better than Xw(t). 

3. The random operator (short for RO) 
If the solution of subgroup is not improved after learning from subgroup extremum 

and global extremum, Xw will be replaced by a randomly generated solution which is 
controlled in the definition domain. 

3.2 Experimental Design  

In this paper, the authors took seven standard test functions of optimization problems 
to discuss the influence of the above three operators on swarm diversity and evolutio-
nary process.  
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In these experiments, the following 4 control strategies (S1~S4) were applied for 

explicitly indicating the effect of each operator in evolutionary process. 
S1: SO, GO, RO exist simultaneously in the algorithm; 
S2: Only GO and RO exist in the algorithm; 
S3: Only SO and RO exist in the algorithm; 
S4: Only SO and GO exist in the algorithm. 
In these experiments, swarm size was set to 200 frogs. The swarm was divided into 

20 subgroups and each group contained 10 frogs. The maximum number of iterations 
was 500 and the number of internal iterations in the subgroup was 10. The maximum 
allowable step Dmax =Xmax/5 (Xmax refers to the maximum search range). The parame-
ters settings of test functions were shown in table 1. Thirty trial runs were performed 
for each problem and the average of results was regarded as the final simulation result 
to reduce the random error in our simulation work. 

Table 1. The parameters of benchmark test functions 

Function Dimension Search range 
Theoretical 
optimum 

f1 30 [-5.12,5.12] 0 
f2 30 [-30,30] 0 
f3 30 [-5.12,5.12] 0 
f4 30 [-600,600] 0 
f5 30 [-32,32] 0 
f6 30 [-100,100] 0 
f7 30 [-50,50] 0 
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3.3 Experiments Results 

Each experiment for every test function had been repeated 30 times. Diversity in each 
iteration and the average of optimization results were recorded and drew as evolutio-
nary curves to compare. 

All the experiments demonstrate similar results. Due to the space limit of this pa-
per, only the diversity curves of function f1~f4 varied with iterations were shown in 
Fig.1~Fig.4. The result shows that the highest diversity is presented when the algo-
rithm is without GO (S3) of every function while the worst is gained when the algo-
rithm is without RO (S4). The order of the diversity of all control strategies from high 
to low is: S3, S2, S1, S4. 

 

 

Fig. 1. The swarm diversity of f1 Fig. 2. The swarm diversity of f2 

 

Fig. 3. The swarm diversity of f3 Fig. 4. The swarm diversity of f4 
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Similarly, only the average evolutionary curves of function f1~f4 were shown in 
Fig.5~Fig.8. The vertical axis is the common log of the average extremum and the 
horizontal axis is corresponding iterations. To avoid function value being zero, 10-11 
was added to each value as the final values. It can be seen from the illustrations that 
the best average optimization result of all functions is gained when the algorithm is 
without GO (S3), while the worst is gained when the algorithm is without RO (S4). In 
general, the order of the average optimization result of all control strategies from high 
to low is: S3, S2, S1, S4. 
 

 

Fig. 5. Average evolutionary curve of f1 Fig. 6. Average evolutionary curve of f2 

  

Fig. 7. Average evolutionary curve of f3 Fig. 8. Average evolutionary curve of f4 

 

To further verify the importance of three operators in the evolutionary process of 
SFLA, the authors counted the average effective improved times of each operator 
among SO, GO and RO which simultaneously existed in the algorithm, the result was 
listed in Table 2, in which the values in brackets are their success ratio (the proportion 
of average effective numbers in the total numbers). 
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Table 2. The average effective numbers of three operators 

Function 
Effective numbers of 

SO(success ratio) 
Effective numbers of 

GO(success ratio) 
Effective numbers of 

RO(success ratio) 

f1 479.23(95.85%) 20.24(4.05%) 0.53(0.11%) 
f2 479.43(95.89%) 20.03(4.01%) 0.53(0.11%) 
f3 471.75(94.35%) 24.52(4.90%) 3.73(0.75%) 
f4 479.25(95.85%) 20.19(4.04%) 0.56(0.11%) 
f5 475.71(95.14%) 21.69(4.34%) 2.59(0.52%) 
f6 452.21(90.44%) 24.48(4.90%) 23.30(4.66%) 
f7 478.42(95.68%) 20.85(4.17%) 0.73(0.15%) 

 
Table 2 suggests that the success ratios of solution updated by SO were over 90%. 

For f6, besides, the effective numbers of GO and RO were almost equal; for the rest 
functions, the success ratio of GO had remained above 4% while RO were under 1%. 
This demonstrates that SO plays a major role in SFLA. 

4 Conclusions 

1. The swarm diversity is lower as the algorithm simultaneously possesses SO, GO 
and RO (basic SFLA model). At the moment, its average optimal value is worse than 
the value when the algorithm is without GO. For individual functions, the optimum is 
even worse than the result when the algorithm is without SO. Therefore, the basic 
SFLA needs to be improved. 

2. The swarm diversity and the average optimal value are the best when the algo-
rithm only possesses SO and RO, which means that if GO could be cancelled in 
SFLA, it will not only enhance the optimization ability of the algorithm, but also 
shorten the run time.  

3. Although the diversity is secondary when the algorithm is without SO, the opti-
mization result is bad at this time. Besides, for the higher effective improved numbers 
of SO, it plays a main role in the evolutionary process, which shows that SO is an 
indispensable operator in SFLA. 

4. As the algorithm is without RO, the swarm diversity and the average optimal 
value are the worst, which shows that RO is also indispensable in SFLA. 
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Abstract. Artificial chemistry is a man-made system that is similar
to a real chemical system. It represents a good starting point to
simulate cell processes from the bio-chemistry level. In this article, an
artificial chemistry system which strikes a balance among closeness to
reality, fast simulation speed and high flexibility is proposed. Prelimi-
nary results have shown that the model can simulate a general reversible
reaction well.

Keywords: artificial chemistry, cell simulation.

1 Introduction

Among the techniques used in artificial life [1], there is the technique of sim-
ulating the bio-chemistry of life using artificial chemistry. Artificial chemistry
is a man-made system that is similar to a real chemical system [2]. Typically,
artificial chemistry simulates, in a virtual environment, molecules in a reaction
space and the reactions which occur within the reaction space. The philosophy
of this approach is to start from the bio-chemistry level, gradually discover the
techniques to simulate cell processes and then move on to simulate higher level
life behaviours within the constraints of our current knowledge of molecular cell
biology and available computing power for simulation.

Various artificial chemistry models and simulators have been proposed by
researchers in this field. Each is customized to fit its goals. The aim of this
article is to present a new artificial chemistry model and its simulator as the
first step to simulate a cell and a group of cells in the future. This work is based
on existing models, integrating and extending suitable features to fit the needs
to simulate cells.

The next section describes some representative artificial chemistry models.
After that, the proposed model is described in section 3, experimental results in
section 4 followed by the conclusion in Section 5.
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2 Related Work

In this section, some representative artificial chemistry models are described.
Illustrations of the models can be found in Fig. 1.

Fig. 1. (a) Squirm3, (b) synthon, (c) a string based model and (d) a tile based model

The artificial chemistry system, Squirm3, proposed by Hutton [3] to explore
self-replication is a 2-D system simulating atoms and their reactions. The system
has fixed six atom types (a, b, c, d, e and f) and each atom type has a variable
state number (0, 1, 2, 3, ...). When two atoms collide, reactions can occur. A
reaction can change the states of the atoms involved and may break or make
bonds among atoms. The atoms move around in random as long as they stay
within the Moore neighbourhood (eight surrounding squares) of other atoms they
are bonded with. The possible reactions are predefined prior to the beginning
of the simulation process. Hutton proved that his system is able to simulate
self-reproduction of cells [4].

The synthon model is a model to describe molecules in detail from atoms,
virtual atoms and the vertices among the atoms. Lenaerts and Bersini extended
the synthon model of molecules by adding electron vertices and a method to
model ionic bonds to the model [5]. Their extended model can very closely model
molecules realistically. With the input of only basic reaction classes and the
extended synthons, their simulator is able to generate realistic chemical reaction
networks. The reactions networks can be used to predict possible reaction paths
from the basic reaction classes and the possible resulting synthons from the
reactions.

BioDrive [6] is an artificial chemistry model which models the reactions of
molecules using differential equations. Concentration of each type of molecules
in the system is used to determine the reaction rate. Reactions are expressed
using differential equations and the effects of a reaction on other reactions are
modelled mathematically. The precise locations of molecules are not taken into
consideration in this model. Changes of concentrations of molecules against time
can be calculated by solving the differential equations.

The artificial chemistry system proposed byWatanabe [7] uses inter-connected
strings to represent molecules. Each string corresponds to an atom. A set of
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recombination rules act as reactions to transform the connected strings from
one configuration to another. The strings do not only move in a compartment,
which is used to represent a membrane structure, but are able to move from one
compartment to another.

In [8], squares are used to represent the basic elements and to configure tiles
of different shapes and sizes to represent molecules. Tiles are placed in a well
mixed ’soup’ from which they are randomly chosen to collide. The result of a
collision are changes to the sizes and shapes of tiles. These change represent
chemical reactions.

Our proposed model aims to strike a balance among closeness to reality, fast
simulation speed and high flexibility to model the nature of a cell. Spheres, as
shown in Fig. 2, which are less abstract than square tiles and text strings are used
to represent molecules and atoms. The simulation space is in 3-D instead of 2-D.
The movement and reaction of each molecule or atom are explicitly simulated
instead of collectively simulated using differential equations to allow the highest
level of flexibility. To counter the slowness in explicit simulation, highly realistic
representation used in the synthon model is not used. Each sphere only has a
name and a state number, which is used to represent the electronic state and the
physical configuration of a molecule. As energy plays a major role in chemical
reactions, each reaction in the model is specified together with the amount of
energy consumed or released.

Fig. 2. Molecules in the proposed model
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3 The Proposed Artificial Chemistry Model

In this section, the definition of molecules, movement of molecules and the
simulation process is described.

3.1 Definition of Molecules

Spheres each with a radius of one unit length are used to represent molecules
or atoms. The radius is a constant regardless of the actual size of the molecule
represented. A molecule in this model can have one to n atoms. When it has
only one atom, it is treated as an atom.

Each molecule has an id, a name and a state number. The id is a unique iden-
tifier in the system and the name can be a real chemical name (H2O), a common
name (water) or a generic name (A,B,C...). The state number accounts for the
shape of the molecule and the electrical charges held by the molecule. The range
of the state number is from 0 to the maximum positive integer value supported
by the programming language used to implement the model. For example, in
Fig. 2, there is a molecule at the coordinate (22, 9, 34) which has an id number
2, a generic name B and a state number 0.

3.2 Movement of Molecules

Molecules in this model move randomly to their neighbouring coordinates. A
molecule in a coordinate (x, y, z) can move up to the coordinates (x1, y1, z −
1), sideways to the coordinates (x1, y1, z) and downwards to the coordinates
(x1, y1, z−1) where x1 ∈ {x−1, x, x+1} and y1 ∈ {y−1, y, y+1}. To determine
the target coordinate to move to, a random integer n between 1 to 36 is gener-
ated. If the 1 ≤ n ≤ 9, the molecule will move up to one of the nine possible
target coordinates, mapped to 1 to 9. Similarly, if 10 ≤ n ≤ 18, the molecule
moves sideways except when n = 14 because 14 is mapped to the current coor-
dinate of the molecule. If 19 ≤ n ≤ 36, the molecule will move downwards to the
nine possible target coordinates where each coordinate is mapped to two num-
bers. The reason for this movement scheme is to create an environment where
there is a molecule flow from the top down.

The environment where molecules exist and move is open, similar to an open
environment where cells exist. At the beginning of a simulation, the environment
is empty without any molecules. New molecules flow into the system from the
top, gradually filling up the environment. Any molecules moving out of the
simulation space are discarded from the system.

3.3 Reactions of Molecules

Reactions are specified with statements using the following syntax.

ID = 1

Energy = e

x1 + x2 + ... + xm -> y1 + y2 + ... + yn
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Table 1. Examples of reaction syntax

Reaction H2O ⇀↽ H+ +OH− C6H12O6 + 6O2 → 6CO2 + 6H2O

Syntax ID = 1 ID = 1

Energy = 1 Energy = 5

H2O-0 -> C6H12O6-0 + O2-0 + O2-0 + O2-0 + O2-0 + O2-0 +

H-1 + OH-2 . O2-0 ->

CO2-0 + CO2-0 + CO2-0 + CO2-0 + CO2-0 + CO2-0

ID = 2 + H2O-0 + H2O-0 + H2O-0 + H2O-0 + H2O-0

Energy = -1 + H2O-0.

H-1 + OH-2 ->

H2O-0.

ID is simply the unique identifier of reaction. xm and yn each represents a
molecule or an atom with a label which includes a molecule name and a state
number. e is the amount of energy needed for the reaction to occur or the amount
of energy released by the reaction. A positive energy value indicates the amount
of energy added to the virtual space (exothermic reaction) while a negative value
indicates the amount of energy subtracted from the virtual space (endothermic
reaction).

We use two examples in Table 1 to illustrate how chemical reactions are
specified. The first example is the dissociation of water and the second example
is the oxidation of glucose. The label of a molecule is an arbitrary text string.
The state number of a molecule is normally zero. The use of positive integer
values for state number is arbitrary as long as the differences in electronic and
physical configurations can be expressed.

Although the amount of energy consumed or released by a reaction should
be mapped appropriately to the reaction in reality, the correct mapping scheme
is considered as future research work to be done. Similarly the correct mapping
scheme of the state number is also considered as future work.

For a reaction to occur, sufficient local energy and the presence of all the
molecules on the left hand side in close proximity is needed. Based on the total
amount of global energy E, specified manually, the amount of local energy at
each coordinate is calculated as E/l3 where l is the length of cubic simulation
space of volume l3. The meaning of close proximity will be explained in the next
sub-section.

3.4 The Simulation Process

Before a simulation based on the proposed model is run, several initial parame-
ters have to be set. First is l which defines the length of a cubic simulation space.
Second is the amount of global energy E. Third is the number of molecules to
generate at each injection of molecules into the simulation space. Fourth is the
specification of the probability of each molecule type to be generated and in-
jected. Fifth is the uniform interval, specified as the number of simulation time
step, between injections of molecules and sixth is the close proximity distance d.
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At each time step of a simulation, molecules are selected one by one at ran-
dom for processing until all molecules which exist in the simulation space are
processed. For each selected molecule, the conditions for reactions are checked.
If there is sufficient amount of local energy and all the molecules on the left
hand side of a reaction, excluding the selected molecule, exist within the close
proximity distance d of the selected molecule, a reaction occurs. Molecules inside
the cube shown in Fig. 3 are considered as within the close proximity distance
of d from a selected molecule at (x, y, z). If more than one reactions are possible,
one of them is selected randomly to occur. Exothermic reactions are not checked
for sufficiency of local energy.

Fig. 3. The close proximity distance d from a selected molecule

If a reaction occurs, all reacting molecules including the selected molecules on
the left hand side of the reaction statement will be discarded and the molecules
on the right hand side of the reaction will be produced and placed randomly
within the close proximity distance of the selected molecule. Any amount of
energy released or consumed by the reaction will be added to or subtracted from
the global energy E. This implies instant transfer or energy and energy diffusion
is not considered in this model. If no reactions are possible, the selected molecule
will just move randomly to its neighbouring coordinate.

4 Experimental Results

A simulator of the model has been implemented in C++. The simulator takes the
necessary input and generates a series of Mathematica visualization commands
as the output. Visualization of the output is done by executing the commands
in Mathematica.

Using the simulator, a general reversible reaction, A + B ⇀↽ C + D, using
abstract molecules with all state numbers set to zero was simulated. The pa-
rameter l was set to 40, E to 1,000,000 and d to 3. The number of molecules
to generate at each injection was set to 5, the time interval between injections
was set to 1 and the generation probabilities for A and B are both 0.5. Figure 4
shows the simulation space from time step 0 to time step 500.
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Fig. 4. A typical reversible reaction

The graph in Fig. 5 shows the number of molecules of A, B, C and D. It shows
that the number of molecules of each molecule type eventually stabilized to an
equilibrium similar to real-life chemistry.

The model and its implementation can support complex bio-chemical reac-
tions because it does not impose a limit to the number of reactions it can simu-
late. However, as meaningful bio-chemical processes for cell simulation are still
being studied, their simulation results are not described in this paper.

Fig. 5. The number of molecules of each molecule type



An Artificial Chemistry System for Simulating Cell Chemistry 39

5 Conclusion

In this article, an artificial chemistry system which strikes a balance among
closeness to reality, fast simulation speed and high flexibility has been proposed.
It represents the first step towards a system to simulate a biological cell and a
group of cells using artificial chemistry and programming code in the future. The
system simulates molecules and reactions in 3-D and takes into consideration the
energy aspect of chemical reactions.

For future work, complex bio-chemical pathways will be identified and simu-
lated in the system. There are still a number of aspects of the model which need
to be improved. They are the mapping scheme for energy needed for reactions,
the mapping scheme for state numbers, a more realistic energy diffusion model, a
model to simulate entangled molecules which move together, a model to support
molecules moving at different speed and a more flexible way to inject molecules
into the system.
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Abstract. The particle swarm collective intelligence has been recog-
nized as a tool for dealing with the optimization of multimodal functions
with many local optima. In this article, a research work is introduced
in which the cooperative Particle Swarm Optimization strategies are
analysed and the collective intelligence of the particle swarm is assessed
according to the proposed Maturity Model. The model is derived from the
Maturity Model of C2 (Command and Control) operational space and
the model of Collaborating Software. The aim was to gain a more tho-
rough explanation of how the intelligent behaviour of the particle swarm
emerges. It has been concluded that the swarm system is not mature
enough because of the lack of the system’s awareness, and that a solu-
tion would be some adaptation of particle’s behavioural rules so that the
particle could adjust its velocity using control parameters whose value
would be derived from inside of the swarm system, without tuning.

1 Introduction

The particle swarm optimization is a population based optimization method first
formulated in 1995 [1]. The Particle Swarm Optimizer (PSO) [2] is a stochastic
algorithm applicable to any problem which can be characterized by an objective
function so that the global extreme of the function has to be found. The algo-
rithm does not require any additional information such as the derived gradient
information, since the search towards the global extreme is driven by stochastic
components of the particle velocity vector during the particle’s flight through n-
dimensional search space (hyperspace), where each particle represents a possible
solution of the optimization problem. A brief description of how the algorithm
works is as follows:

At the beginning of the search, some particle is identified as the best particle
based on its objective function value. The swarm particles are then accelerated
in the direction of this particle’s position but also in the direction of their own
best solutions. Each particle also has an opportunity to discover better solution
during the flight, and the other particles then change direction and head for the
new best particle position. The position x and velocity v of each particle in the
original algorithm is updated according the following formulas:

vin(t+Δt) = ωvin(t) + alr1[l
i
n(t)− xin(t)]Δt+ agr2[gn(t)− xin(t)]Δt (1)
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xi(t+Δt) = xi(t) + vi(t+Δt)Δt (2)

with
n ∈ N, r1, r2 ∈ U(0, 1), ω, al, ag ∈ R

where n is the number of degrees of freedom of the optimization problem, li is
the ith particle’s best position, g is the global best position of the whole swarm,
ω is a real constant called inertia weight, r1, r2 are random numbers uniformly
distributed in (0,1) to weight the local and global acceleration coefficients al, ag,
and Δt is a time step where the time step is assumed to be equal to one.

The equation (1) is interpreted so that the particle velocity vector consists of
three components called inertia, cognitive, and social component. Both cognitive
and social component contains acceleration coefficients as learning factors which
influence the velocity and position of the particle. The cognitive component
reflects the particle’s own experience, whereas the social component expresses the
interaction among particles. The inertia component keeps the particle’s tendency
to maintain its previous velocity.

It is evident that the PSO algorithm shows signs of intelligent behaviour
because (i) each particle can remember its own best solution, (ii) there is an
information flow among particles, by which they can communicate with the best
particles depending on the topological neighbourhood structure, (iii) the swarm
particles show cooperative behaviour without competition. In spite of this, the
particle swarm shows unreliability in the optimization of multimodal functions
with many local optima.

The PSO algorithm is known primarily as a stochastic algorithm because
the particles during their flight through the hyperspace make use of a random
chance. However, a swarm particle primarily orients itself using its own infor-
mation about its current position and its best position it has gone through,
and uses the information from the other particles about the global best position
which had been previously recognized by the whole swarm. This underlying raw
information is subsequently modified by the random numbers, and also by the
acceleration coefficients, whose value is obtained empirically. The new direction
and modulus of the particle’s velocity then result from the processed information.
The behaviour of the particle is thus stochastic, since the particle uses random
elements in its decision, but also deterministic, since the particle learns from its
own experience and/or the experience of the other particles.

Experiments have shown that depending on the specific objective function
(specific problem), the predominant stochastic character of the particles’ be-
haviour sometimes could prove advantageous for better leading to the optimum
solution [3]. Thus, could be the stochastic behaviour also taken for intelligent?
Since the particle does not have almost any information about the search space
at the beginning of the search, its only opportunity is to start walking in a ran-
dom direction and to gain the information. At the beginning of the search, the
particle cannot rely on the experience of the other particles anyway, since their
information is as poor as the particle’s own information.

Is it therefore desirable to enhance particle’s cognitive abilities? Experiments
have shown that a relatively high value of the cognitive component at an early



42 Z. Winklerová

stage of the search results in extensive and, therefore, desirable particles’ wander-
ings through the search space [3]. However, if the particle uses only its cognitive
component at the later stages of the search, the performance of the algorithm
is considerably worse [4]. One reason is that in the absence of the social com-
ponent, no interaction among particles occurs, and thus no opportunity to use
the experience of the other particles is taken. However, a relatively high value of
the social component in the early stages of the search can lead to the premature
convergence of the algorithm to a local optimum. The reason is that the particle
should not offer the information to the others until it gains its own experience.
But for some applications, on the contrary, the performance of the algorithm
that uses only the social component is considerably better than the effectiveness
of the original algorithm [5].

The existence of a cognitive organ is a prerequisite for individual’s intelligence.
Given that a cognitive ability is the ability to recognize, remember, learn, and
adapt, the critical particle’s ability seems (i) the ability to adapt its behaviour
to the character of the search space and also (ii) the ability to learn. However,
how should we measure the collective intelligence of the swarm as a whole if we
know that the particles can act stochastically on the individual level or they
can stifle their own experience completely, and in spite of it the algorithm can
quickly converge to the correct solution, and thus the swarm as a whole acts
intelligently?

Since the collective intelligence of the swarm emerges as a consequence of the
particles’ interactions, the swarm should be treated as a complex system, and the
cooperative behaviour should be studied as an appropriate meta-transformation
of the particle swarm system. As the first step to tackle the problem of the unre-
liability in terms of the meta-transformation, it seems desirable to have a metric
for measuring the collective intelligence of the swarm. Hence, the aim of the re-
search was (i) to introduce a maturity model of the particle swarm operational
space as a metric for the collective intelligence of the swarm as a whole and then
(ii) to assess the particle swarm intelligence according to this model. The model
is proposed as a combination of the Maturity Model of the C2 (Command and
Control) operational space and the model of Collaborating Software. Then, the
whole particle swarm is assessed according to generic characteristics of the colla-
borative behaviour. While analysing the maturity of the swarm, the cooperative
swarming strategies directly derived from the original version of the algorithm
published in 1995, represented by equations (1) and (2), were examined.

2 Maturity Model of the C2 Operational Space

The Maturity Model of the C2 (Command and Control) operational space was
suggested in 2006 [6] and further elaborated in 2010 [7]. The model is intended
for distributed operational environment containing more autonomous entities
constituting a system. The entities communicate through an informational ex-
change while solving a common task. The maturity of the operational space has
to be assessed according to the following three basic indicators: (i) the degree
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of allocation of decision rights to the collective, (ii) distribution of information,
and (iii) patterns of interaction among entities. The idea is illustrated in Fig. 1.
Since the original diagram [7] does not evaluate the individual axes, the axes are
evaluated additionally in a way the diagram is interpreted by the author of this
article according to the author’s own knowledge.

           -axis 
Degree of Decentralization 
Allocation of Decision Rights Cyclic (unitary) 

(Fully controlled) 

No-Sharing (Tight control) 

Non-Interactive 
 (Fully hierarchical) 

Disjoint 
operations 

Selective Control 

Degree of Social Interaction  
 Patterns of Interaction 

-axis 

Interconnected 
(Fully distributed) 

Interactive 

Reactive 

Degree of Information Sharing 
Distribution of Information  
        -axis 

Perception  

Comprehension 

Projection  
(Broad dissemination) 

Conflicted 

Agile  
(Edge) 

Control Free (peer-to-peer) 
(Fully decentralized) 

Fig. 1. Maturity Model of the C2 (Command and Control) operational space [6,7] as
the proposed Maturity Model of Particle Swarm Operational Space; the axes (x, y, z)
are evaluated additionally in a way the diagram is interpreted by the author.

The x-axis represents the degree of allocation of decision rights to the collec-
tive of entities, from unitary to decentralized (peer-to-peer) decision making as
specified in [8] (pages 24-25). The decentralized decision making corresponds to
fully autonomous entities. Initially, we could suppose that the swarm is a decen-
tralized system, as each particle decides of its behaviour independently on the
basis of the accessible information.

The y-axis represents the degree of information sharing among entities. While
evaluating the y-axis, the commonly accepted JDL (Joint Directors of Labo-
ratories) schema is applied [9]. The swarm particles could achieve the degree
of information sharing from perception through comprehension to projection
through spreading the information by means of selected topology.

The information accessible for sharing, of course, would not make any sense
in case the particles would not react to this information. Hence, the z-axis in-
dicates the degree of social information sharing. The evaluation of the z-axis
results from the definition of the social interaction as a sequence of social action
and subsequent reaction, which is accomplished by an information exchange.
The purpose of the social action is to excite a reaction of one or more entities,
resulting in subsequent change of their behaviour. With respect to the informa-
tion exchange among entities, three levels of interactivity can be distinguished
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as the (i) non-interactive behaviour where there is no reaction on the action,
(ii) reactive behaviour where the reaction is related only to the single action,
and (iii) interactive behaviour where the reaction is related to more actions
and to their mutual implications. The patterns of interactions will be thus as-
sumed ranging from non-interactive through reactive, interactive to integrated
(i.e. interconnected).

A three-dimensional maturity vector determines the resulting maturity of the
operational space. The coordinates of the maturity vector determine the degrees
of decentralization, information sharing, and social interaction. Depending on
the values of the coordinates (x, y, z), the resulting maturity of the operational
space then, according to [6], and [7] (page 80), takes one of the values (conflicted,
de-conflicted, coordinated, collaborative, agile).

For illustration, let us give the following examples how to determine the ma-
turity of the operational space: With decentralized control, shared projection
and integrated (interconnected) entities, the operational environment is agile.
With unitary control, unshared information, and non-interactive entities, the
operational environment is conflicted (see the diagram in Fig. 1).

A swarm, where the particles use only their cognitive components, and where
there is, therefore, neither shared information nor interaction among particles,
seems de-conflicted but certainly it does not seem collaborative. Evidently worse
behaviour of the cognitive version of the algorithm has been experimentally
demonstrated in 1997 [4] and this finding is also consistent with the philosophy
of the maturity model [6,7]. Hence, if a more effective swarm behaviour has to
be achieved then we have to focus on the remaining indicators, namely on the
distribution of information and the interaction among the particles.

If we determined the maturity values for all possible combinations of the
values of (x, y, z) then we would see that not all combinations make sense. For
example, with the value (z = reactive), the value (y = non-interactive) is not
possible. The reason is that if the particle has to be reactive then the information
must be delivered to it first. So we focus therefore on the question of what values
should the coordinates (y, z) with the value (x = decentralized) take so that the
swarm could be considered as coordinated or collaborative, eventually.

3 Assessment of the Particle Swarm Given to the Generic
Attributes of Collaborative Behaviour

In 2003, generic attributes of collaborative behaviour among software modules
constituting a system were introduced [10]. These widely accepted attributes are:
(i) an appropriate representation of information, (ii) the existence of awareness,
(iii) investigation, (iv) interaction, (v) integration, and (vi) coordination.

We can note that the concepts of interaction, integration, and coordination
are also discussed in the C2 Maturity Model. If we consider the swarm particles
for the system’s software modules and the PSO algorithm for the system then
we get an opportunity to combine both models and to assess the whole particle
swarm according to the characteristics of the collaborative behaviour.
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3.1 Representation

Appropriate representation [10] of information means that the particles under-
stand the sense of the shared information. The particles in their cooperative
activities do not communicate directly, but they exchange information about
the global best positions through shared variables within the system’s environ-
ment. In case of communication among whole swarms [18], the individual swarms
share the information through a context vector.

During the operation of a particle, the particle also uses other information
that cannot be taken as shared information because the information does not
originate from learning from the other particles. These are (i) the random ele-
ments r1, r2, (ii) the inertia weight ω, and (iii) the acceleration coefficients al, ag
(see equation (1)). The values of ω, al, ag are supplied externally, and thus neither
an observer inside of the system nor the particle itself decides on those values.

3.2 Awareness

The existence of awareness denotes the ability of the system to make the entities
aware when something relevant to them occurs [10]. It means that the system
must be able to react to any structural or functional change which can ham-
per the entities in its action, such as addition or loss of an entity, reducing its
reliability, or its overloading, and the system still must be able to continue its
operation toward the specified goal.

Within all the examined variants of the PSO, neither the loss nor overloading
of a particle eventuates; only the particle must not leave the search space. All the
examined variants of the PSO algorithm can detect a particle leaving the search
space and return the particle back, so that the system recovers and continues
in its operation. The theory of linear, discrete time dynamic systems applied for
assessing the dynamic behaviour of a particle [22,23] deals with a set of tools for
preventing the particle leaving the search space while ensuring its convergence
and searching ability.

From the view of the system’s reliability, however, the PSO algorithm ex-
hibits one typical characteristic: The very nature of the particle swarm is that
a particle communicates with a limited number of its neighbours, which implies
local rather than global searching ability of the swarm. The local searching abili-
ty poses a pitfall for the multimodal object functions such that the algorithm
could converge to some local optima prematurely. Since the swarm system itself
is unable to decide whether its convergence is premature, its only opportunity
is using the particles capabilities based on their capability to communicate.

From the communication point of view, two elemental models of the algorithm
called lbest and gbest have been evolved. The difference lies in the set of the
mutually influenced particles. The gbest model maintains only one particle as
the global best solution in the whole swarm. This particle acts as an attractant
causing the other particles to converge to it, which implies that the premature
convergence can occur if the global best particle is not actualized properly.

The lbest model aims at preventing the premature convergence by maintain-
ing multiple attractants. A subset of particles is defined for each particle as
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its neighbourhood, from which the local best particle is selected. The subsets
are not disjoint so that a particle can be an element of more neighbourhoods,
and the neighbourhoods are interconnected this way. Alternative lbest topologies
have been designed [11,12,13], since a topology change can slow down the flow of
information among particles. The slower spread of information allows particles
to explore wider area of the search space, reducing the likelihood of premature
convergence in the face of many local optima. The gbest model is a particular
instance of the lbest model where the neighbourhood of a particle represents the
whole set of the swarm particles. The gbest topology produces a better solu-
tion when applied to unimodal objective functions because of faster information
spreading through the fully interconnected topology [13].

Another factor that affects the convergence ability of the algorithm is the
tendency of the particle to maintain its previous velocity, from which the particle
is then deflected by both cognitive and social component of particle velocity
update vector (1). Therefore, the inertia weight coefficient ω has been introduced
into the original PSO algorithm to balance the global and local searching [14].
The idea is that significantly higher inertia is necessary at the beginning of the
search to explore the whole search space, whereas at later stages, when algorithm
converges to the global optimum, a deceleration and thus a lower inertia is
needed. The gradual deceleration is achieved so that the inertia weight coefficient
ω decreases linearly for each iteration of the algorithm. The concept is known
as TVIW (Time Variable Inertia Weight) [15,3]. Since it has been found that
this linear concept is not effective for dynamic systems, the concept RANDIW
(Random Inertia Weight) [16,3] has been introduced, where the coefficient ω was
generated for several consecutive iterations using a uniform random distribution.

Although the PSO -TVIW algorithm localizes the optimal solution more
quickly than the original version, its ability to fine-tune the optimal solution
is still insufficient. The reason was understood as the lack of particles’ diversity
particularly during the later stages of the search [17,3]. Hence, another concept
for enhancing the global search in early stages and for encouraging the particles
to converge to the global optimum in later stages of the search has been consi-
dered, namely TVAC (Time Varying Acceleration Coefficients) [3]. It has been
discovered that a relatively high value of the cognitive component at an early
stage causes particles wandering through the entire search space, whereas with
a relatively high value of the social component at an early stage, the particles
could be trapped towards a local optimum. The conclusion is that both coeffi-
cients should pull together to make a joint effort so that both courses of searching
would be balanced.

Another concept for increasing the particles’ diversity is known as CPSO
(Cooperative Particle Swarm Optimizer) [18] which splits the particle’s position
vector into components and each component is then optimized in a separate
sub-swarm. To justify that the CPSO variant increases diversity of particles,
diversity measures readily applied to CPSO have been proposed [24].

Even though the PSO modifications TVIW, RANDIW, and TVAC have im-
proved the convergence ability of the original algorithm, yet they are not able
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to prevent the premature convergence of the algorithm caused by stagnation of
the particles. If the current particle position is equal to the global best particle
position, i.e. if xi = li = g in the equation (1), the particle moves only in direc-
tion of its velocity. If the particles’ previous velocities are approaching zero then
all the other particles cease to move in the moment they identify this particle.
In doing so, it cannot be guaranteed that the algorithm converges to some local
optimum – it ceases in the best position which had been previously recognized.

Specific strategies have been evolved with an intention to avoid the prema-
ture convergence caused by particles’ stagnation. The Guaranteed Convergence
PSO (GCPSO) variant of the original algorithm [18] is based on an observation
whether or not the global best position has changed in comparison with the
previous iteration. The Self–organizing Hierarchical PSO (HPSO) variant of the
original algorithm [3] detects the decline of the particle’s velocity and supplies
the particle with a new randomly generated impulse. The Comprehensive Learn-
ing PSO (CLPSO) variant of the original algorithm [19] searches for particles
which have been trapped in some local optima and then accelerates those weak
particles towards a better particle in the swarm. This process of acceleration is
associated with a comprehensive learning strategy so that the particle is allowed
to learn from the best positions previously found by the other particles, thus
enabling the particle to leave the local optimum.

Since the effectiveness of the HPSO algorithm was low with constant values
of acceleration coefficients, the HPSO strategy was combined with the TVAC,
TVIW, and RANDIW methods [3]. The best combination has proved the HPSO -
TVAC but with one exception. To further improve the efficiency of the CLPSO
strategy, the combination CLPSO-TVIW was used [19].

While assessing the awareness ability of the algorithm, we can learn that
within all the above mentioned strategic frameworks, the global best particle
tries alone to tackle its problems with the stagnation, since it does not want
to become a bad learning example for the other particles. The other particles
are not informed about the stagnation problem of the global best particle – the
information about the stagnation is not shared.

Another inherent feature of the original PSO algorithm is that a particle could
overshoot its target without knowing it. One of the reasons could be the fact that
the particle cannot adjust the values of the inertia weight ω nor the values of
the acceleration coefficients al, ag using only the (shared) information accessible
inside the swarm system, without the need for external control. The evidence
that the control parameters could be adapted dynamically while the search is in
progress is the Self-adaptive Comprehensive Learning Particle Swarm Optimizer
(SACLPSO) [25].

3.3 Investigation

The investigation is used to quickly find information related to the activities
being carried out [10]. The intelligence information is usually evaluated conti-
nuously and provided for an entity that needs it or that requests it.
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All of the information shared among the particles has had a character of
intelligence information virtually, since it has stemmed from the investigation
of information throughout the operation of the whole swarm. The method of
sharing is specified by the gbest or lbest topological structure and the intelligence
information system is based on the corresponding learning strategy.

The lbest strategy which is based on the “intelligence” or “social intelligence”
concept, has led also to the idea of making the particles “fully informed” [20].
Within the Fully Informed Particle Swarm (FIPS ) variants of the PSO, the
particle learns from the fully informed neighbourhood, where all neighbours are
a source of influence. The original PSO can be seen as a special case of FIPS,
which includes the selection of one particular neighbour to influence the particle,
and the particle learns from two examples, i.e. from the particle’s best position
and from the best neighbour. Experiments with various neighbourhoods have
shown better results than the original PSO algorithm but with increasing parti-
cle’s neighbourhood, the performance of the swarm has become worse [20]. The
topologies where the particle has been “truly fully informed”, that is, where the
particle gains the information from each particle of the swarm, the results have
been very worse, as also the authors of the FIPS study have expected, and thus
increasing the ability of information sharing up to this extreme does not seem
a solution to enhance the particle in its decision making.

In the CLPSO algorithm [19], both cognitive and social component from (1)
are replaced by a new component in which the best position is composed so that
each of the particle’s dimension learns from an example of the corresponding
dimension of another particle called exemplar. A particle is allowed to learn if
it has not improved its position after a certain number of iterations. A random
number is generated for each dimension and if this number is greater than the
particle’s (empirically obtained) learning probability then the particle learns
from its own best position, otherwise it learns from the personal best of another
particle which is selected as the better of two randomly chosen particles. Each
particle can therefore become a learning example and can determine the direction
of the motion of the other particles. Moreover, each of a particle’s dimension can
learn from the corresponding dimension of another particle.

3.4 Interaction

The interaction means the ability of entities to influence each other while working
on a shared task [10]. The influencing activity is manifested so that an entity
changes its behaviour as a response to specific information. The effect can be
only reactive, but in case of the interaction, mutual implications are essential.

The particles in the swarm interact with one another since (i) the intelligence
system of the PSO algorithm has supplied the particles with the intelligence
information, (ii) information sharing is then enabled by the topological structure
(lbest or gbest) by which the particles are interconnected, and (iii) a particle
updates its velocity and position following its own information and the shared
information in accordance with the corresponding learning strategy.
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Since the velocity vector of a particle in the original version of the PSO al-
gorithm (1) directs the particle to the best position achieved in its topological
neighbourhood, the particle moves to the best achieved position but the situa-
tion may change in the subsequent iterations, and the particle may itself become
the best particle to which the other particles are directed. Because the velocities
of the particles in the subsequent iterations have reflected both the particle’s
own experience and the experience of the other particles, the implications are
mutual and thus the particles interact this way.

It is important to note that even if the particles interacts, the premature
convergence because of stagnation of the particles in the search space may oc-
cur. The existing strategies how to lead the particle out of stagnation may use
different ways from the original algorithm to update the velocity vector of the
stagnating particles. In general, we can consider the behaviour of the particles
as being interactive if the particles use the social components of their velocity
update vectors.

3.5 Integration

The integration [10] lies in the ability of the entities to combine their own results
with the results obtained from the other entities. It can be described as a state
of the system where the entities are able to operate simultaneously and to react
continuously on the intermediate results while solving a common task.

The simultaneous operation and the continuous reaction on the intermediate
results is successfully simulated in a pseudo-parallel manner. The particles’ ac-
tivities take place sequentially in two consecutive cycles, where both cycles run
over all the particles. The first cycle updates the best positions and then it is
followed by the second cycle which changes the hyperspace so that it updates the
particles’ velocities and positions. Within the original version of the algorithm,
each dimension of the n-dimensional velocity vector is updated according to the
equation (1) separately, and then the position of the ith particle is updated ac-
cording the equation (2). The updates are performed in the sequence that was
assigned for the particles during the initialization of the swarm.

In both HPSO [3] and CLPSO [19] variants of the original PSO algorithm,
each dimension of a particle is updated in particular so that two consecutive
cycles running over n particle’s dimensions are nested into the main cycle over
all particles. In the first nested cycle, the best positions are updated, followed by
changes of the hyperspace in the second nested cycle. The simultaneous operation
and continuous reaction to the intermediate results is thus simulated on the level
of the particle’s particular dimensions.

The CPSO-S variant of the original algorithm [18] introduces n particular
swarms, each of which optimizes one particular dimension of the original swarm
of n-dimensional particles. The individual swarms are optimized in a sequential
manner, and the information is exchanged through a context vector. The updates
are performed in two consecutive cycles analogously as in the original version
of PSO algorithm, but over the individual swarms. The simultaneous operation
and continuous reaction to the intermediate results are thus simulated both on
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the level of the individual swarms and inside of the swarms on the level of the
particles’ dimensions.

When integrating the results of entities operating in mutual interactions,
a novel type of control activity and organization at a higher level should emerge.
A meta-system that is more complex, more intelligent and more flexible in its
activity than the original system of independent entities should arise. In accor-
dance with the systems theory, the integration of the parts during the meta-
transformation is typically followed by their specialization, where different parts
take different roles within the meta-system and undergo appropriate modifica-
tions. Each of the specialized parts remain a separate autonomous entity but
with special features. The process is called differentiation of parts.

In the sense of the meta-transformation, a swarm of particles in the original
PSO algorithm can be considered a meta-system in which, however, we cannot
observe the differentiation of parts. The CPSO-S [18] individual swarms could be
considered the specialized parts, since each swarm can be specialized to optimize
one dimension. We can see a higher degree of integration in the CPSO-HK

(Hybrid CPSO) [18] variant of the original algorithm, where the pseudo-parallel
activity and the continuous reaction to the intermediate results has been brought
on the level of two algorithms.

3.6 Coordination

The coordination is an effort combining and guiding the entities to focus their
activities on the right things at the right time [10]. The coordination of coope-
rating entities is carried out on the principle of self-organization in the absence
of a central element. A relatively autonomous operation of individual entities
that deal with their individual tasks and communicate in order to coordinate
their activities is the essence of the synergy.

The individual task of the particle in a swarm is to move closer to the global
optimum in the subsequent iterations. The common task of the particle swarm is
to converge to the global optimum. The coordination of activities of the particles
in a swarm is achieved (i) by regulating the speed of information flow using the
lbest topological structure of the particles, and also (ii) by velocity control using
the inertia weight and the acceleration coefficients.

As already mentioned in section 3.2, different topologies for the lbest model
have been constructed because they allow slowing down the speed of the in-
formation flow among particles [11]. For each particle, a subset of particles as
a neighbourhood is defined where each particle becomes part of the neighbour-
hood of one or more particles. All particles are connected this way and may
exchange information indirectly. The relatively long path between distant par-
ticles from different neighbourhoods then slows down the information exchange
between the distant particles, which enables the particles to explore different
areas in the search hyperspace at the same time while maintaining the ability
to share information. The particle is chosen in the neighbourhood according to
its initially assigned index i, regardless of the particle’s position in the search
space. The topology is defined during the initialization of the swarm and becomes
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a characteristic of the environment so that the particles adapt to it naturally.
The topology thus does not limit the autonomous activity of the entities.

In respect to the coordination of activities of the particles in a swarm with
the velocity control based on the modification of the inertia weight and the
acceleration coefficients as mentioned in section 3.2, it can be concluded that
the coordination is addressed to balance the lack of awareness. While doing
this, a particle does not adjust the inertia nor acceleration based on learning
from the swarm search space, since the particle has no information on which
it could decide what inertia and acceleration should update its velocity in its
current position. The particle’s velocity during its flight through the hyperspace
is instead regulated artificially from outside of the system.

4 Discussion

The subject of the discussion was to determine what values should the coordi-
nates (y, z) in the maturity model shown in Fig. 1 with the value (x = decentral-
ized) take so that the swarm could be considered as coordinated or collaborative.

The highest achieved level of information sharing (y-axis) can be evaluated
as shared projection. While conducting its activity, each particle has an oppor-
tunity to learn the accessible information about the global best position (shared
perception), to estimate the situation and to update the shared information if
it becomes the global best particle (shared comprehension), and to move in the
estimated direction. The swarm particles control their activities according to the
best position yet discovered, i.e. they project this global information into their
activities (shared projection).

In terms of the particle’s ability to combine its own results with the results of
the other swarm particles (z-axis), the swarm can be considered as an integrated
system, since the swarm particles in all variants of the PSO algorithm are able
to operate simultaneously and react continuously on the intermediate results.

In terms of allocation of decision rights (x-axis), the particles are not com-
pletely autonomous, since – except for isolated cases – the particle’s velocity
during its flight through the hyperspace is artificially regulated from outside the
system. Thus, compared with the original assumption (x = decentralized), the
degree of decentralization should be labelled rather as (x = selective control).

Hence, the answer to the question under what conditions the swarm could be
considered as coordinated or collaborative is that rather than information sharing
or social integration of particles, the decision making autonomy of individual
particles should be enhanced.

5 Conclusion

It follows from the discussion that the method of the particles’ coordination
based on the application of tuning parameters established externally, namely by
external inertia weight and external acceleration coefficients, is a way of control
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which is inconsistent with the principle of self-organization as an autonomous
activity of the individual entities.

The conclusion from the maturity assessment of the particle swarm is that
the swarm system as a whole is not mature enough, as (i) a swarm particle does
not have the ability of learning to get all the information needed to update its
velocity, and (ii) if a particle has a problem, the other particles do not know about
it. Lack of the system’s awareness seems to be the main cause of the persistent
unreliability of the original PSO algorithm and its variants in optimization of
multimodal functions with many local optima.

A solution would be a continual adjustment of the particle’s velocity as a func-
tion of its level of confidence in its actual direction, as outlined in [21]. The
confidence should be based on a particular qualitative assessment of the values
of the objective function obtained in a given iteration. Such approach, however,
would involve an adaptation of the particles’ behavioural rules so that the parti-
cle could use only the coefficients (ω, al, ag) whose value would be provided from
inside the system, without external control.

The author’s future research plan is to enhance the role of the recognized
hypothetical observer within the original particle swarm – its responsibilities yet
are (i) the continuous monitoring of the particles’ activities and (ii) providing
the particles with the information about the personal and global best positions.
Enhanced observer’s responsibility would be (iii) providing the particles with the
set of control parameters (ω, al, ag) to balance the exploration-exploitation per-
formance, and (iv) maintaining the dynamic stability of the swarm with respect
to the limitations resulting from the analyses of particle’s dynamic behaviour
as outlined in [22,23]. The swarming strategy would be based on time-varying
adaptive control coefficients. At the beginning of the search, only local searching
involving (ω, al) would be permitted until the hyperspace is explored as uni-
formly as possible. To assess the degree of the uniformity, the observer would
divide the hyperspace into hyper-cubes (i.e. intervals, squares, cubes, ...) ac-
cording to the particle’s dimension, and would maintain a histogram that would
increment the number of positions being explored by the whole swarm and falling
into the disjoint hyper-cubes. The chi-squared test for assessing to what extent
the observed distribution of the explored positions fits the uniform distribution
could be used in each iteration. When the degree of uniformity is sufficient then
the global searching (ag) can be involved. Now, the observer could take into
account that the global best (and/or worst) position could become an outlier.
In such case, the observer has an opportunity to speed up the global search.
To identify an outlier, a statistical method of analysis of extreme values could
be used as a qualitative assessment in which the set of particles’ personal best
values of objective function would be treated as a random sample.

The author’s established hypothesis is that the dependencies between the chi-
squared test value at the beginning of the search, the emergence of outliers after
involving the global search, and the particle’s velocity control parameters exist.
If the dependencies were discovered then a deeper understanding of how the
intelligent behaviour of the particle swarm emerges, could be brought about.
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26. Winklerová, Z.: Maturity of the Particle Swarm as a Metric for Measuring the
Particle Swarm Intelligence. In: Dorigo, M., Birattari, M., Blum, C., Christensen,
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Abstract. In this paper, we utilized particle swarm optimization algo-
rithm to solve a regression analysis problem in dielectric relaxation field.
The regression function is a nonlinear, constrained, and difficult prob-
lem which is solved by traditionally mathematical regression method.
The regression process is formulated as a continuous, constrained, single
objective problem, and each dimension is dependent in solution space.
The object of optimization is to obtain the minimum sum of abso-
lute difference values between observed data points and calculated data
points by the regression function. Experimental results show that particle
swarm optimization can obtain good performance on regression analysis
problems.

Keywords: Particle swarm optimization, regression analysis, regression
models, weighted least absolute difference value.

1 Introduction

Swarm intelligence, which is based on a population of individuals, is a collection
of nature-inspired searching techniques. Particle Swarm Optimization (PSO),
which is one of the swarm intelligence algorithms, was introduced by Eber-
hart and Kennedy in 1995 [9, 13]. It is a population-based stochastic algorithm
modeled on social behaviors observed in flocking birds. Each particle, which
represents a solution, flies through the search space with a velocity that is dy-
namically adjusted according to its own and its companion’s historical behaviors.
The particles tend to fly toward better search areas over the course of the search
process [4, 5, 10].

Optimization, in general, concerns with finding the “best available” solution(s)
for a given problem, and the problem may have several or numerous optimum
solutions, of which many are local optimal solutions. The goal of global op-
timization is to make the fastest possible progress toward the “good enough”
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solution(s). Evolutionary optimization algorithms are generally difficult to find
the global optimum solutions for multimodal problems due to the possible oc-
currence of premature convergence [2, 3, 6].

The Cole-Davidson relaxation function is important in dielectric relaxation
[17]. The Cole-Davidson parameters consist of τ and β. These pairs of parameters
are different at different temperatures. In this paper, the proper parameters are
found based on the observed data and the regression function. The regression
process is formulated as a continuous, constrained, single objective problem,
and each dimension is dependent in solution space. The traditional methods
are difficult to solve this kind of problems due to the problem is non-separable,
multimodal, and noisy. Particle swarm optimization is utilized in the regression
process. The object of optimization is to obtain the minimum sum of absolute
difference values between calculated value and the observed value.

The rest of this paper is organized as follows. Section 2 reviews the basic par-
ticle swarm optimization algorithm. In Section 3, the basic concept of regression
analysis is introduced. The experimental setup is described in Section 4 which
includes the regression problem statement, optimization problem representation,
parameter setting, and regression results. Finally, Section 5 concludes with some
remarks and future research directions.

2 Particle Swarm Optimization

Each particle represents a potential solution in particle swarm optimization,
and this solution is a point in the n-dimensional solution space. Each particle
is associated with two vectors, i.e., the velocity vector and the position vector.
The position of a particle is represented as xij , i represents the ith particle,
the velocity of a particle is represented as vij , i = 1, · · · ,m, and j is the jth
dimension, j = 1, · · · , n. The m represents the number of particles, and n the
number of dimensions.

The particle swarm optimization algorithm is easy to implement. The velocity
and the position of each particle are updated dimension by dimension, and the
fitness is evaluated based on a position of all dimensions. The update equations
for the velocity vij and the position xij are as follow [11, 14]

vi(t+ 1) ← wivi(t) + c1rand()(pi − xi(t)) + c2Rand()(pg − xi(t)) (1)

xi(t+ 1) ← xi(t) + vi(t+ 1) (2)

wherew denotes the inertia weight and usually is less than 1 [16], c1 and c2 are two
positive acceleration constants, rand() and Rand() are two random functions to
generate uniformly distributed random numbers in the range [0, 1), xi represents
the ith particle’s position, vi represents the ith particle’s velocity, pi is termed as
personal best, which refers to the best position found by the ith particle, and pg
is termed as local best, which refers to the position found by the members in the
ith particle’s neighborhood that has the best fitness value so far.

Different topology structure can be utilized in PSO, which will have different
strategy to share search information for every particle. Global star and local
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ring are two most commonly used topology structures. A PSO with global star
structure, where all particles are connected to each other, has the smallest av-
erage distance in swarm, and on the contrary, a PSO with local ring structure,
where every particle is connected to two near particles, has the biggest average
distance in swarm [2, 15].

3 Regression Analysis

In statistics, regression analysis is a statistical technique for estimating the re-
lationships among variables. The curve fitting is a process that apply regression
analysis to data.

In general, regression models involve three parts of variables [12]:

– The unknown parameters, denoted as β, which may represent a scalar or a
vector.

– The independent variables, i.e., input vector x = (x1, x2, · · · , xp).
– The dependent variable, i.e., an output y.

A regression model relates y to a function of x and β,

y ≈ f(x, β) (3)

The parameters β are the goals that to be found based on the input vector x
and real world observed output y. In this paper, we have a regression function,
and a series of data points, which contains the input vector and the observed
output data points. The goal of regression is to find the proper parameters for
regression function.

4 Particle Swarm Optimization in Regression Analysis

4.1 Dielectric Relaxation Problem Statement

The following Cole-Davidson relaxation function is important in dielectric re-
laxation [17]. The input vectors are the different frequencies and the different
temperatures, while the outputs are the Cacc/Cmax values. The parameters β
and τ need to be tuned by the observed data. The equation is as follows:

Cacc/Cmax = ε∞ + (εS − ε∞)× (cos(arctan(2× 3.14× frequency× τ)))β

× (cos(β × (arctan(2× 3.14× frequency× τ)))) (4)

The Cole-Davidson parameters consist of τ and β. The τ is the relaxation time
(related to temperature) and β is a constant for a given material (depends on
the materials’ physical properties). 0 ≤ β ≤ 1 which controls the width of the
distribution and β = 1 for Debye relaxation [8]. The larger the value of β is, the
worst case is the dielectric relaxation for the specified high-k thin film. In our
case, τ is decreasing with increasing temperature, whilst β is increased and then
decreased due to the dielectric relaxation degree.
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Table 1. The data of regression model

frequency
Cacc/Cmax

AD 150 AD 200 AD 250

100 1.0 1.0 1.0
1000 0.869281304416653 0.844311377245509 0.570121951219512
10000 0.716334230383621 0.646706586826347 0.390243902439024
100000 0.515144319560973 0.391017964071856 0.307926829268293
1000000 0.244050445886761 0.181437125748503 0.11219512195122

frequency
Cacc/Cmax

AD 300 AD 350
100 1.0 1.0
1000 0.778625954198473 0.720372836218375
10000 0.552671755725191 0.567243675099867
100000 0.401526717557252 0.463382157123835
1000000 0.290076335877863 0.380825565912117

Table 1 gives the observed data at different temperatures, which is from
the experimental measurement. The observed data points are measured on five
frequencies: which are 100, 1000, 10000, 100000, and 1000000; and five temper-
atures, which are AD 150, AD 200, AD 250, AD 300, and AD 350. In this opti-
mization problem, different β and τ at different temperatures should be obtained
from the 25 data points and function (4). The constrains of this optimization
problem are as follows:

βAD 150 < βAD 200 < βAD 250 (5)

βAD 250 > βAD 300 > βAD 350 (6)

τAD 150 > τAD 200 > τAD 250 > τAD 300 > τAD 350 (7)

4.2 Optimization Problem Representation

In this regression problem, each pair of β and τ are searched for a particu-
lar temperature. The observed data is measured at five different temperatures.
There are five pairs of β and τ need to be optimized. The regression problem is
formulated as a ten dimensional optimization problem.

The regression process is formulated as a continuous, constrained, single ob-
jective problem, and each dimension is dependent in solution space. The object of
optimization is to obtain the minimum sum of absolute difference value between
calculated value and the observed value:

f(βi, τi) = min(
∑

|calculated value− observed value|)

where βi, τi are parameters for the regression functions.
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4.3 Parameter Setting

The parameters of particle swarm optimization are set as the standard PSO [1,7].
In all experiments, the population size is 48, and c1 = 1.496172, c2 is equal to c1,
and the inertia weight w = 0.72984. The PSO is configured with both star and
ring structures. Both PSOs are run 50 times to ensure a reasonable statistical
result necessary to compare different PSOs. There are 15000 iterations for this
10 dimensional problem in every run.

4.4 Regression Results

Table 2 is the results of particle swarm optimization with star or ring structure
solving regression function, respectively. The bold numbers indicate the better
solutions. Three measures of performance are utilized in this paper. The first is
the best fitness value attained after a fixed number of iterations. In our case, we
report the best result found after 15000 iterations. The second and the last are
the median and mean value of the best fitness values for all runs. It is possible
that an algorithm will rapidly reach a relatively good result while becoming
trapped into a local optimum. These two values reflect the algorithm’s reliability
and robustness.

In general, both the particle swarm optimization with star and ring structure
can obtain the best solution. The particle swarm optimization with ring structure
has a good mean solution than particle swarm optimization with star structure.

Table 2. Result of particle swarm optimization with star and ring structure solving
regression function. All algorithms are run for 50 times, where “best”, “median”, and
“mean” indicate the best, median, and mean of the best fitness values for all runs,
respectively.

Topology Best Median Mean Std. Dev.

Star 1.053175 1.648320 29.632730 44.56709
Ring 1.020008 1.088310 5.157848 19.51159

The Table 3 gives the best results of parameter regression. The β and τ are
listed while the minimum sum of absolute difference values is found by particle
swarm with star or ring structure. These two groups of values are very similar
to each other.

The Table 4 gives best regression results of particle swarm optimization with
star structure. The Figure 1 shows the comparison of regression results and
observed data. The Table 5 gives the best regression results of particle swarm
optimization with ring structure. The Figure 2 shows the comparison of regres-
sion results and observed data.

From the curves in Figure 1 and Figure 2, the particle swarm optimization
algorithm with star or ring structure can obtain almost the same results of
regression curves. This indicates that the good solution for this kind of problems
can be found through particle swarm optimization algorithm.
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Table 3. The best results of parameter regression. The minimum error is 1.02000850
for PSO with ring structure, while the minimum error is 1.05317510 for PSO with star
structure.

Star Ring
AD β τ β τ

AD 150 0.1002494229 0.0010511750 0.1022300070 0.0009162830
AD 200 0.1416010514 0.0010099788 0.1445693227 0.0008695953
AD 250 0.2151466434 0.0009694112 0.2228354277 0.0008272211
AD 300 0.1399315195 0.0009116935 0.1431070780 0.0007834991
AD 350 0.1192440041 0.0008699401 0.1223494783 0.0007356312

Table 4. The best regression results of particle swarm optimization with star structure

frequency
Results

AD 150 AD 200 AD 250

100 0.9803533087200449 0.9732203075430433 0.9599714993720966
1000 0.8183140188354814 0.7531354217322795 0.6452708516352952
10000 0.6490450233171907 0.5422181905772254 0.39022384615261413
100000 0.5151534482187442 0.3911869732998386 0.2375184001008005
1000000 0.4089571613918108 0.28233432687083115 0.14471122722135724

frequency
Results

AD 300 AD 350
100 0.9777641605637136 0.9827987196129729
1000 0.7668024982675506 0.8039318492517724
10000 0.5542132222985895 0.6099947380705117
100000 0.4013677612982473 0.4633722900064722
1000000 0.29079687116276054 0.35210320821093655
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Fig. 1. The comparison of regression results and observed data. The ◦ represents the
observed data, and the � represents the obtained data.
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Table 5. The best regression results of particle swarm optimization with ring structure

frequency
Results

AD 150 AD 200 AD 250

100 0.984082908101654 0.9787492986896107 0.9681870128983179
1000 0.8264005694511332 0.7648083529054488 0.6575017199965371
10000 0.6524843293868552 0.5467651505496035 0.39012032973029975
100000 0.5155074488464255 0.3917458808543039 0.2332240862444571
1000000 0.40737442781887184 0.28080919599526033 0.1395972903770576

frequency
Results

AD 300 AD 350
100 0.9824993267112276 0.9868508330318926
1000 0.7785885773651047 0.8155461434535894
10000 0.5585610642007467 0.6144323526766813
100000 0.40153027594372204 0.46337978806209773
1000000 0.2887921416526203 0.34959692515051655
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Fig. 2. The comparison of regression results and observed data. The ◦ represents the
observed data, and the � represents the obtained data.

5 Conclusions

The traditionally mathematical and/or statistic methods are difficult to solve
some real world problems, because these traditional methods have many re-
quirements such as domain specific knowledge. The evolutionary computation
algorithms or swarm intelligence, which does not require domain knowledge, the
solution could be found by iterations of simple strategies.

In this paper, we utilized particle swarm optimization to solve a real-world
regression analysis problem. Two parameters at five temperatures are opti-
mized through the minimizing the sum of least absolute difference values. The
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experimental results show that particle swarm optimization can obtain good
performance on solving regression analysis problems.
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Abstract. This paper addresses the issue of swarm robots cooperative search.
A swarm intelligence based algorithm, mechanical Particle Swarm Optimization
(PSO), is first conducted which takes into account the robot mechanical properties
and guiding the robots searching for a target. In order to avoid the robot localiza-
tion and to avoid noise due to feedback and measurements, a new scheme which
uses Extremum Seeking (ES) to aid mechanical PSO is designed. The ES based
method is capable of driving robots to the purposed states generated by mechani-
cal PSO without the necessity of robot localization. By this way, the whole robot
swarm approaches the searched target cooperatively. This pilot study is verified
by numerical experiments in which different robot sensors are mimicked.

Keywords: Swarm Robotics, Mechanical Particle Swarm Optimization,
Extremum Seeking, Perturbation, Cooperative Search.

1 Introduction

Swarm robotics is an area that has received a lot of attention from worldwide re-
searchers. Using a mobile robot swarm to search targets is a typical topic in this area.
Swarm robotic systems usually consist of many identical or similar simple individuals
but can give super behavior in swarms. However, a swarm robotic system not only in-
cludes multiple robots but also the swarm intelligence from collaboration between the
members. The methods used for controlling swarm robotics mainly boil down to two
categories. The traditional ones like, e.g., artificial potential fields, or exact cell decom-
position, are just inadequate when performing complex tasks. Another kind of methods
is referred as non-traditional, like bacterial colony algorithms, reactive immune net-
work, Particle Swarm Optimization (PSO), and Extremum Seeking (ES). Among them
the PSO and ES are especially appealing due to their unique features, see [4], [7].

The PSO is originally only used as an optimization method, although it is extended
and utilized in the robotics area, see example in [6]. The work [6] extends PSO to
mechanical PSO which takes into account the mechanical properties of real robots, see
also Section 2.2. Together with other strategies, encouraging results are obtained by this
method. However, it requires relatively precise localization for forming the feedback
loop and it is difficult to realize fast online driving due to sensor delays. Another side,
Extremum Seeking is applicable as a means of navigating robots in environments where
robot positions are unavailable [7]. However, the basic ES is non-cooperative, i.e., each
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robot is driven by ES individually. Motivated by this, this article investigates the swarm
robots cooperative search by integrating mechanical PSO and ES.

2 Algorithm Design

2.1 Investigation Prerequisites

Before designing the algorithm for swarm robots, some prerequisites have to be stated.
The robots used in the swarm are mobile robots. They are assumed to be relatively
simple and do not have the capability of localizing their own positions. However, they
are capable of sensing the relative states of their neighbors and the signal strength from
the target. The simulated robots are here considered as 2D mass points without volumes.

Secondly, there are no obstacles included at the moment in the environment. The
spatial distribution of the searched signal originating from the target is unknown to the
robots, neither the position of the target. However, in this study the target is sending a
signal which is known to decay with the distance from the source. As a usual source
distribution we use the quadratic form

f (x, y) = f ∗ − qx(x− x∗)2 − qy(y− y∗)2 (1)

to describe it. Here f is the detected signal strength, (x∗,y∗) is the maximizer while f ∗
represents the maximum, qx and qy are positive constants.

2.2 From Basic PSO to Mechanical PSO

The PSO was inspired from some biological populations, for instance, the swarm of
birds. Each bird is taken as an adaptive agent and can communicate with the environ-
ment and other agents. During the process of communication, they will ‘learn’ or ‘ac-
cumulate experience’ in order to change the structure and behavior of the swarm. Such
processes are the basis of PSO. In PSO, the size of the swarm is denoted by Np and the
members are called particles. The ‘velocity’ and position of particles are represented by
Np × n matrices ẋxx and xxx, respectively.

The recursion of one commonly used form of basic PSO for all Np particles is

[
xxxs+1

ẋxxs+1

]
=

[
xxxs

ωp ẋxxs

]
+

[
ẋxxs+1

c1 rrrs
1 · (xxxbest,s

sel f − xxxs)+ c2 rrrs
2 · (x̂xxbest,s

swarm − xxxs)

]
. (2)

Here s denotes the iterative steps. The right-hand side of the second line of (2) contains
three components, i.e., the ‘inertia’ which models the particles tendency of last step; the
‘memory’ which means moving towards the particles’ self best positions, respectively;
and the ‘cooperation’ which drives the particles to the swarm best position. In (2), c1

and c2 are usually non-negative constant real numbers while random effects are kept in
rrrs

1 and rrrs
2. Detailed definitions can be found in [6].

We consider one particle to represent one robot since the particles in PSO looking for
the minimum (or maximum) of an objective function according to their update formulae
is quite similar to the robots search scenario in which the robots are searching a target
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according to their cooperatively generated trajectories. Many of their correspondences
are summarized in [6]. We interpret the PSO-based algorithm as providing the required
forces in the view of multibody system dynamics. Namely, each robot is considered as
one body in a multibody system which is influenced by forces and torques but without
direct mechanical connections. In addition, the particles are replaced by mechanical
robots whose motions follow physical laws. This is done in order to generate physically
reasonable search trajectories. For considering the feasible dynamics, the inertia, and
other physical features of the robots, the basic PSO algorithm is extended.

In a general way, if one defines kkk coming from Euler equations, and qqq contains the
information of external forces and torques acting on all Np robots, the acceleration of
the entire robot swarm can be formulated by

ẍxx =
[
ẍxx1 ẍxx2 · · · ẍxxi · · · ẍxxNp

]T
= MMM−1 · (qqq− kkk) = MMM−1 ·FFF ∈R

3Np×1 . (3)

With the state vector yyyst =
[
xxx ẋxx
]T

, state equation

ẏyyst =

[
ẋxx

MMM−1 ·FFF
]
, and Euler forward integration yyys+1

st = yyys
st +Δt ẏyys

st , it yields (4)

[
xxxs+1

ẋxxs+1

]
=

[
xxxs

ẋxxs

]
+Δt

[
ẋxxs

MMM−1 ·FFFs

]
. (5)

We define the robot to be only influenced by forces, i.e., li = 0 at the moment. The force
FFFs is further determined by three parts, fff s

1, fff s
2 and fff s

3, which are

fff s
1 =−hhhs

f1 ·
(

xxxs − xxxbest,s
sel f

)
, fff s

2 =−hhhs
f2 ·
(

xxxs − x̂xxbest,s
swarm

)
, fff s

3 =−hhhs
f3 · ẋxxs. (6)

Here fff s
1, fff s

2 and fff s
3 contain physical meanings corresponding to the ‘memory’, ‘coop-

eration’, and ‘inertia’ phenomena in basic PSO. Combining (5) and (6) yields[
xxxs+1

ẋxxs+1

]
=

[
xxxs(

III3Np −Δt MMM−1 ·hhhs
f3

) · ẋxxs

]

+Δt

[
ẋxxs

MMM−1 ·hhhs
f1 ·
(

xxxbest,s
sel f − xxxs

)
+MMM−1 ·hhhs

f2 ·
(
x̂xxbest,s

swarm − xxxs
)]. (7)

For more detailed derivations and explanations please refer to [6]. Equation (7) is the
developed mechanical PSO which is used to generate cooperatively physically reason-
able trajectories for swarm mobile robots. However, it requires heavy robot localization.

2.3 Perturbation Based Extremum Seeking

Extremum Seeking (ES) had been proven to be a powerful tool in real-time non-model
based control and optimization [1]. Recently, ES also has been used for swarm net-
worked agents with each member only sensing limited local information [5]. Extremum
Seeking usually is applied for questions as for seeking the maxima of objective func-
tions. Due to its non-model based character, it is applicable to control problems which
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contain nonlinearity either in the plant or in its control objective. For example, in the
case of cooperative search performed by swarm robots, either the robot models or the
distribution of the source, or both of them can be nonlinear since ES based methods are
possible to use only one external signal whose strength is detected by robots and the
specific distribution form of the signal is not critical. It doesn’t care about the actual
positions of robots. Furthermore, the linearity or nonlinearity of the robot model is not
important. Nonetheless, the signal strength f is only a single dimensional information.
It is not directly sufficient for guiding robots since it lacks the ‘gradient’ information of
the target signal. One way to solve this issue is that of equipping gradient detecting sen-
sors on robots. However, this is a big challenge and we prefer that the robot only needs
to detect one external signal. The amazing thing happens when the basic ES is varied by
perturbation which is hardware free and easy for implementation. Relying on its persis-
tence of excitation, usually a sinusoidal signal, the perturbation based ES perturbs the
parameters being tuned. Through this method, the gradient information is obtained. We
use the perturbation based ES scheme similarly as in [8] for guiding robots. Its control
block diagram for a single robot is shown in Fig. 1.

Fig. 1. Extremum Seeking scheme with x, y axes velocities as inputs for robot

In Fig. 1 the parameters α,ω ,cx,cy and h are chosen by the designers. The washout
filter s/(s+ h) filters out the DC component of f , then the two-channel perturbations
generate gradient estimates of f in x and y directions which usually are unmeasurable
by physical sensors. After the ES loop, the velocity inputs are tuned for driving the
robot. The used control laws are then governed by

vx = α ω cos(ω t)+ cx Δ sin(ω t), vy = α ω sin(ω t)− cy Δ cos(ω t), Δ =
s

s+ h
[ f ]. (8)

The control laws in (8) are actually optional. Dürr et al. [2] used different perturbations
which also work well. Unfortunately, due to the sinusoidal perturbation, the trajectory



68 Q. Tang and P. Eberhard

generated from the ES based method is spiral like which artificially increases the travel
distance. This is extremely serious when the distance between start position and target
position is far, because the uncertainty from the AC part of f is increased. This is not
acceptable for robot practical implementation. Furthermore, if this ES scheme is used
for swarm robots, all robots are non-cooperative. Therefore, we try to integrate it into
mechanical PSO while the localization free feature is inherited.

2.4 Mechanical Particle Swarm Optimization Aided by Extremum Seeking

Our purpose is to integrate the cooperation benefits of mechanical PSO and the local-
ization free feature of ES. The ES is aiding the overall search algorithm of mechanical
PSO. The mechanical PSO is used to generate intermediate states for guiding robots.
From each state to its next adjacent state there is only a short distance. The perturbation
based ES only needs to drive the robot to the next state while temporary taking the next
state as its current target, see Fig. 2 for the relationship of mechanical PSO and ES.

Fig. 2. Extremum Seeking aids for mechanical PSO

One should not forget that the intermediate states are not target positions. Thus, the
perturbation based ES doesn’t directly qualify. So, the maximum transition must be
performed through which the target source (with maximal signal strength) is mathe-
matically and temporary transited to the desired state by using information fff from the
actual source and ΨΨΨ from robots relative observation. This idea is also expressed by

fff ∗ = fff (xxx∗, yyy∗) fff ,ΨΨΨ−−→
ggg()

ggg∗ = ggg(xxxd , yyyd , fff ,ΨΨΨ) (9)

where fff is a vector containing all the robots detected signal strengths. To be empha-
sized, fff is from the actual source and it is the only signal that the robots can detect
since the intermediate ‘targets’ (xxxd , yyyd) from mechanical PSO are artificial. In (9) ggg∗
are the new maxima, ggg is a function which corresponds to the function fff and describes
the artificial targets at the intermediate states. In this study, we assume there is such a
function ggg. By this way, each robot senses the current ‘target’ which locates at the corre-
sponding state from a step of mechanical PSO. Then, our perturbation based ES drives
the robot to the desired state with relatively stable trajectory due to the short distance
between two adjacent states. Looking at the whole robot swarm, they are still moving
in a cooperative manner since each robot traces one trajectory from mechanical PSO.

The procedures of the whole method is summarized in Algorithm 1. The method used
in this study is very different to the work in [4] where PSO is still used in the view of op-
timization without considering the robots physical properties. The PSO generated states
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in [4] require a re-generation to smooth the trajectory, whereas the states from mechan-
ical PSO in this study are ready to be traced with physically reasonable quality. Thus,
the PSO in [4] has no obvious advantages compared to some other swarm intelligence
based algorithms like, e.g., ant colony, bacteria foraging. In addition, [4] only handles a
single robot and the particles are virtually without mapping to real robots. Some other
researches, e.g., [3] and [7], provide variants of ES for swarm seeking which are basi-
cally formation control oriented. Furthermore, their control cost and energy consump-
tion from the not well organized trajectories have restricted their applications although
they are also cooperative. In contrast, the scheme in this study is more straightforward
and feasible considering the implementation.

Algorithm 1. Mechanical PSO aided by ES for robots cooperative search
1: /* initialize: give all required control parameters, read in start positions and initial signal

strength fff 0 of all robots, mechanical PSO step s = 0, define stop criteria */
2: update mechanical PSO using (7), provides (xxxd , yyyd), s = s+1, robot index i = 1
3: obtain ΨΨΨ s

i by relative observation, perform maximum transition using (9)
4: perturbation based ES regulates robot i to (xi,d , yi,d) due to (8), i = i+1
5: repeat steps 3-4 until i > Np

6: measure fff s at new positions, evaluate new fff s for mechanical PSO
7: repeat steps 2-6 until a stop criterion is met

3 Simulation

3.1 Simulation Setup

In our simulations, the robots are assumed to run in a 3m× 3m environment. The
used parameters for mechanical PSO are ωp = 0.6, c1 = 0.1, c2 = 0.8, for ES are ω =
100,125, ..., (different for each robot) α = 0.05, cx = cy = 10. The weights of the target
field function are qx = qy = 1. We set in simulation the final maximizer at (x∗, y∗) =
(−0.5, 0.5). During the search the maximizers are the corresponding states generated
from mechanical PSO, the final target maximum is set to f ∗ = 1.

3.2 Swarm Robots Cooperative Search by Mechanical PSO Aided by ES

We first verify a single robot to be driven by our perturbation based ES controller. The
robot is actuated by x and y axes velocities and is supposed to move from (1, 1) directly
to (−0.5, 0.5) without intermediate stops. Figure 3(a) shows the performance measured
by this robot, from which one can observe the change of the detected signal. After about
10s (simulation time), it approaches the maximum which means the robot is very close
to the target. Figure 3(b) demonstrates the robot trajectory which looks like a spiral
curve. In Fig. 3(b) the marked Ri, R j are the revolution radii of the robot motion from
which one can see its significant change. The rotation radii of the robot motion are
changing, too. In addition, both of them are unpredictable. This kind of changes will
become more intense with increasing distance to the target.

After this we now set up a four robots search scenario which integrates mechanical
PSO and perturbation based ES. The robot trajectories are shown in Fig. 4. In Fig. 4



70 Q. Tang and P. Eberhard

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

(a) Performance output

-1 -0.5 0 0.5 1 1.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Robot trajectory

Fig. 3. Extremum Seeking moves one robot from (1, 1) to (−0.5, 0.5)

the green, red, pink and black dots (lines) are the mechanical PSO computed states
(trajectories). The distances between two adjacent states are smaller. The overlapping
spiral like blue curves are the ES regulated trajectories which have relatively stable
spiral radii. This is very helpful for real robots implementation. From Fig. 4 one can see
that the method of mechanical PSO aided by ES is feasible. Importantly, through the
whole process, no robot localization is required. The blue trajectories are still longer
than the ones obtained by directly connecting mechanical PSO states. This is negative
but in exchange there is no localization required. From a macro point of view, the robots
are still traveling cooperatively. The mechanical PSO guides the robots not to move too
arbitrary as when only driven by ES while on another side the perturbation based ES
frees the robots from localization.
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Fig. 4. Cooperative search trajectories (mechanical PSO aided by ES)
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4 Open Questions and Discussion

The method gets rid of robot localization which gives the implementation a lot of free-
dom. However, the energy consumed from the ES trajectory is much higher than the
one from mechanical PSO. How to adjust the parameters of the ES controller for en-
ergy saving is an interesting consequent investigation point.

If robot volume and obstacles are included, algorithm improvement is highly de-
manded. Furthermore, the maximum transition of (9) actually is a very strong assump-
tion. Performing relative observation and building the function ggg are not easy when
considering the real robots implementations.

5 Conclusion

For the swarm mobile robots cooperative search, this investigation has integrated advan-
tages both from mechanical Particle Swarm Optimization and Extremum Seeking. The
mechanical PSO provides cooperative search trajectories based on the consideration of
real robots, while perturbation based ES is responsible for regulating the robots towards
the purposed states from mechanical PSO. This method no longer needs the localization
of the moving robots which is usually required by traditional robot navigation. This will
probably open a new research window for swarm mobile robots cooperative search. The
feasibility of the conducted method in this pilot study is investigated by simulation.

Acknowledgment. The authors would like to thank Dipl.-Ing. Hans-Bernd Dürr, IST, Uni-
versity of Stuttgart, for his valuable suggestions and helpful discussions on Extremum Seeking
control.
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3. Ghods, N., Krstić, M.: Multiagent deployment over a source. IEEE Transactions on Control
Systems Technology 20(1), 277–285 (2012)

4. Hong, C., Li, K.: Swarm intelligence-based extremum seeking control. Expert Systems with
Applications 38(12), 14852–14860 (2011)
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Abstract. This paper proposes a new variant of particle swarm optimizers, 
called multi-swarm particle swarm optimization with a center learning strategy 
(MPSOCL). MPSOCL uses a center learning probability to select the center 
position or the prior best position found so far as the exemplar within each 
swarm. In MPSOCL, Each particle updates its velocity according to the 
experience of the best performing particle of its partner swarm and its own 
swarm or the center position of its own swarm. Experiments are conducted on 
five test functions to compare with some variants of the PSO. Comparative 
results on five benchmark functions demonstrate that MPSOCL achieves better 
performances in both the optimum achieved and convergence performance than 
other algorithms generally. 

Keywords: multi-swarm particle swarm optimization, center learning strategy, 
particle swarm optimizer (PSO). 

1 Introduction 

Particle swarm optimization (PSO), as one of the most famous intelligent algorithm, 
was originally proposed by Kennedy and Eberhart [1][2] in 1995. It was inspired by 
the search behavior of particle swarm and each particle with a social behavior is 
regarded as a potential solution in the search space. The velocity was adjusted in the 
search process by a combination of its own best flying experience and the best 
experience of the swarm. 

In the past decade, particle swarm optimization has attracted much attention and 
studies. However, experiments and applications for real-word problems have revealed 
that the PSO algorithm is not free from trapping into local optimum, especially on 
complex multimodal problems. Therefore a large number of relevant researches on 
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different variants of PSO [3-8] have been proposed to avoid the drawback of 
premature convergence. Based on our previous works[9][10][11], here we present a 
new multi-swarm scheme to balance the exploration and exploitation in PSO by using 
a center learning mechanism that the center position and the best position discovered 
so far by each particle in multiple swarms is used to update the position. 

The remainder of the paper is organized as following. Section 2 gives a brief 
overview of original particle swarm optimization. The proposed multiple particle 
swarm optimization algorithm with a center learning strategy is elaborated in Section 
3. Section 4 presents the comparative experimental studies and related results. Finally, 
some conclusions and further work are presented in Section 5. 

2 An Overview of Particle Swarm Optimization 

In original PSO, a particle in the swarm which represents a potential solution vector in 
the corresponding search boundary has a velocity to adjust its flying direction. The 
velocity is updated in the search process according to its own previous best 
experience and the best experience of the swarm. The velocity and position of each 
dimension of the i th particle are presented below [1][2]: 

( ) ( )1 1 2 2i i i iV V c r pbest X c r gbest X← + ∗ ∗ − + ∗ ∗ −  (1)

i i iX X V← +  (2)

where 1, ,i ps=  , ps is the population size. 1c and 2c are the acceleration 
coefficients, 1r and 2r  are two random numbers between 0 and 1, pbest and 
gbest are the best position of its own flying experience and the swarm yielding the 
best fitness value. iV  and iX  represent the velocity and the position of the i th 
particle respectively.  

3 Multi-swarm Particle Swarm Optimization with a Center 
Learning Strategy 

In this multi-swarm particle swarm optimization model, the velocity equations of the 
i th particle belonging to swarm k  are updated as follows: 

( ) ( )1 1 2 2
k k k k g k

i i fi i s iV V c r P X c r P Xω= ∗ + ∗ ∗ − + ∗ ∗ −  (3)

where 1c and 2c  are constant learning factors within one multi-swarm and 
between multi-swarms respectively. 1r and 2r are random numbers in the range 
[0,1]. k  is the index of the multi-swarm that each particle belongs to. fi  defines the 
exemplar which the particle i  should follow. k

fiP  is the center position or all the 
particles’ previous best position including its own and other particles’ within swarm 
k . And it is decided by the center learning probability compared with a random 
number. If this random number is larger than the center learning probability, the 
corresponding particle will learn from all the individuals’ best position. Otherwise it 
will learn from the center position found by all the particles so far. And g

sP  is the 
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best position found so far by all the multi-swarms and g  is the index of the swarm 
which the best position belongs to. 

The center learning probability 
iPc for i th particle of multi-swarm k  is calculated 

using[10]: 

( )

( )( )

10 1
exp

1
0.05 0.45

exp 10 1i

i

m
Pc

 − 
  −  = + ∗

−
 (4)

where m  is the population size of each multi-swarm. 

Table 1. Pseudo code of the MPSOCL algorithm 

Algorithm MPSOCL 
Begin 
Initialize every particle and the related parameters. 
While (the termination conditions are not met) 

For each multi-swarm k (do in parallel) 

    For each particle i  of swarm k. 
      Generate a random number and compare with the center learning 

probability 
iPc in term of (4). 

     Select the exemplar which i th particle should follow. 
    End for  

End for (Do in parallel) 
Select the fittest global individual g

sP  from all the multi-swarms. 

Update the velocity and position using Eqs.(3)and(2),respectively. 
Evaluate the fitness value of each particle. 
End while(until a terminate-condition is met)  
End 

 
Through the detailed description above, the pseudo-code of MPSOCL is given as 

Table 1. 

4 Experiments and Discussions 

To compare with the performance, we choose five benchmark functions which are 
depicted in Table 2 and five algorithms from the literatures [3-11]. Ten-dimensional 
problems are tested by all optimizers. 

Experiments are conducted to compare all the algorithms with the same population 
size of 60. Meanwhile each benchmark function is run 20 times and the maximal 
iteration is set at 2000 for all PSOs. The comparative algorithms LOPSO FDR-PSO, 
FIPS, UPSO can refer to references [4], [5], [6], [7], respectively and their parameters 
settings are defined as the same as used in the corresponding references. 

The inertia weight is linearly decreased from 0.9 to 0.4 [3] in all PSOs except 

UPSO [7], LOPSO [4] which both adopt the constriction factor . And  

and are both 2.0. Meanwhile, MPSOCL has 6 multi- swarms which both include 

10 particles within each multi-swarm. All the parameters used in each swarm are the 
same as those defined above. 

 

0.729φ = 1c

2c



 Multi-swarm Particle Swarm Optimization with a Center Learning Strategy 75 

 

Table 2. Five benchmark functions 

Functions Mathematical Representation Search Range 

Sphere( 1f ) 
2

1
=1

(x)=
n

i
i

f x  [-100,100] 

Ackley( 2f ) 

2
2

=1

1
(x)=20 -20exp (-0.2 )

n

i
i

f e x
n

+ 
 

=1

1
-exp( cos 2 )

n

i
i

x
n

π  

[-
32.768,32.768] 

Rosenbrock( 3f ) 
-1

2 2 2
3 +1

=1

(x)= ((x -1) +100(x -x ) )
n

i i i
i

f  [-2.048,2.048] 

Griewank( 4f ) 
2

4
=1 =1

1
(x)=1+ - cos( )

4000

n n
i

i
i i

x
f x

i
 ∏  [-600,600] 

Rastrigin( 5f ) 
2

5
=1

(x)= (10-10cos(2 x )+x )
n

i i
i

f π  [-5.12,5.12] 

 
 
Table 3 and Figs 1~5 present the results on five benchmark functions in the 

dimension of 10. The convergence characteristics in terms of the mean values and 
standard deviation of the results for every benchmark function. Note that, in Table 3, 
optimum values obtained are in bold. 

Table 3. Results on five benchmarks for 10-D 

Algorithm 1f  2f  3f  4f  5f  

SPSO 
6.27e-067 

±5.49e-132 

1.32e+000 

±2.10e-031 

1.73e+000 

±1.47e+000 

7.07e-002 

±3.37e-002 

2.38e+000 

±1.13e+000 

LOPSO 
3.26e-043 

±5.22e-085 

1.32e+000 

±3.82e-031 

2.88e+000 

±8.64e-001 

3.69e-002 

±1.43e-002 

3.03e+000 

±1.38e+000 

FDR-PSO 
1.35e-135 

±1.64e-269 

1.32e+000 

±2.10e-031 

5.78e-001 

±4.80e-001

4.47e-002 

±1.44e-002 

2.68e+000 

±1.41e+000 

FIPS 
8.27e-021 

±3.35e-041 

1.32e+000 

±2.68e-022 

4.11e+000 

±1.57e-001 

1.54e-002 

±1.00e-002 

9.17e-001 

±6.95e-001 

UPSO 
7.28e-082 

±4.99e-163 

1.32e+000 

±2.08e-031 

6.23e-001 

±1.47e-001 

2.56e-002 

±1.27e-002 

5.03e+000 

±2.01e+000 

MPSOCL 
6.07e-216 

±0 

1.32e+000 

±2.07e-031 

7.57e+000 

±2.45e-001 
0±0 0±0 
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Fig. 1. Convergence characteristics on 10-dimensional Sphere function 

 

Fig. 2. Convergence characteristics on 10-dimensional Ackley function 

 

Fig. 3. Convergence characteristics on 10-dimensional Rosenbrock function 
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Fig. 4. Convergence characteristics on 10-dimensional Griewank function 

 

Fig. 5. Convergence characteristics on 10-dimensional Rastrigin function 

As presented from Table 3 and Figs 1~5, MPSOCL is able to consistently find the 
better minimum within 2000 generations especially on Griewank, Rastrigin and 
Sphere functions for 10-D dimension. And there is no much difference of the results 
between MPSOCL and other optimization algorithms on the average best fitness 
value for Ackley and Rosenbrock functions. Overall, the proposed algorithm 
outperforms in the optimal values and convergence characteristics.  

5 Conclusions and Further Work 

In the paper, we present a multi-swarm particle swarm optimization algorithm with a 
center learning strategy called MPSOCL. Different from the original particle swarm 
optimizer and some related modified versions of this algorithm, our proposed 
algorithm employs new communicational scheme that each particle within one  
multi-swarm updates its flying direction combining historical experience from all 
multi-swarms with the present center position.  

0 500 1000 1500 2000

-8

-6

-4

-2

0

2

4

6

iterations

fit
ne

ss
 (

lo
g)

 

 
SPSO
LOPSO
FDR-PSO
FIPS
UPSO
MPSOCL

0 500 1000 1500 2000
-6

-4

-2

0

2

4

6

iterations

fit
ne

ss
 (

lo
g)

 

 
SPSO
LOPSO
FDR-PSO
FIPS
UPSO
MPSOCL



78 B. Niu et al. 

 

However, MPSOCL is not the best choice for solving any test problems. Further 
work may focus on effective tests of the proposed optimizer with more complicated 
test functions and some practical applications to evaluate the performance of 
MPSOCL. 
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Abstract. By applying full information and employing the notion of opposition-
based learning, a new opposition based learning fully information particle 
swarm optimiser without velocity is proposed for optimization problems. 
Different from the standard PSO, particles in swarm only have position without 
velocity and the personal best position gets updated using opposition-based 
learning in the algorithm. Besides, all personal best positions are considered to 
update particle position. The theoretical analysis for the proposed algorithm 
implies that the particle of the swarm tends to converge to a weighted average 
of all personal best position. Because of discarding the particle velocity, and 
using full information and opposition-based learning, the algorithm is the 
simpler and more effective. The proposed algorithm is applied to some well-
known benchmarks. The relative experimental results show that the algorithm 
achieves better solutions and faster convergence. 

Keywords: particle swarm optimizer, opposition-based learning, full 
information. 

1 Introduction 

Particle swarm optimization(PSO)[1] is a novel population-based evolutionary 
computation technique. The development of PSO was based on observations of the 
social behavior of animals such as bird flocking, fish schooling and swarm theory. 
PSO finds the global best solution by simply adjusting the trajectory of each 
individual toward its own best location and toward the best particle of the entire 
swarm at generation. Compared with other evolutionary algorithms, PSO has some 
attractive characteristics. It has memory, so knowledge of good solutions is retained 
by all particles, and there is a mechanism of constructive cooperation and information 
sharing between particles. Due to the simple concept, easy implementation and quick 
convergence, PSO has gained much attention and been successfully applied in a 
variety of fields mainly for continuous optimization problems.  

It has been empirically investigated that standard PSO could easily being trapped 
in a local optimum and premature convergence in many optimization problems. Some 
researchers have devoted to improving its performance in various ways and developed 
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many interesting variations. One approach is to incorporate the concept of opposition 
based learning in PSO to avoid such kind of situations. Opposition-based learning was 
first introduced by Tizhoosh[2]. It has been proved that opposition based learning 
process increases the convergence speed thus the evolution process accelerates. 
Jabeen[3] presents an algorithm called O-PSO. In O-PSO, the opposition based 
initialization technique is used for initialization of population in standard PSO. A 
method incorporating opposition based learning in PSO has been proposed by 
Wang[4]. The method uses opposition based learning and dynamic cauchy based 
mutation to avoid premature convergence in standard PSO. Shahzad[5] presents an 
opposition-based velocity clamping PSO algorithm(OVCPSO). OVCPSO uses 
opposition-based learning and velocity of particles are clamped to control the speed of 
particles. It avoids premature convergence and allows swarm of particles to continue 
search for global optima. 

In this paper, a new opposition based learning fully information particle swarm 
optimizer without velocity is proposed for optimization problems by applying full 
information and employing the notion of opposition-based learning. Different from 
the standard PSO, O-PSO and OVCPSO, particles in swarm only have position 
without velocity and the personal best position gets updated using opposition-based 
learning in the algorithm. Besides, all personal best positions are considered to update 
particle position. The theoretical analysis for the proposed algorithm implies that the 
particle of the swarm tends to converge to a weighted average of all personal best 
position. Because of discarding the particle velocity and using full information, the 
algorithm is the simpler and more effective. The proposed algorithm is applied to 
some well-known benchmarks. The relative experimental results show that the 
algorithm achieves better solutions and faster convergence. 

2 Standard Particle Swarm Optimization 

In standard particle swarm optimization, the trajectory of each particle in search space 
is adjusted by dynamically altering the velocity of each particle, according to its own 
flying experience and the flying experience of the other particles in the search space. 
The position vector and the velocity vector of ith particle in m-dimensional search 
space can be represented as ),,2,1( Nii =x  and ),,2,1( Nii =v  respectively, N 

is the number of particle. In each iteration of standard PSO, the swarm is updated by 
the following equations:  

))()(())()(()()1( 2211 ttrcttrctwt igiiii xpxpvv −+−+=+           (1) 

)1()()1( ++=+ ttt iii vxx                              (2) 

Where ),,2,1)(( Niti =p  and )(tgp  are given by the following equations, 

respectively: 
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w  is called an inertia weight. 1c and 2c are acceleration coefficients. 1r and 2r are 

elements from two uniform random sequences in the range ]1,0[ . )(xf  is the 

minimum objective function. 

3 Opposition-Based Learning 

The scheme of opposition-based learning was first introduced by H.R.Tizhoosh[2]. 
The opposition-based learning is general enough and can be utilized in a wide range 
of learning and optimization fields to make algorithms faster. Opposite numbers are 
defined as follows:  

Let ),...,,( 21 nxxx=x be an n-dimensional point, where nibax iii ,...,2,1],,[ =∈ . 

The opposite point of ),...,,( 21 nxxx=x  is defined by ),...,,( 21 nxxx ′′′=′x  

where iiii xbax −+=′ . 

Assume f(x) is a fitness function which is used to measure candidate’s optimality. 
),...,,( 21 nxxx ′′′=′x  is the opposite of ),...,,( 21 nxxx=x . Now, if )()( xx ff ≤′ , 

then point x can be replaced with x′ ; otherwise we continue with x. Hence, the point 
and its opposite point are evaluated simultaneously to continue with the fitter one. 

4 Opposition-Based Learning Fully Informed Particle Swarm 
Optimizer without Velocity 

In standard particle swarm optimization, the sharing of information among 
conspecifics is achieved by employing the publicly available information )(tgp  

(‘social’ component). There is no information sharing among individuals except that 
)(tgp  broadcasts the information to the other particles. While the ’cognitive’ 

component makes particles keep their own information. In fact, the position of a 

particle is influenced by all personal best position ),,2,1)(( Niti =p . In the paper, 

all personal best position is considered to update a particle position. Therefore, a 
particle position update is modified as: 
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),...,2,1( Nkc k =  are non-negative constant real parameters, called acceleration 

coefficients which control how far a particle will move in a single iteration. 
),...,2,1( Nkrk = are three independent uniform random sequences distributed in 

the range ]1,0[ .  

The pseudocode of the opposition based learning fully informed particle swarm 
optimizer without velocity is as follows: 
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The opposition based learning fully informed particle swarm optimizer without 

velocity is referred to as OFPSOV. 
It is clear that the algorithm is the simpler than the standard PSO. And the 

experimental results in next section show that the proposed algorithm has better 
convergence performance than the standard PSO. 

The standard PSO algorithm has been theoretically analyzed by van den Bergh 
[6-7], Clerc and Kennedy[8], and Trelea[9]. Here, a theoretical analysis for the 
proposed algorithm is presented as follow: 

When the particle swarm operates on an optimization problem, the values of ip  

are constantly updated, as the system evolves toward an optimum. For analysis 
purpose, consider the situation that ip  keep constant during a period of time, then all 

particles evolve independently. Thus, only ith particle needs to be studied. For i is 
chosen arbitrarily, the result can be applied to all other particles.  

Now, by changing (5), the following non-homogeneous recurrence relation is 
obtained: 
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Begin 
Initial population with size N; 
Initial acceleration coefficients ),...,2,1( Nici = ; 

Initial particles ),,,()0( ,2,1, miiii xxx =x  in m-dimension space 

with ],[, jjji bax ∈ , ),,1( Ni = , ),,1( mj = ; 

For i=1 to N 
)0()0( ii xp ← ; 

    Compute opposite point of )0(ip : )0(iop ; 

    If ))0(())0(( ii ff pop <  Then )0()0( ii opp ←  

End 
For t = 1 to max iteration 

For i = 1 : N 
Update )(tix  according to formula (5); 

Update )(tip  according to formula (3); 

Compute opposite point of )(tip : )(tiop ; 

        If ))(())(( tftf ii pop <  Then )()( tt ii opp ←  

End 
End 
Output optimal solution  

End 
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Where
kkk rc=α  are assumed to be constant. The values 

kα  are thus specific 

instances of 
kkrc . 

When the initial conditions )0(ix  has been specified, the closed form equation of 

(6) is given by 
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Note that the above equations assume that ip  keep constant for all t. The closed 

form representation in Eq.(7) therefore remains valid until a better position ix  (and 

thus ip  ) is discovered. When a better position is discovered, the above equations 

can be used again after recalculating. 
From Eq. (7), the sequence { })(tix converges to the stable point 

when 1
1

<− 
=

N

k
kα . In this case, 
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This means that, under the condition that 1
1

<− 
=

N

k
kα , a particle converges to a 

weighted average of its all personal best position. 
In the case that 

kα  are stochastic, 
kc can be considered a supper bounds for 

kα . 

The average behavior of the system can then be observed by considering the expected 
values of 

kα  (assuming uniform distributions): 
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Using the expected values, the limit (15) becomes 
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From condition 1
1

<− 
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N

k
kα , 0≥kα , it gets 10
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kα . Thus 
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kE α can be obtained. Substitute (9) into 1][0
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kE α , the 

convergence condition can be obtained.  
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From above analysis, we get the following conclusion: 
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Given 0≥kc , If 20
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kc is satisfied, then (6) will converge to 
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2)(p , that is that the particle of the swarm tends to 

converge to a weighted average of its all personal best position. 

5 Experimental Results from Simulations 

In order test the efficiency of the opposition based learning fully informed particle 
swarm optimizer without velocity(OFPSOV). This section compares the performance 
of the proposed algorithm with that of the standard particle swarm optimization with 
weight factor. The following benchmark optimization functions have been used. For 
each of these functions, the goal is to find the global minimizer, formally defined as 

Given RR: →Mf ,find MR∈∗x  such that Mff R),()( ∈∀≤∗ xxx  

The following functions were used: 

A. Sphere function, defined as 
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B. Rastrigin function, defined as 
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C. Griewank function, defined as 
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D. Rotated hyper-ellipsoid function, defined as 
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E.  Schwefel’s Problem, defined as 
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F. Schwefel’s function 6, defined as 
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G. Schwefel’s function 2.2.1, defined as 
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H. Ackley’s function, defined as 
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For the standard PSO algorithms, 72.0=w , and 49.11 =c  and 49.12 =c . These 

values have been shown to provide very good results (Clerc and Kennedy, 2002; van 
den Bergh, 2002; Van den Bergh and Engelbrecht, 2006). The acceleration 
coefficients 1.0),...,2,1( == Nici

 for the OFPSOV. For all the algorithms used in 

this section, N= 20. All functions were implemented in 50 dimensions except for the 
two-dimensional 6f  function. All experiments were repeated for 50 runs. A fixed 

number of maximum generations 500 was applied to all algorithm. The initial 
population was generated from a uniform distribution in the ranges specified below. 
The experimental results for each algorithm on each test function are listed in Table1. 
According to Table1, it can been known that OFPSOV can converge to global 
optimum with a higher precision quickly and robustly. Clearly, OFPSOV 
outperforms the standard PSO greatly for the benchmark functions. 

Table 1. Comparison of OFPSOV and PSO for f
1
~f
１０

 

 
 OFPSOV

（mean ± variances）
PSO

（mean ± variances）
f1 5.4319e-196± 0 1.8047e+3±8.5201e+4 
f

 ２
 68.1402±683.4781 1.0413e+4±1.0826e+5 

f３ 0.0211± 0.3473 3.4581±46.7514 
f４ 5.4973e-187± 0 2.1302e+4±3.2016e+5 
f５ 8.0195e-99±1.4307e-101 2.1219e+7± 4.0146e+8 
f

 ６
 0.0012± 0.1053 0.0081± 0.1076 

f７ 3.8027e-101±7.9023e-100 29.6256± 351.6197 
f８ 2.9404e-16± 5.7347e-15 17.1308±270.2864 
f９ 47.6095± 631.2315 4.1954e+7±7.1209e+8 
f1０ 0±0 1.0367e+4±1.3852e+5 
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6 Conclusions 

In this paper, we proposed a new opposition based learning fully information particle 
swarm optimiser without velocity by using full information and opposition-based 
learning. In the algorithm, particles only have position without velocity, and the 
personal best position gets updated using opposition-based learning. Particle position 
is updated using all personal best positions. The theoretical analysis for the proposed 
algorithm implies that the particle of the swarm tends to converge to a weighted 
average of all personal best position. The algorithm is the simpler and effective as a 
result of discarding the particle velocity and using full information and opposition-
based learning. The experimental results show that the algorithm has better 
convergence performance. In future work, we need to clarity the relationship between 
the algorithm performance and parameter selection to guarantee convergence.  
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GSO: An Improved PSO Based on Geese Flight Theory 
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Abstract. Formation flight of swan geese is one type of swarm intelligence 
developed through evolution by natural selection. The research on its intrinsic 
mechanism has great impact on the bionics field. Based on previous research 
achievements, extensive observation and analysis on such phenomenon, five 
geese-flight rules and hypotheses are proposed in order to form a concise and 
simple geese-flight theory framework in this paper. Goose Swarm Optimization 
algorithm is derived based on the Standard Particle Swam Optimization 
algorithm. Experimental results show that GSO algorithm is superior in several 
aspects, such as convergence speed, convergence precision, robustness and etc. 
The theory offers the in-depth explanations for the performance superiority. 
Moreover, the rules and hypotheses for formation flight adhere to all five basic 
principles of swarm intelligence. Therefore, the proposed geese-flight theory is 
highly rational and has important theoretical innovations, and GSO algorithm 
can be utilized in a wide range of applications. 

Keywords: Geese Theory, Goose Swarm Optimization, Particle Swarm 
Optimization, Swarm Intelligence. 

1 Introduction 

Swan geese often tend to line up in a J-Shape or V-Shape during their migration to the 
South. This extraordinary natural phenomenon was found since ancient times, but 
nobody thoroughly understood it. The hypothesis that the V-Shape formation flight of 
geese had the energy-saving advantage was firstly proposed by the German 
aerodynamics Carl Wieselsberger. It states that goose’s winging causes wake vortices, 
and the air flows up outside of the vortex. If one neighbour goose is at the position with 
upwards gas swirling, it can save a significant amount of energy during the flight. Ever 
since then, studies on the mechanism of geese flight stepped into a new period. 

Particle swarm optimization algorithm is a swarm intelligence optimization 
algorithm invented by Kennedy and Eberhart [1,2]. Compared to other algorithms, PSO 
requires less parameters and is easier to implement. However, it easily falls into a 
relative extremism of test function, and has lower convergence accuracy probably due 
to the easy homogenization and diversity scarcity of particles in iterative process. In 
order to resolve these problems, linear-decreased inertia weight is presented to 
perfectly balance between the local and global search abilities of PSO algorithm 
[3,4,5]. Then SPSO is formulated from studies on acceleration coefficients, parameter 
settings and boundary conditions of PSO algorithm[6,7,8]. In order to further improve 
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the precision of SPSO algorithm, some pioneers utilized the studies on geese-flight to 
discover that formation flight of geese increases flight distances by 12% than one 
solitary goose’s flight. An improved particle swarm optimization algorithm[9] based on 
the advantage of formation flight is proposed, and improves the optimizing precision 
markedly, compared with the SPSO. 

To further balance between homogenization and diversity of particles in iterative 
process, as well as to improve the convergence precision and speed of the SPSO 
algorithm, a concise and simple theory of geese flight is proposed based on five rules 
and hypotheses which are summarized through detailed analyses on formation flight in 
this paper. According to these hypotheses, Geese Swarm Optimization algorithm is 
proposed to improve the SPSO in test indicators, such as convergence precision, 
convergence rate and robustness, and so on. In the rest of sections, we first provide the 
detailed theoretical analysis followed by the test results of the proposed algorithm. 

2 GPSO Algorithm 

GSO algorithm randomly initializes a particle population M, and each particle is treated 
as a point in the N-dimensional space. The position of the i-th particle is iX , and 

velocity as iV . Particles are sorted according to its fitness, and the best particle is 

chosen as the leader. After then, the personal extrema 1ip( - )  of the former particle is 

selected as the global extremum of the i-th particle. On the other hand, personal 
extrema ipbest of the i-th particle are updated by the weighted average of all personal 

extrema according to its fitness. Therefore, personal extrema, the position and the 
velocity of i-th particle are updated according to following equations: 

 

      1 2 ( 1)( 1) ( ) ( ) ( ( ) ( )) ( ( ) ( ))i i a i i iV k w k V k c r p k X k c r pbest k X k+ = × + × × + × ×1 2 -- -     (1) 
 

       ( 1) ( ) ( 1)i i iX k X k V k+ = + +                           (2) 
 

        
1 1
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w w k
w k w

k

×= -
-            (3) 

 

Where k  for current iterative number, 1r  and 2r  are random numbers in [0,1], 

1c and 2c are positive acceleration factors. w  is linear-decreased inertia weight, 

maxw for the maximum value of w , and 
minw for the minimum. 

Experimental results show that GSPO algorithm can improve the convergence 
accuracy, robustness and convergence rate to a large extent [9,10]. However, GPSO 
also has some issues. First, in the sense of bionics for geese flight, the formula (3) 
means that every goose knows the status of all geese, which is incompatible with the 
hypotheses presented later in this paper, and the effect of formula (3) is tested to be 
counterproductive. Second, formula (3) is only suitable for seeking the maxima of 
functions, not suitable for seeking the minimum. In addition, it is inaccurate to 
immediately use fitness as the weight, especially for such functions with dramatically 
changing extremal values, which are the limitations of the GPSO algorithm. 
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3 Geese Theory and GSO Algorithm 

3.1 Geese Flight Theory-Rules and Hypotheses 

Based on other researchers’ results and the in-depth analysis of geese flight, we believe 
that the energy-saving hypothesis is more reasonable. According to aerodynamics 
principles, the latter goose must be in a rear sloping position of the former, in order to 
make use of the vortex. With this basic idea and its extension, the paper summarizes and 
presents five rules and hypotheses of geese flight to attempt to form a more reasonable 
theory. The rules and hypotheses and their evidence are described as following:  

(1) Anosia Hypothesis: the toughness degree gradually decreases from the first 
goose to the last. The strongest goose always acts as the leader with maximum labor 
intensity because none of front air vortex can be utilized. In case of fatigue, the leader 
will move to the end of the formation, and the second goose in the row replaces the 
position of the original leader to guide the flock flight consequentially. 

(2) View-field Hypothesis: the flying geese with limited visual field can only see 
the front part of the whole flock. In order to take advantage of the air vortex produced 
by the front goose to save energy, a goose must follow the former at the inclined rear 
position. This means that the ‘J-Shape’ team is an oblique array. Therefore, the current 
goose only needs to see the front part in its visual field. Although studies show that 
sight range of geese may be as much as 128 degrees, which allows goose to see the 
entire team when flying. 

(3) Global Hypothesis: each goose adjusts its own position according to the 
status of all geese in its front visual field. These adjustments may maintain the 
integrity of flight formation to achieve the global optimization, or one single goose 
utilizing the comprehensive effects produced by all geese in the front view can save 
more energy. Global Hypothesis is a natural extension of View Hypothesis. 

(4) Local Hypothesis: each goose quickly adjusts its positions according to the 
closest former. The current goose quickly adjusts its position according to the status of 
the front geese in order to quickly and effectively utilize the vortex right ahead of it. 
This vortex is most direct, most effective and most useful in the sense of energy-saving. 

(5) Simpleness Hypothesis: Geese adopt a simple and direct method to adjust 
their status. According to the above statements, all flying geese except the leader need to 
adjust their positions with a quick, dynamic and real-time manner. Without considering 
how goose intelligence is, this paper assumes that geese use a simple and effective 
method to quickly and timely adjust itself to a local optimal or suboptimal position. 

3.2 GSO Algorithm Based on Geese Theory 

As aforementioned, every goose can perceive two statuses, i.e., part of group’s status 
global extremum, and individual status personal extrema including itself and the 
former’s. One GSO algorithm is implemented consequentially on the basis of SPSO 
algorithm in this paper, which can be treated as one of improved versions of SPSO or 
GPSO algorithm. Of course, the proposed geese theory could have more expression 
forms, which means that our GSO algorithm based on SPSO is just the first example 
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not the last. This paper realizes the GSO algorithm based on SPSO in several aspects: 
Firstly, sort all particles based on hypothesis 1 in each iteration, and then get the geese 
queue in accordance to each particle’s fitness. Secondly, calculate its optimal values 
that each goose can perceive according to hypotheses 2 and 3, so there is more than one 
global extreme value. According to hypotheses 5, a simple average method is adopted 
to calculate its global extremum

igbest of each goose. Finally, adjust its individual 

optimal value based on hypotheses 2 and 4. A simple-substitute method is adopted to 
update the personal extrema, namely, the new personal extreme values of i-th goose is 
now

( -1)ipbest of the former (i-1) goose, which is based on hypotheses 5. As a result, in 

our GSO algorithm, the personal extrema, global extremum, and velocity of the i 
particle are updated as the following equations: 

( -1)i ipbest pbest= ,  
1

1 i

i m
m

gbest pbest
i =

=                      (4) 

1 1 2 2 ( -1)( 1) ( ) ( ) c ( - ( )) c ( ( )- ( ))   i i i i i iV k w k V k r gbest X k r pbest k X k+ = × + × × + × × (5) 

GSO algorithm can be well balanced between diversity and homogenization of particles. 
The global extremum and personal extrema used to update the status of each goose are 
different so that the particle diversity is preserved. The simple average method can 
prevent particles from gathering together too densely around the minority particles with 
higher weight, which can reduce the homogenization trend for particles. It means that 
every goose can learn from the flock and local goose in bionics sense. On the other hand, 
use better goose than the current to compute group extremum and individual extrema 
means that goose can maintain the homogenization trend for best result. 

4 Experimental Results and Discussion 

In order to verify and compare the performance of GSO algorithm, two typical 
benchmark functions are selected for experiments, where optimal values are both 0. 
Between these functions, the Sphere function is with a minimum value in the flat area. 
The Rastrigrin function forms another category with multiple relative maxima and 
minima. The outer iteration number is 50 for each function, and the inner iteration  
 

Table 1. Benchmark functions and initial parameters 

Test Function Analytic Expression Dimension Initial Range 

Sphere 
=

=
N

i
ixXf

1

2
1 )(  30 [-10,10] 

Rastrigrin ]10)2(cos10-[)(
1

2
3 +=

=
i

N

i
i xxXf π  30 [-5.2, 5.2] 
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number is 1000. Population size is 20, and all particles are uniformly distributed in the 

initial range. Linear-declined range of w  is [0.9，0.4]. 1c  and 2c are set to 2. maxV  
is different according to the function characteristics. Benchmark test functions and 

initial parameters are shown in table 1. 

4.1 Algorithm Validations for Fixed Dimensions and Fixed Iteration Number 

According to the above parameters, four evaluation indicators for optimal fitness, 
including mean best fitness, optimal solution, standard deviation and excellent ratio, 
which are respectively short for MBF, OS, SD, ER. These indicators are adopted to 
evaluate the performances of the three algorithms. MBF and OS are used to measure 
convergence accuracy, which is on behalf of global optimization ability, SD is used to 
measure the robustness of all algorithms, ER means the percentage of GSO and 
GPSO’s results superior to SPSO. The experimental results are shown in Table 2. 

Table 2. Results under fixed dimensions and iterations 

Test 
Function 

Algorithm MBF OS SD ER 

Sphere 

SPSO 0.0072 0.0025 0.0032  

GPSO 0.0023 0.0008 0.0009 98% 

GSO 0.0015 0.0007 0.0005 98% 

Rastrigrin 

SPSO 36.6122 15.2921 10.8477  

GPSO 11.5285 5.4284 3.7324 100% 

GSO 12.1994 4.4802 3.5772 100% 

 
The data shows that the performances of GSO are significantly improved in 

comparison to the SPSO, and slightly better than GPSO. Thus we can draw the conclusion 
that convergence precision, optimal capacity and robustness for GSO algorithm are 
statistically better than the SPSO and GPSO under fixed dimensions and iterations. 

4.2 Experimental Comparisons on Convergence Speed and Trend 

In order to show the convergence speed and the trend for these algorithms, the global 
optimal value is shown in a curve way during the iterative process. IGPSO is GSO. The 
number of iterations is 500 and the dimension is 30. Other parameters are fixed. The 
results are shown in figure 1. 

All three algorithms drop fast in the initial iterative phase, which means that these 
algorithms can probably fall into the relative domain extrema. With the increase of the 
iteration times, SPSO and GPSO may be quickly trapped in a relative extreme value, 
but cannot jump out of the relative extreme area. This implies that the convergence 
precision of SPSO and GPSO cannot be further improved. However, GSO can 
approach the better extreme values, which are close to the optimal value. 
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       (a) Sphere function test                     (b) Rastrigrin function test 

Fig. 1. Fitness chart for test algorithms  

4.3 Performance Verification for Respective Rule 3 and 4 

Among those principles proposed above, global extremal part in SPSO algorithm is 
modified according to the Rule 3, and individual extremal part is updated according to 
the Rule 4. Several experiments are conducted to analyze the algorithm performance 
respectively only with rule 3 or rule 4. Rastrigrin function is used with default 
parameters, and the results are shown in Table 3. 

Table 3. Performance Verification Results for rule 3 and/or rule 4 

Rule Algorithm MBF OS SD ER 

Only 
Rule 3 

SPSO 37.3096 18.6962 10.2504  

GPSO 48.0027 15.2145 22.8932 34% 

GSO 14.3516 2.9932 5.5277 98% 

Only 
Rule 4 

SPSO 37.2380 21.9243 8.9809  

GPSO 22.8587 11.5966 7.8924  92% 

GSO 22.0462 9.8606 8.9582  92% 

   
The data shows that GSO with only rule 3 is better than SPSO, while the results of 

GPSO are worse than SPSO. Both GSO and GPSO with only rule 4 are similar to 
each other in principle, and better than SPSO. 

Principle analysis: in order to solve the fault of SPSO, which easily falls into 
extrema, GSO algorithm with only rule 3 only with more than one global optimal 
extremum can avoid the risk, i.e. a single global extremum to weaken the trend that 
other particles approximate to single extremum, and at the same time these extrema 
not too far from the global extremum. GSO algorithm with only rule 4 has the ability 
and trend of the transition from the relative extremum to another better one. 
Accumulations formed from the transition effect of much iteration are finally 
in approximation to the theoretical extreme value for GSO algorithm. In fact, rule 4 is 
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almost the same as the principle of the LBEST mode mentioned in [2]. However, the 
performance of GPSO with only rule 3 is worse than SPSO, the reason may be due to 
the GPSO defects pointed out in the first part of this paper. GPSO can avoid the risk 
single global extremum for SPSO, but the way of its weight calculation is 
unreasonable. Therefore, its weighted optimal value is too far from the global extreme 
points, which leads to worse performance.   

4.4 Comparison Performances on GSO and Genetic Algorithm 

In order to compare GSO with Genetic Algorithm, we take Rastrigrin function as the 
test model. The number of iterations is 100 and the dimension is 2, and other parameters 
of these algorithms are unchanged. The crossover and mutation probabilities in GA are 
randomly selected for each iteration. The results are shown in figure 2. 

 

   
(a) Records of the best particle fitness               (b) test function results 

Fig. 2. Comparison performances on GSO and GA 

Figure 2 (a) shows record process of the best particle fitness for each iteration. At the 
iteration number from 0 to 70, all algorithms have a relative slow convergence rate. 
SPSO with the reason of only one global extremum easily falls into the relative domain 
extremum at about 40, and GA is at about 70. After the 70th iteration, GPSO and GSO 
can reach the better convergence rate because of multiple global extrema to increase the 
probability of jumping out of those extremal domain, and convergence accuracy of 
GSO is much better than GPSO. Figure 2 (b) shows convergence trends and results of 
best personal fitness, and convergence trend and accuracy of GSO are much better than 
GA, SPSO and GPSO. Therefore, from above data we can draw the conclusion that test 
performances of GA are worst, and GSO is much better than GA, SPSO and GPSO.  

5 Conclusions Remarks 

PSO algorithm is one type of swarm intelligence optimization algorithms invented 
based on bird flock foraging, which has been widely used in function global 
optimization, combinatorial optimization, dynamic system optimization, and other 
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aspects. But its defect is to easily fall into a relative extremum. The geese formation 
flight is a natural swarm optimization phenomenon, and some geese principles have 
been widely used in economics and management field. However, how to combine 
with swarm intelligence optimization algorithm is still a new research direction. Based 
on in-depth observation and analysis on natural geese formation flight, five flight rules 
are proposed to form a concise and reasonable geese-flying theory. 

This paper tends to agree with the "vortex energy-saving" hypothesis. Through 
extensive observations about geese formation flight, this paper presents five geese flight 
rules and hypotheses for the first time, in order to construct a simple and reasonable 
theory of geese. Similar to the SPSO algorithm, our geese theory is in line with the five 
basic principles of swarm intelligence[1] with better characteristics of artificial life. 

Two improvements for SPSO based on geese theory are proposed to achieve a better 
balance between the diversity and identity of particles. The experiments results show 
that rule 4 has more significant influence than the other results. Moreover, it can be 
confirmed that GSO algorithm has been remarkably improved in convergence speed, 
convergence precision and robustness, etc. As a result, we draw the conclusion that 
these rules and hypotheses of geese formation flight are reasonable and effective.  

In order to make these rules and hypotheses more reasonable and effective to have 
general application value, more in-depth theoretical research and verifications on 
geese formation flight are necessary in the future at biology, physics, mathematics and 
other aspects. 
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Abstract. As one of the representative algorithms in swarm intelligence, 
particle swarm optimization has been applied to many fields because of its 
several merits, such as simple concept, easy realizing and fast convergence rate 
in the early evolutionary. However, it still has some disadvantages such as easy 
falling into the local extremum, slow convergence velocity and low 
convergence precision in the late evolutionary. Two new algorithms based on 
the simple particle swarm optimization are proposed to try to improve the 
precision of the algorithm in a certain error range of the length of time. The 
algorithms have been simulated and compared with the particle swarm 
optimization and the simple particle swarm optimization. The simulations show 
that the algorithms have a higher convergence precision for some functions or a 
particular issue. 

Keywords: Swarm Intelligence, Particle Swarm Optimization, Swarm Robots. 

1 Introduction 

Swarm intelligence is a method to achieve artificial intelligence by imitating 
biological group behavior in the natural world [1], which offers a new thought to the 
solutions of complex issues by using group advantage without centralized control and 
global model [2]. It is also a kind of soft simulation for biological group, which is 
different from the traditional simulation for the structure of organisms. The individual 
can be regarded as very simple and single, and it is also allowed to have the ability to 
learn to solve specific problems. 

As a representative of the swarm intelligence algorithms, particle swarm 
optimization (PSO) algorithm is used to solve continuous optimization problems 
originally. Similar to the genetic algorithm, it is a kind of optimization tool based on 
the idea of group. But variation and cross operation which exist in genetic algorithm 
as we know do not exist in PSO. Particles in the solution space search the goal 
through following the best particle. Therefore, it achieves simply and has fewer 
parameters to be adjusted. But it is also easy to fall into the local extremum and has 
low convergence precision in the late evolutionary.  

In this paper, two new algorithms are proposed based on the idea of the simple 
particle swarm optimization (sPSO) [3] put forward by Hu Wang et al to try to 
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improve the precision of the algorithm. One is simulated in the Matlab simulation 
platform and the other is in Player/Stage. In the end, they are both compared with 
PSO and sPSO. 

2 Research Background and Related Works 

2.1 Particle Swarm Optimization  

PSO is first put forward by Kennedy and Eberhart in 1995 [4-5], which is a kind of 
heuristic search algorithm based on population optimization. Due to the concept of it 
is simple, easy to be realized, and has good optimal characteristics, particle swarm 
optimization is rapidly developing in the short term, and has been used in many fields, 
such as electric power system optimization, TSP problem solving, etc.  

The principle of the particle swarm algorithm is: there is only a piece of food in the 
region, and all the birds don't know where the food is, but they know the distance 
between the current location and the food. What is the optimal strategy to find the 
food? The most simple and effective method is to search the area around the bird 
whose location is nearest from the food at present. 

In the PSO, each solution of the optimization problem corresponding to the location 
of a bird in the search space, calling the bird "Particle". D-dimensional position vector 
of the i-th particle is xi= (xi1, xi2, ,…, xiD). According to pre-set fitness functions (which 
is relevant to the problem), the current value of xi can be calculated. Particles fly at a 
certain speed in the search space. vi=(vi1, vi2, ,…, vid, ,…, viD) is the speed of particle i, 
which dynamically adjust based on its own flying experience and that of companion. 
All the particles have a Fitness Value decided by target function, and know the best 
position so far (particle best, notes for pbest) Pi= (Pi1, Pi2, ,…, Pid, ,…, PiD) and the 
current position. These can be seen as their own flying experience. In addition, each 
particle also know the best position(global best, notes for gbest) so far in the group, 
which can be regarded as the companion's experience of a particle. And then the 
particles follow the current optimal particle to search in the solution space. 

Shi[5] et al add the momentum inertia coefficient ω to improve the ability of PSO 
to jump out of local extrema. The velocity and position of the particle in each iteration 
are updated based on the following formula: 

1
1 1 2 2* ( ) ( )t t t t

id id id id gd idv v c r p x c r p xω+ = + − + −
 
. (1)

1 1t t t
id id idx x v+ += +  . (2)

(1) and (2) are regarded as the basic particle swarm optimization(bPSO) by many 
researchers..t is the number of iterations, ω is the inertia weight, r1 and r2 are the 
random numbers between [0, 1], which are used to keep the diversity of the 
population. c1 and c2 are learning factors, which make particles have the ability to 
summarize themselves and learn from excellent individual in the group, thus close to 
pbest and gbest.  
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2.2 The Simple Particle Swarm Optimization 

PSO and most of the improved algorithms all based on the two key factors of 
particles, “position” and “speed”. Therefore, the equations of the improved algorithms 
all contain a position variable and the speed variable. For most of the improved 
algorithms of PSO, some operators like crossover, mutation, etc. are added, which 
makes the description of PSO more and more complicated. This also makes the 
quantitative analysis of the convergence of PSO very complicated. 

We can find something from the analysis of the biological model of PSO and its 
evolutionary iteration equation. In PSO, the velocity variable of the particle is not 
indispensable. Viewed from the point of the model of the basic particle swarm 
optimization (bPSO), the position xi represents the solution of this problem. Because 
the final result of the optimization is xi infinitesimal approaching to the optimal 
solution, we need to consider the direct change of xi only. The Velocity vector vi just 
represents the rapidity of the particles’ movement. The speed of the movement is not 
able to show that the particle can approaches to the location of the optimal solution 
effectively. Instead, that may cause the particles to deviate from the correct direction 
of evolution, which is the "divergence" phenomenon, thus resulting in the 
phenomenon of slow convergence speed and low convergence precision in the later 
stage. In addition, the position and velocity directly are computed without the concept 
of particles’ movement time in formula (2). It is not in line with the law of motion  
x = vt in real life [3]. 

The theorem: bPSO evolutionary process has nothing to do with the particle 
velocity. 

Proof: [6] has demonstrated that the speed range vid∈[-vmax,vmax] of the trapped 
particle equals the restraint factor α. Therefore, only the joint evolution equation 
formed by the formula (1) and formula (2) shall be considered. The update of each 
dimension is completely independent of one another except for the relation between 
pid, pgd and search space of every dimension. So it is without loss of generality. Since 
the certification process can be simplified to one-dimensional case, the subscript d can 
be omitted. Further, it is assumed that the particles in the population remain intact 
except particle i, and the subscript i can be omitted [3]. The variables are defined as 

follows: 1 1 1=r cϕ , 2 2 2=r cϕ , 1 2= +ϕ ϕ ϕ , 

1 0 2

1 2

+
=

+
gp pϕ ϕ

ρ
ϕ ϕ .To facilitate understanding, 

formula (1) and formula (2) are moved from the superscripts of variable descriptors to 
the parentheses behind them. Formula (1) and formula (2) can be changed to: 

( +1)= ( )+ ( - ( ))v t v t x tω ϕ ρ  . (3)

( +1)= ( )+ ( +1)x t x t v t  . (4)

Formula (5) can be obtained after the iteration of the formula (3) and the formula (4): 

( +2)+( - -1) ( +1)+ ( )=x t x t x tϕ ω ω ϕρ  . (5)
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Equation (5) is a classical second order differential equation without speed. The 
importance of Theorem 1 is to explain that bPSO can do without the concept of 
particle velocity and avoid the artificial determined parameter [-vmax,vmax], which 
affect the convergence speed and the convergence precision of particles. 

Based on the above analysis, Hu W et al [3] proposed an optimization equation of 
the particle swarm without speed items, which is as follows. 

1
1 1 2 2( ) ( )t t t t

id id id id gd idx x c r p x c r p xω+ = + − + −  . (6)

ωxk
id in the formula represents the position of the particles in the previous stage, 

called the "historical" part. It carries the impact of the past. Through changing the 
value of ω, we control the degree of the impact of the next position. c1r1(pid-x

k
id) is the 

difference value between the historical best position of the particle and the current 
position of the particle. It makes the particle have the trend to the historical best 
position, called the “cognition” part. It expresses the thoughts of the particle on itself.  
c2r2(pgd-x

k
id) is the difference value between the historical best position of the  

group and the current position of the group. It makes the group have the trend to  
the historical best position, called the “Social Experience” part. It expresses the 
comparison and the imitation between the particles of the group, and achieves the 
information sharing and collaboration between particles. 

This is the simple particle swarm optimization, abbreviated as sPSO. 

3 Improved Algorithms Based on sPSO 

3.1 Adding a Random Number for the “Historical” Part 

In order to improve particle swarm optimization algorithm convergence precision, 
two algorithms are proposed based on sPSO. Firstly this paper tries to add a random 
number for the historical part of the formula of sPSO to reduce the degree of 
inheritance from the history and improve the particle's ability of exploration. The 
formula after adding a random number is as follows:  

1
0 1 1 2 2+ ( ) ( )k k k k

id id id id gd idx r x c r p x c r p xω+ = − + −  . (7)

In order to test the significance of r0's existence for formula, bPSO, sPSO and the 
improved PSO with the rand (rPSO) are used to optimize the given function. It is 
commonly used in the comparison of the optimization algorithms. The number of 
particles is 16, the number of iterations is 150, c1= c2= 2, ω= 0.4~0.9. Function form, 
dimension, search range and the extremum in theory are shown in Table 1. 

Table 1. The function used to test the improved method 

Name and code Formula Dim n Range [xmin,xmax] Optimal f 

Sphere f1 2
1

1

( )
n

i
i

f x x
=

=  30 [-100,100]30 0 



100 L. Liu et al. 

 

Experiment shows the improvement result. The length of time it takes and the final 
convergence value of each run of the three algorithms are shown in Table 2, Table 3 
and Table 4. 

Table 2. The simulation of bPSO 

 1 2 3 4 5 6 7 8 9 10 

Time(s) 0.05 0.02 0.06 0.02 0.02 0.02 0.04 0.02 0.02 0.02 

Value 2.01 2.51 2.41 1.44 1.93 2.65 1.86 3.14 2.96 2.07 

 
As can be seen from the table, the convergence values of the ten separate runs are 

all between 1 and 4. The convergence precision is not high. The length of time which 
it takes is between 0.02 and 0.06. 

Table 3. The simulation of sPSO 

 1 2 3 4 5 6 7 8 9 10 

Time(s) 0.03 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Value 6e-82 1e-92 5e-91 9e-101 2e-85 4e-84 5e-97 6e-90 9e-97 4e-89 

 
The main difference between bPSO and sPSO is that latter removes the influence 

of the speed, and use the distance between the particles to calculate, which simplifies 
the computational complexity. The searching time is similar to bPSO. 

Table 4. The simulation of rPSO 

 1 2 3 4 5 6 7 8 9 10 

Time(s) 0.09 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Value e-194 e-178 e-191 e-209 e-179 e-187 e-186 e-191 e-186 e-175 

 
From the time point of view, they are in the same order of magnitude and not much 

different from each other. The average length of time of bPSO is 0.0322s, sPSO is 
0.0362s, and rPSO’s is 0.0405s. From the convergence value point of view, rPSO and 
sPSO are significantly better than bPSO, and the result of rPSO is most accurate. 

In summary, adding random number has an effect on convergence precision. 

3.2 The Algorithm without the Random Number for the “Cognition” and 
"Social Experience" Part 

The researches of swarm robot systems draw lessons from optimization techniques 
and principles such as swarm intelligence. It is an application of swarm intelligent in 
the multi-robot system [7]. As a representative of the swarm intelligent algorithms, 
particle swarm algorithm and swarm robots searching are the instances of the smart 
agent searching. And there is a certain mapping relation between them. The contact 
between swarm robot and particle swarm is the contact of concrete and abstract, 
reality and model. Therefore, swarm robots in the real world can be modeled and 
simulated by the use of particle swarm optimization [8].  



 Improved Algorithms Based on the Simple Particle Swarm Optimization 101 

 

Since swarm robots are widely used in many areas of our lives, it is important to 
improve PSO for the robotics to make the search capacity of robots have better 
stability and higher optimizing precision. This paper conceives an improved PSO 
which deletes the random number of the “cognition” and the "social experience" part 
based on sPSO. The formula of the algorithm is: 

1
1 2+ ( ) ( )k k k k

id id id id gd idx x c p x c p xω+ = − + −  . (8)

The fast convergence rate and the higher convergence precision are expected in the 
simulation. This is the algorithm called the rand number deleted PSO (drPSO). 

4 Simulation 

4.1 Simulation in the Obstacle-Free Environment 

There are no obstacles in the simulation environment, but searching target (the larger 
black dots in the Fig. 1) and robots (the other small dots). The simulation environment 
is shown in Fig. 1. The size of the environment is set in the file called “world” in 
Player/Stage. The name, color, initial position and posture of the 20 pioneer robots 
with laser sensors are set, too. 

PSO, sPSO, drPSO are simulated in this simulation environment separately. The 
simulation diagrams are shown below. 
 

    

Fig. 1. The simulation of bPSO 

In the beginning, the convergence speed is relatively fast and the particles can run 
towards the general direction of the target. Some particles can find the target in mid-
run of the algorithm; the searching starts to slow down. During the running of the 
algorithm, the speed and position of every particle are updated according to the bPSO 
formula. In the end, most of the particles have found the target, and the others quickly 
converge to the position of the target. It takes 27seconds to finish the simulation 

The simulation of sPSO is as follows. 

 

    

Fig. 2. The simulation of sPSO 
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sPSO has slow convergence, particularly in the middle of the run. Some robots run 
circles around the target, and then gradually close to it. The completion time of sPSO 
is 55 seconds. It can be learned that sPSO cannot work well  in every case. 

The simulation of drPSO is showm below. 
 

    

Fig. 3. The simulation of drPSO 

The c1 and c2 in the formula (8) are the learning factors, and also called 
accelerating factors. They make the particles have the ability to summarize and to 
learn from the outstanding individuals in the groups, and close to the optimal position 
of the history of their own and the group. The value of the c1 affects the movement 
trend of the particles to the historical best position of their own. This kind of trend is 
called "cognition”, indicating the thinking of the particles. The value of the c2 affects 
the movement trend of the particles to the historical best position of the group. This 
kind of trend is called the "social experience", indicating the comparison and 
simulating with the neighbors, which achieving the information sharing and 
collaboration between the particles.  

The running time of the three algorithms is shown in the Table 5. 

Table 5. The search time of the algorithms 

Algorithm bPSO sPSO drPSO 

Time(s) 27s 55s 14s 

 
From the Table 5, the shortest time of searching is drPSO, 14 seconds.  
The values of the c1 and c2 play an important role in the multi-robot collaboration 

in search for the target. srPSO removes the random numbers that may limit the ability 
of the robots to search, which accelerate convergence speed to a certain extent.  

5 Conclusion 

Particle swarm optimization is an evolution computing technology based on swarm 
intelligence method. In this paper, two improved algorithms called rPSO and drPSO 
based on sPSO are put forward to make the convergence precision high when they 
solve the specific problems. The simulations of rPSO and drPSO show the 
effectiveness and feasibility of them. It can be found from the analysis that rPSO 
reduces the degree of inheritance from the history and improve the particle's ability of 
exploration. Compared with the existing algorithms, search efficiency of drPSO is 
increased greatly.  
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Abstract. PSO has been used in combination with ultra-high resolution 360-
degree panoramic images in positioning field objects at a landslide site. 
Although the computational efficiency was exceptional, the sum of errors was 
high. In order to demonstrate that the errors came from GPS readings instead of 
photography mistakes or erroneous computer codes, the authors designed and 
implemented an experiment and used it to verify the applicability of the PSO 
method. A conceptual layout was first sketched on paper and then tested on a 
rooftop of a campus building. Two sets of input data were constructed using the 
panoramic photos and the CAD drawing of the conceptual layout, respectively. 
Both data sets were computed using the brute force program and the PSO 
program developed in previous studies. The results showed that cm-level and 
sub-mm level accuracy was achieved in the experiment. Consequently, it was 
concluded that the PSO program was correct and the PSO method was 
applicable to the positioning problem. The accuracy of positioning in the field 
can be improved with the aid of better GPS devices.  

Keywords: Surveying poles, PSO, brute force method. 

1 Introduction 

Particle Swarm Optimization (PSO) is an artificial intelligence technique that has 
been applied to many research problems including tree trunks fitting [1], landslide 
analysis [2, 3], slope parameters determination [4], and field positioning [5]. Among 
these interesting applications, one that particularly intriguing is the use of PSO in 
combination with ultra-high resolution 360-degree panoramic images. Chen et al. 
demonstrated this technique at a landslide site using bamboo sticks to denote the 
positions of desired objects [5]. Three sets of panoramic images at three distinct 
locations were taken using the GigaPan. Since the images provided the full 360-
degree view of the surrounding environment, relative angles between the bamboo 
sticks in reference to the individual camera could be calculated by counting pixels. 
Using imaginary rays of lines emitting from the three camera locations, researchers 
successfully triangulated the locations of every bamboo stick using both the brute 
force method and the PSO technique. The speed-up factor was at least 546 times 
(7100 sec divided by 13 sec). Although PSO was proved to be extremely useful and 
efficient in this problem, the triangulation error, defined as the total lengths of the 
sides of intersection triangles, could not be reduced to less than 91.77 m. Therefore, 
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questions remain over the use of the PSO method in position determination to achieve 
the desired accuracy and precision. In principle, errors could come from GPS 
readings, photography mistakes, erroneous computer codes, or the incorrect use of 
PSO. Rather than speculating on the possible/main source of errors, the authors 
designed a test case (for which exact solutions exist) and used it to verify the 
correctness of the PSO codes and therefore the applicability of the PSO technique. 
The results are described in the following sections.  

2 Design of Test Case 

With the aim of validating the suitability of the PSO method in position 
determination, a test layout on paper was designed in a grid manner as shown in 
Figure 1. Each grid was 2.1 m in both horizontal and vertical directions. Three camera 
locations were picked and denoted A, B and C in Figure 1. Eight target locations 
(numbered 1-8) were also selected in the test, and they were spaced out as evenly as 
possible. Note that for the test layout to be valid, no lines formed by connecting any 
two of the eight targets should pass through any one of the three cameras. In other 
words, no target was allowed to be "blocked" by other targets when it is "viewed" 
from any one of the three camera locations. 

 

Fig. 1. Test layout of three camera locations (A, B and C) and eight target locations (1-8) 
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When the paper design was finished, the layout was transferred to the CAD 
software to create a working drawing. Lines emanating from the sources (cameras) to 
the targets were drawn as shown in Figure 2. The purposes are twofold: (1) to verify 
that no target was blocked in view by other targets and (2) to precisely measure the 
final rotation angles needed to triangulate the targets. As mentioned before, targets 
were spaced out as evenly as possible. Although the positions looked random, they 
were selected carefully to realize the design goal of testing the PSO method. 

 

Fig. 2. CAD drawing created to triangulate eight targets using lines emanating from three 
sources (cameras). 

3 Experimental Setup  

The conceptual layout of Figures 1 and 2 were implemented on the rooftop of the 
Third Teaching Building on the NTUT campus. The rooftop was covered by 30 cm by 
30 cm tiles, thus making the positioning of targets easy. Eight custom-made metal 
surveying poles were used in the experiment and they were held in place and in a 
vertical position using special devices with tripod bases or just dead weights (2-liter 
bottles filled with water). A GigaPan and a digital camera (Canon G11) were used to 
take a series of photos at positions A, B and C, respectively. Figure 3 shows the 
panoramic photos stitched together from individual photos taken at those three 
locations. All of the eight surveying poles were colored and numbered in the photos 
for subsequent analysis. The photos were imported into Photoshop where the numbers 
of pixels between poles were counted and divided by the total number of pixels to 
obtain the angles between adjacent targets.  
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Fig. 3. Panoramic photos taken at the rooftop of the Third Teaching Building showing the eight 
metal surveying poles (colored and labeled) positioned according to the design layout in 
Figures 1 and 2 

4 Computational Results  

After the angles between adjacent targets had been calculated, they were adjusted and 
recorded as the counter-clockwise angles from target #1. The results are shown in 
Table 1. The allowable values of the angles are from 0 to 360 degrees. The same 
procedure was repeated for each of the three photos. There were two input files in the 
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numerical experiment. The values in Table 1 served as the first input file to the PSO 
and the brute force programs developed by Chen et al. [5]. For the purpose of 
comparison, theoretical angles between different targets as viewed from different 
camera locations were also computed using the CAD software. The results are shown 
in Table 2. The values in Table 2 formed the second input file to the two programs 
mentioned above. Both programs were executed on a computer with an Intel Celeron 
G530 2.40 GHz processor running the Ubuntu 12.04 operating system. The 
computational results are summarized in Table 3. The outcomes show that the brute 
force method took two hours to finish the computation in the experiment, which is in 
agreement with the results reported in [5]. Also, the PSO method took merely a 
fraction of the time that had been required by the brute force method. This is also in 
consistent with [5]. For the two input files used, speedup ratios of 906 and 1,212 were 
achieved, respectively. Moreover, the brute force method was only accurate to ones 
digits, whereas the PSO method was able to provide many significant figures. Finally, 
the error from the brute force method was 5.3 to 223.7 times higher than the PSO 
method. 

Table 1. Counter-clockwise angles of eight surveying poles from target #1 computed based on 
the numbers of pixels in the three panoramic photos taken at positions A, B and C 

No. Angles @ point A Angles @ point B Angles @ point C 

1 0.00 0.00 0.00 
2 352.60 353.34 348.00 
3 330.37 29.65 349.71 
4 327.29 100.63 323.38 
5 318.08 82.63 330.46 
6 312.20 112.12 297.14 
7 307.62 74.54 341.60 
8 296.56 42.12 12.56 

Table 2. Counter-clockwise angles of eight surveying poles from target #1 computed based on 
the precise drawing created in the CAD software 

No. Angles @ point A Angles @ point B Angles @ point C 

1 0.00 0.00 0.00 
2 352.87 352.87 347.91 
3 330.26 29.74 349.70 
4 327.53 101.31 323.13 
5 318.37 82.87 330.26 
6 312.51 112.62 296.57 
7 307.88 74.74 341.57 
8 296.57 42.27 12.53 
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Table 3. Comparison of computational results using two sets of input data derived from 
panoramic photos and CAD drawings, respectively 

 Method 
Min. sum of 
lengths of △ 

sides 

# of 
computations

Best solution Time spent 

Photos Brute force 309.18 cm 46,656,000 
64 

214 
153 

7249 sec 
= 2.01 hr 

 
PSO 

w = 0.7 
58.23 cm 23,162 

63.54976 
213.58606 
153.38948 

8 sec 

Theoretical/CAD Brute force 346.75 cm 46,656,000 
63 

214 
153 

7273 sec 
= 2.02 hr 

 
PSO 

w = 0.7 
1.55 cm 23,307 

63.43220 
213.68979 
153.43309 

6 sec 

5 Discussion and Conclusions 

This is an experiment designed to test the PSO method in triangulating field targets. 
The results were quite satisfactory. The same experimental layout was implemented 
in the CAD software and on a rooftop of a campus building with surveying poles. For 
angles calculated from panoramic photos, the sum of errors (measured as the total 
lengths of the sides of the eight intersection triangles) was as low as 58.23 cm (as 
shown in Table 3). This means that the average error of each side of the triangles was 
only 2.43 cm. Furthermore, if the angles from the CAD measurements (theoretically 
precise values) were used in the computation, the sum of errors could approach zero 
(1.55 cm). This is equivalent to 0.06 cm per side, a solution of extremely high 
accuracy. For this reason, the PSO program was proved to be correct and the PSO 
method was ascertained to be applicable to this kind of problems. Recall that the sum 
of errors reported in [5] was much higher (91.77 m) than the current study. By ruling 
out the possibility of photography mistakes and erroneous computer codes, it is 
reasonable to conclude that the errors in [5] mostly came from GPS readings, in 
which case the hand-held GPS and the valley terrain with poor signal cover were to 
blame. 

Finally, Figure 4 shows the convergence curves for both sets of input data. The 
blue line and the red line represent the cases where the angles were calculated from 
panoramic photos and the CAD drawing, respectively. It has already been pointed out 
that the blue line converged to 58.23 cm and the red line converged to 1.55 cm. With 
the same inertia weight of 0.7, the red line also converged much faster than the blue 
line did, and both lines converged faster than the curve in [5], where w was set to 0.8. 
Three things are worth nothing. First, it is evident that the quality of input data affects 
not only the accuracy of results but also the speed of convergence. High quality data 
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will accelerate the rate of convergence. Second, there will always be errors in field 
measurements even in a controlled environment of a rooftop. In this study, one likely 
error might come from the wind blowing over the rooftop. It might have caused the 
poles to move slightly. That is probably why the blue line only converged to 58.23 
cm. Third and finally, the PSO method is proved to be capable of achieving cm-level 
(or even sub-mm level) accuracy. It is an extremely powerful and efficient algorithm 
for positioning field objects. 

 

Fig. 4. Convergence curves of the triangulation process using the PSO method for angles 
calculated from panoramic photos (blue) and precise CAD drawings (red). 
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Abstract. We consider the solution of bound constrained optimization
problems, where we assume that the evaluation of the objective function
is costly, its derivatives are unavailable and the use of exact derivative-
free algorithms may imply a too large computational burden. There is
plenty of real applications, e.g. several design optimization problems [1,2],
belonging to the latter class, where the objective function must be treated
as a ‘black-box’ and automatic differentiation turns to be unsuitable.
Since the objective function is often obtained as the result of a simulation,
it might be affected also by noise, so that the use of finite differences may
be definitely harmful.

In this paper we consider the use of the evolutionary Particle Swarm
Optimization (PSO) algorithm, where the choice of the parameters is
inspired by [4], in order to avoid diverging trajectories of the particles,
and help the exploration of the feasible set. Moreover, we extend the
ideas in [4] and propose a specific set of initial particles position for the
bound constrained problem.

Keywords: Bound Constrained Optimization, Discrete Dynamic Linear
Systems, Free and Forced Responses, Particles Initial Position.

1 Introduction

Applied sciences offer several challenging applications of bound constrained op-
timization, where the computational cost of the objective function is remarkably
large. In this regard, optimization tools combining the theoretical properties of
exact methods and the fast progress of heuristics represent an active research
area. Furthermore, on large scale real problems, which are typically more difficult
and require correspondingly larger computational resources, both practitioners
and theoreticians claim for robust methods, often endowed also with theoretical
properties. Moreover, in many cases the derivatives are unavailable. In the lat-
ter case, the use of ’black-box’ simulations for computing the objective function
makes the adoption of automatic differentiation impossible, due to the unavail-
ability of the source code. In addition, simulations represent an essential tool,
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but often introduce an unexpected artificial noise, which unavoidably imposes
strong care when adopting finite differences.

This paper considers PSO [6], with a specific choice of the parameters, for the
solution of the bound unconstrained global optimization problem

min
x∈F

f(x), f : IRn → IR, (1)

where F = {x ∈ IRn : l ≤ x ≤ u}, l, u ∈ IRn and without loss of generality
l < u. Obviously, in case li = −∞, i ∈ {1, . . . , n} and ui = +∞, i ∈ {1, . . . , n}
problem (1) reduces to an unconstrained optimization problem. At present f(x)
is assumed to be a nonlinear and non-convex continuous function.

This paper has a twofold purpose. First we propose some novel rules for the
selection of parameters in PSO, using the reformulation of PSO iteration de-
scribed in [4]. Then, we suitably adapt the choice of particles position/velocity
studied in [4] for the unconstrained case, to the feasible set F of (1). The lat-
ter adaptation requires some geometric insight and involves a negligibly small
algebra, even when the scale n is large.

As regards the symbols used in this paper, the subscripts identify the particles
in a PSO scheme, while we use the superscript to indicate the iteration. Ik is the
identity matrix of order k. If σ is a real random unknown and u ∈ IRn, the symbol
σ⊗u indicates an n-real vector, whose j-th and i-th entries are respectively given
by σjuj and σiui, where σj and σi are different occurrences of σ. Finally, ‖A‖F
indicates the Frobenius norm of matrix A, i.e. ‖A‖F = tr(ATA)1/2, where tr(·)
indicates the trace of a matrix.

In Section 2 we propose a reformulation of PSO iteration, which is essential
for our proposal, then Section 3 suggests some basics on the choice of parameters
in PSO, and Section 4 proposes some indications to properly choose the initial
position/velocity of particles for problem (1).

2 A Reformulation of PSO

Consider the trajectory of the j-th PSO iteration (k ≥ 0)

vk+1
j = χkj

[
wkj v

k
j + cjrj ⊗ (pkj − xkj ) + cgrg ⊗ (pkg − xkj )

]
,

xk+1
j = xkj + vk+1

j ,

(2)

where j = 1, ..., P indicates the j-th particle and P is a positive integer. The
vectors vkj and xkj are n-real vectors representing respectively the velocity (i.e.
the search direction) and the position of the j-th particle at step k. Moreover,
the n-real vectors pkj and pkg satisfy

f(pkj ) ≤ f(x�j), for any � ≤ k, pkj ∈ {x�j},

f(pkg) ≤ f(x�j), for any � ≤ k and j = 1, . . . , P, pkg ∈ {x�j},
(3)
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while χkj , w
k
j , cj , rj , cg, rg are positive bounded coefficients. As well known, pkj

represents the ‘best position’ in the trajectory of the j-th particle up to step k,
while pkg is the ‘best position’ among all the particles up to step k. The choice of
the coefficients as well as the number of particles P is often problem dependent
(see also [7]), and here we consider the choice [4], which is very general. The
latter choice also includes the case where both the inertia coefficient wkj and the

constriction coefficient χkj are used. Finally, as usually, we can assume without
loss of generality that rj and rg are uniformly distributed random parameters,
with rj ∈ [0, 1] and rg ∈ [0, 1].

After some simplifications, for each particle j, assuming for brevity that wkj =

wj and χkj = χj , for any k ≥ 0 the iteration (2) is equivalent to the discrete
stationary (time-invariant) system (see also [4])

Xj(k+1) =

⎡
⎣χjwjIn −χj(cjrj + cgrg)In

χjwjIn [1− χj(cjrj + cgrg)] In

⎤
⎦Xj(k) +

⎡
⎣χj

(
cjrjp

k
j + cgrgp

k
g

)
χj
(
cjrjp

k
j + cgrgp

k
g

)
⎤
⎦

(4)
where

Xj(k) =

⎛
⎝ vkj

xkj

⎞
⎠ ∈ IR2n, k ≥ 0. (5)

From a geometric perspective the sequence {Xj(k)} represents the trajectory of
the j-th particle in the state space IR2n. Moreover, using a standard notation for
linear systems, we can split Xj(k) into the free response XjL(k) and the forced
response XjF (k) (see also [8]). Thus, on summary for any k ≥ 0 the 2n-real
vector Xj(k) may be rewritten as

Xj(k) = XjL(k) +XjF (k), (6)

where

XjL(k) = Φj(k)Xj(0), XjL(k) =

k−1∑
τ=0

Hj(k − τ)Uj(τ), (7)

and after some computation we obtain (see also [4])

Φj(k) =

⎛
⎝χjwjIn −χj(cjrj + cgrg)In

χjwjIn [1− χj(cjrj + cgrg)] In

⎞
⎠k

∈ IR2n×2n. (8)

(9)

We urge to recall that from the expressions (6)-(7), unlike the vector XjF (k),
the free response XjL(k) only depends on the initial point Xj(0), and not on
the vectors pτj , p

τ
g , with τ ≥ 0. As described in the next section, the latter

observation plays a keynote role, in order to design efficient PSO schemes for
solving (1).
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3 Issues on Parameters Assessment in PSO

Observe from (8) that Φj(k) = Φj(1)
k, for any k ≥ 0, and the 2n eigenvalues of

the unsymmetric matrix Φj(1) are real (see also [4]). Setting for simplicity in (8)

aj = χjwj , ωj = χj(cjrj + cgrg), j = 1, . . . , P, (10)

after some computation we see that the matrix Φj(1) has only the two distinct
eigenvalues λj1 and λj2 given by

λj1 =
1− ωj + aj −

[
(1− ωj + aj)

2 − 4aj
]1/2

2

λj2 =
1− ωj + aj +

[
(1− ωj + aj)

2 − 4aj
]1/2

2
,

(11)

each of them having algebraic multiplicity n. A necessary (but possibly not
sufficient) condition for {Xj(k)} to be non-diverging (which implies that also
{xkj } and {vkj } in (2) are non-diverging), is

|λj1| < 1, |λj2| < 1, (12)

which affect the choice of PSO parameters as described in the next proposition
(the next conditions are simplified with respect to [4]).

Proposition 1. Consider the position (10) in (2), with χkj = χj and wkj = wj,
j = 1, . . . , P . Suppose for k ≥ 0

0 < aj < 1, 0 < ωj < 2(aj + 1), j = 1, . . . , P, (13)

with ωkj �= (1 ± a
1/2
j )2. Then, for any k ≥ 0 and j = 1, . . . , P , conditions (12)

are fulfilled. ♦
Observe that conditions (12) imply limk→∞XjL(k) = 0, j = 1, . . . , P , and most
of the typical settings for PSO parameters proposed in the literature (see e.g.
[7,9]) satisfy (13). Moreover, from relations (7), (8), (10) and considering that
Φj(1) is unsymmetric, we have also that for any j

‖Φj(k)‖F ≤ ‖Φj(1)‖kF = tr
[
Φj(1)

TΦj(1)
] k

2 , (14)

and

tr
[
Φj(1)

TΦj(1)
] 1

2 = tr

⎡
⎣ 2a2jIn aj(1− 2ωj)In

aj(1− 2ωj)In [ω2
j + (1− ωj)

2]In

⎤
⎦

1
2

=
[
2a2j + ω2

j + (1 − ωj)
2
] 1

2 .



116 E.F. Campana et al.

Using Fact 9.12.1 in [10] (where B = In and ‖B‖F =
√
n) we have that

1√
n
|tr [Φj(1)]| ≤ ‖Φj(1)‖F (15)

where
tr [Φj(1)] = aj + (1 − ωj).

Now, from (7) and (14)

‖XjL(k)‖F ≤ ‖Φj(1)‖kF · ‖Xj(0)‖F ,

and though limk→∞XjL(k) = 0, j = 1, . . . , P , we would like ‖XjL(k)‖F not to
be attenuated when the index k is still relatively small. On this purpose, given
the coefficients cj , j = 1, . . . , P and cg, we propose to set χj and wj by solving
for each j = 1, . . . , P one of the following two programs, inspired by Proposition
1 and, respectively, relation (14) and relation (15):

max
χj ,wj

2a2j + ω2
j + (1− ωj)

2

0 < aj < 1,
0 < ωj < 2(aj + 1),

(16)

max
χj ,wj

|aj + (1 − ωj)|
0 < aj < 1,
0 < ωj < 2(aj + 1).

(17)

The programs (16)-(17) attempt to possibly force larger values of ‖XjL(k)‖F for
k small. In Section 4 we give more motivations about the latter issue.

Now, in the light of (7), (12) and the results in Proposition 1, we think that
the following question still deserves special consideration: can we properly choose
the initial points Xj(0), j = 1, . . . , P , for problem (1), so that the trajectories
{xkj } span as much as possible the feasible set F ? Section 4 addresses the latter
issue, in order to give indications on the choice of the initial point and velocity
of particles.

4 Initial Particles Position and Velocity in PSO,
for Bound Constrained Optimization

In this section we study some proposals of initial particles position and velocity,
for the bound constrained optimization problem (1). To this aim let us consider
the feasible set F in (1); we remind that possibly we allow li = −∞ and/or ui =
+∞ for some indices i ∈ {1, . . . , n}. In the previous section we studied settings
for PSO parameters, such that the free response XjL(k) associated to particle j
is possibly not attenuated too early, i.e. when k is still relatively small. In this
section we show a method to exploit the latter property, in order to possibly
improve the overall performance of PSO on bound constrained optimization. In
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particular, we want to give indications for the choice of the vectors Xj(0), so
that possibly the orthogonality conditions (or similar properties)

XjiL(k)
TXjhL(k) = 0, 1 ≤ i �= h ≤ m, (18)

among the free responses of the first m particles (with m ≤ n), are satisfied.
Observe that conditions (18) do not impose the trajectories of PSO particles to
be orthogonal; however, they guarantee that part of particles trajectories (i.e.
the free responses in IR2n) are orthogonal, as long as they do not fade. This
explains why in Section 3 we studied conditions on PSO parameters, in order to
prevent a premature extinction of XjL(k) when k increases.

In particular, our first proposal for the choice of Xj(0), j = 1, . . . , P , is the
following:

1. If l < 0 < u then set Xj(0) such that x0j ∈ F , randomly for j = n+1, . . . , P ,

and v0j ∈ IRn for j = n+ 1, . . . , P . On the other hand, for j = 1, . . . , n set

tj =

[√
n

n

n∑
i=1

−
√
n

2
ej

]
∈ IRn, Xj(0) =

(
αjtj
βjtj

)
∈ IR2n, (19)

where αj is any real value such that αjtj ∈ F , j = 1, . . . , n.
2. Otherwise, set Xj(0) such that x0j ∈ F , randomly for j = n+ 1, . . . , P , and

v0j ∈ IRn for j = n + 1, . . . , P . Then, for j = 1, . . . , n consider the vertex
û ∈ F which is the closest to the origin; take

Xj(0) =

(
ûj
zj

)
, j = 1, . . . , n, (20)

ûj being the j-th vertex of F adjacent to û (i.e. such that an edge of F
connects û and ûj), and zj ∈ IRn is randomly chosen.

Observe that while (19) satisfies (18) and αj is very easy to compute, the choice
(20) simply ensures that the vectors Xj(0), j = 1, . . . , n, are at least linearly
independent (though in general not orthogonal). Now, in order to force condition
(18) (or similar conditions) in a more general framework, let us consider the
geometry of the feasible set F (shaded area) in Fig.1. Suppose the point c is
the intersection of the diagonals of F , i.e. c = (u + l)/2, and the segment ai is
given by ai = (ui − li)/2, i = 1, . . . , n. We want to compute the equations of
the dashed hyperellipsoids E0, E1 and E2 in Fig.1, E0 being a sphere. It is not
difficult to realize that

E0 : (x− c)TA0(x − c) = 1, A0 = diag1≤i≤n
{(∑n

i=1 a
2
i

)−1
}
,

E1 : (x− c)TA1(x− c) = n, A1 = diag1≤i≤n
{
a−2
i

}
,

E2 : (x− c)TA1(x − c) = 1;

(21)

indeed, it suffices to consider that E0 is a sphere, the extreme points v�, � =
1, . . . , 2n, in the corners of F have coordinates ci±ai, i = 1, . . . , n (which satisfy
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Table 1. We list the results for 6 test functions from the literature (n is the number of
unknowns and f∗ is the value of f at a global minimum). The results are over 25 PSO
runs, f bst/f wst/f av is the best/worst/average value of f over the 25 runs, while st.
dev. indicates the standard deviation. xrand indicates random initial choice for particles
position, while xorth indicates initial choice for particles position as in (19).

Function xrand xorth

f∗ 0.0000
Griewank f bst 0.5562 0.0057
(n=10) f av 0.8485 0.0332

f wst 1.1650 0.0731
st. dev. 0.0067 0.0004

f∗ 0.0000
Griewank f bst 1.2360 0.0016
(n=20) f av 1.3872 0.0022

f wst 1.7438 0.0653
st. dev. 0.0001 0.0000

f∗ 0.0000
Levy 5n f bst 3.0273 0.0268
loc.min. f av 8.9546 0.0483
(n=30) f wst 13.6678 0.0942

st. dev. 0.0000 0.0000

Function xrand xorth

f∗ 0.0000
Levy 10n f bst 53.8192 1.1428
loc.min. f av 107.3033 3.4678
(n=30) f wst 299.5744 3.9709

st. dev. 0.0001 0.0000

f∗ 0.0000
Levy 15n f bst 14.4646 3.1471
loc.min. f av 31.7934 3.3890
(n=30) f wst 60.5632 3.5046

st. dev. 0.0002 0.0000

f∗ 0.0000
Griewank f bst 1.5631 0.0007
(n=30) f av 2.1459 0.0389

f wst 2.8092 0.0710
st. dev. 0.0000 0.0000

Fig. 1. The feasible set F ⊂ V of (1), V is the region inside E0 or E1, and V ⊃ E2

the first two equations (21)), and the centers of the facets of F have entries in
the sets {ci, li, ui}, i = 1, . . . , n. We would like to show that for problem (1) it
is possible to set Xj(0), j = 1, . . . , n (other than (19)-(20)), so that conditions
(18) at least in some cases are satisfied, with Xj(0) such that x0j ∈ V , where V
is the region inside either of the hyperellipsoids E0, E1 or E2. The importance
of the latter property relies on the fact that it tries to force orthogonality among
particles trajectories, while particles move within F . Thus, we expect that PSO
will be able to explore the feasible region of interest F , as accurately as possible,
while possibly ignoring the exploration in the set IRn \ V .

In a more general scheme where F is treated in a penalty framework (i.e. PSO
is used for the unconstrained minimization of a penalty function, which is the
sum of f(x) and a term penalizing the constraints violation), then we can set
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Xj(0), j = 1, . . . , P , in a different fashion with respect to 1. and 2. Indeed, we
can consider the choice:

1̂. If l < 0 < u then set Xj(0) such that x0j ∈ F , randomly for j = n+1, . . . , P ,

and v0j ∈ IRn for j = n+ 1, . . . , P . On the other hand, from (19) set

Xj(0) =

(
αjtj
βjtj

)
∈ IR2n, j = 1, . . . , n,

where now αj is any real value such that αjtj ∈ V , j = 1, . . . , n, and V is
the region inside either of the hyperellipsoids E0, E1 or E2 in Fig.1.

2̂. Otherwise, take the choice 2.

We still have to complete in a separate paper a numerical experience, giving full
evidence of the effectiveness of the proposals above, in a framework where exact
penalty methods are adopted. However, Table 1 summarizes a few preliminary
results on six test problems from the literature (the caption describes the setting
adopted), indicating that our proposal might be effective and efficient.
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Abstract. In this paper we present a simulation tool for the visualiza-
tion of the impact of different probability distributions on Particle Swarm
Optimization (PSO). PSO is influenced by a high number of random val-
ues in order to simulate a more nature like behaviour. Based on these
random numbers the optimization process may vary. Usually the uniform
distribution is chosen but regarding certain underlying fitness functions
this may not the best choice. To test the influence of different probabil-
ity distributions on PSO and to compare the different approaches, the
presented simulation system consist of a simple user interface and allows
the integration of own distribution formulas in order to test their impact
on PSO.

Keywords: Particle Swarm Optimization, Probability Distributions,
Random Numbers, Simulation System, Visualization.

1 Motivation

Particle Swarm Optimization (PSO) is a nature inspired metaheuristic based on
the movement behaviour of bird flocks and fish shoals and was introduced by
Kennedy and Eberhardt in 1995 [1]. To integrate the exploration factor of the
flocks and to simulate the“natural”behaviour within this optimization technique,
random factors are integrated into the PSO-formula. The PSO technique is based
on a swarm of particles which influence themselves and try to find the global
optimum of an underlying fitness function. Every particle receives a fitness value
out of the actual position in the search space and calculates the next point among
others regarding the best found place of the other particles within the swarm.
Hereby random factors are being used to vary the influence of these independent
variables on the calculation of each particle’s next position and the scattering of
the swarm.

According to the standard definition for computing and comparing PSO intro-
duced by Bratton and Kennedy in 2007 [2], a total amount of 600 0001 random

1 As defined by Bratton and Kennedy in 2007, the standard PSO algorithm includes
50 particles and 6 000 epochs. The calculation of each particle’s next position con-
tains two random values (ε1, ε2) which are integrated into the inertia-weight-update-
formula [3].
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numbers is required for the calculation during one optimization process. This
demonstrates that the probability distribution, which the random numbers are
based on, influences the movement of the particles. In Bratton and Kennedy’s
standard for PSO, a uniform distribution is being used to generate random num-
bers. This works fine on the most of the underlying fitness functions. But regard-
ing certain fitness landscapes, different PSO-configurations will lead to a better
optimization results [4] just as other probability distributions do. In this work
we are going to develop a simulation tool for the examination and testing of
other probability distribution’s impact on the movement of a particle.

Therefore we introduce a simulator for random distribution on PSO. The
simulation system can be used to artificially generate possible movements of a
particle. The resulting positions of the particle will be visualized in order to
illustrate the way the search space is being swept using a certain probability
distribution. This enables the user to compare how different distributions make
a swarm scatter on a simulated fitness landscape.

This work is structured as follows: First we give a brief introduction into PSO
and the state of the art in random distribution on PSO. Afterwards we describe
the developed simulation system. In section 4 the simulation system is being
evaluated and finally we discuss our results and give a short look on the future
aspects.

2 State of the Art

Random distributions are being used in most of the PSO variations. In this
section we give a brief introduction into the PSO-technique and describe some
different types of random distributions used in PSO variations.

2.1 Particle Swarm Optimization

Particle Swarm Optimization is inspired by the social behaviour of flocks of
birds and shoals of fish. A number of simple entities, the particles, are placed
in the domain of definition of some function or problem. The fitness (the value
of the objective function) of each particle is evaluated at its current location.
The movement of each particle is determined by its own fitness and the fitness
of particles in its neighbourhood [1]. The results of one decade of research and
improvements in the field of PSO have recently been summarized by Bratton
and Kennedy [2], also recommending standards for comparing different PSO
methods. Therefore the definition used in this paper is based on Bratton and
Kennedy as well. We aim at continuous optimization problems in a search space
S defined over the finite set of continuous decision variables X1, X2, . . . , Xn.
Given the set Ω of conditions to the decision variables and the objective function
f : S → R (also called fitness function) the goal is to determine an element s∗ ∈ S
that satisfies Ω and for which f(s∗) ≤ f(s), ∀s ∈ S takes effect. f(s∗) is called
a global optimum.

Given a fitness function f and a search space S the standard PSO initializes
a set of particles, the swarm. In a D-dimensional search space S each particle



122 T. Bogon, F. Lorig, and I.J. Timm

Pi consists of three D-dimensional vectors: its position #»x i = (xi1, xi2, . . . , xiD),
the best position the particle visited in the past #»p i = (pi1, pi2, . . . , piD) (particle
best) and a velocity #»v i = (vi1, vi2, . . . , viD). Usually the position is being initial-
ized uniformly distributed over S and the velocity is also uniformly distributed
depending on the size of S. The movement of each particle takes place in discrete
steps using an update function. In order to calculate the update of a particle we
need a supplementary vector #»g = (g1, g2, . . . , gD) (global best), the best position
of a particle in its neighbourhood. The update function, called inertia weight,
consists of two parts. The new velocity of a particle Pi is calculated for each
dimension d = 1, 2, . . . , D:

vnewid = w · vid + c1ε1d (pid − xid) + c2ε2d (gd − xid) . (1)

As a next step, the position is being updated: xnewid = xid+v
new
id . The new velocity

depends on the global best (gd), particle’s best (pid) and the old velocity (vid)
which is weighted by the inertia weight w. The parameters c1 and c2 provide
the possibility to determine how strong a particle is attracted by the global and
the particle best. The random vectors #»ε 1 and #»ε 2 are uniformly distributed over
[0, 1)D and produce the random movements of the swarm. According to Pan et
al. this extension is required to be able to use the PSO for stochastic optimization
purposes. [5]

2.2 Probability Distribution in PSO

Only in infinite time the specific scattering of numbers using the uniform distri-
bution will be notable. It is possible, that the first numbers generated using a
uniform distribution are equal to those generated by an extreme value distribu-
tion. In conjunction with the PSO update formula the computation of the next
position of a particle seems to be set randomly. In order to avoid this, Kennedy
developed the Bare Bone PSO [6], where the next position of the particle is being
computed using a Gaussian distribution and not with the introduced update-
formula. An analysis of this type of PSO shows that the Bare Bone PSO returns
adequate results but not as good as those of the original PSO [7]. Exchanging
the probability distribution leads to improved results [8]. One problem of PSO,
the oscillation around a certain point, emanates from the chosen distribution. In
[9] the exchange of the normal distribution for an dynamic probabilistic distri-
bution leads to a better result and shows that the chosen distribution is a valid
factor for the optimization process.

PSO using different random distributions is widely spread. For example the
Cauchy distribution is used in [10] and the exponential distribution has been
PSO is introduced by Krohling and dos Santos Coelho in [11]. But not only
during the optimization process different distribution types are being used. The
initialization of the starting position depends on the underlying probability dis-
tribution as well, as the random distribution is being used to specify the position.
To gain a better optimization process this initialization effect has been probed
in [12].
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These different approaches show that random distribution is an important
factor for the optimization process and that it is not trivial to choose the right
distribution for a given fitness function. In order to try out different distributions
and to analyse the chosen distribution’s impact on the swarm a tool is needed
to illustrate the scattering of the particles. With a simulator it is possible to
see how the swarm behaves and to examine whether this behaviour could lead
to a better optimization process. In the next section we will describe our ap-
proach by simulating a swarm choosing different random distributions and show
how we developed an adequate user interface for the comparison of different
distributions.

3 Concept

In this approach we aim to visualize the occurring differences by varying the
probability distribution used for the generation of the random numbers. There-
fore we intended the development of a simulation system visualizing the effect
of different probability distributions on the scattering of the particles and the
way the search space is being swept. Hereby we do not only want to simulate the
first possible steps of a particle. As well each particle’s next few steps shall be
examined to receive an impression of how the particle moves though the search
space.

The developed simulator is based on a given particle, where a certain amount
(set by the user) of possible next positions will be calculated. In order to keep the
results comparable, every repetition of the simulation-process will be executed
outgoing from the same initially given particle. By generating new random fac-
tors (ε1, ε2) for each repetition the calculated next position of the initial particle
will vary. This leads to possible positions inside the search space the particle
can reach applying a given probability distribution. By increasing the number
of repetitions, a first impression of the search space’s coverage will be given.

Using the simulation system the user can arbitrary set the initial particle’s
position as the origin of the calculated particles. The pbest and gbest position and
as it may be required the particle’s old speed vi can be set as well. This settings
are used to scatter the points. The user can choose between the two main update-
formulas (inertia weight and constriction update formula) and configure these
formulas as desired. To compare different distribution functions a SEED -value
can be set as well.

Each of the calculated particle’s movements can be traced over a number
of defined epochs. For this purpose one of the calculated possible positions is
randomly picked and will be used as an origin for the next repetition of the
simulation. The resulting sweep of the search space can be viewed in a 2d-model
illustrating the possible scatter of the particles based on the chosen probability
distribution.

In order to simulate a random fitness function as well two random points out
of the amount of possible new positions can be set as new pbest and gbest. This
is not a good fitness function but it demonstrates some variance of a very cliffy
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function. If the user decides not to reset the pbest and gbest values the underlying
fitness is a very specific function. Hereby the points pbest and gbest represent very
small local minimas surrounded by a large flat area.

In addition to our predefined common probability distributions integrated into
this simulator the user can easily add own distribution algorithms to analyse their
impact as well using a Java-interface which is being provided by the simulation
system. This enables the user to use all possible number generators for examining
their impact on PSO.

3.1 The Implementation of the Simulator

Due to its simpleness, the high spreading and its platform independence, the
programming language Java has been chosen for the implementation of the tool.

Simulating PSO Behaviour with one Particle. As the tool is meant to be
easy to use, the PSO’s preconditions have been simplified for the user by using
a point and click behaviour. The simulation is based on a single particle whose
starting position can be set by the user. Furthermore the global best position
(gbest), the personal best position (pbest) and the old speed of the particle (vi)
have to be chosen as well. For this purpose a panel is given on which the user
can freely set these positions. If no positions are set by the user a set of standard
positions2 will be used. In case specific positions shall be chosen, a coordinate
system can be placed over the panel to simplify the accurate choice. The standard
PSO-configuration for the parameter set (vi, c1 and c2) is automatically being
set in the tool, too.

Based on the given parameters a possible next position of the initial particle
will be simulated a given number of times. The calculated positions will be
displayed as coloured dots within the panel the user has set the initial state in.
As a result, a scatter plot of all calculated possible points enfolded by a rectangle
will be shown as seen in fig. 1.

All choosen settings within the visualization can be replaced with simple point
and click. The configuration of the particle (update-formula and parameter) can
be set by the user as well. With this possibilities of setting up a particle, all
PSO-behaviours can be simulated.

Simulating an Artificial Fitness Function. In order to simulate more than
one epoch of the particle’s movement, a fitness function is required for the re-
calculation of the pbest and gbest value. As the handling of the tool is meant
to be simple, we try to simulate an artificial fitness function being used for the
determination of pbest and gbest. As a first possible fitness function, the swarm
does not find a better place for gbest and pbest, the initially given pbest and gbest
will be the same the for the further calculation. An alternative fitness function

2 The standard position settings are (x/y): p = (150/20), gbest = (80/165), pbest =
(400/15), vi = (180/85).
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Fig. 1. Screenshot of the simulation system

is that pbest and/or gbest can be reset to a new position after each the termi-
nation of each epoch. By doing so, one of the new positions calculated within
the last epoch will be randomly chosen as a new gbest for the following epoch.
Analogously the particle’s pbest will be set to the latest position calculated for
each repetition.

Implementation of the Probability Distributions. The random numbers
needed within the calculation are provided by five pre-implemented common
probability distributions. These are uniform, discrete uniform, Cauchy, Laplace
and Gumbel distribution, which represent different types of density functions.
The user can choose between these functions and examine their impact on PSO.

In case the user intends to use a distribution which has not yet been im-
plemented or an own distribution, the tool as well provides the possibility to
integrate self-written Java-classes containing the distribution-algorithm. There-
fore the so-called factory method pattern [13] has been used in order to simplify
the process of creating an object of the user-included distribution-class. For that
reason the implementation of the tool’s generator-interface is required for these
classes, which enforces the existence of a getRandom()-method. In case the class
satisfies these preconditions and is added to the generatorFactory-class, the
new distribution-algorithm can be selected by the user within the tool.

In addition the distribution-classes need to provide a method for setting
a SEED -value, which is required in order to ensure the identical processing
of two or more simulation-runs for the purpose of testing and reproduction.
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Furthermore the boundaries out of which the generated numbers emerge need
to be changeable to specify the range of the resulting random numbers.

4 Evaluation

In order to conclusively evaluate the simulation system, the output based on dif-
ferent probability distributions will be analysed and compared. For this purpose
some of our provided probability distributions have been exemplarily chosen as
basis for the simulation. As the density of these distributions depends on location
and scale parameters, the standard parameters3 for each distribution have been
selected. In order to emulate a fitness function, the position of gbest has been
randomly reset to a previously generated particle after each epoch. Furthermore
all simulations have been initialized with the same particles and pre-settings4.

As seen in fig. 2, the output of the different probability distribution varies. The
distributions influence the density and the scattering of the particles. In the given
example, using the uniform distribution homogenously distributed the particles
inside the search space compared to the other distributions. By contrast the
particles influenced by Gumble and Laplace distribution are slightly focussed
on the side of the search space next to the initial particle. Applying Cauchy
distribution leads to a linear expansion of the search space, which results in an
elongated but narrow scattering of the particles.

Table 1. Surface area of the search space

distribution 1st epoch 2nd epoch 3rd epoch

uniform 106 650 386 835 661 182

Gumbel 106 594 366 300 743 562

Cauchy 105 925 399 620 1 052 580

Laplace 105 702 452 412 834 960

In order to estimate the way the different probability distributions cover the
search space, the surface area can be considered as a measurement parameter.
The spread of the space being covered during the 1st epoch of the simulation
using different distributions does not differ significantly (see table 1). However,
considering the subsequent epochs, variations regarding the surface of the covered
space can be observed. Using a uniform distribution covers results in a small, but
evenly distributed search space, whereas the other distribution’s search space is
up to 60% bigger. For a better understanding the calculation of the convex-hull
is a better measurement but not implemented yet.

3 Standard parameters: Cauchy [μ = 0, β = 0.5], Laplace [μ = 0, β = 1], Gumbel [μ
= 0.5, β = 2]

4 Initial Particles: p = (150/20), gbest = (80/165), pbest = (400/15), vi = 180/85.
Presettings: interval of the distribution = ]0,1[, seed-value = 20 130 612, number of
iterations = 20 000, number of epochs = 3, wi = 0.7968, c1 = 1.4962, c2 = 1.4962.
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(a) uniform distribution (b) Gumbel distribution

(c) Cauchy distribution (d) Laplace distribution

Fig. 2. Scattering of the results using different probability distributions

5 Discussion

In this paper we presented a simulator for random distributions in PSO. The
simulation system allows the user to define a specific configuration of one par-
ticle and to examine the scattering of this particle based on the chosen prob-
ability distribution. In order to use any possible distribution, a Java-interface
is defined to implement own distributions. The user-interface allows the user
to easily configure the epochs, PSO-settings and the amount of possible posi-
tions being simulated. As a result we compare different random distributions
and show some specific scatter plots of the possible PSO behaviour. Using the
Cauchy-distribution we got more slowing down particles compared to the uni-
form distribution, but on the other hand the uniform distribution explores a
greater part of the search space.

Finally this approach gives the chance to analyze the PSO more detailed and
visualize the behaviour of different random distributions.

As next steps a real fitness function based on the provided functions from
Bratton and Kennedy [2] should be implemented into the simulation system to
view the results of the distributions in a real environment. Another feature is to
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configure the chosen distribution in order to set new parameters for the random
number generator.
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Abstract. In this paper, a new algorithm for particle swarm optimisation (PSO) 
is proposed. In this algorithm, the particles are divided into two groups. The 
two groups have different focuses when all the particles are searching the 
problem space. The first group of particles will search the area around the best 
experience of their neighbours. The particles in the second group are influenced 
by the best experience of their neighbors and the individual best experience, 
which is the same as the standard PSO. Simulation results and comparisons 
with the standard PSO 2007 demonstrate that the proposed algorithm 
effectively enhances searching efficiency and improves the quality of searching. 

Keywords: Local search, global search, particle swarm optimisation. 

1 Introduction of PSO 

PSO is an evolutionary computation technique developed by Kennedy and Eberhart 
[1] in 1995: it is a population-based optimisation technique, inspired by the motion of 
bird’s flocking, or fish schooling. The particle swarms are social organizations whose 
overall behavior relies on some sort of communication amongst members, and 
cooperation. All members obey a set of simple rules that model the communication 
within the flock, between the flocks and the environment. Each solution is a “bird” in 
the flock and is referred to as a “particle”. PSO is not largely affected by the size and 
nonlinearity of the problem, and can converge to the optimal solution in many 
problems [2-5] where most analytical methods fail to converge. It can, therefore, be 
effectively applied to different optimisation problems.  

The standard particle swarm algorithm works by iteratively searching in a region 
and is concerned with the best previous success of each particle, the best previous 
success of the particle swarm as a whole, the current position and the velocity of each 
particle [4]. The particle searches the domain of the problem, according to 

1 1 2 2( 1) ( ) ( ( )) ( ( )),i i i i g iV t V t c R P X t c R P X tω+ = + − + −              (1) 

( 1) ( ) ( 1)i i iX t X t V t+ = + +                          (2) 

                                                           
* Corresponding author. 
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where 1 2, , n
i i i iV v v v =    is the velocity of particle i ; 1 2, , n

i i i iX x x x =    

represents the position of particle i ; iP  represents the best previous position of 

particle i  (indicating the best discoveries or previous experience of particle i ); gP  

represents the best previous position among all particles (indicating the best discovery 
or previous experience of the social swarm); ω  is the inertia weight that controls the 
impact of the previous velocity of the particle on its current velocity and is sometimes 
adaptive. 1R  and 2R  are two random weights whose components 1

jr and 2
jr  

( 1,2 , , )j n=   are chosen uniformly within the interval [0,1]  which might not 

guarantee the convergence of the particle trajectory; 1c  and 2c  are the positive 

constant parameters. Generally the value of each component in iV  should be clamped 

to the range max max[ , ]v v−  to control excessive roaming of particles outside the search 

space.  
Among these parameters, the inertia weight ω plays an important role and affects 

the global and local search ability of PSOs.  If the value of ω  is too big, the global 
search ability of PSO will be improved, but its local search ability will not be 
adequate. Otherwise, if the value of ω is small, the global search ability will decrease 
and the particles easily fall in premature. Some parameters of adaptive PSOs has been 
proposed but these usually change the inertia weight: ω  is large at the beginning of 
the search procedure and ω  decreases as time increased [7, 13]. However, there is a 
similar problem with the fixed inertia weight method: 1) at the beginning, the local 
search ability is not effective as ω  is big; while 2) the global search ability is not 
satisfactory at the end of the search procedure as ω  becomes small. To balance the 
local search and global search ability at the same time, a new particle swarm 
optimisation algorithm is proposed which can perform the local and global search es 
simultaneously.  

In the proposed algorithm, the particles are divided into two groups. The velocity 
of the first group of particles is only influenced by the best experience of its 
neighbors. And the velocity of the second group is influenced by both the best 
experience of its neighbors and its own best experience. The rest of this paper is 
arranged as follows: In Section 2, the proposed algorithm is described.  Section 3 
describes the problems used to evaluate the new algorithm and the results are 
obtained. Finally, the concluding remarks appear in Section 4. 

2 Local and Global Search Based PSO Algorithm 

Referring to equation (1), the right side consists of three parts: the first is the previous 
velocity of the particle; the second and third are those parts contributing to the change 
in the velocity of a particle. As explained in [7], without these two parts, the particles 
will keep on flying at the current speed in the same direction until they hit the 
boundary. PSO will not find an acceptable solution unless there are acceptable 
solutions on their flying trajectories. But this is a rare case. On the other hand, 
referring to equation (1) without the first part, the flying particles’ velocities are only 
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determined by their current positions and their best positions in its history. At the 
same time, each other particle will be flying toward its weighted centroid of its own 
best position and the global best position of the population [8]. Some authors have 
suggested adjustments to the parameters of the PSO algorithm: adding a random 
component to the inertia weight [9, 10], using a secondary PSO to find the optimal 
parameters of a primary PSO [11], and adaptive critics [12]. From our literature study 
and simulation experience, the optimum is often found near the global best experience 
in various optimisation problems. To help the particles to enhance searching the 
region around the global best experience, the first group particles are separated from 
the whole set of particles to search the area around the global best experience. Then 
equations (1) and (2) will be altered to 

1 1 2 2( 1) 0.5 ( ) ( ( )) ( ( )),i i g i g iV t V t c R P X t c R P X tω+ = × × + − + −            (3) 

( 1) ( ) ( 1).i i iX t X t V t+ = + +                       (4) 

As can be seen from equation (3), the particles will focus on searching the area 
around the best experience among their neighbors. 

The particles in the second group will continue to the search the global experience 
of the swarm and its own best experience according to equations (1) and (2), which 
are the same as the standard PSO. 

The following procedure can be used for implementing the proposed particle 
swarm algorithm: 

1) Initialize the swarm, assign a random position in the problem hyperspace to each 
particle and calculate the fitness function which is yielded by the optimisation 
problem whose variables are corresponding to the elements of particle position 
coordinates.  

2) The particles in the first group search the area according to equations (3) and 
(4). Meanwhile, those in the second group search the area according to equations (1) 
and (2). 

3) Evaluate the fitness function for each particle. 
4) For each individual particle, compare the particle's fitness value with its 

previous best fitness value. For each individual particle, compare the particle's fitness 
value with its previous best fitness value. If the current value Xi is better than the 
previous best value iP , then set iP  as iX . 

5) Repeat steps 2) - 4) until the criterion for stopping is met (e.g., maximum 
number of iterations or a sufficiently good fitness value). 

3 Numerical Simulation 

To demonstrate the efficiency of the proposed technique, six well-known benchmarks 
are used to compare the proposed method and the standard PSO 2007 (Matlab version 
compiled in 2011) [14]. These six optimisation problems were used as shown in  
Table 1. Their parameters are given in Table 2. These six are famous test functions for  
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minimization methods; each of them has several local minima. In the numerical 
simulation of the proposed LGPSO method and standard PSO, the particle swarm 

population size is set floor(10 2 D+ ). Here D is the dimension of  the optimisation 
problems and the function floor(A) rounds the elements of float number A to the 
nearest integers less than or equal to A. The rest of the parameters are as follows: 

inertia weight 
1

0.7213
(2 log 2)

ω = ≈ , learning rates 1 2 0.5 log 2c c= = + , and 

velocity Vmax set to the dynamic range of the particle in each dimension.  
The topology of LGPSO is the same as the standard PSO 2007 (SPSO 2011) [14].  
It should be noted that the initial variables are set random float numbers in the range 
[0, 1] to check the effect of big search range. The maximum number of function 
evaluations is 2000 for these two methods with 100 independent runs. The 
optimisation statistical analysis of these two algorithms is reported in Table 3.  
The evolutionary curves of LGPSO and the standard PSO 2007 are depicted in 
Figures 1-6. 
 

Table 1. Functions used to test the effects of the LGPSO method 

Problem Objective functions  

Rosenbrock 2 2
1

1

( ) (100( )) ( 1) )
D

i i i
i

f x x x x+
=

= − + −   

 
Ackley 

 

2

1 1

1 1 1
cos(2 )

5
( ) 20 20

D D

i i
i i

x x
D D

f x e e e
π

= =

− − 
= + − −   
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1
1

( 100)1
( ) ( 100) cos( ) 1
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D
D i

i i
i

x
f x x
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−
= − − + ∏  
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2 2

1 1

( ) cos(2 ) 0.1 1
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Table 2. Functions parameters for the test problems 

Problem Dimension Search range  Initial range 

Rosenbrock 30 500±        [0, 1] 

Ackley 30 500±        [0, 1] 

Griewank 30 500±        [0, 1] 

Salomon 30 500±        [0, 1] 

Rotated-hyper-ellipsoid 
Quartic function 

30 
30 

500±        [0, 1] 
500±        [0, 1] 

Alpine 
Levy 

30 
30 

500±        [0, 1] 
500±        [0, 1] 

 

Table 3. Comparison between standard PSO 2007 and LGPSO 

Problem Method best Mean 

 

Std.dev Worst 

Rosenbrock Standard 

PSO 2007 

122.3422 222.7063 31.1602 343.6297 

Rosenbrock LGPSO 122.0898 183.5776 24.3594 261.8783 

Ackley Standard 

PSO 2007 

1.8158 2.3669 0.2861 3.0259 

Ackley LGPSO 1.2924 2.0563 0.3337 2.9711 

Griewank Standard 

PSO 2007 

0.0411 0.0788 0.0226 0.1827 

Griewank LGPSO 0.0247 0.0584 0.0172 0.1110 

Salomon Standard 

PSO 2007 

0.2999 0.2999 1.0235e-004 0.3005 

Salomon LGPSO 0.2999 0.2999 6.9229e-006 0.2999 

Rotated hyper-ellipsoid Standard 

PSO 2007 

38.1115 144.2199 67.4747 432.1835 

Rotated hyper-ellipsoid LGPSO 12.1226 48.0499 30.0913 143.8851 

Quartic function Standard 

PSO 2007 

1.8093 5.8692 2.5883 15.6572 

Quartic function LGPSO 1.3892 3.7318 1.5546 8.2722 

Alpine function Standard 

PSO 2007 

0.9011 1.9667 0.6130 4.0312 

Alpine function LGPSO 0.4702 1.4589 0.5381 3.5732 

Levy function Standard 

PSO 2007 

0.4363 0.7213 0.1312 1.1353 

Levy function LGPSO 0.2605 0.5791 0.1267 0.8630 
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As can be seen from Table 3, for the test functions, the best, mean, standard 
deviation and worst results obtained by the LGPSO are better than the results gained 
from the standard PSO 2007. The optimization performance of the proposed method 
is also more stable than the standard PSO 2007 according to the statistical analysis of 
mean and standard deviation. From Figures 1-8, the optimisation performance is 
better when the procedure begins, as the local search is added into the algorithms. The 
simulation results obtained by the LGPSO are better than the results from the standard 
PSO 2007, which means the final solutions obtained from the LGPSO are more 
closely focused on the best solution than those from the standard PSO 2007. 

4 Conclusion 

In this paper, a local and global search based particle swarm optimisation (LGPSO) 
method was proposed to improve the optimisation performance of the PSO. In this 
new model, the first group of particles focused on the search around the global best 
experience while the second group particles are influenced by both the best 
experience of their group and their own best experience. The simulations showed that 
the proposed method can achieve good optimisation performance no matter whether 
at the beginning or at the end of the search period. Moreover, the complexity of  
the proposed algorithm is not increased over that of the Standard PSO 2007 while the 
performance of the proposed FCPSO is more stable and more accurate than the 
Standard PSO 2007.  
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Abstract. To avoid the bored try and error method of finding a set of 
parameters of Particle Swarm Optimization (PSO) and achieve good 
optimization performance, it is desired to get an adaptive optimization method 
to search a good set of parameters. A nested optimization method is proposed in 
this paper and it can be used to search the tuned parameters such as inertia 
weight ω, acceleration coefficients c1 and c2, and so on. This method considers 
the cask theory to achieve a better optimization performance.  Several famous 
benchmarks were used to validate the proposed method and the simulation 
results showed the efficiency of the proposed method. 

Keywords: PSO, Parameter Optimization, Try and Error method, Nested 
Optimization method, Cask theory. 

1 Introduction 

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart [1]. 
This algorithm is inspired by the social behavior of a flock of migrating birds trying to 
reach an unknown destination. All members obey a set of simple rules that model the 
communication within the flock, between the flocks and the environment. Each 
solution is a “bird” in the flock and is referred to as a “particle”. PSO has attracted a 
lot of attention as it makes few or no assumptions about the problem being optimized 
and can search very large spaces of candidate solutions [2, 4-7]. The formula of PSO 
is realized by two update functions: 

1 1 2 2( 1) ( ) ( ( )) ( ( )),i i i i g iV t V t c R P X t c R P X tω+ = + − + −              (1) 

( 1) ( ) ( 1).i i iX t X t V t+ = + +                           (2) 

Here 1 2, , n
i i i iV v v v =    is the velocity of particle i ; 1 2, , n

i i i iX x x x =    represents 

the position of particle i ; iP  represents the best previous position of particle i  

                                                           
* Corresponding author. 
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(indicating the best discoveries or previous experience of particle i ); gP  represents 

the best previous position among all particles (indicating the best discovery or previous 
experience of the social swarm); ω  is the inertia weight that controls the impact of the 
previous velocity of the particle on its current velocity and is sometimes adaptive. 1R  

and 2R  are two random weights whose components 1
jr and 2

jr  ( 1,2 , , )j n=   are 

chosen uniformly within the interval [0,1]  which might not guarantee the convergence 

of the particle trajectory; 1c  and 2c  are the positive constant parameters. Generally 

the value of each component in iV  should be clamped to the range max max[ , ]v v−  to 

control excessive roaming of particles outside the search space.  
The generalized procedure of applying standard PSO 2011 (SPSO 2011) [8] is 

1) Initialize the swarm and assign a random position in the problem hyperspace to 
each particle and calculate the fitness function which is given by the optimization 
problem whose variables are corresponding to the elements of particle position 
coordinates; and set the topology of the whole particles. 

2) The particles search the area according to equations (1) and (2); check the 
velocity and position of particles to find whether they violate the boundaries. 

3) Evaluate the fitness function for each particle. 
4) For each individual particle, compare the particle's fitness value with its       

previous best fitness value. For each individual particle, compare the particle's fitness 
value with its previous best fitness value. If the current value Xi is better than the 
previous best value iP , then set iP  as iX . 

5) Change the topology if the optimization performance is not improved in a 
certain number of iterations. 

6) Repeat steps 2)-5) until a stopping criterion is met (e.g., maximum number of 
iterations or a sufficiently good fitness value). 

As can be seen from (1) and (2), there are several parameters which should be 
determined before PSO was applied. Similar as most of the evolutionary optimization 
algorithms, the parameters of PSO need to be chosen carefully to achieve good 
optimization performance. The parameters are often chosen based try and error 
method as different optimization problems have different characteristics and the 
parameters should not be same to achieve good optimization results. Hence, it is 
desired to find a suitable set of parameters of PSO without using the bored try and 
error method. For the evolutionary optimization algorithms, there are some methods 
optimizing the parameters of the optimization algorithms which are called meta-
optimization. Meta-optimization is reported to have been used as early as in the late 
1970s by Mercer and Sampson for finding optimal parameter settings of a genetic 
algorithm [9]. There are some meta-optimizations [10], [11], [12]. For different meta-
optimizations, there are different performance indexes.  

In this paper, an automatic parameters searching method is proposed based on the 
particle swarm optimization algorithm and the cask theory. The rest of this paper is 
arranged as follows: Section 2 presents the proposed algorithm with details. 
Simulations and comparison are given in Section 3. Finally, the concluding remarks 
appear in Section 4. 
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2 Cask Theory Based Parameter Optimization 

As the optimization performance depends on the optimization problems, the 
parameters of optimization algorithms should also depend on the optimization 
problems, which means different optimization problems should have different sets of 
parameters of optimization algorithms. As the optimization algorithms can find 
optimal or sub-optimal solution for the optimization problems, the optimization 
algorithms can also be used to find the optimal or sub-optimal parameters for PSO. 
Similar as the optimization procedure, the objective function or criteria related to the 
parameters of PSO must be defined firstly. There is an important theory is cask theory 
or barrel theory in Management Science [3]. The cask theory describes that the 
cubage of a cask is dependent on the shortest wood plate as shown in Fig. 1.  This 
method takes the worst case as the performance criteria and it is possible to make the 
optimization performance not worse than the achieved one. 
 

 

Fig. 1. Cask theory (www.baike.com) 

The parameter optimization procedure is same with the standard one as mentioned 
in Section 1. The core of the parameter optimization is defining the objective function 
or criteria. The followings are the factors, which should be considered, when design 
the objective function for PSO parameter optimization: 

 
1) Important parameters of PSO should be chosen and they will be the inputs of 

the objective function.  
2) The optimization problem should be considered as the implicit objective as 

the parameters are used to achieve good optimization performance for the 
optimization problem.   

3) The optimization performance should be stable when the obtained parameters 
are implemented. 

4) The output of the objective function should follow cask theory to guarantee 
the worst optimization performance is not too bad. 
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Here, without loss of generality, the algorithm of the SPSO 2011 [8] is chosen as 
the optimization algorithm whose parameters (inertia weight ω, and acceleration 
coefficients c1 and c2) will be optimized and the SPSO 2011 with fixed parameter is 
used to optimize these parameters. Hence, for 1) the inputs of the objective function 
are the inertia weight ω, the acceleration coefficients c1 and c2. For 2), the 
optimization problem will be the target of the SPSO 2011 with variant parameters 
(VSPSO 2011). For 3) and 4), the optimization problem should be optimized several 
runs by VSPSO to make sure the results are not stochastic; and the worst fitness value 
is chosen as the output of the objective function which follows the  cask theory. 

After the set of parameters are obtained, the normal procedure of PSO will be used 
to optimize the optimization problems. 

3 Numerical Simulation 

To demonstrate the efficiency of the proposed technique, eight well-known 
benchmarks are used to compare the proposed method and the standard PSO 2011 
(Matlab version) [8]. The eight optimization problems were used as shown in Table 1. 
The parameters of these optimization problems are given in Table 2. These eight 
optimization problems are famous test functions for minimization methods and each 
of them has high dimension and several local minima. In the numerical simulation of 
SPSO 2011 with fixed parameters, the particle swarm population size is set floor(10 + 
2 D ). Here D is the dimension of  the optimization problems and  function floor(A) 
rounds the elements of float number A to the nearest integers less than or equal to A. 

The rest of the parameters are as follows: inertia weight 
1

0.7213
(2 log 2)

ω = ≈ , 

learning rates 1 2 0.5 log 2c c= = + , and velocity Vmax set to the dynamic range of 

the particle in each dimension. For VSPSO 2011, the inertia weight ω, the 
acceleration coefficients c1 and c2 are the parameters to be optimized and all the initial 
ranges of ω, c1 and c2 are [0.2, 3]. To reduce the run time, the maximum number of 
function evaluations is 500 with 10 independent runs. The maximum number of 
function evaluations is 500 for these VSPSO 2011 using the parameters obtained and 
SPSO 2011 with 100 independent runs.  

The optimized parameters were given in Table 3. The optimization statistical 
analysis of proposed method and SPSO 2011 with fixed parameters was given in 
Table 4. As can be seen from Table 3, the parameters are totally different from the 
fixed parameters of SPSO 2011 and there are no rules to follow as the optimization 
problems are totally different. As can be seen from the Table 4, the optimization 
performance of VSPSO 2011 is more stable and it can guarantee the worst results are 
not worse than the worst results of SPSO 2011 as the proposed parameter 
optimization method is cask theory based parameter optimization method. 
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Table 1. Functions used to test the effects of the LGPSO method 
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Table 2. Functions parameters for the test problems 

Functions Dimension Initial range 
Sphere 30 500±  

Rastrigin 30 500±  

Step 30 500±  

Rosenbrock 30 500±  

Ackley  30 500±  

Griewank 30 500±  

Salomon  30 500±  

Rotated hyper-ellipsoid 30 500±  

Table 3. Optimized parameters for the test problems 

Functions Inertia weight ω, 
and  

Acceleration 
coefficient c1 

Acceleration 
coefficient c2 

Sphere 0.5728     0.6336     0.8422 
Rastrigin 0.5908     0.6726     0.9059 
Step 0.6539     0.5442     0.6911 
Rosenbrock 0.6392     1.2737     0.5954 
Ackley  3.0000     3.0000     2.9441 

Griewank 0.5901     0.9769     0.7857 
Salomon  0.5424     0.3778     0.5264 
Rotated hyper-ellipsoid 0.5360     0.8172     0.6147 
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Table 4. Comparison between standard PSO 2011 and VSPSO 2011 

Problem Method best Mean 
 

Std.dev Worst  

Sphere Standard  PSO 
 2011 

1.0482e+0
05 

2.2438e+0
05 

5.6333e+00
4 

4.1521e+0
05 

Sphere VSPSO 2011 2.4199e+0
04 

7.0329e+0
04 

2.1287e+00
4 

1.2790e+0
05 

Rastrigin Standard  PSO 
 2011 

1.1813e+0
05 

2.2891e+0
05 

4.7518e+00
4 

3.5182e+0
05 

Rastrigin VSPSO 2011 3.1282e+0
04 

7.6292e+0
04 

2.2688e+00
4 

1.3040e+0
05 

Step Standard  PSO 
 2011 

114834 2.1631e+0
05 

4.3216e+00
4 

345796 

Step VSPSO 2011 27158 7.2645e+0
04 

2.2680e+00
4 

151432 

Rosenbr
ock  

Standard  PSO 
 2011 

9.3528e+0
10 

4.8421e+0
11 

2.1182e+01
1 

1.2005e+0
12 

Rosenbr
ock  

VSPSO 2011 4.8036e+0
09 

3.5983e+0
10 

2.4238e+01
0 

1.4794e+0
11 

Ackley  
 

Standard  PSO 
 2011 

20 20.2424 0.1278 20.5651 

Ackley  VSPSO 2011 20 20 0 20 

Griewan
k 

Standard  PSO 
 2011 

27.3732 57.4863 11.4453 90.7654 

Griewan
k 

VSPSO 2011 7.7910 16.8858 4.8584 35.0051 

Salomon 
 

Standard  PSO 
 2011 

37.5720 47.5551 4.7485 59.1266 

Salomon 
 

VSPSO 2011 17.2006 29.1404 4.0430 37.6110 

Rotated 
hyper-
ellipsoid 

Standard  PSO 
 2011 

4.5205e+0
05 

7.6140e+0
05 

1.7838e+00
5 

1.2665e+0
06 

Rotated 
hyper-
ellipsoid 

VSPSO 2011 6.8559e+0
04 

1.4094e+0
05 

4.2328e+00
4 

2.7582e+0
05 

4 Conclusion 

In this paper, a cask theory based parameter optimization based particle swarm 
optimization was proposed to find a good set of parameter of. This method can find 
sets of optimized parameters and using the obtained parameters can achieve better 
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optimization performance than the standard set of parameters. No prior experience is 
needed for this method. The simulations showed that the proposed method can 
achieve good optimization performance comparing with the SPSO 2011. Moreover, 
the simulations show that it can make sure the worst results are not worse than the 
worst results of SPSO 2011 as this is cask theory based parameter optimization 
method. This method can also be used to find the parameters of other optimization 
algorithms. 
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Abstract. A piecewise linearization method of significant wave height is 
proposed based on particle swarm optimization. Piecewise linearization model 
is used to approximate significant wave height inversion model, minimum 
radius of neighborhood is used to eliminate wild value in the sample data and 
sparse the data, and then the particle swarm optimization algorithm is applied 
for piecewise area division and parameter optimization of the model. 
Simulation result shows that compared with traditional inversion method, better 
practicability and the higher significant wave height inversion precision are 
obtained  by the proposed method. 

Keywords: particle swarm optimization, significant wave height, piecewise 
linearization, X-band radar. 

1 Introduction 

Ocean wave is the closest sea phenomenon related to human beings. Wave height, 
wave direction, and other factors of wave play an important role in shipping and 
harbor as well as the security of marine oil platform. The sea clutter image obtained 
by marine X-band navigation radar echo forming contains rich ocean wave 
information, so radar’s echo intensity can be used for the inversion of ocean wave 
spectrum and ocean wave parameter. In 1985, an ocean wave information extraction 
method was first proposed based on the sea clutter radar image sequence by Young 
[1]. As soon as this method was discovered, it attracted people’s enormous interest. In 
the following 10 years, Zimer, Rosenthal, Günther and colleagues [2]-[6] have also 
focused on ocean waves information inversion based on X-band navigation radar. The 
ocean wave information extraction method currently has become a hot research topic 
in the area of ocean dynamical environment monitoring. 

The significant wave height is one kind of the ocean wave information. Because of 
the nonlinearity ocean waves imaging mechanism, when the ocean wave parameters 
are inverted with X-band radar image, only the relative value of ocean wave spectrum 
energy can be obtained. In 1982, method of synthetic aperture radar (SAR) estimating 
the significant wave height was proposed by Alpers and Hasselmann [7]. In 1994, this 
method was extended to X-band navigation radar image by Ziemer and Günther to 
calculate the significant wave height. This method assumed significant wave height 
had a linear relationship with the square root of the radar image signal-to-noise (SNR) 
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ratio and the significant wave height can be calculated by the linear model. But in 
reality, due to different computational methods of SNR, differences between radar 
systems, variable marine environments and other factors, significant wave height 
doesn’t exactly have a linear relationship with the square root of radar image SNR. 
Regarding this problem, in 2009, H.M. Duan and J. Wang [8] divided the significant 
wave height into two regions of the low wave height and the high wave height, each 
region uses the standard inversion method to obtain A and B respectively. In 2011, 
L.Q. Liu et al [9] proposed a significant wave height inversion method based on radial 
basis function neural network. These methods have improved inversion precision of 
significant wave height, but there still exist some problems. In these methods, the 
significant wave height is divided into two regions by manually selecting a piecewise 
point, which can’t ensure the optimal solution. The model constructed by radial basis 
function neural network is relatively complicated, which takes long computing time 
and is infeasible for practical engineering. In view of this, a piecewise linearization 
method of significant wave height based on particle swarm optimization is proposed 
in this paper, in which the piecewise area is automatically divided and it is suitable for 
practical engineering. 

2 Problem Description 

The piecewise linearization model of significant wave height is shown in Fig. 1. 

 

Fig. 1. Piecewise linearization model 

Assume significant wave height has a piecewise linearization relationship with the 
square root of radar image SNR in this model. For any region Li (i=1,2,…,m), its 
model is given in equation (1). 

i i iL L LH A B SNR= + ⋅  . (1)

where HLi is the significant wave height, ALi and BLi are the undetermined coefficients, 
SNR is the radar image signal-to-noise ratio. 

The piecewise linearization model needs to meet the flowing three heuristic 
requirements. 
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1. The intersection point of any line segment Li (i=1,2,…,m) is required to be in the 
region of the sample data. 

2. The slope of any line segment Li (i=1,2,…,m) is a positive value, and increases as i 
increases. 

3. For any line segment Li (i=1,2,…,m), its intersection point on y-axis decreases as i 
increases. 

3 Data Preprocessing 

3.1 Wild Value Elimination 

The aim of the wild value elimination is to find out and abandon the abnormal point 
in the sample data sets. Each sample data have two values, which are the significant 
wave height and the square root of SNR. Firstly, definition is given as follows: 
 
Definition 1. Minimum Neighborhood Radius 
 
For any sample data point i (i=1,2,…,N), there exists a radius r, with the 
neighborhood points are distributed on the circle centered at point i and with the 
radius r. Radius r is represented as the minimum neighborhood radius of point i. In 
reality, radius r is calculated by the length between point i and its nearest 
neighborhood point j (j≠i). 

The concentration of the sample data is reflected through the minimum radius of 
neighborhood. The smaller the radius r is, the higher concentration the data near the 
point i  is. If the minimum neighborhood radius of point i is significantly greater than 
other sample data, point i is regarded as a wild value. According to the analysis 
above, a method of wild value elimination based on the minimum neighborhood 
radius is proposed in this paper, the process of which is given as follows. 

Step 1. Calculate the minimum neighborhood radius value for each sample data. 
Step 2. Rearrange the sample data points from small to large according to the 

minimum neighborhood radius value. 
Step 3. Search the jump points of the minimum neighborhood radius value from 

the minimum point to the maximum point. 
Step 4. Set the jump point’s minimum neighborhood radius value R as the 

threshold, and the sample data with the minimum neighborhood radius value greater 
than  R are eliminated as wild value. 

3.2 Data Sparseness 

The inversion model of significant wave height is mainly affected by the dense region 
of sample data. However, the sample data acquired by test is not uniform distributed 
in reality. If the sample data is directly used in the inversion model, it will lead to 
inaccurate modeling. In view of this problem, the sample data is sparse before 
modeling the significant wave height. The process is given as follows. 
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Step 1. Determine the minimum neighborhood radius R0 as the threshold of the 
data sparseness. 

Step 2. Draw a circle which the center is the any point in the sample data and the 
radius is R0. The points in the circle are eliminated, and then the center point is saved 
in the sparse data set. 

Step 3. Judge whether there are any points in the sample data, if not, terminate the 
sparse process, otherwise return to step 2. 
 
Assume the range of minimum neighborhood radius is [Rmin, Rmax] after eliminating 
the wild value in the sample data, then we have min 0 maxR R R≤ ≤ . The range of 

minimum neighborhood radius is [R0, Rmax] after data sparse. If R0 = Rmax, the 
intensive degree of the data set is basically identical. 

4 Modeling Method Design 

4.1 Particle Encoding 

Piecewise linearization model is used to approximate the significant wave height 
inversion model, which is shown in Fig. 1. Each line is given in equation (1), and the 
particle in PSO is encoded as equation (2). 

, , , ,{ , }t t t
i i j A i j BX x x=  . (2)

where 1,2, ,i n=   represents n  particles; 1,2, ,j m=   represents the number of 

piecewise in the model; A is the intercept parameter; B is the slope parameter; t is the 
iteration number of the PSO. 

4.2 Initialize Settings 

According to the sample data distribution, it can be found that slope of Li in the 
piecewise linearization model increase as square root of SNR increase. In order to 
improve the algorithm’s modeling speed, the position 0

iX  and velocity 0
iV of 

particle i are initialized by equation (3) and equation (4) respectively. 

0 max min
, , max

0

0 max min
, , min

( 1) ( )

( 1) ( )

i j A

i

i j B

rand j A A
x A

mX
rand j B B

x B
m

+ − ⋅ − = −=  + − ⋅ − = +


 . (3)

0
, , max0
0
, , max

i j A
i

i j B

v rand v
V

v rand v

 = ⋅=  = ⋅  . (4)

where rand is a random number in [0, 1]; Amax and Amin represent the maximum 
intercept and the minimum intercept respectively, and maxmin( ) max( )Hs A Hs≤ ≤ , 
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Hs is the real values of significant wave height; Bmax and Bmin represent the maximum 
and the minimum value of slope respectively, and min max0 B B≤ ≤ ; max 0v >  is the 

particle’s maximum velocity. 

4.3 Fitness Function 

The fitness of swarm particles is computed and evaluated. The particle is improved 
when the present fitness value is smaller than the last fitness value. The fitness 
function is shown in equation (5). 

( )( )2

, , , ,
1 1

( )
jNm

t t t
i i j A i j B jk jk

j k

F X x x SNR Hs Pδ
= =

= + ⋅ − + ⋅  . (5)

where jN is the amount of data, which belong to the j-th line region in the sample 

data; jkSNR  and jkHs  represent the square root of signal-to-noise ratio and the 

real values of significant wave height respectively; δ is the penalty coefficient; P is 
the penalty value. 

The penalty value P is calculated by equation (6), which account for the heuristic 
requirements that are given in section 2. 

1 2 3P p p p= + +  . (6)

where p1, p2, and p3 represents the violation degree of heuristic requirements, which is 
evaluated through the violation number. 

5 Simulation and Analysis 

The proposed modeling method is performed with Matlab environment and basic 
PSO. Simulation is performed with the data acquired from the experiment in Fujian 
Pingtan on October, 2009. SNR of the radar image is obtained by calculating the radar 
image acquired and real values of significant wave height is set as the values obtained 
by WamosII in the experiment. 

5.1 Data Preprocessing 

There are 1386 groups of available SNRs of radar image and significant wave heights 
from WamosII. The relationship between real values of significant wave height and 
the square root of SNR is shown in Fig. 2(a). According to values of minimum 
neighborhood radius, the sample data points are rearranged from small to large. The 
relationship is shown in Fig. 2(b). 

The threshold of minimum neighborhood radius is set according to section 3.1, and 
the wild value is eliminated while the threshold  from Fig. 2(b). Then set 

 and spare the sample data. The wild value elimination result and 

the data sparseness result are shown in Fig. 3(a) and Fig. 3(b) respectively. 
 

0.1225R =
0 max 0.1225R R= =
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(a) The original sample data.                  (b) The rearranged sample data. 

Fig. 2. Relation diagram of the sample data 
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(a) Result of eliminate the wild value.             (b) Result of sparse the sample data. 

Fig. 3. Result of the data preprocessing 

5.2 Simulation Modeling 

In order to compare the efficiency of the proposed inversion method with the 
traditional inversion method, simulation experiment is performed under the 
preprocessed data. The parameters used in the experiments are shown in Table 1. 

Table 1. Parameters in experiments 

Parameter Value
N 100 

1c  1.4962 

2c  1.4962 

minω  0.4 

maxω  0.9 

maxv  3 

minA  1.5 

maxA  -1.5 

minB  0 

maxB  3 
δ  100 
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       (a) Inverted by the traditional method.       (b) Inverted by the proposed method. 

Fig. 4. Relation diagram of the significant wave height 

 

(a) Result of the traditional method.          (b) Result of the proposed method. 

Fig. 5. Regression chart of the wave height 

The significant wave height inverted by the traditional method and the proposed 
method are shown in Fig. 4(a) and Fig. 4(b) respectively. Regression charts between 
the inversion wave height and the real wave height of both the traditional method and 
the proposed method are shown in Fig. 5(a) and Fig. 5(b). 

From the simulation results, we can see that the significant wave height is 
represented as three piecewise linearization regions. Compared with the traditional 
method, stronger consistency between the inverted wave height and the real wave 
height can be obtained by the proposed method. 

Inversion precisions of the two methods are evaluated by standard deviation and 
correlation coefficient. Calculation results are shown in Table 2. 

Table 2. Performance comparison result 

Inversion method Standard deviation Correlation coefficient 
The tradition 0.2196 0.8490
This article 0.1777 0.8544
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From the comparison of standard deviation and the correlation coefficient, we can 
see that smaller standard deviation and larger correlation coefficient can be obtained 
in this paper. 

6 Conclusions 

For the inversion method of significant wave height, a piecewise linearization method 
of significant wave height based on PSO is proposed. The concept of minimum 
neighborhood radius is proposed, and then the method of wild value elimination and 
data sparseness is given. Piecewise area division and parameter optimization of the 
model based on PSO are designed. Simulation performed and the results show that a 
better adaption and higher inversion precision are obtained in this paper. 
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Abstract. In this work the Particle Swarm Optimization (PSO) is utilized to 
framing the optimal parameters of Fuzzy Logic Controller FLC, this parameter 
is (centers and width) of triangle membership functions, the proposed method 
can design a robust controller to govern the speed of wind turbine WT, 
adjusting pitch angle of blade can regulate the output power of WT at a wide 
range of wind speed, the mean objective of  this work is to make the operation 
of WT works as like as traditional motivator used in power system. By 
SIMULINK-MATLAB we implement the complete mathematical model of the 
system. The simulation results demonstrate that the Optimized Fuzzy Logic 
Control (OFLC) gets a better parameters of fuzzy sets using PSO, and realizes a 
good dynamic behavior compared with conventional FLC.  

Keywords: Particle Swarm Optimization PSO, Fuzzy Logic Control FLC, 
Pitch Angle of Wind Turbine PAWT. 

1 Introduction 

Nowadays, there are widely adopted on bulky wind energy systems in power system, 
but its stochastic generation is a big problem. Pitch-controlled system is normally 
used in a large wind turbine to adjust blades in the rotor hub. It tends to decrease the 
angle attack causing a reduction in the pressure difference between (front and back) 
around the blade, that leads to lifting force of the blade is reduced too, vice versa, 
Figure(1) shows the cross section area of wind turbine blade aerodynamics and angle 
of attack. This system provides mechanical power of the turbine operating tightly 
controlled. Therefore, a controllable power generation can obtain during normal 
operation (rated wind speed). Adjustable-pitch drive system consisted of two parts: 
first (mechanism actuators) which is achieved either by an electric device (servo-
motor) or hydraulic equipment; second using (regulation drive controller) to regulate 
the pitch angle of a rotor blade, fundamentally its control strategies have a tendency to 
solve the nonlinearity, time variation, randomness and uncertainties, fuzzy logic 
controller FLC is a powerful techniques in control applications of the complex system 
[1]. Recent year there are many solutions devoted to design evolutions of 
aerodynamic control; (variable-speed adjustable-pitch) is used in variety wind 
velocity to raise the output power. An adaptive sliding mode control is combined with 
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neural network in a high wind velocity condition proposed in [2], and adaptive Fuzzy 
Sliding-mode control in variable speed in [3], the validation of H∞ control adjustable-
pitch at a rated value was studied in [4], and a self-tuning fuzzy-PID position 
controller in [5], and an Elman Neural Network based control algorithm [6], certainly 
a few can used in practical industrial applications. In this paper the FLC is proposed 
to solve a highly nonlinear system. This controller suffers from the tuning of its 
parameters (number of membership functions and its type, rule number, and 
formulating rules). The tuning of scaling factors for this parameter is done either by 
interactively method (trial and error) or by human expert [7]. Therefore, the tunings of 
the FLC parameters are necessitated need to effective tuning process preferable 
similar to new intelligent optimization techniques, such as Genetic Algorithms (GA), 
Ant Colony Optimization (ACO), Simulated Annealing (SA), and Bacteria Foraging 
Optimization (BFO). But a well-studied and has a proven optimizer in a high potential 
and global optimization is Particle Swarm Optimization (PSO) algorithm [8], In this 
paper the generating of fuzzy controller parameters is designed by a modern 
intelligent algorithm PSO.  
 

Lift 
force

Wind
flow

pitch-angle “α” 

Cord line

pitch-angle “α” 

Wind
flow

Lift forceCord line

Power
Turbine

 

Fig. 1. Wind turbine blade aerodynamics Lift Force “FL” and the pitch-angle “α” and power 
turbine 

2 Turbine Mechanism Model  

A mechanical wind turbine aerodynamic formulated on “Betz theory”, the wind 
power received from air (PT) and pneumatic torque turbine ( ) are prearranged by 
equations (1, 2) respectively.  PT ρ2 . v . AT . C λ, α  (1)

2. . . . ,  (2)

Where  is the air density,  is the wind velocity,  is the rotor disk area of blade 
rotation and  is a turbine characteristic, “α” is the pitch-angle on pitch-angle which 
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illustrated in figure 1, ratio λ between the blade-point speed ѡ and the wind velocity 
represented in equation (3) [9], where: K is the relationship between blade tip  
speed and turbine rotor speed. There are many expressions for  equation (4) one of 
them [7]. 

 (3)

, 1 1  (4)

The values of C1 to C10 usually depend on turbine manufacturing. In this work we 
take the expression of  C λ, α  enthusiastically as a nonlinear function. , 0.22 116 0.4 5  (5)

1 10.08 0.0351  (6)

 

 

Fig. 2. Torque coefficient characteristics 

The power coefficient C , is a highly non-linear function of the tip speed ratio λ and 
blade-pitch angle as shown in Figure (2) and equation (5), the large wind turbine 
depends on adjusting blade angle to maintain the rotational speed of the wind turbine; 
and output power will be around its rated value. Equation (7) is the dynamic equation 
of wind turbine where: ( ) Is the electromagnetic torque of generating power and J is 
the moment of inertia. 
 

 (7)
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The adjustable-pitch actuator model is achieved by electric servo motor apparatus, 
which can be expressed as a first order system equation (8), where  is the desired 
angle and  is the time delay. 

 (8)

3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a computation technique first proposed in 1995 
by Kennedy and Eberhart [8]. This method has been found to be a robust method in 
solving non-linearity or non-differentiability problems, the PSO algorithm didn’t use 
evolutionary operators (mutation or crossover to manipulate algorithms). However, it 
simulates a dynamic population behavior of (fish swarm or bird flocks), where the 
social sharing of information takes place and individuals can profit from the 
discoveries and previous experience of all the other companions during the search for 
food. Thus, each companion is called particle and the population is called a swarm, it 
is assumed to fly in many directions over the search space in order to meet the 
demand fitness function. For n-variables of the problem need to get its optimum; a 
flock of particles is put into the n-dimensional search space with randomly chosen 
velocities and positions knowing their best values, then (Pbest) is the best position in 
the n-dimensional space. The velocities of each particle are adjusted accordingly to its 
own flying experience and the other particles flying experience. For the nth particle 
and n-dimensional space can represented as an equation (9), the best previous position 
of its particle is recorded as equation (10). x x , , x , , … … . . x ,  (9)

P P , , P , , … … P ,  (10)

The velocity is an essential part of how PSO work so as modified velocity and 
position of each particle can be calculated using the current velocity and distance 
from (P , ) to (g ) as shown in equations. (11, 12). V ,I . W V ,I . c1 r P , x ,I . c2 r g x ,I .  (11)

x ,I . x ,I . v ,I .  (12)

Where i:Number of particles, m: Dimension, It.: Iterations pointer, V ,I . :Velocity of 
particle no. i at iteration It, W:Inertia weight factor, c1, c2: Acceleration constant,  

r: Random number between(0-1), x ,I . : Current position of particle i at iteration It., P  : Best previous position of ith particle, g : Global best particle among all 
the particles in the population.    
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4 PSO Implementation Adapts FLC       

The selection of Membership Functions (MFs) of the input and output variables and 
the determination of fuzzy rules are not available; for a sensitive system it is very 
difficult to designing that parameter. There is no formal framework for the choice of 
the parameters of FLC. The conventional method (trial-and-error method) can be used 
in such situations. In general the tuning and learning models have become an 
important subject of fuzzy control. There are two input signals to the fuzzy 
controller: ∆ѡ  and ∆ , the function of the fuzzy controller is to observe the pattern 
of the power loop error signal to updating the pitch control signal, A simple fuzzy 
logic controller of two inputs and one output. This FLC has three triangle 
memberships for each input and five memberships for output and nine "if" statement 
rules. PSO was utilized off line to design positions of triangle shape for input/output 
memberships. The complete system simulation using MATLAB/SIMULINK program 
is presented including simulated systems with servomechanism model as shown in 
figure (3); But, the optimization algorithm is implemented by using MATLAB/m-file 
program and linked with the system simulation program MATLAB/SIMULINK the 
performance of the system must be examined in each iteration and particles position 
during the optimization algorithm, the flow chart of this work shown in figure 4. The 
optimization criteria (Integrated of Time Weight Square Error ITSE) equation (13) is 
used to evaluate accuracy performance of the fuzzy controller. FF ITSE t e t dt (13)

 

 

Fig. 3. Simulation of pitch angle system controlled by FLC 
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Fig. 4. Flowchart of PSO algorithm 

5 Simulation and Result 

In figure (5) the two inputs and one output FLC memberships designed by PSO, and 
its surface shown in figure (6), in figure (7) the power turbine and the pitch angle at a 
variable speed controlled by FLC designed by traditional and in Figure (8) the 
optimize FLC designed by PSO algorithm is shown. 
 

 

Fig. 5. FLC memberships designed by PSO 
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Fig. 6. FLC surface for two inputs one output 

 

Fig. 7. Power turbine and pitch angle at a variable speed using FLC without optimization 

6 Conclusions 

Particle swarm optimization is the best method to design the Optimized Fuzzy Logic 
Controller OFLC, The performance OFLC as a better solution can govern the 
complex system and its nonlinearity, with the stochastic input power of wind turbine 
the simulation result shows that the controller can maintain the output of the system to 
be under control as like as traditional turbine, it has strong robustness and good 
dynamic performance compare with the well-built controller before optimization. 
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Fig. 8. Power turbine and pitch angle at a variable speed using FLC optimized by PSO 

References  

1. Wu, B., Lang, Y., Navid, Z., Samir, K.: Power Conversion and Control of Wind Energy 
System. A John Wiley & Sons, Inc., Canada (2011) 

2. Jiao, B., Wang, L.: RBF Neural Network Sliding Mode Control for Variable Speed 
Adjustable Pitch System of Wind Turbine. In: International Conference on Electrical and 
Control Engineering, China (2010) 

3. Yau, X., Liu, Y., Guo, C.: Adaptive Fuzzy Sliding-mode Control in Variable Speed 
Adjustable Pitch Wind Turbine. In: IEEE International Conference on Automation and 
Logistics, China (2007) 

4. Guo, H., Guo, Q.: H∞ Control of Adjustable-Pitch Wind Turbine Adjustable-Pitch System. 
In: IEEE 5th International Conference Power Electronics and Motion Control, Slovenia 
(2006) 

5. Dou, Z.L., Cheng, M.Z., Ling, Z.B., Cai, X.: An Adjustable Pitch Control System in a Large 
Wind Turbine Based on a Fuzzy-PID Controller. In: International Symposium on Power 
Electronics, Electrical Drives, Automation and Motion, Italy (2010) 

6. Lin, W., Hong, C.: A New Elman Neural Network Based Control Algorithm for Adjustable-
Pitch Variable-Speed Wind-Energy Conversion Systems. IEEE Trans. on Power Electronics 
26(2) (2011) 

7. Isaac, I.A., Cabrera, D., Pizarro, H., Giraldo, D., Gonzalez, J.W., Biechl, H.: Fuzzy Logic 
Based Parameter Estimator for Variable Speed Wind Generators PI Pitch Control. In: 
International Conference on Fuzzy Systems, Spain, pp. 18–23. IEEE Press (2010) 

8. Lawrence, K.L., Josiah, L.M., Alex, H.: Particle Swarm Optimized T-S Fuzzy Logic 
Controller for Maximum Power Point Tracking in a Photovoltaic System. In: 35th 
Photovoltaic Specialists Conference, pp. 89–94. IEEE Press, Hawai’i (2010) 

9. Olimpo, A.L., Janaka, E., Phill, C., Mike, H.: Wind Energy Generation Modelling and 
Control, pp. 4–6. A John Wiley and Sons, Ltd. (2009) 

0 10 20 30 40 50 60 70 80 90
10

20

30

w
in

d 
sp

ee
d

m
/s

ec

0 10 20 30 40 50 60 70 80 90
0

20

40

pi
ch

 a
ng

le
[d

eg
re

e]

0 10 20 30 40 50 60 70 80 90
0.7

0.75

time/[sec]

po
w

er
/[

pu
]



 

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 160–167, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Parameter Identification of RVM Runoff Forecasting 
Model Based on Improved Particle Swarm Optimization 
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Abstract. Runoff forecasting which subjects to model pattern and parameter 
optimization, has an important significance of reservoir scheduling and water 
resources management decision-makings. This paper proposed a new forecasting 
model coupled phase space reconstruction technology with relevance vector 
machine, and its model parameters is optimized by an improved PSO algorithm. 
The monthly runoff time series from 1953 to 2003 at Manwan station is selected 
as an example. The results show that the improved PSO has efficient 
optimization performance and the proposed forecasting model could obtain 
higher prediction accuracy. 

Keywords: Improved PSO algorithm, Relevance vector machine, Phase space 
reconstruction, parameter identification, Runoff forecasting. 

1 Introduction 

Runoff forecasting is very important for reservoir control, water resources planning and 
management. However, the hydrology system is a highly complex nonlinear system 
composed of uncertain and deterministic parts under the influence of rainfall system 
and underlaying surface system[1]. It is difficult to describe it in terms of rigorous 
physical model. So the data-driven model has become the important model in practice. 
Many innovated models, such as uncertain reasoning model(RM)[1], Artificial Neural 
Network (ANN)[2], support vector machine (SVM)[3] are gradually introduced into 
the hydrological forecasting, and further develop its applications. Tipping[4]puts 
forward sparse probability model (Relevance Vector Machine, RVM) on basis of SVM 
and Bayesian theory, this method has been used in the fields of image analysis [5,6], 
channel equalization [7],etc. and obtained effective performance. The researches show 
that there two aspects should be mainly involved as: (1) is runoff relevance vector 
machine choice; (2) is model parameters optimization identification.  

Generally, relevance vector based on time series is built in sequence, which is lack 
of physical basis, this article applied phase space reconstruction technique[1,8] to 
construct the relevance vectors, and its model parameters is identified by the improved 
PSO algorithm, which firstly proposed by Kennedy and Eberhart [9] based on the social 
behavior metaphor, and has been widely applied in global optimization problems as 
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well as GA, EA, DE, ACO optimization algorithms. There are many researches[10-13] 
illustrated PSO algorithm has effectively optimization performance, however, the 
standard PSO like the others’ is easy to entrap the local best fitness, so the crossover 
and mutation algorithms is developed to expand the search space and applied to the 
proposed model parameters identification. 

This article mainly includes five parts: In Sect.2 Briefly introduces improved PSO 
algorithms. In Sect.3 Build relevance vector machine runoff forecast model. In Sect.4 
Identify RVM model parameter. In Sect.5 Application. In Sect.6 Conclusions. 

2 PSO Algorithm 

The PSO algorithm is initialized with a population of random candidate solutions, 
conceptualized as particles. Each individual in PSO algorithm is assigned random 
velocity in search space, and is iteratively updating according to its own local best 
fitness and its global best fitness, which is attracted by the particle locations. Each 
individual in the particle swarm is composed of D-dimensional 
vector 1 2[ , , , ]i i i idx x x x=  and the ith particle velocity 1 2[ , , , ]k k k k

i i i idv v v v=  . During each 

iteration, the ith particle is updated by the following two best 
values: 1 2[ , , , ]best

i i i idp p p p=  , which is the local best value of the ith particle has been 

achieved so far, and 1 2[ , , , ]best
dg g g g=  , which is the global best value obtained in 

the swarm so far. Each particle is updated iteratively by 

1 1 1 1 1
1 1 2 2( ) ( )k k k k k k

id i id id id d idv w v c rand p x c rand g x− − − − −= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  (1)

1k k k
id id idx x v−= +  (2)

Where c1=c2 are acceleration coefficients, wi is the ith weight, rand1 and rand2 are two 
independent uniform random number within the range of [0,1]. To ensure convergence 
and be made much more stable, appropriate values is proposed by Kennedy and 
Eberhart with c1=c2=2 and [0.5,1.4]iw ∈ , max max[ , ]id d dv v v∈ − . 

Generally, PSO algorithm likes as other evolutionary optimization algorithms, 
which is easily fall into local optimum. In order to solve the problem and expand 
particles search space, the crossover and mutation algorithm are applied to improve the 
search space. r pair of particles are selected randomly from the k-1th iteration to 
crossover each other, The crossover algorithm is represented as 

(1 )

(1 )
i i j

j j i

x rand x rand x

x rand x rand x

= ⋅ + −
 = ⋅ + −

 (3)

Where rand is the uniform random number within the range of [0,1]. 
While the mutation algorithm of the particle velocity is written as[15]: 

1 1 1 1 1
1 1 2 2 3 3

3 3

( ) ( )

0

k k k k k
k i id id id d id
id

w v c rand p x c rand g x rand c
v

rand c

− − − − − ⋅ + ⋅ ⋅ − + ⋅ ⋅ − <=  ≥
 (4)
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Where 3rand  is the uniform random number in the range of [0,1], 3c is mutation 

rate. When 3c =1，the proposed method is the same as original PSO. 

3 RVM Runoff Forecasting Model 

Given the relevance vectors { : 1, 2, , }iX i N=  , Set training sample 1{ , }N
i i iX y = , the 

relevance vector machine makes predictions based on regression function of the form: 

 *
0

1

( , )
N

i i
i

y w K X X w
=

= +  (5)

Where{ }iw are model weights and ( , )K ⋅ ⋅ is kernel function. 

Given runoff time series { : 1,2, , }ix i n=  , according to phase space reconstruction 

method[1,8], the relevance vector 2 ( 1)[ , , , , ]T
i i i i i mX x x x xτ τ τ+ + + −=   is made by 

selecting appropriate values of time lag τ and embedding dimension m , which meets 
the condition of 2 1m D≥ + ，where D is saturated correlation dimension calculated 
by formula(6). The reconstruction system is composed of N relevance 
vectors { : 1, 2, , }iX i N=  , where ( 1)N n m τ= − − . The saturated correlation 

dimension D is calculated by  

0

ln ( , )
lim lim

lnr m

C r m
D

r→ →∞

∂=
∂

 (6)

Where 
1 1

2
( , ) ( || ||)

( 1)

N N

i j
i j i

C r m H r X X
N N = = +

= − −
+   , 

0 0
( )

1 0

if x
H x

if x

≤
=  >

, r is 

scale, || ||⋅ is Euclidean norm. 

Set the training sample 1{ , }N
i i iX y = ，and assume ( | )P y X is Gaussian  2( | , )N y y σ . 

The y  is defined as formula (5), the likelihood of the dataset [4] is written as 

2 2 / 2 2 2( | , ) (2 ) exp{ || || /(2 )}Np y w y wσ πσ σ−= − − Φ  (7)

Where 1 2( , , , )Ny y y y=  , 0 1( , , , )Nw w w w=  , Φ is ( 1)N N× + demension kernel 

function matrix, , 1 ( , )n n n nK X X+Φ = , ,1 1nΦ = . It is indicated that maximum 

likelihood estimation of ,w σ  will lead to overfiting, so the Gaussian prior of w is 

shown as 

1

0

( | ) ( | 0, )
N

i i
i

p w N wα α −

=

= ∏  (8)
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Then on the base of Bayesian rule, the posterior probability distribution of w  is 
denoted as  

2 ( 1) / 2 1/ 2 1( | , , ) (2 ) | | exp{ ( ) ( ) / 2}N Tp w y w wα σ π μ μ− + −=  − −  −  (9)

Where 2 1 2( ) ,T TA yσ μ σ− = Φ Φ + = Φ are posterior covariance and mean 

respectively, 0 1( , , , )NA diag α α α=  . 

The EM algorithm[4]is used to maximize the marginal likelihood distribution 
function as follows 

2 2 1( | , )= (0, )Tp y N I Aα σ σ −+ Φ Φ  (10)

And then hyper-parameters { },nα σ are calculated iteratively by 

2
1new

i
ii i

α μ= Σ +  (11)

2 2( ) || || /( )new
i

i

y Nσ μ γ= − Φ −  (12)

Where 1i i iiγ α= − Σ and Σ is covariance matrix. 

It is noted that the hyper-parameter 2,MP MPα σ is obtained when reaches the 

convergence and MPw μ= , and input vector *X into the optimized RVM model, the 

mean and variance of RVM forecasting will be achieved, its formula is described as 

* * 2 2 * *
*( ) , ( ) ( )T

MP MPX X Xμ μ σ σ= Φ = + Φ Φ  (13)

4 RVM Parameters Identification 

In order to optimize the RVM model parameters, three important aspects should be 
mentioned: (1) kernel selection; (2) parameter optimization objective function; (3) 
parameters in the model. 

(1)The kernel function of RVM model must satisfy Mercers’ condition[2]. Many 
researches indicated that Radial basis kernel and Sigmoid Kernel are more effective in 
regression and classification problems. Radial basis kernel has the same function as 
sigmoid kernel, however, it has less parameters and so radial basis kernel is selected in 
the RVM model. 

(2) In general, the objective function of runoff forecasting is formed on the basis of 
training sample fitting error evaluated the desired optimization fitness, however, the 
convergence process will make training fitting error close to zero and leads to serious 
overfitting. It is indicated that using parameters optimized to runoff forecasting during 
the validation period will be obtained unreasonable results, thus a new method is 
proposed, which comprehensively considers training and test data set errors to establish 
objective function, which is described by 
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1 2
2 22 1

1 11 2 1 2

ˆ ˆ( ) ( ( - ) ) ( ) ( ( - ) )
N N

i train i test
i i

N N
minimizeF y y y y

N N N N= =

= +
+ +   (14)

Where N1, N2
 are number of training and test sets respectively.  

(3) RVM model contains phase reconstruction parameter ,m τ , kernel function 

scale ε  and model hyper-parameters { },nα σ . The hyper-parameters are optimized 

iteratively by EM algorithm, and , ,m τ ε are calculated by improved PSO. The general 
steps of model parameters optimization identification as follows: 

Step1: Set , ,m τ ε parameter ranges and initialize the particle population size N, 

Maximum iterations T, maximum updating velocities max
dv , particle random positions 

0
ix and velocities 0

iv ; 

Step2: In the kth particle loop, reconstruct the relevance vector, and initialize 
hyper-parameters { },nα σ , adopt formula (11) and (12) to evaluate iteratively the 

hyper-parameters ,iα σ in the EM interior loop, if the EM algorithm convergence 

criterion is met, end the kth loop, 
MP

Tw μ= is obtained, and then go to the k+1th outside 

loop.  
Step3: For each particle, calculate the fitness functions ( )iF x with 

formula(4),(2),(14), and compare to local best fitness ( )best
iF p  achieved so far, if 

( ) ( )best
i iF x F p< , then set the ( )best

iF p equal to the current valve, and best
ip  equal to the 

current location, that is to say ( ) ( )best
i iF p F x= , best

i ip x= ; 

Step4:Compare the local best fitness ( )best
iF p  to the global best 

fitness )( bestgF achieved so far, if ( ) ( )best best
iF p F g< ，and then set the ( )bestF g  equal 

to the current value, and bestg  equal to the current location, that is to say 

( ) ( )best best
iF g F p= , best best

ig p= ; 

Step5: If a criterion is not met the sufficient good fitness or a maximum number of 
iteration, go to step2, or else end loop. 

5 Application 

The monthly runoff time series from January, 1953 to December, 2003 is selected to 
evaluate the proposed method at Manwan station. It covers the basin area of 
114,500km2, and the years average monthly runoff is 1251m3/s, variation coefficient is 
0.717, the maximum and minimum monthly runoff are 5000m3/s, 248m3/s respectively. 
Runoff time series is divided into three parts: (1) training data set, 41 years from 1953 
to 1993; (2) test data set: 5 years from 1994 to 1998; (3) validation data set, 5 years 
from 1999 to 2003. Both of training and test data set are applied to determine model 
parameters, and the remaining data set (validation) is used to test model forecasting 
performance. The indexes of mean absolute relative error (MARE), correlation 
coefficient (CR), deterministic coefficient R2 are selected to evaluated forecasting 
accuracy. 



 Parameter Identification of RVM Runoff Forecasting Model Based on Improved PSO 165 

 

Set ε , m , τ ranges of [0.1,100] , [1,20] and [1,10]  respectively and initialize 

1 2 2c c= = , max max max
1 2 3 0.1v v v= = = , hyper-parameters (0) (0.25,0.25, ,0.25)α =  , 

2
0 var( ) 0.01yσ = ∗ , maxα =1×105,  maximum iterations T=50, population size N=20, 

weight 1 2 3 0.9 *0.5 /t t tw w w t T= = = − , where t is the current tth iteration. Finally 

parameters ε , m , τ optimized by PSO equal to (2.1723,14,4). Hyper-parameter 
2σ ,{ }nα are basically achieved after a few iterations. The results indicate that the EM 

algorithm has an effective performance and some researchers also directly make 
hyper-parameter as a fixed value in prediction. 

The proposed model (RVM) is compared with least squares support vector machine 
model (LSSVM) widely applied in regression problems, relevance vector machine 
model (RVM*) without phase space reconstruction ( 12, 1m τ= = ) and the automatic 
regression moving average model (ARMA) to analyze the runoff forecasting accuracy 
shown in Table 1, runoff hydrographs of forecasted and observed with RVM during 
training, test and validation periods are presented as Fig. 1-Fig. 2.  

Table 1. Prediction accuracy of monthly flow from various methods 

Model  

Training period Test period  Validation period 

MARE 
/% 

CR R2 
MARE 

/% 
CR R2 

MARE 
/% 

CR R2 

RVM 12.34 0.94 0.88 11.92 0.95 0.91 13.59 0.93 0.81 

RVM* 15.62 0.92 0.83 17.58 0.89 0.79 14.93 0.92 0.75 

LSSVM 13.76 0.93 0.86 13.37 0.93 0.85 14.31 0.92 0.74 

ARMA(5,6) 18.27 0.91 0.72 17.75 0.89 0.72 17.07 0.93 0.70 

 
Table 1 shows that forecasting accuracy of RVM with phase space reconstruction is 

higher than that of RVM* without phase space reconstruction with evaluation indexes 
of MARE, CR, R2 during training, test and validation periods. Moreover, compared 
with the other LSSVM and ARMA (5,6) models, it is also denoted that RVM has higher 
forecasting accuracy than the others’, so it is proved actually that the proposed RVM 
model has a better prediction performance in runoff forecasting problem.  
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Fig. 1. Comparison between observed and RVM forecasted hydrograph during train period 
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Fig. 2. Hydrographs of observed and predicted: (a) test period, (b) validation period 

In order to further describe uncertainty of runoff forecasting, prediction interval is 
achieved under probability of 80%, as shown in Fig.3. It is indicated that the 
forecasting interval could be basically covers the observed, so the probability interval 
prediction with RVM model is reliable. 
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Fig. 3. Interval prediction during validation period 

6 Conclusions 

This article adopted an improved PSO to identify runoff forecasting model parameters, 
an improved PSO expand search space with crossover and mutation algorithm and 
facilitate the scheme to find an optimal parameter set efficiently, moreover, the RVM 
optimized by the improved PSO is performed efficiently to runoff prediction. A new 
runoff forecast model is established by coupling phase space reconstruction with 
relevance vector machine model, and compares it with other existing models, LSSVM 
and ARMA, its prediction accuracy was evaluated with indexes of MARE, CR, R2, it is 
proved that proposed model has higher forecasting accuracy, moreover, it could 
quantitatively represent forecasting uncertainty, and provide more information for 
flood control scheduling and water resources management decision making. 
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Abstract. Cutting stock problem is an important problem that arises in a variety 
of industrial applications. An irregular-shaped nesting approach for two-
dimensional cutting stock problem is constructed and Evolution Particle Swarm 
Optimization Algorithm (EPSO) is utilized to search optimal solution in this 
research. Furthermore, the proposed approach combines a grid approximation 
method with Bottom-Left-Fill heuristic to allocate irregular items. We evaluate 
the proposed approach using 15 revised benchmark problems available from the 
EURO Special Interest Group on Cutting and Packing. The performance 
illustrates the effectiveness and efficiency of our approach in solving irregular 
cutting stock problems. 

Keywords: Cutting Stock Problem, EPSO, Grid Approximation. 

1 Introduction 

Cutting and Packing Problem (C&PP) are a large family of problems arising in a wide 
variety of industrial applications, including the cutting of standardized stock units in 
the wood, steel and glass industries, packing on shelves or truck beds in transportation 
and warehousing, and the paging of articles in newspapers. The objective of the 
packing process is to maximize the utilization of material. There are many classic 
cutting and packing problems, including cutting stock, trim loss, bin packing, strip 
packing, pallet loading, nesting, and knapsack problems etc. Figure 1 provides an 
example of a layout from the garment manufacturing industry. 

In this paper, we focus on cutting stock problem (CSP) with convex and concave 
shapes. In CSP, a number of two-dimensional items must be cut from a couple of 
same stocks. The objective is to minimize the number of stocks. Using the typology 
of Wäscher, this is a Two-Dimensional Single Stock-Size Cutting Stock Problems 
(2DCSP) [1]. The 2DCSP has been proved to be NP-hard [2]. 

This paper is organized as follows. A brief review of previous work in the field is 
presented in Section 2. The proposed approach based on EPSO is introduced in detail 
in section 3. Section 4 gives experimental results on benchmark problems from the 
literatures that demonstrate the capabilities of the proposed approach. In Section 5, 
the research is concluded and possible issues for future work are suggested. 
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Fig. 1. An example layout from garment manufacturing 

2 Literature Review 

Different strategies for producing solutions to the irregular cutting stock problem have 
been presented according to their type and size. They include optimization 
approaches, (e.g. linear programming, column generation), heuristic and meta-
heuristic approaches, and the emerging approaches combining these methods into a 
solution approach.  

Due to the NP-complete nature of the problem, published solution approaches 
focus on heuristic and meta-heuristics methodologies. Heuristic placement strategy 
such as bottom-left (BL) and bottom-left-fill is proposed to supply a rule for shapes to 
be placed on sheet [3, 4]. Meta-heuristics are general frameworks for heuristics in 
solving combinatorial optimization problems. They include simulated annealing, tabu 
search, neural networks, genetic and particle swarm optimization algorithm [5-7]. The 
applications of PSO are considerably less in 2DC&PP. D. S. Liu et al 2006 presented 
a two-objective mathematical model with multiple constraints for two-dimensional 
bin packing problem and solve the problem with a hybrid multi-objective PSO 
algorithm [8]. Instead of using only optimization or heuristic approaches as a solution, 
many researchers have investigated the possibility of combining these methods into a 
solution approach to overcome the disadvantages of each of them. A hybrid algorithm 
to solve Irregular Strip Packing problems is presented in Gomes and Oliveira (2006), 
where the meta-heuristic simulated annealing is used to guide the search over the 
solution space while linear programming models are solved to generate 
neighborhoods during the search process [9]. A combination of these techniques that 
utilizes the advantages of each may produce a better solution to the problem. 

In recent years, some effective approaches are proposed and used to check/generate 
feasible regions to pack items of irregular shape. A detailed tutorial about the 
geometry of nesting problems is given in Bennell and Oliveira (2008) [10]. Among 
these approaches, NFP (No-Fit Polygon) is definitely the most successful one, which 
can be gained in two ways: orbital sliding and Minkowski Sum [11, 12]. Phi Function 
has also get some focus and been use in some literature [13]. Furthermore, rectangle 
enclosure and grid approximation are also indirectly used to solve geometric problem 
of irregular shapes [14, 15]. In this paper, we adopt the grid approximation method to 
represent the shapes with two dimensional matrices for its less computer time. By 
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using grid approximation, it’s not necessary to introduce additional routines to 
identify enclosed areas and geometric tool to detect overlap.  

3 Methodology 

The operation of the approach is divided into two steps. In the first step, the items are 
represented as a matrix by taking the grid approximation method, and the initial 
sequence and orientation of the items based on their geometrical features are 
determined. Then the items are allocated on stock sheet one by one according to the 
initial sequence and orientations. Then the second step utilizes EPSO to search 
optimal solution by means of Bottom-Left-Fill heuristic (BFL) [16]. The flow of the 
approach is shown in Fig.2.  

 
 

 

Fig. 2. Flowchart of EPSO for cutting stock problem 

3.1 Initialization 

In this research, each item is represented by a list of vertex coordinates [(x1,y1),…, 
(xM, yM)], where M is the number of vertices. During the allocation process, the 
degree of overlap among items on the stock sheet should be tested. The grid 
approximation, a digitized representation technique, is used to test overlaps among 
items. This matrix representation method was proposed by Dagli (1990) [17]. Each 
item is represented by a matrix, which is the smallest rectangular enclosure of the 
irregular-shaped item.  

The detailed technique applied in the paper is referred to W.K. Wong and Z.X. Guo 
(2010) [18]. By using this technique, each item is enclosed by an imaginary rectangle 
for the sake of obtaining the reference points during the nesting process. Then, this 
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particular rectangular area is divided into a uniform grid called pixel. In the case, the 
value of a pixel is ‘1’ when the material of the sheet is occupied. Otherwise the value 
of the pixel is ‘0’. PL

(k) and PW
(k) denote the length and the width of an enclosing 

rectangle corresponding to the item pk. R denotes the square side of a pixel.  
The item with a two-dimensional matrix of size AW

(k)×AL
(k) is represented as 

follows: 
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Similar to the item representation, the stock sheet is able to be discretized as a finite 
number of equal-size pixels of size R2. Hence, the stock sheet with the length L and 
the width W are characterized by a matrix U of size UW ×UL as follows:   
 

, ,
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U u
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W L
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R R
= =  

For each entry,  ,

1 if pixel ( , ) is occupied

0, otherwise
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u
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A value in the stock sheet matrix which is greater than one is an indication of an 
overlap. Although the overlap test can be performed easily and quickly, there is a 
need for a large memory for this representation scheme. Consequently, only required 
matrices are generated by the algorithm while the overlap test is performed. The 
initial sequence of the items is firstly determined in non-increasing order according to 
their area. In the case that area of items are same, the sequence of these items is 
decided in non-increasing order according to their length. The initial orientation for 
each packing item is confirmed by the MRE (Minimum Rectangular Enclosure 
(Jakobs 1996)) of each item. After the initial sequence and orientations of items are 
confirmed, the placement of the items follows a single-pass placement strategy and 
takes place in a sequential manner according to initial sequence and orientation by 
means of BFL heuristic. 
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3.2 EPSO 

The proposed EPSO is a PSO-based algorithm which incorporates EA concepts such 
as the use of mutation operator as a source of diversity. It is referred to D. Liu et al. 
(2008) [19]. EPSO is characterized by the fact that particle movement is directed by 
either personal best or global best only in each instance. This is contrary to existing 
works where particle movement is influenced by both personal and global best at the 
same time. For the success of EPSO, an appropriate particle representation can be 
easily handled by PSO operator, mutation operator and BLF heuristic. Once 
initialization has finished, the particles are evaluated against the fitness function. 
After selecting either their personal best stock or global best stock as the velocity 
vector, particles are updated by inserting the stock represented by the velocity vector 
as the first stock and deleting duplicate items in other stocks (PSO operation). At their 
new positions, the particles then undergo specialized mutation operations. If any 
constraint is violated during mutation, the stocks violating constrains and the two least 
filled stocks will be selected for repacking using BLF.  

3.2.1 Solution Coding 
An effective encoding strategy for PSO operation and mutation operation is important 
for the success of EPSO. An order-based variable length particle structure is adapted 
as the representation of a solution for cutting stock problems in proposed EPSO. The 
solution including the number of stocks used and the sequence of the items packed 
into the stock is encoded as a particle. Each stock must be allocated at least one item 
which must not be found in any other stocks. And the permutations encoded are 
unique for every stock. This encoding structure allows the algorithm to manipulate the 
permutation of items in each stock without affecting other stocks.  

Specifically, each particle consists of several strings of distinct integers. Each 
string represents a stock and each integer represents an item. The pbest and gbest are 
encoded in the form of extra stocks stored in the particle memory. The pbest is 
defined as the particles’ own best stock due to their own best values in the solution 
space. The gbest is defined as the best stock found by the population. We use the best 
stock instead of best solution as pbest and gbest in proposed EPSO in order to help 
the algorithm avoid falling into random search by transmitting good stock among 
generations. Furthermore, a state variable is attached to every index in the 
permutation so as to encode for orientation of item.  

3.2.2 PSO Operator 
In PSO, each individual in the population will try to emulate the gbest and pbest 
solutions through updating by PSO equations [20]. How to emulate the pbest and 
gbest is also the key question in 2DCSP and our strategy is to set best stock as pbest 
and gbest, and let other stocks being repacked. In this way, best stock information is 
kept. The proposed PSO operator is shown as followed: 
 

 (1 ) , 0,1,id id gdV P Pα α α= ∗ ⊕ − ∗ =  (1) 

 .id id idX X V= +  (2) 
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The velocity is governed by either pbest or gbest as shown in Eq. (1). Which one is 
the governor is determined by the value of α. Then the movement of solution particle 
is confirmed by inserting the stock into the solution particle as the first stock and any 
duplicate items in other stocks will be deleted. 

3.2.3 Mutation Operators 
The purpose to adapt mutation operators in EPSO is to change the internal structure of 
the particle so as to further optimize the solution. The proposed mutation operators 
consist of two modes: partial swap and merge stocks mechanism. In the first mode, 
sequences of items in two stocks can be randomly cut and exchanged. The operation is 
used to search for more closely packed items. The items in the two least filled stocks 
will be merged into one stock in the second mode. The operation may help reduce the 
number of stocks used. Firstly, which mode is applied is decided by a random-
generated number. Then the other two modes of mutation are employed. The first one 
randomly rotates one item in the stock, and the other one shuffle the items of the stock 
in order to improve the packing configuration and the stability of the stocks. Then a 
feasibility check is carried out to ensure the satisfaction of all the constraints. 
Whenever a constraint is violated, the particle eliminates two emptiest stocks, in which 
the items miss from the solution and be inserted back in a random order By BLF 
heuristic. This is helpful to confirm that all particles are valid solutions of 2D-CSP. 

4 Performance Evaluation 

All algorithms are implemented in Visual C++ and we also use the library CGAL to do 
some geometrical operations. The tests are performed on a computer with processor Intel 
Pentium Dual 1.8 GHz, 2 GB of RAM, and Windows XP operating system. 

Few work for packing problems with pieces of irregular shape are done in the 
literature, and especially we can hardly find any related work for the 2DCSP and 
2DBPP when pieces have irregular shape. As a result, we adapt some other known 
instances for packing problems with one open dimension to test our algorithms, 
referring to AM Del Valle .et .al 2012 [21]. The generated instances are adapted from 
the Two-Dimensional Irregular Strip Packing problem, and they can be found at the 
ES-ICUP website.  

Table 1 presents solutions computed by our algorithm. We use the total area of the 
pieces divided by the area of one stock as a lower bound for the optimal solution. The 
rows in this table contain the following information: instance name, the same name as 
the original benchmark problem of SPP (Instance); shapes, the total number of 
polygons; vertices, the average number of the vertices of different shapes; solution 
value computed by our algorithm (Solution); the lower bound (LB); the difference (in 
percentage) on number of stocks computed by Solve 2DCSP and LB; the time spent 
in seconds (Time). 

The results of the algorithm should be much closer to the optimal solutions and 
these differences are mainly due to the weakness of the lower bound. It is worth to 
mention that all the instances are executed 100 times and all the results presented on 
Table 1 are the average values of all executions. Such results show that the algorithm  
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Table 1. Results obtained for the 2CS adapted from strip packing problem 

Instance Shapes Vertices Solution LB Difference% Time(s) 
FU 12 3.58 70 56 22.079 254.60 
JACKOBS1 25 5.60 46 38 25.556 7056.40 
JACKOBS2 25 5.36 43 30 49.730 7035.76 
SHAPES0 43 8.75 51 30 75.000 27124.81 
SHAPES1 43 8.75 52 32 67.094 59703.37 
SHAPES2 28 6.29 59 50 21.395 9574.17 
DIGHE1 16 3.87 57 32 83.421 301.07 
DIGHE2 10 4.70 42 29 50.595 87.85 
ALBANO 24 7.25 80 65 25.765 6918.84 
DAGLI 30 6.30 54 43 29.532 9463.45 
MAO 20 9.22 45 33 41.051 7241.92 
MARQUES 24 7.37 49 44 14.295 8462.74 
SHIRTS 99 6.63 41 37 14.000 1235476.94 
SWIM 48 21.90 56 34 69.259 467213.87 
TROUSERS 64 5.06 49 42 20.361 274526.36 

 
returns good solutions for the cutting stock problem with pieces of irregular shape. 
However, it requires high CPU time when solving instances with several pieces of 
completely irregular shape. 

5 Conclusion 

In this paper, a novel approach, based on EPSO, for two-dimensional irregular cutting 
stock problem is presented. Furthermore, the proposed approach combines a grid 
approximation method with BLF heuristic to allocate irregular items. The adhibition of 
EA concepts such as the use of mutation operator make EPSO a flexible optimization 
algorithm. Specifically, the advantages include the following aspects: firstly, the 
placement approach based on grid approximation provides the system designers with 
an easier way to detect whether overlap occurs. Secondly, BLF heuristic improves the 
quality of packing pattern for its ability to fill in the gaps in the partial layout. Thirdly, 
the searching method based on EPSO gets better performance compared with other 
meta-heuristics. Numerical investigations are performed on 15 test instances and the 
results demonstrate the effectiveness and efficiency of the proposed approach. 
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Abstract. A cost function in the literature of queueing system with single 
working vacation was formulated as an optimization problem to find the 
minimum cost. In the approach used, a direct search method is first used to 
determine the optimal system capacity K and the optimal threshold F followed 
by the Quasi-Newton method to search for the optimal service rates at the 
minimum cost. However, this two stage search method restricts the search space 
and cannot thoroughly explore the global solution space to obtain the optimal 
solutions. In overcoming these limitations, this study employs a particle swarm 
optimization algorithm to ensure a thorough search of the solution space in the 
pursuit of optimal minimum solutions. Numerical results compared with those 
of the two stage search method and genetic algorithms support the superior 
search characteristics of the proposed solution. 

Keywords: Direct search method, Quasi-Newton method, Particle swarm 
optimization, Genetic algorithms. 

1 Introduction 

For clarity, we briefly repeat the description of the queueing model and adopt the 
notations and assumptions of Yang et al. [1]. 

The server takes a single vacation whenever the system becomes empty. During a 
vacation period, the server remains working at a different service rate rather than 
completely terminating the service. Such a vacation is called a working vacation [2]. 
When the number of customers in the system reaches its capacity K (i.e. the system 
becomes full), no further arriving customers are allowed to enter the system until the 
queue length decreases to a certain threshold value F (0 ≤ F ≤ K−1). At that time, the 
server requires an exponential startup time to restart allowing customers to enter  
the system. This queueing system is referred to as F-policy M/M/1/K/WV queueing 
system with an exponential startup time. 

Yang et al. [1] used the state-transition-rate diagram to set up the steady-state 
equations. However, two specific conditions appeared in the queueing model, that is  
F = 1 and F = K−1, seem to be neglected. This makes the steady-state equations 
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cannot represent the real characteristics of the queueing model and incurs 
miscalculations as the specific conditions become visible. In addition, Yang et al. [1] 
proposed a direct search method (DSM) and Quasi-Newton method (QNM) for the 
optimization problem to determine the joint optimal values at the minimum cost. In 
their two-stage approach, they first employed the DSM to find the optimal capacity, 
K*, and the optimal threshold value, F*, while the other two continuous variables 

Bμ and 
Vμ  were assumed to be constant and fixed. However, this assumption 

considerably restricts the search space, resulting in the final solution falling into a 
local optimal solution. In the second stage, QNM is used to search the best 
combinations of two continuous variables (

Bμ ,
Vμ ), while the number of capacity K 

and the threshold value F are assumed to be fixed according to the search result of 
DSM in the first stage. This method restricts the search space in a similar manner, 
causing the searching result to fall into local extrema. Also, in the numerical examples 
(see p.554 of [1]), there are 2 out of 6 instances that the service rate in a working 
vacation is faster than that in a normal busy period (i.e.

Vμ >
Bμ ). This seems to be a 

contradiction with the definition of working vacation (see p.48 of [2]). On the basis of 
the above observations, in this article, we reset the state-state equations and use the 
particle swarm optimization (PSO) algorithm to simultaneously determine the four 
optimum variables, F*, K*, *

Bμ , and *
Vμ , to minimize the cost function. We conducted 

the numerical experiments using QNM, genetic algorithms (GA) and PSO, 
respectively and compared the search results. Note that GA is used to ensure the 
searching quality of the PSO algorithm.  

2 Steady-State Equations 

Referring to the state-transition-rate diagram for the F-policy M/M/1/WV queueing 
system with an exponential startup time shown in Fig.1, we can see that F = 1 and F = 
K−1 are two specific conditions due to the link between )1(2P and )0(3P as F = 1, and 

the different transition conditions as F = K−1. Therefore, the following four 
conditions have to be considered: 

Case 1: F = 1 and F = K−1     Case 2: F = 1 and F < K−1 
Case 3: F ≠ 1 and F = K−1     Case 4: F ≠ 1 and F < K−1. 
The steady-state equations developed by Yang et al. [1] are given by: 

),1()0()( 00 PP Vμγθ =+  (1) 

),1()()( 00 +=++ nPnP VV μγθμ  Fn ,...,2,1= , (2) 

),1()()( 00 +=+ nPnP VV μθμ  1,...,2,1 −++= KFFn  (3) 

),1()()( 30 −=+ KPKPV λθμ  (4) 

),0()1()0( 011 PPP B θμγ +=  (5) 

),()1()()( 011 nPnPnP BB θμγμ ++=+  Fn ,...,2,1= , (6) 

),()1()( 011 nPnPnP BB θμμ ++=  1,...,2,1 −++= KFFn , (7) 
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),()1()( 021 KPKPKPB θλμ +−=  (8) 

),0()0()0( 312 PPP θγλ +=  (9) 

),()1()1()()()( 32212 nPnPnPnPnP BB θμλγμλ +++−+=+  Fn ,...,2,1= , (10) 

),()1()1()()( 3222 nPnPnPnP BB θμλμλ +++−=+  2,...,2,1 −++= KFFn , (11) 

),1()2()1()( 322 −+−=−+ KPKPKPB θλμλ  (12) 

),1()1()0()0()( 3203 PPPP VB μμγθλ ++=+  (13) 

),1()1()()()( 3303 ++−+=++ nPnPnPnP VV μλγθμλ Fn ,...,2,1=  (14) 

),1()1()()( 333 ++−=++ nPnPnP VV μλθμλ 2,...,2,1 −++= KFFn  (15) 

).2()1()( 33 −=−++ KPKPV λθμλ  (16) 

Note that the above steady-state equations can only cover the situations for case 2 and 
case 4.  

For case 1, Eq. (10) has to be modified as  

),()1()()()( 3212 nPnPnPnPB θλγμλ +−+=+  Fn ,...,2,1= , (17) 

For case 3, Eqs. (12) and (16) have to be replaced by Eqs. (18) and (19), respectively. 

),1()1()2()1()( 1322 −+−+−=−+ KPKPKPKPB γθλμλ  (18) 

)1()2()1()( 033 −+−=−++ KPKPKPV γλθμλ  (19) 

Using the matrix-analytic method developed by Yang et al. [1], the steady-state 
probabilities for the F-policy M/M/1/WV queueing system with an exponential 
startup time can be obtained. 
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Fig. 1. The state-transition-rate diagram for an F-policy M/M/1/WV queueing system with an 
exponential startup time [1] 

3 Basic Concept of PSO Algorithm and Encoding Scheme 

The particle swarm optimization (PSO) algorithm is a stochastic search technique, 
motivated by the social behavior simulation of bird flocking or fish schooling, 
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developed by Kennedy and Eberhart [3]. As an evolutionary algorithm, PSO conducts 
a search through updating a population (called a swarm) of individuals (called 
particles). The relationship between the swarm and particles in PSO algorithm is 
similar to the relationship between a population and its chromosomes in GA. In PSO 
algorithm, the problem solution space is described as a search space and each position 
in the search space is a possible solution for the problem. It is known that PSO 
combines local search (by self-experience) and global search (by neighboring 
experience), and has been introduced as an optimization technique in continuous and 
discrete spaces. More details for the applications of PSO algorithm are referred to 
Kennedy et al. [4], and Clerc [5]. 

To clearly explain the definition of particles, positions, best position, and 
population of the PSO, a small example using the same cost parameters with those of 
Yang et al. [1] is illustrated. Consider the test example with )2,3,4(),,( =θγλ , we 

use a population with 5 particles to explore the solution space. We set the threshold 
value F on the interval [0, K−1], and the system capacity K on the interval [2, 12]. 
Both 

Bμ and 
Vμ  are continuous on the interval of 0 to 10 as well as BV μμ ≤ . For 

an initial particle ),,,( 4321 RRRRP  with four random variables on the interval of 0 

to 1, we can use the following encoding scheme, F =  ε−+− 1*)1011( R  , 

K=2+  ε−+− 2*)1212( R ,
3*10 RB =μ , and

4*10 RV =μ , to transform a particle to 

its position. The notation  d  denotes the largest integer smaller than or equal to | d | 
and 0001.0=ε is used to avoid F and K falling into 12 and13, respectively. Note that 
the constraint conditions F ≤ K−1 and BV μμ ≤  can be overcome by using a penalty 

value to delete the infeasible solutions. Each position has its own objective value 
shown in Table 1. The best position is the position with the best objective value 

among all positions. Obviously, the best position is F = 2, K= 5, Bμ = 4.608, 

and 803.1=Vμ , at this iteration in the example. 

Table 1. The particles, current position, and objective values 

4 Numerical Results  

4.1 Direct Search Method and Exact Results  

Yang et al. [1] presented a numerical example for finding the joint optimal values (F*, 
K*) by using direct search method. However, due to their steady-state equations 

Particle Current position Objective value 
(0.1987, 0.3461, 0.4608, 0.1803) (2, 5, 4.608, 1.803) 843.2516 
(0.0153, 0.4225, 0.3663, 0.2760) (0, 6, 3.663, 2.760) 892.2494 
(0.4451, 0.4902, 0.8518, 0.0129) (5, 7, 8.518, 0.129) 880.7553 
(0.8998, 0.9048, 0.4551, 0.1573) (10, 11, 4.551,1.573) 857.3484 
(0.2897, 0.3352, 0.8678, 0.3844) (3, 5, 8.678, 3.844) 859.5493 
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without the considerations of specific conditions, it seems to be possible for 
miscalculation. We redo the same example and obtain the numerical results shown in 
Table 2. We can find that the minimum expected cost $792.76 per day is obtained 
with F*= 6 and K*=8, but not the cost $794.92 with F*= 5 and K*=7 obtained by Yang 
et al. [1]. To show the calculation process, a small example with the specific 
conditions F = 1 and K= 2 shown in Fig. 2 is considered. Obviously, the steady-state 
equations developed by Yang et al. [1] cannot satisfy this situation. The details related 
to the steady-state probabilities and various system parameters are illustrated in Table 
3. After the calculation, we can obtain that the cost is $1034.98 but not $983.54 
shown in Table 1 of Yang et al. [1] 
 

Vμ Vμ

Vμ

 Bμ  Bμ

 Bμ

λ λ

λ

θ

θ

θ

θ

θ

γ γ

γ γ

λ

 

Fig. 2. The state-transition-rate diagram for an F-policy M/M/1/WV queueing system with F = 
1 and K= 2 

4.2 Comparison of Three Heuristic Methods 

To compare the search results of QNM, GA, and PSO algorithm for the cost 
minimization problem, we tested 7 examples with the following cost parameters: 

Ch=$15/unit, Cb=$450/day, Cl=$400/day, Cs=$500/day, Cw=$60/day, Ck=$20/unit, 
C1=$30/unit, C2=$20/unit. 

The objective function can be presented mathematically as 
),,,(

,,,
VB

KF
KFTCMinimize

VB

μμ
μμ

 

s.t.  10 −≤≤ KF , 122 ≤≤ K , 
100 ≤≤ Bμ , 100 ≤≤ Vμ , 

BV μμ ≤ . 

where 

VBkSwSsLlBbShVB CCKCWCPCPCPCLCKFTC μμλμμ 21),,,( +++++++=  
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Although the GA and PSO algorithm appear to be sensitive to the tuning of various 
weights and parameters, we took advantage of the experiences gained through many 
previous experiments, adopting the following GA and PSO parameters (see Kennedy 
et al. [4]; Clerc [5]; Gen and Cheng [6]; Eberhart and Shi [7]; Liou [8]). 

PSO Algorithm Parameters 

• population size = 100; 
• generations = 200 ; 
• inertia weight factor is set to vary linearly from 0.9 to 0.4 ; 
• the limit of change in velocity of each member in an individual is as Vmax = 0.3, 
• acceleration constant c1 = 2.0 and c2 = 2.0. 

GA Parameters 

• population size n = 100 
• generation number tc = 200; 
• crossover rate Pc = 0.8; 
• mutation rate Pm = 0.05; 
• bit length of a variable lb = 60. 

GA and PSO were coded in MATLAB 7.0 and all results were computed using  
an Intel-Pentium 2.4GHz PC with 1.97GB RAM. Table 4 shows the numerical results 
of QNM and 100 independent experiments for each example by GA and PSO 
algorithm, respectively. Note that, for the convenience of comparison, the mean ratio 
was utilized. The ratio of the solution produced by the heuristic algorithm is 
calculated by V/V∗, where V is the solution generated by the heuristic algorithm and 
V∗ is the minimum solution among 100 independent experiments by the heuristic 
algorithm. 

From Table 4, we observe:  

(1) QNM was unable to acquire the global minimum value in the 7 instances. This 
implies that the QNM is not well suited to searching for optimal values (F*, 
K*, *

Bμ , *
Vμ ) to minimize the cost function. 

(2) in the case ),,( θγλ = (4.0, 3.0, 1.0), the QNM cannot converge to any solution 

because the converge condition Max )/,/( VB TCTC μμ ∂∂∂∂ < ε (i.e. Step 5 of 

QNM, see Yang et al. [1], p.551) cannot be met even though the tolerance ε is set 
as 0.1. This implies that the QNM cannot be operated well as the extreme point of 
a concave/convex is not included in the feasible solutions.  

(3) the mean values (V/V∗) of PSO algorithm all lead to 1.0000 for all instances. This 
implies that the PSO algorithm is robust for all test instances. 

(4) both GA and PSO can obtain the similar optimal solutions. This implies that the 
searching quality of PSO is conceivable. 

(5) the CPU times to attain solutions per run for GA and PSO was approximately 15-
18 and 2-4 seconds, respectively, depending on the selection of parameters (Table 
4). This implies that the PSO is capable of solving the test instances within a 
reasonable time and more efficient than GA. 
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5 Computational Results and Conclusions 

This study investigated the optimization problem for the cost function in the F-policy 
M/M/1/K queueing system with working vacation and an exponential startup time. 
This problem was previously studied by Yang et al. [1]. Our approach involved the 
use of the PSO algorithm to search thoroughly for the optimal solutions within a 
limited period of time. The numerical results indicate that the two stage method is 
capable of searching only a local solution space, and thus causing the searching result 
to fall into local extrema. Moreover, the QNM cannot be operated well for the 
constrained optimization problem. The ability of the PSO to thoroughly explore the 
solution space supports the superior search characteristics of the proposed solution. 
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Abstract. In this paper, we propose a novel anomaly targets detection algorithm 
baesd on information processing method and KRX anomaly detector. It use fully 
nolinear feature and decrease bands redundancy for hyperspectral imagery. 
Firstly, the original hyperspectral imagery is clustered by a new clustering 
method, i.e. k-means clustering of particle swarm optimization. Then, we 
extract a largest fourth-order cumulant value in every class, and constitute a 
optimal band subset. Finally, the KRX detector is used on the band subset to get 
anomaly detection results. The simulation results demonstrate that the proposed 
PSOC-KRX algorithm outperforms the other algorithm, it is higher precision and 
lower false alarm rate.  

Keywords: hyperspectral anomaly detection, particle swarm optimization, 
clustering. 

1 Introduction 

The hyperspectral imagery are composed of hundreds of contiguous and narrow 
spectral bands, which cover a wide spectral range with nanometer spectral resolution 
that large amounts of detailed characteristic features are provided for the target objects 
[1]. Therefore, it plays an important role in the area of geological exploration, military 
and agriculture [2]. In recent years, the question of anomaly targets detection becomes 
a hot because it isn’t need prior information to the actual hyperspectral images.  

The classic algorithm of hyperspectral anomaly target detection is the RX [3], which 
detects anomaly targets by mahalanobis distance measure for estimating the 
background mean vector and covariance matrix [4]. The detection performance of RX 
algorithm is low because it isn’t use nolinear property between hyperspectral imagery 
bands [5], and it is invalid for the local gaussian assumption in some cases. In [4], [6], 
kernel method is regarded as an effective method to processing anomaly targets issues. 
Kwon [4] presents a nonlinear RX-algorithm, which is the kernel RX anomaly target 
detection algorithm, through kernel mapping the original hyperspectral image to a high 
dimensional feature space, and exploit the higher order relationships in bands. KRX 
algorithm apply nolinear property between hyperspectral bands, the performance of 
algorithm get enhancing, but the complexity of algorithm is higher because there is 
complex to computing the covariance matrix and its inverse. Thus, we propose a new 
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anomaly targets detector which is the extended KRX algorithm. The new anomaly 
algorithm preprocesses hyperspectral image by using clustering method and extract 
targets feature by the fourth-order cumulant, the KRX detector is applying to the 
optimal band subsets. 

This paper is organized as follows: section 2 proposes the new anomaly detection 
algorithm based on a new clustering method and KRX detector, which is the extended 
KRX algorithm, and improve the classics KRX detection performance. Section 3 
provides simulation results and analysis. Conclusion is provided in Section 4. 

2 Anomaly Detection Algorithm Model 

In this section, we propose a new anomaly detection algorithm for hyperspectral 
imagery. The algorithm will detect anomaly targets more than the other algorithm, the 
proposed new anomaly detection algorithm preprocess the hyperspectral images by 
using the new information processing such as PSO, clustering, PCA, et al, we will 
analyze them in detail.  

2.1 Particle Swarm Optimization  

PSO is a stochastic optimization technique recently introduced by Kennedy and 
Eberhart, which is inspired by social behavior of bird flocking and fish schooling [7], 
[8]. Similar to other evolutionary computation algorithms such as genetic algorithms 
[9], [10], PSO is a population-based search method [11], on PSO, each individual 
called particle, which determines a fitness based on objective function. During the 
search process in the solution space, each particle will adjust their own position and 
velocity based on these good positions. The velocity adjustment is based upon the 
historical behaviors of the particles themselves as well as their neighbors, all particle 
will flying the best position, i.e., the global optimization [12]. 

Let us consider a swarm of size m , where is D -dimensional search 

spaces, i i1 i2 id iDX = (x , x ,...x ...x ) ( i =1,…, M ) denotes position vector of i th 

particle; i i1 i2 id iDV (v , v ,...v ...v )=  defines velocity of particle flying; 

i i1 i2 id iDPbest (pbest , pbest ,...pbest ...pbest )=  denotes the best local position; 

1 2 d DGbest (Gbest ,Gbest ,...Gbest ...Gbest )=  denotes the best global position. 

The searching procedure based on this concept can be described by (1), (2). 

(t 1) ( t ) t
id id 1 1 id id

t
2 2 d id

V v c rand (pbest x )

c rand (Gbest x )

+ = + −

+ −
                  (1) 

    ( t 1) (t ) (t 1)
id id idx x v+ += +                                 (2) 

where i 1, 2,...m,d 1, 2,...D= = , t  denotes iterations, 1rand and 2rand  denote 

random variables drawn from a uniform distribution in the range [0,1], 1c  and 2c  is 
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two acceleration constants that regulate the relative velocities with respect to the best 
global and local positions, respectively. The inertia weight w  is used as a tradeoff 
between global and local exploration capabilities of the swarm. Large values of this 
parameter permit better global exploration, whereas small values lead to a fine search in 
the solution space [11],[12]. 

2.2 k-means Clustering 

Clustering analysis is applied in many fields such as the natural sciences, the medical 
sciences, economics, marketing, etc [13]. So far, there are essentially two types of 
clustering methods: hierarchical algorithms and partitioning algorithms [13]. Now, 
partitioning clustering algorithms is a hot, there are essentially three types of 
partitioning clustering methods: graph theoretic, k-means, and FCM. By contrast, we 
use k-means clustering algorithms in the paper, it is a iterative clustering algorithm, it is 

1 2 i nX (x , x , x , x )=    data set, the idea behind k-means that it is find 

k clustering center, such as 1 2 j kc ,c , c , c  , it would the minimum distance 

between ix  and jc , jc  is the nearest clustering center at the range of ix , given by 

           
n k

c i j
i 1 j 1

J x c
= =

= −                          (3) 

k-means must determine the k  number of clustering at first, and set k  clustering 
center, clustering algorithm will stop until clustering centers aren’t change. The 
clustering result has related to k . However, the k  value is difficulty to setting in 
realistic, so, the result isn’t the ideal.  

2.3 KRX Algorithm 

Reed and Yu [4] developed a generalized-likelihood ratio test (GLRT) for 
hyperspectral imagery data, the method is called RX anomaly detector, which assumed 
that the spectrum of received signal and the covariance of the background are unknown 
[4]. RX algorithm is anomaly detection operator of pure pixels based on local normal 
model [14], the local parameters (local mean and covariance) is obtained by sliding a 
double concentric window, namely, called the inner window region and the outer 
window region. The outer window is larger than the inner window, the mean of spectral 
pixels is calculated falling within the outer window; the size of the inner window is 
assumed to be size of the typical target of interest in image [4]. 

Let each input spectral signal consist of l  spectral bands be denoted by  

    T
1 2 lx(n) [x (n), x (n), x (n)]=                   (4) 
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Where define BX  to be a l p×  matrix of the p  reference background clutter 

pixels. Each observation spectral pixel is represented as a column in the sample matrix 

BX  [4] 

B 1 2 PX [x , x , x ]=                            (5) 

The two competing hypotheses that the RX need distinguish are given by [8] 

0

1

H : x n (Target absent)

H : x s n (Target present)α
=
= +                       (6) 

where α =0 under 
0H  and α > 0 under 

1H . n  is a vector that represents the 

process of background clutters noise, and T
1 2 Js [s ,s , s ]=  is the spectral signature 

of anomalous target [4]. 
The two competing hypotheses of Kernel RX algorithm is the same as RX, the 

original data BX  is mapped into a potentially much higher dimensional feature space 

by a nonlinear mapping function Φ . 

B 1 2 P(X ) [ (x ), (x ), (x )]Φ = Φ Φ Φ                    (7) 

B(X )Φ is consists of two Gaussian distributions, thus modeling the two hypotheses as 

0

1

H : x n (Target absent)

H : x (s) n (Target present)β
Φ Φ

Φ Φ

=
= Φ +                 (8) 

Where β =0 under 
Φ0H  and β >0 under 

Φ1H , nΦ  represents a noise process in 

the feature space, (s)Φ  represents target spectral signature[4]. Thus the Kernel 

RX-algorithm is represented as 

T 1
B B B

ˆˆ ˆKRX( (r)) ( (r) μ ) C ( (r) μ )−
Φ Φ ΦΦ = Φ − Φ −           (9) 

Where Bμ̂ Φ和 BĈ Φ  are the estimated covariance and mean of the background in the 

feature space, respectively, given by 
M

B i
i 1

1μ̂ ( x )
MΦ

=

= Φ                     (10) 

M
T

B B B
i 1

1ˆ ˆ ˆC ( (x(i)) μ )( (x(i)) μ )
MΦ Φ Φ

=
= Φ − Φ −            (11) 

Using the well-known „kernel trick‰, given by 

  h(x, y) (x), (y) (x) (y)=< Φ Φ >= Φ ⋅Φ             (12) 
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Substituting (12) into (9) yields 

B B

T T T 1 T T
ˆ ˆr B r

ˆKRX( (r)) (h k ) H (h h )μ μ
−Φ = − −             (13) 

Where B B B M M B M B MĤ H H I I H I H I= − − + 。 

Equation (13) is be implemented with no knowledge of the mapping function Φ . 
The only requirement is a good choice for the kernel function h , we use the gaussian 
radial basis function as the kernel function defined as  

2 ˆh(x, y) exp( x y / )σ= − −                      (14)  

2.4 Proposed Algorithm 

As shown in Fig.1, The proposed new anomaly detection algorithm consists of four 
principal steps: 

1) At first, the hyperspectral imagery is identified by clustering the data into diff- 
erent class. clustering use k-means method, but k-means hasn’t enough that the 
shortage had discussed in preamble, so, the PSO method is used to improve the search 
process of the clustering center so that we achieve globally optimal solution. 

2) Secondly, during clustering, PSO method determines the clustering center first, 
i.e., find the optimal value. Then, we determine the clustering results by k-means  
algorithm. Thus, the total hyperspectral imagery bands are divided for the k classes 
with different bands numer. 

3) Thirdly, the fourth-order cumulant are used to measure the singularity of each 
nonlinear principal component one by one in clustering hyperspectral images, we can 
acquire the optimal band subsets. 

4) At last, the bands subset will input to KRX algorithm, we will acquire detection 
results, the result will be converted for binary image. 

 

 

Fig. 1. Flow chart of the proposed algorithm for anomaly detection 
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3 Analysis and Experiments on Simulated Data 

In this section, we apply a real hyperspectral images to do anomaly target detection 
experiments, which collected by the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS). The image is a naval air station in San Diego, California, USA[15], Fig.2(a) 
shows the pseudo-color image of data set (composed of band 10, 55 and 100), which 
consist of a scene of size 100 by 100 pixels, and contain 38 panels of anomaly targets. 
Fig.2(b) shows truth case of anomaly target distribution, respectively. The proposed 
PSOC-KRX algorithm was only compared with the other detection algorithms 
including the RX algorithms and the kernel RX algorithm, respectively. 
 

           
(a)                       (b) 

Fig. 2. Real hyperspectral image and corresponding distribution of anomaly targets 
(a) pseudo-color image. (b) truth anomaly targets distribution. 

At first, we use PSO k-means  clustering method to the original hyperspectral 
images, and there are get five different classes by setting the numbers of clustering 
center for five. Secondly, we extract five bands for those classes through fourth-order 
cumulant value, the value of five bands are largest in every class, which have the largest 
singularity, i.e. contain the most anomaly target feature. Then, the bands subset is 
composed of five bands. Finally, the KRX algorithm are used on the bands subset, and 
get anomaly targets detection results, kernel function is RBF, the parameter is 0.07. At 
the same time, we test also the other two algorithms for RX and KRX, Fig.3 show the 
detection performance of all algorithms, the proposed PSOC-KRX algorithm is 
demonstrated higher performance for detecting the possible targets. 

 

              
            (a)                              (b)                           (c) 

Fig. 3. Anomaly detection results of three algorithms：(a) the Proposed PSOC-KRX algorithm, 
(b) KRX algorithm, and (c) RX algorithm 
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The Receiver Operating Characteristic (ROC) curves provide a quantitative 
performance comparison by plotting the probability of detection. ROC represents the 
varying relationship of detection probability and false alarm rate [16]. The ROC curves 
of Fig.4 show the performance of PSOC-KRX anomaly targets detection is better than 
the others, the proposed algorithm significantly outperforms the kernel RX and the 
conventional RX at lower false alarm rate, Which improves detection perf- ormance of 
the conventional anomaly algorithms. 
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Fig. 4. ROC comparison of three anomaly detection algorithms 

4 Conclusion 

This paper proposes a novel anomaly detection algorithm by preprocessing 
hyperspectral imagery, which is extended the KRX algorithm to using fully the 
nolinear feature and decreasing redundancy between bands. The proposed PSOC- KRX 
algorithm for anomaly detection has several key differences. First, through particle 
swarm optimization clustering method, the original hyperspectral imagery are divided 
for a few different classes, which are similar in every classes, so, we use the 
fourth-order cumulant value to estimate the singularity of bands in every classes, and 
extract the band its value of cumulant is the largest. Then, the computation time is short 
because of bands reduction and without large kernel matrix computation. The 
simulation results prove that the proposed PSOC-KRX algorithm shows the well s 
performance for anomaly detection, which is superior to the conventional RX and 
kernel RX detector. 
 
Acknowledgment. This Study was Partially Supported by Science Foundation of 
Heilongjiang  Educational Committee (Research on Spectral Feature Based Nolinear 
Anomaly Target Detection Algorithms in Hyperspectral Imagery) under Grants 
12533002, and by Daqing Normal University Science Foundation for Youths under 
Grants 11ZR09. 



 Anomaly Detection in Hyperspectral Imagery Based on PSO Clustering 191 

 

References 

1. Du, B., Zhang, L.: Random-Selection-Based Anomaly Detector for Hyperspectral Imagery. 
IEEE Transactions on Geoscience and Remote Sensing 49, 1578–1589 (2011) 

2. Qi, B., Zhao, C.H., Youn, E., Nansen, C.: Use of Weighting Algorithms to Improve 
Traditional Support Vector Machine Based Classifications of Reflectance Data. Optics 
Express 19, 26816–26826 (2011) 

3. Reed, I.S., Yu, X.: Adaptive Multiple-Band CFAR Detection of an Optical Pattern With 
Unknown Spectral Distribution. IEEE Trans. Acoust., Speech Signal Process. 38, 
1760–1770 (1990) 

4. Kwon, H., Nasrabad, N.M.: Kernel RX-Algorithm: A Nonlinear Anomaly Detector for 
Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing 43, 
388–397 (2005) 

5. Matteoli, S., Diani, M., Corsini, G.: Improved Estimation of Local Background  
Covariance Matrix for Anomaly Detection in Hyperspectral Images. Opt. Eng. 49, 
046201-1- 046201-16 (2010) 

6. Banerjee, A., Burlina, P., Dieh, C.: A Support Vector Method for Anomaly Detection In 
Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing 44, 
2282–2291 (2006) 

7. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001) 
8. Bazi, Y., Melgani, F.: Semisupervised PSO-SVM Regression for Biophysical Parameter 

Estimation. IEEE Trans. Geosci. Remote Sens. 45, 1887–1895 (2006) 
9. Bazi, Y., Melgani, F.: Toward An Optimal SVM Classification System for Hyperspectral 

Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 44, 3374–3385 (2006) 
10. Ghoggali, N., Melgani, F., Bazi, Y.: A multiobjective genetic SVM approach for 

classification problems with limited training samples. IEEE Trans. Geosci. Remote 
Sens. 47, 1707–1718 (2009) 

11. Paoli, M., Melgani, F.: Clustering of Hyperspectral Image Based on Multiobjective Particle 
Swarm Optimization. IEEE Transactions on Geoscience and Remote Sensing 47, 
4175–4178 (2009) 

12. Niknam, T., Amiri, B.: An Efficient Hybrid Approach Based on PSO, ACO and K-Means 
for Cluster Analysis. Applied Soft Computing, 183-197 (2010) 

13. Härdle, W., Simar, L.: Applied Multivariate Statistical Analysis, pp. 303–322. Springer, 
Heidelberg (2007) 

14. Matteoli, S., Diani, M., Corsini, G.: A Tutorial Overview of Anomaly Detection in 
Hyperspectral Images. IEEE Aerosp. Electron. Syst. Mag. Tutorials 25, 5–28 (2010) 

15. Hazai, S.K., Safari, A., Mojaradi, B., Homayouni, S.: A Fast-Adaptive Support Vector 
Method for Full-Pixel Anomaly Detection in Hyperspectral Images. In: 2011 IEEE 
Geoscience and Remote Sensing Society, Vancourer, Canada, pp. 1763–1766 (2011) 

16. Gu, Y.F., Liu, Y., Zhang, Y.: A Selective Kpca Algorithm Based on High-Order Statistics 
For Anomaly Detection in Hyperspectral Imagery. IEEE Geoscience and Remote Sensing 
Letters 5, 43–47 (2008) 



Transcribing Bach Chorales

Using Particle Swarm Optimisations

Somnuk Phon-Amnuaisuk

Music Informatics Research Group,
Faculty of Business and Computing,

Brunei Institute of Technology, Brunei Darussalam
somnuk.phonamnuaisuk@itb.edu.bn

Abstract. This paper reports a novel application of particle swarm
optimisation to polyphonic transcription task. The system transforms
an input audio into activation strength of pitches in the desired range.
This transformation begins with audio information in time-domain to
frequency-domain and finally, to activation strength of pitches (a.k.a.
piano-roll representation). We can infer the likely sounding pitches by
comparing the observed activation strength of input audio to reference
Tone-models. Although each Tone-model is learned offline from the
pitches one wish to perform transcription with, this process often only
approximates the Tone-model characteristics due to the variations in vol-
ume and other effects introduced from the manner of note executions.
Hence, predicting sounding notes based solely on Tone-models gives in-
accurate predictions. Here, we apply PSO to search for an optimum ag-
gregation of different predicted pitches that best represents the input
activation strength. We describe our problem formulation and the de-
sign of our approach. The experimental results show our approach to be
of potential in the task of polyphonic transcription.

Keywords: Particle swarm optimisation, Polyphonic transcription,
Tone-models, Transcribing Bach’s Chorales.

1 Introduction

Polyphonic transcription is an important research problem since it could enable
applications such as score following, automatic transcription of sheet music and
other related downstream applications in music education. One of the pioneer
works by [1], approached this problem using a blackboard expert system ap-
proach. The system employed many knowledge sources to search for polyphonic
notes based on rules. Knowledge elicitation, knowledge engineering and depth
of inference chain pose challenges to the rule-based approach. In contrast to
the rule-based approach, a Bayesian approach [2,3,4] summarises rules as condi-
tional probability table (CPT). This provides the means to handle uncertainty
as well as reducing the depth of the inference chain since the number of CPT
in a Bayesian network tends to be a lot smaller than the number of rules in an
expert system.

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 192–199, 2013.
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Supervised learning techniques can lift the burden of knowledge elicitation
and knowledge engineering by facilitating model construction through learning
from training examples. Researchers have employed artificial neural networks
[5] and graphical models [6] to build their transcription models. Although the
learning can be automated, the supervised learning approach requires enough
training data points to construct a good model. This implies that the model
must be trained with enough polyphonic sound examples. This is ineffective for
our problem since all possible combinations of only four pitches in the pitch range
between C2 to B5 (four octaves) would already be 48!

44!×4! = 194580 patterns.
Instead of learning a complete example set, if we could learn only basis vectors

in which a complete example set could be constructed from the basis vectors,
then this should be a much more effective method. Recently, factoring techniques
[7,8] have been applied to polyphonic transcription task. The factoring technique
can be interpreted as solving for aggregations of basis vectors from a given input.
The learning of basis vectors, where all observations could be reconstructed based
on the basis vectors, has received a lot of interest recently [9,10]. The idea of the
basis vector is appealing and in this work, we explore the concept using PSO to
search for a good aggregation of Tone-models (basis vectors).

This paper is organised into the following sections. Section 2 discusses our
proposed concept and gives the details of the techniques behind it. Section 3
provides the output of the proposed apprach. Finally, the conclusion and further
research are presented in section 4.

2 Problem Formulation

Let x be a vector of length N and x1, ..., xn are elements of the vector rep-
resenting time-domain samples of polyphonic audio input. Let X be a vector
representing frequency domain contents of the corresponding time-domain x,
Fourier transformation states that the element k of X is:

Xk =

N−1∑
n=0

hnxne
−j2πkn/N (1)

where hn is the hamming window defined as 0.54 - 0.46cos(2π nN ) and k =
0, 1, ..., N/2. In our implementation, Xk is further binned according to the musi-
cal pitches. The binning transforms Xk coefficients into a piano roll of activation
strength with the center frequency fc of pitch i, i ∈ {40, ..., 99} 1 at:

fc(i) = 440× 2(i−69)/12 (2)

The activation magnitude of the pitch i is the average of the magnitude of Xk

coefficients in the range of kl = 0.99fc(i) to ku = 1.01fc(i) where, elements of X
is the average of Xk coefficients between kl and ku for i ∈ {40, ..., 99}.

The vector X represents resulting activation strength aggregated from un-
known pitches. In order to infer a suitable combination of pitch, we need to have

1 This corresponds to pitches E2, ..., D#7.
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activation information of each pitch. Let Xpn denotes the piano-roll vector for
pitch pn. Hence, an audio input of a sounding note C4 (MIDI note #60) will
be notated as X60. Theoretically, this vector should have activation activities
peak at its overtone series; the following MIDI note numbers: 60, 72, 79, 84, 88,
91, 94, 96, 98. The harmonic pattern of each pitch provides a useful Tone-model
signature of the pitch.

2.1 Framing Polyphonic Transcription as a PSO Search

Formally, let a particle p = (x11, ..., xij) represents weighted factors of j plausible
Tone-models where xij ∈ R denotes the weight of particle i for Tone-model j.
The particles at time point t, p(t) could be transformed across time to t+ 1 as
a new vector p(t+ 1) as follow:

xij(t+ 1) = xij(t) + vij(t+ 1) (3)

where vij is the velocity of particle i of a Tone-model j.

vij(t+ 1) = wvij(t) + c1r1j(pij(t)− xij(t)) + c2r2j(gij(t)− xij(t)) (4)

where w is the inertia weight for PSO. The vij is the velocity of a particle i
in a j dimension. The c1r1j and c2r2j are weight parameters that combine the
influence of the local best position pij , global best position gij and the current
velocity to determine the velocities of the particles in the next step. The inertia
w, parameters c1 and c2 are modified in each run according to the information
below:

Parameters Value

Swarm size 40
Max-iteration for each run 50
Time step t t = 1, ...,50
w ∈ [0.5 1.2] w ← wmax − t(wmax − wmin)/maxIteration
c1 ∈ [0.3 0.9] c1 ← c1max − t(c1max − c1min)/maxIteration
c2 ∈ [0.7 1.5] c2 ← c2max − t(c2max − c2min)/maxIteration
r1, r2 random values ∈ [0 1]

Let P denotes a vector of pij and G denotes a vector of gij where pij represents
the activation strength of the pitch j of the particle i, and gij represents the most
probable activation strength of the pitch j of the whole swarm. The objective
function of each particle in the swarm is to minimise

fobj = argmin|X−X{pn}P| (5)

where G will take the values of the best P at each step. The final G suggests
the optimum aggregation of Tone-models which is actually the transcribed notes,
i.e., X ≈ X{pn}G.

In this implementation, we implement two PSO variations. In the first imple-
mentation, 15 sub-swarms, each with the size of 40, searches for the optimum
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weighted aggregation of four pitches. In the second implementation, a swarm
size of 40 searches for the optimal weighted aggregation of pitches from a given
six possible choices. This is motivated by the need to reduce the computational
expense of the sub-swarm approach.

3 Results and Discussion

3.1 Data Preparation

All Bach chorales MIDI files used in this experiment were downloaded from
http://www.jsbchorales.net/bwv.shtml. The choice of chorales were randomly
picked and it was ascertained that all the notes did not fall out of the range
between E2 to G5. We recorded the wave files from these MIDI files using a
standard MIDI sound card. The recording parameters were set as follows: sound
patch - acoustic grand piano, sampling rate - 44100 Hz, bit-depth - 16 bits, and
channel - mono. Figure 1 shows the first five bars of Bach chorale titled Aus tiefer
Not schrei ich zu dir and its corresponding piano roll representation. The piano-
roll representation provided a ground truth for us to evaluate the performance
of the system.

Fig. 1. A piano roll representation indicating note on (white) and note off (black). The
area inside the red rectangle corresponds to the music notations below.
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Fig. 2. This figure illustrates our pixel based evaluation scheme. This approach calcu-
late TP, FP, and FN from the number of pixels. The three squares highlight a false
negative example and the three circles highlight a false positive example.

3.2 Evaluation Scheme

From the literature, we found that different researchers may define the notion
of correctly transcribed notes differently. For example, should a note with pitch
value of C4 and duration of 2 seconds, be considered as correctly transcribed if
the pitch is correctly identified but the duration was erroneously identified as 1.5
seconds? Due to this issue, we do not count the note, rather we count the pixel.
This was also the approach taken by [10,11]. This approach represented a ground
truth and the transcription output as images of note on/off (see Figure 2). Over-
laying the transcribed notes on the ground truth revealed pixels corresponding
to true positive (TP: correctly transcribed), false positive (FP: transcribed as
notes while they are not notes) and false negative (FN: not transcribed as notes
while they are notes). We measured the performance of the system using the
standard precision, recall and F-score measures [11].

3.3 Experimental Results

In this experiment, a total of eight chorales were tested. The precison, recall and
F score of all chorales are summarised in Table 1. The values reported here are
the average values over 10 runs. Their standard deviations are less than 0.5%.
The results show that the performance of a single swarm PSO (each particle
represents six plausible pitches) is comparable to the performance from PSO
with 15 sub-swarms (each particle represents four plausible pitches). In this
problem, running a single swarm and allowing each particle to represent more
pitches than what is required can be a good design tactic. However, there must
be some process to ensure that not more than four pitches be included in the
final output.

Figure 3 shows an example of the transcription output. The top most row is
the ground truth taken from the MIDI file. Note events from the MIDI file are
scaled to fit the numbers of the frames in the output transcriptions on the second
row. The third, fourth and fifth rows are the TP, FP and FN respectively. The TP
shows correctly identified pitches. The FP appears to be from a slight mismatch
of correctly transcribed notes. The FN often appears in the low pitch region.
This pattern appears in all the ten chorales and this decreases the performance
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Fig. 3. Transcription output of chorale Aus tiefer Not schrei ich zu dir, see text for
more detailed discussion

Table 1. Summary of PSO performances with 15 sub-swarms, and PSO with single
swarm in transcribing Bach Chorales

PSO PSO
Chorales 15 sub-swarms single swarm

Prec Recall F Prec Recall F

Aus tiefer Not schrei ich zu dir 0.76 0.56 0.64 0.76 0.56 0.64
Nun komm, der Heiden Heiland 0.70 0.60 0.65 0.71 0.60 0.65
Ach wie nichtig, ach wie flüchtig 0.78 0.62 0.69 0.77 0.62 0.69

Wär’ Gott nicht mit uns diese Zeit 0.68 0.59 0.63 0.67 0.59 0.63
Herr Jesu Christ, du höchstes Gut 0.71 0.59 0.65 0.70 0.60 0.65

Ach Gott und Herr 0.78 0.61 0.68 0.78 0.61 0.68
Es ist das Heil uns kommen her 0.76 0.65 0.69 0.74 0.65 0.69

Nun ruhen alle Wälder 0.73 0.62 0.67 0.74 0.62 0.68
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Table 2. Summary of performance comparison between PSO and NMF. Numbers in
bold signify the higher F-measures between the two experiments.

Chorales NMF PSO
Prec Recall F Prec Recall F

Aus tiefer Not schrei ich zu dir 0.63 0.63 0.63 0.76 0.56 0.64
Nun komm, der Heiden Heiland 0.66 0.70 0.68 0.71 0.60 0.65
Ach wie nichtig, ach wie flüchtig 0.60 0.78 0.67 0.77 0.62 0.69

Wär’ Gott nicht mit uns diese Zeit 0.66 0.69 0.67 0.67 0.59 0.63
Herr Jesu Christ, du höchstes Gut 0.65 0.69 0.67 0.70 0.60 0.65

Ach Gott und Herr 0.67 0.68 0.68 0.78 0.61 0.68
Es ist das Heil uns kommen her 0.67 0.71 0.69 0.74 0.65 0.69

Nun ruhen alle Wälder 0.55 0.70 0.62 0.74 0.62 0.68

of the system substantially. Upon inspection of the sound files, we believe this
could be due to the nature of the bass parts which tends to be lower in volume
as well as in their strength in FT coefficients.

3.4 Comparison with Non-negative Matrix Factorisation Technique

Table 2 provides the results from the PSO and the Non-negative Matrix
Factorisation (NMF) techniques. NMF factorises an input matrix V into two
non-negative components i.e., V ≈ WH. The non-negative constraint gives an
interpretation of part-based aggregations [7]. NMF has been successfully ap-
plied to many applications, including to polyphonic transcription problem. In
[8], the authors showed that the technique was applicable to polyphonic tran-
scription tasks. Recently, NMF has been applied to polyphonic transcription
problem [12,13]. In this comparison, NMF factors an input activation strength
V to transcription output H based on the Tone-model W. We would like to
point out the similarity between V ≈ WH and X ≈ X{pn}G. The experiment
shows comparable performance between the NMF and our proposed approach.

4 Conclusion and Future Work

In this paper, we have shown the application of PSO in polyphonic transcription
task. The problem domain is formulated as the optimisation of Tone-models
aggregation, where each particle searches for a good aggregation factor. The
final aggregation is the global best information of the swarm. The experimental
results demonstrate that our proposed technique has a good potential. The same
data (i.e., chorales, Tone-models) are also employed with the competing NMF
technique. The results from both techniques are comparable. In future work, we
will improve on the transcription accuracy of notes in the low frequency region
which we believe is not due to the limitation of the PSO, rather from the signal
processing part of the system.
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Abstract. Public cloud providers provide Infrastructure as a Service (IaaS) to 
remote users. For IaaS providers, how to schedule tasks to meet peak demand is 
a big challenge. Previous researches proposed purchasing machines in advance 
or building cloud federation to resolve this problem. However, the former is not 
economic and the latter is hard to be put into practice at present. In this paper, 
we propose a hybrid cloud architecture, in which an IaaS provider can 
outsource its tasks to External Clouds (ECs) without establishing any agreement 
or standard when its local resources are not sufficient. The key issue is how to 
allocate users’ tasks to maximize its profit while guarantee QoS. The problem is 
formulated as a Deadline Constrained Task Scheduling (DCTS) problem which 
is resolved by standard particle swarm optimization (PSO), and compared with 
an exact approach (CPLEX). Experiment results show that Standard-PSO is 
very effective for this problem.  

Keywords: IaaS cloud, task scheduling, hybrid cloud, Standard-PSO. 

1 Introduction 

Cloud computing attracts an increasing number of individual and corporations to rent 
cloud service due to its convenience and economy. As an important part of cloud 
service, Infrastructure as a Service (IaaS) becomes much more popular because it is 
the foundation for higher-level service such as Platform as a Service (PaaS) and 
Software as a Service (SaaS) [1]. Many giant IaaS providers such as Amazon EC2, 
IBM Smart Cloud Enterprise and Sun Grid have emerged. They can offer different 
VM instance types, which are characterized with different device configuration, 
Quality of Service (QoS) and pricing models. However, the arriving of users’ requests 
is aperiodic and the type and amount of required VM instance are uncertain. Thus, it 
may occur that an IaaS provider cannot meet all the demands while guaranteeing 
users’ QoS when peak demands happen. 

To tackle this problem, in this paper an effective approach is proposed to utilize 
hybrid cloud model to allocate limited resources from IaaS provider’s perspective. In 
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our approach, an IaaS cloud is regarded as a private cloud and is able to outsource to 
its tasks to other clouds when its local resources are not enough to satisfy user’s 
requirements. The resource allocation problem in the hybrid cloud model is a kind of 
Deadline Constrained Task Scheduling (DCTS) problem, in which each task has a 
strict deadline and the objective is to maximize the profit of an IaaS cloud provider 
under the premise of guaranteeing each task’s deadline constraint. To achieve this, a 
particle swarm optimization (PSO) based scheduling algorithm is proposed to get an 
optimal or suboptimal solution in a shorter computational time.   

The rest of the paper is organized as follows: Section 2 establishes an  
integer programming (IP) model for the DCTS. Standard-PSO based scheduling 
algorithm is proposed for the DCTS in Section 3. The experimental results are  
given in Section 4. Section 5 reviews relative works. We conclude this paper in 
Section 6. 

2 Problem Definition 

From an IaaS provider’s perspective, the private cloud refers to itself, and ECs to 
other public IaaS Clouds. Our model focuses on batch types of workloads that consist 
of a bag of independent instances. For example, an enterprise wants to understand its 
customers in order to develop a better marketing plan, or examine its supply chain to 
look for opportunities to improve efficiency, or analyze sensor data to predict 
machines failure and prevent revenue lost earlier [2]. In our problem, each application 
submitted by users consists of a number of parallel and independent tasks and has a 
strict deadline, before which all of its tasks must be finished. Each task requires one 
specific type of VM instance. 

Suppose that 1 2{ , , , }nCP CP CP CP=   is a set of cloud providers. Assume 1CP is 

the private cloud and 2 , , nCP CP  are ECs. 1 2{ , , , }wA a a a=  is a set of 

applications. Each application ( {1, 2, , })ja j w∈  has a strict deadline jd and runtime

jr , and consists of a task set 1 2{ , , , }
jj j j jTTask t t t=  .Time is explicitly represented 

in the IP model by introducing time slots with a granularity of one hour. Let S be the 
maximum number of time slots in the schedule process, we have 

{1,2, , }max ( )j w jS d∈=  .The objective is to allocate the w applications to 

( 1, 2, , )kCP k n=   to maximize the profit of CP1. Each task must be allocated to one 

unique ( {1, 2, , })kCP k n∈  . Once a task begins to execute, its running slots are 

consecutive. In each slot (s {1, 2, ,S})s ∈  , resources used by all task executed in 

1CP cannot exceed the total resources of 1CP .  

Problem parameters and decision variables are defined in Tables 1 and 2, 
respectively. 
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Table 1. Problem Parameters 

parameter  parameter  

n Number of cloud providers I Number of VM types 

w Number of applications vp  
Price of the vth VM type in 

1CP  

kvc  
Cost of the vth VM type in 

kCP  jd  Deadline of the jth 
application 

jr  Runtime of the jth application S Maximum deadline 

jT  Number of tasks in the jth 
application 

jvb  

If 1jvb = , application ja  

use vVM ; if 0jvb = , it 

does not use this type. 

vcpu  
Number of CPUs for the vth 
VM type in 1CP  vmem  

Size of memory for the vth 
VM type in 1CP  

total_cpu
 

Total number of CPUs in 1CP  total_mem 
Total size of memory in 

1CP  

Table 2. Decision Variables 

jlky  
Binary decision variable, such that jlky =1 if task l in application j is 

allocated to kCP ; otherwise 0jlky =  

jlst  Integer decision variable, start time slot of task jlt  

jlsz  
Binary decision variable, such that 1jlsz =  if task jlt is allocated to time 

slot s of 1CP  

 
The problem can be formulated as the following IP model. 

Maximize 

 
1 1 1 1 1

Profit
jTw I w I n

j jv v j jlk jv kv j
j 1 v j l v k

T b p r y b c r
= = = = = =

= −   (1) 

Subject to: 

 ,1
1

=
=

n

k
jlky ∀ { } { }jTlwj ,,2,1,,,2,1  ∈∈  (2) 

 jjl

d

s
jls ryz

j

1
1

=
=

, ∀ { } { }jTlwj ,,2,1,,,2,1  ∈∈  (3) 

 ,1≥jlst ∀ { } { }jTlwj ,,2,1,,,2,1  ∈∈  (4) 

 1+−≤ jjjl rdst , ∀ { } { }jTlwj ,,2,1,,,2,1  ∈∈  (5) 

 ( ) ( ) ( ) ( ) ( )( )11 1jl j j jl jl j jls jls st s d r s st s st r z y≤ − ∨ ≥ − ∨ ≥ ∧ ≤ + − ∧ =  (6) 

 ∀ { }jds ,2,1∈ , { } { }jTlwj ,,2,1,,,2,1  ∈∈   
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 cuptotalcpubz
w

j

T

l

I

v
vjvjls

j

_
1 1 1

≤
= = =

, ∀ { }Ss ,2,1∈  (7) 

 memtotalmembz
w

j

T

l

I

v
vjvjls

j

_
1 1 1

≤
= = =

, ∀ { }Ss ,2,1∈  (8) 

 { }1,0∈jlky , ∀ { } { }jTlwj ,,2,1,,,2,1  ∈∈ , { }nk ,2,1∈  (9) 

 { }1,0∈jlsz , ∀ { } { }jTlwj ,,2,1,,,2,1  ∈∈ , { }Ss ,2,1∈  (10) 

 },,2,1{ Sst jl ∈ , ∀ { } { }jTlwj ,,2,1,,,2,1  ∈∈  (11) 

The first term of the objective function (1) represents the income of 1CP  and the second 

one means its cost. Constraint (2) guarantees that each task is allocated to exactly one 
cloud. Constrain (3) ensures that each task must be finished before its deadline. 
Constraints (4)-(6) guarantee that each task is non-preemptable. Constraints (7) and (8) are 
only applied to 1CP and restrict the number of CPUs and amount of memory used for 

each slot. Finally, Eq. (9)-(11) describe the decision variable definitions.  

3 PSO Based Scheduling Approach 

The problem is a task allocation and sequence one. Solving such a problem using 
exact approach will take a large amount of computational time for a large size 
problem. Hence, a Particle Swarm Optimization (PSO) [3] based heuristic scheduling 
approach is used to solve it. In this approach, each particle represents a set of 
priorities of all tasks. The purpose of PSO is to produce an optimal particle (a set of 
priorities) to allocate cloud resources in the most effective manner. 

3.1 Standard-PSO 

In Standard-PSO, each individual treated as a particle in D-dimensional search space, 
and represented by a three triple { , , }i i iX V P . 1 2( , , , )i i i iDX x x x=  and

1 2( , , , )i i i iDV v v v=  denote the position and velocity of particle i, respectively. 

1 2( , , )i i i iDP p p p=  represents the personal best (pbest) of particle i. 

1 2( , , , )DG g g g=   denotes the global best (gbest). The quality of a position (particle) 

is evaluated by a fitness function. The value of each component in iV  can be clamped 

to the range of [ ]max max,v v−  to control excessive roaming of particle, and updated by 

 [ ] [ ]1 1 2 2( 1) ( ) ( ) ( ) ( ) ( )id id id id id dv t v t c r x t p t c r x t g tω+ = + − + −  (12) 

where 1,2, ,i M=  denotes the number of particles and 1,2, ,d D=  is the 

dimension of particles. 1r and 2r  are uniformly distributed random number whose 

range is [0, 1]. 1c and 2c  are learning factors. 1c is the individual cognition 

component and 2c  is the social communication component. ω is the inertia weight 

to avoid unlimited growth of particle’s velocity. The particle flies toward a new 
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position according to Eq. (13), and each value of the new position should not exceed 
the range of [min , max ]X X . 

 ( 1) ( ) ( 1)id id idx t x t v t+ = + +  (13) 

The procedure of Standard-PSO is as follows. 

Step 1) Initialize position and velocity of all particles randomly in the search space. 
Step 2) Evaluate fitness value of all particles; let each particle’s pbest and its fitness 

value equal to the current position and fitness value, respectively; let gbest be the 
best one among all particles. 

Step 3) Updated each particle’s velocity and position using (12) and (13). 
Step 4) Calculate the fitness value of all particles; 
Step 5) Update pbest. For each particle, if fitness value of its new position is better 

than that of its pbest, then replace the pbest by the new position.  
Step 6) Update gbest. For each particle, if fitness value of its new position is better 

than that of its gbest, then replace its gbest by the new position.  
Step 7) If the stopping criterion is satisfied, then output gbest and its fitness value; 

otherwise go to Step 3). 

3.2 Solution Representation 

Each application contains many tasks, such that all applications can be considered as 

a set of tasks, i.e., 1 2
1

{ , , , }( )
w

TN j
j

T t t t TN T
=

= =  . The purpose is to allocate these TN 

tasks to n clouds. A particle is expressed as a TN (that is, D = TN) dimensions vector 
and each dimension (position) represents a task. The ranked-order value rule [4] is 
used to decode a particle 1 2( , , , )i i i iDX x x x=   into a permutation of tasks 

1 2{ , , , }DT t t t=  [5] to evaluate this particle. For example, for a problem with 5 tasks 

(D=5), the ith particle is denoted by (0.94,3.46, 2.78, 4.83,3.67)iX = . The position 

4ix  has the greatest value, such that the task represented by 4ix  is assigned a rank 

value one. Similarly, the rank values of 2, 3, 4 and 5 are assigned to 5ix , 2 3,i ix x and

1ix , respectively. Thus, a priority sequence of the tasks, {5,3, 4,1,2}Pri =  is obtained. 

3.3 Evaluation Function 

Each task in a particle is allocated to ( 1, 2, , )kCP k n=   according to its priority. If 

1CP  has available resources to meet a task’s demand during its runtime, then the task 

is allocated to 1CP ; otherwise, an EC with minimal cost is chosen by 

 ( )
1{2, , }

EC =arg min{ },
I

l app l v kv
vk n

b c
=∈



{1,2, , }l D∈   (14) 

where ( )app l means the application that the lth task belongs to.  

The pseudo-code of evaluation process for each particle is as follows.   
Step 1) Initialization 
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total_cost=0, _ _savail cpu total cpu= , _ _savail mem total mem= , {1,2, , }s S∈   

Calculate the total income by  

 ( ) ( )
1 1

D I

app l v v app l
l v

total_income b p r
= =

=  (15) 

Step 2) Calculate the total cost:  
Sort the task set T in a descending order according to the code of the particle.  
Let the lth task in T be lt , its start time be lst and let 1lst = , {1,2, , }l D∈  ; 

For each task lt  in T 

While ( ) ( ) 1l app l app lst d r≤ − +  

IsPC= true; 
For each ( ){ , , 1}l l app ls st st r∈ + −  

If ( )
1

_
I

v app l v s
v

cpu b avail cpu
=

≥ or ( )
1

I

v app l v
v

mem b
=
 _ savail mem≥  

Set IsPC = false; break for;  
End If 

End For 
If IsPC = true 

Calculate the cost for task lt  by  

 1 ( ) ( )
1

cost
I

l v app l v app l
v

c b r
=

=   (16) 

Update _ savail cpu and _ savail mem  for each { , , 1}l l ls st st r∈ + − ; 

Break while; 
End If 

1l lst st= + ; 

End While 
If IsPC==false 

Select the EC using (14) and calculate the cost of task lt  by 

 ( ) ( ) ( )
1

cost
l

I

l EC v app l v app l
v

c b r
=

=   (17) 

End If 
_ _ ltotal cost total cost cost= + ; 

End for 
Step 3) Output -Profit total_income total_cost= . 

4 Experimental Results and Analysis 

To verify the effectiveness of our approach, it is applied to several problem instances. 
The private cloud and EC’s prices and instance types are set according to practice, 
and are given in Table 3-5. CPU and memory are chosen here because of their 
importance for a VM instance and common use in many researches [6-7]. 
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Table 3. Instance Types  

Name CPUs Memory 

Small 1 1.7 
Large 4 7.5 
Xlarge 8 15 

Table 4. Private Cloud’s Cost and Price 

 Small Large Xlarge 
cost 0.03 0.12 0.24 
price 0.08 0.32 0.64 

Table 5. ECs’ Price 

EC Small Large Xlarge 
A 0.085 0.34 0.68 
B 0.070 0.30 0.70 
C 0.100 0.40 0.72 

 
Three problem instances are designed. Problem instance 1 consists of 8 

applications. Problem parameters are shown in Table 6.VM instance type requested 
by each application is randomly selected from the above VM instance types. Problem 
instance 1 is a small size one, which is used to compare Standard-PSO with the exact 
approach (CPLEX v12.0) to show accuracy of our approach. Problem instances 2 and 
3 are large size ones, and are used to test the ability of our approach to handle large 
size problem instances. Their parameters are shown in Table 7.  

Table 6. Parameters of Problem Instance 1 

Applications Cloud Resources 

Number of tasks ～unif[1,5] CPU 20 

VM instance type ～unif[1,3] Memory 40GB 

Deadline (hours) ～unif[1,5]   

Runtime (hours) ～unif[1,Deadline]   

Table 7. Parameters of Problem Instances 2 and 3 

Applications Cloud Resources 

Number of tasks ～unif[1,50] CPU 512 

VM instance type ～unif[1,3] Memory 1024GB 

Deadline (hours) ～unif[1,168]   

Runtime (hours) ～unif[1,Deadline]   

 
Standard-PSO based heuristic approach (SPSO-HA) is compared with CPLEX 

v12.0. SPSO-HA’s parameters are shown in Table 8. To make the number of particles 
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in the swarm increase with the number of tasks, the swarm size pop_size is set to 2D.  
 and  are given by 2.0 as suggested in [8]. is assigned as 0.4. For all problem 

instances, the termination criteria of Standard-PSO are to reach maxGen. 

Table 8. Parameters of SPSO-HA 

pop_size maxGen maxv  minX maxX  

2D 1000 ⌊D/2⌋ 0 D 2 2 0.4 

 
SPSO-HA is coded in Matlab 7.0 and run on a PC with 64-bit intel core i5 CPU 

and 4 GB memory using Windows 7 operation system. For all problem instances, 
SPSO-HA carries out 10 independent runs. CPLEX is a mathematical programming 
solver, which is able to solve the formulation (Equations (1)-(11)) of this problem to 
obtain optimal solution. 

For problem instance 1, CPLEX can obtain its optimal solution within reasonable 
time. The average profits obtained in the 10 runs of SPSO-HA and their average 
runtime are given in Table 9. We can see that the average profit obtained by SPSO-
HA is 4.84, which is very close to the optimal profit found by CPLEX.  

Table 9. Comparison of Average Profit and Runtime of Standard-PSO 

Algorithms Average profit Average runtime(second) 

SPSO-HA 4.8400 14.72 
CPLEX 4.9100 0.98 

 
Since we obtain the optimal solution, we can calculate the offline error (OE) and 

standard deviation (SD) of solutions got by SPSO-HA by (18) and (19), respectively.  

 
1

1/ ( | |)
rn

i
i

OE rn prof prof
=

= −  (18) 

where rn represents the number of runs; iprof is the profit of the solution obtained in 

the ith run and iprof  is the optimal profit obtained by CPLEX.  

 2

1
( _ ) /

rn

i
i

SD prof mean prof rn
=

= −  (19) 

where mean_prof is the average profit obtained in the 10 runs.  
The OE and SD obtained by the SPSO-HA are given in Table 10. We can observe 

that the profit achieved by the SPSO-HA is very close to the optimal profit.  

Table 10. Comparison of OE and SD for Problem Instance 1 

Algorithm offline error standard deviation 
SPSO-HA  0.0700 0.0733 

 
For lager size problem instance 2 and 3, since CPLEX cannot obtain their optimal 

solutions with a reasonable computational time, the maximal runtime of CPLEX is 

1c 2c ϖ

1c 2c ϖ
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restricted as 5 hours. Table 11 gives the average profits and runtime in the 10 runs of 
SPSO-HA and profits obtained by CPLEX for the two instances. It is observed that 
although CPLEX runs much longer time, solutions found by CPLEX are worse than 
those of SPSO-HA.  

Table 11. Comparison of Average Profit and Runtime for Problem Instances 2 and 3 

Algorithms 
Problem instance 2 Problem instance3 

Ave profit Avetime (second) Ave profit Avetime (second) 
SPSO-HA 3516.5840 2790.60 2846.0600 4211.59 
CPLEX (5 hrs) 3027.8400 18000.00 2830.8800 18000.00 

5 Related Work 

At present, many researches have been studied to effectively allocate cloud resources 
for a single cloud [9-11]. Nathani et al. [9] proposed an algorithm to deal with 
deadline-sensitive task scheduling problem. This scheduling approach solves the 
limited resources problem by rejecting user requests, resulting in decreasing users’ 
QoS. Zhao et al. [10] proposed an approach to schedule independent and divisible 
tasks to minimize the maximal complement time of all tasks, and did not consider the 
case of resource limitation. In [11], Li suggested that the job scheduling system 
should use cloud resources as few as possible to reduce the cost while meeting the 
requirement of QoS. All above researches focused on the local resources allocation in 
a single IaaS cloud, and did not consider scheduling tasks amongst different clouds. 
An IaaS provider will reject task requests when its resources are not sufficient; 
however, rejecting task requests may lose the reputation and decrease QoS [12]. 

In order to enhance clouds’ elasticity and reliability, resource and task scheduling 
among multiple clouds has been studied. The concept of cloud federation was 
proposed in [13] and [14], which supplies local resources by integrating multiple 
clouds. However, cloud federation is not easy to be applied to practice before 
standardization and cooperation agreements are published and signed by cloud 
federation members.  

From cloud providers’ perspective, effectively allocating limited resources is 
important to maximize its profit and guarantee the QoS. To the best of our 
knowledge, our research is the first one on building a framework to outsource tasks to 
external clouds from an IaaS provider’s perspective to maximize profit and guarantee 
user-level QoS.  

6 Conclusion 

In the paper, an integer programming model is established for the problem of resource 
allocation in a hybrid IaaS cloud environment. Standard-PSO based approach is 
proposed to solve this problem. In Standard-PSO, each dimension of a particle 
represents a task and a set of tasks’ priorities is obtained by sorting the dimensions 
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according to their values in a descending order. This approach can make cloud 
resource allocation more elastic and guarantee user-level QoS. Experimental results 
show that our approach is able to produce scheduling solutions that are better than 
those obtained by CPLEX for large size problems.  
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Abstract. The major challenge in network virtualization is the efficient 
mapping of virtual nodes and links of virtual networks onto substrate network. 
In this paper we propose ENR-VNE, an algorithm which can achieves high VN 
request acceptance ratio in the same time. We modeled VNE problem as an 
optimal problem to minimize the substrate resource utilization degree. Leverage 
the advantage of ram data switch between virtual machines host on same 
physical machine instead of using physical link bandwidth, our algorithm allow 
repeatable node mapping for same VN. Because the initial value of PSO 
algorithm is crucial, we present an initial position assign method to accelerate 
convergence and achieve more repeatable features. Simulation results show that 
our algorithm achieve high acceptance ratio on same substrate network than un-
repeatable approach and initial position assign method can further improve the 
algorithm performance. 

Keywords: virtual network embedding, resource allocation, repeatable node 
mapping, particle swarm optimization. 

1 Introduction 

The major challenge in network virtualization is the efficient mapping of virtual net-
works with constraints on both nodes and links onto substrate network, which known 
as the Virtual Network Embedding (VNE) problem. However, the VN embedding 
problem is known to be NP-hard even in the offline case. With constraints on virtual 
nodes and links, the VNE problem can be reduced to the NP-hard multi-way separator 
problem [1]. Therefore, its solutions mainly rely on heuristic algorithms. Particularly, 
there are some technique about ram data switch between VMs co-resident on the same 
single physical machine [2], such approach can provide a fully transparent and high 
performance data switch through ram channel instead of the traditional link switch 
and the major advantage of such technique is that it can save much bandwidth be-
tween VMs co-resident on the same physical machine. 
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2 Related Work 

Many algorithms have been proposed for the VNE problem. They can be classified to 
one-stage VNE algorithm and two stage VNE algorithm. In one-stage VNE solution, 
Houidi et al. [3] propose a distributed VNE algorithm that simultaneously maps  
virtual nodes and virtual links without any centralized controller, which using a  
multi-agent system to improve robustness of system and reduce costs. They assume 
unlimited resources to accept all the VN requests. Lischka et al. [4] proposed a back-
tracking-based VN embedding algorithm using subgraph isomorphism detection that 
extensively searches the solution space in a single stage.  

In two-stage VNE solutions, Minlan Y et al. [5] have provided a two stage algo-
rithm for embedding the VNs. Firstly, they embedding the virtual nodes. Secondly 
they proceed to map the virtual links using shortest paths and multi-commodity flow 
(MCF) algorithms in order to increase the acceptance ratio and the revenue. Y. Zhu 
and M. Ammar [6] proposed an algorithm greedily chooses the substrate nodes that 
are lightly loaded to map the virtual nodes and uses the shortest path between the 
selected nodes to map the virtual links. Xiang, C et al. [7] present a Particle Swarm 
Optimization based algorithms named VEN-R-PSO, as a heuristic algorithm they did 
not consider the repeatable node mapping and so there is make no sense to improve 
the efficiency by adjust the position. 

The difference between our solution from previous studies are that: Firstly, our  
algorithm bring into play the repeatable features so as to save more physical band-
width to accept more VN; Secondly, because of the position initial and the position 
update phases in PSO is crucial for convergence of the algorithm and we want a vir-
tual network node will be mapped onto the same physical host as far as possible, so 
we present a position enhanced algorithm to afford more efficiency and VNR accept 
ratio. 

3 Enhanced Node Repeatable Embedding Algorithm 

In this section, we will firstly introduce the particular model for VNE problem, and 
then describe the discrete PSO algorithm in details to solve the problem. 

3.1 VNE Problem Description 

We model the substrate network as a weighted undirected graph and denote it 
by ( , , , )S S S S S

N EG N E A A= , where SN is the set of substrate nodes and SE is the set of 

substrate link. We denote the set of loop-free substrate paths by SP .The nota-
tions S

NA denote the attributes of the substrate nodes, including CPU capacity, storage, 

and location. The notations S
EA  denote the attributes of the substrate edges, including 

bandwidth and delay. In this paper, each substrate node s Sn N∈  is associated with 
the CPU capacity. Each substrate link ( , )s Se i j E∈  between two substrate nodes i and 
j is associated with the bandwidth.  
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Similar to the substrate network, a virtual network can be represented by a 
weighted undirected graph ( , , , )V V V V V

N EG N E C C= , where VN and VE denote the set of 

virtual nodes and virtual link , respectively. Virtual nodes and edges are associated 
with constraints on resource requests, denoted by V

NC and V
EC , respectively. 

The goal is to minimize the usage of the substrate resources. Leveraging the advan-
tage of ram switch between VMs host on same physical machine, we can map virtual 
nodes of same VN onto same machine as far as possible instead of allocation them a 
physical link capacity for their communication, i.e. try to embed each VNR to the 
least number of physical machines to save physical bandwidth. Thus the object of our 
optimization problem just needs to calculate link cost. It is defined as follows: 

( , )

Minimize ( )  

s.t.   ,     ( ) ( ) ( )

       ,    ( , ) ,     min ( ) ( )

w

s

v

s ij
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ij

i j P
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The first qualification is node resource constraints, where ( )vCpu n  is the total 

amount of CPU capacity which has already been allocated; ( )Cpu j  is the total 
amount of CPU capacity of the substrate node j. 

The second qualification is link resource constraints, where min ( )sCbw e  is the 

minimum bandwidth of links in the path ijp , that means if a virtual link w is embed-

ded onto a substrate path ijp , the capacity of each link in this path must be higher 

than the request bandwidth of virtual link w. 

3.2 Repeatable DPSO Solution 

We use Disperse Particle Swarm Optimization (DPSO) to solve this optimal problem 
described in previous subsection. For a VNR, the search space is N-dimensional, 
where N is the number of node of the VN. Then a particle swarm is used to search the 
optimal position 1 2[ , ,..., ]i i i i

NX x x x=  to map the virtual nodes of a VN. To VNE 

problem the position and velocity of particles are determined according to the follow-
ing velocity and position update recurrence relations: 

1
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Where 1
1 2[ , ,..., ]k i i i

NV v v v+ =  is velocity of a particle, where k
iv  is a binary variable. 

For each k
iv , if 1k

iv = , the corresponding virtual node’s position in the current VNE 
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solution should be preserved; otherwise, should be adjusted by selecting another  
substrate node.  

Because we use DPSO to calculate the optimal position, we must give the relevant 
discrete quantity operation definitions: 

Definition 1. Subtraction of Position *X X−   If *X  and X  have the same values 

at the same dimension, the resulted value of the corresponding dimension is 1,  
otherwise, the resulted value of the corresponding dimension is 0. 

Definition 2. Addition of Multiple 1 2' ''X Xϕ ϕ+   a new velocity that corresponds to 

a new virtual network embedding solution, where 1 2 1ϕ ϕ+ = . If 'X  and ''X  have 

the same values at the same dimension, the resulted value of the corresponding  
dimension will be kept; otherwise, keep 'X  with probability 1ϕ  and keep ''X  

with probability 2ϕ . 

Definition 3. Addition of Position and Velocity k kX V⊕   a new position that  

corresponds to a new virtual network embedding solution. If the value of k
iv  equals 

to 1, the value of k
ix  will be kept; otherwise, the value of k

ix  should be adjust by 

selecting another substrate node. 

We use equation (3) to update position and velocity in our DPSO algorithm to calcu-
late optimal position for each VN. After every update, particles calculate their fitness 
according to equation (1). In each round, if the position cannot match the two qualifi-
cations the fitness will be set to be +∞ . In our solution, link mapping is implement in 
fitness calculate phase simultaneously, according to the position we use FloydWar-
shall shortest path algorithm to calculate virtual link mapping between every virtual 
node pairs, if all shortest path of the node pairs are exit, the fitness is gain by the  
object function in (1); otherwise, the fitness is set to be +∞ . Then for each VNR, 
after several rounds implementation, a particle swarm can find an optimal mapping 
solution for it. The detail of our algorithm is shown as follows: 

program DPSO_Mapping (Gv,Gs){ 
  Generate particles for Gv  
  remove nodes and links which capacity is less than mi-
nimal request of Gv 
  for(int i=0;i<ParticleCount;i++){ 
     particle[i].initial_position() 
} 

  for(int i=0;i<MaxItCount;i++){ 
     gbestpre=particles.getgBest() 
     for(int j=0;j<particle numbers;j++){ 
        particle[j].calculateFitness()  
        particle[j].updateSpeed() 
        particle[j].updatePosition()} 
     if(gbestpre==particles.getgBest()){ 
 numfoit++}else{ 
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numfoit=0} 
     if(numfoit==10){ 

break} 
} 
  if(particles.getgBest()!= +∞ ){ 
     this.solution=Particle.getGbsolution()} 
  return this.Solution 
} 

In the algorithm, remove nodes and links which capacity is less than minimal node and 
link capacity request of VNR is to reduce the search space for particles. The terminate 
condition of the algorithm is it has implement more than maximum iterative round number 
which is pre-assigned or the global optimal fitness unchanged in 10 times of iteration. 

3.3 Enhanced Position Assign Mechanism 

For the DPSO algorithm discussed above, the most important thing is the initial posi-
tion assignment and function updatePosition ( ) of particles. This is because we intro-
duce repeatable features in VNE solution and we want to map virtual nodes of a VNR 
onto the least number of physical nodes to save more physical link resource, i.e. try to 
make the best position converge to smallest substrate node set. 

The goal of convergence is achieved by improving the initial_position( ) and  
updatePosition ( ). We aim at allocating repeatable node forwardly in particle initial 
position and update position operations. For the number of nodes of a VNR may be 
different from others, we introduce a count ( . ( ) 2) / 2k rnd nextInt numofbynodes= + , 

which is corresponding to the number of the nodes of VNR. Then for each dimension 
of the particle, if serial number of this dimension mod k=0, this dimension should be 
allocate a new random number of substrate node; otherwise, the dimension keeps the 
previous substrate node number. Thus we can limit the position in a smaller set of the 
search space. The core of the initial position assign function is as follows: 

programe initialposition(VNR) { 
   {numofsnodes: the total number of substrate network;  
    numofvnodes: the total number of nodes in VNR} 
   k=(rnd.nextInt(numofvnodes)+2)/2 
   maph=rnd.nextInt(numofsnodes)  
   for(i=0;i<numofvnodes;i++){ 
      if(i%k==0){  

maph=rnd.nextInt(numofsnodes) } 
      position.put(i,maph) } 
} 

The update position function is similar to initial position assignment. Note that in 
update position phase, not all the dimension will be modified, according to Definition 
3 just the dimensions with corresponding speed is 0 need to be changed. Under the 
premise of fixed iterative times to keep efficiency, this mechanism can bring about 
more repeatable mapping features. 
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4 Performance Evaluation 

We implemented the algorithm using the CloudSim3.0.1 simulator [8] on a high level 
PC which has one Intel Core i7-3770 CPU and 20G RAM. Both topologies of sub-
strate network and virtual network are generated randomly by a topology generator 
write in java. The main parameters of our simulation are listed in Table 1. 

Table 1. Parameters in simulation 

Topology: Substrate Network Virtual Network 

Number of Nodes: 60; 80; 100 4 
Connectivity: 0.2 0.4 
Node Capacity: 100 unit 3-30 unit uniform distribution 
Bandwidth Capacity 100 unit 3-30 unit uniform distribution 

 
Each virtual network’s living time uniformly distributed between 100 and 1000 

time unit. And 1 2 0.5ϕ ϕ= =  in equation (3). We analyzed the performance of the 

new algorithm present in this paper with and without enhanced position assign me-
chanism and compared our algorithm with un-repeatable mapping PSO algorithm 
VEN-R-PSO which present in [8]. 
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Fig. 1. Total cost of substrate network correspond to accept virtual networks 

In the first experiment, we set the number of nodes of the substrate network to be 
100 and simulate 2000 VNRs. We tested the condition with and without enhanced 
position assign mechanism and compared them to the VEN-R-PSO algorithm. Each 
test run 10 times, every implement take about more than 3 hours. For a VNR the max 
iterative count of particle swarm is 30. When the substrate network accepts about  
120 VNRs it reaches full load condition, then the other VNRs should wait to be  
implement. Thus we can measure the extreme effect of the three algorithms. Because 
of the connectivity of VN is bigger than substrate network, which may lead no  
solution for some VNRs, so we just plot the average result of total cost definite in  
(1) verified to accessed number of VNRs from 0 to 1500 for the three algorithms  
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as shown in Figure 1. Note that if virtual links are mapped onto substrate links we 
calculate cost; if they are mapped as a ram switch link the cost is 0. 

Fig. 1 shows that the repeatable mapping can reduce cost of substrate network. No 
matter with and without enhanced position assign mechanism the algorithm present in 
this paper always produce less cost than VEN-R-PSO at the same time. However the 
enhanced position assign mechanism can save much more cost because it can make 
the solution onto as less substrate nodes as possible. The reason is that repeatable 
mapping can save substrate bandwidth, many virtual nodes from same VN are 
mapped on to single substrate node and the links between them are just instead by ram 
switch; in VEN-R-PSO, the bottleneck is the link resource limitation, if the substrate 
nodes which can satisfy the connectivity of a VNR are all full load, the VNR must 
wait for completion of running ones. 
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Fig. 2. Accomplished time for 1000 VNRs vary to different number of substrate nodes 

In the second experiment, we validated the performance of enhanced position as-
sign mechanism when the substrate nodes number is set to 60, 80 and 100. Each test 
also runs 10 times. We record the accomplished average time of 1000 VNRs using 
three algorithms according to three number conditions of substrate network. As 
shown in Fig. 2, smaller number of substrate nodes takes more time. With the de-
crease of the number of substrate nodes the differentials between with and without 
enhanced position assign mechanism is grows bigger. That is because when substrate 
nodes number decrease, the search space for particles is smaller. If there is no en-
hanced position assignment, the algorithm will terminate in early time due to the 
second terminate condition. That means the virtual nodes will be easier to map disper-
sedly onto the substrate network, thus the repeatable features will be weakened. 

5 Conclusions 

This paper introduced a new VNE algorithm, the major characteristics of our work is 
that: Firstly, we considered repeatable embedding by leveraging the advantage of 
inter ram switch techniques; Secondly, we introduce an enhanced position assign 
mechanism to accelerate the convergence of the algorithm and make the solution 
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space more narrow so as to bring into play more repeatable feature to save more  
substrate bandwidth. In our future work, we will continually study the acceleration for 
the VNE DPSO algorithm and try to design a distribute algorithm for searching the 
mapping solution for VNE problem. 
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The Application of Particle Swarm Optimization 
Arithmetic in Propeller Design  
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Abstract. In order to obtain a propeller with good efficiency and cavitation 
performance, the propeller sections were optimization designed using particle 
swarm optimization (PSO) method. An interactive calculation method was used 
in design process for the circulation distribution of designed propeller was not 
coincident with optimization circulation. The difference of circulation was de-
fined as correction factor to adjust lift coefficients of sections. PSO method was 
used to optimize sections to improve the lift-to-drag ratio and pressure distribu-
tion. The convergence condition was the circulation distribution fulfilled opti-
mum circulation distribution form. A MAU propeller was optimized using the 
method.  Hydrodynamic performances of propeller and sections’ pressure dis-
tribution of original propeller were compared with optimized propeller. It indi-
cates from the results that compared with traditional method, the PSO method is 
simpler in theory and cost less computing time. The open water efficiency of 
optimized propeller advanced obviously. The min negative pressure is smaller 
which means the cavitation performance is better. 

Keywords: PSO, Propeller, Optimization design, Panel method, Open water  
efficiency. 

With the development of the ship industry, the requirement of propeller performance 
increases constantly. It’s hard to further satisfy the requirement of enhancing propel-
ler’s efficiency with the traditional design method. Thus, the propeller’s optimization 
design is of great significance. Particle Swarm Optimization (PSO) [1] developed 
rapidly in the recent years is one kind of intelligent optimization method, which is 
widely used in the field of aviation and marine [2-7]. Chang Xin [8] and Xu Weibao[9] 
who first use the PSO in optimizing hydrofoil section thought that appropriate fitness 
functions can lead to the increase of lift and the decrease of drag. 

This paper brought PSO in the propeller design and used it to design and optimize 
blade section combined with panel method. In order to validate the feasibility of this 
method, this paper took MAU propeller as an example to analyze the optimization 
design.  
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1 Particle Swarm Optimization (PSO) Algorithm 

Particle Swarm Optimization (PSO), also known as fine grain swarm optimization,  
had been developed into an evolutionary computation technique by J. Kennedy and R. 
C. Ebehtart and so on in 1995, which comes from simulation of a simplified social 
model [10].  

In order to keep the smooth shape of hydrofoil section, the linear superposition of 
Hicks-Henne functions family can be used for re-expression of hydrofoil surface [11] 
during the optimization process. Finally, hydrofoil section can be expressed as: 

7
( ) ( ) ( )

1
7

( ) ( ) ( )71

y x y x c f xup low k kk
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=
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Where ( )y xup , ( )y xlow  means the vertical axis of upper and lower surfaces re-

spectively, while ( )y xoup  , ( )y xolow are the original hydrofoil. Ck  is a variable 

quantity between -0.0005 and 0.0005 which controls the change of hydrofoil and 

( )f xk  is a Hicks-Henne function, whose expression is:  
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The number of particles n is the candidate for Hydrofoil shape, which called as popu-
lation size. After the specific concepts, we can optimize the hydrofoil section according 
to Particle Swarm Optimization theory.  

2 The Panel Method Design of Propeller 

When using traditional panel method, section attack angle should be adjusted to satisfy 
the optimization circulation distribution. But, there are still some vices during the 
design process. First, there is a direct relation between section design and the given 
attack angle. Section type will be changed when attack angle is adjusted. Second, there 
is a large calculation process which can make the enhancement of the grid density even 
harder. Third, the distribution type of flat pressure has randomicity.  

This paper improves the propeller design method on the basis of the problems above. 
Specified improving methods are as follows: First, after the design of propeller section 
by panel method, PSO was used to optimize the design in order to enhance the 
lift-to-drag ratio. Second, the difference between design circulation and calculation 
circulation should be taken account into the optimization. According to the fact, attack 
angle should not be adjusted.  

The main design processes in this paper are as follows: 
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1. Choosing the MAU propeller as model propeller, the main parameter of the design 
propeller can be determined by design condition.  

2. Calculating the optimization circulation distribution optG  and the cavitations 
number of each blade section.  

3. Determining the thickness and chord length of blade section. 
4. Designing the geometry shape which can satisfy the requirement of thickness and 

circulation distribution by panel method.  
5. Using PSO to optimize blade section. 
6. Forming design propeller, and calculating its hydrodynamics performance, pressure 

and circulation distribution by panel method. 
7. Comparing the circulation distribution of design propeller and optimization circu-

lation distribution, lift coefficient should be adjusted by the function below. 

    1( ) ( ) ((1 ( ) ( ))/ ( ) ), 1, 2...k kcl i cl i G i G i G i f kopt optk k
+ = × + − × =         (3)

 

8. Restarting to optimizing blade section, calculating hydrodynamics performance  
and circulation distribution of propeller with the adjusted lift coefficient. If results 
are among the allowable precision range, the design propeller can be determined. 
Otherwise, return to step (5). 

3 Calculation and Analysis 

3.1 The Optimization of Propeller Section Shape 

The aerofoil of Naca66mod is chose to be optimized. This aerofoil has good cavitations 
performance and large lift-drag ratio and is adopted in the design of propellers widely 
[11]. There is practical significance to optimize this aerofoil section with PSO. The 
attack angle is 1.5 degree during optimizing the section. These symbols of lC , dC ,
Tm represent lifting coefficient, drag coefficient, maximum thickness ratio. While 
calculating, some parameters are set, such as the uniform flow velocity 10m/s, aspect 
ratio 4, 221 == bb , maxω =1.0, minω =0.2 and the velocity constraints k=0.5 . The 
particle swarm scale is set as 20 and the particle dimension is set as 14. It is hoped that 
the surface of optimized hydrofoil can obtain the uniform pressure distribution and this 
case ( σ>− minpC ) doesn’t occur. The change of lift-drag ratio in the optimization 
process is shown in Table1. The change of pC  with eight optimization processes and 
the Geometry form change of hydrofoil with optimization process are shown in Fig.1 
and Fig.2 respectively. 

The optimization results of Table 1 shows that lift coefficient of hydrofoil is increased 
by 1.8% at 1.50 attack angle, lift-drag ratio is increased by 2.3% and the variation of 
thickness is not more than 1.02% compared the optimized hydrofoil with the original 
hydrofoil. This shows that PSO can improve the lift-drag ratio of the aerofoil section.  

The optimization results of Table 1 shows that lift coefficient of hydrofoil is  
increased by 1.8% at 1.50 attack angle, lift-drag ratio is increased by 2.3% and the 
variation of thickness is not more than 1.02% compared the optimized hydrofoil with 
the original hydrofoil. This shows that PSO can improve the lift-drag ratio of the 
aerofoil section. 
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Table 1. Optimization process of blade section at 1.50 attack angle 

 cl cd tm cl/cd 

Original aerofoil 0.56956 0.02224 0.07152 25.60971 

1st Iteration 0.57062 0.02223 0.07187 25.66892 

2nd Iteration 0.57166 0.02223 0.07225 25.7157 

3rd Iteration 0.5728 0.02221 0.07194 25.79018 

4th Iteration 0.57401 0.02219 0.07172 25.86796 

5th Iteration 0.57525 0.02217 0.07157 25.94723 

6th Iteration 0.57644 0.02215 0.07158 26.02438 

7th Iteration 0.57762 0.02213 0.07151 26.10122 

8th Iteration 0.57957 0.02212 0.07127 26.20118 
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Fig. 2. The Geometry form change of  
hydrofoil with optimization process 

In Fig.1, it shows that pressure coefficient changes a lot near the rear of hydrofoil 
with the improvement of lift-drag ratio (increasing lift force and reducing drag force). In 
Fig.2, it also shows the geometric shape of the hydrofoil began to change accordingly. 
This method can counteract drag of hydrofoil surface in the flow direction effectively. 

3.2 The Optimization Design of MAU 

According to the model propeller of charts design, the main parameters are shown in 
Table 2. It is hoped to get the optimized circulation distribution through adjusting the 
circulation of the design propeller. The circulation distribution is shown in Fig.3 and 
the open water performance before and after optimization is shown in Table 3.  
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Table 2. Main parameters of prototype propeller 

Blade  

number 

Diameter 

(m) 

d/D AS/A0 P/D Trim  

angle(o) 

Design 

speed(kn) 

Design rotate 

speed(rpm) 

4 4.78 0.18 0.545 0.6825 8 15.48 155 

 
The model propeller’s circulation was chose as initial circulation of optimization 

design. In Fig.3, it shows the result that the circulation distribution of design propeller 
can almost overlap with the optimized circulation distribution. Table 3 illustrates that 
the hydrodynamics performance of design propeller increased about 8% than model 
propeller, the absorbing power only cost 99% and the thrust coefficient increased about 
10.8%. Thus, the entirety efficiency of propeller can be enhanced. 
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Fig. 3. Circulation distribution of propeller 

Table 3. Open water performance of prototype and design propeller 

 Design propeller Model propeller 

J KT 10KQ 0η  KT 10KQ 0η  

0.1 0.3398 0.3223 0.16782 0.33277 0.3432 0.15433 

0.2 0.29172 0.2892 0.32107 0.28512 0.3022 0.30035 

0.3 0.24256 0.2525 0.45869 0.23647 0.2589 0.43616 

0.4 0.19234 0.2121 0.5774 0.18683 0.2132 0.55779 

0.419157 0.18259 0.2039 0.59741 0.17721 0.2042 0.57866 

0.5 0.14104 0.1679 0.66838 0.1362 0.1653 0.65582 

0.6 0.08868 0.1201 0.70526 0.08455 0.1149 0.70258 

0.7 0.03506 0.0683 0.57233 0.03191 0.0622 0.57111 
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Fig. 4. Pressure coefficients distribution of 

different sections 

Fig. 5. Comparison of min negative pressure at 

different sections 

In Fig. 5, it shows that the pressure coefficient of each section distribute uniformity 
after optimizing, especially the part from 0.5R to the top which almost reached the flat 
pressure distribution. At the same time, in Fig. 6, it shows that the minimum negative 
pressure of the design propeller is much less than model propeller.  

4 Conclusions 

This paper brings PSO into the theory design of propeller, and improves the traditional 
method. Through the optimized design of MAU propeller, the comparisons between the 
design propeller and the model propeller are as follows: 
 
• The difference between design circulation and calculation circulation should be 

taken account into the optimization. It can be closer to the actual situation that it 
reduced much calculation process because of avoiding the iteration of adjusting the 
attack angel.  

• The propeller which was optimized can satisfy the optimum circulation distribution. 
And the pressure coefficient of each section distribute is uniformity which almost 
reached the flat pressure distribution. 

• The minimum negative pressure of the optimized propeller decreased, and the ca-
vitations performance was improved. 

• With the same advance speed, the efficiency of the optimized propeller increased 
about 8% than the model under the design working condition. 
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Application of an Improved Particle Swarm Optimization 
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Abstract. In order to design the hydrofoil section with good lift-drag ratio  
performance, the airfoil which received by Improved Particle Swarm Optimi-
zation algorithm and Particle Swarm Optimization algorithm should be com-
pared to find the best way in accord with the target. Airfoils are represented by 
analytic functions, and objective function and fitness function are provided by 
numerical solution of Panel method. In entire optimization process Improved 
Particle Swarm Optimization algorithm only changed the weight which influ-
ences the speed of particles flying, and optimized airfoil that compared to the 
original airfoil hydrodynamic performance has improved significantly, and  
has better result than the elementary particle swarm algorithm. Results of Opti-
mization verified the feasibility of the improved Particle Swarm Optimization 
algorithm in the optimization of airfoil section design, and in the future this  
algorithm has certain significance. 

Keywords: Hydrofoil section optimization, Improved Particle Swarm  
Optimization algorithm, Panel method, Optimization design. 

1 Introduction 

Airfoils is not only a component of aircraft performance, but also an important part of 
propeller design and the design of all kinds of water sports equipment, and has a wide 
range of applications in marine engineering[1]. Airfoil hydrodynamic performance 
calculation includes lift by airfoil section and the fluid resistance. The lift-to-drag 
ratio of propeller blade section is directly related to the propeller efficiency [2]. 

Particle Swarm Optimization algorithms was a new optimization algorithm which 
developed in recent years. Optimization of Airfoil section is to get high lift-to-dag 
ratio airfoils shape under the given constraints [3]. Zhou bin .etc applied linear par-
ticle swarm optimization algorithm to the design of 3D airfoil and received higher lift-
to-drag ratio than original airfoil by using linear weights to get particle velocity. Due 
to linear PSO has a lower accuracy, this paper proposes an improved Particle Swarm 
Optimization algorithm and applies to the airfoil optimization.  

In this paper, improved particle swarm optimization algorithm combined with the 
panel method was used to design the three-dimensional airfoil for the purpose of high 
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lift-to-drag ratio. In order to validate the feasibility of this method, this paper put the 
optimization results of different situations to compare with the results by linear PSO.  

2 Improvement of PSO Algorithm 

Particle Swarm Optimization (PSO) is an evolutionary computation technology (evo-
lutionary computation), in 1995 Eberhart and Dr. Dr. kennedy proposed from the 
study of the predation behavior of bird [4]. Particle swarm algorithm is based on ob-
served cluster activity behavior of animals, used the sharing information of individual 
of groups so that the movement of the entire group in the problem space changed 
from disorder to order, so as to obtain the optimal result [5]. 

After many years of development, the particle swarm algorithm has been widely 
used in engineering, and has been made considerable progress. Due to Particle Swarm 
Optimization has some defects that is difficult to overcome, the paper proposes an 
implementation easy and effective way to improve algorithm, called Improved par-
ticle swarm optimization (Modified Particle Swarm Optimization ).  

The mathematical description is: Assume the search space is D-dimensional, and 
the total number of particle is n, position of i-particle is expressed as vector

)...,( 21 iDiii xxxx = , stand for one point of space. The position variation of i-

particle is vector )...,( 21 iDiii vvvv = . Compare the best or worst position of particle 

according to the result of objective function, so far the position of i-particle is 

)...2,1( iDPiPiPpbesi = and the optimal location of the whole particle swarm is

)...,( 21 Nggggbest = . Particle velocity of each dimension and position in the evo-

lutionary process changes as following formula: 
 

ndni

tVktxtx

txtPrctxiPrctVwtV

ididid

idgdidididid

≤≤≤≤
+⋅+=+

−⋅⋅+−⋅⋅+⋅=+

1,1

)1()()1(

))()(())()(()()1( 2211

  (1) 

Where ω  is inertia weight which reflects the choices of algorithm between global 
search and local search; while 1c  and 2c called as cognitive and social parameters 
are non-negative constant; 1r and 2r  are the random numbers between[0,1]; and k
is compressibility factor which limit the speed of particles[2].  

2.1 The Nonlinear Decreasing Strategy Adjustment Update Particle Swarm 
Algorithm 

In some adjustable parameter of PSO algorithm, inertia weight ω  has a great influ-
ence of the algorithm, directly affect the position distance of next generation particle 
and the present generation particle [6]. Nonlinear ideas inspired by linear adjustment 
strategy construct a non-linear function on adjustmentsω , trying to be more reasona-
ble reflection of the particle swarm search. Specific expressed as follows: 
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iterGen ⋅−−−= )1/()( minmaxmax ωωωω                  (2) 

This is a sloping straight line, and it is a linear inertia weight adjustment method, 
denoted as the linear weight particle swarm optimization.  
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This is an opening upward nonlinear curve, particle swarm algorithm using this non-
linear adjustment recorded as a non-linear weight particle swarm algorithm to 
represent [6]. 

This article ω was in the range of [0.2，1.2], 221 == cc  [7]. For convenience, 
the combination of the above-described improved method and Particle Swarm Opti-
mization called Nonlinear PSO; the linear decreasing the strategy adjustment method 
and the particle swarm algorithm was combined with linear PSO[8]. 

3 Hydrofoil Optimization 

3.1 Function of Hydrofoil Section 

In order to keep the smooth shape of airfoil section, the linear superposition of Hicks-
Henne functions family can be used for re-expression of hydrofoil surface during the 
optimization process [8]. Seven Hicks-Henne functions are selected here. Finally, 
hydrofoil section can be expressed as: 
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Where )(xyup , )(xylow  means the vertical axis of upper and lower surfaces respec-
tively, while )(xyoup  , )(xyolow  are the original hydrofoil. Ck is a variable quantity 
between -0.0005 and 0.0005 which controls the change of hydrofoil and )(xfk  is  a 
Hicks-Henne function,  whose expression is: 
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Where k =2、3、4、5、6、7, kx =0.15、0.3、0.45、0.60、0.75、0.9 respectively 
[8]. In the application it should be in accordance with the concept of mathematical 
model of particle swarm optimization.   
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3.2 Selection of Fitness Function 

This paper is based on potential flow theory panel method to calculate the  
three-dimensional airfoil hydrodynamic performance. Due to its fast development and 
accurate and relatively mature, so it is widely used in the field of hydrodynamic cal-
culations. Compared with using CFD software to solve N-S function, panel method 
can not only greatly reduce the computational time, but also get more accurate results 
with viscous correction, which can compare the advantages and disadvantages of 
various designs as the optimal design process [9]. 

Fitness(y) is selected as the lift-drag ratio of hydrofoil section optimization, where 
y  means the control variable quantity Ck . In the optimization process it can not only 

pursue a high lift-to-drag ratio, but should be stopped when the minimum negative 
pressure coefficient is close to critical cavitations number [10].  

4 Airfoil Optimization Results Analysis 

In this paper, nonlinear PSO and linear PSO should be used to airfoil optimization in 
target of higher lift-drag ratio of section. The airfoil cross-sectional shape and the 
pressure coefficient also changed in the process of optimization. The paper selected 

mod66naca  profile to optimize for the original section. This airfoil was chosen be-
cause this airfoil has a good vacuoles performance with high lift-to-drag ratio and 
widely used in propeller design.  

In order to compare the two algorithms objectively, angle of attack and flow speed 
is respectively changed and the result of two algorithms is compared. The compare 
ion between two algorithms comes from the convergence and effectiveness. 

4.1 The Analysis of Airfoil Optimization Convergence Precision 

The Airfoil Optimization Results Analysis in Different Speed Conditions 
The airfoil optimal conditions: the angle of attack is 0.5, airfoil of aspect ratio is 4; 

maxω  =1.2 ，  minω =0.2, 221 == cc ，and the velocity constraints k=0.5. The 
particle swarm scale is set as 20 and the particle dimension is set as 14. It is hoped 
that the surface of optimized hydrofoil can obtain the uniform pressure distribution 
and this case ( σ>− minpC ) doesn’t occur. The previous two optimization algo-
rithms were used for optimization in the condition that different flow velocity. the 
curve in Figure 1-3show the process of optimization. 

In fig1-3, , , represents lift coefficient, drag coefficient, lift-to-drag 
ratio ,and the picture display the results changed in different speeds change with itera-
tions. From the curve of the picture, when the flow velocity was changed, both of two 
algorithms can get airfoil of higher lift-to-drag ratio, and airfoil of nonlinear PSO 
optimization has higher lift-to-drag ratio than linear PSO. 

Cl Cd /Cl Cd
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Analysis of Airfoil Optimization in Different Angle of Attack 
Keep the airfoil flow speed as 10m/s constantly, the two PSO algorithms is used  
to optimize the airfoil in different angle of 0.5、1.5、2.5. The curve in figure 4-6 
display that the lift-to-drag ratio changed under different angle of attack. 
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It can be seen in the fig 4-6, both of two algorithms get airfoil of higher lift-to-drag 
ratio when changed the angle of attack. The nonlinear PSO do better than linear PSO 
in airfoil optimization. 

4.2 The Analysis of Airfoil Optimization Effectiveness 

In Fig.6, nonlinear PSO meet the convergence requirements after 5 iterative, and li-
near PSO meet the requirements in 8 iterative. In order to compare the convergence 
rate, the angle of attack is 1.5 degrees, the flow speed is 10m/s, other conditions being 
equal, the data in iterative process of two algorithms are shown in Table 1. 

Table 1. comparation between nonlinear PSO and linear PSO 

 Linear PSO Nonlinear PSO 

 cl cd tm cl/cd cl cd tm cl/cd 

Original aerofoil0.26175 0.01276 0.04174 20.5181 0.26175 0.01276 0.04174 20.5181 

1st Iteration 0.26556 0.01287 0.04177 20.63857 0.26598 0.01288 0.04177 20.65155 

2nd Iteration 0.27046 0.01301 0.0418 20.78773 0.27221 0.01306 0.04181 20.83934 

3rd Iteration 0.27446 0.0131 0.04174 20.9573 0.27717 0.01314 0.04167 21.08995 

4th Iteration 0.2784 0.01317 0.04164 21.14398 0.28195 0.01316 0.04137 21.42482 

5th Iteration 0.28232 0.01323 0.04152 21.34232 0.28648 0.0131 0.04088 21.86962 

6th Iteration 0.28621 0.01328 0.04139 21.54653 0.29074 0.01295 0.04017 22.45841 

7th Iteration 0.29009 0.01334 0.04125 21.75041     

 
In Table 1, it can be seen that the nonlinear PSO has less iteration times than linear 

PSO, but the lift-to-drag ratio of nonlinear PSO improved 3.2% than linear PSO. In 
Particle Swarm Optimization algorithm speed formula (1), weighting factors greatly 
influenced the speed. When selecting nonlinear dynamic weight, the speed of the 
particles is modified, then speed of the algorithm optimization is changed. So nonli-
near particle swarm algorithm is superior to the linear particle swarm optimization in  
speed of the optimization. 

5 Conclusions 

In this paper, to solve the problem of the accuracy of the particle swarm algorithm, 
nonlinear weight was applied to improve the accuracy of particle swarm algorithm.  

1. The nonlinear PSO could get airfoil with high lift-to-drag ratio, and also meet the 
requirements of lift coefficient in airfoil optimization. 
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2. When the flow speed of the airfoil was changed, particle swarm optimization algo-
rithm can get satisfactory airfoil; When the angle of attack of the airfoil was 
changed, it can get similar results above, and the nonlinear PSO to get better results 
than the linear PSO. 

3. During the optimization process of the calculation, the nonlinear PSO is faster than 
linear PSO. It is of great significance for optimization of complex aerofoil or pad-
dle optimization. 
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Abstract. This paper intends to propose an energy functional based modeling 
technique on an n-phase multiphase motor. In motor control area, the 
multiphase motor is becoming more and more popular recently. The multiphase 
can be applied in direct-drive electric vehicle. However, the associated 
mathematical model for energy functional is seldom discussed. This paper will 
discuss the modeling of the motor system by energy functional optimization.  
Orthogonal particle swarm optimization (OPSO) is used to derive the optimal 
solution set for the dynamic system. The Simulation and experimental results 
shows the validity of the proposed model. It is believed that the developed 
system model can be used in the energy functional of the multiphase motor. 

Keywords: Modeling, Manufacturing, Multiphase Motor, Orthogonal Particle 
Swarm Optimization. 

1 Introduction 

Recently, the multiphase motor is becoming a potential machine in industrial 
applications. Levi [1] investigated tremendous papers in the area of multiphase motor.  
Multiphase motors have many advantages over the conventional three-phase motors, 
such as high reliability, higher torque density, and lower torque pulsation. The 
multiphase driver also gains the benefit of low voltage and current rating for the 
power devices. 

This paper will focus on the axial-flux type multiphase motor. The axial-flux motor 
has flat-type structure which is convenient for the vehicle application [2]. The power 
converter can be decomposed into many smaller power modules with lower voltage 
and current rating to provide the required power for each phase winding [3]. The 
proposed axial-flux motor has two parallel windings wound around each phase. 
Different from the full-bridge power converter structure in [3], the proposed motor 
only requires single transistor structure to provide the required power for each phase 
winding. Assume the phase number is n, the required power transistors for the 
conventional converter are two times of the phase number 2n. However, the proposed 
motor with two parallel windings only requires only half number of the conventional 
multiphase converter. The number of power transistors is the same as phase number n. 
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Though this kind of motor has a lot of advantages, it is more complicated to derive 
simple mathematical model for the associated energy functional due to its inherent 
multiphase feature. This paper will develop a modeling technique to reduce 
multiphase model to unified two-phase model for easier energy functional derivation. 
Eight-phase prototype is illustrated in this paper to verify the experimental results. 

Similarity Transformation is a powerful technique to deal with a control system 
problem. Lee [4] once designed a state observer for a special MIMO nonlinear system 
such as induction motor. The similarity transformation is used to provide the 
convergence of the state observer. The energy functional [5] relies on matrix 
transformation to decouple the complicated relation in a nonlinear system. Park 
transformation is the most well-known transformation in motor control area. Actually, 
it is also a similarity transformation in the viewpoint of the linear algebra. D-Q 
decomposition in [5] is used to decouple the mutual interaction in the current 
variables for a motor system. 

The similarity transformation can also be used for the field-oriented control in the 
two-phase AC induction motor system [6]. Many transformation methods had ever 
summarized as in [7] for the nonlinear control of the induction motor. The linear 
relation between the torque and the current can be obtained under such 
transformations. 

Multiphase motor is actually an n-dimensional system in state-space point of view.  
Conventionally, three-phase motor is a popular one in many motor applications. 
Recently, the technology of multi-phase motor grows rapidly. It can be easily applied 
in direct-drive electric vehicle or inverter-drive home appliances. However, the 
associated system model that can be used in its energy functional is seldom discussed. 
Therefore, this paper intends to develop its effective system model that can be used in 
energy functional. Two transformation methods are used. Singular value 
decomposition is used to transform the n-dimensional system into a coupled two-
dimensional system.  Then, similarity transformation is again used to transform the 
coupled relation into a decoupled relation. Therefore, a decoupled two-dimensional 
model for its energy functional can be derived. Due to the page limit, the continued 
paper in the future will discuss more details about its energy functional. 

2 System Description of Multiphase Axial-Flux Brushless Motor 

Recently, the axial-flux type brushless motor with two parallel windings is widely 
used in many information products in which the motive force is required. The CPU 
cooling fan is often designed as the axial-flux type. The disc rotation of the DVD-
ROM will also require such motor to provide the required rotation. Actually, it 
belongs to a permanent magnet synchronous motor with Hall sensors.   

Axial-flux type motor is also widely used in many applications such as electric 
vehicles [8]. This type motor has good feature of controllable field current. Field 
weakening can be achieved to control this motor. Therefore, the axial-flux motor can 
operate under very wide speed range. The field weakening can be easily carried out 
by eliminating the effects of d-axis current injection. 

As shown in Fig. 1 and Fig. 2, this kind of motor has winding configuration 
different from the conventional one discussed in the general three-phase radial-flux 
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motor system. To simplify the driver, the parallel windings with unipolar direction are 
designed to reduce the complexity of the driver as shown in Fig. 2. The flat-type 
axial-flux brushless motors are thereby widely used in many information product and 
industrial applications.   

Flat type brushless motors have many different types of structures. The common 
flat type motor can be possibly driven in many ways. Bipolar full-bridge driver is 
frequently illustrated to drive the proposed motor. However, the full bridge driver 
might require expensive cost. Only simple unipolar driver is required to drive the 
discussed motor in this paper. The parallel windings configuration is designed for the 
cost-down requirement of the motor driver. Unipolar driver can reduce the cost in 
many information products. 

As shown in Fig. 1(d)-1(e), the two parallel windings are not separated by 90 
degree between each other like the radial-flux brushless motor. Actually, the parallel 
windings for the axial-flux brushless motor is separated by 180 degree between each 
other in space. The polarity definition for the two windings is reverse in the reference 
direction. Therefore, the dynamic system model for this kind of motor is different 
from the conventional model such as Park transformation which only can be used in 
general radial-flux motor system. To deal with the axial-flux motor, the proposed 
orthogonal transformation for a system will cover the two topics. One is similarity 
transformation and the other is singular value decomposition. 

This paper intends to provide an alternative system modeling by energy functional 
approach. Optimization process via orthogonal particle swarm optimization (OPSO) 
is studied. The developed formulation will be very suitable for the associated dynamic 
analysis and the practical energy functional applications. 

 

 
(a)                 (b)                    (c) 

 
(d)                           (e) 

Fig. 1. Manufacturing Structure of (a) rotor, (b) stator, current and flux representation for (c) 
the studied axial-flux motor and (d) conventional radial-flux motor (e) prototype for the 
investigated brushless motor. 
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            (a)                                                  (b) 

 

 
(c) 

Fig. 2. Modeling technology (a) Winding configuration and (b) simple uni-polar driver of the 
investigated brushless motor (c) overall representation 

3 Multi-to-Two Phase Transformation and Unified Two-Phase 
Modeling by Energy Functional 

The mechanical dynamics can be derived from the Newton’s law of motion. The total 
magnetic field energy of this electromechanical system with respect to energy 
functional may be expressed as 

f as bs rm j j
j

1
W (i , i ,θ ) λ i

2
=   (1)

The coenergy of the electromechanical system with respect to energy functional can 
be defined as 

c as bs rm j j f as bs rm
j

W (i , i ,θ ) λ i W (i , i ,θ )= −  (2)

The electromechanical force can be obtained from the derivative of the coenergy.  

j as bs rmc as bs rm f as bs rm
j

rm rm rm

λ (i , i ,θ )W (i , i ,θ ) W (i , i ,θ )
i

θ θ θ
∂∂ ∂

= −
∂ ∂ ∂  (3)

If the magnetic system is a linear problem, the relation 
fc WW = can hold. By 

substituting all the related variables into the coenergy function with respect to energy 
functional in Eq. (6) 

 
 
OPSO  
optimization  
process 
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1 1 1 1W (1/ 2)( ) ( ) ( ) ( ) ( )c n n n n n n× × × × ×= +T T
sys sys sys sys_m sysI L I λ I  (4)

where Wpm relates to the offset level of the energy with respective to the permanent 
magnets, which is constant in this motor. 

The differentiation of the coenergy with respect to energy functional can derive the 
torque equation as below. 

1 1 1 1
rm rm

W
T [(1 / 2)( ) ( ) ( ) ( ) ( ) ]

θ θ
c

e n n n n n n× × × × ×
∂ ∂= = +
∂ ∂

T T
sys sys sys sys_m sysI L I λ I  (5)

The electromagnetic torque Te can be equal to the mechanical net force by the 
Newton’s Second Law of Motion. 

e as bs rm m rm m rm L

m rm m rm L

T (i , i ,θ ) J ω B ω T

J θ B θ T

= + +
= + +


   (6)

where the moment of inertia is Jm and the damping coefficient is Bm. The load torque 
is defined as TL. 

4 Optimal Solution by Orthogonal Particle Swarm Optimization 

The particle swarm optimization originates from the emulation of the group dynamic 
behavior of animal. For each particle in a group, it is not only affected by its 
respective particle, but also affected by the overall group. There are position and 
velocity vectors for each particle. The searching method combines the experience of 
the individual particle with the experience of the group. For a particle as a point in a 
searching space with D-dimensional can be defined as 
The i-th duty cycle particle associated with the MPPT controller can be defined as: 

( )1 2, ,...,id i i iDX x x x=  (7)

where d=1,2,…,D and i=1,2,...,PS, PS is the population size. The respective particle 
electric power and group electric power associated with each duty cycle idX  are 
defined as 

( )1 2, ,...,pd p p pDP p p p=  (8)

( )1 2, ,...,gd g g gDP p p p=  (9)

The refreshing speed vector can be defined as 

( )1 2, ,...,id i i iDV v v v=  (10)

The refreshing position and velocity vectors can be expressed as 

( )
( )

1
1

2

()

()

n n n
id id pd id

n
gd id

V V c rand P X

c rand P X

+ = + × × −

          + × × −
 (11)

1n n n
id id idX X V+ = +  (12)

When the searching begins, the initial solution is set. In the iteration process, the 
particle is updated by the value coming from group duty cycle and particle duty cycle.  
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The convergence condition is dependent on the minimum of the mean square error of 
the particle.  Both the experience of the individual particle and the experience of the 
group are mixed into the searching process. 

In the optimization problem, there might be a local minimum problem. The optimal 
solution might jump into a local trap and can not jump out of the trap. Actually, a 
local minimum point does not represent a global solution in a wide range. In the 
group experience, random function is used to jump out of the local interval. An inertia 
weighting factor is considered in this algorithm to increase the convergence rate. An 
inertia weighting factor is added in the following expression.  The modified formula 
can be expressed as: 

( )
( )

1
1

2

()

()

n n n
id id pd id

n
gd id

V W V c rand P X

c rand P X

+ = × + × × −

       + × × −
 (13)

max min
max

max

W W
W W gen

gen

−
= − ×  (14)

where the c1 and c2 are both constants. maxW  is The initial weighting value.  minW  
is the final weighting value. gen is the number of current generation. maxgen  is the 
number of final generation. However, the above mentioned is actually a kind of linear 
modification. To make the algorithm suitable for nonlinear searching problem, there 
is many nonlinear modification methods proposed to refresh the velocity vector. The 
modified term is defined as the key factor. By setting the learning factors 1c  and 2c  
which are larger than 4, the modification for the speed vector can be expressed as: 

( )
( )

11

2

()

()

n n
id pd idn

id n
gd id

V c rand P X
V K

c rand P X

+
 + × × −
 = ×
 + × × − 

 (15)

 
 

 

Fig. 3. Illustration of Particle refreshing process in OPSO optimization 
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( ) ( )( )2

1 2 1 2 1 2

2

2 4
K

c c c c c c
=

− + − + − × +
 

(16)

A modified PSO method called orthogonal PSO (OPSO) is proposed to solve the 
update problem effectively. A simple orthogonal array in Taguchi method is used in 
this algorithm to help the update as shown in Fig. 3. 

5 Verification 

In order to verify the validity of the optimization process and optimal solution set.  
Dynamic simulation is performed as follows. Three testing cases are studied in the 
following. 

5.1 Dynamic Solution for Sinusoidal Waveform Input 

First, two-phase sinusoidal voltage is applied to simulate the free acceleration of the 
flat type brushless motor.  The experimental and simulation results in Fig. 4(a)~(c) 
can show the dynamics of the motor with free acceleration up to rω =45 rad/s. Since 

this is an open-loop simulation, the objective speed keeps constant at the steady state 
under no-load condition. In addition, the torque approaches to zero at the steady state 
in Fig. 4(d). 
 

 
 (a)                               (b) 

 
 (c)                               (d) 

Fig. 4. (a) Vas, (b) ias, (c) 
rω  and (d) Te dynamics for the case of sinusoidal voltage input. 

(deep blue: simulation results, light green: experimental results) 

5.2 Dynamic Solution for Square Waveform Input 

Second, the two-phase square voltage is applied.  The dynamics of free acceleration 
for this motor are shown in Fig. 5. As compared with the previous sinusoidal study 
case, the motor has naturally non-smooth harmonic current due to the square 
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waveform. However, the velocity still goes up to 
rω =55 rad/s eventually. This is also 

an open-loop case under no-load condition. Therefore, the torque decreases down to 
zero finally in Fig. 5(d). 
 

 
(a)                                (b) 

 
 (c)                                 (d) 

Fig. 5. (a) Vas, (b) ias, (c) 
rω  and (d) Te dynamics for the case of the square voltage input. 

(deep blue: simulation results, light green: experimental results) 

5.3 Steady State Comparison with Simulation and Experimental Dynamic 
Solutions 

To verify the validity of the simulation, steady state experimental waveform is 
provided for comparison with the simulation result as shown in Fig. 6. The current ias 
can have good match between the simulated and experimental results. The results are 
coincident with each other. The proposed model is proved to be effective for 
simulation of the system dynamics. Since the rotor structure is made by octagon 
arrangement, sinusoidal approximation for the flux terms is used to formulate  
the model derivation for simplification. The switching transient exhibits a little  
bit difference in the harmonic component. However, the DC component can match 
very well. 
 

 
(a)                                            (b) 

Fig. 6. Steady state comparison between (a) the phase current ias and (b) the voltage variables 
Vas for the simulation (red dotted) and experimental (blue dashed) results. 
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6 Conclusion 

Field oriented energy functional is a popular advanced control technique in motor 
control area. Unfortunately, the conventional form is usually suitable for the three-
phase motor. Recently, the multi-phase motor is becoming more and more important 
in direct-drive electric vehicle. Multi-phase motor is actually an n-dimensional system 
in system point of view. However, the associated mathematical model is seldom 
discussed.   

This paper has successfully described the mathematical modeling on the n-phase 
multiphase motor. This paper proposed the optimization of energy functional.  
Finally, verifications have shown that the validity of the proposed method. It is 
valuable for the associated energy functional of the multiphase motor. 
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Abstract. With the growing number of alternative services in the open service 
environment, service selection with global optimization in service composition is 
a critical issue. In this paper, we propose an approach SPSO-GOTSS (global 
optimization of transactional service selection based on skyline and particle 
swarm optimization) to implement transactional service selection with global 
optimal QoS and semantic matching degree. This approach first adopts skyline 
operator to prune redundant services, then employs particle swarm optimization 
to select service from amount of candidates. When computing the final skyline 
service, we consider both dominance and incompatibility checking. The mutation 
operation is used to overcome the premature convergence of traditional PSO. The 
experimental results show that our proposed approach is feasible and effective. 

Keywords: Service Selection, Global Optimization, Semantic Matching, QoS, 
Transaction, Skyline, Particle Swarm Optimization. 

1 Introduction 

Service-oriented architecture (SOA) is an emerging style of software architectures that 
reuses and combines loosely coupled services for building and integrating applications 
in order to improve productivity and cost effectiveness throughout application life 
cycle. Service selection is a key step in the process of service composition. Existing 
researches consider service selection from two aspects. On the one hand, there are more 
and more services which have the similar functions but with different nonfunctional 
attributes. How to choose services from a large number of candidate services is a 
challengeable topic. In [1], multidimensional multi-choice knapsack problem has been 
used to model this problem. Tang and Ai [2] provided a hybrid genetic algorithm for the 
service selection problem. Alrifai et al. [3] proposed an approach based on the notion of 
skyline to effectively and efficiently select services for composition. In [4], authors 
proposed a strategy to implement service selection with global QoS optimization based 
on PSO. Zhao et al. [5] proposed an improved discrete immune optimization algorithm 
based on PSO for QoS-driven service composition. 
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On the other hand, transactional properties of composite service have been taken a 
great attention. In order to satisfy QoS and transactional constraints, Haddad et al. [6] 
proposed a transactional and QoS-aware selection algorithm for automatic service 
composition. However, it can only ensure QoS local optimum while satisfying atomic 
consistency. In [7], authors proposed a new model based on 0-1 linear programming for 
determining a composite service maximizing QoS aggregate measure and satisfying 
transactional properties. In [8], an ant colony system based service selection algorithm 
is proposed to guarantee the end-to-end QoS constraints on the premise of ensuring the 
atomic consistency during service selection.  

However, current researches do not take QoS, semantic matching degree and 
transactional properties into consideration simultaneously. The execution efficiency of 
service selection approaches still needs to be improved further. In this paper, we propose 
an effective transactional service selection approach with global optimal QoS and 
semantic matching degree based on skyline and particle swarm optimization (PSO) 
algorithm. This approach first adopts skyline operator [9] to improve the efficiency of 
selection by using the dominance relationship of skyline to prune services, then 
employs particle swarm optimization to select service from amount of candidates. 
When computing the final skyline service, we consider both dominance and 
incompatibility checking. The mutation operation is used to overcome the premature 
convergence of traditional PSO. 

2 Problem Description 

In service composition, an ordinary service composition flow model consists of 
multiple abstract services. Each abstract service (AS) corresponds to a service class 
(SC). The services in same service class have same or similar function but different 
QoS and transactional properties. The problem of service selection is to select a 
concrete service from SC for each abstract service to conduct an executable service 
process which meets the constraints, and multi-objective functions are maximally 
optimized, as shown in Fig. 1. 

 

Fig. 1. Abstract services correlated with concrete services 
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3 The Comprehensive Evaluation Model of Composite Service 

3.1 QoS Model and Semantic Matching Degree of Composite Service 

When computing the QoS of composite service, we consider quantitative 
non-functional properties of services. These can include generic QoS attributes like 
response time, availability, price, reputation etc, as well as domain-specific QoS 
attributes, for example bandwidth for multimedia services. The QoS values of 
composite service are determined by the QoS values of its component. Here, we focus 
on the sequential composition model. Other models may be reduced or transformed to 
the sequential model. In this paper, we consider three types of aggregation functions: 
(1) summation, (2) multiplication and (3) minimum. 

Based on the semantic description of service, we adopt two steps of semantic 
matching [10]. One is local semantic matching and the other is global semantic 

matching. ( , )i isim as s represents the semantic similarity of abstract ias and concrete 

service is . The value of ( , )i isim as s comes from results of local semantic matching 

[10]. The corresponding semantic matching degree and QoS aggregation functions are 
illustrated in Table 1.  

Table 1. Semantic matching degree and QoS aggregation functions 

 

3.2 Transactional Property of Composite Service  

Transactional property presents the facility of service when fault is occurred. In this 
paper, we use the more common transactional properties for a service: pivot, retriable 
and compensatable. 
 
 Pivot (P). A service with pivot property will roll back if it has any fault 

happened during the execution time. However, it is unable to recovery its effect 
semantically once the service is completed successfully. 
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 Compensatable (C). A service has compensatable property can be undo in 
certain manner even the service is completed successfully. 

 Retriable(R). A service can be repeatedly invoked until it is successfully 
completed. This property is always combined with the two previous one, 
defining pivot retriable (PR) or compensatable retriable (CR) service.  

 
The authors of [6] proposed transactional rules defining the possible combinations of 
component service to obtain a transactional composite service.  

3.3 The Comprehensive Evaluation Model of Composite Service 

The QoS and semantic matching degree must be maximized and using aforementioned 
constraints we obtain the comprehensive evaluation model of composite service: 

1

( ) ( ) ( )
m

i i s
i

Maximum F CS W Q CS W S CS
=

′ ′= +                 (1) 

s.t  (1) ( ) i
i iQ CS C if Q is negative parameter<  

        or ( ) i
i iQ CS C if Q is positive parameter>  

(2) ( ) sS CS C>  

(3) ( ) { , , , }TP CS p c r cr∈  

(4) 0iW > , 0sW > , 
1

1
m

i s
i

W W
=

+ =  

( )F CS is the objective function and CS  represents the composite service. iW  and 

sW  represent weights assigned by users to each parameter. iC and sC  represent the 

QoS and semantic matching degree constraints. ( )iQ CS and ( )S CS  represent the 

values of the thi QoS and semantic matching degree of CS . ( )iQ CS′ and ( )S CS′  

are the standardized values of ( )iQ CS and ( )S CS . ( )TP CS represents the 

transactional property of CS . 

4 SPSO-GOTSS Algorithm 

4.1 Skyline Service 

Skyline computation has received considerable attention in database community. For a 
d-dimensional data set, the skyline consists of a set of points which are not dominated 
by any other points. The basic idea of our approach is to perform skyline operator on all 
composite services of each class to distinguish between those services that are potential 
candidates, and those that cannot possibly be part of the final solution. 

Inspired by [11], we consider incomparability when computing the final skyline 
services. We design an improved branch and bound skyline algorithm using hybrid 
Index (BBS-HI) which optimizes both dominance and incompatibility checking to 
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achieve good performance. The index based on R-tree and dynamic index based on 
partition tree [11] are integrated into the skyline service computation. 

The corresponding BBS-HI algorithm description is as follows: 

Step1: Insert all entries of root R-tree in the heap, an intermediate entry corresponds 
to minimum bounding rectangle (MBR), while a leaf entry corresponds to a data points; 
the partition tree is initialized when the first skyline service is identified.  

Step2: The entries output from the heap are evaluated using the partition tree. If the 
entry is dominated it will be pruned. Otherwise, if the entry is an intermediate node, its 
child entries will be evaluated using the partition tree before inserting into the heap; if 
the entry is a leaf node, it will be inserted into the partition tree. Repeat Step2 until the 
heap is empty. 

4.2 Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart in 1995[12], 
was inspired by the social behavior of bird flocking and fish schooling. A particle is 

attracted by its personal best position bestp and the best position of all particles in its 

neighborhood gbestp . By randomly changing the magnitude of these attractions, 

particles can search for better position in the regions around bestp  and gbestp .We 

assume that the search space is d-dimensional and the particle population is N . At the 
beginning, the N  particles are initialized with a random position. The fitness of all 

initial position is evaluated by the fitness function, leading to an initial gbestp . During 

every iteration step of PSO, the new position 1t
idx +  and new velocity 1t

idv +  of each 

particle are calculated based on the following equations: 

1
1 1 2 2( ( ) ) ( ( ) )t t t t

id id best id gbest idv w v c r p t x c r p t x+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  

 1 1t t t
id id idx x v+ += +                                        (2) 

where the parameter w  is called the inertia weigh, which is a measure for the 

sensitivity to influences of gbestp and bestp , and controls the exploration behavior of 

the swarm, the parameters 1c  and 2c  are the cognitive ratio and the social ratio 

which are used to control the influence of gbestp and bestp  on a particle’s new 

velocity, the random variables 1r  and 2r  are uniformly distributed (0,1)U . 

In order to achieve an effective balance between global and local searches, we adopt 
mutation strategy to further enhance the global search ability of the PSO. We set a 
threshold value denoted as dφ  to indicate whether the current particle can use a 

mutation operator on dimension d. If the absolute value of difference between 1t
idx + and 

t
idx  is smaller than dφ , the mutation operator should be used. dφ  is calculated using 

the following equation: 
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             If ( df θ= ) then df =0 and /d dφ φ μ= .                 (3) 

Parameter θ controls the mutation frequency of particles, μ controls the decline 

rate, df denotes the number of particles that has used the random mutation operator on 

dimension d, the initial values of df  is equal to 0. 

4.3 Algorithm Design of SPSO-GOTSS 

The corresponding algorithm description is as follows: 

Step1: For each abstract service iA , iS  (the set of concrete services) is partitioned into 

four subsets.
i i i i iS SP SR SC SCR= ∪ ∪ ∪  with iSP  being the set of pivot services 

which can perform iA , iSR  being the set of retriable services , iSC  being the set of 

compensatable services and iSCR  being the set of compensatable retriable services. 

Our algorithm uses the dominance relationship of skyline to prune services. 
Step2: Initialize N  particles and set the corresponding parameters; code the position 
of the particle into a candidate of composite services. Check whether the candidate 
satisfies the constraint conditions. If it is true, compute the value of the particle with 
equation (1). 
Step3: Iteration number t=1. 
Step4: Check whether the algorithm meets the condition of termination (iteration 
number)，If it is not the case, update the velocity and position of the particle with 
equation (2), meanwhile the random mutation on dimension d is adopted if the absolute 

value of difference between 1t
idx + and t

idx is smaller than dφ ; otherwise, go to step 7.  

Step5: Compute the value of each particle which satisfies the constraint conditions. For 

the current position ix  of the particle, compare its value with that of best position that 

it experienced before. If the current fitness value is better, then let ix be the best 

position that it experienced; for the best position bestp of the particle, compare its fitness 

value with that of global best position
gbestp that all particles experienced before. If the 

current fitness value is better, then let bestp be the global best position
gbestp that all 

particles experienced. 
Step6: t = t +1; return to Step4. 
Step7: Get the best solution and stop the algorithm. 

5 Experimental Analysis 

In this section, we conduct a set of experiments to assess the effectiveness of the 
proposed algorithms. The experiment is running on a PC machine with Pentium 
2.0GHz processor, 4.0GB of RAM and Windows XP SP3. Nine kinds of QoS attributes 
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including price, response time, availability and reputation are considered [3]. The QoS 
attributes and semantic matching degree of each service are randomly generated within 
certain ranges. The transactional property of each service is generated among the set  
{p, c, r, cr} randomly. 

5.1 Performance of BBS-HI 

Since there is not any sizable service test case that is in the public domain and that can 
be used for experimentation purposes, we focus on evaluating the performance of 
BBS-HI by using synthetic services. We used a publicly available synthetic generator 
to obtain an independent dataset, in which the QoS attributes and semantic matching 
degree are randomly set. The dataset comprises 100K vectors, and each vector 
represents the 9 QoS attributes and semantic matching degree of one service.  

Fig.2 shows the computation time of BBS-HI is fewer than that of OSP. The 
performance of BBS-HI and OSP[11] tend to be similar with the increase of 
dimensions. As more services become incomparable to each other, the number of 
services that can be pruned by the R-tree will be significantly reduced, then the 
performance of BBS-HI is similar with OSP. 

 

 

Fig. 2. Comparison on computation time 

5.2 Performance of SPSO-GOTSS 

This part will compare SPSO-GOTSS with the MIP approach used in [3] on the 
computation time and optimality.  

1) Comparison on computation time 
We investigate the time cost of SPSO-GOTSS and MIP using the sequential composite 
service which contains 5 abstract services. The service class of each abstract service is 
partitioned into four subsets according to transactional properties. The number of 
concrete service candidates in each subset increases from 100 to 300.  

Fig. 3 shows the computation time of SPSO-GOTSS is much fewer than that of MIP. 
By using the dominance relationship of skyline to prune services, the search space is 
reduced. By using PSO, it can make good use of the information sharing mechanism 
and the parallel global search to converge quickly to a reasonably good result. 
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Fig. 3. Comparison on computation time 

2) Comparison on optimality 
In this comparison, we evaluate the optimality of the results of the two approaches. The 
optimality can be calculated by 

/optimality SPSO GOTSS MIP= −                       (4) 

Fig. 4 shows the optimality of SPSO-GOTSS is in all cases above 95%, which indicates 
the ability of SPSO-GOTSS to achieve close-to-optimal results. 
 

 

Fig. 4. Comparison on optimality 

6 Conclusion 

This paper proposes an effective transactional service selection approach with global 
optimal QoS and semantic matching degree based on skyline and particle swarm 
optimization (PSO) algorithm. This approach first adopts skyline operator to improve 
the efficiency of selection by using the dominance relationship of skyline to prune 
services, then employs particle swarm optimization to select service from amount of 
candidates.  

In our future work, we will consider the recovery cost of the failed services in 
service selection. The strategies which can guarantee the balance between 
coarse-grained exploration and fine-grained exploitation search are also left for future 
research. 
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Abstract. Network virtualization allows multiple virtual networks (VNs) to 
coexist on a shared physical substrate infrastructure. Efficient network resource 
utilization is crucial for such problem. Most of the current researches focus on 
algorithms to allocate resources to VNs in mapping. However, reconfiguration 
problem of running VNs is relatively less explored. Aiming at dynamic 
scheduling of running VNs, this paper introduces a virtual network 
reconfiguration model to achieve more substrate network resource utilization. 
We formulate the virtual network reconfiguration problem as a multi object 
optimal problem and use discrete particle swarm optimization (DPSO) 
algorithm to search optimal solution. Experimental results show that by 
rescheduling the running VNs on substrate network according to the optimal 
reconfiguration solution our approach can observably reduce the biggest load in 
both physical node and link load, balance average load and avoid bottlenecks in 
substrate network so as to gain high VNs accept ratio. 

Keywords: network virtualization, reconfiguration algorithm, load balancing, 
discrete particle swarm optimization. 

1 Introduction 

With the rapid development of Internet, it has been difficult for existing network 
architecture to meet the development of new applications, and ossification has grown 
to some extent. Network virtualization is considered to be the main means of solving 
the ossification problem [1]. Network virtualization can provide more flexiblity by 
separating the network provider from infrastructure provider. InPs manage the 
physical Infrastructure while multiple SPs will be able to create heterogeneous VNs to 
offer customized end-to-end services to the users by leasing shared resources from 
one or more InPs [2]. The main of challenges in network virtualization is the efficient 
allocation of substrate resources to the incoming VNs, a problem known as virtual 
network mapping (VNM) [3]. 

Virtual network mapping problem is known to be NP-hard even in the offline  
case [4]. Even if all the virtual nodes are mapped, it is still NP-hard to mapped virtual 



Discrete Particle Swarm Optimization Algorithm for Virtual Network Reconfiguration 251 

 

links [5]. Recently, a number of heuristic-based algorithms or customized algorithms 
have appeared in the relevant literature [3-10].The problem of reconfiguration, how-
ever, is relatively less explored. 

Each virtual network is a collection of virtual nodes and virtual links that connect a 
subset of the underlying physical network resources. Substrate networks have finite 
resources and utilizing them efficiently is an important objective for a VNM method. 
Excessive using of scarce resources will lead to accept rate of virtual networks de-
crease. Through reconfiguring the VN requests, it is possible to optimize the alloca-
tion of resources to VNs.  

In this paper, we will propose a new virtual network reconfiguration algorithm 
based on discrete particle swarm optimization, denoted by VNRC-DPSO. We attempt 
to reconfigure the VNs that reducing the peak load as well as the number of over-
loaded nodes and links in the substrate network. VNRC-DPSO algorithm reconfigures 
the VNs via virtual node and link migrations that improving the substrate’s capability 
to admit more requests in the future.  

The remainder of the paper is organized as follows. In the next Section we will 
summarize the related approaches to solving the VN reconfiguration problem. In sec-
tion 3, we give the detailed description of virtual network reconfiguration and its gen-
eral model. In section 4, firstly, we briefly introduce DPSO, the parameters and opera-
tions of the DPSO are redefined. Then we discuss how to deal with virtual network 
reconfiguration problem with DPSO. The simulation environment and results are 
given in Section 5. Section 6 gives the conclusion. 

2 Related Work 

Virtual network reconfiguration is a challenging problem that has only been addressed 
by a few research papers. Zhu and Ammar [6] have provided a reconfiguration algo-
rithm VNA-II. The authors developed a selective VN reconfiguration scheme that 
prioritizes the reconfiguration for the most critical VNs. The actual reconfiguration 
happens during the each virtual network reconfiguration phase. 

Yu et al. [7] employ path migration to periodically re-optimize the utilization of the 
substrate network to help accommodate new requests. That algorithm only looks at 
reconfiguration of virtual links and does not consider migration of virtual nodes. 

Butt et al. [8] propose a VN reconfiguration algorithm. When a VN request is re-
jected by the VN mapping strategy the algorithm is run only. To achieve this, the 
proposed algorithm first detects the unmapped virtual nodes and links causing the VN 
request rejection. The authors migrates these unmapped virtual nodes to one node 
among the potential candidate nodes. The algorithm also finds the bottlenecked sub-
strate links causing the mapping to be blocked. Then, the authors reassign the over-
loaded substrate link. Note that the authors assume that candidate substrate nodes are 
predefined for each virtual node, which is not realistic.  

Marquezan et al. [9] propose a distributed self-organizing algorithm to manage the 
substrate network resources. The main idea is to shorten the physical path embedding 
a virtual link that overloads at least one substrate link according to its traffic. The 
virtual node is moved in order to shunt the overloaded substrate link. 
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Masti and Raghavan [3] propose a simulated annealing algorithm for reconfiguring 
the VNs in order to balance the load across the substrate network, thereby reducing 
the peak node and link load on the substrate network. 

Fajjari et al. [10] propose a new greedy virtual network reconfiguration algorithm 
VNR. In order to minimize the number of overloaded substrate links, while also re-
ducing the cost of reconfiguration. The main idea is to re-assign canonical star virtual 
topologies hosted in the overloaded substrate nodes and links. 

Unlike [6], [7], [8], VNRC-DPSO is not interrelated with the embedding strategy. 
Unlike [8], the algorithm does not need any details about the virtual network request 
rejected. Unlike [10], the algorithm is not periodically executed. Our proposal is not 
based on path splitting as in [7] and be used to reconfigure the VNs such that there is 
a balanced distribution of load across the substrate network. 

3 Network Model and Problem Description 

In this section, we first provide the network model, including substrate network, 
virtual network request. The proposed solution represents virtual as well as substrate 
networks as undirected graphs. We then introduce the virtual network reconfiguration 
problem, including basic definitions and formulations. In this paper, we consider 
central processing unit (CPU) as a resource for substrate nodes and virtual node, and 
bandwidth to be the resource for substrate paths and virtual link. 

3.1 Substrate Network 

The substrate network is represented by ( , , , )S S S SS ξ ξ=    , where S is the set of 

substrate nodes and S is the set of substrate link. We denote the set of loop-free 
substrate paths by S℘ . The notations sξ and sξ denote the attributes of the substrate 

nodes and link, respectively. 

3.2 Virtual Network Request 

Let 1 2{ , , , }VN vn vn vnτ= ⋅⋅ ⋅ is the set of VN requests. The VN is shown 

by ( , , , )V V V VV ζ ζ=    , where v and v denote the set of virtual nodes and virtual link. 

The notations vζ  and vζ   denote the constraints of virtual nodes and edges. 

3.3 Virtual Network Reconfiguration 

The virtual network mapping problem is defined by a mapping 
*: ( , , , )S SV ψ ψ∗∇     , from V to S, where * * , s s s s⊆ ⊆    . 

The 1 2{ , , , }VN vn vn vnτ= ⋅⋅ ⋅  have been allocated resources on the substrate  

network. Give a mapping ς of a set of virtual networks on the substrate network, 

reconfigure ς to obtain a new mapping *ς such that *( ) ( )ς ςℑ ≤ ℑ . 
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3.4 System Object 

The main objective of reconfiguration algorithm is to reconfigure the existing 
mapping ς to get a new mapping *ς that is better than ς  with respect to a cost. 

Similar to the early work in [3], Firstly, we define the cost as 

†( , )S ς ϖ σ ϑℑ = + +                                    (1) 

( , ) ( , )S Sϖ α ς β ς= ϒ + Τ                                   (2) 

( , ) ( , )S Sσ α ς β ς= ϒ + Τ                                    (3) 

†ϑ δ ϑ δ ϑ= +                                           (4) 

Where ϖ  , σ  and †ϑ is node cost, link cost and migration costs, respective-

ly , ( , )S ςϒ and ( , )S ςϒ is maximum node and link load, ( , )S ςΤ and ( , )S ςΤ  is 

average node and link load, ϑ and ϑ is node and link migration costs. 

, , , , andα α β β δ δ       are weighting coefficients. 

4 VNRC-DPSO Algorithms 

4.1 Discrete PSO for Virtual Reconfiguration 

Particle swarm optimization (PSO) is a population based stochastic optimization 
technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social 
behavior of bird flocking or fish schooling.  

Standard PSO is not directly applicable to the optimal reconfiguration problem, so 
we used variants of PSO for discrete optimization problems to solve the optimal re-
configuration problem. 

Redefine the position parameters, the velocity parameters and the operations for 
discrete PSO as follows: 

Definition 1. PositionΛ   Let 1 2{ , , , }q q q
χ= Λ Λ ⋅⋅⋅ ΛqΛ is a position matrix of a particle, 

which denotes a possible virtual network reconfiguration solution. χ is the number of 

virtual networks running on the substrate network. For each column vector 
q
iΛ ∈ qΛ , q

iΛ is a vector, denotes a possible VNM solution for ith virtual networks 

according to the substrate network. 

Definition 2. VelocityΨ    Let 2{ , , , }q qθ
χ1= Ψ Ψ ⋅⋅⋅ ΨqΨ is a velocity matrix, denote 

which position of each virtual network mapping solution should be adjust. 

Definition 3.  q qΛ Ψ a new position matrix that corresponds to a new virtual 
network reconfiguration solution. If all the values of ith column vector of qΨ  is 

equals to 1, the VNM solution for ith virtual networks q
iΛ will be kept; otherwise, 
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q
iΛ should be adjust. For example,

2 3 5 6 1 1 0 1

1 2 9 1 1 1

4 7 1 0

   
   
   
   
   

  denotes 3
qΛ be 

adjusted, where the first and third virtual node of the virtual network will be moved. 

Definition 4. Θ  Θq pΛ Λ  a velocity matrix. It indicates the differences of the two 
virtual network mapping solutions. If q

iΛ  and p
iΛ  have the same values at the same 

dimension, the resulted value is 1, otherwise, the value is 0. For example,        
2 3 5 6 2 3 7 1 1 1 0 0

                             1 2 9 5 2 3 0 1 0

4 7 1 9 0 0

     
     Θ =     
     
     

   

Definition 5.   1 2ℵ ℵq pΨ Ψ  If q
iΨ and p

iΨ have the same values at the same dimen-

sion, the resulted value of the corresponding dimension will be kept; otherwise, 
keep q

iΨ with probability 1ℵ and keep p
iΨ with probability. For exam-

ple,

1 0 1 0 1 0

0.3 0 1 0.7 1 1 1

0 1 0 1 0 1

     
     + = Ξ     
     
     

 where Ξ denotes the probability of being  

0 or 1. In this example, the Ξ is equal to 0 with probability 0.3 and equal to 1 with 
probability 0.7. 

Because of the specificity of discrete quantity operation, we modify the particle 
motion equation and cancel the original inertia item. The position and velocity of 
particle q are determined according to the following velocity and position update 
recurrence relations: 

1 2( ) ( )q ppB gB← ℵ Θ ℵ Θq q qΨ Λ Λ


                             (5) 

←q q qΛ Λ Ψ
 

                                              (6) 

Where 1ℵ and 2ℵ are set to constant values that satisfy the inequali-

ty 1 2 1ℵ +ℵ = ; qpB denote the position with the best fitness found so far for the qth 

particle; qgB denote the best global position in the swarm. 

4.2 VNRC-DPSO Algorithm Description 

In this section, we present the VNRC-DPSO algorithm for VN reconfiguration.  
Reconfiguration of VN involves migration of virtual nodes and links. The algorithm 
takes as input a mapping ς of a set of VNs and tries to look for another mapping 

*ς that has the least cost among all possible mappings. The solution space is the set 

of all feasible solutions. The cost function gives the cost associated with a solution 
belonging to the solution space. The algorithm takes the objective function (1) as 
fitness function. The details of the VNRC-DPSO algorithm are listed in Table 1. 
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Table 1. VNRC-DPSO algorithm 

Algorithm 1 VNRC-DPSO algorithm 
Input: Substrate network ( , , , )S S S SS ξ ξ=     

     Mapping solution ς  of current VNs running on substrate net-

work 
Output: reconfiguration mapping solution *ς  

1. Initialize particle count N and max iterative count M; 
2. Calculate fitness Gfitness of ς  and set the initial qgB  as ς ; 

3. For each particle randomly set it position matrix qΛ ; 
4. Do while iterative count < M & qgB  changes in every 5 

rounds; 
5.    Update velocity matrix according to qgB  and qpB , using 

equation (5); 
6.    Update position using equation (6), i.e. for each column 

vector of qΨ randomly set the mapping target in substrate 

nodes according to Definition 3; 
7.    Calculate fitness of current position using equation (1); 
8.    If the new fitness is smaller than Gfitness, update qgB ; 

9.    If the new fitness is smaller than Pfitness, update qpB ; 

10. End while and set qgB as output solution *ς . 

5 Simulation 

We implemented the VNRC-DPSO algorithm using the CloudSim3.0.1 on a  
PC which has one Intel Core i7-3770 CPU and 20G DDR3 1600 RAM. We write  
a random topological generator in java to generate topologies for the underlying  
substrate networks and virtual networks in CloudSim. Substrate networks in our  
experiments have 60 nodes, each node connect to other nodes with probability  
0.2, so there are about 300 links in the networks. The substrate nodes and links  
were assigned resources by generating a uniform random number between 50  
and 100. We assume that VN requests arrive in a Poisson process with an average  
rate of 4 VNs per 100 time units. For each VN request, the number of virtual  
nodes was randomly determined by a uniform distribution between 4 and 10, with  
the probability of a virtual link between any two virtual nodes set to 0.5. The CPU 
and bandwidth requirements of virtual nodes and links are real numbers uniformly 
distributed between 3 and 30 units. Each virtual network’s living time uniformly  
distributed between 100 and 1000 time unit. The parameters were set as following 

0.5,  0.25 α α δ δ β β= = = = = =      . 
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Fig. 1. Comparison of accept ratio with reconfiguration algorithm or without 

In first experiment, the simulation was fixed at one reconfiguration every 30 VN 
requests. We simulated 1000 virtual network request for each algorithm, each test run 
20 times. All the results presented for an experiment are an average of 20 runs of 
simulation. We ran the reconfiguration algorithm in VNM solution and compered the 
acceptance ratio to without any reconfigurations. As shown in Fig.1, we can easily see 
that with periodic reconfiguration the VNs accept ratio can be increased about 20% in 
major running time. 

 

 
Fig. 2. Comparison of Load ratio for before and after reconfigure 

The second experiment verifies load balance of the substrate network with and 
without reconfiguration. We simulated 1000 virtual network request and run the algo-
rithm present in this paper every 30 VN requests are mapped into the substrate net-
work. Fig. 2 plots the average result of 300 rounds of reconfigurations. Max node and 
link load are sampled individual biggest load node and link, Average node and link 
load are the average load ratio of all the substrate nodes and links. From the figure we 
can see that the reconfiguration algorithm significantly reduce max Link load and 
average link load, it also cut down the max node load. In average node load because 
the reconfigure algorithm present in this paper can balance average load and avoid 
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bottlenecks in substrate network, so it to can achieve higher VNs access ratio. For this 
reason, after every reconfigure the substrate can accept more VNs, i.e. there are more 
VNs running on the substrate network at the same time with reconfigure algorithm. 

6 Conclusions 

This paper introduced a new virtual network reconfiguration algorithm base on dis-
crete particle swarm optimization. The algorithm reconfigures the VNs by migrations 
and optimizes the allocation of resources to VNs such that the load is balanced across 
the substrate network, thereby reducing the peak node and link load on the substrate 
network. Simulation results show that the biggest load in both physical node and link 
load are significantly reduced and can improve load balance of substrate network so 
as to achieve higher VNs accept ratio. 
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tal Research Foundation, under Grant. N110323009. 
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Abstract. Power distribution networks are the most susceptible sector
of the whole electric grid in terms of reliability. Failures along the lines
cause the disconnection of a great number of customers what have an
immediate impact on quality and security indices. Innovations capable
to mitigate impacts or improve reliability are ever pursued by the elec-
tric utilities. In view of that, the planning of the modern distribution
networks must consider the installation of switches along the network
as an important procedure to isolate failures reducing the impact and
the number of customers not supplied. However, the complexity and the
dimension of the current distribution networks, makes the task of proper
allocation of switches strongly dependent on the expertise of engineers.
This paper proposes an application based on a Multi-Objective Particle
Swarm Optimization algorithm that determines the suitable placement
and a feasible number of switches on the power distribution networks in
order to minimize the number of customers affected by faults. Detailed
information about the algorithm and its application in a test distribution
system is presented. The effectiveness of the algorithm is presented in a
case study applied to the IEEE 123-Node Test Feeder.

1 Introduction

Smart grid is an important and novel concept that aims to add intelligence to the
whole power network from generation to transmission and distribution network up
to the end user premises. This effort intends to improve the efficiency, availability
and quality of the electricity supplied. The distribution system and the end users
although are the entities that shall take full advantage of the smart technologies.

The distribution networks are much susceptible to failures [1], and its avail-
ability is closely related to the reliability indices. Improvements in the System
Average Interruption Duration (SAIDI) index or the number of Customers Not
Supplied (CNS) during outages, among others, are continuously pursued by the
electric power distribution companies to avoid penalties by regulatory organiza-
tions. Furthermore, innovations are evaluated to be effectively applied by utilities
in their networks, devices and systems of information and control.

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 258–267, 2013.
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Heuristic techniques play an important role in the planning of smart distri-
bution networks and several papers propose solutions based on evolutionary al-
gorithms like Simulated Annealing (SA), Genetic Algorithms (GA), Ant Colony
Optimization (ACO) and Particle Swarm Optimization (PSO).

PSO algorithm was originally proposed by [2] and is commonly applied to
power systems due to its characteristics of flexibility, robustness and easy im-
plementation [3]. A solution to reactive power optimization is proposed in [4]
using an improved PSO algorithm. The focus of the improvement is to avoid the
convergence to a local minimum which is commonly appointed as a disadvantage
in PSO algorithms. Features such as inertia weight, shrinkage factor, crossover
and mutation are used to improve the algorithm efficiency.

Many extensions to the original PSO algorithm have been proposed to broaden
its capabilities and applications. The Discrete Binary PSO (DBPSO), proposed
in [5], is one of the most important extensions because it operates on discrete
binary variables, what has drastically increased the universe of applicable prob-
lems. An optimal switch placement algorithm for power systems is proposed in
[6] that uses a modified version of DBPSO. The authors deals not only with
discrete binary values {0, 1}, but instead a Trinary PSO (TPSO) algorithm is
proposed which, in fact, is a multistate version of DBPSO.

More recently, multi-objective optimization problems have been solved by PSO
algorithms [7]. However, few of them can deal with discrete problems. A modified
Multi-Objective Binary PSO (MOBPSO) algorithm is proposed in [8] for improv-
ing the multi-objective optimization performance. Mutation and dissipation op-
erators are introduced to improve the search without impair the diversity.

The optimal switch placement is an useful procedure to improve the reliability
of power distribution networks. The use of switches reduces the impact of outages
caused by faults as detailed in [9]. Albeit, the reliability improvement with min-
imum costs are conflicting objectives. The high cost of switches makes its use to
be carefully assessed by utilities. A feasible number of switches to achieve an af-
fordable reliability level must be evaluated. Despite the high costs involved, the
penalties that the utility may suffer from regulatory agencies due to infringements
in reliability indices, is the main reason to invest in switch placement. Accordingly,
a trade-off between reliability and cost has to be stablished.

This paper proposes a multi-objective approach based on MOBPSO algorithm
that aids the decision making in switch placement in electric power distribution
networks. The algorithm aims to determine an affordable result for application
in the distribution network of a power utility. Tests results when applied to
the IEEE 123-Node Test System [10] are presented. The results found are com-
pared to the ones presented by [6]. Better results are presented considering the
economic cost of switches and improved reliability.

The article is organized as follows. In section 2 the switch placement problem is
explained. The mathematical representation of the distribution network topology
is introduced in section 3. The complete description of the algorithm is given in
section 4. In section 5 the case study is presented. Finally, the conclusions are
presented in section 6.
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2 Switch Placement in the Distribution Networks

The electric distribution networks are of the power system as a whole the clos-
est part to the end users and the most susceptible to failures. The distribution
networks are very complex and that complexity comes from: the various options
for substation, transformer and switch location; several alternatives for cable or
line sizes and routes; multistage investment decisions; complex objectives; and
uncertainty about demand variation and location, equipment availability, and
faults [11]. Despite these challenges, the electric distribution companies are re-
sponsible to deliver electricity to customers within criteria of reliability, security
and affordable cost. Thus, the reliability of the distribution networks is a very
important issue and it is evaluated by many indices like SAIDI (System Average
Interruption Duration Index), SAIFI (System Average Interruption Frequency
Index), ECOST (Expected Outage Cost), number of Customers Not Supplied
(CNS), among others. Regulatory agencies in many countries can apply heavy
penalties to the utilities based on the reliability indices infringement. Therefore,
the reliability improvement is fundamental and it is always pursued by electric
distribution companies.

A representation of a simplified distribution network is presented in Fig.1a.
It comprises a bus that connects two feeders (F1 and F2). Each feeder has two
load points. LP1 and LP2 connected to F1. LP3 and LP4 connected to F2.
There is also one circuit breaker at the input of each feeder, CB1 and CB2. The
circuit breakers are the primary protection of the feeders. They are responsible
to open the circuit when short circuits are detected on each feeder what is called
a fault. When a fault occurs on a feeder, all the customers connected to that
feeder are switched off.

An alternative configuration to the distribution network showed in Fig.1a
is presented in Fig.1b. Three new elements were added to the network, the
sectionalizer switches nc1, nc2 and no. The first two switches are Normally Close
(NC) and the latter is Normally Open (NO). The presence of these switches

(a) Feeders F1 and F2. (b) Feeders and switches.

Fig. 1. Simplified distribution network
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reduces the fault impacts isolating the branch (segment of distribution network)
in fault. Suppose that a short circuit occurs at LP2. The primary protection
CB1 opens and all the customers connected to F1 are affected. But, nc1 can
be opened isolating the faulty section (b4). After that, the energy supply can be
re-established by closing CB1. As a result, only LP2 is switched off and LP1 is
normally supplied by the bus.

Now, if a short circuit occurs at branch b1, the primary protection CB1 auto-
matically detects and eliminates the fault by opening its contacts. Load points
LP1 and LP2 are then de-energized. Next, the isolation of the faulty branch,
b1, can be made by opening the switch nc1. LP2 can be then supplied by feeder
F2 by closing the no switch. The goal of the network reconfiguration is to keep
the energy supply to a greater number of consumers that are connected to the
feeder.

As it has been shown, the installation of sectionalizer switches or reclosers
along the distribution networks reduces the impact caused by faults by reduc-
ing the number of customers not supplied. For the simple distribution network
presented in the example, it is easy to determine at which points the switches
should be installed. However, the complexity and dimension of the actual distri-
bution networks makes the switch placement a hard task hard to be performed.
It is not commonplace the optimal switch placement in a distribution network
with 3 or more feeders with thousands of customers connected to each one. The
number of switches is also an important issue due to the necessary investments
in assets besides the maintenance cost to the utilities.

3 Mathematical Modeling of the Distribution Networks

The topology of the distribution network initially has to be modeled mathemat-
ically in order to run the MOBPSO algorithm. Graph theory concepts are used
for modeling the network. A graph G is a triple consisting of a vertex set V (G),
an edge set E(G) and a relation that is associated to each edge. Adjacency ma-
trix is used to describe the network relating the connectivity between the nodes
or the available paths between them. Integer numbers are used to name the
nodes. The adjacency matrix (I) is defined as

Iij =

{
1 if (i, j) ∈ E;
0 otherwise

(1)

where i and j are row and column numbers, respectively.
The node numbering for the simple distribution network presented in Fig.1a

is showed in Fig.2a in parenthesis and its adjacency matrix is presented in (3).
The element I24 in (3) is 1, which indicates that there is a branch between nodes
2 and 4. I46 in turn is 0 because there is not any path between nodes 4 and 6.

When the switches no, nc1 and nc2 are added to the network as represented in
Fig.2b, the adjacency matrix is updated to consider the presence of the switches
at each network branch as defined in (2).
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Iij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if it has a circuit breaker between nodes i and j,

1 if it has a line between nodes i and j, (2)

−1 if it has a NO switch between nodes i and j,

0 if it has not any element between nodes i and j.

For example, in (4) the element I24 still have 1, but the element I46 is now
−1, instead of 0, indicating the presence of a NO switch between nodes 4 and
6. Similarly, the elements I12 and I18 both are equal to 2 indicating a circuit
breaker.

(a) Node numbering used. (b) Added normally open switch.

Fig. 2. Node numbering and the switch.

1 2 3 4 5 6 7 8 9

1 0 1 0 0 0 0 0 1 0

2 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 1 0 0 1

9 0 0 0 0 0 0 0 0 0 (3)

1 2 3 4 5 6 7 8 9

1 0 2 0 0 0 0 0 2 0

2 0 0 1 1 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0

4 0 0 0 0 1 −1 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 1 0

7 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 1 0 0 1

9 0 0 0 0 0 1 0 0 0 (4)

4 Algorithm Description

AMulti-Objective Binary Particle Swarm Optimization algorithm (MOBPSO) is
developed for application of optimal placement of switches in power distribution
networks. In this study, the array x represents the solution (a set of switches and
its locations) and it is randomly initialized at the beginning of the algorithm.
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The dimension, d, of x is given by (5), where NC is the number of network
branches, NO is the number of normally open switches and CB is the number
of feeder circuit breakers. Each element of x contains binary values that indicate
the presence (1) or the absence (0) of a switch in the correspondent branch.

d = NC +NO − CB (5)

The main objective of the algorithm is to achieve a set of switches and its
placements in the network that minimizes the impacts of the faults. It can be
noticed that minimum cost solutions are usually not maximally reliable and
maximally reliable solutions are not often the cheapest. In such a scenario, none
of these two extreme solutions (the cheapest and the most reliable solutions)
can be declared as an absolute optimum solution complying to both objectives
of design [12]. The most widely adopted approach to multi-objective problems
like this is to convert it into a single objective optimization problem, easier to
solve, using the Weighted Sum Method(WSM) [13]. Using WSM, the composite
objective function, given in (6), is evaluated at each iteration i of the algorithm
to obtain a solution xi that corresponds to a set of switches. The array w, given
in (7), contains the normalized weights that represent the importance of each
particular objective, reliability (wr) or cost (wc), for the problem.

F (x) = w [ qr(x) qc(x) ]
T (6)

w = [wr wc ] (7)

wr + wc = 1 (8)

For the switch placement problem, the choice of the weights is based on the
utility preferences or needs. For economic valuable areas that are priority for
the utility is common sense that better reliability indices are desirable. On the
other hand, when the economic resources available are scarce the reliability is
deprecated.

Simply apply the weights chosen as WSM indicates achieves good results in
relative few iterations. However, a different procedure is adopted to improve
the quality of the solutions. The algorithm is divided to run in two stages. At
first stage, the objective function (6) is compounded only by the reliability term,
(wc = 0). The goal is to deal each objective individually and obtain the optimum
placement of switches neglecting the number of switches needed. At the end of
first stage, the best configuration of switches, considering only the minor number
of CNS, is determined.

The goal in the second stage is to reduce the number of switches needed,
reducing the finance cost of the solution, making it feasible. Assuming a nonzero
value for wc, accordingly to (8), an affordable solution is determined.

The steps of the algorithm are detailed next.

Step 1. The topology of the distribution network is loaded and the dimension
of the solution is determined. The size of swarm (M), the learning factors (c1
and c2) and the number of iterations (Nitr) are stated.
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Step 2. The arrays x and v (velocity) are randomly initialized. The weights
wr and wc assume its values according to the current stage.

Step 3. The solution fitness is evaluated by (6). qr is given by (9), where qj
is the number of Customers Not Supplied by the j contingency. qc is given by
(10), where NSi is the number of switches of the solution xi.

qr =
b∑
j=1

qj (9)

qc =
NSi
NC

(10)

Step 4. The fitness of the partial solution, xi, is compared to pbest and gbest
and the best one of them is adopted as the current solution.

Step 5. The velocity, v, and xi are updated to a new iteration.
The steps 3 to 5 are repeated until the number of iterations, Nitr, is achieved

for the first stage. The step 2 is repeated to update the weights (wr and wc),
the velocity(v) and a new solution to test (x). Steps 3 to 5 are repeated Nitr
times again for the second stage and the solution is found. An important remark
is that the first proposed solution (x) in the second stage is the gbest solution
found at the end of the first stage. This act as a reference point to the algorithm
leading it to continue the search and do not jump to another area of search space
when second stage begins.

5 Case Study

To demonstrate the effectiveness of the aforementioned algorithm it was applied
to the IEEE 123-Node Test System [10] which is widely applied as a reference
distribution network by power systems researches. The IEEE-123 Node Test
System is presented in Fig.3. It is a single radial distribution feeder with 114
load points and estimated 5, 410 customers connected.

The number of iterations (Nitr = 100) and the learning factors (c1 = c2 = 2)
are empirically determined by tests. Greater test systems may require more
iterations to converge. The dimension given by (5), d = 116. The number of
agents assume the same value of dimension. The weights wr and wc assume the
values 1.0 and 0 at first stage, respectively. For the second stage, wr and wc
assume 0.7 and 0.3, respectively.

The simulation results are presented in Fig.4 and Table 2. From Fig.4 can be
seen that the convergence is achieved on both stages. For the first stage the CNS
index is 1, 304 with 42 switches. At second stage, the CNS index is 1, 405, but
with only 13 switches. In other words, installing the number of switches indicated
by the algorithm, 1, 405 customers are switched off, in worst case, instead of all
the customers connected to the feeder. The final configuration of switches in the
distribution network is showed in Table 2.

Comparing the proposed algorithm to the TPSO algorithm presented in [6],
a reduction from 26 to 13 sectionalizer switches is achieved. Additionally, the
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Fig. 3. IEEE 123-Node Test System

Table 1. Comparison against TPSO and MOBPSO

Algorithm CNS
Number of
Switches

TPSO 2, 034 26

MOBPSO 1, 405 13

CNS index of the TPSO resulted in 2, 034 customers. On the other hand, the
proposed MOBPSO algorithm has evaluated a CNS index of 1, 405 customers.
Such values are condensed in Table 1.

Failure rates of equipment of the distribution networks are not usually avail-
able and often they are unknown by the utilities. This sort of information is not
demanded by the proposed algorithm while they are necessary for the algorithm
in [6]. This is an important result that clearly pose the proposed algorithm as a
valuable tool for planning reliable distribution networks in a smart grid context.

The development of the MOBPSO has been made with Matlab software. The
implementation of the proposed algorithm in a software is under development
to be applied in effective distribution networks of Energetic Company of Ceará
(COELCE). The COELCE is an important Brazilian utility that supplies next
to 1 million customers in the Ceará state. The software intends to be a tool to
help the decision making on switch placement for the utilities.
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Fig. 4. Convergence for the IEEE123-Node Test Feeder

Table 2. Switch placement in the IEEE123-Node Test Feeder

Sectionalizer Locations b3 b10 b14 b13 b22 b47 b17 b65 b79 b77 b96 b103 b109

6 Conclusions

An effective tool for power distribution systems planning has been presented.
This algorithm is a valuable tool to help the decision making in electric energy
distribution companies to place switches along radial distribution networks. The
improvements in the reliability indices, particularly in the number of customers
not supplied, are achieved.

The effectiveness of the algorithm has been demonstrated by applying it on
IEEE 123-Node Test Feeder. The results found are also feasible in terms of
the amount of investment costs. The application of the proposed algorithm
to a Brazilian distribution company, COELCE, is under development to be
the fundamental decision making tool for switch placement in its distribution
networks.
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Abstract. This paper presents an improved chaotic ant swarm (ICAS)
by introducing three strategies, which are comprehensive learning strat-
egy, search bound strategy and refinement search strategy, into chaotic
ant swarm (CAS) for solving optimization problems. The first two strate-
gies are employed to update ants’ positions, which preserve the diversity
of the swarm so that the ICAS discourages premature convergence. In
addition, the refinement search strategy is adopted to increase the solu-
tion quality in the ICAS. Simulations show that the ICAS significantly
enhances solution accuracy and convergence stability of the CAS.

1 Introduction

Chaos search has been a novel and potential tool of optimization because the
search strategies based on chaos properties have been found to obtain nice ca-
pabilities of hill-climbing and escaping from local optima, and to be more effec-
tive than random search [1]. Especially, as a special mechanism to avoid being
trapped in local optimum, chaos ergodicity has been viewed as an effective search
strategy. In recent years, the research based on chaos search has received partic-
ular attention and has obtained satisfactory results by combining it with other
heuristic algorithms, such as chaos search [2], chaotic neural network [3], chaotic
simulated annealing [4], chaotic particle swarm optimization [5] and chaotic ant
swarm [6].

Chaotic ant swarm (CAS) is a chaos optimization algorithm inspired by the
chaotic and self-organizing behavior of ants in nature. In the CAS, ants use
chaotic principles to search for food. Each ant performs the chaotic exploration
of its hunting sites and interacts with its neighbors. They search chaotically until
they have been organized via pheromone trails, and move to the most successful
site among the previously met hunting sites. The CAS uses the principles to
implement a meta-heuristic for the search of a global optimum or near-optimum
of a function in a search space.

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 268–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The CAS has been successfully used to solve some problems since it was pro-
posed in 2006. However, as a newly emerged optimal algorithm, the CAS still has
some problems which require us to do further research such as premature conver-
gence, solution accuracy, and so on. In the past seven years, many adjustments
and improvements have been made to the CAS to deal with these problems. As
the parameters used in CAS are believed to have great influence on the perfor-
mance of the algorithm, many researches[7] have been done to adaptively adjust
the parameters for different problems. CAS is also hybridized with other meth-
ods [8,9] to enhance its ability on a large number of applications. Motivated and
inspired by the research work mentioned above, based on the analysis of the
CAS, this paper presents an improved chaotic ant swarm (ICAS) by utilizing
three strategies, which are comprehensive learning strategy, search bound strat-
egy and refinement search strategy, to increase the performance of the CAS.
The first two strategies enable the diversity of the swarm to be preserved to dis-
courage premature convergence. The last strategy improves solution accuracy.
Simulations show that the ICAS enhances the global optimization ability greatly.

The rest of the paper is organized as follows. Section 2 introduces the CAS.
Section 3 describes the ICAS. Section 4 presents and discusses experimental
results that have been obtained on five benchmark functions. Finally, conclusion
is given in Section 5.

2 Chaotic Ant Swarm Algorithm

In the CAS, the chaotic system x(k) = x(k − 1) × eμ(1−x(k−1)) [10] was intro-
duced into the heuristic equation of the CAS for obtaining the chaotic search
initially. The adjustment of the chaotic behavior of individual ant is achieved
by the introduction of a successively decrement of organization variable yi and
eventually leads the individual to move to the new site acquired with the best
fitness value. In order to achieve the information exchange of individuals and
the movements to new site taken on the best fitness value, the CAS introduced
(pbestid−xid). pbestid is selected based on the fitness theory which is very widely
developed in optimization theory such as genetic algorithm, tabu search, and so
on. xid is the state of the dth dimension of ant i. Considering a D -dimensional
optimal problem, the iteration evolution of a swarm of L ants can be represented
by those of a position vector, xi = (xi1, ..., xiD), and an organization variable, yi.
At iteration step k, the position and organization variable of ant i are updated
by using [6]

⎧⎪⎨
⎪⎩
yi(k) = yi(k − 1)(1+ri)

xid(k) = (xid(k − 1) + 7.5
ψd

× vi)× e
(1−e−ayi(k))(3−ψd(xid(k−1)+ 7.5

ψd
×vi)) − 7.5

ψd
× vi

+(pbestid(k − 1)− xid(k − 1))e−2ayi(k)+b

(1)
where k means the current iteration step, and k − 1 is the previous iteration
step; yi(k) is the ith ant’s organization variable of the current iteration step,
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yi(0) = 0.999; xid(k) is the current state of the dth dimension of ant i, xid(0) =
7.5
ψd

×(1−vi)×rand(1), where rand(1) is a uniformly distributed random number

in (0, 1); pbestid(k−1) is the best position found by the ith ant and its neighbors
within k − 1 steps; vi(0 < vi < 1) determines the search region of ant i ; a is a
sufficiently large positive constant and can be selected as a = 200; b(0 ≤ b ≤ 2/3)
is a constant.
ri and ψd are two important parameters. ri is the organization factor of ant

i, which directly affects the convergence speed of the CAS. If ri is very large,
the iteration step of chaotic search is small, then the system converges quickly
and the desired optima or near-optima can not be achieved. If ri is very small,
the iteration step of chaotic search is large, then the system converges slowly
and the runtime will be longer. Since small changes are desired as iteration step
evolves, the value of ri is chosen typically as 0 < ri ≤ 0.5. The format of ri can
be designed according to concrete problems and runtime. Each ant could have
different ri, such as ri = 0.1 + 0.2× rand(1). ψd affects the search ranges of the
CAS. If the interval of the search is [−ωd

2 ,
ωd

2 ], we can obtain an approximate
formula ωd ≈ 7.5

ψd
.

Eq. (1) describes the search process of the CAS. The organization variable yi is
used to control the chaotic process of ant moving, and its influence on the ant’s
behavior is very weak initially. That is, initially the organization capabilities
of the ants are very weak so that a non-coordinated process occurs which is
characterized by the chaotic walking of ants. This phase lasts until the influence
of organization on the individual behavior is sufficiently large. Then, the chaotic
behavior of the individual ant disappears and a coordination phase starts. That
is, ants do some further searches and move to the best position which they have
ever found in search space. Throughout the whole process, these ants exchange
information with other ants, then compare and memorize the information.

3 The Improved Chaotic Ant Swarm Algorithm

Based on the understanding of the CAS, we propose an improved chaotic ant
swarm (ICAS) by employing three strategies to increase the performance of CAS
in this section. We describe the three strategies in detail.

3.1 Comprehensive Learning Strategy

As the fitness value f(xi) = f([xi1, xi2, ..., xiD]) of an ant is possibly determined
by values of all D parameters, an ant that has discovered the solutions corre-
sponding to the global optimum in some dimensions may have a high fitness value
due to the poor solutions in the other dimensions. This paper defines the fitness
value the smaller the better. This good genotype may be lost in this situation
because all dimensions of an ant learn from just its historical best information
in the CAS. In order to retain this good genotype, this paper introduces a com-
prehensive learning strategy [11], which makes each ant learn from different ants
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for different dimensions, to update ants’ positions. The updating formulas of
position and organization variable in the comprehensive learning strategy are

⎧⎪⎨
⎪⎩
yi(k) = yi(k − 1)(1+ri)

xid(k) = (xid(k − 1) + 7.5
ψd

× vi)× e
(1−e−ayi(k))(3−ψd(xid(k−1)+ 7.5

ψd
×vi)) − 7.5

ψd
× vi

+(pbestgdi d(k − 1)− xid(k − 1))e−2ayi(k)+b

(2)
where gi = [g1i , g

2
i , ..., g

D
i ] defines which ants’ pbest the ant i should follow.

pbestgdi d can be the corresponding dimension of any ant’s pbest including its own
pbest, and the decision depends on probability P , referred to as the learning
probability. For each dimension of ant i, we generate a random number within
(0,1). If the random number is larger than Pi, the corresponding dimension will
learn from its own pbest, otherwise it will learn from another ant’ pbest. When
the ant’s dimension learns from another ant’s pbest, we employ the following
selection procedure: first randomly choose two ants out of the swarm which
exclude the ant whose position is updated, then compare the fitness values of
these two ants’ pbests and select the better one, final use the winner’s pbests as
the exemplar to learn from for that dimension. The details of choosing gi are
given in Fig. 1.

From Eq. (2), each dimension of ant i may learn from the corresponding
dimension of a different ant’s pbest to make the ant generate new positions
and preserve the diversity of the swarm. To ensure that an ant learns from
good exemplars and to intensify the search of the positions, we allow the ant to

Fig. 1. Selection of exemplar dimensions for ant i
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learn from the exemplars until the ant stops improving for a certain number of
generations called the learning time m, and then we reassign gi for the ant.

3.2 Search Bound Strategy

From Eq. (1) and ψd ≈ 7.5
ωd

, the value of xid may move out of the search range

[−ωd

2 ,
ωd

2 ] in the search process. In order to prevent ants from moving out of the
search bounds, we use the equation xid = min(ωd

2 ,max(−ωd

2 , xid)) to restrain
an ant on the border in the ICAS.

3.3 Refinement Search Strategy

In order to improve solution quality further, the refinement search is carried out
around the ant with the best fitness value after the last iteration. In this way,
the ant can learn from all other ants’ historical best information from the first
dimension to the final dimension. The flowchart of the refinement search is given
in Fig. 2.

The ICAS introduces three strategies, which are comprehensive learning strat-
egy, search bound strategy and refinement search strategy, to increase the per-
formance of the CAS. From Sections 2 and 3, we can observe main differences
between the ICAS and the CAS. Firstly, instead of learning from the same ant

Fig. 2. Flowchart of the refinement searching strategy
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for all dimensions, each dimension of an ant may learn from the corresponding
dimension of a different ant’s pbest; Secondly, instead of using an ant’s pbest
as the exemplar, all ants’ pbests can potentially be used as the exemplars to
guide an ant’s move direction; Thirdly, instead of all dimensions learning from
one exemplar in every generation, each dimension of an ant can learn from one
exemplar for a few generations. Fourthly, instead of moving out of search ranges
possibly, the variables are restricted in search ranges. Finally, instead of stopping
search after the last iteration, the ant with the best fitness value has refinement
search after the last iteration.

4 Simulation Experiment

4.1 Benchmark Functions

In our experiments, we choose the five benchmark functions with the global
minimum fitness value 0 as follows. All the five functions are widely known for
testing the performance of different heuristic optimization algorithms such as
evolutionary programming, simulated annealing, genetic algorithms and particle
swarm optimization. The five test functions are:

Sphere function:

f1(x) =

D∑
i=1

x2i , s.t. xi ∈ [−50, 50] (3)

DeJongF4 function:

f2(x) =

D∑
i=1

ix2i , s.t. xi ∈ [−20, 20] (4)

Rosenbrock function:

f3(x) =

D−1∑
i=1

(100(xi+1 − x2i )
2 + (xi − 1)2), s.t. xi ∈ [−100, 100] (5)

Griewank function:

f4(x) = 1 +

D∑
i=1

(
x2i
4000

)−
D∏
i=1

cos(
xi
2
√
i
), s.t.xi ∈ [−600, 600] (6)

Rastrigin function:

f5(x) =

D∑
i=1

(10 + x2i − 10 cos(2πxi)), s.t.xi ∈ [−5.12, 5.12] (7)
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4.2 Parameters Setting

In the ICAS, we use these parameter settings: L = 20, a = 200, b = 1
2 , y(0) =

0.999, ri = 0.01 + 0.00001 × rand(1), vi = rand(1). This kind of dynamical
neighbors is selected. At first step, the number of neighbors is two. The number
of neighbors will increase one every two iterative steps. The max number of
neighbors is 19. The value of parameter ψd can be selected according to the
ranges of intervals. The max number of iterations is 1000. We analyze the effects
of learning probability P and learning time m on the search results of the ICAS
in Sections 4.3 and 4.4, respectively. We compare the ICAS with the CAS in
Section 4.5.

4.3 Learning Probability P

P is the learning probability, which decides how many dimensions are chosen
to learn from other ant’s pbest. In order to show the effects of the learning
probability P on the search results of the ICAS, experiments are conducted on
five benchmark functions with ten dimensions as defined in Section 4.1. P is
set at 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, respectively. The
ICAS runs 20 times for each P. Table 1 presents the results of the ICAS under
different P while the best results among different P are shown in bold (where
1.82e-04 is defined 1.82× 10−4). As seen in Table 1, mean values and variances
are better when 0.1 ≤ P ≤ 0.5. Therefore, there is a problem, that is how to
select suitable P to make search results of the ICAS better. Considering this
problem, this paper sets different values of P for each ant so that ants achieve
different levels of exploration and exploitation ability in the swarm and are able
to solve diverse problems. This paper uses the following expression [11] to set a
Pi value for each ant:

Pi = 0.05 + 0.45× e
10(i−1)
(L−1) − 1

e10 − 1
.

4.4 Learning Time m

The learning time m ensures that an ant learns from good exemplars and
strengthens the search of the positions. If m is too large, the search time at
the positions of good exemplars is too long. Because the iteration number is
limited, the search process is easy to trap in the local optimization. Considering
of this, m should be tuned. In this section, five test functions with 10 dimensions
as defined in Section 4.1 are used to investigate the impact of this parameter
m on the results of the ICAS from m = 0 to m = 15. The ICAS runs 20 times
on each of these functions. Mean fitness values of the final results are plotted in
Fig. 3. As it shows, different learning times can produce different results. For the
five test functions, better results are obtained when m is around three. Hence,
in our experiments, the learning time m is set at three for all test functions.
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Table 1. Mean values and variances of 20 runs on these test functions

P 0 0.05 0.1 0.2 0.3 0.4

Sphere mean 1.82e-04 2.49e-04 6.44e-04 2.00e-03 1.31e-03 7.90e-05
variances 9.67e-07 2.97e-07 3.43e-06 3.64e-05 2.38e-05 6.82e-08

DeJongF4 mean 4.23e-05 2.46e-06 2.29e-04 1.21e-04 1.43e-08 1.99e-06
variances 2.31e-08 1.18e-10 9.80e-07 2.93e-07 2.29e-15 2.35e-11

Griewank mean 5.98e-02 5.53e-02 7.19e-02 8.90e-03 1.64e-02 9.21e-02
variances 2.48e-02 2.70e-02 2.61e-02 5.85e-04 2.61e-03 5.96e-02

Rosenbrock mean 7.04 1.41e+01 4.20 6.83 1.91e+01 8.32
variances 2.91e+02 2.10e+02 5.23e+01 1.29e+02 2.98e+03 1.03e+02

Rastrigin mean 3.20e-04 2.64e-04 4.61e-04 2.13e-03 2.06e-04 4.85e-04
variances 2.02e-06 1.05e-06 1.27e-06 4.60e-05 3.99e-07 3.29e-06

P 0.5 0.6 0.7 0.8 0.9 1.0

Sphere mean 3.08e-04 1.80e-03 4.07e-04 1.12e-03 9.69e-04 4.91e-04
variances 9.66e-07 6.35e-05 2.80e-06 2.28e-05 7.06e-06 2.31e-06

DeJongF4 mean 6.45e-09 2.30e-06 7.50e-08 5.66e-07 4.28e-06 1.78e-08
variances 6.91e-16 9.69e-11 6.05e-14 4.95e-12 3.66e-10 2.65e-15

Rosenbrock mean 1.12e+01 1.26e+01 5.68 5.42 1.16e+01 1.07e+01
variances 4.14e+02 4.38e+02 9.30e+01 8.75e+01 7.54e+02 6.02e+02

Griewank mean 5.06e-02 1.49e-01 4.43e-02 9.40e-02 1.51e-02 1.35e-01
variances 4.56e-02 9.29e-02 1.16e-02 5.72e-02 1.70e-03 7.45e-02

Rastrigin mean 4.60e-03 3.01e-03 4.12e-04 3.78e-04 6.12e-03 6.61e-03
variances 4.03e-04 1.91e-04 1.24e-06 1.33e-06 7.15e-04 6.41e-04

4.5 Comparative Study

To evaluate the performance of the ICAS, we have comparisons with the CAS.
Each experiment runs 50 times. Experiments are conducted on the five test
functions with 30 dimensions. The mean values for 50 times along with the
variance are presented in Table 2. The results of the CAS are from Ref. [6]. The
experiments were performed on a computer with 2.93 GHz Intel(R) Pentium (R)
4 processor and 512 MB of RAM using Matlab 7.6.

From Table 2, we observe that the ICAS achieves better results in the mean
and variance than the CAS on all five test functions because of employing three
strategies in the ICAS. Especially, three orders of magnitude are improved in

Table 2. Comparison between the ICAS and the CAS

Function mean variance mean runtime (s)
ICAS CAS ICAS CAS ICAS CAS

Sphere 2.93E-03 3.81E-01 6.85E-05 5.33E-02 83.26 80.15

DeJongF4 2.84E-05 1.61E-02 1.04E-08 1.62E-03 90.98 87.30

Rosenbrock 2.12E+01 2.34E+01 7.21E+02 1.37E+04 86.43 83.26

Griewank 7.61E-02 4.66E-01 4.56E-02 1.82E-01 92.71 89.78

Rastrigin 1.11E-02 2.26E+01 5.02E-03 1,10E+03 88.69 85.45
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Fig. 3. The results of the ICAS on five test functions with different learning time m

the mean while six orders of magnitude in the variance for Rastrigin function.
Although Rosenbrock function has not change the order of magnitude in the
mean, it improves two orders of magnitude in the variance. That is, the sta-
bility of Rosenbrock function is enhanced in the ICAS. For others functions,
the mean and variance both are improved. Such as, Sphere function increases
two orders of magnitude in the mean while three orders of magnitude in the
variance. DeJongF4 function increases three orders of magnitude in the mean
while five orders of magnitude in the variance. Griewank function both improves
one order of magnitude in the mean and variance. According to the mean, the
ICAS is more efficient to improve solution search ability than the CAS. Such as,
from the results of Sphere function, the ICAS increases the local search ability
of the CAS; as seen in Griewank and Rastrigin function, the ICAS enhances the
global search ability of the CAS. Depending on the variance, solution stability
is enhanced in the ICAS compared with the CAS. Thus, the ICAS improves the
performance of the CAS in solution search ability and solution stability.

From Table 2, note that the ICAS takes a little higher mean runtime than the
CAS because of using three strategies in the ICAS. However, from experimental
results (see Table 2), we could see that the ICAS outperforms the CAS on all five
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benchmark functions. So we could say the ICAS is efficient. Moreover, with the
rapid development of computer, the tradeoff between high-quality solutions and
computational time tends to the former. So the quality of solutions preponderates
when problems could be solved by algorithms in rational time.

5 Conclusion

Based on the mechanism analysis of chaotic ant swarm (CAS), this paper presents
an improved chaotic ant swarm (ICAS) by introducing three strategies, which are
comprehensive learning strategy, search bound strategy and refinement search
strategy, to solve optimization problems. The three strategies enable the ICAS
to make use of the information in swarm more effectively and generate better
solution quality frequently when compared to the CAS. From the testing results
of the two algorithms, we can conclude that ICAS significantly improves solution
accuracy and convergence stability of the CAS.
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Abstract. Membership classification belongs to target customer analysis in the 
customer relationship management. For membership classification, an improved 
ant colony classification algorithm named mAnt-Miner+ is proposed. This 
algorithm on the basis of Ant-Miner, draws on the idea of mAnt-Miner  
(Ant-Miner that uses a population of many ants), and introduces a new heuristic 
strategy. Experimental results show that, in terms of prediction accuracy,  
mAnt-Miner+ is competitive with Ant-Miner and higher than mAnt-Miner; in 
terms of running efficiency, mAnt-Miner+ is more efficient than mAnt-Miner 
and Ant-Miner.  

Keywords: Ant-Miner, Heuristic, Membership Classification, Customer 
Relationship Management.  

1 Introduction 

Customer Relationship Management (CRM) includes a set of systems of the business 
strategy which make enterprises establish long-term cooperative relations with 
specific customers [1]. Members are the basic customers of retail companies, and 
many retail companies have stored a large number of member data that contains the 
basic information and consumption records. Membership classification will benefit 
retail enterprises mining potential customers. The member data of some retail 
companies are large, which require improving the operational efficiency of data 
mining algorithms. For membership classification, this article uses the ant colony 
classification algorithm, and discusses the method to improve the performance of the 
algorithm.  

Ant-Miner [2] is the first algorithm which implements Ant Colony Optimization 
(ACO) [3] algorithm for classification task of data mining. However, Ant-Miner 
works with a single ant in its each iteration, different from the standard definition of 
ACO which uses a set of ants. GUI Ant-Miner [4] and ACO-Miner [5] have made use 
of ant populations to improve Ant-Miner. Multi-population parallel strategy is 
proposed in ACO-Miner. In this paper, we define the algorithm, like GUI Ant-Miner, 
which uses a population of many ants in Ant-Miner as mAnt-Miner. But mAnt-Miner 
still applies the heuristic strategy of Ant-Miner that contains the local information and 
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is modified in the running of the algorithm. It makes mAnt-Miner easy to trap in the 
local optimal solution, and reduces the stability of the algorithm. Therefore, we 
propose mAnt-Miner+ that is based on mAnt-Miner and uses a new heuristic strategy. 

The remaining paper is organized as follows. Section 2 presents an overview of 
Ant-Miner. Section 3 describes our proposed algorithm mAnt-Miner+. Section 4 
reports the experimental results. Finally, conclusions are given in Section 5.  

2 Ant-Miner 

The discovery of classification rules is the target problem of Ant-Miner. The form of 
each classification rule is IF <conditions> THEN <class>, where the <conditions> 
part contains a logical combination of predictor attributes, in the form: term1 AND 
term2 AND … AND termn. Each term is a triple <attribute, operator, value>, where 
operator represents a relational operator and value belongs to the domain of attribute. 
Ant-Miner can only cope with categorical attributes, so that operator is always “=”. 
Continuous attributes are discretized in the preprocessing step. The <class> part of the 
rule specifies the class predicted for cases whose predictor attributes satisfy the 
<conditions> part of the rule. Ant-Miner consists of three main steps, including rule 
construction, rule pruning, and pheromone updating.  

2.1 Rule Construction 

Each ant begins with an empty rule and keeps adding termij to its current partial rule 
until meeting the stopping criterion. The termij is a rule condition, in the form: Ai = 
Vij, where Vij is the jth value in the domain of Ai. The probability that termij is chosen 
to be added to the current partial rule is 
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where ηij is the value of the problem-dependent heuristic function for termij, τij(t) is 
the amount of pheromone associated with termij at iteration t, corresponding to the 
amount of pheromone currently available in the position i, j of the trail being followed 
by the current ant, a is the total number of attributes, bi is the total number of values 
in the domain of Ai, and I are the attributes that are not yet used by the ant.  

The heuristic function ηij is an estimate of the quality of termij, with respect to its 
ability to improve the accuracy of the rule. In Ant-Miner, the heuristic function ηij is 
based on information theory [6] and is defined by  

2

2

log

(log ),
i

ij
ij ba

ij
i j

k InfoT

k InfoT i I

η
−

=
− ∀ ∈

 
(2)



280 H. Wu and K. Sun 

 

2
1

log
| | | |

w wk
ij ij

ij
w ij ij

FreqT FreqT
InfoT

T T=

   
= − ×      

   
  (3)

where k is the number of classes, |Tij| is the total number of cases in partition  
Tij (partition containing the cases whose attribute Ai has value Vij), FreqTij

w  
is the number of cases in partition Tij with class w, and a, I have the same meaning  
as in (1). However, higher the value of InfoTij, lower the predictive power of  
termij.  

2.2 Rule Pruning 

The rule pruning procedure is performed for each ant as soon as the ant completes the 
construction of its rule. The main goal of rule pruning is to improve the rule quality 
by removing irrelevant terms which might have been added during the rule 
construction. The rule pruning iteratively removes the term until the rule has just one 
term or until there is no term whose removal will improve the quality of the rule. The 
quality of a rule is measured by 

TP TN
Q

TP FN FP TN
= ⋅

+ +
 (4)

where TP is the number of cases covered by the rule and whose classes are predicted 
correctly by the rule, FP is the number of cases covered by the rule and whose  
classes are predicted falsely by the rule, FN is the number of cases that are not 
covered by the rule while having the class predicted by the rule, and TN is the number 
of cases that are not covered by the rule and whose classes are predicted falsely by  
the rule. 

2.3 Pheromone Updating 

After each ant completes the rule construction and the rule pruning, the amount of 
pheromone in all segments of all paths must be updated. The pheromone updating has 
two basic ideas. First, the amount of pheromone associated with each termij that 
occurs in the constructed rule is increased. Second, the amount of pheromone 
associated with each termij which does not occur in the constructed rule is decreased, 
simulating pheromone evaporation in real Ant Colony Systems. 

The pheromone updating formula of termij that occurs in the rule is presented as  

( 1) ( ) ( ) , ,ij ij ijt t t Q i j Rτ τ τ+ = + ⋅ ∀ ∈  (5)

where R is the set of terms that occur in the rule constructed by the ant at iteration t 
and Q has been defined as (4). Q varies within the range of (0, 1) and the larger the 
value of Q, the higher the quality of the rule. 
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3 mAnt-Miner+ 

In Ant-Miner, each classification rule is constructed by a single ant. In order to make 
use of ant populations in ACO concepts, we apply the method of mAnt-Miner. 
However, we find that the heuristic strategy of mAnt-Miner contains the local 
information and is modified during the algorithm running, so that it makes  
mAnt-Miner easy to trap in the local optimal solution and decreases the stability of 
mAnt-Miner. Therefore, we propose mAnt-Miner+ using a new heuristic strategy. 

Algorithm 1. High level pseudo-code of mAnt-Miner+ 

TrainingSet = {all training cases}; 
RuleList = []; 
Calculate heuristic function η; 
WHILE (TrainingSet > Max_uncovered_cases) 
  t = 1; //iteration index 
  j = 1; //convergence test index 
  Initialize all trails with 
    the same amount of pheromone; 
  REPEAT 
    k = 1; //ant index 
    FOR (k < No_of_ants) 
      Antk incrementally constructs 
        a classification rule; 
      Prune the just-constructed rule; 
      k = k + 1; 
    END FOR 
    Select the best ant in k ants as Antbest, 
      and its rule as Rt; 
    Update the pheromone of the trail 
      followed by Antbest; 
    IF (Rt is equal to Rt-1) 
      THEN j = j + 1; 
      ELSE j = 1; 
    END IF 
    t = t + 1; 
  UNTIL (t >= No_of_iterations)  
    OR (j >= No_rules_converg) 
  Choose the best rule Rbest among all rules Rt; 
  Add rule Rbest to RuleList; 
  TrainingSet = TrainingSet – 
    {cases correctly covered by Rbest}; 
END WHILE 

A high level pseudo-code of mAnt-Miner+ is shown in Algorithm 1. In summary, 
mAnt-Miner+ works as follow. The algorithm starts with an empty rule list and the 
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training set that consists of all the training cases. The values of the heuristic function 
are computed before the WHILE loop. It is different from Ant-Miner, because the 
values of this heuristic function are invariable during the running of the algorithm. 
Each iteration of the WHILE loop including a number of REPEAT-UNTIL loop 
discovers one classification rule. This rule is added to the rule list and the training 
cases that are covered correctly by this rule are removed from the training set. Each 
iteration of the REPEAT-UNTIL loop including a number of FOR loop finds the best 
ant in ant populations and the rule constructed by this ant. The amount of pheromone 
in segments of the trail followed by the best ant is updated. Each iteration of the  
FOR loop, that makes use of ant populations, consists of two steps, rule construction 
and rule pruning. The processes of rule construction and rule pruning are same as 
Ant-Miner. 

3.1 Ant Populations 

In the standard definition of ACO [7], a population is defined as the set of ants that 
construct solutions between two pheromone updates. But Ant-Miner performs with a 
population of only one ant, since pheromone is updated until a rule is constructed by a 
single ant [2]. 

GUI Ant-Miner [4] is an updated version of Ant-Miner and differs from Ant-Miner 
as that it makes possible the use of ant populations within the ACO concept. ACO-
Miner [5] is an improved algorithm of Ant-Miner. ACO-Miner also makes use of ant 
populations and uses multi-population parallel strategy that divides the ant colony into 
several populations. These populations are parallel, run separately and have the same 
amount of ants. 

GUI Ant-Miner is different from ACO-Miner, since GUI Ant-Miner uses the best 
ant to update pheromone after the best rule constructed by this ant is selected from the 
rules constructed by a population of many ants. However, ACO-Miner uses each ant 
to perform the pheromone updating after a rule is constructed by each ant of several 
ant populations. 

Although GUI Ant-Miner introduce the concept of ant populations, it is different 
from ACO, because it just uses one ant (the best one of ant populations) to update 
pheromone. However, its cost of computation is smaller than that uses each ant to 
update pheromone. 

This article applies the idea of GUI Ant-Miner, and defines this algorithm as mAnt-
Miner. The ant populations used by mAnt-Miner can avoid dependence on initial term 
due to the random select of term at the beginning of iteration. 

3.2 Heuristic Strategy 

Ant-Miner2 [8] uses a simpler, though less accurate, density estimation as the 
heuristic value with the assumption that the idea of pheromone should compensate the 
small potential errors. This makes Ant-Miner2 computationally less expensive 
without a significant degradation of the performance. However, in mAnt-Miner+, we 
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believe that not only the idea of the pheromone but also the use of ant populations 
should compensate the small induced errors in the simple heuristic function. 

We also analyze the heuristic strategy in Ant-Miner. The value of ηij contains the 
local information and is modified during the running of Ant-Miner, since the 
denominator of ηij varies in the running. The heuristic strategy of Ant-Miner has two 
minor caveats [2]. First, if the value Vij of attribute Ai does not occur in the training 
set, then InfoTij is set to its maximum value of log2k. This corresponds to assigning to 
termij the lowest possible predictive power. Second, if all the cases in the partition Tij 
belong to the same class then InfoTij is set to zero. This corresponds to assigning to 
termij the highest possible predictive power. This will also make the value of ηij 
contain the local information and modified during the running of the algorithm, 
because the cases of training set is decreased in the running. 

The heuristic strategy of Ant-Miner makes mAnt-Miner easy to trap in the local 
optimal solution, since it contains the local information. However, the heuristic 
strategy of Ant-Miner is different from ACO. In ACO, the value of ηij is not modified 
during the running of the algorithm [9]. So we also believe that the heuristic function 
ηij does not need to vary in the running. 

In order to reduce the local information in the value of ηij and make it invariable 
during the running of Ant-Miner, we remove the denominator of the original heuristic 
function and delete the two caveats of the original heuristic strategy. Finally, the new 
heuristic function is defined as 

2logij ijk InfoTSη = −  (6)

where TS is different from T in (2), because TS is all the training cases, not the 
partition. In essence, ηij in (6) is the information gain of termij based on the total 
training set. After the new heuristic function finishes the initial computing, it is 
invariable during the running of the algorithm. 

4 Experimental Results 

The experiment is divided into two parts, namely: 1) In order to evaluate the 
performance of the improved algorithm, we selected six standard data sets from the 
UCI Irvine machine learning repository [10]; 2) In order to apply the improved 
algorithm in the member classification, we used the actual member data set. The data 
sets selected from UCI are discrete data; while the actual member data set is 
continuous data, needing the discrete processing. 

All the results of the experiment were obtained by using a Pentium P6000 PC with 
clock rate of 1.87GHz and 2GB of main memory. The results of Ant-Miner and 
mAnt-Miner were computed by GUI Ant-Miner. mAnt-Miner+ was developed in Java 
language and based on GUI Ant-Miner. 

4.1 Parameter Setting 

Five parameters need to be set in algorithms, described as follow: 

1) Number of ants in each ant generation (No_of_ants); 
2) Minimum number of cases covered by per rule (Min_cases_per_rule); 
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3) Maximum number of uncovered cases in the training set 
(Max_uncovered_cases); 

4) Number of rules used to test convergence of ants (No_rules_converg); 
5) Number of iterations of each ant generation (No_of_iterations). 

Note that No_of_ants is different from the parameter that has the same name in 
original Ant-Miner, since it represents the number of ants in each ant generation. 
However, No_of_ants in original Ant-Miner has the same meaning of 
No_of_iterations. The roles of Min_cases_per_rule, Max_uncovered_cases and 
No_rules_converg are same as in original Ant-Miner. Table 1 shows the parameter 
setting used when testing each algorithm based on Ant-Miner. 

Table 1. Parameter setting in experiments 

Parameter Ant-Miner mAnt-Miner mAnt-Miner+ 

No_of_ants 1 5 5 
Min_cases_per_rule 5 5 5 

Max_uncovered_cases 10 10 10 
No_rules_converg 10 10 10 
No_of_iterations 1000 1000 1000 

4.2 Data Preparation 

Firstly, introduce the UCI standard data sets. In order to reduce the influence of data 
discretization, the selected data sets have only categorical attributes. The main 
characteristics of the selected data sets are summarized in Table 2. 

Table 2. Summary of the data sets 

Data set Instances Attributes Classes 

breast-cancer 286 10 2 
car 1728 7 4 

soybean 683 36 19 
sponge 76 46 3 

tic-tac-toe 958 10 2 
vote 435 17 2 

 
Secondly, introduce the actual member data set. We get two kinds of data from the 

database of a retail company, namely:  

1) The information of 5000 membership card samples, defined as Data 1. 
2) The detail records of member consumption in 2011, defined as Data 2. 

The attributes of data in Data 1 are the id of membership cards, the kind of 
membership cards, the time of issuing membership cards, expiration time, and 
validity. The attributes of data in Data 2 are the serial number, the id of membership 
cards, transaction time, and transaction amount. The kind of membership cards is the 
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basic of member classification. There are four kinds of membership cards, such as 
score cards, silver cards, gold cards, and diamond cards. 

The Data 2 are the detail records of member consumption in 2011, so the data 
leaved in Data 1 should meet that the time of issuing membership cards is before 
2011, the expiration time is after 2011, and the value of validity is “y”. After 
processing, the number of the remaining data in Data 1 is 1159, including: 892 score 
cards, 83 silver cards, 137 gold cards and 47 diamond cards. The data in Data 2 are 
sorted by the transaction time. In order to reduce data density of Data 2 in time line, 
we merge the data by month, so that we get the monthly consumption of each member 
in 2011. 

Cycle search the data in Data 1 and Data 2, and obtain the data whose id of 
membership cards are existed in both Data 1 and Data 2. We save the kind of 
membership cards and the monthly consumption of the obtained data in Data 3. Data 
3 contains 13 attributes, namely: the kind of membership cards and the consumption 
of each month. We delete the data whose some month consumption is negative or 
total annual consumption is less than or equal to zero. As a result, the number of data 
reduces to 880 from 1159, including: 640 score cards, 75 silver cards, 124 gold cards 
and 41 diamond cards. Finally, we define the kind of membership cards as the class 
attribute, the monthly consumption as the general attributes. 

The data need to be discretized, since Ant-Miner can only deal with the discrete 
data. This article uses the unsupervised discretization to process data. We divide the 
value of the monthly consumption into 10 equal-width intervals, and obtain the 
member data sets used in experiment.  

4.3 Comparison of Results 

The comparison is carried out across two criteria: the predictive accuracy and the 
processing time. Ten-fold cross validation is performed on each of data sets. We 
compare the experimental results of Ant-Miner, mAnt-Miner and mAnt-Miner+ on the 
two kinds of data sets that are introduced in section 4.2.  

Table 3 shows a comparison of the predictive accuracy for each algorithm on UCI 
data sets. The numbers after the “±” symbol denote standard deviations. As shown in 
the table, both mAnt-Miner+ and Ant-Miner discover rules with a better predictive 
accuracy than mAnt-Miner in all six data sets. However, mAnt-Miner+ discovers rules 
with a better predictive accuracy than Ant-Miner in four data sets. In other two data 
sets, Ant-Miner is more accurate than mAnt-Miner+. 

Table 3. Predictive accuracy (%) of each algorithm on UCI data sets 

Data set Ant-Miner mAnt-Miner mAnt-Miner+ 

breast-cancer 74.37 ±2.55 73.85 ±2.19 74.79 ±2.19 
car 84.90 ±0.90 83.80 ±1.38 84.84 ±1.49 

soybean 87.91 ±1.80 87.58 ±1.12 88.17 ±1.13 
sponge 91.67 ±3.88 90.48 ±2.82 91.25 ±2.67 

tic-tac-toe 72.30 ±2.82 71.28 ±2.37 75.57 ±1.47 
vote 94.95 ±1.11 94.47 ±0.78 95.65 ±0.92 
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Table 4 shows the processing time of each algorithm on UCI data sets. From  
Table 4, we can conclude that mAnt-Miner+ is faster than mAnt-Miner and Ant-Miner 
in all six data sets. mAnt-Miner is faster than Ant-Miner in four data sets. In other two 
data sets, the processing time of Ant-Miner and mAnt-Miner are the same. 

Table 4. Processing time (s) of each algorithm on UCI data sets 

Data set Ant-Miner mAnt-Miner mAnt-Miner+ 

breast-cancer 4 3 1 
car 12 8 5 

soybean 1011 450 282 
sponge 123 58 6 

tic-tac-toe 8 8 2 
vote 4 4 3 

 
We can analysis from the results of Table 3 and Table 4 that mAnt-Miner is easy to 

trap in the local optimal solution, since the predictive accuracy of mAnt-Miner is 
lower than Ant-Miner. mAnt-Miner exists the problem of premature convergence, so 
mAnt-Miner is faster than Ant-Miner in two thirds of the data sets. However, the 
predictive accuracy of mAnt-Miner+ is competitive with Ant-Miner and better than 
mAnt-Miner, and mAnt-Miner+ is the fastest one in three algorithms. So mAnt-
Miner+ avoids trapping in the local optimal solution, and improves the efficiency of 
the algorithm.  

Table 5 shows the predictive accuracy and the processing time of each algorithm 
on the actual member data sets. As shown in the table, the predictive accuracy of 
mAnt-Miner+ and Ant-Miner are approximate, but the processing time of mAnt-
Miner+ is fastest. The predictive accuracy of mAnt-Miner is still lowest, namely, 
mAnt-Miner traps in the local optimal solution again. However, mAnt-Miner does not 
premature converge this time, and the processing time of mAnt-Miner is the longest. 
It illustrates that mAnt-Miner is not stable in experiment on different type of data sets. 

Table 5. Predictive accuracy (%) and processing time (s) of each algorithm on member  
data sets 

Data set Predictive accuracy Processing time 

Ant-Miner 71.59 ±1.80 54 
mAnt-Miner 70.23 ±3.03 86 

mAnt-Miner+ 71.34 ±1.10 34 

5 Conclusion 

An improved ant colony classification algorithm named mAnt-Miner+ is proposed in 
this article, and is applied to membership classification. mAnt-Miner+ is based on 
mAnt-Miner and uses a new heuristic strategy that reduces the local information. In 
order to be close to the operating mechanism of ACO, we make the value of new 
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heuristic strategy invariable in the running. The results of experiments show  
that, mAnt-Miner is easy to trap in the local optimal solution, and is not stable  
in experiment on different types of data sets. However, mAnt-Miner+ successes  
in avoiding the weakness of mAnt-Miner and is competitive with Ant-Miner and 
higher than mAnt-Miner with respect to predictive accuracy; the processing time of 
mAnt-Miner+ is faster than mAnt-Miner and Ant-Miner.  
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Abstract. Inspired by ant’s stochastic behavior in searching of multiple food 
sources, a novel ant system with two ant decision levels are proposed to track 
multiple cells in biological field. In the ant individual level, ants within the 
same colony perform independently, and ant decision is determined in 
probability by both its intended motion model and likelihood function. In the 
ant cooperation level, each ant adjusts individual state within its influence 
region, while the global best template at current iteration is found among all ant 
colonies and further utilized to update ant model probability, influence region, 
and the probability of fulfilling task. Simulation results demonstrate that our 
algorithm could automatically track numerous cells and its performance is 
compared with the multi-Bernoulli filtering method.  

Keywords: Ant Colony, Multi-Cell Tracking, Parameter Estimate. 

1 Introduction 

The study of cellular behavior analysis involves many challenges, such as model 
uncertainty, morphological variance, overlapping and colliding between cells, and 
conventional or manual analysis is definitely a tedious and time consuming process 
even for experts in this field. As such, the automated analysis of cellular behavior is 
demanded eagerly for large number of cell image data, and related promising reports in 
this field have been reported over the past decades [1-5]. Among these reports, three 
categories are summarized, i.e., model propagation based method, detection based 
method, and multi-object Bayesian probabilistic method. In terms of the model 
propagation based methods, both snakes [6] and Level set [7] require cells to be 
partially overlapping in adjacent frames; Mean-shift algorithms [8] give a fast solution 
for object tracking in video sequences, but usually do not give object contours. In the 
category of detection based method, the typical advantage is computational efficiency 
with respect to segmentation, but the algorithms encounter problems during the 
temporal data association stage [9]. The last category of cell tracking algorithm is the 
multi-object Bayesian probabilistic method, the Random Finite Sets (RFS) based 
methods [10,11] have demonstrated that they could be extended to successfully track 
multiple cells such as E. coli bacteria and T cell. 
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Ant colony optimization (ACO), a population-based and meta-heuristic approach, 
is to mainly solve various optimization problems [12]. In this paper, however, we 
present a novel ant system algorithm to track multiple cells, which consists of two 
levels, namely, the ant individual level and the ant cooperation level. The ant 
individual level encourages each ant to move closely to the location of object, while 
in the ant cooperation level the cooperation mechanism among colonies is utilized to 
update and regulate the behavior of ant for moving towards regions where cells 
occurs.  

2 Bayesian Multi-Object Tracking Problem Description 

With the assumption that each object follows Markov process, the Bayesian filtering 
algorithm offers a concise way to describe the multi-object tracking problem. For 
tracking n objects, we denote the multi-object state by 1 2( ) { ( ), ( ),..., ( )}nk k k k=X x x x at 

tim k , where ( )i kx  is the state vector of i-th object. Let 1 2( ) [ , ,..., ]mk z z z=z denote 

the image observation comprising an array of m pixel values, and (1: )kz  is defined 

as a cumulative image sequences up to time k . Therefore, if the posterior density of 
multi-object state is denoted by ( | (1: ))kπ • z , the theoretic optimal approach to  

multi-object state estimation problem can be formulated as 

( ( ) | (1: 1)) ( ( ) | ) ( | (1: 1))

( ( ) | ( )) ( ( ) | (1: 1))
( ( ) | (1: ))

( ( ) | ) ( | (1: 1))

k k f k k

k k k k
k k

k k

π π δ

ππ
π δ

− = −

−=
−





X z X X X z X

h z X X z
X z

h z X X z X

 (1)

where ( )f • is the multi-object transition density function, ( )•h is the observation 

likelihood function, and δ is an appropriate reference measure on some state space. 
In the next section, we will use proposed ant system to approximately estimate the 
posterior density of multi-object state. 

3 Ant System with Two Ant Decision Levels  

3.1 Ant Individual Decision Level 

Considering the case of tracking numerous cells each represented approximately by 
the distribution of N  ants, we use m  ant colonies to cooperatively estimate the state 
of each object. In the ant individual decision level, with the assumption of each 
colony working independently, multi-object tracking system can be treated as a single 
object tracking problem in which only one ant colony is employed. Next, without loss 
of generality, we only describe the decision behavior of ant i ( { }1,...,i N∈ ) in colony 

s ( { }1,...s m∈ ) when searching for potential position where cell probably appears.  

At time k , the decision of ant i at next step can be defined with a probability as  
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where model probability ( ), ( )i j
s kπ  denotes the j-th element in 

( ) ( ),1 ( ),2 ( ),3( ) [ ( ), ( ), ( )]i i i i T
s s s sk k k kπ π π π=  with the assumption that each ant has three 

modes, namely, moving forward, turning right, and turning left ; ( ) ( 1 | )j
s k k+x  is the 

one-step prediction of state ( ) ( )i
s kx  following a Markov process with a transition 

density ( ) ( )jf • ; Observation image ( )•z  is usually modeled by the likelihood 

function ( )( ( ) | ( ))j
s• •h z x  conditioned on the current state ( ) ( )j

s •x ; j  corresponds to 

one of positions obtained from three modes, α and β  are the importance adjustment 

parameter, and ( )
i
sΩ denotes the set of three predicted positions of ant i . 

As implicated in Eq. (2), ( ), ( )i j
s kπ  determines the inclination degree to which ant 

i  move towards j . State transition density ( ) ( )jf •  encompasses the information of 

object moving various modes. Measurement likelihood function ( )•h  is usually 

selected according to empirical analysis in computer vision. Our algorithm employs a 
novel likelihood function to discriminate interested regions easily, and it operates 
directly on RGB space but requires a small number of templates which is established 
in a dynamic way. Therefore, for a given histogram ku of an RGB image, the 

corresponding likelihood score is computed as  

( )(1 )( ) kg
ku e

γ ξ
ρμ − −=h  (3)

where , ,   andμ ρ γ ξ are the adjustment coefficients designed for achieving better 

likelihood difference comparison, and kg is defined as below 

| { }|

1 1

1
min( ( ), ( ))

| { } |

T k p

k k i
i j

g u j u j
T k = =

=    (4)

where ( )iu j  denotes the value of j -th element of iu in template pool, p  is the 

total number of elements in a histogram and takes the value of 256 3×  for RGB 
image, and | { } |T k is the number of samples in histogram template pool { }T k . 

3.2 Ant Cooperation Decision Level 

We assume that multiple ant colonies are utilized to track multiple cells and each 
colony in principle when implementation corresponds to one cell, thus information 
exchange happens both within each colony and among colonies. For ant i  
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( { }1,...,i N∈ )in colony s ( { }1,...s m∈ ) at time k , we first use a 1 2c c×  rectangle 

region template whose center is closest to position ( ) ( )( ( ), ( ))i i
s sx k y k , then we calculate 

its corresponding histogram likelihood score according to Eq. (3), and the best 
template with the highest likelihood score is finally found and denoted by ( )best

sT k . In 

this way, the best template ( )bestT k at current iteration can be further obtained through 

a set of { }1 ( ),..., ( )best best
mT k T k . If 0( ( ))bestT k t≥h , then new augmented template pool 

is obtained. When  max| { 1} |T k N+ =  holds, a complete template pool is built and 

then utilized to track multiple objects at the following iterations.  
Updating procedure using the global best information is requisite to further 

regulate ant behavior in the following iterations. Since this step constitutes the 
positive feedback mechanism, a well-established update formula guarantees the 
quality of solution, and accelerates convergence speed as well.  

In the ant individual decision level, once the searching behavior of each ant in a 
given colony is finished, the likelihood score corresponding to each new position is 
required to calculate for re-evaluating the importance of each ant. Therefore, we have  
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(5)

where the prediction weight ( ) ( 1 | )i
s k kω +  is equal to the previous ( ) ( )i

s kω .  

Upon the updating mode probability, we use three different mode candidates as a 
basis to normalize weights  
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where ( ) ( )( 1 | ) ( )i i
s M sk k P kπ π+ = × with model jump matrix MP .  

In order to fully characterize the individual difference of each ant, two parameters, 
i.e., ant state and its influence region denoted by deviation ( ) ( )i

s kσ , are jointly 

updated to achieve better tracking performance. In terms of the state update, we 
follow the same rule as in [13] but velocity and influence region restrictions are 
introduced to make ants move towards area of interest step by step. For instance, 

( ) ( )i
s kx and ( ) ( 1| )j

s k k+x , respectively, represent the previous state of ant i and the 

state to be selected by ant i , and the following rule is applied to ant i  
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where maxvelo denotes the ant’s maximum speed, and T is the sampling interval. 

Meanwhile, ant’s one step moving distance d is also within the range 

of ( )
min,[ ( )]i

s kσ σ , where ( )
max( )i

s kσ σ≤ .  

Once all ants finished state update, we further use the above information to update 
the influence region represented by  

( ) ( )
( )

( 1)
( 1) ( )

( 1)
i is

s si
s

K k
k k

k

ωσ σ
ω

⋅ +
+ =

+
 (8)

where ( ) ( 1)i
s kω + is the update likelihood score using the same form as Eq.(5) with 

( ) ( 1)i
s k +x , ( 1)s kω + is the average likelihood score over all ants in colony s , and 

K  is the adjustment coefficient. Eq. (8) indicates that the bigger the likelihood score 
the smaller the influence region.  

Since we introduce the concept of ant colony of different tasks, and our focus, 
therefore, is how to describe the degree to which ant colony s has found the 
corresponding object. the predict and update term can be formulated as  

( 1 | ) ( )

( 1| ) ( ( 1)), ( ( 1 | ( 1)))
( 1)

1 ( 1| ) ( 1 | ) ( ( 1)), ( ( 1 | ( 1)))

s s

s s s
s
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q k k f k z k k
q k

q k k q k k f k z k k

+ =
+ + + +

+ =
− + + + + + +

x h x

x h x

 (9)

where ,f h denotes the inner product ( ) ( )f x h x dx , and 1 ( 1 | )sq k k− +  describes 

the degree to which ant colony s hasn’t found the corresponding cell. 

3.3 Framework of Our Algorithm and Its Implementation 

To visualize our proposed algorithm in a full view, we summarize the pseudo-code of 
main blocks in Table 1. In terms of the issues on algorithm implementation, ant 
colony at each step consists of two parts, i.e., the remaining ant colonies (except for 
the first iteration) and a fix number of ant colonies added at each step. We also 
assume that the total number of ant colonies is larger than that of objects. In addition, 
both the merge and prune processes are considered at the stage of state estimate for 
the sake of computation burn and prior constraints. 
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Table 1. The pseudo-code of main block of our algorithm 

0. Initialization 
1. In the Ant individual decision level 

For ant colony 1:s m=  
   For each ant i  in colony s   
       Select potential according to Eq. (2); 

End  

       Find the highest likelihood score in colony s according to Eq.(3) , and best
sT  as well; 

End 
2. In the Ant cooperation decision level 

Find the global highest likelihood score among above m colonies, and the corresponding 

template bestT is obtained to update the template sample pool T ; 

In each ant colony, ant state update is performed using the same rule as in [13], and Eq. (7); 

Update ant’s mode probability ( ) ( 1)i
s kπ + , influence region ( )i

sσ , and importance weight 
( )i
sω  according to Eqs. (6) , (8) and (5); 

Update the degree to which each ant colony has found the corresponding object, i.e., sq , 

according to Eq. (9). 
If 0sq q> (threshold), return ant colony s  to step 1, otherwise delete it. 

3. Output 
Estimate the individual state of each remaining ant colony. 

4 Experiments  

In this section, we will test the performance of our algorithm on low-contrast cell 
image sequences, which include various scenarios, such as different cell dynamics, 
cell morphology (shape) variation, and varying number of cells in different frames, 
etc. As shown in Fig.1, a new cell enters first at the lower rim of image and our 
algorithm captures the cell instantly when it is fully in the observation area in frame 
41. Afterwards, the new cell, as well as the original one, is kept on being tracked with 
our algorithm in the following frames. In case 2, as shown in Fig. 2, this cell keeps on 
moving left, and partially leaves observation region in frame 47 and fully in frame 48. 
Note that our algorithm could track all cells with varying number of cells.  
 
                       Frame 39 Frame 40  Frame 41  Frame 42  Frame 43 

     
a) Original RGB image sequences  

                      Frame 39  Frame 40  Frame 41  Frame 42  Frame 43 

     
b) Tracking results of original RGB image sequences  

Fig. 1. Cells tracking when new cell enters images (100 100pix pix× ) 



294 B. Xu et al. 

 

Frame 45  Frame 46  Frame 47  Frame 48  Frame 49 

     
  a) Original RGB image sequences 

Frame 45  Frame 46  Frame 47  Frame 48  Frame 49 

     
  b) Tracking results of original RGB image sequences  

Fig. 2. Cells tracking when new cell leaves images (100 100pix pix× ) 

  Frame 51  Frame 52  Frame 53  Frame 54  Frame 51  Frame 52  Frame 53  Frame 54 

        
a) Original RGB image sequences                  b) Tracking results  

Fig. 3. Cells tracking when cell both leaves and enters images (100 100pix pix× ) 

In case 3, as shown in Fig. 3, one cell moves right, partially leaves the image in 
frames 52 and 53, and fully leaves the image in frame 54. Meanwhile, the other cell 
partially enters from left upper part of image in frames 53 and 54. It can be observed 
that our algorithm can track existing cell until it disappears in frame 54, and capture 
new entering one instantly in frame 54. Fig.4 illustrates the false negative reports and 
false alarm reports, and the averaged FNR and FAR are 10.20% and 0.20%, 
respectively, using our algorithm, and 20.00% and 0.40%, respectively, using the 
method in [11]. It can be seen that our algorithm shows better performance than the 
method in [11], especially between frame 42 and frame 48. In frame 53, the two 
algorithms record relatively higher false negative reports, and this is because both are 
insensitive to the cell that only a small part appears in the left upper region. Fig.5 
illustrates the corresponding ant colony distributions of each extracted cell state at 
selected frames discussed above. It can be observed that each ant colony moves 
around their individual interested cell, and each is bounded within the image. 
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Fig. 4. Performance comparisons in terms of FNR and FAR 
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 Frame 39    Frame 41   Frame 43  Frame 45    Frame 47    Frame 49    Frame 51 

       

Fig. 5. Ant colony distributions of selected frames 

5 Conclusions 

In this work, we propose a novel ant system with two ant decision levels to track 
multiple cells in various challenging scenario. Through introducing two different 
levels, each ant individual motion is well regulated and the best information is 
exchanged both within colony itself and among ant colonies. Experiments show that 
our algorithm could track simultaneously multiple cells of entering and/or leaving 
image, cells of undergoing drastic dynamic changes, etc. Also, according to statistic 
results, our algorithm demonstrates a robust tracking performance in terms of the 
measures of FNR and FAR when comparing with existing methods.  
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Abstract. The Physarum Network model exhibits the feature of im-
portant pipelines being reserved with the evolution of network during
the process of solving a maze problem. Drawing on this feature, an Ant
Colony System (ACS), denoted as PNACS, is proposed based on the
Physarum Network (PN). When updating pheromone matrix, we should
update both pheromone trails released by ants and the pheromones flow-
ing in a network. This hybrid algorithm can overcome the low conver-
gence rate and local optimal solution of ACS when solving the Traveling
Salesman Problem (TSP). Some experiments in synthetic and bench-
mark networks show that the efficiency of PNACS is higher than that of
ACS. More important, PNACS has strong robustness that is very useful
for solving a higher dimension TSP.

Keywords: Physarum Network, Ant Colony System, TSP.

1 Introduction

There are lots of biological phenomena in the nature, which are very complicated
and cannot be explained easily. More and more scientists take their life to explore
and discover the essential rules hidden in the observed biological phenomenons.
For example, Toshiyuki Nakagaki et al. have found a kind of slime mold called
Physarum ploycephalum, which extends its pseudopodia to form divers tubular
networks[1]. Specially, such Physarum can be used to solve a maze problem. Tero
et al. have proposed a mathematical model to describe this intelligent behaviors
for maze solving[2,3]. Meanwhile, Tero et al. have reported that Physarum is
cultivated to simulate the Tokyo rail system on a solid medium[4]. They deploy
some Physarum’s foods (rolled oats) on a wet surface according to the positions
of cities around Tokyo, and cultivate Physarum on foods in an appropriate en-
vironment. After 26 hours, they find the network emerged by Physarum is very
similar to the real-world Tokyo rail system. What’s more, statistical analyses
have demonstrated that such biological network has strong robustness, great
fault tolerance and high transport efficiency on the transportation[5].
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Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 297–305, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



298 T. Qian et al.

The current Physarum Network (PN) model, proposed by Tero at al., is
mainly focused on the network design and optimization. There is few reports
about how to use the PN model to solve combinatorial optimization problems.
This paper designs an ACS based on the Physarum Network (PNACS) for solv-
ing the TSP. In PNACS, we update pheromone trails both released by ants and
flowing in a network. We have found that the PN model can exhibit the feature of
important pipelines being reserved during the process of building efficient trans-
portation network[2]. Taking advantage of this feature, we can overcome some
shortcomings of ACS, such as slow convergence rate and local optimal solution.

2 The Definition of Traveling Salesman Problem

TSP is a NP -hard problem. There are n cities, defined as V = {i|i = 1, 2, ..., n}.
A salesman leaves from city i and visits all of other cities. The distance between
city i and city j is defined as dij , where i, j ∈ V . The salesman goes back to
the first city where he left after he has travelled all of other cities. The sequence
of visited cities that the salesman has traveled is defined as T = (t1, t2, ..., tn),
where tn ∈ V . Therefore, the shortest-path Smin is defined as min

T∈Ω
∑n

i=1 dtiti+1 ,

where Ω represents all of the directed Hamiltonian circuit sequences of n cities.
The current solutions of higher dimension TSP are mostly approximate results

obtained by intelligence algorithms such as ant colony optimization algorithm
and genetic algorithm. In order to obtain better results, a dataset is usually
calculated iteratively and computed several times repeatedly. This paper will
use some benchmarks as follows to compare ACS with PNACS.

1. Steps stands for the number of iterative steps. If an algorithm obtains the
same optimal solution as other algorithms in a few iterative steps, it means
the algorithm has a faster convergence rate.

2. Saverage, Smidvale, V ariance stand for the average value, mid-value and
variance of results respectively. They are obtained after C times compu-
tation repeatedly in each iterative step, such as Saverage is calculated as∑C

i=1 Si,steps(k)

/
C, where Si,step(k) represents a best result of a TSP in the

kth step for the ith time. Through comparing these values, we further distin-
guish the advantages, convergence rates and variances of different algorithms.

3 An Ant Colony System Based on the Physarum
Network

3.1 Ant Colony System

Dorigo et al. have proposed an ACS that has been used for solving the TSP[6].
In a TSP, there are n cities and m ants. And ants leave from different cities
respectively and the cities they have visited won’t be selected again. At time t,
an ant k in a city i selects an unvisited city j from its neighbors as its next visiting
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target based on a certain probability Pij . The definition of Pij is shown in Eq.
(1), where τij(t) represents the value of pheromone trails in the path connecting
the city i and j. And u stands for an unvisited city. The local heuristic value
ηij(t) = 1/dij represents the expectation that the ant k moves from the city i
to j, which shows that the closest cities are more likely to be selected. Ni is the
unvisited city set of neighbors of node i.

P kij =

{
τα
ij(t)×ηβij(t)

∑
τα
iu(t)×ηβiu

j ∈ Ni

0 j /∈ Ni
(1)

During visiting cities, an ant k releases pheromone trails on roads. Meanwhile,
the trails evaporate at a speed ρ (0 < ρ < 1). After the ant k has visited all of
cities, the trails are updated based on Eq. (2), where the constant parameter F
represents the value of pheromone trails released by the ant k. Sk is defined as
the total length of the route that the ant k has travelled.

τij(t+ 1) = (1− ρ)τij(t) + ρ(

m∑
k=1

F

|Sk| ) (2)

However, the final results are mainly affected by the initial formed pathes by a
few ants, and the local optimization solutions are obtained at the later iteration
in ACS[7,8].

3.2 The Physarum Network Model

The PN model also can be called the maze-solving model or the PN model with
one pair of inlet/outlet nodes[3][5]. The main idea of PN model comes from the
maze-solving experiment made by Nakagaki et al[1]. They deploy plasmodial
pieces of one Physarum in a maze. Then, they place foods at the start and
end points. During Physarum foraging, the tubular pseudopodia that cannot
get foods will shrink and disappear. In contrast, other pseudopodia that can
obtain energy from foods will become thick. At the end, only pipelines in the
shortest-path are reserved.

We assume that the edges of a maze network are pipelines with water inside,
as shown in Fig. 1(a), where Nin represents the inlet node of the maze and Nout
represents the outlet node. Dij is defined as a measure of the conductivity of the
pipeline connecting nodes i and j, which related to the thickness of the pipeline.
When a pipeline becomes thicker, the conductivity will be enhanced. And at
the same time, the flux Qij , which represents the flux of the pipeline connecting
nodes i and j, will be enhanced too.

In each time step, I0 is defined as the fixed flow of Nin and Nout. According to
the Kirchhoffs law, it is known that the flux input at a node is equal to the flux
output. This process can be denoted in Eq. (3), where Qij = Dij (pi − pj)/dij ,
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pi and pj stand for the pressures at nodes i and j respectively. Through Eq. (3),
the pressure of each node in a network can be calculated.⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∑
i

Qi,in = −I0∑
i

Qi,out = I0∑
i

Qi,j = 0

(3)

Then, the flux Qij is computable. With water flowing into the pipelines of the
network, the conductivity of pipeline in the next time step will grow as the flux
increases, as shown in Eq. (4). To sum up, one iterative step is completed.

dDij

dt
=

|Qij |
1 + |Qij | −Dij (4)

Finally, the conductivities at time t+1 will be fed back to Eq. (3), and the above
process will continue loop iteration. The iteration does not terminate until the
constraint of

∣∣Dt+1
ij −Dt

ij

∣∣ ≤ 10−6 is satisfied. Dt+1
ij stands for the conductivity

of the pipeline connecting nodes i and j at time t+1. The final network is shown
in Fig. 1(b).

We regard the iterative process as a process that “develop” pipelines becoming
thicker. Some pipelines developed deeply become thicker with higher conductiv-
ities. In this paper, we call this kind of feature as deep-developing. And the
pipelines remained in the shortest-path are called as “important pipelines”, as
the solid edges shown in Fig. 1(a). Therefore, with the increment of fluxes, these
important pipelines emerge through consecutive iteration.

inN outN

(a)

inN outN

(b)

Fig. 1. The PN model with one pair of inlet/outlet nodes: (a) the initial network,
(b) the final network. Nin, the leftmost node, represents the inlet node and Nout, the
rightmost node, represents the outlet node.

3.3 PNACS

Taking the advantage of PN model, i.e., the important pipelines being deeply
developed during the consecutive iteration, this paper proposes a new algorithm,
named as PNACS, to solve the TSP. In PNACS, pheromone trails are filled in
the whole tubular network. In this hybrid algorithm, when updating pheromone
in the network, we need to consider both the pheromone released by ants and
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(a) (b)

Fig. 2. The PN model with multi-pairs of inlet/outlet nodes: (a) the initial network,
(b) the final network.

the pheromone tails flowing in pipelines. However, we find that one pair of in-
let/outlet nodes cannot exhibit the flux of pheromone tails in the whole network.
Therefore, the PN model with multi-pairs of inlet/outlet nodes is proposed.

At time t, every pair of two nodes in each link of a network is selected as
inlet/outlet nodes and the pressures of nodes are calculated by Eq. (3). The
initial flow I0 is set as I0/M , whereM represents the number of pipelines in the
network. Then, the flux Qij in the network is substituted with an average flux
Qij , as shown in Eq. (5). According to Qij , we can calculate the conductivities at
time t+1 using Eq. (4). The above steps are repeated until there’re no changes
about all of the conductivities.

Qij =
1

M

M∑
k=1

∣∣∣Q(k)
ij

∣∣∣ (5)

The initial network is built in Fig. 2(a). After calculating based on the PN model
with multi-pairs of inlet/outlet nodes, the final network is shown in Fig. 2(b).
We find that some pipelines become thicker and others become thinner (some
thinnest pipelines aren’t shown in Fig. 2(b) and they are regarded as disap-
peared). All of these reserved pipelines are also called as important pipelines.

In order to synthesize the influence of the pheromone fluxes in pipelines, Eq.
(2) is substituted by Eq. (6), where ε is defined as an impact factor to measure
the effect of pheromone trails in pipelines on the total pheromone trails in a
network. I0 is set as F/M . In Eq. (7), totalsteps stands for the total steps of
iteration and λ ∈ (1, 1.2). The description of PNACS is shown in Algorithm 1.

τij(t+ 1) = (1− ρ)τij(t) + ρ(

m∑
k=1

F

|Sk| + ε
Qij(t+ 1)

I0
) (6)

ε = 1− 1

1 + λtotalsteps/2−(t+1)
(7)
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Algorithm 1. PNACS

Step 1: Initializing a pheromone matrix and a conductivity matrix as all 1-matrixes.
And setting the iteration counter N := 0.
Step 2: Deploying m ants on the locations of cities respectively. Ants select the next
unvisited cities with the probabilities calculated using Eq. (1). At last, all of the ants
return to the start city after visiting all of other cities.
Step 3: Recording tracks that ants have travlled and finding the shortest path Smin.
Step 4: Calculating pheromone fluxes in the pipelines using Eq. (3) and Eq. (5). Then,
computing the conductivities of the next time step by Eq. (4).
Step 5: Updating the pheromone matrix of the network, which is calculated using Eq.
(6) and Eq. (7). Meanwhile, setting N := N + 1.
Step 6: If N < totalsteps, going to Step 2.
Step 7: Outputting the final optimization solution Smin.

4 Simulation Experiments

4.1 Dataset

Two types of datasets are used in this paper. One is a synthetic dataset. we
randomly generate 30 cities, whose coordinates are shown in Fig. 3(b). The other
are two benchmark datasets downloaded from the website TSPLIB1, gr17 and
bays29 (Bavaria). Based on these data, we build undirected weighted networks
that are fully connected. The weight of edge is a straight-line distance in a
synthetic network, while the weight of edge in the benchmark network is an
actual mileage.
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Fig. 3. The location illustration of 30 cities and their coordinates

4.2 Experiment Analysis

All of the experiments have been undertaken in one computer and the parameters
of ACS and PNACS are set as α = 1, β = 2, ρ = 0.7, F = 100 and totalsteps =
300. These experiments are repeated 50 times.

1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Fig. 4. The results calculated by PNACS and ACS for solving 30 cities with the syn-
thetic dataset
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Fig. 5. The shortest-path Smin by PNACS and ACS with the benchmark datasets of
(a) gr17 and (b) bays29

In Fig. 4(a), the best optimized result of PNACS is 423.7406, which is better
than 424.8439 of ACS. The average value of PNACS decreases more obviously
than that of ACS with iteration in Fig. 4(b). As shown in Fig. 4(c), in order to
obtain Smidvalue = 427, PNACS needs only 43 steps while there are 160 steps
by ACS. So PNACS has a higher convergence rate than that of ACS. Fig. 4(d)
shows that PNACS has a lower variance than that of ACS with iterative step
growing, which means that PNACS has a stronger robustness than that of ACS.
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In order to further verify the accuracy and robustness of PNACS, we have
used two benchmark datasets, gr17 and bays29 (Bavaria). Fig. 5(a) shows that
PNACS can observe the best solution 100% for 17 cities TSP, while ACS only
has 62%. Fig. 5(b) also exhibits PNACS has stronger robustness than that of
ACS through comparing the dynamic changes of variance.

5 Conclusion

In order to overcome the slow convergence rate and local optimal solution of
ACS when solving the TSP, this paper proposes a PNACS algorithm drawing
on the feature of the important pipelines being reserved during the evolution
of Physarum network. Some experiments in both synthetic and benchmark net-
works show that PNACS is more efficient than ACS in the field of computational
efficiency and robustness in small and medium-scale TSPs. However, when the
scale of TSP is enlarged, PNASC will spend more computational cost on calcu-
lating the PN model. Therefore, our main work in the future is to reduce the
computational cost. Meanwhile, the initial trails in pipelines are decided by the
total trails released by an ant, so the value of trails released by the ant affects
the final results of PNACS than that of ACS.

Since the PN model is proposed by Tero et al., it has been widely applied in
the field of the transportation and complex network[9]. It is innovative for this
study to incorporate the PN into ACS for solving the combinatorial optimization
problem. And it is also a new application of the PN model. In our future work,
we will do more experiments to improve the efficiency of PNACS and compare
PNACS with other heuristic algorithms.
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dation of Chongqing (No. cstc2012jjA40013) and Specialized Research Fund for
the Doctoral Program of Higher Education (No. 20120182120016).
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Solving the Minimum Common String Partition
Problem with the Help of Ants

S.M. Ferdous and M. Sohel Rahman
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Abstract. In this paper, we consider the problem of finding minimum common
partition of two strings (MCSP). The problem has its application in genome com-
parison. As it is an NP-hard, discrete combinatorial optimization problem, we
employ a metaheuristic technique, namely, MAX-MIN ant system to solve this.
The preliminary experimental results are found to be promising.

Keywords: Ant Colony Optimization, Stringology, Genome sequencing,
Combinatorial Optimization, Swarm Intelligence, String partition.

1 Introduction

String comparison is one of the important problems in Computer Science with diverse
applications in different areas including genome sequencing, text processing and com-
pressions. In this paper, we address the problem of finding minimum common partition
(MCSP) of two strings. MCSP is closely related to genome arrangement which is an im-
portant field in computational biology. More detailed study of the application of MCSP
can be found at [5], [6] and [8].

In MCSP problem, we are given two related strings (X ,Y ). Two strings are related
if every letter appears the same number of times in each of them. Clearly, two strings
have a common partition if and only if they are related. So, the length of the two strings
are also the same (say, n). A partition of a string X is a sequence P = (B1,B2, · · ·,Bc)
of strings whose concatenation is equal to X , that is B1B2 · · ·Bc = X . The strings Bi are
called the blocks of P. Given a partition P of a string X and a partition Q of a string Y ,
we say that the pair π =< P,Q > is a common partition of X and Y if Q is a permuta-
tion of P. The minimum common string partition problem is to find a common partition
of X , Y with the minimum number of blocks, that is to minimize c. For example, if
(X ,Y ) = {“ababcab”,“abcabab”}, then one of the minimum common partition sets is
π ={“ab”,“abc”,“ab”} and the minimum common partition size is 3. The restricted ver-
sion of MCSP where each letter occurs at most k times in each input string, is denoted
by k-MCSP.

1.1 Related Works

In [9], the authors investigated k-MCSP along with two other variants: MCSPc, where
the alphabet size is at most c; and x-balanced MCSP, which requires that the length of
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the blocks must be witnin the range (n/d−x,n/d+x), where d is the number of blocks
in the optimal common partition and x is a constant integer. They showed that MCSPc

is NP-hard when c ≥ 2. As for k-MCSP, they presented an FPT algorithm which runs
in O∗((d!)2k) time.

Chrobak et al. [8] analyzed a natural greedy heuristic for MCSP: iteratively, at each
step, it extracts a longest common substring from the input strings. They showed that
for 2-MCSP, the approximation ratio (for the greedy heuristic) is exactly 3, for 4-MCSP,
logn and for the general MCSP, between Ω(n0.43) and O(n0.67).

In this paper, we apply an Ant Colony Optimization (ACO) algorithm to solve the
MCSP problem. We conduct experiments on both random and real data to compare
our algorithm with the state of the art algorithm in the literature and achieve promising
results.

2 Preliminaries

In this section, we present some defitnitions and notations that are used throughout the
paper. Two strings (X ,Y ), each of length n, over an alphabet ∑ are called related if every
letter appears the same number of times in each of them. A block B = ([id, i, j]), 0 ≤ i ≤
j < n, of a string S is a data structure having three fields: id is an identifier of S and the
starting and ending positions of the block in S are represented by i and j, respectively.
Naturally, the length of a block [id, i, j] is ( j − i + 1). We use substring([id, i, j]) to
denote a substring of S induced by the block [id, i, j]. Throughout the paper we will use
0 and 1 as the identifiers of X and Y respectively. We use [] to denote the empty block.

For example, if we have two strings (X ,Y ) = {“abcdab”,“bcdaba”}, then [0,0,1] and
[0,4,5] both represent the substring “ab” of X . In other words, substring([0,0,1]) =
substring([0,4,5]) = “ab”.

Two blocks can be intersected or unioned. The intersection of two blocks is a block
that contains the common portion of the two. Formally, the intersection operation of
B1=[id, i, j] and B2=[id, i′, j′] is defined as follows:

B1 ∩B2 =

⎧⎨
⎩

[] if i′ > j or i> j′
[id, i′, j] if i′ ≤ j
[id, i, j′] else

(1)

Union of two blocks is either another block or an ordered (based on the starting position)
set of blocks. Without the loss of generality we suppose that, i<= i′ for B1=[id, i, j] and
B2=[id, i′, j′]. Then, formally the union operation of B1 and B2 is defined as follows:

B1 ∪B2 =

⎧⎨
⎩

[id, i, j] if j′ <= j
[id, i, j′] if j′ > j or i′ == j+ 1
{B1,B2} else

(2)

The union rule with an ordered set of blocks, Blst and a block, B′ can be defined as
follows. We have to find the position where B′ can be placed in Blst , i.e., we have
to find Bk ∈ Blst after which B′ can be placed. Then, we have to replace the ordered
subset {Bk,Bk+1} with Bk ∪B′ ∪Bk+1. As an example, suppose we have three blocks,
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namely, B1 = [0,5,7],B2 = [0,11,12] and B3 = [0,8,10]. Then B1∪B2 =B′
lst = {[0,5,7],

[0,11,12]}. On the other hand, B′
lst ∪B3 = [0,5,12], which is basically identical to B1∪

B2 ∪B3.
Two blocks B1 and B2 (in the same string or in two different strings) matches if

substring(B1) = substring(B2). If the two matched blocks are in two different strings
then the the matched substring is called a common substring of the two strings denoted
by cstring(B1,B2).

The span of a block, B = [id, i, j], denoted by, span(B) is the length of the maximum
block that contains B. More formally, span(B) = max{� | �= length(B′),B ⊆ B′,∀B′}.
For example, if three blocks B1, B2 and B3 are respectively [0,0,0], [0,0,1] and [0,0,2],
then span(B1) = span(B2) = span(B3) = 2.

3 Our Approach: Max Min Ant System on the Common Substring
Graph

3.1 Formulation of Common Substring Graph

We define a common substring graph, Gcs(V,E, id(X)) of two strings (X ,Y ) as follows.
Here V is the vertex set of the graph and E is the edge set. Vertices are the positions of
string X , i.e., for each v ∈ V , v ∈ [0, |X |− 1]. Two vertices vi ≤ v j are connected with
and edge, i.e, (vi,v j) ∈ E , if the substring induced by the block [id(X),vi,v j] matches
some substring of Y . More formally, we have:

(vi,v j) ∈ E ⇔ cstring([id(X),vi,v j],B
′) is not empty ∃B′ ∈ Y

In other words, each edge in the edge set corresponds to a block satisfying the above
condition. For convenience, we will denote the edges as edge blocks and use the list of
edge blocks (instead of edges) to define the edgeset E . Notably, each edge block on the
edge set of Gcs(V,E, id(X)) of string (X ,Y ) may match with more than one blocks of
Y . For each edge block B a list is maintained containing all the matched blocks of string
Y to that edge block. This list is called the matchList(B).

For example, suppose (X ,Y ) = {“abcdba”,“abcdab”}. Now consider the correspond-
ing common substring graph. Then, we have vertex set, V = {0,1,2,3,4,5} and edge
set, E = {[0,0,0],[0,0,1],[0,1,1],[0,2,2],[0,2,3],[0,3,3],[0,4,4],[0,5,5]}.The matchList
of the second edge block, i.e., matchList([0,0,1]) = {[1,0,1], [1,4,5]}.

To find a common partition of two strings (X ,Y ) we first construct the common
substring graph of (X ,Y ). Then from a vertex vi on the graph we take an edge block
[id(X),vi,v j]. Suppose Mi is the matchList of this block. We take a block B′

i from Mi.
Then we advance to the next vertex that is v j + 1 MOD |X | and choose another cor-
respoding edge block as before. We continue this until we come back to the starting
vertex. Let partitionList and mappedList are two lists, each of length c, containing
the traversed edge blocks and the corresponding matched blocks. Now we have the
following lemma.

Lemma 1. partitionList is a common partition of length c if the blocks of mappedList
obeys,

Bi ∩B j = [] ∀Bi,B j ∈ mappedList, i �= j (3)
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and

B1 ∪B2 ∪ · · ·∪Bc = [id(Y ),0, |Y |− 1] (4)

3.2 Heuristics

Heuristics (η) contain the problem specific information. We propose two different (types
of) heuristics for MCSP. Firstly, we propose a static heuristic that does not change dur-
ing the runs of algorithm. The other heuristic we propose is dynamic in the sense that it
changes between the runs.

The Static Heuristic for MCSP. We employ a very naive and intuitive idea. It is
obvious that the larger is the size of the blocks the smaller is the partition set. To capture
this phenomenon, we assign on each edge of the common substring graph a numerical
value that is proportional to the length of the substring corresponding to the edge block.
Formally, the static heuristic (ηs) of an edge block [id, i, j] is defined as follows:

ηs([id, i, j]) ∝ length([id, i, j]) (5)

The Dynamic Heuristic for MCSP. We observe that the static heuristic can sometimes
lead us to very bad solutions. For example if (X ,Y ) = {“bceabcd”,“abcdbec”} then
according to the static heuristic much higher value will be assigned to edge block [0,0,1]
rather than to [0,0,0]. But if we take [0,0,1], we must match it to the block [1,1,2] and
we further miss the opportunity to take [0,3,6] later. The resultant partition will be
{“bc”,“e”,“a”,“b”,“c”,“d”} but if we would take [0,0,0] at first step, then one of the
resultant partitions would be {“b”,“c”,“e”,“abcd”}. To overcome this shortcoming of
the static heuristic we define a dynamic heuristic as follows. The dynamic heuristic
(ηd) of an edge block (B = [id, i, j]) is inversely proportional to the difference between
the length of the block and the minimum span of its correspoding blocks in matchList.
More formally, ηd(B) is defined as follows:

ηd(B) ∝
1

|length(B)−minSpan(B)|+1
, (6)

where

minSpan(B) = min{span(B′) | B′ ∈ matchList(B)} (7)

In the example, minSpan([0,0,0]) is 1 as follows: matchList([0,0,0]) = {[1,1,1],
[1,4,4]}. span([1,1,1])= 4 and span([1,4,4] = 1). On the other hand, minSpan([0,0,1])
is 4. So, according to dynamic heuristic much higher numeral will be assigned to block
[0,0,0] rather than block [0,0,1].

We define the total heuristic (η) is the linear combination of the static heuristic (ηs)
and the dynamic heuristic (ηd). Formally, the total heuristic of an edge block B is,
η(B) = a ·ηs(B)+ b ·ηd(B), where a, b are any real valued constant.
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3.3 Initialization and Configuration

Given two strings (X ,Y ), we first construct the common substring graph Gcs =
(V,E, id(X)). We use the following notations. Local best solution (LLB) is the best so-
lution found in each iteration. Global best solution (LGB) is the best solution found so
far among all iterations. The pheromone of the edge block is bounded between τmax

and τmin. Like [3], we use the following values for τmax and τmin: τmax = 1
ε·cost(LGB)

,

and τmin =
τmax(1− n√pbest )

(avg−1) n√pbest
. Here, avg is the average number of choices an ant has in the

construction phase. Initially, the pheromone values of all edge blocks (substring) are
initialized to initPheromone which is a large value to favor the exploration at the first
iteration [3].

3.4 Construction of a Solution

Let, nAnts denotes the total number of ants in the colony. Each ant is deployed randomly
to a vertex vs of the Gcs. A solution for an ant starting at a vertex vs is constructed by
the following steps.

step 1: Let vi = vs. Choose an available edge block starting from vi by the discrete
probability distribution defined below. An edge block is available if its MatchList is not
empty and inclusion of it to the partitionList and mappedList obeys Equations 3. The
probability for choosing edge block [0,vi,v j] is:

p([0,vi,v j]) =
τ([0,vi,v j])

α ·η([0,vi,v j])
β

∑� τ([0,vi,v�])α ·η([0,vi,v�])β ,∀� such that [0,vi,vl ] is an available block. (8)

step 2: Suppose, [0,vi,vk] is chosen according to Equation 8 above. We choose a
match block Bm from the matchList of [0,vi,vk] and delete Bm from the matchList. We
also delete every block from every matchList of every edge block that overlaps with
Bm. Formally we delete a block B if

Bm ∩B �= [] ∀Bi ∈ E,B ∈ matchList(Bi)

We add [0,vi,vk] to the partitionList and Bm to the mappedList.
step 3: If (vk +1) MOD |X |= vs and the mappedList obeys 4, then we have found a

common partition of X and Y . The size of the partition is the length of the partitionList.
Otherwise, we jump to the step 1.

3.5 Pheromone Update

When each of the ants in the colony construct a solution (i.e., a common partition),
an iteration completes. We set the local best solution as the best partition that is the
minimum length partition in an iteration. The global best solution for n iterations is
defined as the minimum length common partition over first n iteration.

We define the fitness F(L) of a solution L as the reciprocal of the length of L. The
pheromone of each interval of each target string is computed according to:

τi ← (1− ε) · τi+ τi · ∑
s∈Giter|ci∈s

F(s) · ε, i = 1,2, ...,n (9)
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The pheromone are bounded within the range τMIN and τMAX . We have updated the
pheromone values according to LLB or LGB.

4 Experiments

We have conducted our experiments in a computer with Intel Core 2 Quad CPU 2.33
GHz. The available RAM was 4.00 GB. The operating system was Windows 7. The
programming environment was java. The maximum allowed time for each instance was
120 minutes.

4.1 Dataset

We have taken two types of data into consideration: randomly generated DNA sequence
and real gene sequence.

Random DNA Sequence: We have generated 30 DNA sequences of length at most 600
randomly using [10]. The fraction of bases A, T , G and C is assumed to be 0.25 each. For
each DNA sequence we shuffle it to create a new DNA sequence. The shuffling is done
using the online toolbox [11]. The original random DNA sequence and its shuffled pair
constitute a single input (X ,Y ) in our experiment. This dataset is divided into 3 classes.
The first 10 have length less than or equal 200 bps (base-pairs), the next 10 have length
within [201,400] and the rest 10 have length within [401,600] bps.

Real Gene Sequence: We collected the gene sequence data from the NCBI GenBank1.
For simulation we have taken Bacterial Sequencing (part 14). We have taken the first
15 gene sequences whose lengths are within [200,600].

4.2 Parameters

The settings of parameters for which we achieved the results is described in Table 1.

Table 1. Parameters

Parameters Value
α 2.0
β 5.0

Evaporation rate, ε 0.02
nAnts |X |
pbest 0.09

initPheromone 10.0
Maximum Allowed Time 120 min

Coeff. of ηs, a 0.5
Coeff. of ηd , b 0.5

1 http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov
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4.3 Results and Analysis

We have compared our approach with the greedy algorithm of [8] because none of the
other algorithms in the literature are for general MCSP: each of the other approximation
algorithms put some restrictions on the parameters.

Random DNA Sequence: Table 2 presents the comparison between our approach and
the greedy approach [8] for the random DNA sequences. For a particular DNA se-
quence, the experiment was run 4 times and the average result is reported. The first
column under any group reports the partition size computed by the greedy approach,
the second column is the average partition size found by MAX-MIN and the third col-
umn represents the difference between the two approaches. A positive (negative) differ-
ence indicates that the greedy result is better (worse) than the MAX-MIN result by that
amount. From the table, we can see that out of 30 instances our approach gets better
partition size for 28 cases.

Table 2. Comparison between Greedy approach [8] and MAX-MIN on random DNA sequences

Test No. Group 1 (200 bps) Group 2 (400 bps) Group 3 (600 bps)
Greedy MAX-MIN Difference Greedy MAX-MIN Difference Greedy MAX-MIN Difference

1. 46 42.75 -3.25 119 114.25 -4.75 182 180.00 -2.00
2. 56 51.50 -4.50 122 119.00 -3.00 175 176.25 1.25
3. 62 56.75 -5.25 114 112.25 -1.75 196 188.00 -8.00
4. 46 43.00 -3.00 116 116.25 0.25 192 184.25 -7.75
5. 44 43.00 -1.00 135 132.25 -2.75 176 171.75 -4.25
6. 48 42.25 -5.75 108 105.5 -2.50 170 163.25 -6.75
7. 65 60.00 -5.00 108 99.00 -9.00 173 168.50 -4.50
8. 51 47.00 -4.00 123 118.00 -5.00 185 176.25 -8.75
9. 46 45.75 -0.25 124 119.50 -4.50 174 172.75 -1.25

10. 63 59.25 -3.75 105 101.75 -3.25 171 167.25 -3.75

Table 3. Comparison between Greedy approach [8] and MAX-MIN on real gene sequence

Test No. Greedy MAX-MIN Difference
1. 95.0000 87.7500 -7.2500
2. 161.0000 158.5000 -2.5000
3. 121.0000 116.5000 -4.5000
4. 172.0000 171.7500 -0.2500
5. 153.0000 146.0000 -7.0000
6. 140.0000 140.7500 0.7500
7. 134.0000 131.0000 -3.0000
8. 149.0000 148.5000 -0.5000
9. 151.0000 149.0000 -2.0000

10. 126.0000 124.5000 -1.5000
11. 143.0000 138.2500 -4.7500
12. 180.0000 181.0000 1.0000
13. 152.0000 147.7500 -4.2500
14. 157.0000 161.2500 4.2500
15. 157.0000 158.7500 1.7500
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Real Gene Sequence: Table 3 shows the minimum common partition size found by our
approach and the greedy approach for the real gene sequences. Out of the 15 instances
we get better results on 11 instances.

5 Conclusion

Minimum Common String Partition problem has important applications in computa-
tional biology. In this paper, we have described a metaheuristic approach to solve the
problem. We have used static and dynamic heuristic information in this approach. Simu-
lating this algorithm on long DNA sequences would be challenging future
improvement.
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Abstract. This paper presents an ant colony optimization (ACO) method as a 
method for channel assignment in a mobile ad hoc network (MANET), where 
achieving high spectral efficiency necessitates an efficient channel assignment. 
The suggested algorithm is intended for graph-coloring problems and it is 
specifically tweaked to the channel assignment problem in MANET with  
a clustered network topology. A multi-objective function is designed to make a 
tradeoff between maximizing spectral utilization and minimizing interference. 
We compare the convergence behavior and performance of ACO-based method 
with obtained results from a grouping genetic algorithm (GGA). 

Keywords: Ant colony optimization, Channel assignment problem, Co-channel 
Interference, Spectral efficiency. 

1 Introduction 

Ant colony optimization (ACO) is a type of meta-heuristic algorithm that has been 
widely used in wireless communication, in particular ad hoc networks. So far, several 
ACO-based routing algorithms (e.g., ANT_AODV, POSANT) [1], [2] have been 
proposed to provide efficient routing methods for MANETs.  ACO has also been 
proposed as a basis for clustering algorithms. The ACO-based clustering algorithms 
have shown the capability to provide a scalable and stable clustered network structure 
[3], [4]. Using ACO-based channel assignment schemes in cellular networks have 
also been studied.  In wireless communication, finding an optimal channel assignment 
has been proven as an NP-hard problem [5], [6]. This means that an optimal channel 
assignment scheme could not be found in the polynomial time by using the traditional 
exhaustive search methods e.g. branch and bound. In contrast, meta-heuristic 
methods, e.g. genetic algorithms (GA), swarm intelligence (SI) and in particular ant 
colony optimization (ACO), can be used to find near optimal solutions in polynomial 
time [5]-[8]. A channel assignment scheme in a clustered MANET attempts to assign 
a minimum number of channels to the clusters considering an interference constraint.  
For this problem, meta-heuristic methods, e.g. grouping genetic algorithm (GGA) and 
ACO, could provide near optimal solutions. They can converge towards the Pareto 
front for maximizing spectral efficiency and minimizing the co-channel interference 
between cluster heads. The rest of this paper is organized as follows: in Section 2, 
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related works in applying ACO on MANETs are briefly reviewed. We also mention 
related studies in channel assignment problems.  Section 3 suggests the use of ACO 
for channel assignment and illustrates how ACO can be applied as a channel 
assignment scheme. Section 4 presents the results of the suggested methods for 
channel assignment in several different scenarios and provides a comparison with 
another heuristic method. Finally, the paper is concluded with some finale notes in 
Section 5.  

2 Related Studies in Channel Assignment Problem  

ACO-based methods have been widely used to provide efficient routing algorithms. 
They can minimize the delay in routing and control communication overheads [1], 
[2]. Numerous cluster formation algorithms have also developed combining ACO 
based algorithms with the traditional clustering algorithms, such as weighted 
clustering algorithms [5]-[8]. The channel assignment problem was early defined as a 
frequency assignment problem in cellular communication systems [10]-[13]. 
However, it is not only a problem of cellular communication systems, it exists in all 
kinds of wireless networks, e.g., wireless local area network (WLAN), wireless 
meshes network (WMN), mobile ad hoc network (MANET) and cognitive radio 
network (CRN). They all require an efficient channel assignment scheme to address 
scalability, stability, throughput, connectivity, routing, and fault tolerance [10]-[13]. 
Generally speaking, the channel assignment problem can be defined as finding a 
desirable scheme to minimize the number of channels needed for maximizing spatial 
reuse and at the same time satisfying interference constraints (i.e. a co-channel 
interference constraint). A clustered MANET is partitioned into groups of mobile 
nodes to provide a well-organized scalable structure for routing algorithms, power 
control mechanisms and spectrum management methods [10]. A common structure 
for a clustered network topology is based on defining three types of nodes: cluster 
head, gateway and ordinary nodes. The cluster head, the master of a cluster, is 
responsible for allocating resources and coordinates the intra cluster communication. 
The gateway, which is a common node between two or more clusters, provides the 
connectivity between clusters. Other nodes are ordinary nodes that determine the 
boundary of clusters, which depends on the transmission range and the node density 
[14]. In such a network topology, the channel assignment problem can be defined as 
finding a desirable scheme for assigning orthogonal channels (time, frequency or 
code) to the cluster heads [10]. So far, several heuristic methods e.g., greedy 
algorithms and genetic algorithms have been applied to solve this problem, which has 
been referred to as a cluster based coloring algorithm [15]. 

3 Ant Colony Optimization for Cluster- Based MANETs 

Ant colony optimization meta-heuristic (ACO_MH) is a collection of algorithms 
which are inspired by the ‘foraging behavior of real ants’ [14]. Real ants start from 
the nest and use both local and global knowledge to construct the shortest path to the 
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source of food. The ACO-based algorithms imitate this behavior to solve optimization 
problems.  For an ACO-based algorithm, the problem is represented by a graph, 

( , )G V E= where, the nodes,V , represent the components of the problem and the 
links, E , show the transition paths (i.e., partial parts of the solution) between the 
nodes.  An optimal solution is a sequence of nodes with minimum cost function. The 
general components of the ACO-based algorithm are summarized as follows [16]-
[17]: 1) A graph that represents the optimization problem. 2) A population of 

ants, { }1,..., antnantN ant ant= , where antn determines the number of ants that 

traverse the graph; they memorize the traversed paths. 3) A set of feasible nodes, in 
order to avoid forming a loop during the path construction. This set is represented 

as
k
iN ; it determines the feasible nodes from the perspective of ant k when it is 

placed on i th node. 4) Initial states which are assigned to ants and determine the 

source nodes for the ants (each ant can start from different nodes).  5) A ‘probabilistic 
transition rule’ [16] is used by each ant to make a decision to move to the next node. 
It is defined on the basis of the heuristic information and the pheromone intensity. 6) 
A Heuristic function, which is a ‘problem dependent function’ [16], to indicate the 
desirability of the selected node. 7) Pheromone intensity that represents the 
desirability of the selected path (i.e., the path between the current node and the next 
node) from the perspective of other ants. 8) A cost function that is assigned to each 
ant that constructs a complete path from the source node to destination node.  The 
cost function is defined on the basis of the optimization problem and can be utilized to 
evaluate the performance of that ant. 9) An updating rule for pheromone intensity that 
is used to determine the effect of the previous deposited pheromones which is defined 
on the basis of the cost function. 

3.1 An ACO-Based Method for Channel Assignment Problem   

To solve the channel assignment problem using ACO, a graph of the problem is 
represented as ( , )G V E¢¢ ¢¢ ¢¢= , whereV ¢¢  represents the cluster heads and E ¢¢  

represents the adjacency between the clusters, i.e. they have common nodes with each 

other.  Thus, the number of nodes in G¢¢ determines the number of clusters,
 cN .   

The steps of this algorithm are similar to the steps of the ACO-based graph 
coloring algorithm, i.e. channels are equivalent with colors. At initialization state, ants 

are placed on the nodes of G¢¢ ; they are preferably placed on nodes that have more 

adjacent nodes, i.e. higher degree. This parameter, ,nei iN , calculates the number of 

adjacent nodes of node i . Then, each ant is assigned a set of feasible channels,  

{ }1,..., k
ch

k
ch nN ch ch= , that is randomly chosen from the available set of channels, 

{ }1_ ,...,
chnAvaialble channelN ch ch= . The parameters k

chn and chn determine the 
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number of available channels for k th ant and the number of available channels for the 
problem. The set of feasible channels is updated when an ant selects a specific 
channel for the current node. We define two probabilistic transition rules. The first 

probabilistic transition rule is defined for choosing the next node
k

íjp¢ ; it is the 

probability of choosing node j  by the k th ant; while it placed at node i . It is defined on 

the basis of the heuristic information, ( )tijh¢ and pheromone intensity, ( )tijt ¢ . In the 

equation (1), 
k
iN  represents the sets of feasible nodes from the perspective of the k th 

ant at node i. Two parameters, a and b  determine the influence of pheromone 

concentration and heuristic information respectively. 

( )

( ) ( )

( ) ( )
( )

k
i

ij ijk
ij

ij ij
j N t

t t

t t
p t

a b

a b

t h

t h
Î

¢ ¢

¢ ¢å
¢ = (1)

The second probabilistic transition rule, 
k

icp¢¢  is defined for choosing a channel for the 

current node. The equation (2) defines the probabilistic function using the heuristic 

information, ( )ic th¢¢ and pheromone intensity, ( )ic tt ¢¢ .  In this equation,
 

,
k

ch iN shows the set of feasible colors from the perspective of the k th ant at node i.  

, ( )

( ) ( )
( )

( ) ( )
k

ch i

k ic ic
ic

ic ic
j N t

t t
p t

t t

a b

a b

t h
t h

Î

¢¢ ¢¢
¢¢ =

¢¢ ¢¢å (2)

Ants construct the solution by incrementally choosing one node and assign one color 
to that node.  The completed path is a sequence of nodes along their assigned colors 
while satisfying the constraint that two adjacent nodes should be assigned different 
colors. The cost function is calculated on the basis of the traversed paths and assigned 
colors. Using the probabilistic transition rules as equations (1) and (2), ants choose the 
next node and assign a channel to that node. The ants traverse the graph and assign 
channels to the nodes of the graph satisfying the co-channel interference requirement.  

The two heuristic functions are defined as equations (3) and (4), respectively. The 

heuristic function ijh¢ is defined for choosing nodes and is determined by the equation 

(3). When an ant is at node i , the heuristic value for choosing the next node j is 

calculated according to equation (3). The parameter ,
k
unallocated iN calculates the set of 

neighbors of node i  that have not been allocated channels from the perspective of  

k th ant.  
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,

,

1

1

k
unallocated i

ij

nei i

N

N
h

+
¢ =

+ (3)

The equation (4) defines the heuristic function )(tijη ′′ that is used for choosing the 

channel for the current node. The equation (4) calculates the desirability of choosing a 

channel, jch , when the ant is placed on node i .  

1
( )

1
diff ch

ich
simi ch

n
t

n
h -

-

+
¢¢ =

+ (4)

The parameter chdiffn −  is calculated as the maximum number of different channels for 

the set { ,, k
j ch ich N }. The parameter k

simi chn -  calculates the maximum number of 

similar channels for the set{ }_ ,, k
j Assigned channel ich N , where, _ ,

k
Assigned channel iN is the 

assigned channels to the neighbors of i  from the perspective of k th ant.  
As mentioned in the previous section, two rules are utilized to update the 

pheromone. The first rule is utilized to choose a node and the second rule is used for 
choosing a channel (i.e., color). The updating rules of nodes are defined according 

equation (5). The parameter, Best

ij
F , represents the cost function of the globally best 

ant, Best, for the path between node i  and node j . The parameter Best
iN represents 

the set of feasible nodes from the perspective of the globally best ant at node i  .  

,

Best
ij

i j Best
i

F

N
t¢D =

(5)

Another updating rule is defined as equation (6). The parameter Best
simi chn - is the number 

of similar channels in{ }_ ,, Best
j Assigned channel ich N .  

Best
simi ch

ij Best
i

n

N
t -¢¢D =

 
(6)

Assuming a channel assignment scheme by ant k is determined as 
kx ; it is an 

_Avaiablc e chN N´   matrix. If channel qch  is assigned to the cluster p , 

1pqx = otherwise it is 0. The optimization function can be formulated according to 

equation (7), where, simi chS -  is defined as (8) and, CHN  is the number of cluster 

heads. 
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1 1

argmax
Avaiable ch c

N N

pq simi ch
p q

x S
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1

_

1

max { }
c

p

AvaiablN N

simi ch pq
q

e ch

S x
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=

= å
 

(8)

4 Simulation  

4.1 Simulation Model 

For implementing simple scenarios of MANETs, we use a discreet even simulation  
Implemented  in MATLAB.  The main goal of this channel assignment algorithm is to 
assign logical channels (defined as orthogonal frequency hopping sequences) to the 
clusters for intra-cluster scheduling.  The main assumptions of our simulated models 
are described as follows: 1) The suggested algorithm is implemented for a snapshot of 
a MANET; thus, there is no change in the network topology during the procedure to 
select and assign channels to the clusters.  2) The nodes are placed in an area with a 
1000 x 1000 meter square and the position of each individual node has two 
coordinates, x and y , that are drawn from a uniform distribution [0, 1000].  The 

mobility and traffic of nodes are ignored.  3) All of the nodes are assumed to have 
omni directional antenna with a similar transmission power.  4) The channel model 
and interference model are considered as free-space path loss models and disk graph 
models respectively. The interference range is assumed two times to the transmission 
range.  5) The nodes are clustered using Lowest ID (LID). 6) There is a centralized 
controller e.g., base station that senses the available channels; it decides for an on-
demand channel assignment scheme on the basis of the unassigned channels; thus, it 
avoids co-channel interference with previous assigned channels.    

4.2 Simulation Results 

First, we consider the MANETs that consist of 75 nodes. The MANETs are different 
in transmission ranges (i.e., TR=100, 200 and 300 meters), transmission powers (i.e., 
2, 4 and 6 mill watt) and the number of clusters 31,13 and 3 respectively.  The 
number of allocated channels using ACO and GA is depicted in Figure 1.  It becomes 
clear that the number of required channels is dependent upon the number of clusters 
and the topology of the network.  However, for the same topology, the number of 
assigned channels is smaller for ACO than GGA.  (See Figure 4 the black and grey 
bars).  It can also be observed that the number of assigned channels do not 
significantly change when the number of clusters increases.  Thus, this method would 
be scalable for a large sized MANET. Figure 2 presents the obtained interference 
power using an ACO-based scheme and GA-based scheme.  In the MANET with 31 
clusters (i.e., TR=100), the ACO-based method has smaller value of interference 
power in comparison with the GA-based method. Using GA-based method in 
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MANET with a small number of clusters, the interference power becomes very low.  
In this case, using a GA-based channel assignment scheme, each cluster has been 
assigned a different channel. As the second test, the convergence behavior of the 
ACO algorithm is evaluated for the MANET with 31 clusters (the scenario is similar 
to the previous scenario, here we focus on the number of iterations to achieve a near 
optimal solution). We compare the results of the ACO with GGA during 200 
iterations; while the size of population is considered as 15. Figure 3 depicts the 
average and minimum values of the objective function. It shows that the ACO-based 
method converges after approximately 10 iterations, while the GGA converges after 
120 iterations.  It is also noticeable that the average and minimum values of objective 
functions using the GGA differ to a large extent and it needs a greater number of 
iterations to converge to the global minimum.  
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Fig. 1. The average number of assigned channels and clusters for a network with 75 nodes 
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Fig. 2. Demonstrates the interference power between cluster heads for different MANETs 
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Fig. 3. The minimum and average of objective functions for a network with 30 clusters 
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5 Conclusion  

In this paper, we first develop an ACO-based method for the standard graph coloring 
problem; then it is extended for the channel assignment problem. We evaluated this 
method in the MANETs with different numbers of clusters. The results have verified 
that the proposed ACO algorithm has the capability to find a scheme with a minimum 
number of assigned channels.  The results have also indicated that the ACO-based 
method provides a stable and scalable solution; the performance of an ACO-based 
channel allocation scheme does not seem to be dependent on the size of MANETs 
(e.g., the number of clusters in MANETs). Developing an ACO-based distributed 
scheme has been considered as future works. We will also replace the lowest ID 
clustering algorithm with an ACO-based clustering method to effectively address the 
channel assignment problem.  
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Abstract. Constrained multi-objective optimization involves multiple objectives 
subjected to some equality or inequality constraints so that it may require search a 
set of non-dominated feasible solutions. Inspired from this, in this paper, a novel 
constrained multi-objective biogeography optimization algorithm is proposed and 
used for solving robot path planning problem since it can be defined as a 
constrained multi-objective optimization problem. Experimental results compared 
with Non-dominated Sorting Genetic AlgorithmII show that the proposed 
algorithm has better performance.   

Keywords: constrained multi-objective optimization; differential evolution; 
biogeography-based optimization; robot path planning. 

1 Introduction 

Constrained multi-objective optimization problems (CMOPs) are an important area 
both in research and industry. The CMOPs usually involve optimization of conflicting 
objectives subject to certain constraints. For example, robot path planning (RPP) 
needs to search a collision-free optimal or suboptimal path from the start to the target 
point. Generally, the path is required shorter length, better smoothness, higher 
security and collision-free. Some multi-objective evolutionary algorithms (MOEAs) 
[1]-[3] have been developed for RPP.  

RPP can be defined as a CMOP because it need optimization multiple objectives 
such as the length, the smoothness of the path and ease of practical navigation and so 
on. And collision-free can be seen as a constraint condition. Hu [1] proposed multi-
objective mobile robot path planning based on improved genetic algorithm. The 
algorithm optimizes three objectives: length, smoothness and security. Gong et al [2] 
proposed multi-objective Particle Swarm Optimization for robot path planning in 
environment with danger sources.  

Biogeography-based optimization (BBO) [4] is a stochastic population-based 
optimization algorithm that has good exploitation ability of the population information. 
It has been applied successfully in solving single objective optimization problem with 
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real applications [5]-[7]. In this paper, we conducted a novel biogeography based 
method, i.e. constrained multi-objective biogeography optimization algorithm 
(CMBOA) for RPP.  

The rest of the paper is arranged as follows. Section II describes the original BBO. 
The proposed algorithm CMBOA is described in Section III. In Section V, 
experimental results are discussed. Finally, conclusions are given in Section VI. 

2 Constrained Multi-objective Biogeography Optimization  

2.1 Individual Fitness 

In our algorithm, individuals are classified to ensure the convergence and even 
distribution of the obtained solutions set, the fitness of feasible individuals is defined 
as:                   

.( ) (1 ) / ik i cdfit i c Iγ γ= − + , (1)

where γ  is the proportion of the feasible solutions in the current population, cdiI ,  

and ikc [8]denote crowed-distance and non-dominated rank sort, respectively.  

For infeasible individuals, it is considered that the infeasible solutions are able to 
promote the diversity of solutions on the Pareto front, a novel evaluation method of 
infeasible solutions is defined as: 

(1 ) ( ) ( ) 0
( )

( ) 0

v i d i
ifit i

v i

γ γ γ
γ

− + >
=  =

 (2)

where ( )v i is constraint violation of the i th individual, ( )d i  denotes its Euclidean 

distance from the nearest non-dominated feasible solution. By the new fitness, when 
the number of non-dominated feasible solutions is small in current population, 
infeasible solutions with high constraint violation have high fitness and will be 
selected to evolve towards feasible region. With the number of feasible solutions 
increasing, infeasible solutions near the feasible region are gained more attention and 
transformed into feasible ones to enhance the diversity of solutions. 

2.2 Disturbance Migration Operator 

During species migrating process in BBO, an individual is often affected by other 
individuals. So we propose a migration operator with disturbance term, and the 
migration operator is defined as: 

, , 1, 2,( )( )i j s j s j s jx p Q t p p= + −
, (3)
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where jip , denotes the j th variable of the i th individual ip , )(tQ is defined as:  

max0.1( /2)

4 1
( ) (1 )

5 1 t gQ t
e− −= −

+ , 
(4)

where maxg denotes the maximum generation, t  is the current evolution generation. 

The amplitude of disturbance factor )(tQ decreases constantly with the increasing of 

iteration generation t . Various solutions will be created to promote the diversity of 
population because of difference of )(tQ . 

2.3 The Procedures of CMBOA 

The general process of CMBOA is described in Algorithm 1. 

Algorithm 1. The procedures of CMBOA 

Step1:  Initialization and parameter setting: population size N , the size of feasible elitist 

archive 1N , the size of infeasible elitist archive 2N , maximum generation maxg  

Step2:  Generate an initial population ( )A t , set the iterative generation 0t =  

Step3:  Divide the population ( )A t  into the feasible population ( )X t and the infeasible 

population ( )X t based on the constraint violation of individuals where 

( ) ( ) ( )A t X t X t= ∪  . 

Step4:  If ( )X t = Φ (empty), then ( )X t′ = Φ  and perform the mutation operator of DE 

on infeasible population ( )X t to obtain new population ( )X t′ . Otherwise, evaluate 

individuals of the feasible population ( )X t  according to the Eq.(1), implement DMI 

on the population ( )X t  to obtain new population ( )X t′ . Meanwhile, perform 

arithmetic crossover operator on infeasible population ( )X t to obtain new 

population ( )X t′  

Step5:  Combine the offspring population ( ) ( )X t X t′ ′∪   and the parent population 

( )A t , and divide them into feasible and infeasible population, and then conserve 1N  

feasible populations with small crowded-distance to produce the new feasible 
population ( 1)X t + , conserve 2N  infeasible population with small constraint 

violation to gain the population ( 1)X t +  

Step6:  If maxt g≥  is satisfied, export ( 1)X t +  as the output of the algorithm and the 

algorithm stops; otherwise, 1t t= + and go to step4. 

 
In CMBOA, the initial population is produced stochastically in Step2, and then it is 

classified to feasible and infeasible population. If feasible population is empty, 
mutation operator of DE is applied to produce them in Step 4. Otherwise, the new 
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operator DMI is performed on feasible population to generate many more non-
dominated feasible solutions. Some infeasible solutions nearby feasible regions will 
recombine non-dominated feasible solutions to approximate the feasibility.  

2.4 CMBOA for Robot Path Planning  

In robot path planning (RPP), path length and smoothness are considered as 
optimization objectives and the degree of path blocked by obstacles is a constraint.  

In RPP, the environment model of robot is established by using grid method [9]. If 
a grid is occupied by some obstacles, its attribute value is set one, otherwise, the value 
is zero. Then the constraint violation of path is defined as: 

( )
( )

( )

go P
g P

gn P
= , (5)

where ( )gn P denotes the number of grids occupied by path P , ( )go P is the sum of 

those grids attribute values. 
The length of a path is considered as one optimization objective of the given RPP. 

It is defined as the sum of all Euclidean distance of path segments as follows:  

1 1
0

( )
n

i i
i

f p p +
=

= p , (6)

where 0p and 1mp + are the start S and the target points T of a path, 

respectively, 1i ip p +  represents Euclidean distance of the line segment 1i ip p +  

The smoothness of a path is another optimization objective and is defined as: 

1

2 1 1 1
1

( ) ( ( ( , ))
n

i i i i i
i

f π θ p p p p
−

+ − +
=

= −p , (7)

where 1 1 1( , )i i i i iθ p p p p+ − +  represents the angle between the vector 1i ip p −  and 1i ip p + . 

So robot path planning can be defined as a constrained multi-objective 
optimization problem: 

[ ]1 2min ( ) ( ), ( )

. . ( ) 0

f f

s t g

=
=

f P P P

P  
(8)

3 Simulation and Results 

In order to demonstrate the effectiveness of CMBOA for RPP, CMBOA is compared 
with NSGA-II [8] for two test problems. In the robot environments, polygons 
represent the obstacles. The parameters of algorithms are set in Table 1.  
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Table 1. Parameter settings for test algorithms 

 
The hypervolume metric(HV)[10] is adopted to evaluate the quality of solutions. In 

the 30 independent runs, the maximum of HV and the most optimal paths gained by 
CMBOA and NSGA-II are shown in Table 2.It can be seen that the maximum of HV 
obtained by CMBOA is larger than that of NSGA-II for the two test problems, which 
indicates that CMBOA has good convergence and can dominate larger space in 
objective space.The Pareto fronts with the maximum HV metrics are shown in Fig.1, 
in which ‘o’ and ‘*’ denote the Pareto front obtained by NSGA-II and CMBOA, 
respectively. In Fig.1, we can see that the Pareto fronts of CMBOA dominate those of 
NSGA-II, which indicates that CMBOA has better convergence than NSGA-II. 
However, NSGA-II obtains the better spread at the expense of its convergence for 
test2. In addition, In Table 2, the shortest length and the minimum smoothness of 
paths gained by CMBOA is smaller than those by NSGA-II, which demonstrates that 
CMBOA is effective for RPP. The shortest and the smoothest paths are shown in 
Fig.2-3. From Fig.2-3, it can be seen that the path by CMBOA is shorter than ones by 
NSGA-II in two environments. For test1, the performance of CMBOA is slightly 
better than that of NSGA-II. For test2, the path gained by CMBOA is obviously better 
than NSGA-II, which demonstrates CMBOA is competitive for RPP. 

 

Table 2.  The HV and the most excellent objectives gained by CMBOA and NSGA II 

  Max HV Min Length Min smooth 

Test1 
CMBOA 1.4202e+004 102.7931 27.9838 
NSGAII 1.4200e+004 102.8171 27.9838 

Test2 
CMBOA 1.4165e+004 103.3038 27.9834 
NSGAII 1.3598 e+004 111.1323 28.0022 

 
 
 
 
 
 

Algorithms Parameter Settings 

NSGAII 

Population size =100, crossover probability =0.9, mutation probability= 1 / n , 
9n = is the length of variable , SBX crossover parameter 20, polynomial 

mutation parameter 20, the termination generation 200 

CMBOA 

ize =100, feasible elitist maximum size 1 100N = , infeasible elitist maximum 

the maximum immigration rate and migration rate E = I = 1, the termination 

100, F  is a random in the interval (0.2,0.8)  in DE, the dimension of decision 
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Fig. 1. The Pareto front obtained by CMBOA (‘*’) and NSGAII(‘o’) 
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Fig. 2. The shortest length and the most smooth paths gained by CMBOA (‘*’) and 
NSGAII(‘o’) for test problem1 
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Fig. 3. The shortest length and the most smooth paths gained by CMBOA (‘*’) and 
NSGAII(‘o’) for test problem2 

4 Conclusions 

In this paper, a constrained multi-objective biogeography optimization algorithm 
(CMBOA) is proposed for solving RPP. In CMBOA, the disturbance migration 
operator is designed and applied on feasible solutions, while the infeasible solutions 
nearby feasible regions recombine with the nearest non-dominated feasible solutions 
to approximate the feasibility. CMBOA makes the set of gained solutions approxi- 
mate the Pareto front from the inside and outside of feasible region simultaneously. 
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Compared with NSGA-II for RPP, the simulation results show that the proposed 
algorithm CMBOA solves RPP more effectively under the given two test situations.  
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Abstract. The paper proposes a new simplified version of biogeography-
based optimization (BBO) algorithm. The original BBO is based on a
global topology such that migration can occur between any pair of habi-
tats (solutions), and we simplify it by using a local ring topology, where
each habitat is only connected to two other habitats and the migra-
tion can only occur between neighboring habitats. The new strategy is
quite easy to implement, but it contributes significantly to improving
the search capability and preventing the habitats from being trapped in
local optima. Computational experiment demonstrates the effectiveness
of our approach on a set of benchmark problems.

Keywords: Global optimization, biogeography-based optimization
(BBO), migration, ring topology.

1 Introduction

The complexity of real-world optimization problems gives rise to various kinds
of evolutionary algorithms (EAs), which are stochastic search methods drawing
inspiration from biological evolution. Biogeography-Based Optimization (BBO),
initially proposed by Simon [1], is a relatively new population-based EA bor-
rowing from biogeography evolution its main principle. In BBO, each individual
is considered as a “habitat” or “island” with a habitat suitability index (HSI),
based on which an immigration rate and an emigration rate can be calculated.
High HSI solutions tend to share their features with low HSI solutions, and low
HIS solutions are likely to accept many new features from high HIS solutions.
BBO has proven itself a competitive heuristic to other EAs on a wide set of
problems [1,2,3]. Moreover, the Markov analysis in [4] proved that BBO outper-
forms GA on simple unimodal, multimodal and deceptive benchmark functions
when used with low mutation rates.

In the original version of BBO, if a given habitat is selected to be immi-
grated, then any other habitat has a chance to share information with it. That
is, BBO uses a global topology of the population of habitats, where each pair
of habitats can communicate with each other. We think that such a migration

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 330–337, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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mechanism is computationally intensive. In this paper, we propose a simplified
BBO using a local ring topology, namely RBBO, where each habitat can only
communicate with two other habitats. The new algorithm does not introduce
any more operators and thus is quite easy to implement, but it provides much
better performance than the original BBO on a set of benchmark functions.

In the rest of the paper, Section 2 simply introduces BBO, Section 3 discusses
related work to BBO, Section 4 describes our RBBO algorithm,
Section 5 presents the computational experiment, and Section 6 concludes.

2 Biogeography-Based Optimization

In BBO, each solution is modeled as a habitat, and each habitat feature or
solution component is called a suitability index variable (SIV). The habitats are
ranked by their habitat suitability index (HSI), a higher value of which signifies
a larger number of species, which is analogous to a better fitness to the problem.
Each habitat Hi has its own immigration rate λi and emigration rate μi, which
are functions of the HSI. High HSI habitats tend to share their features with low
HSI habitats, and low HIS habitats are likely to accept many new features from
high HIS habitats. For example, suppose the habitats are ordered according to
their fitness, and the immigration and emigration rates of the ith habitat can be
calculated as follows:

λi = I(1− i

n
) (1)

μi = E(
i

n
) (2)

where n is the size of population, and I and E are the maximum possible immi-
gration rate and emigration rate respectively. Such a linear migration model of
BBO is illustrated in Fig. 1. However, there are other non-linear mathematical
models of biogeography that can be used for calculating the migration rates [1].

Migration is used to modify habitats by mixing features within the population.
BBO also has a mutation operator for changing SIV within a habitat itself, which
can increase diversity of the population. For each habitat Hi, a species count
probability Pi computed from λi and μi indicates the likelihood that the habitat
was expected a priori to exist as a solution for the problem. In this context, very
high HSI habitats and very low HSI habitats are both equally improbable, and
medium HSI habitats are relatively probable. The mutation rate of habitat Hi

is inversely proportional to its probability:

πi = πmax(1− Pi
Pmax

) (3)

where πmax is a control parameter and Pmax is the maximum habitat probability
in the population.

Algorithm 1 describes the general framework of the original BBO (where
rand() returns a uniformly distributed random number in [0,1]).
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I = E

ranking of habitats
n1 i... ...

ra
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Fig. 1. Illustration of the linear model of emigration rate μ and immigration rate λ

Algorithm 1. The original BBO algorithm.

1 Randomly initialize a population of n solutions (habitats) to the problem;
2 while stop criterion is not satisfied do
3 for i = 1 to n do
4 Evaluate the HSI of Hi, according to which calculate λi, μi, and πi;
5 for i = 1 to n do
6 for d = 1 to D do
7 if rand() < λi then
8 Select a habitat Hj with probability ∝ μj ;
9 Replace the dth SIV of Hi with the corresponding SIV of Hj ;
10 for i=1 to n do
11 for d = 1 to D do
12 if rand() < πi then
13 Replace the dth SIV of habitat Hi with a random value;
14 return the best solution found so far.

3 Related Work

Several work has been devoted to improve the performance of BBO of by adding
some features from other heuristics. Du et al. [2] incorporated features from
evolutionary strategy to BBO, i.e., at each iteration selecting the best n solutions
from the n parents and n children as the population for the next generation. Gong
et al. [5] proposed a hybrid DE with BBO, which combines the exploration of DE
with the exploitation of BBO effectively. The core idea is to hybridize the DE
operator with the migration operator of BBO, such that good solutions would be
less destroyed, while poor solutions can accept a lot of new features from good
solutions.

The original BBO is for unconstrained optimization. Recently some work has
been done to extend BBO for constrained optimization problems. Ma and Simon
[6] proposed a blended BBO for dealing with such problems. The algorithm uses
a blended migration operator and determines whether a modified solution can
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enter the population of the next generation by comparing it with its parent.
Boussäıd et al. [7] proposed another approach combining BBO and DE, which
evolves the population by alternately applying BBO and DE iterations, and at
each iteration always selects a fitter one from the updated solution and its parent
for the next iteration. In [8] the authors extended the approach for constrained
optimization, which replaces the original mutation operator of BBO with the DE
mutation operator, and includes the a penalty function to the objective function
to handle problem constraints.

4 BBO with a Ring Topology

4.1 Migration on a Local Neighborhood

In the original BBO, if a given habitat is selected to be immigrated, then any
other habitat has a chance to be an emigrating habitat for it. In other words,
the BBO uses a global topology where each pair of habitats can communicate
with each other, as shown in Fig. 2(a). However, such a migration mechanism
is computationally expensive. In the biogeography theory [9], beside HSI, the
immigration and emigration rates of habitats also depend on a number of features
(such as distances and capacities) of the migratory routes between the habitats.
An obvious example is that, the larger the distance between two habitats, the less
the probability of migration between them. However, computing the distances
between all pairs of habitats will certainly incur high computational cost.

(a) global topology (b) local ring topology

Fig. 2. Topologies of the population of habitats
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Here we use a local topology where each habitat can only communicate with
its neighbor habitats, in order to not only save computational cost but also avoid
premature convergence. Among a number of limited communication topologies,
we select one of the simplest forms of local topologies, namely the ring topology,
which connects each habitat to only two other habitats in the population, as
shown in Fig. 2(b). The ring topology is unrelated to the locality of habitats in
the search space as thus is easy to implement. It deserves to note that the local
topology has also been used in local best models of PSO, where each particle
is attracted toward a fitter local best within its vicinity of the search space, in
comparison with the abandoned global best models [10].

Suppose a habitat Hi is selected for immigration and Hj and Hk are two
habitats connected to it, for each SIV of Hi we generate a random number
between [0,1]: If the number is less than μj/(μj + μk), then the SIV is replaced
by the corresponding value of Hj ; otherwise it is replaced by the corresponding
value of Hk.

One of the most advantages of the local model lies in that, not all the solutions
are subject to accept many features from one or several solutions of very high HSI
values. In consequence, the diversity of the population is potentially improved,
and the whole population is not likely to converge fast to some inferior local
optima, especially at the early stage of search. This is similar to the difference
between the gbest model and lbest model used in particle swarm optimization
[10,11]. However, the local model is more useful in BBO, since the selection of
a solution as an emigration habitat from the whole population is much more
computationally expensive than that from two neighbor habitats.

4.2 Mutation and Solution Update

In this paper, we just consider using the mutation operator of the original BBO,
but adopt a new solution update mechanism. That is, at each iteration we do not
directly modify any existing solutionHi; instead we apply the migration operator
to Hi to create a new solution H ′

i, and then mutate H ′
i to H ′′

i . At the end of
the iteration, we select the best one among Hi, H

′
i, and H ′′

i and enter it into
the population for the next generation. Note this mechanism also implements an
elitism strategy such that the best solution keeps in the population.

4.3 Algorithm Framework

Algorithm 2 presents the pseudo code of the RBBO algorithm. It is not difficult
to see that the complexity of each iteration of Algorithm 1 is O(n2D), but the
complexity of that of Algorithm 2 is O(nD) (the difference can be identified
by comparing line 8∼9 of Algorithm 1 with line 10∼13 of Algorithm 2). This
is because that, when a habitat is selected for immigration, for each vector
component RBBO checks only two other habitats while BBO checks all other
(n − 1) habitats, and RBBO only generates one random number while BBO
needs to generate (n− 1) random numbers.
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Algorithm 2. The RBBO.

1 Randomly initialize a population of solutions (habitats) to the problem;
2 Initialize the ring topology of the population;
3 while stop criterion is not satisfied do
4 for i = 1 to n do
5 Evaluate the HSI of Hi, according to which calculate λi, μi, and πi;
6 for i = 1 to n do
7 Create an offspring H ′

i of Hi;
8 for d = 1 to D do
9 if rand() < λi then
10 if rand() < μj/(μj + μk) then
11 Migrate the dth SIV of Hi’s left neighbor to H ′

i;
12 else
13 Migrate the dth SIV of Hi’s right neighbor to H ′

i;
14 Create an offspring H ′′

i of H ′
i;

15 for i=1 to n do
16 for d = 1 to D do
17 if rand() < πi then
18 Replace the dth SIV of habitat H ′′

i with a random value;
19 Let Hi be the fittest one of Hi, H

′
i, and H ′′

i ;
20 return the best solution found so far.

5 Computational Experiment

We made a comparative experiment between the original BBO and our RBBO,
which are tested on a set of well-known benchmark functions from [12], denoted
as f1 ∼ f13, a summary of which is shown in Table 1 (due to length limit, we
only consider the problems in 30 dimensions). We set n = 50, I = 1, E = 1
for both the algorithms. πmax is set to 0.01 for BBO, but set to 0.02 for RBBO
since the ring topology decreases the impact of migration and thus we should
increase the chance for mutation.

The experiments are conducted on a computer of 2×2.66GHz AMD Athlon64
X2 processor and 8GB memory. For a fair comparison, on each function we set
the same maximum running CPU time for both the algorithms, and compare
their mean and standard deviation of the best fitness values and the success rate
(with respect to the required accuracies) averaged over 40 runs, the result of
which is presented in Table 2.

As we can see from the results, except f7, on all other benchmark functions,
the mean best fitness values of RBBO are always better than the original BBO.
In more details, we observe that the mean bests of RBBO are less than 10% of
BBO on f1, f2, f3, f6, f10, f12, and f13, and about 10% ∼ 50% of BBO on f4, f5,
f8, f9, and f11. The success rates of RBBO are also better than the BBO on 11
functions. This demonstrates that our method effectively improves the efficiency
and robustness of biogeography-based search, since the ring topology limits the
range of migration and helps to avoid premature convergence.



336 Y. Zheng et al.

Table 1. Detailed information of the benchmark functions used in the paper, where
RA denotes “required accuracy” and the running CPU time is in seconds

ID Fun Search range x∗ f(x∗) RA CPU time

f1 Sphere [−100, 100]D 0D 0 0.01 10

f2 Schwefel 2.22 [−10, 10]D 0D 0 0.01 10

f3 Schwefel 1.2 [−100, 100]D 0D 0 0.1 20

f4 Schwefel 2.21 [−100, 100]D 0D 0 0.1 30

f5 Rosenbrock [−2.048, 2.048]D 1D 0 1 10

f6 Step [−100, 100]D 0D 0 0.001 10

f7 Quartic [−1.28, 1.28]D 0D 0 0.001 10

f8 Schwefel [−500, 500]D 420.9687D 0 0.01 10

f9 Rastrigin [−5.12, 5.12]D 0D 0 0.01 10

f10 Ackley [−32.768, 32.768]D 0D 0 0.000001 10

f11 Griewank [−600, 600]D 0D 0 0.01 10

f12 Penalized1 [−50, 50]D 1D 0 0.0001 20

f13 Penalized2 [−50, 50]D 1D 0 0.001 20

Table 2. The experimental result on test problems

mean best fitness (standard deviation in parentheses) success rate(%)

ID BBO RBBO BBO RBBO

f1 1.22E+00 (1.60E-01) 6.26E-02 (6.88E-03) 0 20

f2 1.12E-01 (1.04E-02) 8.43E-03 (4.77E-04) 0 92.5

f3 2.45E+00 (2.30E-01) 4.38E-02 (3.31E-03) 0 97.5

f4 1.29E+00 (7.05E-02) 1.87E-01 (1.02E-02) 0 10

f5 1.31E+02 (1.43E+01) 6.78E+01 (5.46E+00) 0 0

f6 2.02E-01 (9.00E-02) 0 (0) 70 100

f7 1.37E-03 (1.30E-04) 1.81E-03 (2.02E-04) 10 10.5

f8 1.49E-01 (1.71E-02) 1.33E-02 (1.18E-03) 2.5 40

f9 1.66E-01 (1.61E-02) 1.12E-02 (1.07E-03) 0 65

f10 3.15E-05 (2.57E-06) 2.01E-06 (1.26E-07) 0 25

f11 1.93E-01 (1.35E-02) 2.38E-02 (2.11E-03) 0 5

f12 2.18E-03 (5.37E-04) 1.03E-06 (2.60E-07) 0 87.5

f13 3.96E-02 (5.38E-03) 3.20E-03 (1.14E-03) 0 20
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6 Conclusion

BBO is a new bio-inspired optimization method that has proven its quality and
versatility on various problems. Although much research has been devoted to
improve the performance of BBO, most of them combine some operators of
other heuristic methods or introduce more new operators, and thus increase
the difficulty of implementation. The approach proposed in this paper simply
replaces the global topology of the original BBO with the local ring topology,
which can not only save much computational cost, but also effectively improve
the search capability and avoid premature convergence. In ongoing work, we are
testing the hybridization of our method with other heuristics. Another direction
is the parallelization of RBBO, which is much easier to implement on a local
topology than on a global one.
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7. Boussäıd, I., Chatterjee, A., Siarry, P., Ahmed-Nacer, M.: Two-stage update
biogeography-based optimization using differential evolution algorithm (DBBO).
Comput. Oper. Res. 38(8), 1188–1198 (2011)
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Abstract. In this paper, a new hybrid self-evolving algorithm is presented with 
its application to a highly nonlinear problem in electrical engineering. The  
optimal power flow problem described here focuses on the minimization of the 
fuel costs of the thermal units while maintaining the voltage stability at each of 
the load buses. There are various restrictions on acceptable voltage levels,  
capacitance levels of shunt compensation devices and transformer taps making 
it highly complex and nonlinear. The hybrid algorithm discussed here is a com-
bination of the learning principles from Brain Storming Optimization algorithm 
and Teaching-Learning-Based Optimization algorithm, along with a self-
evolving principle applied to the control parameter. The strategies used in the 
proposed algorithm makes it self-adaptive in performing the search over the 
multi-dimensional problem domain. The results on an IEEE 30 Bus system  
indicate that the proposed algorithm is an excellent candidate in dealing with 
the optimal power flow problems. 

Keywords: Brain-Storming Optimization, Non-dominated sorting, Optimal 
power flow, Teaching-learning-based optimization. 

1 Introduction 

Computational intelligence and its derivatives have become very handy tools in the 
field on engineering, especially for the studies on nonlinear systems. Among the intel-
ligent techniques, evolutionary computation has been of high interest in the field of 
engineering optimization problems [1]. Various algorithms such as Genetic Algorithm 
[2], Particle Swarm Optimization [3], Differential Evolution [4], Artificial Bee Colo-
ny [5] etc. have been already used in power engineering. The economically optimal 
power scheduling and stable steady state operation of an electrical grid is one of the 
major focus areas among them. This problem, which deals with the power flow and 
voltage states of an electrically connected network during steady state, is often  
referred to as optimal power flow (OPF) problem. OPF can have multiple objectives 
for which optimality is to be searched, but has major emphasis on economic schedule 
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of the power generation, along with minimizing the voltage deviations that could 
occur at the points at which loads to the system are connected. The intricate electrical 
interconnections, transformer taps for voltage stepping, steady state shunt compensa-
tion devices – all of them make the relations between the electrical variables highly 
complex and nonlinear. This demands requirement of smart methods for deciding the 
system variables. The conventional gradient-based techniques would end up with 
suboptimal solutions if applied to such an optimality problem with multiple  
constraints [1]. Relatively optimal solutions reported so far have been discovered 
using evolutionary computational techniques [4, 6].  

Teaching–Learning–Based Optimization (TLBO) is a recent technique proposed to 
serve the purpose of nonlinear function optimization [7, 8]. The philosophical essence 
of the algorithm is based on the interaction of the learners in a class with the teacher 
of that class and among themselves. For the sake of simplicity, the learner with the 
highest advantage of knowledge is considered as the teacher for that instance of time 
and the classroom dynamics is expected to evolve the average level of the learners 
with respect to the teacher.  

Brain Strom Optimization (BSO) is based on the controlled idea generation with 
the help of some flexible rules. It puts forth the philosophy that improvisation of ideas 
can be done through brainstorming sessions and piggybacking on existing ideas. Even 
though the concept of teacher is absent in brainstorming, both the optimization  
algorithms show mutual compatibility. The TLBO algorithm which has been  
proposed originally do not stress on controlled cross-fertilization of ideas within the 
learners. Hybridization of these two algorithms with excellent philosophical bases 
could give a better algorithm. 

Considering the algorithmic sequence of TLBO, it is to be noted that control  
parameter in the TLBO algorithm is just a singular Teaching Factor. A self–evolving 
characteristic can be introduced to it to make the algorithm more guided and versatile 
in its evolution through the iterations. This methodology stresses the idea of  
self-improvisation in parallel to mutual-improvisations. In this paper the self-evolving 
hybrid algorithm is put into action by applying it on a multi-objective optimal load 
flow problem. 

The following parts of paper are organized such – section 2 details the objective of 
optimal power flow and identifies two major objectives. The exact relation of  
electrical quantities and the constraints imposed are stated. Section 3 explains the 
algorithmic sequence followed by the proposed algorithm for its execution. Section 4 
presents the application of the proposed algorithm on OPF problem along with the 
simulation results. The conclusions are given in section 5.  

2 Objectives of Optimal Power Flow  

The primary objective of the OPF problem is to satiate the load demand with minimum 
possible cost, simultaneously maintaining the voltage levels as seen by the loads 
around the expected value; all the while satisfying the physical limits of the compo-
nents involved in generation and transmission. The objective of cost minimization can 
be expressed as below. 
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The coefficient shown as a accounts for the fixed cost and the coefficients b and c 

account for the variable cost incurred from power production. 
iGP  is the power  

generated by the ith generator and NG is the total number of generators. The active 
power supplied should follow the demand constraint given below. 
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Where 
jDP  is the jth load and ND is the total number of loads. Each generator is  

restricted physically by a maximum and minimum quantity of power that it is capable 
of generating.  For the ith generator, it can be expressed as given below. 

i i i

Min Max
G G GP P P≤ ≤  (3)

The total voltage deviation also acts an as an objective to be minimized. The loads 
require near-per-unit values of voltage for stable operation. The expression of objec-
tive meant for minimization is given below. 
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where 
kLV  is the voltage of the kth load bus (expressed in per unit) and NL is the 

number of load buses. The voltage states of the network are directly dependent on the 
generator voltage settings, the network impedances, shunt admittances, transformer 
tapings which hence are the decision variables. The transformer taps given by Tt and 
the reactive power compensators given by Qc are generally discretized values and 
hence discontinuous in their respective domain. A total of NT transformer taps and NC 
capacitors are considered as decidable parameters. The numerical bounds are  
expressed as below. 

i i i

Min Max
G G GV V V≤ ≤ , Min Max

t t tT T T≤ ≤ , Min Max
c c cQ Q Q≤ ≤  (5)

The voltage states of the network, both magnitude and angle at each node of the  
network, can be computed using load flow analysis. This information obtained can 
further be used to calculate the power losses in the network. Below the Root-Mean-
Square based phasor matrix calculations which are performed in load flow using the 
admittance matrix (Y) of an N bus system and the injected power are shown.  

[ ]
1 1
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N NN N
I Y V− −

×× ×
   = ×     (6)
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The powers thus computed are used in the equality constraints to match the injected 
power with demanded power. Power mismatches beyond tolerance would cause the 
load flow to fail in obtaining a convergent solution for the local search. 
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The objective is a highly nonlinear and highly restricted function of the following 
decision vector X. 

1 1 1 1N N T CG G
G G G G N NX P P V V T T Q Q =      (9)

This gives a total of (2 )G T CN N N+ +  decision variables which belong to four 

categories. The dimensionality of the problem can be very large as the number of 
buses increase. This makes the problem all the more challenging to solve. 

3 Self–Evolving Brain–Storming Inclusive Teaching–Learning–
Based Optimization Algorithm 

The Brain Storm Optimization and Teaching–Learning–Based Optimization algo-
rithms have been recently introduced in the research literature [9] and [7] respectively. 
While TLBO is based on excellence of learners inspired by the teacher, BSO stresses 
on information interchange through brainstorming. The following guidelines are used 
with reference to Osborn’s Original Rules for Idea Generation in a Brain storming 
Process [10]: 1) Suspend Judgment  2) Anything Goes 3) Cross–fertilize (Piggyback)  
4) Go for Quantity. The rule 3 emphasizes on the key idea of brain storming which is 
then incorporated into the teacher–learner–based algorithm to cross–fertilize the ideas 
from teaching phase and learning phase, so as to originate a new set of ideas, which if 
turns out to be superior, could replace inferior ideas. The Teaching Factor (TF) used in 
TLBO can be made self-evolving through its adaptation from the temporal change in 
consecutive function values. The computational steps are detailed below. 

3.1 Initialization 

Being a population-based stochastic algorithm, the initialization procedure is done 
over a matrix of M rows and N columns. M denotes the population size and N is the 
dimensionality of the problem at hand. The algorithm runs for a total of T iterations 
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after which termination occurs. Considering an element x at mth row and nth column of 
the said matrix, initialization is done as shown below. 

( )
( ) ( ) ( )
1 min max min

, ,n n nm n m nx x x x rand= + − ×  (10)

where m and n are indices for row and column respectively. The random value used 
follows a uniform distribution of randomness within the range (0, 1). The valid exist-
ing ideas could be used as a base to start for new idea generation. Similarly, prior 
known and acknowledged solutions can be used as seeds in the initial matrix. A  
potential solution X from mth row at time/iteration t is evaluated as shown below. 
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3.2 Teaching Phase 

In this phase, the average of the class is considered by taking the mean of each dimen-
sion of the population. The mean vector V can be shown as  
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The teacher for the current iteration is the best solution of the current population. In a 
multi-objective problem, the best ranked individual can be obtained by a suitable non-
dominated sorting method. The mutation in this phase is as shown below. 
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where TF shows the vector of teaching factors used for each learner. Since there is 
only this single type of control parameter present in original TLBO, it is possible to 
make it adaptive to the situation, making the algorithm self-evolving.  
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This is intelligent learning strategy in the proposed algorithm. The improvisation in 
the rank of the vector with respect to past would lead to reduction in teaching factor, 
indicating that the learner is performing well and has lesser need to contribute towards 
driving the class average corresponding to the current teacher. Considering deprecia-
tion in the rank, the individual would need to allow higher mutations between teacher 
and the average vectors and hence higher TF value is required. When there is no 
change in the rank, the TF value for that learner is kept constant. 
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3.3 Learning Phase 

This phase makes the learners undergo self–improvement through differential  
mutation. The temporal gradients which are present between the learners are used to 
facilitate the mutation process.  
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3.4 Brain–Storming Phase 

Here the amalgamation of both new populations occurs. A temporary matrix is 
created with intermixing from the populations from teaching and learning phases. 
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where α and β are the multiplication factors which decides the extent of participation 
of both populations in the brain storming process. The factors are kept within certain 
limits to assure contribution to brain storming from both the phases. Similar to BSO, 
the population thus obtained is mutated like in BSO using a smooth and stochastically 
weighted nonlinear function. 
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where K is the slope determining factor of the logsig function used. The current popu-
lation’s objective values along with the objective values of new populations are com-
pared together to perform the reinsertion of the superior vectors.  

4 Simulation Results  

The proposed algorithm is tested so as to obtain optimal power flow solution for an 
IEEE 30-Bus, 6 generator system. The system data regarding the bus configurations 
and the line data can be found in [4] and are not presented here due to space  
constraints. Both objectives are individually optimized first and then used as seeds 
during consequent initialization. The algorithm is run for 10 trial runs and the best 
solution is presented in Table 1. All simulations are done in MATLAB R2011b  
software on a 3.4 GHz Core-i7 device with 8 GB of random access memory. The 
system is well known and has been studied before even in recent research literature 
[4, 6]. The real powers and voltages of buses {1, 2, 5, 8, 11, 13} are to be decided. 
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The transformer taps {11, 12 15, 36} are to be adjusted and the extent of reactive 
compensations at {10, 12, 15, 17, 20, 21, 23, 24, 29} have to be determined. The fuel 
cost and voltage deviations are functionally dependent on these 25 parameters. The 
comparison of results from the proposed algorithm is performed in Table 2. It is very 
clear from the results that the proposed technique shows comparable performance to 
recent algorithms and is quite optimal considering the initial states shown in [4, 6]. 

Table 1. IEEE-30 Bus, 6 generator system – power generataions, voltage magnitudes, 
transformer taps settings and reactive power values used for compensation 

 Minimize F(PG) Minimize F(VL)  Minimize F(PG) Minimize F(VL) 
PG1 176.6350 171.6105 T3 0.9755 0.9796 
PG2 48.2382 30.1370 T4 0.9607 0.9659 
PG3 21.2394 48.5742 Q1 4.4348 4.8671 
PG4 21.4096 10.0000 Q2 4.1871 0.3153 
PG5 12.0488 16.9136 Q3 4.2786 4.9994 
PG6 12.4177 15.7686 Q4 4.7454 1.6107 
VG1 1.1000 0.9999 Q5 3.6614 4.9912 
VG2 1.0877 1.0211 Q6 5.0000 4.6549 
VG3 1.0622 1.0173 Q7 4.6468 5.0000 
VG4 1.0700 1.0016 Q8 5.0000 4.9721 
VG5 1.0986 1.0341 Q9 2.1255 2.0984 
VG6 1.1000 1.0108 F(PG) 799.1295 863.0816 
T1 1.0139 1.0526 F(VL) 1.9557 0.0884 
T2 0.9069 0.9034 Loss 8.5885 9.6627 

Table 2. Comaprison of results based on [4, 6] 

Method 
Optimal fuel cost (in 

$/hr) 
Optimal total voltage deviations 

Gradient-based approach 804.853 - 
Improved GA 800.805 - 

PSO 800.41 - 
DE 799.2891 0.1357 

AGAPOP 799.8441 0.1207 
Proposed algorithm 799.1295 0.0884 

 
As seen from Table 2, the proposed hybrid algorithm is very effective in finding  
optimality of the objectives. The time difference in algorithms is negligible owing to 
high computational capabilities of modern day processors. 

5 Conclusion 

A hybrid algorithm is proposed based on two algorithms, TLBO and BSO, which 
have mutually compatible philosophical bases. The proposed algorithm is easily mod-
ified to be self-evolving since the original algorithm has only a single type of control 
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parameter. The algorithm is successfully applied to highly complex optimal power 
flow problem with multiple objectives. The results indicate that the proposed algo-
rithm is an excellent candidate for intelligent decision-making leading to economic-
cum-stable operation of the power network. The flexibility and generic nature of the 
algorithm makes it suitable for optimizations on electrical networks spread over a 
large area or even those inside a building. The algorithm has higher memory require-
ment during its intermediate stages, but that disadvantage is trivial in the current 
world scenario of high end memory availability. 
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Abstract. Scientists have found that atoms and molecules in nature
have an amazing power at finding their global minimal energy states
even when their energy landscapes are full of local minima. Recently,
the author postulated an optimization algorithm for understanding this
fundamental feature of nature. This paper presents a version of this al-
gorithm for attacking continuous optimization problems. On large size
benchmark functions, it significantly outperformed the standard particle
swarm optimization algorithm.

1 Introduction

Scientists found that atoms and molecules are most often staying at their ground
states, i.e., the lowest energy state among the conceivably possible states. Started
from any initial state or disturbed by some external actions, the atom or the
molecule always falls back to its ground state. Given a molecule consisted of
multiple atoms, how could those atoms be capable of finding the global minimal
energy state even when the energy function of the molecule is very rugged in the
most cases? In other worlds, why a swarm of atoms in a molecule possesses some
magic power at finding their social optimal solution? This mysterious property
of nature is, as described by Niels Bohr in his 1922 Nobel lecture, peculiar
and mechanically unexplainable. It seems to us that nature has implemented a
powerful optimization mechanism at the atomic level.

Recently, the author postulated an optimization algorithm [1] to understand
this important feature of nature. It is not simply an optimization algorithm
inspired by nature. It could be the one deployed by nature at constructing atoms
and molecules of the universe for their consistency and stability (which shall be
put to the test in the future). Otherwise, the universe will fall into chaos if its
building blocks (atoms and molecules) are not stable and consistent. It will be
impossible to have life and everything around us.

This algorithm has several distinct features from other natural inspired al-
gorithms. It is directly derived from the laws of quantum physics while others
are inspired by other natural phenomena (such as ants, bees, birds, natural
evolution, harmony, firefly, bacteria foraging, memetics, monkey, cuckoo, virus,
water drops, spiral, galaxy, gravity, immune systems, and bats). Finding the
global optimum is critically important in the quantum world, while searching
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for satisfactory solutions are mostly acceptable in many other cases in nature.
It attempts to model the exact optimization process nature deploys at the mi-
croscopic level, while many others are loosely modeled after nature. It offers a
new mathematical principle for optimization, fundamentally different from ex-
isting ones. It is also guaranteed to converge with an exponential rate for any
objective function to an optimal solution with the optimality of its solution es-
tablished in mathematics. However, many others have a hard time to establish
the general convergence properties. Their convergence aspects are therefore often
demonstrated empirically in the research literature.

Furthermore, none of existing ones deal with an objective function described
by a Hamiltonian operator. It is more general than a real-valued, multivariate
function. However, dealing with the former case is critical important in physics,
chemistry, and biology both in theory for understanding nature and in practice
for designing new materials to be environment friendly and new medicines to cure
deadly diseases. This algorithm is capable of handling both cases. It is also the
only nature-inspired algorithm reported so far capable of solving real-world, hard
optimization problems in communications and computer vision. The examples
are decoding error correction codes, like Turbo codes and LDPC codes for mod-
ern communications (LPDC in China HDTV, WiMax in 4G communications,
European satellite communications), and stereo vision and image restoration in
computer vision. They are major practical problems from electric engineering
department with the number of variables ranging from hundreds of thousands
to millions, far more challenge than many sample problems drawn from text-
books. The successful applications of an early version of the algorithm have
been reported in [2,3,4].

2 From Quantum Physics to an Optimization Algorithm

To introduce the algorithm, we need to explain some key concepts in quantum
mechanics. Scientists found out that the conceivably possible states of an atom
or a molecule, called the stationary states in quantum physics, must satisfy the
stationary Schrödinger equation:

λΨ(x, t) = HΨ(x, t) , (1)

where Ψ(x, t) is the wavefunction describing the state of an atom or a molecule.
It is a function of the space location x and the time t. H is the Hamiltonian
operator corresponding to the total energy of the atom or the molecule, and λ
is one of the eigenvalues of H which equals to the energy of the atom or the
molecule.

The wavefunction Ψ(x, t) is a probability-like function, where the square of
the absolute value of Ψ(x, t), |Ψ(x, t)|2, is the probability of detecting the particle
at the space location x at the time t.

If the molecule is isolated, does not interact with its environment, its state
evolution follows the time-dependent Schrödinger equation:

ih̄Ψ̇(x, t) = HΨ(x, t) , (2)
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where Ψ̇(x, t) is the time derivative of Ψ(x, t), i is the imaginary unit (i =
√−1),

and h̄ is the reduced Planck constant.
However, in reality, it is impossible to have an absolutely isolated molecule or

atom due to the interactions with its environment and the perturbations caused
by quantum fluctuation and background radiation. The molecule or the atom
always losses its energy by emitting photons and jumps to a lower stationary
state, and eventually to the lowest stationary state, called the ground state.
The ground state has the energy level which is the smallest eigenvalue of the
Hamiltonian operator H .

Nobody knows the exact process of the quantum jump. There was a fa-
mous debate on the subject between two great physicists: Niels Bohr and Erwin
Schrödinger (1933 Nobel prize in physics). However, it remains as a mystery
of science until recently a mathematical model has been postulated [1] to un-
derstand the quantum jump process. The model is described by the following
dynamic equation for the evolution of the state of a quantum system:

− h̄Ψ̇(x, t) = HΨ(x, t)− 〈H〉Ψ(x, t) , (3)

where 〈H〉 is the expected value of the Hamiltonian operatorH (〈H〉 = (Ψ,HΨ),
where (a, b) denotes the inner product of a and b), then the system always
converges to an equilibrium satisfying the stationary Schrödinger equation (1).
Therefore, it is a stationary state of the system.

Any system following the dynamics described by Eq. (3) always jumps (con-
verges) to a lower energy stationary state started from an arbitrary initial state.
Those stationary states are the equilibrium points of the equation. It eventually
jumps to the lowest energy stationary state because others are unstable, sensitive
to disturbance.

Specifically, the expected value of the Hamiltonian operator H , 〈H〉, always
decreases when time elapses until an equilibrium is reached. That is, if the evo-
lution of the system state Ψ(x, t) is governed by Eq. (3), then the total en-
ergy of the system, represented by 〈H〉, always decreases until an equilibrium is
reached. Therefore, Eq. (3) defines an optimization algorithm, called the quan-
tum optimization algorithm here. Also, it defines a new mathematical principle
for optimization by minimizing 〈H〉 instead of the original energy function H .

Experiments have found again and again that the space location of an atomic
particle, such as an electron, a nucleus, or an atom, can distribute in space just
a cloud does. A particle can appear in multiple locations simultaneously with
the probability as |Ψ(x, t)|2 at the space location x as mentioned before. This is
a very counter-intuitive feature of nature because our daily life experience tells
us that an object should have definite position at any given time. In general, a
state variable can only have a single value at any given time instance in classical
physics while it can have multiple values in quantum physics. Applying this
generalization to classical optimization methods can lead to a paradigm shift.

Traditionally, in an optimization process, such as gradient descent and lo-
cal search [5], every decision variable has a definite value at any given time,
just like the space location of an object in classical physics. By analogy with
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quantum physics, we can extend that single-value assignment to a multi-value
assignment. That is, at any given time, we can assign a decision variable with
multiple values, each of them has a probability-like value associated with it,
defining the preference of assigning the value to the variable. This can lead to
a straightforward generalization of the classical gradient descent algorithm from
hard-decision making to soft-decision making. In mathematics, it turns out that
the result can be the quantum optimization algorithm defined in (3).

The quantum optimization algorithm (3) has a discrete-time version for com-
binatorial optimization. That is to minimize a multivariate, real-valued function
E(x1, x2, . . . , xn), where all variables are discrete. Specifically, let the state of
variable xi at time t be defined by a wavefunction Ψi(xi, t). The discrete-time
version is defined as repeatedly updating the state of every variable xi, one at a
time, as follows:

Ψi(xi, t+ 1) =
1

Zi(t)
e−cEi(xi,t)Ψi(xi, t); (4)

where Zi(t) is a normalization factor such that
∑

xi
Ψ2
i (xi, t+1) = 1, c is a pos-

itive constant determining the descending rate, and Ei(xi, t) is the local energy
for variable xi. The definition of the local energy Ei(xi, t) is directly copied from
quantum physics as follows:

Ei(xi, t) =
∑
x1

Ψ2
1 · · ·

∑
xi−1

Ψ2
i−1

∑
xi+1

Ψ2
i+1 · · ·

∑
xn

Ψ2
nE(x1, . . . , xn) . (5)

At any time t, the candidate solution for xi, denoted as x∗i (t), is defined as
the one that has the maximal value of Ψi(xi, t). That is

x∗i (t) = argmax
xi

Ψi(xi, t) .

It is important to note that the discrete-time version (4) of the quantum opti-
mization algorithm (3) always converges to any one of the equilibrium states
satisfying the stationary Schrödinger equation (1). In particular, it has the
following form

λΨi(xi, t) = Ei(xi, t)Ψi(xi, t), for i = 1, 2, . . . , n .

3 A Case Study of Continuous Optimization Problems

The optimization algorithm (4) presented in the previous section works for dis-
crete variables of finite domains. We can adapt the algorithm for continuous
variables with three techniques.

The first one is to sample the values for each variable xi around a center value
xci for the variable. One way of sampling in the real domain R is to uniformly
sample around xci as follows:

xci −mΔx, . . . , xci −Δx, xci , x
c
i +Δx, . . . , xci +mΔx.
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It has 2m+1 sampling points with gap Δx, a positive real value. This technique
enables the algorithm to explore only a finite number of values for each variable
at any movement to control its complexity.

The second technique is to move the sampling center xci to a better location.
It enables the algorithm to explore more promising areas in the search space.

The third one is to shrink the sampling gap Δx when there is no better
location to move the sampling center xci . It is done by reducingΔx asΔx = γΔx,
where the parameter γ is a positive constant less than 1. It enables the algorithm
to search for a better solution at a finer scale.

At the very beginning, the algorithm picks up a random solution x(0) in the

search space. The i-th component x
(0)
i of the initial solution is used as the center

value for xi, i.e., x
c
i = x0i . At the same time, every wavefunction Ψi(xi) is set

to the uniform distribution, i.e., Ψi(xi) = 1/(2m + 1) for all sampling points.
Afterward, the optimization equation (4) is applied to update the wavefunction
Ψi(xi) for every variable xi iteratively. At each iteration, the solution for xi,
denoted as x∗i , is the one which has the highest wavefunction value Ψi(xi). If it is
different from the sampling center xci , then the center is moved to x∗i and Ψi(xi)
is reset to the uniform distribution.

Given a maximum iteration number, the iterations are split into two halves.
At the first half, there is no shrinking of the sampling gapΔx. At the second half,
the gap is shrunk only if the solution of the current iteration is not improved.
Putting everything together, we have the following pseudo code.

Generate an initial solution x(0) and set the sampling center xc = x(0);
Initialize all wavefunctions Ψi(xi) as the uniform distribution;
for k := 1 to max iteration do

for each i do
for each sampling point of xi, update Ψi(xi) as

Ψi(xi) = e−cEi(xi)Ψi(xi); // Ei(xi) is the quantum local energy (5)
Normalize Ψi(xi) so that

∑
i Ψ

2
i (xi) = 1;

Compute the solution for xi as x
∗
i = argmaxxi Ψi(xi);

if xc (sampling center) 
= x∗ (the current solution) do
Move the sampling center to x∗, xc = x∗;

if the solution x∗ is not better than the last one and
k > max iteration/2 do
Shrinking the sampling gap as Δx = γΔx;

if the sampling gap is shrunk or the sampling center is moved do
Reset all wavefunctions Ψi(xi) as the uniform distribution;

Output (x∗
1, x

∗
2, . . . , x

∗
n) as the final solution.

Fig. 1. Quantum optimization algorithm

4 Experimental Results

The performance of the quantum optimization for continuous optimization
problems is compared with the standard particle swarm optimization algorithm
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version 2006 (see http://www.swarmintelligence.org for the source code). Par-
ticle swarm optimization (PSO) is a population based optimization technique
developed by Dr. Eberhart and Dr. Kennedy in 1995 [6]. People have found
many ways to twist and modify the standard PSO to improve its performance.
However, the standard PSO is chosen here because of its popularity.

In our experiments, the number of evaluations is set to 30, 000. Readers can
find other parameters such as the swarm size, topology of the information links
of the swarm, the first cognitive/confidence coefficient, and the second cogni-
tive/confidence coefficient in the original source code.

For the quantum optimization algorithm given in Fig. 1, the descending rate
c = 0.7, the maximum number of iterations is 300, the sampling gap Δx = 1.0,
the number of sampling points for each xi is 19, and the shrinking rate γ is 0.7.

The four evaluation functions are listed below. The search space is x∈ [−30, 30]d.

Eggcrate
∑d
i=1 x

2
i + 25 sin2(xi)

Rosenbrock
∑d−1
i=1 100(xi+1 − x2i )

2 + (xi − 1)2

De Jong
∑d
i=1(i+ 1)x4i

Rastrigin
∑d
i=1

(
x2i − 10 cos(2πxi) + 10

)
The experiments are carried out by comparing the accuracies of the algorithms

at finding the optimal value (in our cases, E∗(x) = 0). Each algorithm runs
100 times for each test case. The best function values found by each algorithm
are averaged. The standard deviation and the average execution time are also
calculated. They are done on a Windows Vista 32-bits machine with an AMD
Turion 64x2 2.00 GHz CPU and a 3-GB memory. The results are given in the
following table.

function(dimension) PSO Quantum Optimization

Eggcrate(d=100) 817 ± 153 (0.32s) 0.000 ± 0.000(0.04s)
(d=200) 2,899 ± 358 (0.62s) 0.000 ± 0.000(0.08s)
(d=300) 7,268 ± 565 (0.92s) 0.000 ± 0.000(0.12s)

Rosenbrock(d=100) 2,640 ± 3405 (0.22s) 3.237 ± 8.469 (0.26s)
(d=200) 1,446,311 ± 652,265 (0.42s) 2.529 ± 6.035(0.52s)
(d=300) 12.27 × 106 ± 3.8× 106 (0.61s) 2.621 ± 8.527(0.87s)

De Jong(d=100) 143 ± 152 (0.21s) 0.000 ± 0.000(0.01s)
(d=200) 1, 154, 377± 534, 594 (0.32s) 0.000 ± 0.000(0.03s)
(d=300) 14.37 × 106 ± 4.2× 106 (0.47s) 0.000 ± 0.000(0.03s)

Rastrigin(d=100) 685 ± 128 (0.31s) 0.000 ± 0.000(0.04s)
(d=200) 3, 038± 325 (0.64s) 0.000 ± 0.000(0.08s)
(d=300) 6, 476± 530 (0.93s) 0.000 ± 0.000(0.1s)

From the table we can see that, the quantum optimization algorithm signifi-
cantly outperformed the standard PSO in terms of the quality of solutions. Both
of them have comparable speeds. As the problem size increases from 100, 200, to
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300, the quantum optimization algorithm scales much better than the standard
PSO in terms of solution quality. For Eggcrate function, De Jong function, and
Rastrigin function, the quantum optimization has a near-perfect performance.
For Rosenbrock function and De Jong function, the performance of PSO deterio-
rates very fast with the increase of the variable number. For Rosenbrock function,
the quantum optimization algorithm deteriorates just a little bit, insensitive to
the problem size.

5 Conclusion

Based on the recent theoretical work on quantum physics at understanding quan-
tum jump, this paper presents a quantum optimization algorithm for attacking
hard optimization problems. The underlying optimization principle of this algo-
rithm is the soft-decision based local optimization. It can be viewed as a general-
ization of the classical gradient descent algorithm from hard decision making to
soft decision making at assigning decision variables. It always converges to equi-
libria described by a key equation in quantum mechanics, called the stationary
Schrödinger equation. One version of this algorithm is also offered for solving
continuous optimization problems.
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Abstract. Software testing has been validated as an effective way to improve
software quality. Among all research topics in software testing, automated test
data generation has been viewed as one of the most challenging problems. In re-
cent years, a typical solution is to adopt some meta-heuristic search techniques to
automatically tackle this task. In the paper, our main work is to adapt an emerging
meta-heuristic search algorithm, i.e. harmony search (HS), to generate test data
satisfying branch coverage. Fitness function, also known as the optimization ob-
jective, is constructed via the branch distance. In order to verify the effectiveness
of our method, eight well-known programs are utilized for experimental evalua-
tion. According to the experimental results, we found that test data produced by
HS could achieve higher coverage and shorter search time than two other classic
search algorithms (i.e. SA and GA).

Keywords: Test data generation, harmony search, fitness function, branch
coverage, experimental evaluation.

1 Introduction

In the past decades, testing is always treated as an effective way to improve software
reliability and trustworthiness both in academia and industry. However, how to gener-
ate test data which can reveal potential faults in high probability is not an easy task.
Apart from the deterministic methods such as symbol execution and constraint solving,
a typical solution is to adopt some meta-heuristic algorithms to produce test inputs in
software testing activity, that is so-called search-based software testing (SBST) [1].

In order to expose the faults in program code with high probability, test data should
cover program elements as many as possible. Thus, in software testing, some specific
construct elements, such as statements, branches or paths, are usually selected as targets
to be covered (a.k.a. coverage criteria). Then, the quality of test data is usually judged
by the proportion of covered elements, that is so-called coverage. Therefore, the main
objective of search-based testing is to produce test data with much higher coverage.

At present, some meta-heuristic search (MHS) techniques, such as simulated anneal-
ing (SA) [2], ant colony optimization (ACO) [3] and genetic algorithm (GA) [4], have
been adopted for generating test data. According to the empirical study by Harman and
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McMinn [5], the above MHS algorithms are suitable for test data generation problem.
In recent years, harmony search (HS) [6,7] is a new emerging searching algorithm in the
field of evolution computing. In the paper, we attempt to use this algorithm to generate
structural test data.

It should be noted that, in the work of Rahman et al. [8], HS algorithm is adopted
for constructing variable-strength t-way strategy, and experimental results demonstrate
that HS-based method gives competitive results against most existing AI-based and pure
computational counterparts. However, their work belongs to combinatorial testing, but
not the program code-oriented testing. To the best of our knowledge, this paper is the
first attempt to use HS algorithm to solve test data generation problem in software
structural testing.

In practice, some well-known programs are utilized for experimental evaluation, and
the effectiveness of HS-based method is validated. At the same time, the comparison
analysis between HS and other search algorithms is also performed. Experimental re-
sults show that HS outperforms other algorithms both in covering effect and searching
performance.

2 Background

2.1 Test Data Generation Problem

From a practical point of view, test data generation plays crucial role for the success
of software testing activities. In general, the coverage of program constructs is often
chosen as an index to determine whether the testing activity is adequate or not. Ac-
cordingly, test data generation can be converted into a covering problem for program
constructs. In order to realize full coverage of target elements with a test data set as
smaller size as possible, it is necessary to introduce some effective search algorithms to
solve the difficult problem.

As shown in Figure 1, the basic process of search-based test data generation can be
described as below. At the initial stage, the search algorithm generates a basic test suite
by the random strategy. Then test engineers or tools seed test inputs from the test suite
into the program under test (PUT) and run it. During this process, the instrumented
code monitors the PUT and can produce the information about execution results and
traces. Based on such trace information, the metric for a specific coverage criterion can
be calculated automatically. Subsequently, the metrics are used to update the fitness
value of the pre-set coverage criterion. Finally, test data generation algorithm adjusts
the searching direction of the next-step iteration according to the fitness information.
The whole search process could not be terminated until the generated test suite satisfies
the pre-set coverage criterion.

There are three key issues in the above framework: trace collection, fitness function
construction and search algorithm selection. In general, execution traces are collected
by code instrumentation technology, which can be settled with compiling analysis.
While constructing fitness function, testers should determine which kind of coverage
will be adopted. Experience tells us that branch coverage is a better cost-effective crite-
rion. Considering easy implementation and high convergence speed, here we adopt HS
to produce test data.
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Fig. 1. The basic framework for search-based test data generation

2.2 Brief Review on HS Algorithm

As a new meta-heuristic optimization algorithm, harmony search originally came from
the analogy between music improvisation and optimization process. It was inspired by
the observation that the aim of music is to search for a perfect state of harmony. The
effort to find the harmony in music is analogous to find the optimality in an optimization
process [7].

Algorithm . Harmony Search
1. define objective function f(∗);
2. define harmony memory accepting rate (raccept);
3. define pitch adjusting rate (rpa) and other parameters;
4. generate Harmony Memory (HM) with random harmonies;
5. while t < max number of iterations do
6. while i <= number of variables do
7. if (rand < raccept) then
8. choose a value from HM for the variable i;
9. if (rand < rpa) then

10. adjust the value by adding small random amount;
11. end if
12. else
13. choose a random value;
14. end if
15. end while
16. accept the new harmony (solution) if better;
17. end while
18. return the current best solution;

The pseudo code of harmony search algorithm is listed as follows. It is not hard
to find that, the best solution can be produced via the following three operations: (1)
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Harmony selection. This operation ensures that the good harmonies in the last iteration
can be considered as elements of new solution. (2) Pitch adjusting. This action produces
a new pitch by adding small random amount to the existing pitch. (3) Randomization.
This operation is to increase the diversity of the solutions. In general, pitch adjusting
can only realize local search, but the use of randomization can drive the system further
to explore various diverse solutions so as to attain the global optimality.

In essence, HS is a swarm-based heuristic algorithm, so it can keep the balance be-
tween the diversification and convergence through the strategies of swarm intelligence,
such as parallel evolution and elitism preserving policy. Meanwhile, simplicity and easy
implementation are also the strong points of HS. Thus, it has been applied to various
optimization problems.

3 HS-Based Test Data Generation

Given a program under test P , suppose it containsn input variables x = (x1, x2, · · · , xn).
For each input variable xi, its input domain can be denoted as Ri(1 ≤ i ≤ n), then the
input domain of whole program can be expressed as R = R1×R2×· · ·×Rn. Regard-
ing the testing problem, in fact, it is to select a subset from input domain R according
to a specified coverage criterion C, so as to realize full coverage of the corresponding
construct elements. In general, the execution status of a program element (i.e., state-
ment, branch or path) is determined by program’s input data. Therefore, the satisfaction
degree of criterion C can be modeled as a function f(X) of input variables, where X is
the set of input vectors, i.e. X = {x}. Consequently, test data generation is transformed
as an optimization problem.

Suppose the test data set satisfying coverage criterionC is Stc = {tc1, tc2, · · · , tcm},
here m is the number of test cases. For each test case tci = {x1, x2, · · · , xn}, f(tci)
is the fitness of the test case. Meanwhile, the fitness of whole test data set is denoted
as f(Stc). Then, test data set optimization problem is to find the maximum fitness of
f(Stc).

Here, a harmony represents a test case, and harmony memory stores the subset of
test cases which have much stronger covering ability than the rest in population. For a
program with n input variables, Shm test cases with the stronger covering ability can
be organized as a harmony memory (HM) as below.

HM =

⎡
⎢⎢⎢⎣

x11, x12, · · · , x1n
x21, x22, · · · , x2n

...
...

. . .
...

xShm
1 , xShm

2 , · · · , xShm
n

⎤
⎥⎥⎥⎦ (1)

where (xk1 , x
k
2 , · · · , xkn)(1 ≤ k ≤ Shm) represents an elite test case in whole popula-

tion. In general, Shm varies in the range from 1 to 40.
In order to generate a test suite Stc, we adopt the parallel style to realize population

update. A new solution (i.e., test case) tc(t+1)
j (here j ∈ [1,m]) in generation t+ 1 can
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be produced by formula (2).

tc
(t+1)
j =

{
tc

(t)
l = (xl1, x

l
2, · · · , xln), rndj ≤ raccept

randomly select data from input domain, otherwise
(2)

where l is a random integer within [1, Shm], rndj is a random number from 0 to 1.
If a solution is selected from HM, it will still be conducted local adjustment with the

probability rpa. Here, we adopt the linear adjustment shown in formula (3).

xnew = xold + brange × ε (3)

where xold is the existing pitch stored in HM, and xnew is the new pitch after the pitch
adjusting action. brange is the pitch bandwidth, and ε is a random number from uniform
distribution with the range of [-1, 1].

For a new generated test case tci (1 ≤ i ≤ m), if its fitness is better than the worst
harmony (hworst) in HM, i.e. f(tci) > f(hworst), the worst harmony will be replaced
with tci. Finally, the stopping rules include: (i) test data set achieve full coverage w.r.t.
criterion C, or (ii) the iteration times reach to maxGen.

According to the previous testing experiences, branch coverage is the most cost-
effective approach in structural testing [9]. In our study, we mainly consider the widely-
used branch coverage as searching objective. The fitness function can be constructed in
accordance with branch distance. The metrics of branch distance in our experiments
refer to the definitions in [10] and [2].

Suppose a program has s branches, the fitness function of the whole program can be
defined as below.

fitness = 1

/[
θ +

s∑
i=1

wi · f(bchi)
]2

(4)

where f(bchi) is the branch distance function for the ith branch in program, θ is a
constant with little value and is set to 0.01 in our experiments. wi is the corresponding
weight of this branch. Obviously,

∑s
i=1 wi = 1. Generally speaking, each branch is as-

signed to different weight according to its reachable difficulty. The rational way is that,
the harder reaching branch (e.g. the equilateral case in triangle classification problem)
should be assigned with higher value.

In order to provide reasonable branch weight to construct fitness function, we per-
form static analysis on program to yield structure information about branch element.
Generally speaking, the reachability of a branch body mainly relies on the following
two issues: the nesting level of branch and the predicate type in branch. As a conse-
quence, we determine the final branch weight according to the above two factors.

4 Experimental Analysis

4.1 Experimental Setup

In order to validate the effectiveness of our proposed method for generating test data,
we use eight programs to perform the comparison analysis, which are the well-known
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Table 1. The benchmark programs used for experimental analysis

Program #Branch LOC Description

triangleType 5 31 type classification for a triangle
calDay 11 72 calculate the day of the week

isValidDate 16 59 check whether a date is valid or not
remainder 18 49 calculate the remainder of an integer division

computeTax 11 61 compute the federal personal income tax
bessj 21 245 Bessel Jn function

printCalendar 33 187 print calendar according the input of year and month
line 36 92 check if two rectangles overlap

benchmark programs and have been widely adopted in other researchers’ work [11–13].
The details of these programs are listed in Table 1.

Since SA and GA are the two most popular algorithms for settling test data genera-
tion problem, we mainly compare our HS-based method with them in this section. The
parameter settings of these three algorithms are shown in Table 2. It should be noted
that, the parameters of each algorithm are the most appropriate settings for most pro-
grams under test in the experiments. The experiment is employed in the environment of
MS Windows 7 with 32-bits and runs on Pentium 4 with 2.4 GHz and 2 GB memory,
and all three algorithms are implemented in standard C++.

Table 2. The parameter settings of three algorithms

Algorithm Parameter Value

SA
initial temperature T0 1.00
cooling coefficient cα 0.95

GA
selection strategy gambling roulette
crossover probability pc 0.90
mutation probability pm 0.05

HS
size of harmony memory Shm 2∼20
harmony choosing rate raccept 0.75
pitch adjustment rate rpa 0.5

4.2 Comparative Analysis

Here, we define the following two issues as evaluation metrics for experimental anal-
ysis. Subsequently, the effectiveness and efficiency of these three algorithms can be
compared on them.

(1) Average coverage (AC), i.e. the average of achieved branch coverage of all test
inputs in 1000 runs.
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(2) Average time (AT), i.e. the average execution time (millisecond) of realizing all-
branch coverage.

The experimental results of three algorithms are shown in Table 3. For the metric AC,
the results of HS are always better than those of SA and GA for all eight programs.
Apart from the last program line, HS can attain 100% branch coverage. Even for
program line, the AC value of HS algorithm is very close to 100%. On average, HS
outperforms SA about 3.85 percentage points w.r.t. metric AC, and is higher than GA
about 4.00 percentage points. On the other hand, we find that SA and GA have no
significant difference for the metric AC. GA’s results are higher than those of SA for
program isValidDate, printCalendar and line. For the rest five programs,
SA’s effect is better than GA w.r.t. metric AC.

Table 3. Comparison analysis on metric AC and AT

Program
Average Coverage (%) Average Time (ms)

SA GA HS SA GA HS

triangleType 99.88 95.00 100 3.77 10.83 0.34
calDay 99.97 96.31 100 1.79 35.73 0.44

isValidDate 98.21 99.95 100 2.43 11.68 1.04
remainder 99.85 94.07 100 1.01 6.09 0.52

computeTax 94.44 91.51 100 1.14 18.28 0.53
bessj 99.45 98.61 100 6.10 8.89 2.65

printCalendar 94.31 95.06 100 35.38 35.48 5.11
line 82.86 97.43 99.76 11.00 47.65 5.99

For the metric AT, the mean value of HS-based approach is 2.08 millisecond, and the
metrics of SA and GA are 7.83 ms and 21.83 ms respectively. Thus, we can deduce the
order of these three algorithms as follows: HS>SA>GA, where symbol ‘>’ means the
“faster” relation. On the whole, AT metric of HS is about one-tenth of that of GA, and
one-forth of SA’s AT. This phenomenon means that the time in each iteration of HS is
much shorter than those of SA and GA during the evolution process.

Based on the above analysis, we can conclude that HS is more suitable for test data
generation problem than SA and GA, both in test data quality and convergence speed.

5 Conclusions

Test data set usually plays crucial role in the success of software testing activity. Thus,
quite a few search techniques are introduced to find the test inputs which can reveal
the potential faults in program code with the maximum probability. Harmony search,
as a new emerging technique, has shown its strong searching ability for some typi-
cal optimization problems. In the paper, we adapt it to generate test data set to cover
all branches in program. Meanwhile, eight well-known programs are utilized for ex-
perimental evaluation. The results tell us that HS outperforms other two algorithms
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(i.e., SA and GA) both in test data quality and convergence speed for testing problem.
Therefore, we can conclude that HS is suitable to handle test data generation problem
in software structural testing.
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Abstract. Staff scheduling problem has been researched for decades and
dozens of approaches have been proposed. Since in the hospital ward,
an optimal solution could be changed for the uncertain causes, such as
sick leave or other unforeseen events. If these occur, the roster that has
been settled as an optimal solution often needs to make changes such as
shift moves and others, some of which could have impact on the rosters
fitness value. We first investigate the sensitive of an optimal solution
under several operations of those types and the result shows that the
solutions which are optimal obtained with the searching technique could
indeed be affected by those disturbance. Secondly, the evaluation method
is used to construct new evaluation function to improve the robustness of
a roster. The model could apply to any method such as population-based
evolutionary approaches and metaheuristics. Experiments show that it
could help generate more robust solutions.

Keywords: Heuristics, nurse rostering, robustness, staff scheduling,
metaheuristics.

1 Introduction

Nurse rostering is a class of staff scheduling problem in real life hospital ward,
which is usually encountered by the manager and the head of the nurses. This
kind of work is often highly constrained and could have large search spaces as
a combinatorial optimization problem to find the optimal solution. The major
objective is to generate a roster which contains a daily shift to each day during a
period, which should be subject to the soft and hard constraints. In the practice,
it is common that the head nurses still construct the roster by hand and thus
this is of time consuming. Automated nurse rostering present a great challenge
both for researchers in universities and personnel managers in hospitals.

The rostering process usually considers issues like coverage demand, workload
of nurses, consecutive assignments of shifts, day-off/on requirements, weekend-
related requirements, preference or avoidance of certain shift patterns, etc. During
the last a few decades, a wide range of effective approaches have been studied and
reported. While earlier literatures concentrating on the formulations of the prob-
lem andmethods with the traditionalmathematical programming approaches, the
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followed researches mainly make use of the heuristics and the population-based
search techniques such as evolutionary computation. He et al. [7] developed a hy-
brid constraint programming based column generation approach. They present a
complete to formulate the complex constraints and consists an effective relaxation
reasoning linear programming method, and two strategies of column generation
searching method are proposed. In [9], Lv et al. reported an adaptive neighbor-
hood searching technique to solve the different scale of period of rostering prob-
lem. This method adaptively controls its parameter to solve benchmarks from the
NSS dataset. They defined a basic move of neighborhood search and generated
moderate competitive results.

Burke et al. [2] proposed a tabu-search based hyperheuristic for both the staff
scheduling and timetabling problem.With the developing the hyperheuristic that
could automated design the high level heuristics, this approach can produce so-
lutions of at least acceptable quality across a variety of problems and instances.
In the literature [1], another hyperheuristic is presented to solve two kinds of
scheduling problems usually happen in hospital: nurse rostering and patient ad-
dressing scheduling. As for the population-based method, Kawanaca et al. [8]
applied the genetic operations to exchange the shifts of the day to search the
solution space. Ruibin et al.[11] proposed an hybrid evolutionary approach to
the problem. It uses the stochastic ranking method to find the optimal solution
and outperforms previously some know results. In [5] [4] more detailed survey
are presented.

In recently years, more and more researchers concentrate on the practice as-
pects of the problem to make the automated method more general for the real
use. In [3], Burke et al. introduced the time interval requirements which enables
the shift can be split and combined. In [10], Maenhout et al. analyzed the long
term nurse scheduling problems and investigate the new shift scheduling ap-
proach. In [6], Celia et al. studied structure of the problem to reduce the search
space.

In this paper, we study the robustness of a solution under some practical un-
certainty events, through analyzing a benchmark problem from the first nurse
roster competition. With a heuristic method, we discover that the solution gen-
erated based on general searching approach show different performance of the
robustness. Some experiments results show that with some tiny changes, the
solution could be sensitive and the fitness value could be reduced. Adding the
evaluation function to the heuristics, we can conveniently construct more robust
solution. This evaluation function can be used in most of the current heuristics
and other kinds of techniques.

The remaining part of the paper is organized as follows. Section 2, we propose
an evaluation model and study the robustness of the optimal solution that has
been found under some changes. In Section 3 we apply this method to the general
heuristics and presented several possible results in our approach. The conclusion
and future directions will be described in the Section 4.
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2 Robustness of a Roster: A Case Study

In this study we use the datasets which were presented in the First International
Nurse Rostering Competition (INRC-2010). There are various kinds of datasets
which have different time periods, constraints and other parameters. Here we
use the Sprint track dataset, where there is two hard constraint and many soft
constraints. More detailed description can be found in [9].

The model that concerned is presented here. Given a set of N nurses with
each belongs to a working contract and |N | = 10; denote D the set of days in a
time period with |D| = 28; let S be the shift types that contains Night, Early,
Late night and Day with the first letter being their abbreviation; we use the C to
denote the constraint set and let C1 be the soft constraints stated above for the
hard constraints is always met with certain methods during the initial solution
generating process. Let X be an solution and the cost function is:

Vorigin(X) =
∑
i∈N

∑
j∈C1

wi,jfi,j (1)

where w is the weight the f is the soft constraint’s fitness function.
We use the direct solution representation for the problem. A candidate solu-

tion is represented by an |N |× |D| matrix X where xi,j corresponds to the shift
type assigned for nurse is at day d . If there is no shift assigned to nurse s at
day d , then x takes Null.

In the practice, some uncertain events could occur. It is sure that when a
optimal solution subject to these types of changes, the structure will be changed
as well as its evaluation accordingly. To observe the changing degree of this kind
of transform, we study these effects under some situations often occurred in the
real life scenario. It is apparent that the more the roster is changed the more its
value will be influenced. Therefore, we take two relatively simple situations as
the examples. Although more situations would appear, most of them are based
on some elementary moves in a roster. The two basic and common adjustments
are described as follows.

1. Exchanging shift in one day between two nurses. The situation happens
when a nurse encounters an unforeseen event and thus would not be available on
one shift time of a working day, she need to exchange the shift to another nurse
who has work on the same day but has different shift type. In this situation,
we assume that the latter nurse is always available to exchange the shift. In a
roster, this situation is just applying a swap operation in a column between two
nurses.

2. Changing on one day and Changing back on another day between two
nurses. This situation is often happened in the condition like this: one nurse
could not work on a working day and if other working nurses cannot exchange
with her, thus the work shift must be replaced by another nurse who is on off
day. In this condition, the two people often exchange back in one of the following
days to compensate the latter one. And this leads to a two swapping operation
in one column and another column followed.
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We use the following algorithm to find the optimal solution. Although this
algorithm is currently not the best algorithm among the latest literature, here
we just use a simple and fast approach to generate a solution. For the evalua-
tion model could easily be used by any other iterative heuristics, the searching
algorithm is not a importance aspects.

The algorithm we use is a iterative-based randomly searching heuristics. At
the first, an initial solution which meets the hard constraint is randomly gener-
ated. Then the main structure is firstly several days in the roster period is chosen
randomly. The number of days should could be any number between 0 and |D|.
It is usually set by experience and change with the time period. In this case,
the Sprint track dataset have four weeks time, we set the number to 7; After
the days are chosen, we randomly choose two nurses and swap their shift type
which is call a type of metaheuristics. Since any operations in a column could
not affect the hard constraint, the operations only search the available spaces.
While holding the best solution and the value, every loop the current and the
best should be compared and updated. The pseudo code of the algorithm process
is as follows:

Algorithm 1. Simple heuristics

Input: problem instance I
Output: roster Xbest

1 X = initial solution;
2 Xbest = X;
3 Vbest = Vorigin(X);
4 for i = 1; i ≤ nc; i++ do
5 Randomly select nd days of X to operate the metaheuristics;
6 for j = 1; j ≤ nd; j ++ do
7 Randomly swap two nurses’ shifts;

8 if Vorigin(X) < Vbest then
9 Vbest = Vorigin(X);

10 Xbest = X;

11 else
12 X = Xbest;

13 return Xbest;

After the optimal solution has been found, we can test the solutions robustness
under our assumed uncertain situations. We define the measurements of the
optimal solutions robustness in the following way: if a nurse will exchange a
shift with another nurse, the accordingly move for the roster is a swap between
two shifts in a day. However, for a settled roster, which day will occur the change
is uncertain and could not be predicted. Therefore, the probability of every point
in a roster can be considered to be equal. In addition, there could be more than
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one change during an roster in its period. Because of these considerations, we
firstly compute the difference of value between exchanged roster and the best
one. Then, sum up all these differences and calculate the average penalty of one
exchange. At last, multiply the average with the number of exchanges that would
happen during a period.

We use Xi,j,d to represent roster with exchange happened between nurse i and
j in the day d, and Vorigin(Xi,j,d) is the fitness value of the current roster. Nc is
defined as the number of exchanges, and T represents the number of exchanges.
Because of uncertainty, we made by T = 10 experience. The penalty value of an
roster is defined as:

Vpenalty(X) = (
∑
d∈D

∑
i∈N

∑
i
=j

(Vorigin(Xi,j,d)− Vbest))× 1

Nc
× T (2)

The overall fitness value with robustness is as follows:

Vtotal(X) = Vorigin(X) + Vpenalty(X) (3)

The following experiments show the fitness value of difference type with the in-
stance Sprint01 and Sprint02 under the same test parameters.We firstly searched
for 20 best solutions for each instance. Then apply our function to compute the
penalty value. It is obvious that the results indicate that the original value
stays smooth while the new defined robustness shocks, and the total value varies
consequently.
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Fig. 1. Uncertainty Impact to the Fitness Value

3 Evaluation Model Experiments

The new defined fitness value can be used with any iterative searching techniques.
We apply this to our simple heuristics and made the test of dataset Sprint01 04.
Algorithm 2 shows the improved procedure. In this process, we set a flag to record
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whether the Vorigin reached a threshold. This means we first take the traditional
method to make the roster original value fairly low, then plus the new defined
robustness weight. Since the time of compute the Vpenalty(X) is very slow, if we
add it from the very beginning of the iteration, the whole process would stay
very inefficient. At the time the threshold is reached, the new evaluation cost
function is introduced to choose the roster.

Algorithm 2. heuristics with robustness

Input: problem instance I
Output: roster Xbest

1 X = initial solution;
2 Xbest = X;
3 Vbest = Vorigin(X);
4 flag = false;
5 for i = 1; i ≤ nc; i++ do
6 Randomly select nd days of X to operate the metaheuristics;
7 for j = 1; j ≤ nd; j ++ do
8 Randomly swap two nurses’ shifts;

9 if Vbest < Vt then
10 flag = true

11 if flag then
12 t1 = Vpenalty(X);
13 t2 = Vpenalty(Xbest);

14 else
15 t1 = t2 = 0;

16 if Vorigin(X) + t1 < Vbest + t2 then
17 Vbest = Vorigin(X);
18 Xbest = X;

19 else
20 X = Xbest;

21 return Xbest;

Fig. 2 shows the test results which indicate that the new method could reduce
the robustness value obviously as well as the total. Note that after applied the
penalty value, the new searched rosters’ original value could get higher, since it
is the tradeoff of the robustness during the searching. However, the total fitness
value could also stay lower than the previous method without considered the
uncertainty.
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Fig. 2. Fitness Value between Two Evaluation Methods

4 Conclusions and Future Directions

In this research, we study the robustness of rosters under the constraints in the
circumstances of uncertainty exchange of shifts frequently appeared in the real
life in hospitals. The evaluation model proposed to measure this phenomenon
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is simple and straightforward, with which the optimal solution could perform
different in robustness. After discovered this fact, the new evaluation method can
be integrated into any current searching techniques to improve generates more
robust nurse roster as well as other staff scheduling and timetabling problem.

There are left some directions to the further research. First one, the situa-
tions that occurred in the real life is much more complex. Not all the situations
are considered in this paper and some assumption for simplicity also exists. For
instance, in some situations that have unforeseen events, the hard constraints
may violate and the new roster constraints are hard to formulate. In other situ-
ations such as we referred in section 2, when one or more nurse are transferred
on leave, the new backup roster is hard to search and in practice the head nurse
often completely make a whole new one to use. How to define the robustness of
this type should be considered. Secondly, with our evaluation method added, the
searching process would take more time since every loop need to compute every
change penalty values which take O(n2m) steps, where n is the scale of number
of nurses and m is the number of day. Thus how to design the more efficient and
effective robustness evaluation algorithm is also an open and important problem.
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Abstract. With the development of social networks, information is shared, 
amended, and integrated among users. Meanwhile, some questions begin to 
generate public interests. How does the information propagate in the network? 
How do human factors affect the spreading patterns of information? How do we 
construct models to understand the collective group behavior based on probabil-
istic individual choices? We try to answer the above questions by investigating 
“Human Flesh Search” (HFS), a phenomenon of digging out full privacy  
information of a target person with the help of massive collaboration of netizens 
by integrating information pieces during propagation. SIR model, which is  
often used to study epidemic diseases, is employed to provide a mathematical 
explanation of the process of HFS. Experimental results reveal that information 
entropy has significant influence on the network topology, which in turn affects 
the probability of affecting network neighbors and finally results in different  
efficiency of information spreading. 

Keywords: Human Flesh Search, information spreading, SIR model, Scale Free 
Networks. 

1 Introduction 

Recently in China, there is a very hot phenomenon called “Human Flesh Search” 
(HFS), which is called “RenRouSouSuo” in Chinese. It is an online activity in which 
people collaborate to find out the truth of a certain event, a scandal or the full privacy 
information of a target person who has committed some bad thing. 

The most typical processes of a HFS event could be illustrated by the “Guo Meimei” 
event [1] in Jun. 2011. The event was ignited by a young girl flaunting wealth through 
her micro-blog. It aroused great public concern and more and more netizens began to 
participate in the event. In the process of the incident, more information was conti-
nuously disclosed with the participation and collaboration of netizens. By putting pieces 
of information contributed by netizens together, the full jigsaw was accomplished to 
find out the truth: all her wealth came from a leader from Red Cross China via corrup-
tion and even sex bribe. The event showed the great power of crowds of netizens online 
and caused the donation amount raised by charity organizations to drop significantly by 
86% in the following month [8].  
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Given the significant efficiency of HFS, hiding personal information on the Web 
becomes extremely difficult if you unfortunately become the target of a HFS  
campaign. Therefore, there have been numerous discussions of the legal and privacy 
issues of the problem. The Times describes it as Chinese vigilantes hunting victims by 
interviewing some HFS targets who received hate mails and threats after their person-
al information is exposed on the Web [9]. Xinhua News Agency even views it as a 
virtual lynching and warns people to behave themselves appropriately to avoid  
possible HFS punishment [10].CNN goes one step further and considers people  
participating HFS as lynching mob [11]. 

In order to acquire better understanding of the structure and evolution procedure of 
HFS, two mathematical models have been proposed to research on the process. The 
first mathematical model [6] includes a network modeling the social communities 
involved in the HFS campaign and a probabilistic flooding algorithm simulating the 
HFS search process. The second one [7], based on epidemic models, model HFS as a 
sequence of SIR processes caused by “HFS virus” gene mutation. 

There are several flaws in the above two models: First, the network topology of 
HFS is too ideal in these models. Second, the influence on the process of the person 
who masters key information of HFS events has not been given sufficient considera-
tion. Therefore, it is necessary to build a new mathematical model to research the 
HFS events. 

After the analysis of the above HFS event, it is obvious that HFS has the following 
properties:  

a. Adhoc organization 
b. Massive collaboration 
c. Information-people interplay 
d. Online-offline interaction 

The aim of HFS is to dig out the hidden truth. The activity is launched by a certain 
people, but then, a group of people would flock together to set up their organization 
voluntarily based on their interest. Just because people cooperate with others, the 
activity could end up with success. Aiming at the truth, people supply new informa-
tion for the event, which will influence the behavior of people in return. The activity 
takes place on the web, but people live in the real world, so it is an interaction be-
tween online and offline. 

HFS is a very interesting phenomenon. It is based on human collaboration to com-
plete jobs, just like computer cluster system. We could regard people as computer 
nodes in the system, and knowledge owned by people as the data input/output. But the 
difference is that at the start, it is clear for computer systems to explicitly configure 
node numbers, network infrastructure and job allocation. While in HFS, all of the 
above configurations are adhoc. 

By considering both the similarities and differences with the two proposed model, 
our new mathematical model should focus on following aspects: 

 First, a scale-free network is to be constructed and the process of HFS should be 
researched in this network structure. 

 Second, several sets of parameters will be determined to control the flow of  
information from one node to his neighbors in the scale-free networks. 
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 Third, every time the reveal of key information will involve more people in the 
process of HFS events. Accordingly the process of HFS event is to be divided 
into different phases. How to divide the different phases automatically in the  
mathematical model should be concerned seriously. 

The rest of this paper is organized as follows. Section 2 presents an overview of some 
important related work. Section 3 illustrates the methods. Section 4 shows our expe-
riments, results and analysis of our outcomes. Finally, Section 5 gives out conclusions 
of our study. 

2 Related Work 

Due to the interdisciplinary characteristic of HFS, it is attracting research interest 
from different academic fields. Most of them fall into the following two scopes. One 
group of scholars study HFS from social field, they aimed at studying the influence, 
mechanism of HFS. The other one used model and technological methods to study the 
network structure, information propagation and information interaction with people. 

The first group of scholars study on HFS from different social science 
perspectives. Yaling Li [2] put point on netizens’ behavior and tried to use 
psychology to explain the behavior. HFS is viewed as a “Human-Machine Search” 
which relies on the interaction between offline and online activities. Psychological 
harm to HFS target victims is also discussed with some suggestions on how to guide 
HFS along the right way. Songtao Bu [3] aimed at studying victim’s privacy 
protection in HFS. They regard HFS as a kind of search which starts at punishing one 
person, but ends up with harming more. Zhuochao Yang [12] studied HFS from 
jurisprudence point of view and focused on legal issues which are the roots of 
controversy in HFS. Mengyao Yang [13] studied the development progress of HFS 
with fruitful case studies. Characteristics of HFS were analyzed by a comparison with 
traditional media. Yulei Dai et al. [14] discussed psychological factor of HFS. They 
believe that netizens are driven by their interest and curiosity. It is also pointed out the 
interesting “Herd Effect” discovered in HFS, where most netizens follow others 
blindly as sheep following the herd. 

Feiyue Wang et al. [4] used many cases to illustrate the significance of studying 
HFS. They also come outraised some questions to researchers for, asking them to give 
more reasonable interpretations about the essence of HFS. Qingpeng Zhang et al. [16] 
focused on the research of the entire HFS communities. By studied on lots of HFS 
events, they believe that netizens, belonging to different sub-groups that come from 
different platform such as tianya, mop and son on, cooperate to push forward the 
process of the same HFS event. A minority of netizens, together with traditional mass 
media, play a role of “information bridge” in promoting the flow of information 
between different platform and achieving synchronization of information among all 
the sub-groups.  

Bing Wang et al. [5][15] used mature generating model to simulate a HFS network 
growth. They used related algorithm to product a grouping network which is very similar 
with the network observed in real cases. An information aggregation model named 
“GOSSIP with Feedback” was also proposed. In their model, a new node (a netizen) 
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would supply knowledge to his upper neighbors and the knowledge will be recursively 
forwarded along the upstream until it reaches the root node who started the HFS.  

Probability flooding model [6] divides the HFS campaign into the follow five phases: 
Ignition, Infection, Fading, Re-ignition, Success / Failure. By modeling the online social 
community as a network graph, the initiator of a HFS campaign is viewed as the source 
node and the target becomes a hidden destination node in the graph. Lacking 
information about the target, the only feasible way of finding it out is to flood   the 
message to all neighbors in the graph. With neighbors forwarding to their neighbors, the 
solution of HFSE becomes a flooding routing algorithm in the graph.  

Long Cheng et al. [7] focused on the interaction between information and people. 
They believe that information has influences on people’s behavior and vice versa. 
They tried to use variant SIR model to find out relation expression. They did 
experiments and concluded that the model could help to explain HFS. Nevertheless, 
they tried to research HFS, but a lot of problems still need to be solved. 

All these two groups have not combined network structure, people flow and 
interaction between people and information. That is what we have done in our paper. 

3 Proposed Model 

Firstly, we describe the main mind of our mathematical model based on SIR Flooding 
on Scale-Free network as below: at the start, with information reveal, certain people 
would share the information in forums based on his interest. As the elapse of time, 
some other people form a discussion network and information becomes more 
abundant. Then, new information would attract many new people to attend in the 
discussion and the discussion network is updated. Meanwhile, some people would 
quit out. The network would add new certain nodes and lose some old nodes. The 
change is just like SIR model process. With update of network, more information is 
developed. But people could just share information with their direct neighbors. 

So, we use our new model to describe update of interaction network forming 
during information propagation and development. It is obvious that certain people 
existing in the network hold key information about the HFS event. At start, one 
person would share information with his neighbors with a parameter β which means a 
probability and could be described by the parameter of SIR model. Pi hold a 
parameter called Energy(pi) which means that how much attention the people to share 
information with his neighbors. So, people pi has his Energy(pi) as below: 

( ) ( ){ }* | ,i jEnergy p Max Energy p p j i=
 

(1)

<j,i> means that people pj share his information to his neighbor pi and j maybe equals 
with i in value; pi means people who is numbered with “i”. 

If value of Energy(pi) is below certain value Threshold(T), the people pi would stop 
to share information to his neighbors. There is also parameter called q which means 
that!! If one people holding key information participate in HFS process, the Ener-
gy(pi) would be multiplied by q as below: 

( ) ( ){ }* | _ _ .j j jEnergy p q Energy p p hold key Info=  (2)
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In order to investigate people flow, we divide the people in activity into three groups: 
S which means the number of people who may join in the discussion, I which means 
the number of people who have already joined in discussion, R which means the 
number of people who have quit from the discussion. With the information flowing in 
the network, the numbers of the different groups will change continuously. The up-
date of numbers could be described as below: 

dS
IS

dt
dI

IS IR
dt
dR

IR
dt

β

β α

α

 = −

 = −

 =

 (3)

α:probability one people quit out discussion 
β:probability one people join in discussion 

4 Experiment and Analysis 

We crawl experiment data from websites, including www.tianya.cn, www.mop.com, 
www.tieba.baidu.com, etc. We take “Guo Meimei” event to study network structure 
and people flow. 

4.1 Network Structure 

Firstly, we generate a group of pictures about network in event to display update 
process of network as Fig. 1. 
 

 

Fig. 1. Update process of network in 
“Guo Meimei” event 

Fig. 2. Topological coefficient distribution 
of network in “Guo Meimei” event 

 



374 D. Meng, L. Zhang, and L. Cheng 

 

As shown in Fig. 2, The vast majority of nodes just have a few neighbors while the 
minority of nodes are connected with a large number of nodes. Fig. 3 shows that the 
degree distribution of the network of “Guo Meimei” complies with power law. That is 
why we study the HFS based on scale-free networks. Fig. 4 indicates that the network 
also shares property of small world on its topology. 

Also, it appears local community characteristics as showed in Fig. 1 and this 
proves our flooding model is reasonable in explaining the network structure to be 
scale-free. 

 

 

Fig. 3. Node degree distribution of network 
in “Guo Meimei” event 

Fig. 4. Shortest path length distribution of 
network in “Guo Meimei” event 

4.2 People Flow 

Based on the data collected from the Web, we use our model to map the behavior of 
netizens. Fig. 5 shows the comparison results of our model and real data. It indicates 
that the SIR Flooding on scale-free network model is very useful to study people flow 
in the activity. With this model, we could find people flow pattern in different 
activities caused by various information. It could simulate the process of HFS events 
very well in presentation. Interaction between information and people group would 
explain more in essence. 

Based on SIR Flooding on scale-free network, we could use αand β, the parameters 
of SIR model, to control the information flow between the neighbors in the networks. 

 

 

Fig. 5. Fitting trend on number of people joined in “Guo Meimei” event 
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4.3 Information and Group Interaction 

It is clearly obvious that different events result in different parameters, because this 
phenomenon roots in different information what is implicit in events. In the final 
analysis, the essence of information decides to last results, and we call the essence as 
information entropy. Meanwhile, some cases listed in Table 1 just contain one kind of 
information entropy, but others may contain many information entropies. In the 
feature, we aim at finding out all information entropy being independent of each 
other. So, we could find out certain develop pattern of network and people group in 
HFS for each information entropy. 

Table 1. Experiment results of SIR Flooding model on some very famous HFS cases 

Event Name β α 
Guo Meimei 0.000150 0.370000 
Chen Guanxi 0.000220 0.007000 
Diaoyu Islands Gurd 0.000044 0.003495 
Liu Xiang Flopping 0.000015 0.249000 
Yao Jiaxin 0.000015 0.000949 

 
Thus, the SIR Flooding on scale-free network model could explain different 

aspects of HFS in presentation while information is the key factor to understand the 
process of HFS events better. 

5 Conclusion 

In this paper, we propose a new combined mathematical model for HFS based on SIR 
flooding on scale-free network. The contribution of our work is as follows: Through the 
analyses of our experiments, we could conclude that: First, our model is fit to explain 
topology of network formed during HFS in presentation and could help to describe 
people flow pattern in community during process of HFS. Second, the conclusion is 
drawn that information is the essence thing which decides topology of network and 
people flow pattern to result in many various appearances with HFS activities. 

Although we propose a new mathematical model to simulate the progress of HFS, 
more work needs to be done to research this massive collaborative phenomenon. It is 
necessary to get larger datasets to train our model to research the HFS. We could also 
improve our model to study how to control the different phases of this phenomenon 
by using the SIR parameters. In the end, how to develop our model and apply it to 
predict the success/failure of HFS events should be considered in the future work. 

References 

1. Wikipedia, http://zh.wikipedia.org/wiki/%E9%83%AD%E7%BE%8E%E7% 
BE%8E%E4%BA%8B%E4%BB%B6 

2. Yaling, L.: From Violent “Human Flesh Search Engine” to Friendly “Human computer 
Search Engine”. Press Circles (2008)  



376 D. Meng, L. Zhang, and L. Cheng 

 

3. Songtao, B.: A Study on The Internet Search for Human Flesh Search Engine And The In-
vasion of Privacy. Journal of Shenyang Normal University (Social Science Edition) (2008) 

4. Feiyue, W., Daniel, Z., James, A.H., Qingpeng, Z., Zhuo, F., Yanqing, G., Hui, W.,  
Guanpi, L.: A study of the human flesh search engine: crowd-powered expansion of online 
knowledge. IEEE Computer Society (2010) 

5. Bing, W., Bonan, H., Yiping, Y., Laibin, Y.: Human Flesh Search Model: Incorporating 
Network Expansion and GOSSIP with Feedback. In: 13th IEEE/ACM International  
Symposium on Distributed Simulation and Real Time Applications (2009) 

6. Zhang, L., Liu, Y., Li, J.: A mathematical model for human flesh search engine. In: Wang, 
H., Zou, L., Huang, G., He, J., Pang, C., Zhang, H.L., Zhao, D., Yi, Z. (eds.) APWeb 2012 
Workshops. LNCS, vol. 7234, pp. 187–198. Springer, Heidelberg (2012) 

7. Long, C., Lei, Z., Jinchuan, W.: A Study of Flesh Search with Epidemic Models. In:  
Proceedings of the 3rd Annual ACM Web Science Conference, WebSci 2012, pp. 67–73 
(2012) 

8. People’s Daily Online, Red Cross Received Fewer Individual Donations This Year, 
http://finance.people.com.cn/GB/70846/16534289.html  

9. Hannah, F.: Human flesh search engines: Chinese vigilantes that hunt victims on the web, 
The Times (June 25, 2008), http://technology.timesonline.co.uk/tol/ 
news/tech_and_web/article4213681.ece  

10. Xu, B., Shaoting, J.: Human Flesh Search Engine”: an Internet Lynching, Xinhua  
English (July 4, 2008), http://english.sina.com/china/1/2008/0704/ 
170016.html  

11. CNN, From Flash Mob to Lynch Mob (July 5, 2007)  
12. Zhuochao, Y.: The legitimate limit of human flesh search engine. Public Administration & 

Law (2009) 
13. Mengyao, Y.: An exploration of Human Flesh Search Engine in network community. 

Southwest Communication (2008) 
14. Xia, X.: Sociological Reflection about “human-powered search” Phenomenon. China 

Youth Study (2009) 
15. Bing, W., Yiping, Y., Bonan, H., Dongsheng, L., Dan, C.: Knowledge Aggregation in 

Human Flesh Search. IEEE Computer Society (2010) 
16. Qing-peng, Z., Feiyue, W., Daniel, Z., Tao, W.: Understanding Crowd-Powered Search 

Groups: A Social Network Perspective. Public library of science one (June 27, 2012) 



A Modified Artificial Bee Colony Algorithm

for Post-enrolment Course Timetabling

Asaju La’aro Bolaji1,2, Ahamad Tajudin Khader,
Mohammed Azmi Al-Betar1,3, and Mohammed A. Awadallah

1 School of Computer Sciences, Universiti Sains Malaysia, Penang Malaysia
2 Department of Computer Science, University of Ilorin, Ilorin, Nigeria
3 Department of Computer Science, Jadara University, Irbid, Jordan

{tajudin,mohbetar}@cs.usm.my,
{abl10 sa0739,mama10 com018}@student.usm.my

Abstract. The post-enrolment course timetabling is concern with as-
signing a set of courses to a set of rooms and timeslots according to
the set of constraints. The problem has been tackled using metaheuristic
techniques. Artificial Bee Colony (ABC) algorithm has been successfully
used for tackling uncapaciated examination and curriculum based course
timetabling problems. In this paper ABC is modified for post-enrolment
course timetabling problem. The modification is embedded in the on-
looker bee where the multiswap algorithm is used to replace its process.
The dataset established by Socha including 5 small, 5 medium and one
large dataset are used in the evaluation of the proposed technique. Inter-
estingly, the results obtained is highly competitive when compared with
those previously published techniques.

Keywords: Artificial Bee Colony, University Course Timetabling,
Nature-inspired Computing.

1 Introduction

University Course Timetabling Problems (UCTP) is one of the hardest problems
faced by academic institutions throughout the world. The UCTP is known to
be difficult combinatorial optimization problems that have been widely studied
over the last few decades. The problem involves scheduling a given number of
courses to a limited number of periods and rooms subject to satisfying a set
of given constraints. The constraints in UCTP are usually classified into hard
and soft constraints. The satisfaction of hard constraints is compulsory for the
timetabling solutions to be feasible, while the satisfaction of the soft constraints
is required but not necessary. The quality of the UCTP solution is normally
determined by the cost of the violating the soft constraints.

The last four decades have been witnessing introduction of numerous tech-
niques of tackling UCTP by workers in the domain of operational research and
Artificial Intelligence [1]. Among these techniques are: early heuristic approaches
derived from graph colouring heurstics [2], constraint-based techniques [3], case-
based reasoning [4], metaheuristics techniques like local search-based techniques
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such as tabu search [5], simulated annealing [6], great deluge [7], variable neigh-
bourhood structures (VNS) [8] and population-based techniques such as ant
colony optimization [9], genetic algorithm (GA) [10], harmony search algorithm
(HSA) [11], particle swarm optimization [12]. In addition, hyper-heuristic ap-
proaches and hybrid metaheuristic approaches have also been recently used
to tackle course timetabling problems [13,10]. More comprehensive survey of
other methodologies used for university course timetabling literatures have been
published in [14,15].

Artificial Bee Colony (ABC), a recently proposed algorithm, is a nature-inspired
based approach that had been successfully used to tackle several NP-hard prob-
lems [16]. In our previous work, ABC was used for both curriculum-based course
timetabling and uncapacitated examination timetabling problems with a success
stories [17,18,19]. To validate the success of ABC in other scheduling, in this pa-
per, post-enrolment course timetabling problem (PE-CTP) is being tackle with
a modified artificial bee colony algorithm. The modification to ABC involves the
incorporation of multiswap algorithm in onlooker bee phase of the original ABC.
The purpose of incorporatingmultiswap algorithm is to enhance the power of ABC
by searching the PE-CTP solution space rigorously in order to obtain good solu-
tion.

2 Post-Enrolment Course Timetabling Problem
(PE-CTP)

The PE-CTP involves scheduling lectures of courses to a set of timeslots and a
set of rooms subject to satisfying a set of constraints (i.e. hard and soft). The
PE-CTP tackled in this paper was originally established by Socha et al in [9]
and its descriptions is given as follows:

– A set C = {c1, c2, ..., cN} of N courses, each of which consists of specific
number of students and requires particular features.

– A set R = {r1, r2, ..., rK} of K rooms, each of which has a seat capacity and
contains specific features.

– A set S = {s1, s2, ..., sL} of L students, each of them assigned to one or more
courses.

– A set F = {f1, f2, ..., fM} of M features.
– A set T = {t1, t2, ..., tP } of P timeslots; where P = 45 (5 working days, each

with 9 timeslots).

The following are the set of the hard constraints that needs to be satisfied:

– H1. Students must not be double booked for courses.
– H2. Room size and features must be suitable for the assigned courses.
– H3. Rooms must not be double booked for courses.

While the set of soft constraints which need to be minimized are :

– S1. A student shall not have a class in the last slot of the day.
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– S2. Student shall not have more than two classes in a row.
– S3. Student shall not have a single class in a day.

The objective function to evaluate timetabling solution is given :

f(x) =
∑
s∈S

(f1(x, s) + f2(x, s) + f3(x, s)) (1)

The value of f(x) is referred to as the penalty cost of a feasible timetable. The
main objective of the PE-CTP is to produce a feasible solution that minimizes
number of soft constraints violations.

3 Artificial Bee Colony Algorithm

One of the recently proposed nature-inspired algorithm is the artificial bee colony
(ABC). It was originally developed by Karaboga in 2005 for tackling numerical
optimization [20]. It is considered a stochastic optimization technique that is
based on the model proposed in [21] for the foraging manners of honey bee in
their colonies. The colony of ABC consists of three important operators: em-
ployed foraging bees, unemployed foraging bees, and food sources. The first two
operators i.e., employed and unemployed forager searches for the third operators
(i.e. rich food sources). The model gave insights on the two principal types of
behaviour which are necessary for self-organization and collective intelligence.
In practice, such behaviour includes the recruitment of foragers to the rich food
sources resulting in positive feedback and abandonment of poor food sources by
foragers causing negative feedback.

In the colony of ABC there are three groups of bees: employed, onlooker
and scout bees. Associated with particular food source is employed bee whose
behaviour is studied by the onlookers to select the desired food source while the
scout bee searches for new food sources randomly once the old food source is
is exhausted. Both onlookers and scouts are considered as unemployed foragers.
The position of a food source in ABC corresponds to the possible solution of
the problem to be optimized and the nectar amount of a food source represents
the fitness (quality) of the associated solution. The number of employed bees
is equal to the number of food sources (solutions), since each employed bee is
associated with one and only one food source [20].

The key phases of the algorithm as proposed in [22] are as follows:

– Generate the initial population of the food sources randomly.
– REPEAT

• Send the employed bees onto the food sources and calculate the fitness
cost.

• Evaluate the probability values for the food sources
• Send the onlooker bees onto the food sources depending on probability
and calculate the fitness cost.

• Abandon the exploitation process, if the sources are exhausted by the
bees.
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• Send the scouts into the search area for discovering new food sources
randomly

• Memorize the best food source found so far.
– UNTIL (requirements are met).

4 Modified-ABC for Post-enrolment Course Timetabling
Problem

The modified-ABC is similar to what was done in our previous works on the basic
ABC [19] except for the onlooker phase where in the modified-ABC employs mul-
tiswap algorithm to optimize the navigation of the search in its operation. The
description of the five stages of modified-ABC with application to the PE-CTP
is given in the next subsections. It is worth noting that this research considered
the feasible search space region. Therefore, the feasibility of the solutions discuss
below is preserved.

4.1 Initialize the Modified-ABC and PE-CTP Parameters

In this step, the three control parameters of modified-ABC that are needed for
tackling PE-CTP are initialized. These parameters include solution number (SN )
which represent the number of food sources in the population and similar to the
population size in GA; maximum cycle number (MCN ) refers to the maximum
number of iterations; and limit, which is normally used to diversify the search,
is responsible for the abandonment of solution, if there is no improvement for
certain number of iterations. Similarly, the PE-CTP parameters like the set of
the courses, set of rooms, set of timeslots and set of constraints are also extracted
from the dataset. Note that the courses are the main decision variable that can
be scheduled to feasible positions (i.e. rooms and timeslots) in the timetable
solution.

4.2 Initialize the Food Source Memory

The food source memory (FSM) is a memory allocation that contains sets of
feasible food source (i.e. solutions) vectors which are determined by SN as shown
in Eq. 2. Here, the food source vectors are generated with the aid of largest
weighted degree (LWD) [23] followed by backtracking algorithm (BA) [24] and
they are sorted in ascending order in the FSM in accordance with the objective
function values of the, that is f(x1) ≤ f(x2) . . . f(xSN )

FSM =

⎡
⎢⎢⎢⎣
x11 x21 · · · xN1
x12 x22 · · · xN2
...

...
. . .

...
x1SN x2SN · · · xNSN

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
f(x1)
f(x2)

...
f(xSN )

⎤
⎥⎥⎥⎦ (2)
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4.3 Send the Employed Bee to the Food Sources

Here, the timetable solutions are sequentially selected from the FSM by the
employed bee operator. Each solution is perturbed using three neighbourhood
structures to produce a new set of solutions. The three neighbourhood structures
used by employed bee are:

1. Neighbourhood Move (NM): moves selected course to a feasible period
and room randomly i.e. replace the time period x′i of course i by another
feasible timeslot.

2. Neighbourhood Swap (NS): swap two selected course at random i.e.
select course i and event j randomly, swap their time periods (x′i, x

′
j).

3. Neighbourhood Kempe Chain (NK): Firstly, select the timeslot x′i of
course i and randomly select another q′ timeslot. Secondly, all courses that
have the same timeslot x′i that are in conflict with one or more courses
timetabled in qi are entered to chain δ . Thirdly, all courses that have the
same timeslot q′ that are conflicting with one or more courses timetabled in
x′i are entered to a chain δ′ and Lastly, simply assign the courses in δ to q′

and the courses in δ′ to x′i.

The fitness of each offspring food source is calculated. If it is better than that of
parent food source, then it replaces the parent food source in FSM. This process
is implemented for all solutions. The detailed algorithm of this process can be
found in our previous paper [18].

4.4 Send the Onlooker Bee to the Food Sources

The onlooker bee possesses the same number of food sources (timetabling so-
lutions) as employed bees. The food sources improved by employed bees are
evaluated by the onlookers using the selection probability. Then the fittest food
sources are selected with roulette wheel selection mechanism. The process of
selection in the onlooker phase works as follows:

– Assign to each food source a selection probability as follows:

pj =
f(xj)∑SN
k=1 f(x

k)

Note that the
∑SN
i=1 pi is unity.

– The onlooker improve the fittest food sources using the multiswap strategy
(MS) proposed in [25,26] for further enhancement. The MS is designed to
manage the room operations in the PE-CTP solution. Here, the courses
of each timeslot are shuffled randomly to different valid rooms within the
same timeslot. It starts with a complete timetable solution and select the
timeslot consecutively where P is the set of timeslots. The courses in each
timeslot p are shuffled randomly to the appropriate rooms. The output of
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this algorithm is another complete timetable solution with different room
arrangements for the courses in the same timeslot. It is noteworthy that this
strategy is a simple idea of room operations and has a insignificant effect
on the computational time. Algorithms 1 give the detailed process of the
proposed MS:

Algorithm 1. Multiswap Strategy

for all p ∈ P do
for all j ∈ R do
for all k ∈ R, j �= k, do
begin
if allocation aj,p contain course c and allocation ak,p is empty then
Note that A is of size PXR and the value of allocation ai,j
contains either the course code or -1 to indicate it is empty
if room j is suitable room for course c then
move course c to the allocation ak,p

else
if allocation aj,p contain course c and allocation ak,p contain
course q then
if room j is suitable for ak,p and room k is suitable for aj,p
then
swap the locations (aj,pak,p) of course c and q

end if
end if

end if
end if
end

end for
end for

end for

4.5 Send the Scout to Search for Possible New Food Sources

This is known to be the colony explorer. It works once a solution is abandoned,
i.e. if a solution in the FSM has not improved for certain number of iterations
as determined by the limit. The ABC generates a new solution randomly and
substitutes the abandoned one in FSM. Furthermore, the best food source xbest
in FSM is memorized.

4.6 Stopping Criteria

Steps 4.3 to 4.5 are repeated until a stop criterion is met. This is originally
determined using maximum cycle number (MCN ) value.
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5 Experimental Results and Discussions

The modified-ABC is coded in Microsoft Visual C++ 6.0 on Windows 7 platform
on Intel 2 GHz Core 2 Quad processor with 2 GB of RAM. The modified-ABC
required a maximum of 7 hours to obtain the recorded result, although the
computational time is not provided in the literature. The parameter settings
for ABC are as follows: MCN=10000; SN=10; limit=100. The performance of
the proposed method is tested using the dataset established by Socha et al in
[9]. This dataset is available at website1. The dataset comprises 100-400 courses
that needed to be assigned to a timetable with 45 timeslots corresponding to 5
days of 9 hours per day and at the same time satisfying, room features and room
capacity constraints. They are divided into three types: small, medium and large
(i.e. 5 small, 5 medium and 1 large instances) as shown in Table 1. Each problem
instances of the dataset ran ten times with a different random seed, and the best
penalty cost obtained for all dataset is reported in Table 2.

Table 1. Characteristics of Enrolment Course Timetabling Dataset

Class Small Medium Large

number of events 100 400 400
number of rooms 5 10 10
number of features 5 5 10
number of students 80 200 400
number of timeslots 45 45 45
approximate feature per room 3 3 5
percentage of feature use 70 80 90
maximum number of events per student 20 20 20
maximum number of students per event 20 50 100

Similarly, Table 2 shows the modified-ABC results in comparison with previ-
ous techniques in the literature. These techniques are modified harmony search
algorithm (M1)[25], MAX-MIN Ant System (M2) [9], Hybrid Evolutionary Ap-
proach (M3) [27], Evolutionary Non-linear Great Deluge (M4) [28], Extended
Guided Search Genetic Algorithm (M5) [10] Guided Search Genetic Algorithm
(M6) [29], Hybrid Ant Colony Systems (M7) [30], the electromagnetism-like
mechanism approach (M8) [31], and genetic local search algorithm (M9) [32]
and incorporating Great deluge with kempe chain (M10) [7]. Note that the best
results are presented in bold. It is apparent that the modified-ABC is able to
obtain feasible solutions for all problem instances. Similarly, it is able to obtain
high quality solutions in comparison with previous methods. For example, the
modified-ABC is ranked first in the medium 5 and second in the large datasets
respectively which were classified as most difficult datasets. Finally, the proposed
method achieved third rank in medium 2 and 3 datasets.

1 http://iridia.ulb.ac.be/~msampels/tt.data/

http://iridia.ulb.ac.be/~msampels/tt.data/
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Table 2. The M-ABC Convergence Cases

Dataset M-ABC M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Small 1 0 0 1 0 0 0 0 0 0 2 0
Small 2 0 0 3 0 1 0 0 0 0 4 0
Small 3 0 0 1 0 0 0 0 0 0 2 0
Small4 0 0 1 0 0 0 0 0 0 0 0
Small5 0 0 0 0 0 0 0 0 0 4 0
Medium 1 129 168 195 221 126 139 240 117 175 226 98
Medium 2 119 160 184 147 123 92 160 121 197 215 113
Medium 3 137 176 284 246 185 122 242 158 216 231 123
Medium 4 146 144 164.5 165 116 98 158 124 149 200 100
Medium 5 63 71 219.5 130 129 116 124 134 190 195 135
Large 525 417 851.5 529 821 615 801 647 912 1012 610

6 Conclusion

In this paper, a modified-ABC to solve the PE-CTP is presented. The modifi-
cation involves replacing the strategy of onlooker bee with a Mutliswap Algo-
rithm. This modification enables the modified-ABC to explore post-enrolment
timetabling search space more efficiently. The dataset introduced by Socha in-
cluding five small, five medium and one large problem instances were used in
the evaluation. In comparison with ten previously used techniques, the modified-
ABC achieved exact solutions for all small datasets as achieved by eight others.
For medium datasets, it produced overall best results for ”medium 5” and ranked
among in the first three for others. For the most taxing and large problem in-
stance, the modified-ABC ranked second. Conclusively, the modified-ABC is a
suitable optimization technique that is able to provide high quality solution for
the NP-hard problem like timetabling. For further extension, a modified-ABC
can be hybridized with other techniques, studied for other scheduling problems
and simplify to be more general.
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Abstract. This work presents a new multiobjective optimization algorithm based 
on artificial bee colony, named the ICABCMOA. In order to meet the require-
ments of Pareto-based approaches, a new fitness assignment function is defined 
based on the dominated number. In the ICABCMOA, a high-dimension chaotic 
method based on Tent map is addressed to increase the searching efficiency. 
Vaccination and gene recombination are adopted to promote the convergence. 
The experimental results of the ICABCMOA compared with NSGAII and 
SPEA2 over a set of test functions show that it is an effective method for 
high-dimension optimization problems.  

Keywords: Immune, Multiobjective, Chaotic, Artificial Bee Colony. 

1 Introduction 

Simulating the forging behavior of honeybee swarm, Artificial Bee Colony(ABC) 
algorithm is proposed by Karaboga in 2005[1]. The main advantage of the ABC  
algorithm is that there are few control parameters. Due to its simplicity and ease of 
implementation, the ABC algorithm is gaining more and more attention and has been 
used to solve many practical engineering problems, but there is few works focus on 
multiobjective optimization problems.  

In fact, a great number of engineering problems have more than one objective and 
usually there is no absolutely exclusive best solution for these problems. According to 
the survey on multiobjectve optimization, the majority of the multiobjective algorithms 
are concentrated on Pareto-based approaches[2]. In this paper, a new Pareto-based 
multiobjective ABC algorithm named Immune based Chaotic Artificial Bee Colony 
Multiobjective Optimization Algorithm (ICABCMOA) is addressed.  

The rest of this paper is organized as follows: Section 2 introduces the related 
background. Section 3 describes the details of the proposed ICABCMOA. Next, the 
experimental results are discussed in Section 4. Finally, the conclusion of the paper is 
outlined in section 5.  
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2 Related Background 

2.1 Artificial Bee Colony Algorithm 

In the ABC algorithm, there are two components: the foraging artificial bees and the 
food sources. The position of a food source represents a possible solution of the opti-
mization problem and the nectar amount of the food source corresponds to the quality 
of the solution. The colony of artificial bees are divided into three groups, namely, 
employed bees, onlookers, and scouts bees. A bee going to the food source exploited by 
itself is called an employed bee, and the number of employed bees is equal to the 
number of food sources. A bee waiting on the dance area for watching the waggle 
dances of the employed bees, and select a food source according to the profitability is 
named as an onlooker. The number of the onlooker bees is equal to the number of 
employed bees. For every food source, there is only one employed bee. In every cycle, 
each employed bee produces a new food source surrounding its food source site and 
exploits the better one. Each onlooker bee selects a food source according to the quality 
of each solution and produces a new food source surrounding the selected food source 
site. An employed bee will become a scout when the corresponded food source has 
been exhausted, and the scout bee will carry out random search[1]. 

2.2 Multiobjective Optimization 

Generally, a multiobjective optimization problem can be described as: 

      
( ) 0, 1, 2,...,

1
( ) 0, 1, 2,...,

i

j

g i p

h j q

≥      =               =      =
1 2 mmin f( )=(f ( ), f ( ),...,f ( )) s.t. ( )

X
X X X X

X
 

Where X ∈Ω  is the decision vector, and Ω  is the feasible region. The formal  
definitions of the “Pareto optimal” are described as follows[3]. 

Definition 1. k i k j,   k {1,2,...m},  f ( ) f ( )if∀ ∈Ω ∀ ∈ ≤i jX , X X X ; together with 
k i k jt {1,2,...m}, f ( ) f ( )∃ ∈ <X X , we say that iX dominates jX , marked as i jX X . 

Definition 2. k i k j,   k {1,2,...m}, f ( ) f ( )if∀ ∈ Ω ∃ ∈ <i jX , X X X ; together with 
k i k jt {1,2,...m}, t k, f ( ) f ( )∃ ∈ ≠ >X X , we say that iX  has nothing to do with jX , marked 

as i jX X . 

Definition 3. ∈ ΩiX  is said to be a Pareto optimal solution iff ¬∃ ∈ ΩjX , s.t. i jX X . 
Denote *X as the Pareto optimal solutions, 

1 2 mPF F( )=(f ( ), f ( ),...,f ( ))| { }}∈ *= { X X X X X X  is said to be the Pareto-optimal front. 

3 Description of ICABCMOA 

For convenience of the description, we give some notations in advance. 
(1)The size of the employed bees is denoted as en . The size of the onlooker bees 

equals to that of the employed bees, total size of the bees is 2 en . 
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(2)Food sources are denoted as X , in the algorithm it means d-dimension candidate 
solutions. 

(3) iX  is the i-th food source, ijx is the j-th value of i ( 1, 2..., )j d=X . The upper and 
lower bounds of the dimension j are denoted as maxjx  and minjx , respectively. 

(4)Denote S as the secondary set, and the maximum size of the S is sn . 
(5) ‘limit’ is used to represent the number of cycles when a food source can’t be 

improved further and it should be abandoned. 

3.1 Operator Definition 

In the ICABCMOA, the Tent map is introduced to generate the chaotic sequences. 
Vaccination and gene recombination are adopted to promote the convergence. The new 
operators are defined as follows. 

Definition 4. Tent map 

The definition of one-dimension Tent map is as follows: 

i 1
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a i
i 1

i 1
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The chaotic sequences produced by the Tent map have good statistical properties. But 
because of the limited word-length, after a number of iterations, the result would be 
equal to 0 or 1, and it would not change in the next iteration. For this reason, we im-
prove the Tent map to avoid the long time 0 or 1. When the result is equal to 0 or 1, a 
random between 0 and 1 is generated to instead of the 0 or 1. 

Definition 5. High-dimension Tent map 
On the basis of a two-dimension Tent map proposed in [4], we proposed a 
high-dimension constructing method as formula (3). 
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Definition 6. Vaccination 
Here we extend the meaning of the vaccination to the prior knowledge for the problem. 
In this work, the vaccination is defined as the mean value of a group of best solutions. 
Suppose the selected best solutions are composed of : 1 2 c, ,...,X X X , and 

i i1 i2 id( , ,..., ), i 1,2,...c.x x x= =X  Then the definition of the vaccination can be described 
as follows: 

c

ij
i 1

1
vac( j) ,    j {1,2,...d}.                                (4)

c
x

=

= ∈
 

Definition 7. Gene recombination  
Gene recombination means generating new genes by recombination of the independent 
genes. A food source, which will participate in recombination, is treated as an inde-
pendent gene group. Another food source kS  in the memory set is selected as the other 
independent gene group.  

Denote rp as the recombination probability, the recombination operator can be de-
scribed as follows: 

kj  j r

i+1,j
ij  j r

s    p p
 = ,   j {1,2,...d}                               (5)

    p p
x

x

< ∈ ≥

 

Definition 8. Fitness assignment method 
It is obvious that the fitness assignment method in standard ABC is not fit for mul-
tiobjective optimization algorithms. A new fitness function is defined based on the 
dominated number. Regarding the size of the food source dominate the i-th one as dn(i), 
and the biggest value of the dn as mdn. The base fitness value of the i-th food source 
can be evaluated as follows:  

j i
i j i j

j

1     mdn dn(i) 1
base _ fit(i) , dn(i)= sig( , ) and  sig( , ) =      (6)

0   othersmdn 10

− += + 


X X
X X X X



 
In order to prevent the numerator or the formula from equaling to zero, two constants 
are added to the denominator and the numerator in formula (7), respectively.  

Generally，the probability of better solutions around good solutions is greater, so 
we adjust the base fitness value to some extent.  

  

ij jmax ij jmin

base _ fit(i)           dn(i) 0 

fit(i) 2*base _ fit(i)      dn(i) 0  ,  j {1, 2...,d}.    (7)

4*base _ fit(i)      dn(i) 0 and (  or ) x x x x

 ≠
= = ∈
 = = =

 

3.2 Running Mechanism of ICABCMOA 

With the operators described in section 3.1, running mechanism of the ICABCMOA 
can be described as follows.  
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Initialization 
REPEAT 
     employed bee optimization; 

onlooker bee optimization; 
scout bee optimization; 
Find the nondominated set; 
Propose of the secondary set; 

UNTIL (the stopping criterion is met). 

Since the nondominated set get method is not the main content of this work, we just 
adopted the method proposed in [3]. The other procedures are described in detail.  

1. Initialization 

In the initialization phase, the control parameters and the initial population are initia-
lized. There are only four control parameters in the ICABCMOA, i.e. the size of food 
sources, the size of the secondary set, the ‘limit’ value, and the maximum iteration 
cycle.  

If a food source could not be improved in a number of cycles, its related employed 
bee will turn out to be a scout. But after doing a random search, the scout will turn back 
to an employed bee again. So there is no necessary to consider about the scout bees in 
the initialization. In ICABCMOA, after a high-dimension Tent map sequence is gen-
erated, a chaotic based initialization population is generated according to formula(8). 

ij ij jmax jmin jmin e* ( )  , i=1,2...n  and j=1,2...d         (8)x x x xγ= − +  

2. Employed Bee Optimization  

The employed bee searching method depends on whether it is nondominated or not. If it 
is a nondominated one, a food source in the secondary set is selected and gene recom-
bination would be performed. If it is a dominated one, the vaccine would be taken to 
some randomly selected dimensions.  

After performing searching approaches, the new food source will be evaluated and 
compared with the old one. Here a greedy selection procedure will be performed, and 
the better food source will be kept in the population. 

3. Onlooker Bee Optimization  

When all employed bees finished optimizing their food sources, they will go back to the 
hive to share their information with onlooker bees. Each onlooker bee selects a food 
source based on the fitness value according to the following equation.  

� �
e

s
i 1

n
P T fit fit

�
�X X X X (9)

After the food source is selected, each onlooker bee performs the local searching as 
formula (10), which is the same as the basic ABC presented. And a greedy selection 
procedure is also performed after the local searching.  
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i+1,j ij ij kj= +rand( 1,1)*( - ) , k i                               (10)x x x x− ≠  

4. Scouts Bee Optimization  

Unlike the definition of the scout bee in standard ABC algorithm, the scout bees refer to 
two kinds of food sources. One kind is the food sources which have not improved after 
‘limit’ cycles, the other kind is the food sources which have the biggest dominated size. 
First the selected food source is mapped to [0,1], then the high-dimension constructing 
method of Tent map will perform k times, after that, the new generated one will be 
mapped to the real value. 

After chaotic searching, different selection method is used to different kinds of 
scouts. For the scout generated from the food source which has not improved after 
‘limit’ cycles, substitution is performed. But for the other kind of scouts, a greedy 
selection procedure will be performed. 

5. Secondary Set Processing 

ICABCMOA uses a fixed size secondary set to hold the best solutions ever found. In 
each iteration, the new found nondominated solutions are combined with the former 
secondary set, and the nondominated solutions of the new combination are set are as the 
new secondary pool candidates. If the size of the new secondary pool exceeds the set 
limit, the redundant secondary food sources removal operator would be executed. Here 
the crowded-comparison approach proposed in [5] is adopted. We prefer the solution 
that is located in a less crowded region. 

4 Experimental Results 

This section contains the computational results obtained by the ICABCMOA compared 
to the SPEA2[5] and NSGAII[6] over a set of test problems.  

4.1 Test Functions 

The four selected test functions are given in Table 1[5]-[6]. There are different decision 
vector dimensions and different characteristics in the objective space among the four 
problems. Here we use the measure criterion ‘CS’ proposed in ref.[7] and ‘S’ proposed 
in ref.[8] to provide a quantitative assessment for the performance of the proposed 
algorithm. 

In order to make the NSGAII and SPEA2 work as the presenter described, the pa-
rameters of the two algorithms are set originally. The population size and archive size 
of NSGAII are both set as 100, and the population size and archive size of SPEA2 are 
set as 200 and 100, respectively. The parameter ne and ns of the ICABCMOA are both 
set as 100, too. In order to make all the three algorithms have the nearly equal searching 
size, the iteration cycle are set as 100, 50, 50. The ‘limit’ value of the ICABCMOA is 5. 
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The other parameters of the NSGAII and SPEA2 are set according to the values sug-
gested by the developers. 

Table 1. Mathematical representation of the four test functions 

Problem Variable range Mathematical representation 
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= −
 

Deb x [0,1]∈  1 1

21 1
2 1

2 2 

f (x) x

x x
f 2(x) (1 10x )[1-( ) - sin(8 x )]

1 10x 1 10x
π

=

= +
+ +

 

ZDT1 im 30;x [0,1]= ∈  
1 1 1

m
i

i 2

f (x) x f 2(x) g(1 f / g)     

x
g(x) 1 9

m 1=

= = −

= +
−

，

 

ZDT2 im 30;x [0,1]= ∈  
1 1 1

m
i

i 2

f (x) x f 2(x) g(1 f / g )        

x
g(x) 1 9

m 1=

= = −

= +
−

2
， （ ）

 

4.2 Performance Analysis 

We performed 10 independent runs on each test problem. Table 2 and 3 show the 
dominating relations and the distribution of the solutions obtained by the algorithms.  
The value CS(A,B) reflects the dominating relations between A and B. It is obvious that 
the less the value, the better the solutions in B. In table 2, ‘I’ represents ICABCMOA, 
‘S’ represents SPEA2, and ‘N’ represents NSGAII.  

It is shown in table 2, for problem Shaffer, the solutions obtained by the 
ICABCMOA weakly dominate the NSGAII and weakly dominated by SPEA2. For 
problem Deb, the solutions obtained by ICABCMOA weakly dominate the others. But 
for high dimension multiobjective problems ZDT1 and ZDT2，the solutions obtained 
by the ICABCMOA clearly dominate the solutions obtained by the NSGAII and 
SPEA2. 

Table 3 lists the S value of all the three algorithms. From the definition of S we can 
know that the less the S value, the better the solution distribution. It is shown in table 3 
that the S value got by the ICABCMOA is uniform for all four test functions. The S 
value got by the ICABCMOA is better than NSGAII and SPEA2 in most tests. 
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Table 2. Mean, max and min value of CS 

 Schaffer Deb ZDT1 ZDT2 

CS(I,S) mean 0.02 0.261 0.985 0.918 

max 0.002 0.35 0.99 0.98 

min 0 0.2 0.98 0.8 

CS(S,I) mean 0.06 0.001 0 0 

max 0.02 0.01 0 0 

min 0.04 0 0 0 

CS(I,N) mean 0.01 0.02 0.987 0.921 

max 0.04 0.05 0.99 0.97 

min 0 0.01 0.98 0.82 

CS(N,I) mean 0.006 0.001 0 0 

max 0.02 0.01 0 0 

min 0 0 0 0 

Table 3. Mean, max and min value of the metric about the distribution of the solutions--S 

 Schaffer Deb ZDT1 ZDT2 

S_ICABCMOA mean 0.0603 0.0063 0.0072 0.0062 

max 0.072 0.0069 0.0094 0.008 

min 0.0467 0.0055 0.0052 0.0051 

S_SPEA2 mean 0.0311 0.0099 0.0157 0.0063 

max 0.0406 0.0258 0. 0446 0.0099 

min 0.0208 0.0036 0.0071 0.0019 

S_NSGAII mean 0.0906 0.0142 0.0184 0.0139 

max 0.3149 0.0834 0.0455 0.0369 

min 0.0502 0.004 0.0066 0.0041 

5 Conclusion 

A new multiobjective optimization algorithm named ICABCMOA is addressed in this 
paper. Fast convergence of ABC, good searching ability of chaotic map, global 
searching of immune are all integrated into the proposed algorithm and makes the 
algorithm powerful. 
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The experimental results of the ICABCMOA compared with the NSGAII and 
SPEA2 over a set of test functions show that the ICABCMOA is an effective method 
for high-dimension optimization problems, and the solutions got by the ICABCMOA 
are uniform for all four test functions.  

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China under No. 51036002，51076027 and Dr. Start Foundation of Jinling 
Institute of Technology under No.JIT-B-201218. 

References 

1. Karaboga, D.: An Idea Based on Honey bee Swarm for Numerical Optimization. Technical 
Report, Computer Engineering Department. Erciyes University,Turkey (2005) 

2. Zhou, A., Qu, B.Y., Li, H., et al.: Multiobjective Evolutionary Algorithms: a Survey of the 
State-of-the-art. Journal of Swarm and Evolutionary Computation 1(1), 32–49 (2011) 

3. Zhou, X., Shen, J., Sheng, J.X.: An Immune Recognition Based Algorithm for Finding 
Non-dominated Set in Multiobjective Optimization. In: IEEE Pacific-Asia Workshop on 
Computational Intelligence and Industrial Application, Wuhan, China, pp. 305–310 (2008) 

4. Shan, L., Qiang, H., Li, J., et al.: Chaotic Optimization Algorithm Based on Tent Map.  
Control and Decision 20(2), 179–182 (2005) (in Chinese) 

5. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary 
Algorithm for Multi-objective Optimization. In: Evolutionary Methods for Design,  
Optimization and Control, Barcelona, Spain, pp. 19–26 (2002) 

6. Deb, K., Pratap, A., Agarwal, S., et al.: A Fast and Elitist Multiobjective Genetic Algorithm: 
NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002) 

7. Zitzler, E.K., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: 
Empirical Results. IEEE Transactions on Evolutionary Computation 8(2), 173–195 (2000) 

8. Schott, J.T.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm  
Optimization. Department of Aeronautics and Astronautics, Massachusetts Institute of 
Technology (1995) 



 

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 396–403, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Using Modular Neural Network  
with Artificial Bee Colony Algorithm for Classification 

Wei-Xin Ling and Yun-Xia Wang 

School of Science, South China University of Technology, Guangzhou, China 
lingweixin@21cn.com, yx_wang07@163.com 

Abstract. The Artificial bee colony (ABC) algorithm has been used in several 
optimization problems, including the optimization of synaptic weights from an 
Artificial Neural Network (ANN). However, it is easy to trap in local minimum 
and not enough to generate a robust ANN. Modular neural networks (MNNs) 
are especially efficient for certain classes of regression and classification 
problems, as compared to the conventional monolithic artificial neural 
networks. In this paper, we present a model of MNN based on ABC algorithm 
(ABC-MNN). The experiments show that, compared to the monolithic ABC-
NN model, classifier designed in this model has higher training accuracy and 
generalization performance.  

Keywords: Modular Neural Network, Artificial Bee Colony Algorithm, 
Learning Algorithm. 

1 Introduction 

Optimization algorithm based on swarm intelligence, known as meta-heuristic 
algorithms, gained popularity in solving complex and high dimension optimization 
problems’ years ago. The Artificial Bee Colony Algorithm is one of the most popular 
swarm intelligence algorithm based on the foraging behavior of honey bees for 
numerical problems, which was proposed by Karaboga [1] in Erciyes University of 
Turkey in 2005.  

Since ABC algorithm is simple in concept, easy to implement, and has fewer 
control parameters, it also has been widely used in many fields. ABC algorithm has 
applied successfully to unconstrained numerical optimization problems. Karaboga and 
Basturk [2] proposed the extended version of the ABC for solving constrained 
optimization problems in 2007. The experiments show that the extended version of 
ABC algorithm has better performance than DE and PSO.  

ANNs are commonly used in pattern classification, function approximation, 
optimization, pattern matching, machine learning and associative memories. In [3] the 
authors apply this algorithm to train a feed-forward Neural Network. In the pattern 
classification area, other works like [4] ABC algorithm is compared with other 
evolutionary techniques, while in [5] an ANN is trained with medical pattern 
classification. It says that ABC algorithm is a good optimization technique. But the 
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monolithic neural network has serious learning problems, easily forget initialization 
settings and stores the knowledge in a sparsely [6].The retrieval problem with 
monolithic networks can be solved by proper network design, but such scales very 
badly with increasing complexity.  

In [7], the MNN is applied for the speaker identification. In [8] MNN is used for 
the biometric recognition. In [9], the topology and parameters of the MNN are 
optimized with a Hierarchical Genetic Algorithm, and it is used for human 
recognition. In this paper we want to verify if this algorithm performs in MNNs. As 
we will see, the MNNs obtained are optimal in the sense that the architecture is 
simple with high recognition.  

The paper is organized as follows: in section 2 we briefly present the basics of 
ABC. In section 3 we explain the ANN based on the ABC algorithm (ABC-NN) and 
the MNN based on ABC algorithm (ABC-MNN). In section 4 the experimental 
results using different classification problems are given. Finally, in section 5 the 
conclusions of the work are presented. 

2 Artificial Bee Colony Algorithm 

The ABC algorithm simulates the intelligent foraging behavior of honey bee swarms. 
In ABC algorithm, the position of a food source represents a possible solution to the 
optimization problem and the nectar quantity of a food source corresponds to the 
quality (fitness) of the associated solution. The colony of artificial bees contain three 
groups of bees: Employed bees, Onlookers and Scout bees. These bees have got 
different tasks in the colony, i. e., in the search space. 

Employed Bees: Each bee searches for new neighbor food source near of their hive. 
After that, it compares the food source against the old one using (1). Then, it saves the 
best food source in their memory. 0,1

                        
(1) 

where ∈ 1,2, … , and ∈ 1,2, … ,  are randomly chosen indexes. Although  
is determined randomly, it has to be different from i. SN is the number of the 
Employed bees and D is the dimension of the solution. 

After that, the bee evaluates the quality of each food source based on the amount of 
the nectar (the information) i.e. the fitness function is calculated. Providing that its 
nectar is higher than that of the previous one, the bee memorizes the new position and 
forgets the old one.Finally, it returns to the dancing area in the hive, where the 
Onlooker bees are. 

Onlooker Bees: This kind of bees watch the dancing of the employed bee so as to 
know where the food source can be found, if the nectar is of high quality, as well as 
the size of the food source. The Onlooker bee chooses a food source depending on the 
probability value associated with that food source，

 
is calculated by the following 

expression:  
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                                ∑                              (2) 

where  is the fitness value of the solution i which is proportional to the nectar 
amount of the food source in the position i and SN is the number of food sources 
which is equal to the number of Employed bees. 

Scout Bees: This kind of bees help to abandon the food source which can not be 
improved further through a predetermined number of cycles and produce a position 
randomly replacing it with the abandon one. This operation can be defined as in (3). 0,1  杮                  (3)

 

The pseudo-code of the ABC algorithm is next shown: 

program ABC (globalX) 
  const  swarm Size SN; search place [xmin , xmax ]; 
dimension D; limit; MaxIter; 
  var    Iter: 0..MaxIter;  
  begin 
    Iter := 0; 
    Initialize the population of solution  by (3) and 
evaluate its fitness , i=1,2,..,SN; 
    repeat 
      Produce new solution  with the employed bees by 
(1) and evaluate them, then apply the greedy selection 
process; 
      Calculate the probability for each solution by (2); 
      Produce new solutions for the onlookers from the 
solutions selected depending on the probability and 
evaluate them ,then apply the greedy selection process; 
      Determine the abandoned solution for the scout, if 
exist, then replace it with a new randomly produced 
solution by (3);  
      Memorize the best solution global achieved so far;  
    until Iter = MaxIter 
end. 

3 Training Algorithms 

3.1 Neural Network Learning Algorithm Based on ABC(ABC-NN) 

ANN is widely used in approximation and classification problems. The most common 
neural network is of a three-layer forward neural network which consists of two fully 
connected layers of neurons: one hidden layer and one output layer. Thresholds of 
nodes, the weight values between input and hidden, hidden and output nodes are 
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randomly initialized. For example, the network’s structure is n-p-m, where n, p and m 
are the numbers of the input node, hidden node and out node respectively. The output 
value of the network can be obtained by the following formula: ∑                            (4) 

where  and  are the weight values and thresholds of the network,  is the th 
input,  is the th output，  is the node transfer function. Usually, the node transfer 
function is a nonlinear function such as: a sigmoid function, a Gaussian functions. 
Here, we take the sigmoid function as the transfer function. Network error function E 
will be minimized as , ∑ ∑                   (5) 

where ,  is the error at the th iteration,  and  are the weights 
and thresholds in the connections at the  th iteration,  and  are the actual and 
desired output of the th output node, N is the number of patterns. 

BP algorithm is a powerful technique applied to train ANN. However, as the 
problem complicated, the performance of BP falls off rapidly because gradient search 
techniques tend to get trapped at local minima. When the nearly global minima are 
well hidden among the local minima, BP can end up bouncing between local minima, 
especially for those non-linearly separable pattern classification problems or complex 
function approximation problem [10]. A second shortcoming is that the convergence of 
the algorithm is very sensitive to the initial value. So, it often converges to an inferior 
solution and gets trapped in a long training time. Then a powerful swarm intelligence 
optimization algorithm ABC is introduced to enhance the neural network training.  

The weights and thresholds of the networks consist of a bee. The fitness value of 
each solution corresponds to the value of the error function evaluated at this position. 
The three-layered structure trained using ABC algorithm by minimizing the error 
function (5) in [11]. The stop condition is the maxIter or the value of error function. 

3.2 Model Neural Network Learning Algorithm Based on ABC(ABC-MNN) 

MNN is especially efficient for certain classes of regression and classification 
problems, as compares to the conventional monolithic artificial neural networks [12]. 
The ABC algorithm has a strong ability to find global optimistic result. Combining 
the ABC with the MNN, a new hybrid algorithm (ABC-MNN) is proposed in this 
paper. The algorithm is made up of Data Division Module (DDM), ABC-NNi Module 
and Integration Module (IM). The structure of the ABC-MNN is showed in figure 1. 

 

 

Fig. 1. Architecture of the ABC-MNN 
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Assume that the input sample is (X, T), where , , … ,  is the input 
vectors, m is the number of the samples, ∈ | , T is the target output and O is the 
actual output . The data set has C classes.  

Data Division Module (DDM) works to divide the dataset. For each module ABC-
NN, the dataset X is divided into two categories, so it produces C datasets according 
to the number of the categories of the dataset. Each dataset has only two categories, 
i.e., th type and non- th type. The C dataset is noted as , , … . , |  is the input vectors and  is the new target vectors  

Each dataset Si corresponds to a ABC-NNi Module. The ABC-NN is an independent 
ANN which is a three-layer forward neural network like the BP neural network, and 
its structure is ‘n-p-1’, p is the number of the hidden layer node. The input of the 
model ABC-NNi is the dataset . At this stage, ABC is used to evolve the synaptic 
weights of sub-neural network ABC-NNi so as to obtain a minimum Mean Square 
Error (MSE) as well as a minimum classification error (CER) for the th type of data. 
Supposing in the well trained network ABC-NNi, using  to denote the output of the th sample. 

Integration Module (IM) is used to integrate the outputs of all ABC-NN. Using  to denote the categories and 0 means the th sample not belong to any class 
at first, i.e., if  then the th  sample belongs to th  class. The following 
algorithm is used to decide whether this sample belongs to the th class. , 0    0.5 0, 0    0.5                     (4)  

It is possible that there are still some samples cannot be classified or be repeated 
classification, i.e. 0 . Here the winner-take-all rule is used. If 0 , then 

 which | , , … , . 

4 Experiments and Comparison 

Several experiments are performed in order to evaluate the accuracy of the ABC-
MNN designed by means of the proposal. The accuracy of the ABC-MNN is tested 
with four pattern classification problems which are taken from UCI machine learning 
benchmark repository [13]: Wine, Glass, Segment and Optdigits. Their characteristics 
are given in Table 1. 

Table 1. Datasets characteristics 

Datasets Observations Features Classes Respective observations 

Wine 178 13 3 59,71,48 
Glass 214 9 6 70,76,17,13,9,29 
Segment 2310 19 7 330,330,330,330,330,330,330 
Optdigits 5620 64 10 541,573,556,552,595,584,549,572,536,562 
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The parameters of the ABC algorithm and the network are set to the same value for 
all the dataset problems: Colony size (NP = 40), number of food sources NP/2, limit = 
50, the maximum number of cycles is MCN = 500, the minimum of the error function 
(5) is goal=0.01 and the transfer function is sigmoid function. 

Twenty experiments are performed using each dataset, half of them for the case of 
ABC-NN model and half to the ABC-MNN model. For each experiment, each dataset 
is randomly divided into two sets: a training set and a testing set, this with the aim to 
prove the robustness and the performance of the methodology. The same parameters 
are used through the whole experimentation. 

Once generated the NN for each problem, we proceed to test their accuracy and 
speed. Table 2 shows the best, average and worst percentage of recognition for all the 
experiments using ABC-NN and ABC-M NN. In this Table, we can observe that the 
best percentage of recognition for most databases is achieved only during training 
phase. The accuracy slightly diminish during testing phase, but the Glass problem is 
more serious. However, the results obtained with the proposed methodology  
ABC-MNN are highly acceptable and stable. 

Table 2. Comparison of training and testing accuracy 

Dataset  
ABC-NN ABC-MNN 

Training(%) Testing(%) Training(%) Testing(%) 

Wine 

best 100 95.34 100 100 

average 100 94.65 100 97.15 
worst 100 93.02 100 95.34 

Glass 
best 76.54 75.00 83.95 76.92 
average 75.55 71.15 82.77 74.42 
worst 74.69 63.46 80.86 73.07 

Segment 
best 90.55 89.72 95.27 94.77 
average 88.69 87.10 94.98 93.36 
worst 86.29 83.97 94.52 91.81 

Optdigits 
best 81.46 78.46 92.93 89.59 
average 76.67 71.94 92.21 88.19 
worst 68.21 62.66 91.49 87.25 

 
For the best values achieved, there are many hundreds that represent the maximum 

percentage (100%) of classification that can be achieved by the designed MNNs. This 
is important because at least, we find one configuration that solves a specific problem 
without misclassified patterns or with a low percentage of error. For the worst values 
achieved with the ANN are also represented. Particularly, the dataset that provides the 
worst results is the Glass problem which is very complicate and imbalance. 
Nonetheless, the accuracy achieved is highly acceptable. 

Table 3 shows the average and standard of the training time. From this table, we can 
obtain that the speed of the ABC-MNN is more quickly and stable than the ABC-NN 
methodology for the first three dataset. For the last dataset, although the variance of the 
ABC-MNN model is large, this is because the training speed is very fast for two times. 
In general, the training speed of the ABC-MNN model is more quickly and stable. 
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Table 3. The average and standard of the training time 

Dataset 
ABC-NN ABC-MNN 

Average(s) Standard Average(s) Standard 

Wine 0.9592 0.0305 0.4176 0.0034 
Glass 5.4566 0.0004 4.4753 0.0001 
Segment 73.9704 0.6093 66.9552 0.3948 
Optdigits 404.813 122.238 317.9599 850.007 

 
From these experiments, we observe that the ABC algorithm is able to find the best 

configuration for an NN given a specific set of patterns that define a classification 
problem for the majority of cases. The experimentation further shows that the design 
generated by the proposal presents an acceptable percentage of classification for 
training and testing phase with the MNNs. 

5 Conclusions 

From the foregoing experimental researches, it is concluded that the MNNs which are 
evolved by means of ABC algorithm are characterized by satisfying approaching 
results and high training speed. In this paper we also tested the performance of the 
ABC algorithm. Although the ABC-MNN has exceeded the traditional algorithm in 
convergence speed and classification precision, classification problems of the real 
world may be not fit well with this narrowly-defined model. It still needs to span 
broad activities and require consideration of multiple aspects. 
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Abstract. Peer-to-peer has proven to be a scalable technology for retrieval of 
information that is widely spread among distributed sites and that is subject to 
dynamic changes. However, selection of a right search algorithm depends on 
many factors related to actual data content and application problem at hand. A 
comparison of different algorithms is difficult, especially if many different ap-
proaches (intelligent or unintelligent ones) shall be evaluated fairly and possibly 
also in combinations. In this paper, we describe a generic architectural pattern 
that serves as an overlay network based on autonomous agents and decentra-
lized control. It supports plugging of different algorithms for searching and  
retrieving data, and thus eases comparison of algorithms in various topology 
configurations. A further novelty is to use bee intelligence for the lookup prob-
lem, spot optimal parameters' settings, and evaluate the bee algorithm by using 
the architectural pattern to benchmark it with other algorithms.  

Keywords: information retrieval, lookup mechanism, bee intelligence,  
distributed coordination patterns. 

1 Introduction 

Bio-inspired algorithms play an important role in the design of self-organizing  
software for distributed systems. Such software is typically characterized by a huge 
problem size concerning number of computers, clients, requests and size of queries, 
autonomy and heterogeneity of participating organizations, and dynamic changes of 
the environment. In such a setting, the common approach of one central coordinator 
often reaches its technical and conceptual limits. On the technical side, it represents a 
single point of failure with the risk of becoming a performance and availability bottle-
neck. On the conceptual site, it is hard to design as it must be aware of the entire busi-
ness logic, possessing the complete picture of all participants, and being able to cope 
with all possible dynamics in the environment. Therefore, to cope with the described 
dynamics and vast number of unpredictable dependencies on participating components, 
other approaches are demanded like autonomously acting components who are inspired 
by nature and whose behaviors implement, e.g., bio-inspired algorithms. These com-
ponents act in a dynamic, ad-hoc way and adapt quickly and self-subsistent to both 
changing requirements and dynamically evolving system states caused through the 
interplay and contribution of the many components towards a global goal. On type of 
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bio-inspired algorithms are bee algorithms that have been already applied to several 
computer science problems, e.g., [13], [16], [18], [19], [21] and [23]. 

The novelty of this paper is to evaluate the usefulness of bee-intelligence for the 
problem of information placement and retrieval in distributed systems and to prove its 
correctness. The use case employed for evaluation is to search information in the 
Internet. It assumes a highly dynamic setting where new URLs are being added every 
day. Also, there is a certain amount of invalid links that correspond to old, discarded 
pages [10], [12], [14], [25].  

The contribution of this paper is: 1) The adaptation and implementation of an intel-
ligent lookup mechanism based on bee intelligence that is able to cope with complex 
queries even if the given query is incomplete. 2) The definition and implementation of 
a generic architectural pattern for searching and retrieving data. This test-bed allows 
the simple exchange of different algorithms (intelligent and non-intelligent ones) 
simply through plugging.  

The paper is organized as follows: Section 2 gives an overview of already existing 
approaches of solving the considered problem - location and retrieval of information 
in the Internet - taking into account P2P computing paradigm with lookup realized  
by using bee intelligence. Section 3 describes the proposed architectural pattern.  
Section 4 explains the bee algorithm for searching and retrieving of information.  
Section 5 presents the best parameters’ settings and benchmarks. Section 6  
summarizes the results.  

2 State-of-the-Art 

This section summarizes related work in the context of location and retrieval of in-
formation in the Internet that supports “intelligent” lookup mechanisms and that inte-
grates these with the peer-to-peer (P2P) computing paradigm [2]. Table 1 gives an 
overview of systems that support adaptation and/or provision of a generic software 
framework pattern. In [4], both adaptation and a framework are offered. Namely, it is 
proposed a framework that supports an approach for building P2P applications based 
on the MAS paradigm. It inherits the free search capability of Gnutella, without rely-
ing on inefficient broadcasting techniques. However, these systems neither support 
complex queries (by means of incomplete information1), nor flexible plug-ability of 
different search algorithms, nor the application of different algorithms at the same 
time. Table 2 depicts P2P systems that support intelligent search, according to their 
distribution structure. Although unstructured P2P network does not scale well, it sup-
ports dynamics very well, and therefore it fits better to our problem. 

                                                           
1  Example (the scenario of a crime investigating process): There is some information about  

the person that the police search for, but unfortunately the complete description and/or the 
material evidence are not available. According to the police simplified pattern of information 
would look like (first_name, last_name, birth_date, ID_number, hair_color, height). In a  
real case, the complete information might be missing (e.g., the person under investigation  
was seen by a witness at a crime scene only shortly) and only 3 entities of data are known 
(John, …, …, …, brown, 172). 
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Table 1. Features / System 

Adaptivity  [4], [6], [22] 

Architectural Pattern / Framework 
Supporting complex queries 

 [3], [4], [22] 

[22] 

Table 2. Classification of P2P systems in related work according to their structure 

Structured P2P  [3] 

Unstructured P2P  [20], [22] 

Loosely structured   [4], [15] 

Not defined  [6],  [11], [24] 

 
In this paper, we propose an unstructured and completely decentralized P2P based 

system for searching of possibly incomplete information, that supports plugging of  
intelligent as well as unintelligent algorithms and that is characterized by a high  
architectural flexibility. Also, it can serve as a general testbed for comparison of  
different algorithms in order to fairly compare them under the same conditions.  
Also, combinations of algorithms can be compared, and the test can be carried out in 
different topological settings. 

3 Architecture and Design 

A decentralized and unstructured2 overlay network is proposed that consists of routing 
tables realized by means of a tuple-space based middleware [9] that supports subspac-
es. Each subspace can be published by using one or more names. It is reachable by 
both its URL and by its published names. The latter, however, must be resolved be-
fore access of the container by the corresponding operation (read, write, take) can take 
place. We use the subspace mechanisms also to implement a so-called lookup-
subspace where each entry stores a published name and the URL of some container. 
Different lookup algorithms can be plugged in the proposed overlay network. When 
some specific subspace is needed to be found, then the searching is done through 
retrieval of a published name in one of the lookup-subspaces; the result is an URL of 
a subspace. The relationship between URLs and published names is 1: n.  

The architecture is decomposed in different “micro” coordination patterns. A pattern 
represents a re-usable solution to a recurring distributed coordination problem. In  
addition, we also provide an implementation for each pattern. A major advantage when 
implementing the patterns by means of a tuple-space based middleware is that their 
composition can easily be achieved by just sharing subspaces between software agents 
that belong to different patterns. The main micro pattern for the lookup framework is 
termed "local node pattern" and is represented in Fig. 1a). The whole network consists 
of finite numbers of nodes. The local node pattern is responsible to model the content 

                                                           
2  On the current stage of research, we use the scale-free network approach [1] for an initial 

construction (with the initial number of subspaces m0=2). 
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which is the subject of search and provides an environment for its searching by using 
swarm agents (e.g., ants or bees). The components of a local node pattern are: clients, 
swarm agents, a swarm subspace, a content subspace and a routing subspace. 

 

 
Fig. 1. a) Local Node Pattern (ovals represent subspaces also termed "spaces" for short in the 
figures, and rectangles represent software agents), b) Pattern composition through the sharing of 
subspaces. 3 nodes are shown. Each possesses a swarm subspace, a content subspace, and a 
routing subspace; the violet rectangles represent swarm agents. 

Clients supply requests. The swarm subspace maintains these search requests, infor-
mation about the current status of searching and the current list of visited nodes. A 
swarm agent picks up the next request, realizes the search and changes the status of the 
search according to the quality of data contained on a particular node. Swarm agents 
consult both the content subspace and the routing subspace. The content subspace con-
tains information about public names and real names (URLs). The routing subspace 
contains the list of neighboring nodes and additional information connected with the 
type of algorithm (e.g., quantity of pheromones for ant algorithms, duration of waggle 
dance for bee algorithm on links). When the search is completed, the search result is put 
in the swarm answer subspace, where it is picked up by clients. Fig. 1b) presents the 
pattern composition. The elements of the distributed swarm pattern are swarm agents 
that access also remote swarm subspaces and a data quality policy expressed through 
the similarity function. The local answer swarm subspaces are not depicted in Fig. 1b). 

4 Bee Algorithm for Information Retrieval 

4.1 Bee Algorithm 

The way of mapping bees’ behavior from nature to IT terminology is abstracted in the 
following way [21]: Software agents represent bees at the particular nodes in the over-
lay network. A node contains exactly one hive and one flower, where a flower can 
have many nectar units that can be taken out by a bee. A hive has a finite number of 
receiver bees and outgoing (i.e., forager plus follower) bees. A task is one nectar unit 
and represents “the searching through lookup subspaces according to the published 
name”, where the publish name is a string. At the beginning of the process, the  
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population of bees in a hive is without any information about the environment. There-
fore, all outgoing bees are foragers. Foragers navigate and recruit followers3. The goal 
is to find the most similar or the same information (comparing with the published 
name) in the network by taking the best path which is defined to be the shortest one4. 
The two basic phases in bees’ behavior are navigation and recruitment.  

In the navigation phase, a bee goes (i.e., an agent search) from one lookup subspace to 
another until it finds the most similar or the same information in the network or it visits 
and examines all lookup subspaces in a network without results. After finishing naviga-
tion, a bee goes back to the hive. A navigation strategy determines which node will be 
visited next and it is realized by a stochastic state transition rule adopted from [23]: 

 
(1)

where ρij(t) is the arc fitness from node i to node j at time t and dij is the heuristic dis-
tance between i and j, α is a binary variable that turns on or off the arc fitness influ-
ence and β is the parameter that controls the significance of a heuristic distance.  

In the recruitment phase, the knowledge about length of the path (distance, which 
is expressed as the number of hops) and quality of the solution (measured by the simi-
larity function δ) is communicated and exchanged between bees. A mathematical 
description is presented through the fitness function: 

  (2) 

for a particular bee i, where Hi is the number of hops on the tour, and δ is the similari-
ty function that is new one and specially adapted for this problem. The general form 
of the similarity function is: δ = δ (current solution, exact solution), that describes 
how good (acceptable) solution is found, δ ∈ [0,1]. The type of the similarity function 
δ can be changed, however, its values are normalized into the segment [0,1]. Search-
ing for the specified data can results in the following situations: no data found, or 
exact data found, or acceptable data found with the accuracy/error rate < ε, where ε is 
a parameter given in advance, connected to the definition of δ. The comparison of two 
strings (that represent two URLs) is done by using a similarity function δ  that is 
based on the principle of spatial locality. However, a similarity function δ  is also 
configurable and can be expanded by using temporal locality (they are similar if they 
have the same number of access of some processes) or semantic similarity5. 

                                                           
3  The main actors in the algorithm are foragers and followers, as receivers have no influence on 

the algorithm. 
4  The path is measured by means of number of hops. However, the measurement can be 

changed (e.g., the quality of links can be used instead).  
5  Generally, the fitness function described by equation (2) as well as the similarity function  

δ is use-case specific. However, it can be further extended taking into account some other  
parameters connected with another specific use-case (e.g., the quality of links, etc.) 
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If bee i found a highly similar (i.e., the value of δ is close to 1) or the same string  
(δ =1) in some lookup container - then its fitness function, fi will obtain a good value.  
The colony’s fitness function is the average of all fitness functions:   

  (3) 

where n is the number of outgoing bees. For each outgoing bee, its fi is compared with 
fcolony which determines how “good it was” and based on that a bee decides its next 
role (a forager or a follower) [17].  

5 Evaluation and Results 

Different algorithms for lookup are plugged in order to evaluate the behavior of bee 
algorithm and compare it with others. The benchmarks are performed on basis of the 
following criterions: 1) For each intelligent algorithm find out best combination of 
parameter settings; 2) Compare these optimally tuned swarm based algorithms with 
Gnutella. Gnutella was chosen for a comparison as it is the most similar to the  
systems proposed in this paper: unstructured P2P, purely decentralized.  

The results are obtained by using swarm intelligence algorithms in different  
combinations (Table 3). Bee algorithm is combined with random writing of data, as 
brood sorting mechanisms are characteristic for ants. The test-examples are  
constructed according to Table 4.  

Table 3. Different combinations of algorithms: first column designates ways of writing data, 
first row designates algorithms for searching data, “*" marks implemented combinations 

 MMAS [8] AntNet   [7] Bee algorithm (from 
section 4) 

Random * * * 

Brood Sorting6 [5] * *  

Table 4. Parameters selected according to the best results obtained in [21] and [23] 

  bee algorithm parameters MMAS parameters AntNet parameters 

number of subspaces 40,80,120,160,200 40,80,120,160,200 40,80,120,160,200 

α 0,1 0.5, 1 0.2, 0.3, 0.45 

β from 8 to 12 with step 2 from 2 to 5 with step 1   

λ 0.99     

ρ   from 0.2 to 0.9 with step 0.2   

c2     0.15,0.25,0.3, 0.35 

                                                           
6  It simulates brood sorting mechanism in ant colony from nature; entries are distributed on  

the basis of their type (similar entries stay closer to each other). As this mechanism comes 
from ant colony, it is applied in combination with ant-based algorithms only (not applied in 
combination with bee algorithm). 
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The rest of parameters for AntNet were based on values recommended in [7] and 
[8]7. We do not give an explanation of MMAS and AntNet algorithms and their para-
meters, as they are implemented using the description from [7] and [8]. The investiga-
tion of the best parameters settings for each algorithm led to the following results: 1) 
for MMAS algorithm: α = 0.0, β = 5.0, ρ = 0.5; 2) for AntNet algorithm: α = 0.2,  
C2= 0.35, if number of subspaces = 40, i.e., C2= 0.25, if number of subspaces> 40; 3) 
for Bee algorithm: α = 1.0, β = 10.0, λ= 0.99.  

As the algorithms are non-deterministic, each test is repeated 10 times8 and the av-
erage values are computed. The benchmarks are performed on Amazon Cloud. We 
used standard instances of 1.7 GB of memory, 1 EC2 Compute Unit (1 virtual core 
with 1 EC2 Compute Unit), 160 GB of local instance storage, and the 32-bit platform. 
The comparison of these algorithms’ results is shown in Fig. 2, while increasing the 
number of subspaces. 

 

 

Fig. 2. A comparison of all algorithms (number of queries = 1, number of swarms = 10). The 
metric used is time (in msec). 

Ant algorithms with writing based on brood sorting were successful with small  
instances. However, increasing the dimensions, brood/Antnet did not obtain good  
results (possibly an over-clustering affected system’s robustness and did not fit to 
AntNet dynamics), whereas brood/MMAS preserved the obtaining of good results. 
Bee algorithm introduced in subsection 4, obtained relatively good results on small 
instances (although not so good as brood based algorithms), but the best results with 
increasing the dimension (with bigger instances). 

The query capability of the system is measured and the different intelligent lookup 
mechanisms are compared to Gnutella lookup mechanism (implemented by using the 

                                                           
7  The used exponential mean coefficient is 0.005, the time interval between two generations  

is 0.3 sec, the maximum length of ant’s life (in hops) is 15, the maximum length of the  
observation window is 0.3 and the value of C1 is 0.7. 

8  The number of sampling of nondeterministic algorithms was chosen according to the fact 
how quickly the algorithm converges, and whether the obtained results are uniform.  
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description from [2]). Gnutella can cope with complex queries, but it does not support 
a case with incomplete information when some search parameters of the query are not 
specified. For supplied query (with completed information), Gnutella offers the exact 
result. Our system supports also incomplete information and returns the wanted or a 
most similar string.   

Table 5.  and Table 6.  present the results obtained by using different intelligent 
lookup mechanisms, while increasing the number of queries and swarms.  

Table 5. A comparison of the performances of different lookup mechanisms (number of 
subspaces = 80) 

 # Queries / Swarms 

Algorithm 1 / 10 2 / 20 3 / 30  4 / 40 5 / 50 

 random/mmas  172  183  195  205  217 

 random/antnet  159  167  186  192  201 

 brood/mmas  46  126  163  194  214 

 brood/antnet  52  280  309  328  346 

 random/bees  82  124  160  189  200 

Gnutella  474  476  500  502  517 

Table 6. A comparison of the performances of different lookup mechanisms (number of 
subspaces = 120) 

 # Queries / Swarms 

Algorithm 1 / 10 2 / 20 3 / 30 4 / 40 5 / 50 

 random/mmas  174  194  199  210  222 

 random/antnet  170  182  203  213  234 

 brood/mmas  130  668  705  726  739 

 brood/antnet  277  361  379  402  411 

 random/bees  102  127  144  168  185 

Gnutella  539  559  595  607  611 

 
The lookup based on bee intelligence obtained the best results on large instances 

compared to other algorithms. For example, if number of subspaces is 80 and number 
of queries is 5, then random/bee algorithm is 60% better than Gnutella, 0.5% better 
than random/antnet, 42% better than brood/antnet, 7.8% better than random/mmas, 
6.5% better than brood/mmas. If number of subspaces is 120 and number of queries is 
5, then random/bee algorithm is 69% better than Gnutella, 20% better than ran-
dom/antnet, 75% better than brood/mmas, 17% better than random/mmas, 55% better 
than brood/antnet. 

The benefit of bee algorithm is visible on large instances. This algorithm differs 
from ant algorithm especially as it informs the “starting place” of the search directly 
in a P2P way and, therefore got the better results. Performance of each intelligent 
algorithm outperforms Gnutella lookup. Namely, the original Gnutella architecture 
uses a flooding (or broadcast) mechanism that supports an exhaustive optimization. 
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From the other side, intelligent algorithms focus on important areas of the solutions 
space. They quickly and efficiently narrow the number of combinations to be calcu-
lated by focusing on the areas that are most profitable and most stable. Also, their 
advantage is that they try to find a global optimum. 

Another result of the evaluation is that the generic architectural pattern is robust 
and allows for plugging of different algorithms without any change in the source 
code; simply by reconfiguration.  

6 Conclusion 

Location and retrieval of complex data in the Internet is an important IT problem with 
an everyday increasing complexity. We propose an intelligent solution: a self-
organized architectural pattern that serves as a purely unstructured overlay network 
and that is based on autonomous agents. Different algorithms for lookup are plugged 
in: ant algorithms, Gnutella lookup mechanism, and a bee algorithm that is adapted 
for the first time for this scenario. The proposed bee algorithm simulates the behavior 
of bees in nature. The benchmarks are performed on Amazon Cloud by using the best 
parameters’ setting. The lookup based on bee intelligence obtained the best results on 
large instances compared to other algorithms.   

Future work will consider plugging of further new swarm-based algorithms, eva-
luating their behavior also in combination with other algorithms, as well as their ap-
plication in new use cases. 
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Abstract. Analog circuit design is significant and challenging. In this paper, we 
propose a group-crossover-based variable-length differential evolution (GVDE) 
for automatic synthesis of analog circuit. We present two experimental results 
obtained using the proposed GVDE, including a low-pass filter and an inverting 
amplifier. The results showed that GVDE is able to evolve with variable-length 
chromosome, which allows both the topology and sizing of analog circuit to be 
evolved. The proposed GVDE is an efficient algorithmic approach for 
automatic synthesis of analog circuit. 

Keywords: analog circuit design, differential evolution, variable length 
evolution, group crossover. 

1 Introduction 

Analog circuit design is known to be challenging and significant. Analog circuit 
design consists of topology optimization and parameter optimization. The length of 
chromosome can be variable or fixed during the evolutionary process for topology 
optimization. Grimblebly[1] proposed a fixed-length chromosome method to evolve 
topology of analog circuit. In this paper, null type are defined to keep all the 
chromosome at the fixed length. When translate the chromosome into netlist, null 
type should be removed. Thus, the size of circuits are changeable. Goh et al. [2] 
proposed a similar fixed-length chromosome method to evolve both the topology and 
sizing of analog circuit. Fixed-length chromosome method must predefine the size of 
the circuit, which neither be too large(search space is too large to find the optimal) 
nor too small(search space is too small and no optimal can be obtained).  

Another approach for topology optimization is evolving with variable-length 
chromosomes. It can avoid predefining the max size of the circuits to be evolved. 
Ando et al. [3] proposed a variable-length component-list representation for automatic 
design of analog circuit. Koza et al. [4] proposed automatic synthesis of a suite of 
analog circuit by mean of genetic programming. Lohn et al. [5] proposed GA with a 
linear representation for filter and amplifier design. So in order to optimize topology 
of circuits, we hope the length of chromosomes can change with the size of circuits. 

                                                           
* Corresponding author. 
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Parameter optimization operates on circuits of fixed topology. The length of 
chromosome is fixed during the evolutionary process. Vondras et al. [6] used 
differential evolution to evolve multi-criterion filter circuit with a given topology. Liu 
et al. [7] adjusted the amplifier parameter by competitive co-evolutionary differential 
evolution. Sabat et al. [8] proposed optimizing OTA Miller parameters with 
differential evolutionary and swarm intelligence techniques. 

Differential evolution method is first proposed by Storn and Price in 1995 [9]. It's a 
powerful and efficient stochastic search technique for global optimization problem. 
DE gets a good effect on the performance of parameter optimization, such as 
[6][7][8]. These are also some studies about topology optimization with DE, such as 
[10][11]. 

Based on the former analyses, this paper proposes a group-crossover-based 
variable-length differential evolution method(GVDE). A low-pass filter and an 
inverting amplifier design task are proposed by the use of GVDE and Winspice 
simulator. Experimental results show that the proposed GVDE is able to evolve with a 
variable-length chromosome method, it allows to optimize topology and parameter of 
analog circuit at the same time. GVDE is an efficient algorithmic approach for 
automatic synthesis of analog circuit. 

2 Classical Differential Evolution for Circuit Design 

The basic mutation strategy of DE is called DE/rand/1 (Eq. (1)), where v is mutation 
vector, indexes r1,r2,r3 (r1≠r2≠r3≠i) are random integers generated in the range [1,NP]. 
F is the weighted factor. The crossover operation of classical DE is shown in Eq. (2). 
Where j is the dimension of vector, and j∈(0,D-1). The target vector xi,g and the trial 
vector ui,g+1 are selected by one-to-one greedy strategy.  

1 2, , 3 ,( ) .r g r g r gv F x x x= ∗ − +  (1)

      ,
( , 1)       ( , )

 (0,1)
. 

j g j
i g j

i g j

v rand CR
u x otherwise+

<= 
  

(2)

From Eq. (1), it can be seen that vectors participate in differential mutation are at the 
same dimension. Eq. (2) indicates the crossover method of DE is probability-based 
stochastic crossover on single dimension. These show that the dimension of the 
vectors remain the same while using classical DE. Similarly, the chromosome must be 
at the same length when evolving analog circuit using classical DE. There are some 
examples for circuit synthesis using DE. Paper [6]~[8] are parameter optimization 
with a fixed topology structure. [10] and [11] achieve topology optimization and 
parameter optimization at the same time. The length of chromosome are all the same 
during the evolutionary process in these papers. 

As mentioned in section 1, in order to realize both topology optimization and 
parameter optimization at the same time. We hope the length of chromosomes can 
change with the size of circuits. So in this paper, we introduce a group-crossover-
based variable-length differential evolution method for analog circuit design. 
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3 Group-Crossover-Based Variable-Length Differential 
Evolution 

Individuals of new generation come from trial individual. In order to satisfy the 
variable length characteristic of chromosome, we should guarantee the length of 
chromosome variable and diverse after crossover operation. We proposed a group 
crossover strategy to ensure variable-length chromosome evolution in GVDE. 

In GVDE, the length of the individuals participate in differential mutation are not 
exactly the same. This paper proposes a length processing strategy, which can 
guarantee the implement of differential mutation. Also, it can make the length of 
mutation individual random and ergodic. 

3.1 Group Crossover 

The basic idea of group crossover can be briefly stated as follows. Separating both of 
the two chromosomes (parent individuals participating in crossover operation) into M 
groups randomly. Then, executing crossover operation between the same groups from 
the two parent individuals to generate the trial individual. In this paper, we choose the 
current best individual xbest,g and mutation individual v generated from differential 
mutation as parent individuals. The trial individual is generated according to Eq. (3). 

             _
_          ( , )  group_i

(0,1)
   i = 1,2, , .group i

group i
best g

v randj CR
u Mx otherwise

<= 



 

(3)

An example of group crossover is showed in Fig. 1. In the proposed group crossover 
process, M is generated randomly, the length of each groups is random too. It's clearly 
that the length of trial individual generated from group crossover is random.  
 

 

Fig. 1. An example of group crossover 

3.2 Differential Mutation with Random Strategy 

We deal with individuals participate in mutation operation to make them at the same 
length, thus easy to execute differential mutation. The proposed operation is called 
random strategy in this paper. The basic idea is generating a random length for 
mutation individual, denote as length_v. For the individuals participate in mutation, if 
the length of individuals is larger than length_v, then make truncation directly, or 
conversely complement to length_v by random initialization. 

crossover with group trial 
individual 

parent 
individuals 
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  length_v=ceil(rand*length_max); 
  IF  length_i>=length_v  THEH 
   xi,g= [x(i,g)0,x(i,g)1,…,x(i,g)length_v-1]

T 
  ELSE 
   xi,g= [x(i,g)0,x(i,g)1,…,x(i,g)length_i-1,r1,r2,…,rm]

T 
  ENDIF 

where m=length_v-length_i, r1,r2,…rm indicate genes generated randomly. 
We hope the length after mutation random and ergodic at the same time. Otherwise 

mutation operation will decrease the diversity of length of chromosomes, further more 
reducing the diversity of population. Now let's test the ability to generate new length 
of random strategy for differential mutation. Each chromosome's length is initialized 
with the same length (e.g. 10), and then we make statistics on the distribution of 
chromosome's length every 25 generations. As shown in Fig. 2, after differential 
mutation with random strategy, the length of chromosomes is random and run through 
all of the available length. 

4 GVDE for Analog Circuit Synthesis 

4.1 Circuit Representation 

Circuit represent method determines the search efficiency and results. Now 
commonly used circuit representations are linear representation, tree representation 
and netlist-based representation. In tree representation proposed by Koza et al. [4], 
circuits are mapped to a program tree composed of function sets and terminal sets. 
This representation based on genetic programming can achieve topology optimization 
and parameter optimization at the same time. Lohn et al. [5] proposed a linear 
representation technique for evolving analog circuits. In paper [5], circuit-
constructing robot is used for placing components. Each component in the circuit 
consists of three genes represent the component type, connection and parameter. 
Circuit is mapped to the chromosome composed all genes in series. Linear 
representation in [5] can avoid illegal individuals during encoding process. Besides, 
Grimbleby [1] and Goh et al. [2] proposed a netlist-based representation scheme. In 
these two papers, every gene consist of three elements namely nodes, values and type. 
Chromosomes are made of the genes. In this paper, we choose the linear 
representation scheme.  

5 10 15 20

10

20

30

40

50

60

70

80

90

100

nu
m

be
r o

f i
nd

iv
id

ua
l

g=1

5 10 15 20

10

20

30

40

50

60

70

80

90

100
g=25

5 10 15 20

10

20

30

40

50

60

70

80

90

100

length of chromosome

g=50

5 10 15 20

10

20

30

40

50

60

70

80

90

100
g=75

5 10 15 20

10

20

30

40

50

60

70

80

90

100
g=100

 

Fig. 2. Statistics on the distribution of the length of chromosomes every 25 generations 
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4.2 Fitness Measure 

The fitness measure guides the evolutionary design directly. A low-pass filter and 
an inverting amplifier will be designed using GVDE in the following experiment 
section. Fitness measure method is same as the method presented in Koza [4]. 

Table 1. Design specification of low-pass filter and weighted factor for fitness measure 

frequency(Hz) attenuation(dB) weighted factor 

<=1000 >-0.26dB 10 
1000 to 2000 -- 8 
>=2000 <-60dB 15 

 

Spice simulation tool is used to perform an AC small signal analysis for low-pass 
filter. The circuit's behavior is reported for fitness calculation. Fitness is calculated by 
the sum of errors between the actual value and the ideal value. The design objective 
of low-pass filter and the weighted penalty are presented in table 1. 

A DC sweep analysis is required to describe the amplifier's behavior. An ideal 
inverting amplifier has a DC bias equal to zero, a linear DC transfer characteristic. 
The voltage gain equals to the slope of the DC transfer characteristic. When calculate 
the fitness of an amplifier, we should take voltage gain, DC bias and linearity into 
account at the same time. In the experiment, the fitness is calculated by summing 
amplifier penalty, a bias penalty and linearity penalty. 

5 Experiments and Results 

In this section, we use proposed GVDE to design a low-pass filter and an inverting 
amplifier. In the evolutionary process, both topology and parameter of circuits are 
optimized. In the two following experiments, mutation factor F and crossover factor 
CR are variable during the evolutionary process. CR is a uniform distribution 
random number between 0 and 1, F is a uniform distribution random number ∈(0,2).  

5.1 Low-Pass Filter Design Task 

Population size is set to 200, the maximum generation is 200. Experiment runs 30 
times. We chosen three results from the 30 results randomly, and draw the length of 
the chromosome in every generation in Fig. 3 (a) and (b). The frequency response and 
fitness track of the best circuit are shown in Fig. 3 (c) and (d). 
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Fig. 3. (a)(b) The length of the chromosome in every generation for 3 results selected random 
from 30 results. (a) The length of the best chromosome in every generation. (b) The standard 
deviation of chromosomes in every generation. (c)(d) The best low-pass filter circuit by GVDE. 
(c) Frequency response of the circuit. (d) Fitness track over optimization process. 

As we can see in Fig. 3 (a), the length of the best chromosome is variable during 
the evolutionary process. It means that chromosome's length is changeable in the 
evolutionary process. This verifies that GVDE can achieve variable length 
evolution on the problem of circuit design. In Fig. 3 (b), the standard deviation of 
chromosomes length in every generation is not monotonically decreasing. But the 
general trends of it tends to decrease. This denotes that the whole population 
evolves towards optimal solution as evolution continues. This conforms to the law 
of convergence of evolution. As shown in Fig. 3 (c), the best low-pass filter circuit 
meets the design specification (shown in section 4.2) completely. Fig. 3 (b) and (d) 
together indicate that it is sure to converge when evolving analog circuits with the 
proposed GVDE. 

5.2 Inverting Amplifier Design Task 

Ten runs are performed and we present the best performance circuits. It should be  
emphasized here that the topology and the parameter of the amplifier are evolved at 
the same time. Population size is set to 1200, the maximum generation is 1000. 

The schematic of the best performance amplifier evolved by GVDE is shown in 
Fig. 5. DC transfer characteristic and AC signal behavior of the result circuit is  
in Fig.4 (a). Time domain input and output waveform are present in Fig.4 (b).  
From Fig.4, the DC bias voltage of the inverting amplifier is small to 1.062V, the 
amplifier has a DC gain of 72.59db(4264). The input signal is a sine waveform with 
1uV amplitude and 1KHz frequency. It's obviously that GVDE is efficient for 
evolving analog circuits. 
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Fig. 4. a DC transfer characteristic (left) and AC signal behavior (right) of the inverting 
amplifier. b Time domain input (down) and output (up) waveform of inverting amplifier. 

 

Fig. 5. Circuit schematic of evolved inverting amplifier 

6 Conclusion 

In this work, we makes an analysis of topology optimization and parameter 
optimization of evolution design of analog circuit firstly. Group-crossover-based 
variable-length differential evolution is proposed for analog circuit design. In the 
experiment, both the topology and the parameter of analog circuits are evolved at the 
same time. The experiment result show that GVDE is able to evolve analog circuits in 
the form of variable-length chromosome, GVDE is sure to converge. It's obviously 
that the proposed GVDE is an efficient algorithmic approach for automatic synthesis 
of analog circuit. 
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Abstract. For the multiobjective problems, some global search meth-
ods may fail to find the Pareto optima with both accuracy and diversity.
To pursue the two goals at the same time, a new memetic multiobjective
differential evolution algorithm (MMODE) is proposed to hybridize the
local search with differential evolution (DE) algorithm. The local search
is conducted in an independent population to accelerate the search pro-
cess, while DE can maintain the diversity. In MMODE, we use a new
multiobjective Pareto differential evolution (MOPDE). Experimental re-
sults show that the MMODE performs better than other two MODEs
in respects of the accuracy and diversity, especially for the multimodal
functions.

Keywords: Memetic algorithm, multiobjective optimization, differential
evolution, extensive dominance, MMODE.

1 Introduction

Many real world optimization problems, such as networks designing and single
processing, have to consider several objectives simultaneously, which are called
multiobjective optimization problems (MOOPs)[1]. In MOOPs, there exists no
single solution can optimize all objectives, but only some appropriate trade-
offs can be found with comprehensive good fitness in each objective. The set of
these trade-offs is called the Pareto set[2]. For the multiobjective optimization
algorithms, their final solutions are required to be close to the optima and well-
distributed in the Pareto set, i.e., accuracy and diversity. Some multiobjective
Evolutionary algorithms (MOEAs), such as NSGA-II[3] and SPEA-II[4], have
been proposed to solve MOOPs successfully. When applying Differential Evolu-
tion (DE) algorithm[5] for MOOPs, several multiobjective Differential Evolution
algorithms (MODEs) [6,7,8,9]are proposed with good results.

However, these MODEs tend to require a relatively large number of iterations
to find the global optima due to their global explorations. Even worse, they
may suffer from the drawback of stagnation, in which case the MODEs stop to
converge in the early generations because of the excessive exploration. To find
the satisfactory results in the given time, the local search (LS) techniques are
usually combined into the MOEAs to accelerate the search process. The hybrid

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 422–430, 2013.
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algorithms, which are called the Memetic algorithms (MAs), have balanced the
exploration and exploitation throughout the searching process[10]. But there
are few MA works applying the basic DE for the MOOPs. The Co-evolutionary
Multiobjective Differential Evolution (CMODE) has been proposed to combine
co-evolution concept in the MODEs, and a memetic version based on CMODE is
mentioned[11]. In the design of the memetic MODEs, three open issues remain.
Where should the local search be combined in the basic DE? Which individuals
should be fine-tuned by the local search? When should the local refinement
be applied? In this paper, a new memetic multiobjective differential evolution
algorithm (MMODE) is proposed as a general memetic DE to response these
questions.

The contributions of this paper are in three folds. First, MMODE is a new
algorithm which can deliver promising results with accuracy and diversity. In
MMODE, the DE can maintain the diversity of the population, and the local
search can enhance the accuracy while accelerating the convergence rate. Sec-
ond, a new algorithm multiobjective Pareto differential evolution (MOPDE) is
modified for the basic DE for solving MOOPs. MOPDE employs “one-to-many”
comparisons, which is less greedy than other MODEs. Third, the MMODE is a
general framework based on the DE, which can be replaced by other MODE vari-
ants. In this framework, the local search is independent with the global search,
so that the local search does not lead the population losing diversity.

The remainder of this paper is organized as follows. In Section 2, we give
an overview of some existing MODEs. In Section 3, we introduce the proposed
MMODE based on the new MODE variant MOPDE. In Section 4, the exper-
imental results are delivered to compare the propose work with some existing
DE algorithms. Section 5will conclude this paper.

2 Related Work

Multiobjective Differential Evolution (MODE) algorithm is an extension of the
basic DE algorithm in the MO applications. The basic DE is one of the most re-
cent evolutionary algorithms to solve real-parameter optimization problems[5].
After initializing a population, each individual is evolved by employing three
operators - mutation, recombination and selection. At each generation, the mu-
tant vectors are created from their parents. The following are different mutation
strategies frequently used in the literature:

DE/rand/1:

vi = xr1 + F (xr2 − xr3) , (1)

DE/best/1:

vi = xbest + F (xr2 − xr3) , (2)

DE/current-to-best/1:

vi = xi + F · (xbest − xi) + F · (xr2 − xr3) , (3)
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where the indices r1, r2, r3 are distinct integers uniformly chosen from the set
{1, 2, . . . , NP} \ {i}. xbest is the best solution at the current generation. F is the
mutation factor. vi is the obtained mutant vector of xi.

After mutation, vi is then recombined with the target vector xi with a prob-
ability Cr to generate a trial vector ui = (u1,i, u2,i, . . . , uD,i) as

uj,i =

{
vj,i if rand < Cr or j = jr
xj,i otherwise

, (4)

where D is the dimension of decision space, and j is the dimension index (j =
1, 2, . . . , D). rand is a uniformly random number in [0, 1]. jr is a randomly chosen
from [1, 2, . . . , D] which ensures that ur get at least one component from xr .
Then the better solution between xi and ui is selected into the next generation.
It worth noting that DE’s selection is a greedy selection based on the “one-to-
one” replacement scheme, which is different with the other EAs.

When applying the basic DE for the MOOPs, two questions need to be
answered in designing the MODEs. The first question is how to choose the dif-
ferential vectors in the mutation? In the MODEs, the whole population is always
distributed in one or several Pareto fronts based on the non-dominated sorting[3].
The randomly chosen individuals may lie in the same Pareto front, and then their
differential vectors may suffer from the ineptitude of directing toward the supe-
rior region. The second question is how to select the offspring between the parent
vector and the trail vector. Can MODE greedily select the better one by the “one-
to-one” comparison in the basic DE? The parent vector and the trail vector may
be non-dominated with each other. It is hard to say which one is better based on
the Pareto dominance according to the “one-to-one” comparison. The following
MODEs have different ways to answer the above questions.

TheParetoDifferential Evolution algorithm(PDE) is an adaptiveDEalgorithm
for multiobjective problems[8]. The mutation factor F is generated from a Gaus-
sian distribution N (0, 1). First, only the non-dominated solutions are retained
for reproduction in PDE. Three random vectors are selected uniformly among the
non-dominated set. The size of the set is controlled by pruning the set according to
theneighborhooddistance function. Second, after theDE/rand/1mutationand re-
combination, a trial vector is generated.The selection procedure in PDE is to place
the trial vector into the population if it dominates the parent. These two steps are
repeated to fill the population until the population size is a predefined size.

The Pareto Differential Evolution Approach (PDEA) is directly inspired by
NSGA-II[9]. First, in the mutation three vectors are randomly chosen from the
population. Second, the trial vector is directly combined with the existing parent
population for the selection. The combined population with the size will be
pruned according to the non-dominated sorting and their crowding distances as
NSGA-II. The work of PDEA is similar with the basic DE except the selection
operation of NSGA-II.

The Generalized Differential Evolution 3 (GDE3) is a MODE algorithm for
constrained MO problems[6]. The mutation operations of GDE3 and PDEA are
the same, but their selection operations are different. Selection in GDE3 is based
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1 Definition: PB—the basic population; PE—the elite population; PD—the
non-dominated set of PB.
Input: N—the size of PB and the maximum size of PE, p— the percentage of

population for local search, G—the maximum number of generations for
stopping criterion

Output: the non-dominated solutions in PE.
2 Initialization: randomize N individuals in PB uniformly in the search space,

PD is the non-dominated set of PB, PE is initialized as PD;
3 while g = 1 to G do
4 while i = 1 to N do
5 Randomly choose xr1,g, xr2,g from PB and xbest,g from PE;
6 Mutate xi,g as vi,g = xi,g + F (xbest,g − xi,g) + F (xr1,g − xr2,g);
7 Crossover vi,g with xi,g to generation the trial vector ui,g;
8 Select the trial vector if it can E-dominate xi,g, otherwise select xi,g;

9 end
10 Do Non-dominated sorting on PB, and update PD;
11 Randomly choose p ∗N individuals from PE for the local search;
12 for each individual x′

i,g in the chosen set do
13 Generate a child u′

i,g of x′
i,g by the local search;

14 Add the child u′
i,g in PE;

15 end
16 if the size of PE > N then
17 Prune PE to the size N according to dominance and density;
18 end
19 Update the elite population PE = PE ∪ PD;

20 end
21 return the non-dominated solutions in PE;

Algorithm 1. The pseudo-code of MMODE

on their proposed rules. When both the trial and target vectors are feasible, the
trial is selected if it weakly dominates the target vector. If the target vector
dominates the trial vector, then the target vector is selected. If neither vector
dominated each other, then both vectors are selected for the next generation.
Before continuing the next generation, the population is pruned by the method
of NSGA-II. GDE3 has generalized another similar approach Different Evolu-
tion for multiobjective optimization (DEMO)[7], which was proposed without
constraint handling.

3 MEMETIC Multiobjective DE

Our proposed Memetic Multiobjective Differential Evolution (MMODE) is com-
posed of two phases in each iteration, global search and local search. In the two
phases, MMODE deals with two different populations PB and PE. The popu-
lation PE called the elite population utilizes the local search to generate its off-
spring, which is independent with the basic population PE. Algorithm 1 shows
the pseudo-code of MMODE, in which the two phases are performed as follows.
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3.1 Phase I: Global Search with MOPDE

In the Phase I, global search is conducted in the basic population. A new multi-
objective Pareto DE (MOPDE) algorithm has been used as the search engine to
explore the search space. Generally, a D dimensional MOOP for minimization
F (x) = [f1 (x) , f2 (x) , . . . , fM (x)] is considered here, where M is number of
objectives, fi (x) is the objective function for the ith objective.

Fig. 1. The comparison of the E-dominance with the normal dominance: (a) the shade
region are the set of solutions that can dominate xi. (b) Considering a population with
nine individuals A1, A2,, A8 and xi, the shade region is the set of solutions that can
E-dominated xi according to the two conditions.

The procedure of MOPDE is as the following. For each individual in , two
solutions xr1, xr2 are randomly chosen from PB(r1 �= r2 �= i). xbest is randomly
chosen from the non-dominated solutions. In our memetic application, xbest can
be randomly chosen from the elite population PE. Then DE/current-to-best/1
strategy is utilized to mutate the target vector as Eq. 3. For crossover operation,
the trial vector xi is generated by recombining the mutant vector with the target
vector as Eq. 4. The selection procedure is the main difference from the other
MODEs. In the MOPDE, the offspring is not selected as the better solution by
“one-to-one” comparison (in GDE3) or the population comparisons (in PDEA),
but selected by the “one-to-many” comparisons based on the Pareto extensive
dominance (E-dominance) as

xi =

{
ui if F (ui) � F (xi)
xi otherwise

, (5)

F (ui) � F (xi) ⇔
⎧⎨
⎩

∃m ∈ [1, ...,M ], fm (ui) < min fm
or
∃xe ∈ PB,L (xe) ≤ L (xi) and F (ui) ≺ F (xe)

, (6)
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where � is the notation of the E-dominance relation that is defined as Eq. 6.
In Eq. 6,≺ is the notation of the normal Pareto dominance relation, and L(xi)
means the level of xi by non-dominate sorting. For example, L(xi) = 1 means
that xi is in the first front. Generally, ui can E-dominate xi if ui has at least
one objective function less than the found minimum objective value, or it can
dominate any individual in the L(xi)’s and its before fronts. In MOPDE, the
trial vector is selected if it can E-dominate the target vector, otherwise the target
vector is selected into the next generation.

It is obvious that the E-dominance by the “one-to-many” comparisons can
enlarge the search region. Figure 1 shows an example of the E-dominance, in
which the shade region represents the search region of xi. The shade region in
the E-dominance is larger than the normal dominance. ui cannot dominate xi,
but can E-dominate xi. Therefore, MOPDE turns to be less greedy than other
MODEs, and can find more accurate results.

3.2 Phase II: Local Search

The local search (LS) technique is conducted in the elite population PE , which
is initializes as the non-dominated solution of the first generated PB. Randomly
choose some individuals in for local search. The offspring is inserted into PE
regardless of its fitness. As the local search is conducted on a population not
on a single best solution in MMODE, the crossover-based LS methods may be
more suitable than the gradient-based methods. MMODE utilizes a crossover-
based LS method similarly with “DE/current/1”. For the chosen parent vector
x′i in the elite population , randomly select two vectors x′r1 and x′r2 in PE
(r1 �= r2 �= i) and mutate the target vector as

v′i = x′i + F (x′r1 − x′r2) , (7)

Like DE, the child u′i is generated by recombining x′i with v′i as Eq. 4. The
parameter F and Cr in this local search are set to be the same with those
appeared in the Phase I. It is worth noting that p percents of PE for the LS
have controlled the LS’s ratio in the global search. A proper setting of p is 50%.

Then prune to the size by the method using in GDE3[6]. Delete the identical
solutions in PE , and prune the population based on the non-dominated sorting
and density estimation. The product distance with the nearest neighbors is used
to compute the crowding distance. At the end of the Phase II, the elite population
PE is updated by inserting the non-dominated set PD into the original PE.

The running time of MMODE is obviously more than the GDE3 due to the
additional local search. For the local search, the Phase II of the MMODE has
the computation complexity O (GN). The other parts of MMODE have the
same computation complexity with GDE3, which has the computation complex-

ity O
(
GN logM−1N

)
[6]. Therefore MMODE’s computation complexity is the

same with GDE3 as O
(
GN logM−1N

)
, where G, N and M are the maximum

generations, the population size and the number of objectives.
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4 Experimental Results

In order to validate the performance of MOPDE and MMODE, we consider a
set of test problems in Table 1, including the frequently used ZDT1-4 and ZDT6
in [12], DTLZ1-7 in [13]. As the proposed algorithms belong to DE algorithm,
we compared them with two popular MODEs, i.e. PDEA and GDE3. For PDEA
and GDE3, the population size is set to be 100, and the parameters F and Cr are
set to be 0.5 and 0.1. For the MMODE, the size of the basic and elite populations
is set to be 50. Other parameters are set as F = 0.5, Cr = 0.1, p = 0.5. We also
evaluate the MOPDE independently, in which the population size is set to 100
and other parameters are set the same with the MMODE.

We run PDEA, GDE3, MOPDE and MMODE on each function for 50 times.
The maximum function evaluation times is set to 300000 for these four algo-
rithms. To evaluate the final results, we use two performance metrics - inverse
generational distance (IGD) [12] and hypervolume (HV) difference[13], which
can indicate the results’ accuracy and diversity. Table 2 and 3 list the mean
values of IGD and HV difference of each algorithm. The small IGD and HV
difference indicate the good performance. The best results for each function are
highlighted with bold in Table 2 and 3.

Table 1. Test Functions

Fi Name Dimension (D) Search space Objectives

1 ZDT1 30 [0, 1]D 2

2 ZDT2 30 [0, 1]D 2

3 ZDT3 30 [0, 1]D 2

4 ZDT4 10 [0, 1]× [−5, 5]D 2

5 ZDT6 10 [0, 1]D 2

6 DTLZ1 10 [0, 1]D 3

7 DTLZ2 12 [0, 1]D 3

8 DTLZ3 12 [0, 1]D 3

9 DTLZ4 12 [0, 1]D 3

10 DTLZ5 12 [0, 1]D 3

11 DTLZ6 12 [0, 1]D 3

12 DTLZ7 22 [0, 1]D 3

For the IGD, MMODE delivers the best results on six functions F1, F2, F3,
F4, F8 and F12; GDE3 performs the best on F5, F7, F10 and F11; PDEA has
the best performance on F9 and F10. From Table 2, it is obvious that MOPDE
cannot surpass GDE3 and PDEA. As MOPDE has not considered the density
estimation, MOPDE’s results are less diverse than GDE3 and PDEA.

From Table 3, MMODE can deliver the best results of HV difference on the
function F1, F2, F3, F4, F6 and F12. For the other functions, MMODE shows
comparable performance with GDE3 and PDEA. MOPDE has the close perfor-
mance with MMODE except the function F9.



MMODE: A Memetic Multiobjective Differential Evolution Algorithm 429

Table 2. Mean Values of IGD

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1

GDE3 4.20e−3 1.63e−2 5.18e−3 4.19e−3 4.53e−2 1.93e−1

PDEA 4.19e−3 5.10e−3 5.20e−3 1.24e−1 2.90e−1 8.80e−1

MOPDE 2.56e−2 2.79e−2 2.58e−2 2.04e−2 4.47e−1 4.38e−2

MMODE 4.17e−3 4.31e−3 4.87e−3 4.11e−3 7.85e−2 2.27e−2

DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

GDE3 5.23e−2 1.88e−1 5.28e−1 4.05e−3 2.21e−2 6.02e−2

PDEA 5.26e−2 4.96e−1 5.27e−2 4.04e−3 1.85e−1 6.00e−2

MOPDE 1.27e−1 1.49e−1 6.12e−1 2.50e−2 6.28e−2 1.18e−1

MMODE 5.48e−2 5.73e−2 5.27e−2 4.32e−3 6.30e−1 6.02e−2

Table 3. Mean Values of HV Difference

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1

GDE3 1.16e−2 3.90e−3 1.77e−2 1.25e−2 4.53e−2 1.93e−1

PDEA 1.05e−2 5.72e−3 1.69e−2 9.16e−2 6.23e−3 2.87e−2

MOPDE 3.41e−2 1.74e−2 3.25e−2 1.81e−2 7.20e−2 9.94e−3

MMODE 7.66e−3 8.39e−3 1.22e−2 3.28e−3 5.26e−3 1.74e−3

DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

GDE3 5.77e−3 1.14e−3 8.96e−3 5.77e−5 1.05e−3 2.91e−2

PDEA 5.68e−3 1.52e−2 5.38e−3 6.45e−5 4.89e−3 2.83e−2

MOPDE 8.35e−3 2.27e−2 4.79e−2 1.39e−3 3.63e−3 5.85e−3

MMODE 7.10e−3 7.45e−3 7.48e−3 9.48e−4 7.28e−3 8.86e−3

In all, MMODE is better than or at least comparable with MOPDE, GDE3
and PDEA for most functions.

5 Conclusion

E-dominance is a general scheme for dominance evaluation, which suits to be
applied in the tournament selection of other MOEAs. When the population only
has the two solutions, E-dominance can be replaced with the Pareto dominance.

The memetic framework is necessarily used to accelerate the search process
of the basic DE algorithm. The proposed MMODE gives reasonable responses
of the three open issues mentioned in the introduction. The local search can
be performed in a separate population. Some individuals are randomly chosen
from the population to do the local search. Following the global search, the local
search can fine tune the found optima. The local search can cooperate with the
global search to find the accurate and diverse solutions for the MOOPs.

In fact MMODE contains a general framework.We will evaluate other MODEs
and other local search strategies using this framework as the future works.
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Abstract. Differential Evolution (DE) can be simplified in the sense that the 
number of existing parameter is decreased from two parameters to only one 
parameter.  We eliminate the scaling factor, F, and replace this by a uniform 
random number within [0, 1]. As such, it is easy to tune the crossover rate, CR, 
through parameter sensitivity analysis. In this analysis, the algorithm is run for 
50 trials from 0.1 to 1.0 with a step increment of 0.1 on 23 benchmark 
problems.  Results show that using the optimal CR, there is room for 
improvement in some of the benchmark problems. With the advantage and 
simplicity of a single parameter, it is significantly easier to tune this parameter 
and thus take the full advantage of the algorithm.  The proposed algorithm here 
has a significant benefit when applied to real-world problems as it saves time in 
obtaining the best parameter setting for optimal performance. 

Keywords: Benchmark problems, one parameter differential evolution, 
parameter sensitivity analysis. 

1 Introduction 

Optimization exists in many scientific, engineering and economic applications that 
involve optimization of a set of parameters, such as training a neural network to 
recognize face images or minimizing the losses in a power grid by finding the optimal 
configuration of the components. As the complexity of the problems that we attempt 
to solve is ever increasing, there will always be a need for better optimization 
algorithms. 

Evolutionary Algorithms (EAs) have been developed based on the natural selection 
and survival of the fittest in the biological world to find one or more solutions to 
minimize or maximize the given objective functions of the optimization problems. 
Different from the traditional optimization techniques, these algorithm are often 
agent-based, and thus start the optimization process with a population of potential 
solutions instead of a single solution point or agent. At each generation, each 
individual of the population is evaluated. Through different evolution operators, the 
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population moves towards regions of the search space from which good solutions 
have already been seen or visited. In order to achieve the optimal value for 
convergence, the optimal setting for control parameters should be used, and this is 
often achieved by altering these parameters during the evolution process, though we 
do not know how to tune such parameters so as to produce the best performance [1]. 

Differential Evolution (DE) which was proposed by Price and Storn [2] in the year 
1997 is one of the most competitive EAs. It is a simple yet powerful evolutionary 
algorithm for global optimization. Recently, DE has become one of the most popular 
methods; this method has been applied to many real-world problems in different 
fields, including electromagnetics [3], network system [4], technique system [5] and 
automatic clustering [6]. 

DE has some advantages and is a derivative-free algorithm, which only needs the 
mathematical function and does not require differentiability or continuity on problem 
landscape. For the DE algorithm, one of the key issue is the so-called parameter 
setting problem which can be separated into two parts; parameter tuning and 
parameter control. Parameter tuning means users should find the better setting of 
parameters before running the algorithm while parameter control is to vary the values 
of these parameters during running algorithm. Usually, we focused on the former 
approach for good parameters during running algorithm. According to Eiben et al. [1], 
three categories can be implemented. 

Whenever DE is applied to solve any problem, it is necessary to consider both 
efficiency and accuracy of the results. In the early stage, most of control parameters, 
F and CR are fixed, or not changing with rules. Later, in order to increase the 
efficiency and accuracy of the algorithm, these parameters should be changed during 
the evolution process.[2].  The function of control parameter is to improve the 
performance of an optimization algorithm for a given problem by altering different 
combinations of the control parameters. Researchers have already applied this 
technique on some evolution algorithms before [7]. Recently, numerous studies have 
focused on control parameter tuning [8].  Some studies attempted to achieve this by 
analyzing the mutation vectors by neighborhood mutation in DE algorithm. 

There are many studies concerning the control parameter involving both the 
scaling factor F and crossover rate CR [9], which may significantly influence the 
performance of conventional DE or modified DE algorithm. However, most of these 
works on improvement of the algorithm try to introduce a paradigm or framework that 
requires additional steps and thus increases the complexity to the original algorithm. 
As opposed to this status quo, we will focus our efforts on the simplification and 
intend to reduce the number of parameters in DE to only one parameter, which will 
significantly reduce the efforts for both parameter tuning and parameter control. The 
eliminated parameter, which is the scaling factor, F, is now replaced by a uniform 
random number generator within [0, 1]. As such, we have a variant of DE, called one 
parameter differential evolution (OPDE), and the existence of only one parameter 
(crossover rate, CR) enables the parameter sensitivity analysis (PSA) to be carried out 
easily without much hassle as in the case of two parameters. 

Hence, in this work, the parameter control is based on a combination of OPDE 
evolution process.  The main purpose of our work is to produce a flexible DE and 
compare its results with those from literature. The convergence of EAs with OPDE is 
difficult to prove as the control parameter (F) is now replaced by a random number. It 
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means that F is altered randomly and the value does not influence the evolution 
process directly [10, 11]. Thus, it is interesting to investigate the performance of the 
algorithm with random scaling factor, F.  The rest of the paper is organized as 
follows. The canonical DE algorithm is reviewed in Section 2, followed by the 
proposed strategy in Section 3.  Results including the PSA are presented in Section 4.  
Finally, Section 5 concludes with some remarks and future research directions. 

2 Differential Evolution Algorithm 

In this work, the most popular strategy, DE/rand/1/bin [12] is employed as this is one 
of the best strategies known. Conceptually, there are D-dimensional parameter 
vectors.  Parameter g is the iteration or generation counter of the vectors.  The 
population size NP represents the number of members in the population with a fixed 
population size.  The ith member in gth generation is usually represented by vector 
notation of g

ix , whereby i=1, 2… NP and g=1, 2, 3…MaxGen. In DE, there exists 

three prominent operations, which are mutation, crossover and selection [12].  These 
manipulating operators are explained in the following sub-sections.  

2.1 Mutation 

According to DE strategy, the number of indices 
1 2 3 [1, ]r r r NP≠ ≠ ∈ . The scaling 

factor [1,2]F ∈ , with the suggested choice by Price and Storn [2] to be [0.5,1.0]F ∈ , is 

a real number, which is also an important factor affecting the performance of the DE 
algorithm. This will be investigated further in this work. The vector information for 
the next generation g+1 is updated via: 

1 2 3

1
, , , , 1 2 3( ),g g g g

i j r j r j r jv x F x x r r r i+ = + × − ≠ ≠ ≠  (1)

2.2 Crossover 

The crossover rate is usually set to a value less than unity [0,1]CR∈ ,  and the choice 

also suggested by Price and Storn [2] is [0.8,1]CR∈ . The random number generator 

[0,1]rnd ∈  generates random numbers uniformly distributed within 0 and 1. This 

value determines the crossover operation for a given trial vector as follows: 

1 1

1

g g
ij ij

g g
ij ij

T V rnd CR

T V rnd CR

+ +

+

= ≤

= >
 (2)

2.3 Selection 

The selection operation would decide whether trial vector 1g
ijT + is chosen into the next 

generation. In the case of minimization, if the fitness 1( ) ( )g g
ij ijf T f x+ <  then 

ij ijx T= , 
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else the xij remains intact. In other words, if the trial is found to be better, it will 
replace the current best solution. 

3 The One Parameter Differential Evolution (OPDE) 

In order to improve the performance of DE, choosing a suitable value for the control 
parameter value is crucially important. Better values of these control parameters may 
lead to individuals, which are more likely to produce offspring and propagate better 
control parameter value persistently. There are many strategies to adjust the parameter 
values [2, 13] and they often involve introducing complexity to the framework of the 
algorithm. In this work, instead of proposing another strategy that complicates these 
things further, we propose a technique that reduces the complexity of the algorithm so 
as to simplify the efforts for parameter control.  Our approach essentially reduces the 
two parameters (CR and F) in DE to only one parameter.  The scaling factor F is 
eliminated and thus replaced by a random value as depicted in equation below: 

1 2 3

1
, , , ,( )g g g g

i j r j r j r jv v rnd v v+ = + × −  (3)

From the above equation, we observed that the scaling factor F is now replaced by a 
uniform random number generator rnd within 0 and 1, or mathematically represented 
by [0,1]rnd ∈ . The traditional DE has three parameters which need to be adjusted by a 

user. However, OPDE first reduces the number of parameters to the minimal single 
parameter, which greatly reduces the computational efforts.  This is the main 
advantage and thus the main contribution of our approach. The rules for OPDE are 
quite simple and can thus enhance the efficiency in comparison to the classic DE.  

4 Experiment Results 

In our simulation, a series of benchmark optimization problems [14] have been 
employed to test the efficiency of OPDE. With a population size of 100, the best 
value of the CR is obtained through PSA. For a fair comparison, 50 trials have been 
carried out for each benchmark problem, and the mean best value has been calculated. 
We then ran again the same set of problems with a population size of 30. This enables 
comparison with other algorithms as many results in literature utilize a population 
size of 30.   

4.1 Parameter Sensitivity Analysis (PSA) for Crossover Rate CR 

In OPDE, CR is increased from 0.1 to 1.0 by a step increment of 0.1. The best way to 
evaluate the impact of CR over the performance is by observing the mean best value 
during the iterations versus CR. Some of these PSA curves are presented in Fig 1, 
involving f1, f5, f10 and f13 functions.  The summary of best CR values obtained for all 
benchmark functions is given in the fifth column of Table 1.  
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Fig. 1. Parameter Sensitivity Analysis for crossover rate, CR 

In Fig 1, f1, f10, f13 depict an ‘s’ like pattern.  Interestingly, the optimal CR obtained 
is 0.2, as recorded in Table 1. For lower dimensional problems such as f16, f17 and f19, 
no significant optimal value is observed. This is due to the simplicity of the problem; 
they are easily solved problems. For these cases, since the mean best will have the 
same value, we pick the crossover value with lower standard deviation as the optimal 
value. For problem featuring a discontinuous landscape such as in the case of Step 
function f6, the impact of varying the CR seems insignificant. 

Simulation results of both algorithms are tabulated in Table 1. In this paper, 
according to the literature [2, 14], we have carried out the simulation for conventional 
DE by using F=0.5 and CR=0.9. Note that OPDE utilizes the best value of CR 
obtained via PSA. If the performance is the same, the one with smaller standard 
deviation will be considered as a better solution. Each function is run for 50 trials and 
the best mean for each of the benchmark problem is calculated. From the results 
depicted in Table 1, it is observed that OPDE has significant improvement over f4, f5, 
f8, f9 and f11. This may imply that there is still room for improvement for many of 
these benchmark problems. The motivation here is not to prove that OPDE is better 
than DE, but to prove that we can take the full advantage of OPDE as its PSA 
contains only one parameter, and thus is more straight forward and much easier 
compared to DE with two parameters. We believe that careful tuning of CR and F for 
DE may also result in comparatively similar performance. However, this is a time 
consuming task, especially for large-scale problem. 
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Table 1. The mean best values obtained by OPDE and DE out of 50 trials with popsize = 100 

f(x
) 

Function name 
#Gen 

DE (CR=0.9, F=0.5) OPDE 

Mean Best (STD) CR  Mean Best (STD) 
f

1
 Sphere 1500 6.33×10-26 (5.67×10-26) 0.2 6.73×10-19 (2.51×10-19) 

f
2
 Schwefel 2.22 2000 1.64×10-18  (8.31×10-19) 0.2 5.59×10-17 (1.19×10-17) 

f
3
 Schwefel 1.2 5000 5.07×10-16  (6.91×10-16) 1.0 3.73×10-11 (4.94×10-11) 

f
4
 Schwefel 2.21 5000 2.03(1.59) 0.8 1.13×10-06 (5.01×10-10) 

f
5
 Rosenbrock 20000 0.24 (0.94) 0.9 2.22×10-24 (3.67×10-24) 

f
6
 Step 1500 0 (0) 0.7 0 (0) 

f
7
 Quartic 3000 2.44×10-03 (7.74×10-04) 1.0 3.92×10-03 (1.35×10-03) 

f
8
 Schwefel 9000 -12333 (183.25) 0.1 -12569.5 (5.71×10-12) 

f
9
 Rastrigin 5000 13.96(4.47) 0.2 0 (0) 

f
10
 Ackley 1500 6.49×10-14 (3.05×10-14) 0.2 1.95×10-10 (4.01×10-11) 

f
11
 Girewank 2000 2.96×10-04 (1.45×10-03) 0.5 3.25×10-20 (2.66×10-20) 

f
12
 Penalized P8 1500 7.45×10-27 (3.72×10-26) 0.2 4.29×10-20 (1.44×10-20) 

f
13
 Penalized P16 1500 3.38×10-26 (6.25×10-26) 0.2 2.60×10-19 (9.07×10-20) 

f
14
 Foxholes 100 1.00 (1.96×10-16) 0.8 1.00 (1.11×10-16) 

f
15
 Kowalik 4000 3.07×10-04 (2.82×10-19) 0.6 3.07×10-04 (9.64×10-20) 

f
16
 6H Camel-Back 100 -1.03 (4.04×10-14) 1.0 -1.03 (2.51×10-15) 

f
17
 Brain 100 0.40 (3.82×10-12) 0.8 0.40 (1.98×10-10) 

f
18
 Goldstein-Price 100 3.00 (1.53×10-15) 0.8 3.00 (1.08×10-15) 

f
19
 Hartman-3 100 -3.86 (2.66×10-15) 1.0 -3.86 (2.66×10-15) 

F
20
 Hartman-6 200 -3.32 (5.82×10-02) 0.4 -3.32 (4.66×10-05) 

f
21
 Shekel-5 100 -10.15 (5.23×10-07) 0.7 -9.64 (1.29) 

f
22
 Shekel-7 100 -10.40 (5.70×10-08) 0.7 -10.40 (0.03) 

f
23
 Shekel-10 100 -10.54 (4.91×10-09) 0.9 -10.54 (7.62×10-05) 

4.2 F and CR Properties 

The value of scaling factor F may influence the population diversity. When F has a 
larger value, the track of best solutions during the search/iterations seems to extend 
over larger scales since a greater F will result in larger step sizes. As a result, the 
algorithm will be incapable of doing local search efficiently, and therefore lacks the 
accuracy, which also slow down the search process for a given accuracy or tolerance.  
As this parameter has been replaced by a random value, the tradeoff between global 
and local search capabilities may have been taken care of automatically. The impact 
of this randomness is further compensated by tuning the CR to an optimal value 
through PSA. Therefore, this strategy is efficient both on unimodal and multimodal 
functions as we have demonstrated using the chosen set of test functions.   

4.3 Effect of the Population Size  

In this study, we have carried out numerous experiments involving different 
population size. With the similar CR values, the same problem is now solved using a 
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population size of 30. It is interesting to note that results are slightly better for some 
of these problems although the population size used is lower.  This is true for f1, f2, f10, 
f12 and f13.  When comparing to the original results with population size of 100, 
generally, it is well accepted that a larger population size will result in better 
performance. Our results agree with this fact. However, one important finding from 
our numerous experiments is that the results in the right column of Table 2 can be 
further improved by carrying out independent PSA involving for a relevant population 
size. 

Table 2. Comparing OPDE with different population sizes 

Popsize 100 30 

f(x) Mean Best (Std) Mean Best (Std) 

f
1
 6.73×10-19 (2.51×10-19) 1.29×10-23 (1.52×10-23) 

f
2
 5.59×10-17 (1.19×10-17) 1.92×10-20 (2.05×10-20) 

f
3
 3.73×10-11 (4.94×10-11) 1.32×10-06 (2.14×10-06) 

f
4
 1.13×10-06 (5.01×10-10) 1.29×10-06 (5.83×10-07) 

f
5
 2.22×10-24 (3.67×10-24) 2.87 (1.90) 

f
6
 0 (0) 0 (0) 

f
7
 3.92×10-03 (1.35×10-03) 5.30×10-03 (1.45×10-03) 

f
8
 -12569.5 (5.71×10-12) -12548.17 (51.30) 

f
9
 0 (0) 0.16 (0.42) 

f
10
 1.95×10-10 (4.01×10-11) 7.73×10-13 (4.22×10-13) 

f
11
 3.25×10-20 (2.66×10-20) 4.12×10-20 (2.32×10-20) 

f
12
 4.29×10-20 (1.44×10-20) 9.81×10-23 (1.27×10-22) 

f
13
 2.60×10-19 (9.07×10-20) 3.59×10-22 (4.88×10-22) 

f
14
 1.00 (1.11×10-16) 1.00 (9.06×10-16) 

f
15
 3.07×10-04 (9.64×10-20) 3.26×10-04 (1.28×10-04) 

f
16
 -1.03  (2.51×10-15) -1.03  (4.26×10-06) 

f
17
 0.40 (1.98×10-10) 0.40 (6.99×10-08) 

f
18
 3.00 (1.08×10-15) 3.00 (1.61×10-15) 

f
19
 -3.86 (2.66×10-15) -3.86278(1.18×10-13) 

f
20
 -3.32 (4.66×10-05) -3.32184(3.38×10-04) 

f
21
 -9.64 (1.29) -8.25 (2.35) 

f
22
 -10.40 (0.03) -9.25 (2.01) 

f
23
 -10.54 (7.62×10-05) -9.48 (2.32) 

5 Conclusion 

By replacing the scaling factor with a uniformly distributed random number, we have 
reduced the number of key parameters in DE to a single parameter, apart from the 
population size. This essentially leads to the one-parameter differential evolution. We 
have shown that DE can work effectively without the concern of setting a suitable value 
for scaling factor, F. With the presence of one parameter, users can take the full 
advantage of the OPDE algorithm by tuning the CR value through parameter sensitivity 
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analysis. This usually saves a great amount of time, compared to PSA involving two 
parameters.  In future studies, different distributions such as Cauchy or Gaussian may be 
incorporated for further analysis. It may be useful to use chaotic maps. It can be 
expected that the proposed OPDE may perform efficiently for large-scale optimization 
problems as the PSA can be easily done, compared with two-parameter DE variants. 
Further studies using large-scale test functions will be highly recommended. 
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Abstract. This paper proposes a new framework that optimizes anti-spam 
model with heuristic swarm intelligence optimization algorithms, and this 
framework could integrate various classifiers and feature extraction methods. In 
this framework, a swarm intelligence algorithm is utilized to optimize a 
parameter vector, which is composed of parameters of a feature extraction 
method and parameters of a classifier, considering the spam detection problem 
as an optimization process which aims to achieve the lowest error rate. Also, 2 
experimental strategies were designed to objectively reflect the performance of 
the framework. Then, experiments were conducted, using the Fireworks 
Algorithm (FWA) as the swarm intelligence algorithm, the Local Concentration 
(LC) approach as the feature extraction method, and SVM as the classifier. 
Experimental results demonstrate that the framework improves the performance 
on the corpora PU1, PU2, PU3 and PUA, while the computational efficiency is 
applicable in real world. 

Keywords: Spam Detection, Fireworks Algorithm, Parameter Optimization, 
Local Concentration Approach. 

1 Introduction 

Spam, defined as Unsolicited Commercial E-mails (UCE) or Unsolicited Bulk  
E-mails (UBE), has become a significant problem for both recipients and Internet 
Service Providers (ISPs). For recipients, coping with spam is time-consuming; 
furthermore, spam frequently contains images that recipients find offensive, or 
attached malicious programs that attack recipients’ computers. For ISPs, large scale of 
spam is a considerable burden on their systems. Commtouch reported that in Q4 2012, 
the average daily spam level was 90 billion messages per day, which is a slight 
increase over Q3 2012. [1] Ferris Research revealed that spam cost $130 billion 
worldwide in 2009, which was a 30% raise over the 2007 estimates. [2] Therefore, it 
is necessary to find an effective method for the spam detection. 

Many approaches were proposed to handle the problem. In fact, Spam detection 
involves mainly three research fields, namely term selection, feature extraction, and 
classifier design. In the classifier design field, many machine learning (ML) methods 
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were adopted to classify emails, such as Support Vector Machine (SVM) [3]–[6], k-
Nearest Neighbor (k-NN), Naive Bayes (NB), Artificial Neural Network (ANN), 
Boosting, and Artificial Immune System (AIS). As the performance of an ML method 
depends on the extraction of discriminative feature vectors, feature extraction 
methods are crucial to the process of spam filtering. Commonly used feature 
extraction methods are, for example, Concentration-based Feature Construction 
(CFC) [4], Local concentration (LC) [7] and Bag-of-Words (BoW). The researches of 
term selection have also attracted much attention from researchers all over the world, 
widely utilized methods including Information Gain (IG) [8], Term Frequency 
Variance (TFV) [9] and Document Frequency (DF).  

In previous research, parameters in the anti-spam process are set simply and 
manually. However, the manual setting might cause several problems. For instance, 
lack of prior knowledge may lead to improper parameter setting, repeated attempts of 
users cost overmuch human effort, and the inflexibility of the dataset-relevant 
parameters should also be taken into counted. 

To solve the problems, this paper proposes a new framework that automatically 
optimizes parameters in anti-spam model with heuristic swarm intelligence 
optimization algorithms, and this framework could integrate various classifiers and 
feature extraction methods. 2 experimental strategies were designed to objectively 
reflect framework performance. Then, experiments are conducted, using the 
Fireworks Algorithm (FWA) as the Swarm Intelligence algorithm, the Local 
Concentration approach as the feature extraction method, and SVM as the classifier. 
Experimental results demonstrate that the framework improved the performance on 
the corpora PU1, PU2, PU3 and PUA, and the computational efficiency is applicable 
in real world.  

The remainder of the paper proceeds as follows. To begin with, we will provide a 
brief background on the LC approach and the FWA in Section II. The proposed 
framework for anti-spam is presented in Section III. In Section IV, the corpora, the 
criteria and the experimental setup are described, and experiments results are 
analyzed in detail. Section V concludes the paper. 

2 Related Works 

2.1 Local Concentration (LC) Based Feature Extraction Approach  
for Anti-spam 

In an anti-spam model, feature extraction is an essential step. The feature extraction 
method decides spatial distribution characteristics of email sample points, influencing 
construction of a specific email classification model and the final classification 
performance. An effective feature extraction method is able to extract extinguishing 
features of emails, endowing different kinds of emails possessing obvious spatial 
distribution difference. Moreover, it should be capable of reducing the complexity and 
difficulty of classification, so as to improve overall performance of the anti-spam 
model. The Local-concentration (LC) approach is proved to meet both of the 
requirements mentioned above. It not only greatly reduces feature dimensionality by 
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remaining the position-correlated information of emails, but also performs better in 
terms of both accuracy and measure compared to the BoW approach and the GC 
approach. 

Inspired from the biological immune system, the LC feature extraction approach is 
able to extract position-correlated information from messages by transforming each 
area of a message to a corresponding LC feature effectively. Two implementation 
strategies of the LC approach were designed by using a fixed-length sliding window 
and a variable-length sliding window. To incorporate the LC approach into the whole 
process of spam filtering, a generic LC model is designed. In the LC model, two types 
of detector sets are at first generated by using term selection methods and a well-
defined tendency threshold. Then a sliding window is adopted to divide the message 
into individual areas. After segmentation of the message, the concentration of 
detectors is calculated and taken as the feature for each local area. Finally, all the 
features of local areas are combined as a feature vector of the message. 

Fig. 1. Training and classification phases of the LC model 

The generic structure of the LC model is shown in Fig. 1. The tokenization is a 
simple step, where messages are tokenized into words (terms), while term selection, 
detector set construction and LC calculation are quite essential to the model. 

In the term selection step, terms are sorted in the order of importance and the top 
m% of the terms are selected to form the gene library. The term selection rate 
parameter, m%, decides the size of the gene library, influencing the computational 
complexity of the detector construction algorithm and distinguishability of detectors 
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in the next step. An optimal value of m% is supposed to effectively screen out noise 
terms, while guarantee the existence of the informative terms. 

In the detector construction step, the tendency of each detector, namely the 
difference between a term’s posterior probability of presence in normal emails and 
that in spams, is calculated. If the tendency of a term exceeds , the term will be 
added into the detector set. This parameter, , as the standard of detector set 
construction, is capable of controlling significance of detector matching, yet can’t be 
set too high, so as not to cause loss of information. 

In the LC calculation step, the number of sliding windows, N, no matter in fix-
length LC approach or in variable-length LC approach, is an important parameter, 
since it decides the size of a single sliding window and defines the local region,. As a 
result, it has a great impact on the dimensionality of LC feature vectors, and also 
performance of the algorithm. 

The above three parameters, as well as the parameters of classifiers in the 
classification step, are fairly essential in LC approach. They, as a whole, heavily 
influence the performance of the anti-spam model.  

In the previous research, these parameters in LC approach were set simply and 
manually. However, the manual setting might cause several problems. For instance, lack 
of prior knowledge may lead to improper parameter setting, repeated attempts of users 
cost overmuch human effort, and the inflexibility of the dataset-relevant parameters 
should also be taken into counted. To solve these difficulties, a parameter-optimized  
LC approach using Fireworks Algorithm is proposed in this paper. 

2.2 Fireworks Algorithm 

In recent years, swarm intelligence (SI) algorithms have been popular among 
researchers who are working on optimization problems. SI algorithms, e.g. Fireworks 
Algorithm (FWA) [10], Particle Swarm Optimization (PSO), Ant System, Clonal 
Selection Algorithm, and Swarm Robots, etc., have advantages in solving many 
optimization problems. Among all the SI algorithms, FWA is one of the most popular 
algorithms for searching optimal locations in a D-dimensional space. 

Like most swarm intelligence algorithms, FWA is inspired by some intelligent 
colony behaviors in nature. Specifically, the framework of FWA is mimicking the 
process of setting off fireworks. The explosion process of a firework can be viewed as 
a search in the local space around a specific point where the parent firework is set off 
through the offspring sparks generated in the explosion. 

Assume the population size of fireworks is N and the population size of generated 
spark is M. Each fireworks 1, 2, ⋯ ,  in a population has the following 
properties: a current position , a current explosion amplitude  and the amount of 
the generated sparks . Each firework generates a number of sparks within a fixed 
explosion amplitude.  In each generation, N fireworks set off within a feasible 
bounds within explosion amplitude  and spark size , then the spark are 
generated. In addition, the fireworks algorithm also takes Gaussian mutation operators 
to enhance local search capability. 
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The best firework is kept for the next generation, and the other 1 fireworks 
for the next generation are selected based on their distance to other fireworks or 
randomly as to keep the diversity in the set, which includes the N fireworks, the 
generated sparks and Gaussian mutation fireworks. The fireworks algorithm continues 
conducting these operations till the termination criteria is satisfied. 

As to the optimization problem , a point with better fitness is considered as a 
potential solution, which the optima locate nearby with high chance, vice versa. 
Suppose FWA is utilized to solve a general optimization problem:   ∈ , ∈  (1)

where x , , ⋯ ,  denotes a location in the potential space,  is an 
objective function, and  denotes the potential space. Then the FWA is 
implemented to find a point ∈ , which has the minimal fitness value. This is also 
how the optimization of the anti-spam process is implemented. 

3 Parameter Optimization of Local-Concentration Model  
for Spam Detection by Using Fireworks Algorithm 

The classification problem that whether an email is spam or a normal email, is here 
considered as an optimization problem, that is, to achieve the lowest error rate by 
finding the optimal parameter vector in the potential search space. 

The optimal vector , ,  ⋯ , , , ,  ⋯ , , composes of 2 
parts: the first part is the feature calculation relevant parameters , ,  ⋯ , , and 
the second part is the classifier relevant parameters , ,  ⋯ , . The optimal 
vector  is the vector whose cost function  associated with classification 
achieves the lowest value, with 

 (2)

where  is the classification error measured by 10-fold cross validation on the 
training set. Input vector P consists of two parts – parameters  , ,  ⋯ ,  
associated with a certain feature extraction method and , ,  ⋯ ,  associated 
with a certain classifier.  , ,  ⋯ ,  uniquely determine the performance of 
feature construction, while , ,  ⋯ ,  influence the performance of a certain 
classifier. Different feature extraction methods hold different parameters and lead to 
different performance. For LC approach, specifically, , the Term Selection Rate, 
helps select the top  % terms with descending importance in term set, which 
determines the term pool size. , the Proclivity Threshold, the minimal difference of 
a term’s frequency in non-spam e-mails minus that in spam e-mails, has an assistant 
function in  screening out terms with greater discrimination. , the number of sliding 
windows, determines the dimensionality of the feature vector of emails. Different 
classifiers hold different parameters and also lead to different performance. 
Parameters associated with neural network, which determine the structure of the 
network, include number of layers, number of nodes within a layer and each 
connection weight between two nodes. SVM-related parameters that determine the 
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position of optimal hyper-plane in feature space, include cost parameter C and kernel 
parameters, just to name a few.  

The vector  is the optimization objective whose performance is measured by 
. Therefore, the optimization of concentrations can be formulated as follows.  

Finding , ,  ⋯ , , , ,  ⋯ , ,  so that 

, ,⋯, , , ,⋯,  (3)

Several optimization approaches not demanding an analytical expression of the 
objective function such as particle swarm optimization (PSO), genetic algorithms 
(GA) and so forth can be employed for the optimization process. Fireworks Algorithm 
was used to design concentrations.  

Figure 2 shows the optimization process of Parameter Optimization of Local-
Concentration Model for Spam Detection Using Fireworks Algorithm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Process of the Parameter Optimization of Local-Concentration Model for Spam 
Detection by Using Fireworks Algorithm 

This framework utilizes the Fireworks Algorithm to optimize parameters in the 
Local Concentration approach. Not only the essential parameters in the LC approach, 
but also the classifier-relevant parameters are optimized in this framework, so that the 
whole anti-spam process gets optimized. 
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This framework optimizes anti-spam model with heuristic Swarm Intelligence 
optimization algorithms, which could integrate various classifiers and feature 
extraction methods.  

4 Experiments 

4.1 Experimental Corpora 

The experiments were conducted on four benchmark corpora PU1, PU2, PU3, and 
PUA, using 10-fold cross validation. The corpora have been preprocessed with 
removal of attachments, HTML tags, and header fields except for the subject. The 
duplicates were removed from the corpora in that they may lead to over-optimistic 
conclusions in experiments. In PU1 and PU2, only the duplicate spam, which arrived 
on the same day, are deleted. While in PU3 and PUA, all duplicates (both spam and 
legitimate e-mail) are removed, even if they arrived on different days. Different from 
the former PU1 corpus (the one released in 2000), the corpora are not processed with 
removal of stop words, and no lemmatization method is adopted. The details of the 
corpora are given as follows. 

1) PU1: The corpus includes 1099 messages, 481 messages of which are spam. The 
ratio of legitimate e-mail to spam is 1.28. The preprocessed legitimate messages 
and spam are all English messages, received over 36 months and 22 months, 
respectively. 

2) PU2: The corpus includes 721 messages, 142 messages of which are spam. The 
ratio of legitimate e-mail to spam is 4.01. Similar to PU1, the preprocessed 
legitimate messages and spam are all English messages, received for over 22 
months. 

3) PU3: The corpus includes 4139 messages, 1826 messages of which are spam. 
The ratio of legitimate e-mail to spam is1.27. Unlike PU1 and PU2, the legitimate 
messages contain both English and non-English ones. While spam are derived 
from PU1, Spam Assassin corpus and other sources. 

4) PUA: The corpus includes 1142 messages, 572 messages of which are spam. The 
ratio of legitimate e-mail to spam is 1. Similar to PU3, the legitimate e-mail 
contain both English and non-English messages, and spam is also derived from 
the same sources. 

4.2 Evaluation Criteria 

In spam filtering, many evaluation methods or criteria have been designed for 
comparing performance of different algorithms [12], [13]. We adopted four 
evaluation criteria, which were spam recall, spam precision, accuracy, and  
measure, in all our experiments to do a before-and-after comparison. Among the 
criteria, accuracy and  measure are more important, for accuracy measures the total 
number of messages correctly classified, and  is a combination of spam recall and 
spam precision. 
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1) Spam recall: It measures the percentage of spam that can be filtered by an 
algorithm or model. High spam recall ensures that the filter can protect the users 
from spam effectively. It is defined as follows: 

 (4)

where  is the number of spam correctly classified, and  is the number 
of spam mistakenly classified as legitimate e-mail. 

2) Spam precision: It measures how many messages, classified as spam, are truly 
spam. This also reflects the amount of legitimate e-mail mistakenly classified as 
spam. The higher the spam precision is, the fewer legitimate e-mail have been 
mistakenly filtered. It is defined as follows: 

 (5)

where  is the number of legitimate e-mail mistakenly classified as spam, and 
 has the same definition as in (4). 

3) Accuracy: To some extent, it can reflect the overall erformance of filters. It 
measures the percentage of messages (including both spam and legitimate e-mail) 
correctly classified. It is defined as follows: A  (6)

where  is the number of legitimate e-mail correctly classified,  has the 
same definition as in (4), and  and  are, respectively, the number of 
legitimate e-mail and the number of spam in the corpus. 

4)  measure: It is a combination of  and , assigning a weight  to . It 
reflects the overall performance in another aspect.  measure is defined as 
follows: 1  (7)

In our experiments, we adopted 1 as done in most approaches [12]. In this case, 
it is referred to as  measure. In the experiments, the values of the four measures 
were all calculated. However, only accuracy and  measure are used for parameter 
selection and comparison of different approaches. Because they can reflect overall 
performance of different approaches, and  combines both  and . In addition, 

 and , respectively, reflect different aspects of the performance, and they cannot 
reflect the overall performances of approaches, separately. That is also the reason why 
the  is proposed. We calculated them just to show the components of  in detail. 

4.3 Experimental Setup 

All the experiments were conducted on a PC with Intel Core i5-2300 CPU and 4G 
RAM. The LC-based model with variable-length sliding window was optimized and 
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the term selection method utilized was information gain. SVM was employed as 
classifier and LIBSVM was applied for the implementation of the SVM.10-fold cross 
validation was utilized on each corpora. Since FWA is a stochastic algorithm, the 
experimental results we present are average results under ten independent runs. 
Accuracy, recall, precision and F1 measure were selected as evaluation criteria, in 
which accuracy and F1 measure are main ones since they can reflect the overall 
performance of spam filtering. 

4.4 Experimental Results and Analysis 

Two strategies for experiments were designed to investigate the effectiveness of the 
proposed optimization process of LC model. In both strategies, optimization of the 
LC model is conducted on the training set and finally examined on the testing set in 
each fold. In this case, the original training set is further divided into a new training 
set and a testing set for computing the fitness to evaluate the LC model that the 
current spark is corresponding to. 

For the consideration of efficiency, the first strategy (strategy-1) is designed by 
defining a validation set on the original training set and making it independent from 
the original training set, e.g. the original training set is divided into a new training set 
and a validation set. The fitness of each spark is independently computed on the 
validation set after a corresponding classifier is trained on the new training set. The 
optimal model that corresponding to the optimal spark achieved and trained on the 
new training set is finally examined on the testing set in each fold. In this strategy, 
fitness of each spark is evaluated on an independent validation set in each fold, thus 
the computational complexity is relatively low and the optimization process of the LC 
model could be finished quickly. 

Table 1. Performance comparison of LC before and after optimization with strategy-1 

Corpus Approach Precision (%) Recall (%) Accuracy (%) F1 (%) 

PU1 
LC 94.85 95.63 95.87 95.21 

Strategy-1 96.55 95.21 96.33 95.81 

PU2 
LC 95.74 77.86 94.79 85.16 

Strategy-1 95.15 80.71 95.35 86.65 

PU3 
LC 96.68 94.34 96.03 95.45 

Strategy-1 95.81 95.71 96.18 95.69 

PUA 
LC 95.60 94.56 94.91 94.94 

Strategy-1 96.63 94.56 95.53 95.49 
 

Experiments were conducted on the original PU1, PU2, PU3 and PUA corpus to 
verify the effectiveness of strategy-1. Table 1 shows the optimization results with 
strategy-1 as well as the performance of the original LC model. It is clear that the 
performance of the LC model is improved with the optimization process defined by 
strategy-1, indicating that strategy-1, e.g. the FWA-based optimization process, is 
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effective to improve the performance of the original LC model. On the other hand, as 
shown in Table 1, the performance improvement of the LC model with strategy-1 is 
limited due to that the validation set cannot well reflect the data distribution of the 
testing set all the time.  

For the consideration of robustness, the second strategy (strategy-2) is designed 
based on strategy-1. Different from strategy-1, the fitness of each spark in this 
strategy is not simply computed on an independent validation set. Instead, 10-fold 
cross validation mechanism is employed in the process of computing fitness of each 
spark, where the original training set is divided into ten parts and one of them is 
defined as the validation set and others are defined as the new training set in each 
fold. The current spark is evaluated by training a corresponding model on the new 
training set and computing fitness on the validation set ten times. In this case, each 
spark is comprehensively evaluated by the performance on 10 folds. The optimal 
model that is corresponding to the optimal spark achieved and trained on the original 
training set is finally examined on the testing set. In this strategy, fitness of each spark 
is evaluated on the training set   by 10-fold cross validation, overcoming the shortage 
of strategy-1 that the performance improvement of LC model is totally dependent on 
the consistency of data distribution in validation set and testing test. Strategy-2 
enhances the robustness of the optimization process and is considered to achieve the 
improvements, with great performance, of the LC model. 

Table 2. Performance comparison of LC before and after optimization with strategy-2 

Corpus Approach Precision (%) Recall (%) Accuracy (%) F1 (%) 

PU1s 
LC 100 92.36 96.67 95.88 

Strategy-2 100 96.64 98.57 98.22 

PU2s 
LC 100 64.00 90.71 74.62 

Strategy-2 100 94.17 98.57 96.57 

PU3s 
LC 97.84 91.30 95.37 94.34 

Strategy-2 98.25 95.91 97.56 97.02 

PUAs 
LC 95.78 90.72 93.64 92.68 

Strategy-2 98.75 96.44 97.73 97.42 
 

Considering the efficiency of experiments, we randomly selected part of each 
corpora instead of the original corpus to investigate the effectiveness of strategy-2, 
e.g. 20% samples of PU1, PU2 and PUA were selected to form PU1s, PU2s and 
PUAs, and 10% samples of PU3 were selected to form PU3s. Table 2 presents the 
comparison of LC model before and after the optimization with strategy-2. It is 
notable that strategy-2 indeed brings a great improvement to the performance of the 
LC model, validating the effectiveness (taken the precision, recall, accuracy and F1 
into account) of this strategy as well as the FWA-based optimization process. But the 
drawback of strategy-2 is that employing 10-fold cross validating in computing the 
fitness of sparks is time consuming. However, in fact, the usual offline training of the 
spam filters in the real world endows this strategy with usability.  
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5 Conclusion 

This paper proposes a new framework that optimizes anti-spam model with heuristic 
swarm intelligence optimization algorithms, and this framework could integrate 
various classifiers and feature extraction methods. 2 experimental strategies were 
designed to objectively reflect the performance of the framework. Then, experiments 
are conducted, using the Fireworks Algorithm (FWA) as the Swarm Intelligence 
algorithm, the Local Concentration approach as the feature extraction method, and 
SVM as the classifier. During the experiments, 3 core parameters of the LC approach 
and 2 core parameters of SVM were optimized by using FWA. Experimental results 
demonstrated that the framework improved the performance on the corpora PU1, 
PU2, PU3 and PUA, and the computational efficiency is applicable in real world.  

In future work, we intend to incorporate other swarm intelligence algorithms, 
feature extraction methods and classifiers into the framework, and investigate their 
performance under these configurations. 
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Abstract. Fitting is one of the most important methods for free curve and 
surface modeling. This paper constructs the least squares fitting mathematical 
model for Bezier curve to fit the given data points on two-dimensional space. 
The genetic algorithm is applied to optimize the parameters of Bernstein basis 
function. The chromosomes are coded using real numbers. The fitness function 
is the reverse of the sum of the squared error. The simulation results show the 
feasibility and efficiency of the proposed method. 

Keywords: Genetic Algorithm, Bezier Curve, Curve Fitting.  

1 Introduction 

With the rapid development of computer technology and measure technology, it has 
become convenient to obtain lots of measured data points. One of the important 
researching works for computer aided geometry design (CAGD) is to obtain the best 
curve representation to fit the measured data points. This is called curve fitting. In the 
process of measure, there are some errors caused by the influence of varies factors. 
So, the fitting curve or the fitting surface does not need to cross each data point. 
Recently, researchers have paid more and more attention to curve fitting. Curve fitting 
has been widely used in the fields of medicine, chemistry, biology and industry [1, 2]. 
There are many methods to deal with the curve fitting such as Gauss-Newton iteration 
method, L-M method, quasi-Newton method, B-spline curve fitting method and 
Bezier curve fitting method etc. In recent years, with the development and wide 
application of intelligence computational algorithms, some researchers have proposed 
curve fitting methods based on different intelligence computational algorithms. A 
curve fitting method based on BP artificial neural networks was presented by Bao [3]. 
Zhu proposed a curve fitting method of B-spline based on particle swarm 
optimization [4]. Genetic algorithm is a stochastic optimization method which is 
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developed based on natural selection principles and biological evolution mechanisms. 
It is suitable to process with complexity non-linear optimization problems which are 
difficult to do with traditional searching algorithm. Some researchers have applied it 
to solve curve fitting problems [5-13]. Bai combined genetic algorithm and steepest 
descent algorithm to fit Bezier curve [7]. Zhang performed B-spline curve fitting 
based on genetic algorithm and simulated annealing [8]. Renner described least 
square fitting B-spline curve based on genetic algorithm [9]. Zhou presented least 
squares fitting B-spline and Bezier curve based on genetic algorithm [10]. Sun 
optimized the parameters of B-spline curve by genetic algorithm[11]. Inspired by Sun 
[11], this paper constructs a least squares fitting mathematical model for Bezier curve, 
and optimizes the parameters of Bernstein basis function using genetic algorithm. 
There are some methods for the choice of parameters, such as uniform 
parameterization, cumulative chord length parameterization [14], centripetal model 
parameterization [15] and gradient parameterization [16-17].   

2 Least Squares Fitting Mathematical Model for Bezier Curve 

Bezier curve is a polynomial curve driven by a set of control points. It is named after 
their inventor Dr. Pierre Bezier. A Bezier curve is a parametric curve frequently used 
in computer graphics and related fields. Bezier curve has the ability to represent and 
design the free curve and free surface. We use the Bezier curve to fit the ordered data 
points so that the least squares error is minimized. 

The least squares fitting mathematical model for Bezier curve is described as follows: 

Given r ordered data points },...1),,({ rjyxqQ jjj == on two-dimensional 

space and the corresponding ordered parameter vector },...1,{ rjtT j == . The n order 

Bezier curve is defined as follows: 
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where { }, 0,...,iP P i n= = represent the control point and ( )n
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While utilizing Bezier curve to fit the ordered data points on two-dimensional space, 
the least squares fitting error should be minimized. If a data point lies on Bezier 
curve, it should satisfy: 
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Eq.(3) can be written in matrix form: 

BPQ =  (4)

where B is Bernstein basis function and Q is the given data points on two-dimension 
space. If the parameter vector T is given, the approximate solution of the control 
points can be obtained: 

( ) 1T TP B B B Q
−

=  (5)

Eq.(5) is fitted into in Eq.(4) . Then the fitting curve equation can be written as: 

( ) 1c T TQ B B B B Q
−

=  (6)

c
jq denotes the point on the fitting curve that is related to the parameter jt . The sum 

of the squared error is:  

2

0

r
c

j j
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SSE q q
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It can be seen from Eq.(7) that the choice of the parameter vector { }, 1, ,jT t j r= =   

for Bernstein basis function will affect the error of the fitting. This paper will apply 
genetic algorithm to obtain the optimal parameter vector. 

3 Bezier Curve Fitting Process Based on Genetic Algorithm 

Genetic algorithm is a computer simulation of the biological evolution process. The 
population consists of some individuals (chromosomes). Each chromosome is 
composed of some genes. A possible solution of a problem is considered a 
chromosome by the genetic algorithm. The algorithm calculates the fitness function 
value of each individual according to the given fitness function and then performs the 
searching process in terms of the fitness function value. The searching process 
consists of a selection operation, a crossover operation and a mutation operation. 
Genetic algorithm does well in global and parallel searching. This paper applies 
genetic algorithm to optimize the parameter vector in Bernstein basis function. 

3.1 Coding and Genetic Operation 

Coding and Initialization. The parameter vector { }, 1, ,jT t j r= =  of Bezier curve 

to be optimized is considered as a chromosome. The chromosome is coded using real 
number. The selection, crossover and mutation operations are applied on the 
population iteratively. Finally, the parameter vector which maximizes the fitness 
function is obtained.  
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In the initialization step, each chromosome in the population is initialized 
randomly. Random real numbers between 0 and 1 are produced for r-1 times. These 
numbers should be sorted to keep the parameters orderly. The first parameter is set as 
0 so that the left point of the Bezier curve coincides with the first given data point. 
There are r parameters in Bernstein basis function. So each chromosome corresponds 
to a parameter vector and there are r genes in each chromosome. The samples of two 
initial chromosomes are given below. 

iG ：0  0.0680  0.1537  0.2407  0.2665  0.2810  ……  0.9577 

jG ：0  0.0566  0.1247  0.2555  0.2766  0.2820  ……  0.9566 

 

Fitness Function. In order to obtain the best fitting curve, the sum of the squared 
error should be minimized. So the fitness function can be chosen as  

Fitness = 1 / SSE   

When the value of SSE is smaller the value of the fitness function is bigger. The 
points on Bezier curve will better fit the given data points on two-dimensional space. 

Selection Operation. Genetic algorithm selects the better chromosome through the 
selection operation. The roulette method is used to select the better chromosome with 

a higher fitness function value. If if denotes the fitness function value of chromosome 

iG , the probability that iG  is selected is 

1

i
i N

i
i

f
P

f
=

=


 
 

Crossover Operation. According to the mathematic model of Bezier curve, the 
elements of the parameter vector are ordered increasingly. That is the genes in each 
chromosome are ordered ascendingly. The crossover operation should satisfy the 
ordered feature. The chromosomes that generated by single-point crossover and multi-
point crossover do not satisfy the ordered feature. In order to solve this problem, the 
chromosomes are coded using real numbers and the linear combination crossover 
operation is applied. The process of crossover is shown as follows: 

   iG and jG denote parent chromosomes. A random real number that lies between 0 

and 1 is h. The generated chromosomes after the crossover operation are: 

( )' 1i i jG hG h G= + −  

( )' 1j i jG h G hG= − +  

 

The offspring chromosomes generated from linear combination crossover operation 
continues the increasing feature. 
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Mutation Operation. In order to obtain the global optimization solution, genetic 
algorithm utilizes the mutation operation to expand the search region. Any gene on a 
chromosome may mutate. The mutation could destroy the increasing order of genes 
on a chromosome and the chromosome will no longer be a possible solution for the 
parameter vector. To keep the increasing order of the genes, the mutation operation is 
adopted as follows in this paper. 

Set ( )1 2, , , rG g g g=  is a chromosome that will mutate. A random integer 

number which lies between 1 and r is k. The kth gene on the chromosome is denoted 

by '
kg . The mutation operation is show as follows: 
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where h is a random real number that lies between 0 and 1. 

3.2 Flow of Algorithm 

The steps of the optimizing parameters of Bezier curve based on genetic algorithm are 
as follows: 

Step1: Set the order of Bezier curve, the data points on two-dimensional space, the 
size of the population and the maximum iteration generation. 

Step2: Initialize the chromosomes.  
Step3: Calculate the fitness function value for each chromosome. Record the best 

fitness function value and the corresponding chromosome. 
Step4: Apply the selection operation. Select the chromosomes with higher fitness 

function value using roulette selection. 
Step5: Match the chromosomes randomly. Apply the linear combination crossover 

operation to each pair of chromosomes. 
Step6: Mutate the chromosome according to mutation probability. 
Step7: Calculate the fitness function value for each chromosome. Update the best 

fitness function value and the corresponding chromosome. 
Step8: Repeat step 4 through step 7 until the maximum iteration generation is 

reached. Record the best fitness function value and the best chromosome 

4 Simulation Experiment 

There are two examples to test the proposed algorithm in this paper. The first example 
is to fit some points from sin function. The second example is to fit some given data 
points on two-dimensional space. The program is written in Matlab. The parameters 
used in the algorithm are as follows: the order of Bezier curve is 5, the size of the 
population is 40, the maximum iteration generation is 200, the crossover probability is 
0.6, the mutation probability is 0.01. 
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Example 1: Given 20 ordered data points. The x-coordinates are 20 real numbers 
from 0 to π2 . The interval is π1.0 . The y-coordinates are the function value of sin 
corresponding to x-coordinates. Fitting these 20 data points the least SSE is 0.0446. 
Fig. 1 shows the best value and average value of SSE in each generation. Fig. 2 shows 
the fitting curve and the given data points.  

 

Fig. 1. SSE value of example 1 in each generation 

 

Fig. 2. The fitting curve for example 1. ‘o’ represents the fitting data points and ‘+’ represents 
the given data points. 

Example 2: Given 20 ordered data points on two-dimensional space. Fitting these 20 
data points the least SSE is 0.0446. Fig. 3 shows the best value and average value of 
SSE in each generation. Fig. 4 shows the fitting curve and the given data points.  
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Fig. 3. SSE value of example 2 in each generation 

 

Fig. 4. The fitting curve for example 2. ‘o’ represents the fitting data points and ‘+’ represents 
the given data points. 

It can be seen from the two examples that the genetic algorithm is efficient to 
optimize the parameters of Bezier curve to fit the given data points. The fitting 
precision is comparable.  

5 Conclusion 

This paper constructs the least squares fitting mathematical model of Bezier curve 
based on given data points on two-dimensional space. The genetic algorithm is 
applied to optimize the parameters of this model. The chromosomes are coded using 
real numbers. The fitness function is the reverse of the sum of squared error. The 
selection operation is the roulette selection. The crossover operation is the linear 
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combination crossover. The mutation operation is selected in accordance with the 
location of the gene. The simulation results show that the proposed method is feasible 
and efficient for curve fitting.  
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Abstract. In this paper, we propose a new peak-to-average power ratio (PAPR) 
reduction scheme of orthogonal frequency division multiplexing (OFDM) 
system, called invasive weed optimization (IWO) scheme, which considerably 
reduces the computational complexity with keeping the similar PAPR reduction 
performance compared with the conventional partial transmit sequences (PTS) 
scheme. PTS is a distortionless PAPR reduction technique, but its high search 
complexity for finding optimal phase factors must be reduced for usable 
applications. The proposed scheme is analytically and numerically evaluated for 
the OFDM system specified in the IEEE 802.16 standard. IWO based PTS is 
compared to different PTS schemes for PAPR reduction and search complexity 
performances. The simulation results show that the proposed IWO-based PTS 
method provides good PAPR reduction and bit error rate (BER) performances.  

Keywords: Orthogonal frequency division multiplexing, Peak-to-average power 
ratio reduction, Partial transmit sequence and Invasive weed optimization. 

1 Introduction 

As the bandwidth demand in communication systems is increased, the new 
transmission formats like orthogonal frequency division multiplexing (OFDM) is 
applied in modern communication systems like worldwide interoperability for 
microwave access (WiMAX). Despite the advantages of OFDM signals like high 
spectral efficiency and robustness against inter-symbol interference (ISI), the OFDM 
signals suffer from disadvantages in which the main one is high peak-to-average 
power ratio (PAPR) [1-2]. The reason for high PAPR is that in time domain the 
OFDM signal is actually sum of many narrowband signals. A major drawback of 
orthogonal frequency division multiplexing (OFDM) is the high peak-to-average 
power ratio (PAPR) of the transmitted signal. However, a major problem associated 
with multicarrier modulation is its large peak-to-average power ratio (PAPR) [3-4], 
which makes system performance very sensitive to distortion introduced by nonlinear 
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devices such as power amplifiers. Soft computing techniques are useful in 
communication field [5-7]. Partial transmit sequence (PTS) technique use iterative 
routine similar to the trial-and-error method for finding the optimum phase factors 
that leads to lower PAPR. It is distortionless but is time-consuming, and needs large 
number of computations [8-11]. 

In this paper, we take a fresh look at PTS for PAPR reduction and propose 
solutions for both the above-mentioned problems. To tackle the complexity issue of 
PTS, we formulate the sequence search of PTS as a particular combinatorial 
optimization (CO) problem. To reduce complexity for phase weight searches, some 
stochastic search techniques [10-12] have recently been proposed because they could 
obtain the desirable PAPR reduction with a low computational complexity.  

In recent past several intelligences nature-inspired metaheuristics like the Artificial 
bee colony algorithm [9], Electromagnetism-like Method (EM) method [10], genetic 
algorithm (GA) [11] and particle swarm optimization (PSO) [12], etc. have been 
applied to solve the PAPR reduction problems. However, to our knowledge, invasive 
weed optimization (IWO) [13-14] has not yet been used for the same purpose till date. 
In this paper, we propose a novel solution to reduce the complexity while keeping the 
optimal combination of the phase factors to reduce the PAPR largely. Specifically, we 
apply the IWO to search the optimal combination of phase factors with largely reduced 
complexity. In simulations the fixed WiMAX signal based on IEEE 802.16-2004 
standard is applied for demonstrating the effectiveness of the proposed technique. The 
rest of this paper is organized as follows. In Section 2, typical OFDM system is given 
and the PAPR problem is formulated and then PTS is explained. Then, IWO is 
proposed to search the optimal combination of phase factors for PTS in section 3. 
Section 4 and 5 discuss the simulation results and conclusions respectively. 

2 System Model and Problem Definition 

In OFDM systems, a fixed number of successive input data samples are modulated 
first, and then jointly correlated together using IFFT at the transmitter side. IFFT is 
used to produce orthogonal data subcarriers. Mathematically, IFFT combines all the 
input signals to produce each element (signal) of the output OFDM symbol. The time 
domain complex baseband OFDM signal can be represented as [2]: 
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where Si is i-th data modulated symbol in OFDM frequency domain, N is the number 
of subcarriers and sn is the n-th signal component in OFDM output symbol. However, 
OFDM output symbols typically have large dynamic envelope range due to the 
superposition process performed at the IFFT stage in the transmitter. PAPR is widely 
used to evaluate the variation of the output envelope. PAPR is an important factor in 
the design of both high power amplifier (PA) and DAC and for generating error-free 
(or with minimum errors) transmitted OFDM symbols and also preventing the PA to 
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work in nonlinearity region. The PAPR of the transmitted signal in Eq.(1) could be 
defined as  
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where max|sn|
2 is the maximum values of the OFDM signal power, s=[s0,s1,...,sN-1] and 

E[·] denotes the expected value operation. In principle, PAPR reduction techniques 
are concerned for reducing max|sn|

2.  
In the PTS technique, an input data block of N symbols is partitioned into disjoint 

sub-blocks. The subcarriers in each sub-block are weighted by a phase weighting factor 
for the sub-block. The phase weighting factors are selected such that the PAPR of the 
combined signal is minimized. The block diagram of IWO-based PTS scheme is shown 
in Fig. 1 [3]. In the scheme, S is partitioned into M disjoint sub-blocks such that 
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S S
=

=   (3)

Here, it is assumed that the clusters Si consist of a set of sub-blocks with equal size. The 
objective is to find sets of phase weighting factors b. Then, the weighted sum 
combination of the M sub-blocks which could be written as 
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where bi, i=1, 2,…., M is the phase weighting factor. In general, the selection of the phase 
weighting factors is limited to a set with finite number of elements to reduce the search 
complexity. After transforming to the time domain, the new time domain vector becomes  
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The optimization process is to find phase weighting factor that minimize the PAPR. 
The optimal phase weighting factor bi that minimizes the PAPR can be obtained from a 
comprehensive simulation of all possible combination. The objective of the proposed 
method is to choose a phase weighting vector b={b1,b2,...,bi} to reduce the PAPR of 
Z(b), and the cost function is defined as  
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ˆ arg min max
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i i
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i

b
=

 
=  

 
b S . (6)

The sub-block partition for PTS scheme is one of the effective PAPR reduction 
techniques of division on sub-carriers into multiple disjoint sub-blocks [15]. However, 
the computation complexity C shows a corresponding exponential increase, which is 
related as C=2M-1. With the viewpoint from PAPR reduction, pseudo-random 
sub-block partitioning has a better performance than that with the other methods.     
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In this paper, a sub-blocks partition method is implemented initially. In the following, 
the sub-blocks partition method is used into the PTS scheme with applying the IWO 
optimization algorithm to reduce the PAPR in the OFDM systems. 

 

Fig. 1. The block diagram of the IWO-based PTS technique 

3 The Invasive Weed Optimization-Based PTS Scheme  
for Reduction 

In a D-dimensional search space, a weed which represents a potential solution of the 
objective function is represented by b=(b1,b2,...,bm). Firstly, P weeds, called a 
population of plants, are initialized with random growth position, and then each weed 
produces seeds depending on its fitness and the colony’s lowest fitness and highest 
fitness to simulate the natural survival of the fittest process. The number of seeds each 
plant produce increases linearly from minimum possible seed production to its 
maximum. The generated seeds are being distribution randomly in the search area by 
normal distribution with mean equal to zero and a variance parameter decreasing over 
the number of iteration. By setting the mean parameter equal to zero, the seeds are 
distributed randomly such that they locate near to the parent plant and by decreasing the 
variance over time, the fitter plants are grouped together and inappropriate plants are 
eliminated over times. The general scheme for the IWO algorithm is shown in 
Algorithm 1, which consists of four main procedures: Initialization, reproduction, 
Spatial dispersal and Competitive exclusion operator, respectively.  

 

Algorithm 1. Differential Evolution algorithm 

1. Initialize population space( ); select an initial population of N candidate 
solution, Evaluate fitness 

2. while termination criteria are not satisfied do 
3.  Reproduction ( ) 
4.   Spatial dispersal ( )  
5.   Competitive exclusion () 
6. end while 
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To model and simulate the colonizing behavior of weeds in order to introduce a 
novel optimization algorithm, some basic properties of the colonization process are 
considered:  

Step1. Initializing a population: A population of initial solutions is being spread out 
over the D-dimensional problem space with random positions. 

Step 2. Reproduction: Each member of the population is allowed to produce seeds 
depending on its own, as well as the colony’s lowest and highest fitness, such that, the 
number of seeds produced by a weed increases linearly from lowest possible seed for 
a weed with worst fitness to the maximum number of seeds for a plant with best 
fitness.  

Step 3. Spatial dispersal: The produced seeds in this step are being dispread over the 
search space by normally distributed random numbers with mean equal to the location 
of the producing plants and varying standard deviations. Thus, seeds will be randomly 
distributed such that they abide near the parent plant. 

Step 4. Competitive exclusion: This process continues until the maximum number of 
plants is attained by fast reproduction. At this stage, only the plants with higher fitness 
can survive and produce seeds, whereas others are eliminated (competitive exclusion). 

4 Results and Discussions 

In this section, the system performance with proposed PTS scheme is evaluated based 
on the PAPR complementary cumulative distribution function (CCDF) and the bit 
error rate (BER) by computer simulation. The modulation is chosen as QPSK scheme 
and the number of sub-carriers is assumed to be N=1024. In the simulations, the 
random sub-blocks partitioning is used both in the conventional PTS and the proposed 
PTS schemes. The complexity of those two techniques with several of number of 
sub-blocks M is also considered in this paper. The parameters, the number of clusters 
and the number of allowed phase weighing factors W for transmit sequences, are also 
considered in the simulations. The cumulative distribution function (CDF) of the 
amplitude of a sampling signal is computed by CDF=1-exp(PAPR0), and the CCDF [2] 
could defined as 
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= >
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It is assumed that the N time domain signal samples are mutually independent and 
uncorrelated.  

Fig. 2 depicts the CCDF of the PAPR with the PTS sequence search by IWO 
technique with M= 2, 4 and b=4. Just as expected, the PAPR performance of our 
proposed IWO-based PTS scheme with (M,b)=(2,2), is not only almost the same as that 
of the IWO -based PTS scheme with(M,b)=(4,4), but also having much lower 
computational complexity.  
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Fig. 2. Comparison of the PAPR CCDF of the different numbers of the maximum number of 
iterations of the IWO method for N=1024, W=4, M= 2 and 4 

 

Fig. 3. Comparison of BER performance of the IWO technique with different numbers of 
iterations in AWGN channels 

Fig. 3 shows a comparison of Bit Error Rate (BER) performance of the IWO 
method in Additive White Gaussian Noise (AWGN) channels. From this figure, we 
can see that the BER is slightly increased when IWO-PTS method is applied as 
compared to conventional PTS, but PAPR is much improved according to the result 
of Fig. 2. The performance of system shows improvement at the cost of BER. In the 
IWO method, the population size is assumed to be P = 20; and the corresponding 
maximum number of iterations are G = 10, 30, 50 and 100, respectively.  
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5 Conclusions 

This paper proposes an IWO technique to obtain the optimal phase weighting factor 
for the PTS scheme to reduce computational complexity and improve PAPR 
performance. The searches on phase weighting factors of the PTS technique is 
formulated as a global optimization problem with bound constraints. The computer 
simulation results show that the proposed IWO technique obtained the desirable 
PAPR reduction with low computational complexity when compared with the various 
stochastic search techniques. The performance of system shows improvement at the 
cost of BER. The application of the proposed method will be useful in WiMAX 
applications. 
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Abstract. The use of the neural network ensemble approach for solving 
classification problems is discussed. Methods for forming ensembles of neural 
networks and methods for combining solutions in ensembles of classifiers are 
reviewed briefly. The main ideas of comprehensive evolutionary approach for 
automatic design of neural network ensembles are described. A new variant of a 
three-stage evolutionary approach to decision making in ensembles of neural 
networks is proposed for classification problems. The technique and results of a 
comparative statistical investigation of various methods for producing of 
ensembles decisions on several well-known test problems are given.  

Keywords: classifiers, neural networks, ensembles, combining strategies. 

1 Introduction 

Artificial neural networks and, in particular, multilayer perceptrons, are one of the 
most popular machine learning techniques applied to classification problems. The 
popularity of the neural network approach is mainly due to its high efficiency, proven 
for a wide range of practical problems. However, the constant desire to improve the 
quality of classification, the increasing scale of problems, the increasing demands for 
performance and the need for the development and use of parallel computing systems 
lead to the need for developing approaches that are significantly different from those 
that use a single neural network. Therefore, one of the most promising and popular 
approaches to solve classification problems in recent years is the neural network 
ensemble approach. The development of this approach was initiated in the article of 
Hansen and Salomon [1], although a collective approach using other techniques for 
classification was known before [2]. Examples of successful solutions of various 
problems with the use of neural network ensemble methods can be found in [3-5]. 

In this article we will focus on the classification problems and the development and 
analysis of appropriate neural network ensemble methods. We suppose that the 
improvement of the technique used to combine the single expert (participants of the 
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ensemble) decisions may be one of the ways for further development of the ensemble 
approach, particularly for solving problems of classification. Generally, there are 
many variants of strategies for combining the individual classifier’s decisions. In this 
paper we propose a new three-stage approach, which extends the idea of a stacked 
generalized method developed by Wolpert [6]. In the proposed approach trained 
classifiers with continuous outputs placed on the second stage are used for the 
aggregation of individual experts’ decisions. They are formed using genetic 
programming (in general, any other appropriate technology, such as fuzzy logic or 
ANN classifiers, can be used as second stage classifiers). The final decision about the 
class for each input pattern is made on the basis of an analysis of the decisions of all 
classifiers placed on the second stage. The proposed approach is described in detail in 
the last part of Section 1.  

Section 2 is devoted to a statistical investigation of the performance of the 
proposed approach. Also, in Section 2 a method for evaluating the effectiveness of the 
investigated approaches is described and test problems from the UCI Machine 
Learning Repository [7], used to evaluate the effectiveness of approaches, are listed 
and characterized. The results of the study are also presented at the end of Section 2.  

Finally, we discuss the results of our statistical investigation. 

2 Neural Network Ensembles 

Generally, the ensemble of neural networks is characterized by a pair (N, D), where 
N=(N1, N2, ..., Nn) is a set of n neural networks (experts), whose solutions are taken 
into account in the ensemble decision evaluation procedure, and D is a method of 
obtaining the ensemble decision from the individual neural network decisions (the 
combining strategy). Thus, to use a neural network ensemble as a problem solving 
technology in each particular situation, two problems must be solved: a set of neural 
networks N must be formed and a method of deriving the common ensemble decision 
D=f(N) from the individual expert decisions must be chosen. Each of these stages 
constitutes a separate problem, whose solution can be obtained in different ways.  

The most resource-intensive stage is the first stage, during which the structure and 
the parameters of the neural networks used as classifiers are determined. Often, a 
relatively simple neural network structures are used because each of them 
theoretically solves a simpler problem obtained by decomposing the original problem 
(in an explicit or implicit form) and the division of the original set into subsets for 
each of the classifiers.  

The second stage, which includes the choice of method for combining the single 
classifier decisions, usually requires less computational resources. Its complexity 
depends on the chosen combining strategy and the complexity of the problem being 
solved. Choosing the simplest combining strategy takes considerably less time 
compared to the first stage. However, using a complex combining strategy is one of 
the main ways of increasing the efficiency of problems solving with ensemble 
approach. In this regard improving the existing and developing new strategies for 
effective combination, which require intensive use of computing resources, becomes a 
more urgent issue to increase the efficiency of classification problems solving.  
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2.1 Forming a Set of Neural Networks 

The first stage is equivalent to multiple solutions of the problem of designing 
intelligent systems based on the use of only one neural network. The complexity and 
resource consumption of this problem depends on the “deepness” of the network 
configuration during the formation of an artificial neural network. In the simplest case 
(or rather – in most cases) developers are limited to setting only the weights for some 
a priori given neural network structure. The more general case of neural networks 
design also involves the formation of a network structure i.e. determining the number 
of network layers, the number of hidden units (neurons) in each layer and the type of 
activation function in each hidden unit. Due to the complexity of designing the neural 
network structure, the development and application of effective methods for solving 
this problem in an automated mode are very important. Recently, approaches which 
utilize a genetic algorithm (or various modifications of this) have become widely used 
to design neural network structures [8]. Despite the fact that in many cases this 
approach is extremely effective, it includes a time-consuming and not formally 
defined stage, which is the setting of the genetic algorithm parameters. Therefore a 
new method with relatively small number of adjustable parameters which is based on 
a probability estimation evolutionary algorithm (named PGNS: Probability Generator 
for Networks Structures) was developed to effectively implement this stage of the 
design of neural network ensembles. The proposed approach automatically designs 
the structures of neural networks. This method is described in details in [9] where we 
proposed a neural network design paradigm based on estimated probability of the 
presence of different types neurons on the neural network layers. It is also useful to 
collect and process information on the presence or absence of neuron at each available 
place in the neural network structure. By including these estimated probabilities into 
our approach we can process the information about an optimal structure of the neural 
network in terms of mathematical statistics. This helps us to generate good neural 
networks. Apparently, the proposed method should provide neural networks which 
are simple and have good generalization ability. To find more effective ensemble 
solutions by forming more complex (compared with simple or weighted average or 
voting) mixtures of the component network decisions we used the genetic 
programming approach for automated generation of symbolic regression formulae.   

2.2 Combining Strategies 

Choosing an effective way to calculate the ensemble decision is a very important 
stage when using ensembles of neural networks. An inefficient combining strategy or 
a weak adaptation of it to a particular situation may have a significant negative impact 
on the effectiveness of the ensemble solution. Therefore, one of the most important 
areas for research relates to approaches for choosing combining strategies.  

In most studies one of two main combining strategies is used: either selection or 
fusion [10]. The selection combining strategies are based on the assumption that each 
of the base experts is specialized in a particular local area of the problem space [11]. 
Expert fusion paradigm assumes that all experts are trained over the whole problem 
space, and are therefore considered as competitive rather than complementary [12].  
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Combining strategies can be divided into two groups concerning the use of 
classifiers’ input when estimating an ensemble decision. The first group includes 
approaches that use “static” structures to evaluate ensemble prediction. The schemes 
for decision-making in these approaches are static and do not depend on the values of 
input variables. The second group includes methods that also operate with input 
variables to estimate effectiveness of ensemble decisions. Such methods are called 
“dynamic”. There are adaptive and non-adaptive static combining strategies. Non-
adaptive schemes include such traditional approaches as averaging, maximum, 
median, product rules, as well as voting and Borda rule [13]. Adaptive approaches use 
different methods for the adaptation and configuration of schemes for ensemble 
member interaction. Such approaches are of particular interest when considering 
possible options for their implementation and the possibility of improving the quality 
of the classification with “small losses”, i.e. without re-executing the most costly 
stage which is designing the individual experts (neural networks or other technology). 
Well-known approaches are decision templates method by Kuncheva[14], weighted 
averaging and stacked generalization method (SGM) proposed by Wolpert [6].  

Proposed Approach 
A three-stage evolutionary approach with the explicit decomposition of the problem 
on the second stage was proposed to improve the efficiency of combining decisions in 
ensembles of neural networks. The method is based on the well-known stacked 
generalization method [6] and partly on the decision templates method [14]. 

The basic scheme for combining solutions using SGM is shown below: 

 

Fig. 1. Obtaining solutions using the stacked generalization method. Here k is the number of 
neural networks (classifiers) in the ensemble. 

This scheme is modified in the proposed approach. Obviously at the first stage of 
the SGM the decomposition of the problem is done in implicit form. The kind of the 
decomposition that is used at this stage is the sample decomposition. In sample 
decomposition (also known as partitioning), the goal is to partition the training set 
into several sample sets, such that each sub-learning task considers the entire 
space [15]. 

At the second stage, there is an aggregation of the individual decisions of the 
classifiers in order to effectively map the solutions into a single target area. The idea 
is to supplement the implicit decomposition of the first stage of the SGM (the first 
stage of decision-making), with the decomposition of the problem in explicit form on 
the second stage (the second stage of decision-making).  
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The kind of the decomposition that is used at this stage is the space decomposition. 
In space decomposition the original instance space is divided into several sub-spaces. 
Each sub-space is considered independently and the total model is a (possibly soft) 
union of such simpler models [16]. We use the approach named “one-vs-all”. This 
approach learns a classifier for each class, where the class is distinguished from all 
other classes, so the base classifier giving a positive answer indicates the output class 
[17-19]. 

We suggest to add the third stage to the basic scheme. In the third stage of 
decision-making the aggregation of decisions is carried out. The general scheme of 
the proposed approach is presented below: 

 

Fig. 2. Decision-making process with the proposed approach. Here k is a number of neural 
networks (classifiers) in the ensemble, c – is a number of classes.  

The following describes the stages of the proposed evolutionary method of 
designing ensemble classifiers. 

Stage 1  
At this stage a set of classifiers is formed (a pool of neural networks), whose 
decisions would be involved in the evaluation of a generalized solution. This stage is 
common to most ensemble approaches. We use the PGNS method [9] for this stage 
using neural networks at the first-stage. In general, any available effective method  
of obtaining individual classifiers of the selected type can be used. The amount of 
computational resources available for use at this stage is determined on the basis of 
the requirements for decision-making time, the required accuracy and available 
computational capabilities. Note that, in general, the classifiers at the first stage can 
be not only neural networks, but also any other classifiers. 

Stage 2  
At the second stage a set of c classifiers of stage 2 are formed independently of each 
other. Here c is equal to the number of classes in the problem. The inputs to the 
classifiers at this stage are the values produced by the first-stage classifiers. And for 

each j-th classifier ( cj ,1= ) on the second stage, training is performed according to 

the rule:  

─ Target output value of the classifier is equal to 1 for all examples of the class j; 
─ Target output value of the classifier is equal to 0 for all other examples. 
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Thus, at the second phase the decomposition of the problem is performed. Each 
classifier on the second stage forms a surface in the space and this surface cuts off 
objects of the appropriate class from objects belonging to any of the other classes. We 
propose a method based on a genetic programming ensembling [9, 21] for combining 
the individual decisions of neural networks to perform this stage. Also any other kind 
of binary classifiers can be used to perform this stage.  

Stage 3  
At the third stage an aggregation of classifier outputs takes place to provide an 
evaluation of the generalized decisions. The output of the aggregator is the target 
class identifier. In the proposed approach we used maximum confidence strategy - the 
object is classified to the class for which the corresponding second-stage classifier 
produces the maximum value of the output [19]. 

Also any other kind of ensemble methods for binary classifiers in multi-class 
problems (i.e. dynamically ordered “one-vs-all” [20, 22]) can be used to perform this 
stage. 

3 Experimental Study 

To evaluate the efficiency of the approach proposed in Section 1 a number of 
numerical experiments were carried out. The investigation also involves some other 
approaches based on ensemble classifiers or on other classifying techniques. Results 
for ensemble approaches have been obtained by performing statistical tests using a 
software system IT-Pegas developed by the authors. We carried out experiments with 
the following methods for combining classifier decisions: simple averaging, majority 
voting, Borda rule and stacked generalization method. For other approaches results 
have been taken from [23]. The full list of methods is in the first column of Table 2. 

In our experiments to investigate efficiency, we perform 5-fold cross validation on 
each data set, where 5 neural network ensembles are trained using the proposed 
approach in each fold. As a measurement of the effectiveness, we used the average 
value of the reliability of the classification, which was calculated as the ratio of the 
correctly classified patterns to the total number of patterns in the test sample. We use 
ANOVA tests [24] to evaluate the statistical robustness of the results obtained using 
the proposed approach. 

To design the first stage classifiers we used the following parameters for the 
proposed method: the ensemble size is 10, the used neural network topology is the 
multilayer perceptron, the maximum number of layers in the neural networks is 3 and 
the maximum number of units in hidden layers is equal to 5.  

We use the following parameters to generate the second stage classifiers for the 
stacked generalization method: the neural network topology used is the multilayer 
perceptron, the maximum number of layers in the neural networks is 3 and the 
maximum number of units in hidden layers is 5. The number of generations for 
forming the structure of the second layer neural network classifier is 200 and the 
number of individuals that encode a network is 50. For each individual its weights are 
tuned using a genetic algorithm with 100 individuals during 100 generations. To 
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generate the second stage classifiers using the proposed approach in the second stage 
we obtained symbolic expression classifiers using genetic programming method. The 
number of classifiers is equal to the number of classes for the particular problem. The 
number of generations to form each classifier is 200 and the number of individuals   
is 100.  

Test Problems 
In our experimental study we used three well-known classification problems from the 
Machine Learning Repository [7]. The information on the data sets used in our 
experiments is presented in Table 1. 

Table 1. Data Sets Used for Classification  

Data Set Number of Attributes Size  
(number of instances) 

Credit Australia-1 14 690 
Credit Germany 20 1000 
Liver Disorder 6 345 

Results 
The experimental results (average classification reliability) found for the proposed 
approach, as well as the results of competing approaches, are presented in Table 2. 

As for variation analysis, our ANOVA tests show that there is a significant 
difference between the approach proposed here and other neural network ensemble 
approaches on Liver Disorder and Credit Australia-1 problems and there is no 
significant difference between the stacked generalization method and our proposed 
approach on Credit Germany problem. ANOVA tests also show that both our 
proposed approach and the SGM outperform all other competitive neural network 
ensemble approaches on the Credit Germany problem. Note that we have no 
opportunity to perform ANOVA tests for approaches which are not implemented in 
the IT-Pegas program system and for which results were taken from other papers. 

Table 2. Comparative Results for Classification Problems 

Classifiers Credit Australia-1 
 

Credit Germany 
 

Liver Disorder 
 

Ensemble of fuzzy classifiers approach 0.921 0.821 0.757 
Fuzzy classifier 0.891 0.794 0.725 
Bayes approach 0.847 0.679 0.629 
Single multilayer perceptron  0.833 0.716 0.693 
Boosting 0.760 0.700 0.656 
Bagging 0.847 0.684 0.630 
Random subspaces approach 0.852 0.677 0.632 
ANN ensemble with simple averaging  0.892 0.805 0.740 
ANN ensemble with majority voting  0.918 0.815 0.783 
ANN ensemble with Borda rule  0.905 0.831 0.772 
ANN ensemble with SGM  0.925 0.852 0.785 
Proposed Approach 0.947 0.857 0.804 
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In general, the results of the numerical experiments show that the effectiveness of 
the proposed approach is not lower than the effectiveness of most of other methods. It 
shows promising results on Liver Disorder and Credit Australia-1 problems but we 
need more information about the conditions and the amount of computational 
resources used for obtaining the solutions by other non-ensemble competitive 
approaches. 

In the second stage of our study, we decided to find (if possible) the best solution 
results for 5 known classification problems and compare them with the results 
obtained using our approach. 

The list of tasks for which the comparison was done is shown in the Table 3. There 
are brief descriptions of the selected test data sets and references to papers from 
which the results were taken. 

Table 3. The second Test Data  

Data Set Number of 
Attributes 

Number of 
classes 

Size Reference 

Cancer 9 2 699 [25] 

Glass 9 6 214 [26] 

Heart 13 2 303 [27] 

Pima 8 2 768 [28] 

Sonar 60 2 208 [27] 

 
In our experimental study we divided the original data set in accordance with the 

scheme of statistical tests into two sub-samples: training and validation. 
The partitions were made in accordance with those used in the works of which 

were the results obtained. A brief description of the test problems can be found 
in [27]. 

To obtain statistically robust results and to determine the statistical parameters of 
solution quality 30 test runs were accomplished for each data set. The results are 
shown in the Table 4. 

Table 4. Best Found and Obtained Results on 5 Well-known Test Data Set 

Data Set Best Found Result Obtained Result 
Cancer 0.120 0.108 

Glass 0.226 0.211 

Heart 0.119 0.120 

Pima 0.196 0.172 

Sonar 0.144 0.159 

 
In addition to evaluating classification error, the proposed approach is also 

achieving statistical evaluation the following parameters: 

1. The average number of neural network classifier used in the second stage. 
2. The average complexity of the network in the team at the first stage. 

The results are shown in Table 5. 
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Table 5. Average Parameters of Neural Network Ensemble Classifiers 

Data Set Average number of neural 
networks in the ensemble 

Average number of hidden 
nodes in neural networks 

Cancer 4 5 

Glass 6 6 

Heart 5 6 

Pima 4 5 

Sonar 4 7 

 
The number in the second column indicates how many solutions of the first-stage 

classifiers on average accounted for design of a class decision by the symbolic 
regression model formed with genetic programming. Apparently, not all classifiers 
solutions are usually used (the initial total number of classifiers on the first stage is 
10). In this case, each second-stage classifier automatically generates a pool of input 
variables (outputs of the first-stage classifiers) based on the criterion of minimizing 
the classification error. Respectively the second-stage classifiers may involve 
different first-stage classifiers. It is possible that several second-stage classifiers can 
use to generate solutions all the classifiers of the first stage, and it is the subject of a 
more detailed study. 

4 Conclusion 

In the paper the basic ideas for the neural network ensemble approach for 
classification problems are reviewed and some of the well-known methods of 
combining classifier decisions in ensembles are described. We proposed a three-stage 
approach for solving classification problems using ensembles of neural networks. The 
methods of decision-making process at every stage of the proposed approach are 
explained. 

The results of numerical studies of the effectiveness of the proposed approach on 
some well-known classification problems are given. The results show that on a 
number of the problems the proposed approach performs classification with a higher 
reliability compared with approaches that use other combination strategies and with 
some well-known non-ensemble approaches. 

In future we intend to use some other large-scale data sets to test our approach and 
tune its performance. Then we hope to apply this method to a broad variety of 
practical problems. 
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Abstract. In the present study, evolved neural network is applied to construct a 
new intelligent stock trading system. First, heterogeneous double populations 
based hybrid genetic algorithm is adopted to optimize the connection weights of 
feedforward neural networks. Second, a new intelligent stock trading system is 
proposed to generates buy and sell signals automatically through predicting a 
new technical indicator called medium term trend. Compared to traditional NN, 
the new model provides an enhanced generalization capability that both the 
average return and variance of performance are significantly improved. 

Keywords: genetic algorithm, neural network, network training, stock trading 
system. 

1 Introduction 

Intelligent modelling for stock market, especially stock price prediction, has drawn 
considerable attention in scientific studies and real world applications due to its 
potential profits. Neural networks (NNs), as a powerful nonlinear model, have been 
extensively studied in dealing with finical issues [1, 2, 3, 4]. It has been proved that 
even a one hidden layer feedforward NN is capable of approximating uniformly any 
continuous multivariate function, to any desired degree of accuracy. However, stock 
market is a complex and dynamic system with noisy, non-stationary and chaotic data 
series [1] so that it is always difficult to learn the regularity of stock movement from 
the use of such corrupted data. The random factors in stock data can be viewed as noise 
which may massively reduce the effectiveness of prediction models. Moreover, NNs 
have a widely accepted drawback that the training of NN is more sensitive than the 
parameter estimation of mathematical models. Traditionally, gradient based search 
techniques are used to find out the optimal set of weight values for NN in order to 
match the known target values at the output layer. These approaches, however, 
sometimes may result in inconsistent and unpredictable performance of the networks 
due to the danger of local convergence. In this case, the generalization of NN will be 
reduced, and it makes lower the credibility of its prediction results.  

As a type of well-known global searching methodologies, evolution computation 
(EC) techniques, such as genetic algorithm (GA) and evolutionary programming (EP), 
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have been successfully applied to aid in training and designing feedforward networks 
[5, 6, 7]. It is widely accepted that the performance of the direct use of conventional 
GA in adapting NN weights is not satisfactory due to the complexity of network 
learning, and therefore previous literatures have proposed many NN specific 
evolution based training methods. Some of these approaches adopt GA to search 
initial weights of NN, then, followed by deterministic methods to finalize the training 
process [8]. Some of them integrate different hill climbing techniques, including both 
conventional and heuristic approaches, into EC framework to enhance the 
effectiveness of evolution based training [9]. In addition, the previous studies have 
proposed a number of modified GA algorithms together with specific genotype 
representations and genetic operators. The genetic representation schemes of these 
approaches, generally, can be classified into two broad categories, i.e., weight based 
and neuron based codifications. In some of these approaches, binary or real valued 
weights are codified as the alleles of gene [10], and in others neurons with associated 
weight are codified as the representational components of gene [11]. Different genetic 
variation operators, such as combinatorial crossover, removing or adding neurons, and 
stochastic or scheduled mutations, have been developed based on these codification 
schemes to meet the nature of NN training [11]. 

In our recent study of [12], a novel evolved NN had been developed. This method 
adopts two separate optimization processes, GA and least squares, to determine the 
connection weights of hidden layer and output layer respectively. In addition, a binary 
representation and a neuron based real number representation are constructed for 
separately codifying hidden layers and hidden neurons. Then, two heterogeneous 
populations are initialized and evolve together in a single evolution procedure. In this 
study, a new intelligent stock trading system is developed based on the evolved NN. 
The NN model is applied to predict the movement trend of stock price for a medium 
term, subsequently, a series of trading strategies are established to automatically 
generate buy and sell signals. Experimental studies suggest that the new intelligent 
trading system performs much better than traditional NN models. 

This study is organised as follows. Sections 2 and 3 respectively present the 
evolved NN model and the new automatic trading system. In section 4, experimental 
studies are carried out to test the performance of the new method. Finally, in Section 5 
conclusions are drawn to summarise the study. 

2 Heterogeneous Double Populations Based GA for NN Training 

Consider an underlying system expressed as follows. 

EXY += )(f  (1)
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denote measured output, noise, and input signals respectively. Feedforward NN with 
single hidden layer can be mathematically derived as follows. 
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where H
jŷ  and kŷ  respectively denote the outputs of hidden neurons and predicted 

outputs of NN. HF  is the nonlinear activation of hidden layer, and ijw , jkv , jb , 

and ka  denote the connection weights and biases of hidden and output neurons 

respectively. The activation function of hidden layer is selected as tan-sigmoid and 
the activation function of output layer is fixed to be a linear combination. 

2.1 NN Based Stock Price Prediction 

Hidden layer essentially determines the nonlinear mapping relationship that a NN 
could have, GA, then, is adopted to optimize the parameters of hidden neuron by 
making use of its advantage of global searching. Then, once a hidden layer is 
determined the unique optimal output layer will be also fixed, and the optimization 
procedure becomes a linear parameter estimation problem. LS estimator is applied in 
the new method to yield the best parameters for output neurons. Consider an output 
neuron k, it is derived as. 
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LS will be embedded in GA’s iterative procedure. On the one hand, the prediction 
results obtained from the use of LS reveals the best performance which a hidden layer 
could have, i.e., a fair evaluation of the hidden layer. On the other hand, LS is a one-
step parameter estimator so that it would not considerable increase the computational 
cost of GA. 

Subsequently, two different codified populations, including a neuron population 
and a network population, are constructed to separately present and learn the 
connection weights and combinations of hidden neurons. That is to say, the evolution 
of hidden layer is broke up into two separate parts. The first one is a real number 
optimization problem for optimizing the parameter values of each neuron in the 
neuron population, and the second one is a combinatorial problem, which can be 
viewed as a special type of knapsack problem, for finding the best hidden layer which 
is codified as a subset of neuron population.  
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2.2 Algorithm Design 

The computational procedure of the new GA design is presented as follows. 

Evolved NN training 

Begin 
0←t  

Initialize populations },,{ )0()0(
1

)0(
KqwwS =  and },,{ )0()0(

1
)0(

KccP =   // w and 

c respectively represent neuron and hidden layer  

∞←∗J , {}←∗S , and {}←∗c   // Define best solution 
While Termination condition is not met 

Variation on )(tP    // crossover and mutation for reproducing networks 
Variation on )(tS    // mutation for reproducing neurons 

Implement (μ+λ)-selection by using r  to yield )1( +tS  
LS parameter estimation   // to yield V and a in output layer 

Calculate MSE TJ , VJ  and r    // to yield fitness values for both )(tS  and 
)(tP  
If ∗< JV )min(J  

)min( VJ J←∗  
)(tSS ←∗  and )(t

icc ←∗ , where )min( V
iJ J=  

End if 
Implement rank selection by using TJ , and elitist preservation to yield )1( +tP   

1+← tt  
End While 
Return the best solution ∗S  and ∗c  

End Begin 

Genetic Representations: In this method, two populations are involved in the 
evolution procedure, and defined as a neuron population and a network population. 
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Each )(t
iw  presents a hidden neuron consists of a set of real coded connection 

weights, and each )(t
jp  presents a binary coded hidden layer corresponds to the 
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neurons defined in )(tS . In )(t
jp , if a component ijc ,  is 1, the neuron )(t

iw  is 

selected to be included in the network )(t
jc , and vice versa.  

The size of hidden layer, q , is pre-specified and will not change during the 

evolution process. For initializing )0(S , all the weights and biases are randomly 
generated with uniform distribution, zero mean and limited amplitude. During the 
evolution, there is no limit restricts the value of these parameters.  

The first advantage of the new genetic codification scheme is that by using two 
populations both combinations and parameters of hidden neuron can be optimized 
individually, so that various operations, such as exchanging neurons and modifying 
connection weights, can be easily implemented. The second advantage is that since 
networks are codified in a binary form and neuron parameters are stored in a separate 
population, it completely avoids the permutation problem of NN’s genetic 

representation that each )(t
jp  presents a unique network without worrying about 

permutation of neurons, and each )(t
iw  presents a unique neuron and can easily 

prevent the problem of redundancy. 

Genetic Variations: Different genetic variations are applied for separately evolving 
hidden layers and neurons. For network population, uniform crossover and random 
mutation are employed in this study. These operators produce offspring by 
exchanging or changing binary coded neurons of the parents, with the aim of finding 
the best subset of neuron population to collect meaningful nonlinear regression 
information as much as possible. For the neuron population, Gaussian mutation is 
used to make random changes on the connection weights of selected neuron.  

Remarkably, the proposed GA only uses traditional genetic operators, which are 
simple and easy to be achieved, and have been widely used in combinatorial and real 
number optimization. It guarantees a much lower computational time and better 
algorithm efficiency. 

Evaluation and Selection: For network population, NNs are evaluated by the mean 
squared error (MSE) of the prediction outputs obtained from using LS estimator, 
which is derived as follows. 

kk vXy O=ˆ  (8)
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Fitness value of a network is then calculated as the mean of {Jk}, and rank selection is 
employed here to samples the population to produce copies for new generation. 

For neuron population, individuals cannot be evaluated directly. In this study, )(t
iw  

are evaluated based on Jj,k of the networks which contain or used to contain such 
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neuron. For the neurons in initial population or newly generated in mutation process, 
neuron fitness ir  can be computed as follows 
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where g is the number of the networks in )(tP  which include )(t
iw . )1( −t

ir  denotes 

the fitness assigned in the last generation. It is noted that the average performance of 
the newest generated networks determines half of the fitness, and all the previous 
fitnesses jointly decide the other half. For neuron population selection, a deterministic 
mechanism called (μ+λ)-selection is applied to make newly generated neurons to 

replace the inferior free neurons in )(tS , which are not occupied by any network in 
)(tP , and with the lowest ir . 

Termination Condition: Additionally, the new method prevents the problem of 
overfitting by means of early stopping method that for each learning trial, the 
modelling data set is randomly split into a training set and a validation set. MSE for 
training set, T

iJ , is used to calculate the fitnesses for implementing the two selection 

and elitist preservation. MSE for validation set, V
iJ , is only used for externally 

choosing the best solution ∗S  and ∗c , and would not be involved in the evolution 
process at all. Finally, the evolution procedure will be terminated if maximum 
generation is met or V

iJ  stops improving for a certain generation number. 

3 Evolved NN Based Intelligent Trading System 

In this study, a new intelligent stock trading system is developed to automatically 
generate buy and sell signals based on the prediction of the medium term trend of 
stock price.  

3.1 NN Based Stock Price Prediction  

The evolved NN introduced in the last section is adopted here to produce the mapping 
from past stock price to future directions to make good use of its advantage in 
generalization. First, a new indicator is proposed to measure the future trend, and will 
be used as the output signal of NN model. Consider at day i, future trend indicator 
(FT) is formulated as follows. 
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where Pi is the closing price, and k denotes the medium term which can be viewed as 
the length of time window of interest. FT shows the difference between the stock 
price at a given time and the average price in the following period. In other words, a 
FT value larger than zero indicates an upward tendency of the given stock, otherwise, 
the price is likely fall down in near future. Compared to short term prediction such as 
one step ahead forecasting, medium term prediction eliminates the randomness of 
daily stock price. Moreover, it is also easy to induce proper trading operations as it 
looks ahead for longer term. 

For the input signals of NN, there are many well-established technical indicators 
that contain refined and distinguishable information about the stock, rather than using 
raw price data which is always stochastic, collinear, and corrupted. According to the 
previous studies, 10 indicators were selected, and they are given in table 1.  

Table 1. Technical indicators used as NN inputs 

CCI Commodity Channel Index 
Di10 10 Days’ Disparity 
MA5 5 Days’ Moving Average 

MA10 10 Days’ Moving Average 
MA20 20 Days’ Moving Average 

Mo Momentum 
PO Price Oscillator 
RSI Relative Strength Index 
SD Stochastic D Index 
SK Stochastic K Index 

3.2 Automatic Trading System 

In this study, A series of trading strategies are developed for deriving daily trading 
operations, i.e. at most one of the three actions, buy, sell or hold could be taken 
automatically within each trading day.  

As aforementioned, the output of NN is a signal that predicts the market trend 
which could be either positive or negative. To avoid imprudent and too frequent 
trading operation, two thresholds are used to filter out the FT signal. When the signal 
is higher than up threshold L1, the system regards it as a significant uprising signal 
and take buy action. On the contrary, when the signal is lower than down threshold 
L2, it is likely to have a market downtrend and sell action will be carried out. The 
output signals falls between (L2, L1) will be considered as small fluctuations, then 
takes hold action. The computation procedure of the new method is presented as 
follows.  
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Step 1: Set Hold as 0. 
Step 2: Input stock price data day by day. 
Step 3: Calculate technical indicators. 
Step 4: Predict FT by using evolved NN. 
Step 5: If FT>L1 and Hold=0, generate a buy signal and set Hold as 1; if FT<L2 and 
Hold=1, generate a sell signal and set Hold as 0. 
Step 6: Take action as the signal suggested. 
Step 7: Go to step 2. 

 
It should be noted that the thresholds, L1 and L2, can be determined according to 

the risk appetite of decision makers. Risk seeking people may prefer thresholds close 
to zeros as the trading could be carried out more frequently, while risk aversion 
people prefer larger thresholds in order to avoid incorrect trading caused by the 
randomness of stock price. Actually too frequently trading will increase the variance 
of the return even though the mean may go up at the same time, i.e. the higher the risk 
it takes, the higher the expected return it gets. 

4 Case Study 

S&P 500 index from January 2nd 2001 to February 24th 2012, with length of totally 
2800 data points, was used to demonstrate the performance of the new method.  

First, the entire data set was divided into two parts that the first part with length of 
2600 was applied as modeling data for NN training and validation, and the last 200 
daily prices were used to test the effectiveness of the automatic trading system. Fig. 1 
shows closing price data. In should be noted that there are both rise and fall trends 
emerge during the test period so that the index maintains almost the same value at the 
end of the 200 days.  

 

Fig. 1. S&P 500 index from January 2nd 2001 to February 24th 2012 with data length of 2800 

Second, Three performance measurements, which are more intuitive and easy to 
understand, are adopted in this study in place of the common used statistics such  
as mean absolute percentage error (MAPE) and root mean square error (RMSE).  
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It is because that the new method is an automatic trading system rather than a 
common prediction model. The three indexes, cumulated return (Creturn), correct rate 
(CRate), and correct value (CValue), are derived as follows 
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where Si is the trading signal at time i obtained from using the new method. 1=iS  

denotes a buy signal, and 1−=iS  denotes a sell signal. 

Third, traditional neural network was also implemented by using Matlab toolbox 
for comparing the performance of prediction model especially generalization 
capability. In addition, each experiment was independently carried out for 100 times 
for the sake of eliminating the random nature of both data collection and training 
algorithms. 

Finally, the statistical results for the 100 runs are presented in table 2, and the 
corresponding hypothesis tests are also adopted. Table 3 gives the hypothesis for each 
statistics. 

Table 2. Statistics and hypothesis test of evaluation indexes 

Measure  Model Hypothesis Test 

  GANN ANN H0 P 
Return Min 93.04 77.28 -  

 Max 118.35 135.81 -  
 Mean 104.77 99.98 1 0.00 
 Std    5.68 10.66 1 0.00 

CRate Min 44.00 4.00 -  
 Max 57.50 50.50 -  
 Mean 50.33 33.65 1 0.00 
 Std 2.41 8.19 1 0.00 

CValue Min 45.77 0.78 -  
 Max 57.96 44.61 -  
 Mean 50.50 24.31 1 0.00 
 Std 2.06 8.90 1 0.00 
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Table 3. Null and alternative hypothesizes for evaluation indexes 

 H0 H1 
Mean MENN<=MNN MENN>MNN 
Std SENN>=SNN SENN<SNN 

MENN and MNN respectively denote the mean value of the experimental results obtained from using 
evolved NN and traditional NN. SENN and SNN denote the standard deviations for the two methods 
respectively. 

 
The experimental results clearly suggest that the average return obtained by the use 

of evolved NN over 100 runs is significantly larger than that of traditional method, 
more importantly, it also displays a significantly smaller standard deviation which 
means the system is more reliable and riskless. The hypothesis tests also show the 
CRate and CValue of the new method are much better than those of the traditional 
method, which proves the enhancement in the prediction accuracy. 

5 Conclusions 

I the present study, a new intelligent trading system was proposed based on stock 
trend prediction for medium term by the use of heterogeneous double population 
based evolved NN. First the evolved NN provides a more stable and accurate 
nonlinear prediction compared to the traditional NNs. Second the new trading system 
generate buy and sell signals automatically without any human interactive operation 
in which to provide the stock traders a technical and independent decision support. 
Experiment results demonstrate the effectiveness of the system that it displays a much 
higher average return and a significantly reduced variance. 
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Abstract. This paper proposes a framework based on the cross-validation 
methods for constructing and training radial basis function (RBF) neural 
networks. The proposed growing RBF (GRBF) neural network begins with 
initial number of hidden units. In the process of training, the GRBF network 
adjusts the hidden neurons by eliminating some “small” hidden units and 
splitting one “large” hidden unit at the same cycle. If the prediction error in the 
system is not less than the pre-given threshold, the proposed method increases 
hidden units to re-estimate the parameters in the next process of training, until 
the stop criterion is satisfied. In practice, the proposed GRBF network are 
evaluated and tested on two real 3D seismic data sets with very favorable self-
adaptive ability and satisfactory results. 

Keywords: Radial Basis Function (RBF) neural network, Parameter learning, 
Cross-validation method, Geological characteristics. 

1 Introduction 

Along with the multilayer perceptron (MLP), radial basis function (RBF) networks 
hold much interest in the fields of modern finance, signal processing and seismic 
exploration [1], [2], [3]. The radial basis function (RBF) networks can be regarded as 
one kind of the feed-forward neural networks with a single layer of hidden units. 
Compared with a conventional neural network, Radial basis function (RBF) networks 
have simpler topological structure and faster convergent speed (using a linearly 
weighted combination of single hidden-layer neurons). Moreover, RBF networks use 
multivariate radial basis functions (particularly the Gaussian functions) as hidden 
units, which improve the precision and accuracy of prediction of complex nonlinear 
mappings problems.  

Generally, the performance of an RBF network depends on the number and 
positions parameters of hidden units. The value of the hidden units in the RBF 
network can be decided by unsupervised/supervised clustering procedures. However, 
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like many other ANN algorithms, the number of radial basis function in the RBF 
networks must be fixed or known before the parameter learning process. To overcome 
this problem, an easy method is to set a different number of hidden units for the RBF 
networks, and then make several attempts to find the “best” results. However, this 
kind of “interactive” operation may be very complex and time-consuming.  

In this paper, we attempt to use a growing radial basis function (GRBF) network to 
predict the distribution of reservoir characteristic by combining the well-log data with 
seismic attributes. Firstly, the method first trains all the parameters of the RBF 
network with initial given values. Secondly, the cross-validation method is used to 
calculate the prediction accuracy. If the prediction accuracy is less than a 
predetermined threshold, eliminating or splitting operations are implement to decrease 
or increase the number of hidden units. Finally, the parameter self-learning process is 
applied to determine the relationship between the reservoir characteristic and seismic 
attributes.  

The remaining of this paper is organized as follows. Section 2 reviews the basic 
principles of RBF neural network. Section 3 focuses on the parameter learning theory 
of growing RBF network. Section 4 tackles the description of datasets used to 
perform our empirical study. Section 5 provides two examples to interpret the theory 
the RBF neural network. Section 6 makes a summary about our growing RBF neural 
network.  

2 RBF Neural Networks 

As mentioned above, the RBF network is embedded in a three-layer neural network, 
which can be considered as a mapping: n mR R→ . The input layer consists of source 
nodes. hidden unit layer implements a radial basis function and the output units layer 
implement a weighted sum of hidden unit outputs. Generally, we consider just the 
case of the RBF network with one single output unit. In fact, the problem of a multi-
output RBF network can be transformed into many of one-output RBF network 
learning. The output function of the RBF network, ( )f x , with the input vector, 

nx R∈ , can be expressed as follows:  

 −=
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Where iw is the connection weight and ic
 
is known as the RBF center, which can 

be obtained by using the linear least squares method and clustering methods, 
respectively. In addition, the value K is the number of hidden units, determined by 

realistic problems. Function )( •
i

φ  is called the radial basis function. Although the 

choice of the basis function is crucial to the performance of the RBF network, the 
most commonly used radial basis functions are Gaussian functions, expressed as: 

 
2

2
( ) exp( )i

i
i

x c
xφ

σ
−

= − .  (2)
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Where m
ic R∈  

and 
i

σ are the center and the width of thi Gaussian hidden units. 

The distance between the input point, x , and the center of the thj node, 
i

c , as 

measured by Euclidean norm, is given as • . From the above equations, we can find 

that the outputs of RBF neural network strongly depend on the link weights, the 
number and initial positions of hidden units. Since the training process is based on 
adjusting the parameters of the network to reproduce a set of input-output patterns. 
There are three types of parameters: the weight w between the hidden nodes and the 
output nodes, the center 

1{ }n
j jc =  

of unit of the hidden layer and unit width 
1{ }n

j jσ = .  

 

Fig. 1. Radial Basis Function Network architecture 

3 Parameter Learning 

Usually, the RBF network training process is composed of two stages. The first stage 
involves constructing the RBF network structure including the number of RBF 
centers, the initial value of the hidden units and the unit widths The second stage 
involves optimizing the weights between hidden units and the output layer. In the first 
stage, the RBF centers can be obtained by many clustering algorithms. These 
algorithms consist of unsupervised clustering algorithms (such as k-means [4], fuzzy 
c-means [5], enhanced LBG [6]), and supervised clustering algorithms (such as Fuzzy 
Clustering [2] and the Alternating Cluster Estimation [7]). In the second stage, the 
least mean square error (LMS) method is usually used to train the link weights 
between the hidden units and the output. Given the structure of RBF network, the 
least mean square error on the sample set,

1{( , )}N
i i iS x y == , can be expressed as 

follows: 

2 2

1 1 1

1 1
[ ( )] [ ( )]

2 2

N N n

t t t i i t
t t i

E y f x y xλ φ
= = =

= − = −    .  (3)

In this function, 
ty  

and ( )tf x  
are real values and the prediction for the sample set 

S . By computing partial derivatives for function (3) and setting the equation equal to 
zero, we obtain the gradient learning rules for each parameter in the RBF network. 
The process of parameter training is very quick, because it does not have to back-
propagated an error through multiple layers. 
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In addition, the number size of the hidden units is very importance. If the chosen 
number size of the hidden units is too large, the computation loading is heavy so that 
it is not suitable for practical applications. In contract, if the chosen number size of 
hidden units is too small, the performance of the RBF network may not be good 
enough to the applicable problems.  

4 Proposed Approach 

To solve the problem, we propose a growing RBF network based on the cross-
validation method. Firstly, training samples are divided into several groups, each of 
which contains the same samples. In the process of training, each group of samples will 
be regarded as the test samples and other training samples are used to train the RBF 
network. The “optimal” RBF network performs well for each group of test samples.  

Secondly, according to the pre-defined number, n , of hidden units, we perform a 

k-means[4] algorithm to determine the centers, 
1{ }n

i ic = , and the initial unit widths, 

1{ }n
i iσ = , of the hidden units. Then, LMS is implemented to update all the parameters in 

the RBF network until the learning process converges. Note that the current structure 
of the RBF network may not be the “best” for the input samples.  

Thirdly, a cross-validation method is used to verify whether the appropriate hidden 
units, receptive fields and link weights have been achieved or not. The total error rate 
will be calculated with current the RBF network for each group of test samples. If the 
total error rate is larger than the pre-defined threshold 

Tδ , the number of hidden units 

will be adjusted by the merging or splitting of some hidden units. The splitting hidden 
unit jφ is defined as the hidden units with the maximum link weight 

jw . The 

parameters associated with the new hidden units (
pφ and

qφ ) are defined as: 

p jw wγ= , (1 )qw γ= −   (4)

(1 )p j jc c
γ σ

γ
= −

−
 (1 )

p j jc c
γ σ

γ
−= +   

(5)

(1 )p j

γσ σ
γ

=
−

 (1 )
q j

γσ σ
γ
−=  .   (6)

On the other hand, the hidden unit jφ
 will be discarded from the current RBF 

network, once the link weight jw
 is less than a pre-set threshold Mδ . By the way, 

the proposed method can realize determining the correct number of hidden units in 
RBF network quickly. 

Finally, we return to the second step in the algorithm to re-calculate the centers of 
the hidden units, receptive fields and link weights again. Otherwise, when the total 
error rate is less than some pre-defined threshold 

Tδ , the method will be stopped and 

the “optimal” structure of the RBF network has been established at this time. 
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5 Examples 

The reservoir characteristic is an important piece of quantitative information for 
seismic exploration and reservoir analysis. In the past several years, artificial neural 
networks (ANNs) have been used to unravel and forecast complex nonlinear 
relationships between seismic data, well-log data and the reservoir characteristic.  

Generally, geologists and geophysicists can interpret the target zone with well-log 
data. However, well-log data will only be able to predict the geological information 
within a limited range. Limited well-log data may be inefficient at predicting the latent 
variations in the reservoir characteristic. On the other hand, seismic attributes such as 
amplitude, coherency and frequency, provide much more horizontal and lateral variations 
in geological characteristic than well-log data. Many researchers have proposed that to 
predict effective porosity, well-log data and seismic attributes should be combined in the 
fields of reservoir analysis and geological explanation [9] [10], [11],[12]. To test the 
efficiency of the proposed method, we apply it to estimate the reservoir porosity 
distribution and the effective thickness of the sand case, respectively. In both cases, the 
results proved that the prediction results are similar to the actual seismic log data. 

In this example, we implement the GRBF network to predict effective porosity 
volume using well-log data sets as training samples. All of well-log data sets are 
extracted from three actual logs in the survey. The target reservoir ranges from 600 
ms to 1300 ms in the seismic data. With a sampling interval of 4 ms, we can obtain 
1124 training samples 

1{( , )}N
i i iS x y ==  

from these three wells. Each training sample 

point consists of seven uncorrelated variables, of which the first six seismic attributes 
variables are used as characteristic vectors 1 2 6( , ,..., )i i i ix x x x=  

and the last one is 

the effective porosity value iy .  

In the data processing phase, all of the seismic attributes are normalized between 0 
and 1 to eliminate the differences in each seismic attribute. At the beginning of the 
proposed algorithm, ten samples are divided from the input sample set as the self-
testing samples at each time and other samples are used to train the GRBF network as 
before. We set the size of the initial hidden units to be 5. Then, the k-means algorithm 
[4] is used to cluster the training samples. After the clustering process, the centers of 
each cluster are regarded as the hidden units and the unit widths of the RBF basis 
function are calculated. After that, in the parameter learning stage, the link weights 
between hidden units and the output units are adjusted automatically. Based on the 
trend of the total error rate, we adjust the number of hidden units by the increasing 
and eliminating operation. Finally, the GRBF algorithm stops when the total error rate 
is less than 30 and the number of hidden units equals 40.  

The comparison results of the prediction (red) using the proposed algorithm and 
the three real well-log data sets (black) are shown in Fig 2(a), (b) and (c), 
respectively. In each figure, the horizontal axis gives the porosity values and the 
vertical axis is in time (in ms). A close correlation exists between the predicted 
effective porosity and current well-log data in these figures. In addition, a single well 
profile extracted from the original amplitude profile is shown in Figure 3(a). 
Correspondingly, the profile of effective porosity using the GRBF network is shown 
in Figure 3(b). From the above discussion, we determine that the GRBF algorithm 
results in a good porosity prediction. 
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Fig. 2. Application of the GRBF method to predicting porosity. Three different results (a, b, c) 
are compared using the GRBF method (red) and the actual porosity curve (black). We find that 
the GRBF method successfully predicts the trends in the actual porosity curve. 

 

Fig. 3. (a) A 2d line extracted from the original seismic amplitude volume. (b). The same 2D line 
extracted from the porosity volume that was predicted using the GRBF algorithm. (c). The same 
2D line extracted from the porosity volume that was predicted using the BP network algorithm. 

In the second example, we use the proposed algorithm to predict the effective 
reservoir thickness of the sand case study from western China. In this study, the target 
zone ranges from 800 to 1540 in the inline direction and 650 to 1550 in the cross-line 
direction. In Figure 4, the 32 wells marked with red points were used in the case 
study. There are nine sampling points around each well, leading to 32*9 = 288 
training sample points as the training samples. Each training sample was composed of 
12 seismic attributes, such as amplitude, phase, and frequency, and one output 
effective thickness of the sand case). The Principal Components Analysis method [8] 
was used to reduce the relativities among the seismic attributes. 

In the process of parameter learning, the initial number of hidden units was 15 and 
the other parameters were obtained by cluster analysis. After training the structure of 
the GRBF network, we then used the multiple seismic attributes to predict the 
reservoir effective thickness of the sand case. At this time, a self-testing example was 
used to test the validity of the GRBF network. In the example, we removed the 
reservoir thickness from well-log data and used the remaining seismic attributes as the 
input sample to calculate the “predicted” value. The comparison between the original 
 

 

  

a b c

a b 
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Fig. 4. The prediction results for the efficient thickness of the sand case. (a. The predicted 
results of GRBF algorithm and b. the predicted results of Back-Propagation (BP) network. 

Table 1. Comparison of the prediction value between BP network and GRBF  

Number 

(well) 

Well 
data 

Predicted 
value 

BP 
algorithm 

Number 

(well) 

Well 
data 

Predicted 
value 

BP 
algorithm 

1 16.7 16.69 16.70 17 4.7 4.69 4.65 

2 15.2 15.23 15.1 18 27 26.85 26.85 

3 48.5 48.48 48.4 19 10 10.10 10.09 

4 46.1 46.10 46.3 20 8.7 8.72 8.80 

5 50.4 50.38 50.37 21 6.5 6.52 6.51 

6 18.6 18.59 18.6 22 31 31.00 31.10 

7 26.8 26.78 26.82 23 26 25.90 25.90 

8 29.9 29.80 29.6 24 6.2 6.21 6.05 

9 31 30.90 30.85 25 36.6 36.40 36.80 

10 19 19.20 19.30 26 27.4 27.40 27.40 

11 41.8 41.60 41.60 27 4.1 4.10 4.50 

12 24.4 24.70 24.80 28 21 20.90 21.30 

13 31.5 31.40 31.30 29 19.5 19.29 19.70 

14 29.1 29.30 29.10 30 9.4 9.43 9.48 

15 23.6 23.60 23.65 31 19.9 19.90 20.05 

16 13.9 14.10 14.12 32 3.4 3.45 3.46 

 
well-log reservoir thickness, the predicted results and the results of Back-Propagation 
(BP) [13] neural network are listed in Table 1. From table 1, we find that the results of 
the prediction show minor relative errors compared with the available well-log data 
(less than 2%). And, Fig.4 shows the application of the proposed method and BP 
neural network to the target reservoir. Through the analysis of seismic interpreters, 
the results of GRBF are superior to those of BP network. 

 
ba 
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6 Conclusion 

In this paper, we proposed the growing RBF neural network and applied the method 
to predict the reservoir characteristics, which has advantages in dealing with the 
complex nonlinear problem. In addition, the proposed algorithm adaptively adjusts 
the structure of the RBF network with the training data, which not only reduces the 
workload of the interpreter, but also enhance the predictive accuracy of the reservoir 
characteristic. After a discussion of the theory and methodology, we applied the 
method to two real seismic data sets to illustrate its feasibility. However, we also find 
that the prediction result of the reservoir characteristic is very sensitive to the 
selection of the multiple seismic attributes. Therefore, some additional processes and 
analysis should be made in future studies. 
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Abstract. In this paper, the concept of networked control system (NCS) is 
introduced into the course autopilot of the ship. A network-based neural 
adaptive sliding mode controller is designed for the ship steering in waves. The 
unknown term, including the wave disturbances and the unmodeled dynamics, 
is approximated by the RBF neural network. The sliding mode controller is 
designed to compensate the neural network approximation error besides of the 
network-induced delay. The stability of the closed-loop system is proven and 
the neural network weight is updated using the Lyapunov theory. It indicates 
that the designed controller can guarantee the system state tracks the desired 
state asymptotically. Finally, a simulation on a Mariner class vessel in waves is 
carried out to demonstrate the effectiveness of the proposed control scheme. 

Keywords: Networked Control System (NCS), Autopilot, RBF Neural 
Network, Sliding Mode Controller. 

1 Introduction 

Navigation of ships has been a major concern for sailors since humans took to the 
waters. In recent years, sophisticated ship autopilots have been proposed, based on 
advanced control engineering concepts [1]. A predictive controller is designed to steer 
the ship sailing forward with the constant velocity along the predefined reference path 
in [2]. In [3, 4], Ming-Chung Fang and Jhih-Hong Luo adopted sliding mode control 
technique and line-of-sight guidance technique to navigate the ship. Backstepping is 
also frequently used in autopilot system of ships [5, 6]. Meanwhile, due to the better 
approximate ability of nonlinear function and faster learning ability, the ship course 
control by using neural network architecture for complex and unknown nonlinear 
dynamic systems has appeared in many literatures [7, 8]. Such control systems are 
able to alter the course of the vessel in the desired manner by regulating the deflection 
of the rudder. However, with the advanced electronic devices and smart units widely 
used on the ship, the connection between the units has become increasingly complex, 
which therefore increases the maintenance costs and the possibility of faults. 

In order to address the challenges, the network control technique is introduced into 
the control system of the ship. Feedback control systems wherein the control loops are 
closed through a real-time network are called networked control systems (NCS) [9]. 
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The defining feature of a NCS is that information is exchanged using a network 
among control system components. Fig.1 illustrates a typical setup of the NCS. The 
primary advantages of the NCS are reduced system wiring, ease of system diagnosis 
and maintenance, high reliability and increased system flexibility. System with this 
configuration (depicted in Fig.1) can be found in a variety of settings, including 
spacecraft, automobiles, and groups of autonomous vehicles, to name a few [10]. 

 

Fig. 1. A typical setup of the NCS 

However, the insertion of the communication network in the feed-back control 
loop makes the analysis and design of NCS complex, and some special issues need to 
be addressed. The research on the delay is one of the hot topics of the NCS. A robust 
control approach is proposed to solve the stabilization problem for NCS with short 
time-varying delays in [11]. An adaptive fuzzy sliding mode control method is 
designed to compensate the network-induced delay and the uncertain of the system in 
[12]. In [13], a networked predictive control scheme is employed to compensate for 
communication delay and data loss actively rather than passively. 

In this note, a network-based adaptive sliding mode controller is designed for the 
ship tracking in waves. For the unknown term in controller, an adaptive method based 
on the RBF neural network is proposed to approximate the unknown term. The 
controller is therefore able to compensate the unknown term besides of the network-
induced delay, and the chattering of the controller also can be reduced. 

The structure of the paper is as follows. In section 2, the control objective is 
formulated. Section 3 contains the design and stability analysis of the network-based 
neural adaptive sliding mode controller. Section 4 provides simulation results for the 
proposed control scheme. Finally, conclusions are made in the last section. 

2 Problem Formulation 

For the horizontal motion of a vessel moving in waves, the kinematics and dynamics 
models are described by the following equations [4]: 

 ( )=η R η ν
 . (1) 

 ( ) ( ) ( )Μν C ν ν D ν ν τ R η εΤ+ + = +
 . (2) 

Where [ ], ,x y ψ Τ=η , [ ], ,u v r
Τ=ν , ( , , )x y ψ  denote the coordinates and 

heading of the ship in the earth-fixed frame; u , v and r  denote the speeds in surge, 
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sway, and yaw respectively in the body-fixed reference frame; τ Bu=  denotes the 
control inputs, ( )R η  is a state dependent transformation matrix, Μ  is the mass 

and inertia matrix, ( )C ν  is the Coriolis-centripetal matrix, ( ) ( )D ν D D νn= +  is 

the hydrodynamic damping matrix including the linear damping matrix D  and the 

nonlinear damping matrix ( )D νn , and ε  is a bias term representing slowly varying 

environmental forces and moments. 
Assume that the ship is controlled by a single rudder; the rolling mode is 

negligible. Moreover, since the surge speed is not the controlled variable, the speed in 
surge can be treated as a constant value consequently. Then, equation (2) can be 
reduced as: 

1 1 0 1 1 1 1( ) ( )M ν N ν b f νu δ= − + +
 . (3)

Where [ ]1 v r
Τ=ν , [ ]1b Y Nδ δ

Τ= − − , δ  is the rudder angle, 1M  and 

0( )N u  are derived from M , ( )C ν , ( )ψR  and D , and [ ]1 1( )f ν v rf f
Τ=  

denotes the environmental disturbances and unmodeled dynamics including the 
nonlinear damping term in sway and yaw. 

Combining rψ =  and (3), yields 

( )x Ax b f xu= + +
 . (4)

Where [ ]v r ψ Τ=x , u δ=  is the control input, [ ]( ) 0f x v rf f
Τ=  is 

the unknown term, and A , b  can be calculated by 1M , 0( )N u , and 1b . 

As mentioned in last section, the concept of NCS is introduced to the ship course 
control system. Any controller computational delay can be absorbed into controller-

to-actuator delay caτ  without loss of generality [9]. 

Meanwhile, for convenience of analysis, we assume that the sensor is time driven 
with a sampling period h; the controller and actuator are event driven; the networks 

and communications are error-free; the sensor-to-controller delay scτ  can be 

ignored; 
Under the above assumptions, the ship model with delay can be expressed as: 

( ) ( )x Ax b f xu t τ= + − +
 . (5)

Where caτ τ=  is the network-induced delay. 

Control objective: Using the LOS guidance, design the control input u  to guide 
the ship (5) to pass through the commanded waypoints only with the position 
measurements, and ensure the tracking error converges to zero. 
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3 Control Systems for Ship Course Tracking 

In this section, the heading autopilot is incorporated with equation (5) to simulate the 
ship course tracking which is composed of several waypoints. According to the line-
of-sight (LOS) guidance, the desired heading angle is calculated as follows: 

atan2( , )d wp p wp py y x xψ = − −
 . (6)

Where ( , )p px y  is the coordinate of the ship position, and ( , )wp wpx y  is the 

coordinate of the waypoint position. 

3.1 Network-Based Sliding Mode Control 

In order to compensate the effect of the controller-to-actuator delay caτ  and the 

unknown term, a sliding mode controller is applied because of its good performance 
and robustness. This control theory has a switching action, which provides a 
robustness to match uncertainties. 

Considering the network-induced delay, the sliding surface is given as: 

( )
t

t
S u d

τ
α αΤ Τ

−
= + c x c b

 . 
(7)

Where d= −x x x  is the state tracking error, τ  is the network-induced delay, 
3∈ℜc  is a design vector to be chosen such that 0S → , implying convergence of 

the state tracking error 0→x , and Τc b  is nonsingular. 

The time derivative of S  is 

[ ( ) ( )]c (x x ) c bdS u t u t τΤ Τ= − + − −  
 . (8)

Substituting (5) into (8), yields the dynamic of S : 

( ) ( ) [ ( ) ( )]

( ) ( ) .

c (Ax b f x x ) c b

c Ax c b c f x c x
d

d

S u t u t u t

u t

τ τΤ Τ

Τ Τ Τ Τ

= + − + − + − −

= + + −

 


 

(9)

Where [ ] [ ]0d d d d d dv r ψ ψ ψΤ Τ= =x  , and dψ  can be calculated via 

Eq.(6). 

Let 0S = , then the best approximation of the control law can be obtained 

1 ˆˆ( ) ( ) [ ( ) ]c b c Ax c f x c xdu t Τ − Τ Τ Τ= − + − 
 . (10)

Where ˆ( )f x  is an estimate of ( )f x . 
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Considering the uncertainty of ( )f x , an additional non-linear controller term is 

added to ˆ( )u t , then we have 

1 ˆ( ) ( ) [ ( ) sgn( )]c b c Ax c f x c xdu t k SΤ − Τ Τ Τ= − + − +
 . (11)

Where 0k >  is the switching gain, and sgn is the sign function. 
In practice, it is difficult to get the unknown term ( )f x  exactly, therefore the 

control law (11) is hard to realize. Considering the nonlinear function approximate 
ability of neural network, we can use a multilayered neural network to model the 
unknown function ( )f x . 

3.2 RBF Neural Adaptive Controller Design 

In this section, the RBF neural network is used to approximate the unknown term 
( )f x , and the network weight is updated according to the Lyapunov method. 

Based on the neural network approximation theory, there exists weight w  such 

that ˆ( )f x,w  approximates the continuous function ( )f x , with accuracy ε  over a 

compact subset 3Q ⊂ ℜ , that is, w∃  such that [7] 

ˆmax ( ) ( )f x,w f x   x Qε− ≤ ∀ ∈
 . 

(12)

Let wt  denotes the estimate of w  at time t, then the control law become as 

1 ˆ( ) ( ) [ ( ) sgn( )]c b c Ax c f x,w c xt du t k SΤ − Τ Τ Τ= − + − +
 . (13)

Where ˆ( )f x,wt  is the estimate of ( )f x  at time t, and 

ˆ( ) ( )f x,w w xt t φ
Τ=

 . (14)

Where the system state x  is chosen as the input of RBF network, and ( )xφ  is a 

Gaussian function denoting the output of the hidden layer. 
The block diagram of the presented controller is shown in Fig.2. Substitute the new 

control law (13) into (9), then the dynamic of the sliding surface becomes: 

( ) ( )

ˆ ˆ ˆ[( ( ) ( )) ( ( ) ( ))] sgn( )

ˆ ˆ( ) ( )
sgn( ) .

w w

c Ax c b c f x c x

  c f x,w f x,w f x f x,w

f x,w f x,w
  c w w   

w w
t

d

t

t

S u t

k S

k S

Τ Τ Τ Τ

Τ

Τ

= + + −

= − + − −

 ∂ ∂ = − + −
∂ ∂  

 

 

(15)
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Define the weight error as ( )w w wtt = − , then (15) can be represented as: 

( ( ) ( )) sgn( )c w xS t k Sφ ηΤ Τ= − + −   . (16)

Where ( ) ( )2
( ) wtη ε= Ο + Ο . 

The updating law of the neural network weight is  

( ) ( )w w x ct t Sφ Τ= = 
 . (17)

Theorem 1. For system (5), under the designed control law (13) and adaptive 
updating law (17), the state vector x  of the closed-loop system asymptotically tracks 

the desired state xd  with the weight of neural network converging to its best 

approximation, when choosing the switching gain to satisfy 

( )ck tηΤ> ⋅
 . 

(18)

Proof. Define the Lyapunov function candidate as: 

2 11 1
( ) ( ) ( )

2 2
c cV S t tΤ − Τ= + Δ Δ

 . 
(19)

Where ( ) ( )w ct tΔ =   is a new defined vector denoting the variety of ( )tw . 

Compute the derivative of V to obtain 

1

1

( ) ( ) ( )

[ ( ( ) ( )) sgn( )] ( ) ( ) ( )

( ) ( ( ) ) 0 .

c c

  c w x c c c w x c c

  c c  

V SS t t

S t k S t S

S t k S S t k

φ η φ
η η

Τ − Τ

Τ Τ Τ − Τ Τ Τ

Τ Τ

= + Δ Δ
= − + − +
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(20)

Obviously, V  is a positive definite and decrescent function, and by application of 

Barbalat’s lemma, S  and ( )tΔ  will be uniformly stable at the equilibrium point 

0,w wtS = = , implying that the state tracking error will converge to zero in finite 

time while the switching gain is chosen to be large enough to satisfy the condition 
(18). This completes the proof. 

Note that the magnitude of k  will be a trade-off between robustness and 

performance. Meanwhile, chattering can be reduced by replacing sgn( )S  with 

tanh( )S ϕ , where ϕ  is the sliding surface boundary layer thickness. 
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Fig. 2. Architecture of the closed-loop control scheme 

4 Simulation Results 

In this section, a numerical simulation on a Mariner class vessel in waves is carried out 
to demonstrate the proposed control scheme. To provide the network environment, an 
ideal simulation platform of NCS, Truetime toolbox, is introduced [14]. 

Here the commanded course is composed of three waypoints, and each acceptance 
radius is 200m. The initial velocity of the ship is 7.72m/s, the maximum rudder 
deflection is 30o and the rate limit is set to be 3o/s. The principal parameters of the 
ship are given in [15] in detail. The network-induced delay can be treated as a 
constant by setting a buffer between the actuator and the controller. 

The simulation results are shown in Fig.3-4. In Fig.3, we can see that the proposed 
controller is able to force the ship to pass through the acceptance regions of all 
waypoints despite of waves acting on the ship. 
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Fig. 3. The time domain simulation of ship trajectories 
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Fig. 4. The curves of sliding surface, rudder angle and yaw angle (the left three plots); the time 
responses of the velocity of the ship (the right three plots) 

In Fig.4, the left three plots show the time responses of sliding surface, the rudder 
angle and the yaw angle. As seen from the figure, the dynamic of sliding surface 
asymptotically converges to zero while the actual yaw angle also tracks the desired 
yaw angle, and the rudder angle response is rather smooth but with some sharp lines 
due to the maximum rudder and rate limit. The right three plots indicate that all the 
velocities in surge, sway and yaw are also smooth and satisfied, and the sway and yaw 
speed can be controlled to the desired values, while the surge speed is smaller than the 
initial value but reasonable without the control effect. 

5 Conclusion 

The concept of networked control is introduced to the ship course control system, and 
the considered ship model includes the unmodeled dynamics and the nonlinear wave 
disturbances. Due to the good nonlinear approximation ability of RBF neural network 
and good robustness of sliding mode control, a neural adaptive sliding mode 
controller is designed. The performance of the aforementioned control strategy was 
tested through simulation. The network environment was provided by the Truetime 
toolbox. Simulation results showed the effectiveness of the proposed approach. 
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Abstract. In this paper, behavior model is established by adopting artificial 
neural network for virtual characters to resolve the reality of virtual characters 
behavior modeling in intelligent virtual environments, including acquiring 
training samples, data standardization, neural network training and application. 
This method improves on running performance, modeling efficiency and 
complexity of traditional cognitive model, which makes virtual characters 
adapting to changeability of virtual environments better, and plans behaviors 
according to diversity of virtual environments intelligently and autonomously. 

Keywords: intelligent virtual environments, virtual characters, behavioral 
model, artificial neural network. 

1 Introduction 

In order to simulate the real world realistically, make the participators get more 
immersion, we construct the IVE (Intelligent Virtual Environment) [1] through adding 
one or many entity objects with life features into the VE (Virtual Environment). 
These virtual entity objects with life features are also known as virtual characters, 
which play important roles in the IVE. 

How to activate the animations of these characters (also known as behavior 
animations) is the problem that we should consider first. The certainty model of 
human behaviors is still simple now [2], this makes the behaviors of virtual characters 
seem lack reality, even influences the simulation application effects [3].In 2003, Toni 
Conde realized behavior animations using reinforcement learning firstly [4]. 

In this paper, we use ANN (Artificial Neural Network) model replace certainty 
model, establish a complex behavior system applying AI (Artificial Intelligence) 
technology. In this system, virtual characters generate similar behaviors through 
autonomous learning, and do intelligent decision through the received actions of 
observing. The core of it is allowing the characters decide their behaviors themselves 
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without the users’ intervention. On the base of learning and researching the reference 
[4-5], we realize a behavior model modeling method of virtual characters 
approximated by ANN in this paper. The method presented in this paper belongs to 
the field of realizing behavior animations using learning technologies. 

2 Behavior Model and Modeling Methods 

2.1 Behavior Model 

Behavior model is a model of researching how to describe the virtual characters’ 
behaviors really as far as possible, which makes the programmer who constructing a 
virtual character with real behaviors conveniently according to the behavior model [6]. 

The virtual character layer model structure is divided to 5 layers bottom-up [3]. 
They respectively are: geometry layer, the forward and reverse motion layer, physical 
layer, behavior layer and cognitive layer. 

Behavior layer and cognitive layer both belong to behavior models. The behavior 
planning of behavior layer has no the process of “thought”, virtual characters confirm 
next behavior planning and execute immediately according to current environment 
state and internal stimulus. Cognitive layer controls the whole process of virtual 
characters’ perception, behaviors and actions, is a kind of model that in order to 
accomplish long-term goal which makes long-term planning to virtual characters’ 
behaviors and actions, it takes the way of “thought” [7].  

2.2 Behavior Model Modeling Method 

Now the main behavior model modeling methods include: the method based on 
computer animation, the method based on FSM (finite state machine), the method 
based on artificial life and the method based on artificial intelligence [8]. All of these 
traditional methods exists certain shortcomings and insufficiency. We try to realize a 
behavior model modeling method which simulates the cognitive process of virtual 
characters in VEs in this paper. The process includes behavior planning and behavior 
choosing of virtual characters. This method can realize the automatic generation of 
the behavior animations, reduce the animators’ work burden and generate computer 
animations with vivid lifelike figures.  

2.3 The Application of BP Algorithm in Behavior Modeling 

We approximate virtual characters’ behavior model in cognitive layer by ANN, 
realize it by applying BP (Back Propagation) algorithm. BP algorithm is a kind of 
study altorithms used in multilayer feedforward neural network, which includes input 
layer, output layer and hidden layer. The hidden layer can be multistory structure. The 
learning process of BP neural network includes two stages: calculating feedforward 
output and adjusting connection weight matrix from the direction. In the stage of 
feedforward propagation, input information is processed layer-by-layer from input 
layer via hidden layer and translated to output layer, neuron’s output in each layer as 
the neuron’s input upper layer. If the actual output value has error with the expected 



508 Y. Zhao, X. Liu, and Q. Wu 

value in the output layer, we should modify connection weight coefficient layer-by-
layer using error signal from the reverse and iterate repeatedly, make the mean-square 
deviation least between actual and expect output. Gradient descent algorithm usually 
is taken when correcting connection weight coefficient. 

 

Fig. 1. The topological structure of BP neural network algorithm 

The topological structure of BP neural network algorithm is shown in figure 1. 
In the practical application of BP algorithm, study result is received by presenting 

established training instances to neural network repeatedly. To a given training set, 
BP algorithm has two basic training modes: serial training mode and centralized 
training mode. The realization of serial training mode is relatively easy, easy 
understanding, small memory space and fast calculating speed. So, we take this mode 
in prototype realization to train neural network in this paper. 

In the practical application standard BP algorithm can’t do, so many improved 
algorithms emerging. The improvement of BP algorithm has two ways mainly, one is 
adapting elicitation method of studying method, another is adapting more effective 
numerical optimization algorithm. In this paper we use the BP algorithm with the 
momentum vector method and adaptive adjustment learning rate mainly, so to 
improve the learning rate and increase the reliability of the algorithm. 

3 Constructing Virtual Characters’ Behavior Model Instance 

We adopt the instance of social and group of drive to check behavior model modeling 
algorithm based on ANN, simulate the model using Delta3D SDK and C++.  Our 
experiment test scene as follows:  in a virtual 3D environment, has two types virtual 
characters, the first one is group virtual characters, that is, the be pursuers, represented 
by crowd, the other one is individuality virtual character, that is, the driver, represented 
by a solider with a gun. The state and behaviors of group virtual characters can be 
confirmed, and the number are finite, so we can do behavior model by adopting the 
method of FSM. Driver virtual character chooses actions according to the state change 
of VE, is asked for intellectuality and independency, so it do decision by adopting 
cognize layer behavior model, do behavior model by adopting ANN algorithm. 

Figure 2 is the sketch map of the driver driving group virtual characters. 
Destination indicates the drive destination, Barrier indicates the barriers, C1, C2, C3 
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and C4 indicate group virtual characters. The arrow in the figure indicates the forward 
direction of Expler(driver virtual character), α indicates the rotation angle of the 
driver in VE during the motor process, β indicates the direction between the driver 
and the goal(presented by the intersection angle between the driver and the goal), 
ExplertoBar indicates the distance between the driver and the barriers, 
BestNeartoExpler and BetterNeartoExpler separately indicate the relevant parameters 
of the two group virtual characters nearest the driver. 

From the example analysis we know that: the driver virtual character’s states and 
behaviors can be described by septet: (DirtoDes, DistoBar, BestNeartoExpler_x, 
BestNeartoExpler_y, BetterNeartoExpler_x, BetterNeartoExpler_y, ExplerAction), 
the dimensions of state space have 6, the dimension of behavior space has 1. 

 

Fig. 2. The behavior model sketch map of the driver driving group virtual character 

DirtoDes indicates the angular separation of the driver and the goal, is presented by 
β in figure 2; DistoBar indicates the distance between the driver and the barriers; 
BestNeartoExpler_x indicates the x coordinate difference between the driver and the 
nearest group virtual characters; BestNeartoExpler_y indicates the y coordinate 
difference between the driver and the nearest group virtual characters; 
BetterNeartoExpler_x indicates the x coordinate difference between the driver and the 
nearer group virtual characters; BetterNeartoExpler_y indicates the y coordinate 
difference between the driver and the nearer group virtual characters; ExplerAction 
indicates the adopting behavior the driver takes in current state, the behavior’s output 
result is the current rotation angle of the virtual character in VE, is indicated by α 
value in figure 2. 

 
 
 
 
 
 
 
 
 

Fig. 3. The structural design of neural network 
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In the cognitive layer behavior model, the behaviors of the driver is a kind of 
mapping of the states, the mapping relation is get by ANN calculation. According to 
the description of the driver’s behaviors states above, the number of the ANN’s input 
parameters are 6, output parameter is 1 in this paper. The structural design is shown as 
figure 3. 

4 The Establishment of the Virtual Characters’ Behavior 
Model Approximated by Neural Network 

In this paper we use a ANN study the decision planned by cognitive model, 
accomplish a goal, then recall these decision rapidly by carrying out trained neural 
network. Training is off-line, use is online. Using fewer CPU loops get intelligent 
virtual characters’ target behaviors in real time. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The whole flow chart of behavior model modeling and application based on neural 
network 

The process of virtual characters’ behavior model approximated by ANN algorithm 
includes: acquiring sample data, sample data pre-processing, sample data post-
processing, training neural network and applying neural network, etc,. The whole 
flow of its establishment and application is shown in Figure 4. 

4.1 Acquiring Sample Data 

The establishment of behavior model approximated by ANN need the support of 
sample data, accomplish by the function module of “acquiring sample data”. This 
process can be proceeded through two ways, the first is acquiring training sample data 
automatically by program control, this way is on the base of establishment of virtual 
characters’ specific behavior model, acquiring some parameters in the process of 
behavior motion through defining specific rules for virtual characters, saving these 
parameters and using as training samples; another way is acquiring training sample 
data by manual control, virtual characters as the controller’s agent exist in VE under 
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this way, their behaviors and actions reflect the controllers’ behaviors and actions, the 
controllers acquire the virtual characters’ states (actions group) by guiding virtual 
character act, learn state (actions mapping) from demonstration, the sample frequency 
of this way is the frequency of the controllers guiding virtual characters. We realize it 
through the virtual characters’ specific behavior model and acquiring training sample 
data by manual control. 

4.2 Sample Data Pre-processing and Post-processing 

Noisy data may appear in the training sample data during the process of acquiring 
training sample data, which will influence the training effect, will cover main 
information content or make pick up useful information more difficult. So we should 
process training sample data before training neural network by the methods of conflict 
data processing method and data standardization method. 

①  The definition of conflict: 

if ||si - sj|| < v and ||ai – aj||> v,then conflicting [9]   (1)

In which s presents the current state of virtual characters, a presents the picked actions 
in this state, v presents a threshold (states and actions’ thresholds may be different), 
that’s to say: if the data of two examples has close states but distinctively different 
behaviors and actions, we think they are conflicting. But eliminating the conflict 
easily will lead to the behaviors’ high frequency. The algorithm’s target is eliminating 
the high frequency in data. Every example in the state space should promise be not 
relevant to the examples of adjacent area. To the current example we define L 
examples around it as its adjacent area. Uncorrelated indicates the behaviors of the 
example be clearly different from the median data in its adjacent area. 
② Because the curve is quite gentle, the variation speed is quite slow when the 

Sigmoid function value in the algorithm is close to 0 or 1. In order to reduce the 
learning time on network, we control the input and output data change between 
[0.1~0.9] or [0.2~0.8], thus the variation gradient of the Sigmoid function is greater 
and the network convergence time shorten greatly, change the performance of the 
network, define standardization function as [10]: 

 
(2) 

 

(3) 

 
Worth attention is, if the training sample set used by training neural network is the 
data processed after standardization treatment, then the neural network after learning 
applying new test samples still should adopt normalized sample set, of course all the 
data used must adopt the relevant data in learning sample set, such as: maximum 
value, minimum value, mean value and standard deviation. The new sample data 
applied to the trained neural network also need do the same pre-processing to the 
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input data. The output data of the neural network must do post-processing. The post-
processing of the data is the inverse operation of the pre-processing. 

4.3 Training Neural Network 

The training neural network module’s functions are divided into forward propagation 
calculation, back-propagation calculation, modifying and saving weight. Forward 
propagation calculation and back-propagation calculation accomplish the neural 
network’s calculation process. Modifying and saving weight accomplish modifying 
the weight during the calculation process, save the final modifying result into weight 
data files for the calling of neural network application. 

4.4 Applying Neural Network 

The applying neural network module includes data normalization, virtual character 
behavior model and data post-processing. Data normalization does normalizing 
process of the state’s information which acquired by the virtual characters, prepares 
the calculation of neural network calculation. Virtual character behavior model 
calculates normalized output result through neural network. Data post-processing 
denormalizes the calculation result of neural network as the output behaviors of the 
virtual characters. 

5 Result Analysis of the Virtual Characters’ Behavior Model 
Approximated by ANN 

The paper establishes behavior model for the driver virtual character based on the 
method of neural network. According to the example of social and group of drive, we 
analyze and compare the behavior model approximated by ANN and specific 
behavior model. 

During the process of simulating virtual characters’ behaviors by specific behavior 
model, the virtual characters’ behaviors are get through the judging of current state by 
program. The example chosen in this paper, the states and behaviors of virtual 
characters can be analyzed easily, be defined unequivocally. But to some virtual 
characters with more complex behaviors such as: the states and behaviors are far 
harder to determine, the scene virtual characters in changing constantly, specific 
behavior model be inapplicable obviously. 

Behavior model approximated by ANN is the simulation of virtual character 
reasoning, analysis and decision process. We take ANN algorithm do the driver 
virtual characters’ cognitive layer behavior model modeling, its process is more 
complex relative to the specific behavior model, includes the process bellow: the 
confirmation of the states and behaviors of the virtual characters, the acquisition of 
the sample(In this paper it is realized through the virtual characters’ obvious behavior 
model and the training sample data acquired by manual control), the dispose of 
sample data training and the training of the ANN. Though the process is complex, but 
this method approximates the process of virtual characters’ behavior decision. 
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6 Conclusions 

We establish virtual characters’ behavior model by taking the method of artificial 
neural network in this paper. The experiment result states clearly the virtual characters 
can adapt the VEs’ change best, has better autonomy and intellectuality, can generate 
a good deal of behavior animations steadily, achieving the expectant goal. Artificial 
neural network method is a method of off-line learning and on line using, need the 
support of the training sample data in applying. But not all virtual characters are fit to 
this method, for example: the virtual characters’ states and behaviors are uncertain, 
the virtual characters can’t model specifically, etc. All of these problems above can be 
solved by applying on line learning way. 
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Abstract. The Dendritic Cell Algorithm (DCA) is an immune-inspired
classification algorithm based on the behavior of natural dendritic cells
(DC). This paper proposes a novel version of the DCA based on a two-
level hybrid fuzzy-rough model. In the top-level, the proposed algorithm,
named RST-MFDCM, applies rough set theory to build a solid data pre-
processing phase. In the second level, RST-MFDCM applies fuzzy set
theory to smooth the crisp separation between the DC’s semi-mature
and mature contexts. The experimental results show that RST-MFDCM
succeeds in obtaining significantly improved classification accuracy.

Keywords: Dendritic cell algorithm, Rough sets, Fuzzy sets, Hybrid
model.

1 Introduction

The Dendritic Cell Algorithm (DCA) [1] is derived from behavioral models of
dendritic cells (DCs). DCA has been successfully applied to various applications.
However, it was noticed that DCA is sensitive to the input class data order [2].
Such a drawback is the result of an environment characterized by a crisp separa-
tion between the DC semi-mature context and the DC mature context. Hence,
in [3], a first work named the Modified Fuzzy Dendritic Cell Method (MFDCM)
was developed to solve this issue. MFDCM is based on the fact of smoothing
the mentioned crisp separation between the DCs’ contexts. This was handled by
the use of Fuzzy Set Theory (FST). However, MFDCM suffers from some limita-
tions as its data pre-processing phase, which is divided into feature selection and
signal categorization, is based on the use of the Principal Component Analysis
(PCA). More precisely, MFDCM uses PCA to automatically select features and
to categorize them to their specific signal types; as danger signals (DS), as safe
signals (SS) or as pathogen-associated molecular patterns (PAMP). Using PCA
for the MFDCM feature reduction step presents a drawback as it is not neces-
sarily true that the first selected components will be the adequate features to
retain [4]. Thus, the choice of these components for the MFDCM can influence
its classification task by producing unreliable results. As for feature categoriza-
tion, MFDCM uses the generated PCA ordered list of standard deviation values
to assign for each selected attribute its signal type. However, this categoriza-
tion process does not make “sense” as a coherent process which can influence

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 514–521, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A New Hybrid Fuzzy-Rough Dendritic Cell Immune Classifier 515

negatively the MFDCM functioning. Thus, it is clearly seen that there is a need
to develop a new MFDCM model with a more robust data pre-processing phase.
On the other hand, in [5], a new DCAmodel based on a rough data pre-processing
technique has been developed. The work, named RST-DCA, aims at applying
Rough Set Theory (RST) [6] for feature selection and signal categorization. It
was shown that using RST, instead of PCA, for the DCA data pre-processing
phase yields better performance in terms of classification accuracy. However, it
is important to note that RST was only applied to the standard DCA which is
sensitive to the class data order. Thus, in this paper, we propose to hybridize
the works of [3] and [5] in order to obtain a robust dendritic cell stable classifier.
Our hybrid model, named RST-MFDCM, is built as a two-level hybrid immune
model. In the top-level, RST-MFDCM uses RST to ensure a more rigorous data
pre-processing phase. In the second level, RST-MFDCM uses FST to ensure a
non-sensitivity to the input class data order.

2 The Dendritic Cell Algorithm

The initial step of the DCA is data pre-processing where PCA is applied. After
features are selected and mapped to their signal categories DCA adheres these
signals and antigen to fix the context of each object (DC) which is the step of
Signal Processing [7]. The algorithm processes its input signals in order to get
three output signals: costimulation signal (Csm), semi-mature signal (Semi) and
mature signal (Mat). A migration threshold is incorporated into the DCA in or-
der to determine the lifespan of a DC. As soon as the Csm exceeds the migration
threshold; the DC ceases to sample signals and antigens. The migration state
of a DC to the semi-mature state or to the mature state is determined by the
comparison between cumulative Semi and cumulative Mat. If the cumulative
Semi is greater than the cumulative Mat, then the DC goes to the semi-mature
context, which implies that the antigen data was collected under normal con-
ditions. Otherwise, the DC goes to the mature context, signifying a potentially
anomalous data item. This step is known to be the Context Assessment phase.
The nature of the response is determined by measuring the number of DCs
that are fully mature and is represented by the Mature Context Antigen Value
(MCAV). MCAV is applied in the DCA final step which is the Classification
step and used to assess the degree of anomaly of a given antigen. The closer the
MCAV is to 1, the greater the probability that the antigen is anomalous. Those
antigens whose MCAV are greater than the anomalous threshold are classified
as anomalous while the others are classified as normal.

3 RST-MFDCM: The Hybrid Approach

In this Section, we present our two-level hybrid model which combines the
theory of rough sets for a robust data pre-processing phase, which is the top-
level, and fuzzy set theory in order to get a stable DCA classifier, which is the
RST-MFDCM second level.
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3.1 RST-MFDCM Data Pre-processing Phase

The data pre-processing phase of our RST-MFDCM includes two sub-steps
which are feature selection and signal categorization; both based RST.

1) Feature Selection Process: Our learning problem is to select high discrim-
inating features for antigen classification from the original input data set which
corresponds to the antigen information database. We may formalize this problem
as an information table, where universe U = {x1, x2, . . . , xN} is a set of antigen
identifiers, the conditional attribute set C = {c1, c2, . . . , cA} contains each fea-
ture to select and the decision attribute D corresponds to the class label of each
sample. The decision attribute D has binary values d: either the antigen is classi-
fied as normal or as anomalous. RST-MFDCM computes, first of all, the positive
region for the whole attribute set C for both label classes of D: POSC({d}). Sec-
ondly, RST-MFDCM computes the positive region of each feature c and the pos-
itive region of all the composed features C−{c} (when discarding each time one
feature c from C) defined respectively as POSc({d}) and POSC−{c}({d}), until
finding the minimal subset of attributes R from C that preserves the positive
region as the whole attribute set C does. In fact, RST-MFDCM removes in each
computation level the unnecessary features that may affect negatively the accu-
racy of the RST-MFDCM. The result of these computations is either one reduct
R = REDD(C) or a family of reducts REDF

D(C). Any reduct of REDF
D(C) can

be used to replace the original antigen information table. Consequently, if the
RST-MFDCM generates only one reduct R = REDD(C) then for the feature
selection process, RST-MFDCM chooses this specific R. If the RST-MFDCM
generates a family of reducts then RST-MFDCM chooses randomly one reduct
R among REDF

D(C) to represent the original input antigen information table.
By using the REDUCT, our method can guarantee that the selected attributes
will be the most relevant for its classification task.

2) Signal Categorization Process: RST-MFDCM has to assign, now, for
each selected attribute, its specific signal type. In biology, both PAMP and SS
have a certain final context (either an anomalous or a normal behavior) while
the DS cannot specify exactly the final context to assign to the collected antigen
as the DS may or may not indicate an anomalous situation. This problem can be
formulated as follows: Both PAMP and SS are more informative than DS which
means that both of these signals can be seen as indispensable attributes. To
define this level of importance, our method uses the CORE RST concept. As for
DS, it is less informative than PAMP and SS. Therefore, RST-MFDCM uses the
rest of the REDUCT attributes to represent the DS. As stated in the previous
step, our method may either produce only one reduct or a family of reducts. In
case where our RST-MFDCM generates only one reduct, RST-MFDCM selects
randomly one attribute c from CORED(C) and assigns it to both PAMP and
SS as they are the most informative signals. Using one attribute for these two
signals requires a threshold level to be set: values greater than this can be classed
as SS, otherwise as a PAMP signal. The rest of the attributes CORED(C)−{c}
are combined and the resulting value is assigned to the DS as it is less than
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certain to be anomalous. In case where our RST-MFDCM produces a family of
reducts, the RST-MFDCM selects, randomly, one attribute c among the features
in CORED(C) and assigns it to both PAMP and SS. As for the DS signal assign-
ment, RST-MFDCM chooses, randomly, a reduct REDD(C) among REDF

D(C).
Then, RST-MFDCM combines all the REDD(C) features except that c attribute
already chosen and assigns the resulting value to the DS.

3.2 RST-MFDCM Fuzzy Classification Process

This second level of our RST-MFDCM hybrid model is composed of five main
sub-steps and is based on FST.

1) Fuzzy System Inputs-Output Variables: Once the signal database is
ready, our RST-MFDCM processes these signals to get the semi-mature and
the mature signals values. To do so and in order to describe each of these two
object contexts, we use linguistic variables [8]. Two inputs (one for each context)
and one output are defined. The semi-mature context and the mature context
denoted respectively Cs and Cm are considered as the input variables to the
fuzzy system. The final state “maturity” of a DC, Smat, is chosen as the output
variable. They are defined as:
Cs = {μCs(csj )/csj ∈ XCs}, Cm = {μCm(cmj )/cmj ∈ XCm} and Smat =

{Smat(smatj )/smatj ∈ XSmat}; where csj , cmj and smatj are, respectively, the
elements of the discrete universe of discourse XCs , XCm and XSmat . μCs , μCm

and μSmat are, respectively, the corresponding membership functions.

2) Defining Linguistic Variables: The term set T (Smat) interpreting Smat
is defined as: T (Smat) = {Semi −mature,Mature}. Each term in T (Smat) is
characterized by a fuzzy subset in a universe of discourse XSmat . Semi-mature
might be interpreted as a data instance collected under safe circumstances, re-
flecting a normal behavior and Mature reflecting an anomalous behavior. Simi-
larly, the input variables Cs and Cm are interpreted as linguistic variables with:
T (Q) = {Low,Medium,High}, where Q = Cs and Cm respectively.

3) Fuzzy and Membership Functions Construction: In order to specify
the range of each linguistic variable, we have run the RST-MFDCM and we
have recorded both semi-mature and mature values which reflect the (Semi) and
(Mat) outputs generated by the algorithm. Then, we picked up the minimum
and maximum values of each of the two generated values to fix the borders of
the range which are:

min(range(Smat)) = min(min(range[Cm]),min(range[Cs]))

max(range(Smat)) = max(max(range[Cm]),max(range[Cs]))

The parameters of our RST-MFDCM fuzzy process, the extents and midpoints
of each membership function, are generated automatically from data by ap-
plying the fuzzy Gustafson-Kessel clustering algorithm. Each cluster reflects a
membership function. The number of clusters is relative to the number of the
membership functions of each variable (inputs and output).
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4) The Fuzzy Rules Set Description: A knowledge base, comprising rules,
is built to support the fuzzy inference. The different rules of the fuzzy system
are extracted from the information reflecting the effect of each input signal on
the state of a dendritic cell [3].

1. If (Cm is Low) and (Cs is Low) then (Smat is Mature)
2. If (Cm is Low) and (Cs is Medium) then (Smat is Semi-mature)
3. If (Cm is Low) and (Cs is High) then (Smat is Semi-mature)
4. If (Cm is Medium) and (Cs is Low) then (Smat is Mature)
5. If (Cm is Medium) and (Cs is Medium) then (Smat is Semi-mature)
6. If (Cm is Medium) and (Cs is High) then (Smat is Semi-mature)
7. If (Cm is High) and (Cs is Low) then (Smat is Mature)
8. If (Cm is High) and (Cs is Medium) then (Smat is Mature)
9. If (Cm is High) and (Cs is High) then (Smat is Mature)

5) The Fuzzy Context Assessment: Our RST-MFDCM is based on the
“Mamdani” composition method and the “centroid” defuzzification mechanism.
Once the inputs are fuzzified and the output (centroid value) is generated, the
cell context has to be fixed by comparing the output value to the middle of the
Smat range. In fact, if the centroid value generated is greater than the middle of
the output range then the final context of the object is “Mature” indicating that
the collected antigen may be anomalous; else the antigen collected is classified
as normal.

4 Experimental Setup and Results

1) Experimental Setup: To test the validity of our RST-MFDCM hybrid
model, our experiments are performed on two-class databases from [9] described
in Table 1.

Table 1. Description of Databases

Database Ref � Instances � Attributes

Spambase SP 4601 58
SPECTF Heart SPECTF 267 45
Cylinder Bands CylB 540 40
Chess Ch 3196 37
Ionosphere IONO 351 35
Mushroom Mash 8124 23
Horse Colic HC 368 23
Hepatitis HE 155 20

For data pre-processing, the standard MFDCM uses PCA to automatically se-
lect and categorize signals. As for our method, it uses RST as explained in Section
3. For both MFDCM methods, each data item is mapped as an antigen, with the
value of the antigen equal to the data ID of the item. The migration threshold of
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an individual DC is set to 10. To perform anomaly detection, a threshold which is
automatically generated from the data is applied to the MCAVs. Items below the
threshold are classified as class one and above as class two. For each experiment,
the results presented are based on mean MCAV values generated across 10 runs.
We evaluate the performance of our RST-MFDCM method in terms of num-
ber of extracted features, sensitivity, specificity and accuracy which are defined
as: Sensitivity = TP/(TP + FN);Specificity = TN/(TN + FP );Accuracy =
(TP + TN)/(TP + TN + FN + FP ); where TP, FP, TN, and FN refer respec-
tively to: true positive, false positive, true negative and false negative.

2) Results and Analysis: In this Section, we show that using RST instead of
PCA is more convenient for the MFDCM data pre-processing phase as it im-
proves its classification performance. This is confirmed by the results given in
Table 2. Let us remind that for data pre-processing, MFDCM applies PCA where
it reduces data dimension and categorizes the obtained features to their signal
types. As previously shown, in [5], using PCA for the DCA data pre-processing
is not convenient. Thus, in this Section, we show that the use of RST instead of
PCA is more adequate for our new RST-MFDCM algorithm to process.

Table 2. PCA-MFDCM and RST-MFDCM Comparison Results

Sensitivity (%) Specificity (%) Accuracy (%) � Attributes
Database MFDCM MFDCM MFDCM MFDCM

PCA RST PCA RST PCA RST PCA RST

SP 88.25 97.07 93.25 96.12 91.28 96.50 14 8

SPECTF 81.60 87.26 70.90 81.81 79.40 86.14 11 4

CylB 92.50 97.00 94.55 97.43 93.75 97.26 16 7

Ch 94.66 98.20 94.95 99.21 94.80 98.68 14 11

IONO 94.44 96.03 95.55 98.22 95.15 97.43 24 19

Mash 99.46 99.87 99.33 99.80 99.39 99.84 7 6

HC 92.59 96.75 85.52 92.10 89.67 94.83 19 14

HE 90.62 93.75 95.93 98.37 94.83 97.41 10 4

From Table 2, we can notice that the number of features selected by our
RST-MFDCM is less than the one generated by the standard MFDCM when
applying PCA (PCA-MFDCM). This can be explained by the appropriate use
of RST for feature selection. In fact, RST-MFDCM, by using the REDUCT
concept, keeps only the most informative features from the whole set of features.
For instance, by applying our RST-MFDCM method to the CylB data set, the
number of selected features is only 7 attributes. However, when applying the
PCA-MFDCM to the same database (CylB), the number of the retained features
is 16. We can notice that PCA preserves additional features than necessary which
leads to affect the PCA-MFDCM classification task by producing less accuracy
in comparison to the RST-MFDCM results. On the other hand, RST-MFDCM
based on the REDUCT concept, selects the minimal set of features from the
original database and can guarantee that the reduct attributes will be the most
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relevant for its classification task. As for the classification accuracy, from Table
2, we notice that the classification accuracy of our RST-MFDCM is notably
better than the one given by the PCA-MFDCM. For instance, when applying
the RST-MFDCM to the CylB database, the classification accuracy is set to
97.26%. However, when applying the PCA-MFDCM to the same database, the
accuracy is set to 93.75%. Same remark is noticed for both the sensitivity and
the specificity criteria. These encouraging RST-MFDCM results are explained by
the appropriate set of features selected and their categorization to their right and
specific signal types. RST-MFDCM uses the REDUCT concept to select only
the essential part of the original database. This pertinent set of minimal features
can guarantee a solid base for the signal categorization step. The RST-MFDCM
good classification results are also explained by the appropriate categorization of
each selected signal to its right signal type by using both the REDUCT and the
CORE concepts. We have also compared the performance of our RST-MFDCM
to other classifiers including the standard DCA when applying PCA (PCA-
DCA), the standard DCA when applying RST (RST-DCA), MFDCM when
applying PCA (PCA-MFDCM), SVM, ANN and DT. The comparison made is
in terms of the average of accuracies on the databases presented in Table 1.

Fig. 1. Comparison of Classifiers’ Average Accuracies

Figure 1 shows that the standard DCA, PCA-DCA, when applied to the
ordered datasets, has nearly the same classification accuracy as SVM and a
better performance in comparison to ANN and DT. Figure 1, also, shows that
when applying RST, instead of PCA, to the standard DCA, the classification
accuracy of RST-DCA is notably better than PCA-DCA and also better than the
mentioned classifiers including SVM, ANN and DT. This confirms that applying
RST is more convenient to the DCA. Furthermore, from Figure 1, we can notice
that applying the fuzzy process to the DCA leads to better classification results.
We can see that the classification accuracy of PCA-MFDCM is better than the
one generated by PCA-DCA. This confirms that applying a fuzzy process to the
DCA is more convenient for the algorithm leading to a more stable classifier.
From these remarks, we can conclude that if we hybridize both RST and the
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fuzzy process to the DCA, we will obtain a better classifier. We can clearly
notice that our hybrid RST-MFDCM developed model outperforms both PCA-
MFDCM, which only applies FST, and RST-DCA, which only applies RST. In
addition, our RST-MFDCM immune hybrid model outperforms the rest of the
classifiers including PCA-DCA, SVM, DT and ANN.

5 Conclusion and Further Works

In this paper, we have developed a new fuzzy rough hybrid immune model.
Our method aims at combining the rough set theory to select the right set of
features and their categorization to their right signal types and fuzzy set theory
to smooth the crisp separation between the two DC contexts leading to better
results in terms of classification accuracy. Our RST-MFDCM hybrid model is
characterized by its robust data pre-processing phase as it is based on RST. It is
also characterized by its stability as a binary classifier as it is based on the DCA
fuzzy version, MFDCM. As future work, we intend to further explore this new
instantiation of our RST-MFDCM by introducing new methods in the algorithm
data pre-processing phase.
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Abstract. In this paper a Multi-Objective Particle Swarm Optimization 
(MOPSO) is utilized to design sets of linguistic Fuzzy Logic Controller (FLC) 
type Mamdani to govern the speed of Induction Motor (IM). The first objective 
function is the error between the actual speed and desired speed, and the second 
function is the energy dissipated during (10 Sec). PSO are implemented in M-
file/MATLAB, but when the algorithm reaches the step of assessing the “fitness 
functions”, this program linked with SIMULINK-MATLAB to evaluate these 
values. This simulation includes the complete mathematical model of IM and 
the inverter. The simulation results show the proposed controller offers an 
optimized speed behavior as possible with a low-slung of energy along the 
points of Pareto front.  

Keywords: Multiobjective Particle Swarm Optimization MOPSO, Fuzzy Logic 
Control FLC, Induction Motor IM. 

1 Introduction 

Electric vehicles are desperately needed for the applications of variable speed under a 
high quality controller, this controller must be designed for a specified performance, 
with a limited power supply such as battery, the controller should be maintained the 
energy storage; Nowadays the ac drives have been one of the most important 
strategies in speed control due to a high reliability of IM and the development took 
place in fields of power electronic; Ac drives has a wide spread applications to adjust 
motor speed, the typical drivers include a poly-phase inverter works as a Voltage 
Source Inverter VSI, VSI produce Pulse Width Modulation (PWM) to get a sinusoidal 
signal at a lower gauge of harmonics which it’s power losses. The mathematical 
model of system bases on a stator flux orientation of Ac motor [1]. However, of its 
highly nonlinear system is difficult to obtain an optimal controller. Fuzzy logic 
control FLC is a powerful controller tool; even if the system is non-linear and an 
accurate mathematical model is unavailable, the FLC is a robust controller. But, FLC 
suffers from drawbacks of how can tuning its parameters (number of membership 
functions and its type, rule number, and formulating rules). The most tuning of these 
parameters is done by either interactively method (trial and error) or by a human 
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expert [2]. Therefore, the tuning FLC parameters are necessary look for effective 
methods. Nowadays, several new intelligent optimization techniques have been 
emerged, such as Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony 
Optimization (ACO) and Bacteria Foraging Optimization (BFO) among these nature-
inspired strategies the Particle Swarm Optimization (PSO) algorithm is relatively 
novel [3], PSO has received a great attention in the control system. In [4] the fuzzy 
controller parameters generated by PSO for an AC-Drive speed controller, in [5] 
designed an AC-Drive system with an adaptive fuzzy controller using Reference 
Mode (RF), the reference [6] described a FLC based on a “floating membership 
function”. All this research didn’t care to calculate the energy dissipated or the power 
losses. In this paper, we propose a multi-objective function optimization for AC Drive 
works under a powerful controller FLC, the main question is: how can get an 
optimized dynamic speed behavior with a limited power? Pareto diagram has two 
functions; the first is reducing the error between the actual speed and desired speed 
while the other must preserve the energy dissipated from the electrical supply. 

2 Modeling and Simulation of Three Phases I.M. 

The most popular induction motor’s models are based on applying the axes 
transformation named (Krause’s model) according to d-q axes (stationary frame), 
assuming d-q axes are rotated synchronously with the rotor speed. The complete 
mathematical model and equivalent circuit diagrams of an I.M are illustrated in [4]. 

3 Multi-Objective Particle Swarm Optimization 

The most nature problems in the real world are boosted on a multi - objective 
investigation which can confront effectively, Multi-objective Particle Swarm 
Optimization MOPSO is one of the popular algorithms. Primarily Particle Swarm 
Optimization PSO is a computation technique had been proposed in 1995 by Kennedy 
and Eberhart [7, 8], PSO simulates a dynamic population behavior of fish swarm or 
bird flocks. Due to PSO simplicity, effectiveness, high convergence rate and 
efficiency this algorithm can solve a wide variety of single-objective optimization 
also non-linearity or non-differentiability problems [4], this algorithm explains briefly 
in as follows: 

1. Evaluate the fitness of each particle 
2. Update individual and global best fitness’s and positions 
3. Update velocity and position of each particle according the equations (1, 2): 
4. Repeat step 1 

, . , . 1. . , , . 2. . , .            1  

, . , . , .                                                                2  
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Where: 

i=1, 2… Number of particles. 
m=1, 2… Dimension. 
It.: Iterations pointer. , . : Velocity of particle no. i at iteration It. 
W: Inertia weight factor. 
c1, c2: Acceleration constant. 
r: Random number between( 0-1). , .  : Current position of particle i at iteration It. 

 : Best previous position of ith particle. g : Global best particle among all the particles in the population. 

However, Multi-objective optimization is quite different from single-objective 
optimization, the latter has one objective function so it is easy to calculate its ( , 

) values. But, the former has many objective functions so it is difficult to 
calculate ( , );  the basic version PSO algorithm is not effective to solve 
multi objective problem directly, because there are many objectives then the global 
best particle is incommensurable, and impossible to create all objective functions 
reach their minimum value at the same time [9]. Weighted Sum Approach (WSA) is 
the effective method to solve the desired solution by converting Multiobjective 
problem into a Single-objective problem, WSA represented in an equation (3)  min ∑  .                       (3) 

Where: ∈ 0,1  , ∑ 1 
 representing the best optimal finesses value of the j-th objective function in 

the k-th generation. 
Hopefully by expression (3) we can get the Pareto solutions along 23 points against 

23 Global best particles presented by the 0.04 0.08 0.12 … … …  0.96  and 0.96 0.92 0.88 … … …  0.04  making the current solutions to move toward the 
direction of the minimum distance from current position to each objective’s best 
optimal value. 

4 MOPSO Implemented with FLC 

Owning for one doesn't have the experience of the system behavior, it is very difficult 
to forming the center and width of the triangle Membership Fuzzy Functions MFFs 
for (inputs and outputs), and the challenge is how to get the optimized MFFs. There is 
no formal framework for choosing the parameters of FLC; hence the means of tuning 
them and learning models in general have become an important subject of fuzzy 
control. The function of the fuzzy controller is to observe the pattern of the speed loop 
error signal then the control signal can updated, A simple fuzzy logic controller of 
two inputs and one output can be designed in our work, the two inputs are: error 
between actual speed and desired speed (E) and change of error (CE), CE means 
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derivative of the error (dE/dt); these MFFs have seven triangle membership for each 
input and nine memberships for output. MOPSO can design positions of triangle 
memberships for input/output implementing by MATLAB/m-file program 
summarized in the flowchart shown in figure (3); this figure illustrates the linked with 
MATLAB/SIMULINK the system simulation program by AC-drive model presented 
by (IM, inverter and FLC block sets) shown in Figure (1).The optimization criteria 
(Integrated of Time Weight Square Error ITSE) equation (4) is used to evaluate 
accuracy performance of the speed (FF1) to minimize the first function which 
evaluated in the variable (e2) exposed in fig (1). FF1 ITSE t e t dt                                              4  

But, the optimization of the other function FF2 is evaluated by the variable (e) 
expressed the energy delivered to the motor; e is assessed by the integration of the 
power input (multiplying the voltage and the current). A set of good controller 
parameters can yield a good step response. 

 

Fig. 1. A simulation of an AC-derive with FLC 

5 Simulation Result 

Figure 2 shows the space of operating points (dominated, non-dominated) and 
determined the Pareto curve of the multi objective optimization of the two functions 
the ITSE of the difference between the desired speed and the actual speed on the x 
axis and the other function on y-axis is the energy dissipated and shows the Excellent 
Dynamic Speed Behavior (EDSB) is spend the largest scale of energy (49.93 Pu) and 
(ITSE (speed) =1. 322pu). Figure 4 shows a two step response of speed governed by 
(EDSB) controller which needs large energy and the Lower Dissipated of Energy 
(LDOE) which has the worst dynamic speed behavior. Figure 5 shows the energy 
dissipated of (EDSB) and (LDOE). Figures 6, figure7 FLC memberships in two 
inputs and one output designed by MOPSO for excellent speed dynamic behavior and 
the Lower Dissipated of Energy (LDOE) respectively. 
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Fig. 2. Pareto of MOPSO and the all dominated points 

 

Fig. 3. A flowchart of PSO algorithm 
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Fig. 4. Step response of speed for two FLC 

 

Fig. 5. Energy disputed Step response for two FLC 

 

Fig. 6. FLC designed by MOPSO for excellent speed dynamic behavior 
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Fig. 7. FLC designed by MOGA for lower energy dissipated 

6 Conclusions 

In this paper, we have proposed MOPSO, which is an evolutionary multiobjective 
algorithm developed to generate a set of FLCs with different function's accuracy of 
dynamic speed and energy, which is measure a numerous of membership (MF) 
antecedent conditions. The proposed method is able to learn the MF parameters. This 
allows us to take the better controller during the life of the battery or just before it will 
be discharged. A multi-objective PSO algorithm MOPSO can solve the engineering 
constrained optimization problem by converting into a single objective problem using 
Weighted Sum Approach (WSA) so it is easier to implement, and give the result 
sometime better than Genetic Algorithm (MOGA) and MOPSO algorithm is able to 
find competitive solutions and converge quickly. The simulation test results validate 
that the fuzzy logic controller designed by (MOPSO) can be successfully cooperated 
with (MOGA) to improve the motor efficiency of an AC drive. During steady states 
and transient the optimal value of the favorable case can be minimized in order to 
achieve less power consumption and to reduce the convergence time. 
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Abstract. Fuzzy set theory, soft set theory and rough set theory are
mathematical tools for dealing with uncertainties and are closely related.
In the paper, we define the notion of a soft set in L-set theory, intro-
duce several operators for L-soft set theory, and investigate the rough
operators on the set of all L-soft sets induced by the rough operators
on LX .

Keywords: Rough set, L-set, soft set, approximations.

1 Introduction

In 1982, Z.Pawlak initiated the rough set theory [15], D.Dubois, H.Prade com-
bined fuzzy sets and rough sets all together [4]. In 1999, D.Molodtsov introduced
the concept of soft sets to solve complicated problems and various types of un-
certainties [11]. P. K. Maji et al. studied the (Zadeh’s) fuzzification of the soft
set theory [8].

In the paper, we focus on L-fuzzification of the soft set theory, construct a
framework to combine L-sets, rough sets, and soft sets all together, which leads
to many interesting new concepts and results.

The paper is arranged into three parts, Section 3: L-soft sets, and Section
4: Rough L-soft sets. In Section 2, we give an overview of L-sets, soft sets and
rough sets, which surveys Preliminaries.

2 Preliminaries

2.1 L-Sets

Suppose L= 〈L,∨,∧,⊗,→, 0, 1〉 is a complete residuated lattice, X a universe

set, an L-set in X is a mapping Ã : X → L. Ã(x)indicates the truth degree

of “x belongs to Ã”. We use the symbol LX to denote the set of all L-sets in

X . For instance: 1̃X : X → L, 0̃X : X → L are defined as: for all x ∈ X , 1̃X(x)

= 1, 0̃X(x) = 0, respectively. The negation operator is defined: for Ã ∈ LX ,
Ã∗(x) = Ã(x) → 0 for every x ∈ X . For more details, see [2].

Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 530–539, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2.2 Soft Sets and Fuzzy Soft Sets

A soft set is an approximate description of an object precisely consisting of two
parts, namely predicate and approximate value set.

Let X be an initial universe set and EX (simple E) be a collection of all
possible parameters with respect to X . Usually, parameters are attributes, char-
acteristics, or properties of objects in X .

In [11], D.Molodtsov introduced the notion of a soft set as follows.

Definition 1. A pair (F,A) is called a soft set over X if A ⊆ E, and F : A→
2X, where 2X is the power set of X.

Some researchers have studied soft sets, rough sets and fuzzy sets, see [1, 5, 6, 8,
9, 10, 11, 12, 13, 14]. In [8], P.K.Maji et al. defined the notion of a fuzzy soft set.

Definition 2. A pair (F,A) is called a fuzzy soft set over X if A ⊆ E, and
F : A→ [0, 1]X , where [0, 1]X is the collection of all fuzzy sets on X.

2.3 Rough Sets

In [7], suppose (P, 0, 1,∨,∧,′ ) is an atomic Boolean lattice, Q is the set of all
atoms. For an arbitrary mapping ϕ : Q → P , J. Järinven defined two rough
approximation operators, for every a ∈ P, x ∈ Q,

N(a) = ∨{x | ϕ(x) ≤ a}, H(a) = ∨{x | a ∧ ϕ(x) �= 0}. (1)

We generalized the method in [3], which includes [15] as a special case.

Definition 3. Suppose X is a universe set, LX is the set of all L-sets on X,
M = {{a/x} | a ∈ L, a > 0, x ∈ X} is the set of all singletons, ϕ : M → LX

is an arbitrary mapping, then we obtain two L-rough operators Nϕ and Hϕ: for

every Ã ∈ LX , x ∈ X,

Nϕ(Ã)(x) =
∨

{a/x}∈M
a⊗ S(ϕ({a/x}), Ã),

Hϕ(Ã)(x) =
∨

{a/x}∈M
a⊗ ρ(ϕ({a/x}), Ã). (2)

Where ρ(Ã, B̃) =
∨
x∈X

Ã(x)⊗ B̃(x).

Example 1. Suppose X = {x1, x2, x3}, and L = [0, 1] with a ⊗ b = min(a, b),
a → b = 1, if a ≤ b; a → b = b, if a > b. (Gödel Structure). Let ϕ({a/xi}) =
{a⊗ 0.5/xi} for i = 1, 2, 3, then for i = 1, 2, 3, we have

S(ϕ({a/xi}), Ã) =
∧
y∈X

ϕ({a/xi})(y) → Ã(y) = a⊗ 0.5 → Ã(xi),

ρ(ϕ({a/xi}), Ã) =
∨
y∈X

ϕ({a/xi})(y)⊗ Ã(y) = [a⊗ 0.5]⊗ Ã(xi). (3)
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For Ã = {0.6/x1, 0.2/x2, 0.7/x3},
Nϕ(Ã)(x1) =

∨
{a/x1}∈M

a⊗ S(ϕ({a/x1}), Ã)

=
∨

{a/x1}∈M
a⊗ [a⊗ 0.5 → Ã(x1)]

=
∨

{a/x1}∈M
a⊗ [a⊗ 0.5 → 0.6]

=
∨
a∈L

a⊗ [a⊗ 0.5 → 0.6]

= 1. (4)

Similarly, we obtain

Nϕ(Ã) = {1/x1, 0.2/x2, 1/x3}, and Hϕ(Ã) = {0.5/x1, 0.2/x2, 0.5/x3}. (5)

3 L-Soft Sets

In the section, we generalize the notion of a soft set in fuzzy setting, define L-
order, L-equivalence relation, and several operators on the set of all L-soft sets
over X . The definitions are accompanied by examples.

Suppose X is a universe set, LX is the set of all L-sets in X . Let E be a
collection of all possible parameters with respect to X .

First, we define the notion of a soft set in fuzzy setting.

Definition 4. A pair (F,A) is called an L-soft set over X if A ⊆ E, and F :
A→ LX , denoted by θ = (F,A).

Clearly, when L=2, the above definition coincides with Definition 1; when L=[0,
1], the above definition coincides with Definition 2.

Example 2. Follows Example 1. Let E = {t1, t2, t3, t4}, A1 = {t1, t2, t3}. F1 :
A1 → LX , where F1(t1) = {0.7/x1}, F1(t2) = {1/x1, 0.5/x2}, F1(t3) =
{0.6/x1, 0.2/x2, 0.7/x3}, clearly (F1, A1) is an L-soft set.

Let LS(X) be the set of all L-soft sets over X . On which, there exist two kinds
of special elements: one is called a absolute soft set (1A, A), ∀t ∈ A, 1A(t) = 1̃X ,
denoted by ΓA = (1A, A); the other is called a null soft set (0A, A), ∀t ∈ A,
0A(t) = 0̃X , denoted by ΦA = (0A, A).

Second, we introduce the relation L-order �, and L-equivalence relation ≈
which correspond the relations ⊆̃,= in classical case [1, 8, 9, 11]. For two L-soft
sets θ1 = (F,A), θ2 = (G,B) ∈LS(X),

(θ1 � θ2) = S(θ1, θ2) =
∧
t∈A

S(F (t), G(t)), (θ1 ≈ θ2) = S(θ1, θ2) ∧ S(θ2, θ1). (6)

Example 3. Follows Example 2, (F1, A1) is an L-soft set. Let A2 = {t1, t2, t3, t4},
F2 : A2 → LX , where F2(t1) = {0.4/x1}, F2(t2) = {0.9/x1, 0.5/x2, 0.3/x3},
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F2(t3) = {0.4/x1, 0.2/x2, 0.5/x3}, F2(t4) = {1/x1, 0.7/x2, 0.6/x3}, thus (F2, A2)
is also an L-soft set. We obtain

S((F1, A1), (F2, A2)) =
∧
t∈A1

S(F1(t), F2(t)) = 0.4,

S((F2, A2), (F1, A1)) =
∧
t∈A2

S((F2(t), F1(t)) = 0. (7)

Clearly, we have

θ1⊆̃θ2 ⇔ S(θ1, θ2) = 1 ⇔ A ⊆ B, and ∀t ∈ A,F (t) ⊆ G(t);

θ1 = θ2 ⇔ S(θ1, θ2) = 1, S(θ2, θ1) = 1 ⇔ A = B, and ∀t ∈ A,F (t) = G(t). (8)

Thus 〈〈LS(X),≈, 〉,�〉 is an L-order set [2]. When L=2, the above definitions
coincide with [11]; when L=[0, 1], the above definition coincides with [1, 8].

Example 4. Follows Example 2, (F1, A1) is a L-soft set. Let A3 = A1, F3 :
A3 → LX , where F3(t1) = {0.4/x1}, F3(t2) = {0.9/x1, 0.5/x2},
F3(t3) = {0.4/x1, 0.2/x2, 0.5/x3}, thus (F3, A3) is also an L-soft set, and
(F3, A3)⊆̃(F1, A1).

Third, we introduce the union and the extended (restricted) intersection of two
L-soft sets. In [8], P.K.Maji et al. defined the union of two fuzzy soft sets as
follows.

Definition 5. Suppose (F,A), (G,B) ∈LS(X) are two L-soft sets, the union of
(F,A) and (G,B) is an L-soft set (H,C), where C = A ∪B, and for t ∈ C,

H(t) =

⎧⎨
⎩
F (t) if t ∈ A−B
G(t) if t ∈ B − A
F (t) ∨G(t) if t ∈ A ∩B

(9)

and written as (F,A)
⋃̃
(G,B) = (H,C).

About some properties of the union, we combine [1] Proposition 1, [8] Proposition
3.2 and [13] Proposition 2 as follows.

Proposition 1. (1) (F,A)
⋃̃
(F,A) = (F,A),

(2) (F,A)
⋃̃
(G,B) = (G,B)

⋃̃
(F,A),

(3) ((F,A)
⋃̃
(G,B))

⋃̃
(H,C) = (F,A)

⋃̃
((G,B)

⋃̃
(H,C))

(4) (F,A)⊆̃(F,A)
⋃̃
(G,B), and (G,B)⊆̃(F,A)

⋃̃
(G,B)

(5) (F,A)⊆̃(G,B) ⇒ (F,A)
⋃̃
(G,B) = (G,B),

(6) (F,A)
⋃̃
ΦA = (F,A), (F,A)

⋃̃
ΓA = ΓA.
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In [8], P.K.Maji et al. also defined the intersection of two fuzzy soft sets, i.e.,
suppose (F,A), (G,B) ∈LS(X) are two L-soft sets, the intersection of (F,A)
and (G,B) is also an L-soft set (K,D), where D = A ∩ B, and for t ∈ D,
K(t) = F (t) orG(t) (as both are the same L-set). But generally F (t) = G(t) does
not hold, and A ∩B may be a empty set. So B. Ahmad, Athar Kharal, M.I.Ali
and M.Shabir introduced a new definition, see [1] Definition 7, [12] Definition
3.3 and [13] Definition 10. In [12, 13], it is called the restricted intersection(�).

Definition 6. Suppose (F,A), (G,B) ∈LS(X) are two L-soft sets, such that
A ∩ B �= ∅, the (restricted) intersection of (F,A) and (G,B) is also an L-soft
set (K,D), where D = A ∩B, and for t ∈ D, K(t) = F (t) ∧G(t). It denoted by

(F,A)
⋂̃
(G,B) = (K,D).

Example 5. Follows Example 3, we obtain (H,C) = (F1, A1)
⋃̃
(F2, A2), where

C = A1 ∪ A2 = {t1, t2, t3, t4}, and H(t1) = F1(t1) ∨ F2(t1) = {0.7/x1},
H(t2) = F1(t2) ∨ F2(t2) = {1/x1, 0.5/x2, 0.3/x3}, H(t3) = F1(t3) ∨ F2(t3) =
{0.6/x1, 0.2/x2, 0.7/x3}, H(t4) = F2(t4) = {1/x1, 0.7/x2, 0.6/x3}. Similarly,

(F4, A4) = (F1, A1)
⋂̃
(F2, A2), where A4 = A1 ∩ A2 = {t1, t2, t3}, and F4(t1) =

F1(t1) ∧ F2(t1) = {0.4/x1}, F4(t2) = F1(t2) ∧ F2(t2) = {0.9/x1, 0.5/x2},
F4(t3) = F1(t3) ∧ F2(t3) = {0.4/x1, 0.2/x2, 0.5/x3}.
In [12, 13], M.I.Ali et al. defined a new intersection, which is called the extended
intersection.

Definition 7. Suppose (F,A), (G,B) ∈LS(X) are two L-soft sets, the extended
intersection of (F,A) and (G,B) is also an L-soft set (J,C), where C = A ∪B,
and for t ∈ C,

J(t) =

⎧⎨
⎩
F (t) if t ∈ A−B
G(t) if t ∈ B −A
F (t) ∧G(t) if t ∈ A ∩B

(10)

and written as (F,A) ! (G,B) = (J,C).

Example 6. Follows Example 3, we obtain (J,C) = (F1, A1) ! (F2, A2), where
C = A1 ∪ A2 = {t1, t2, t3, t4}, and J(t1) = F1(t1) ∧ F2(t1) = {0.4/x1}, J(t2) =
F1(t2) ∧ F2(t2) = {0.9/x1, 0.5/x2}, J(t3) = F1(t3) ∧ F2(t3) = {0.4/x1, 0.2/x2,
0.5/x3}, J(t4) = F2(t4) = {1/x1, 0.7/x2, 0.6/x3}.
Now, we introduce a new operator ⊗̃ on LS(X).

Definition 8. Suppose (F,A), (G,B) ∈LS(X), with A ∩ B �= ∅, the
(restricted)⊗ of (F,A) and (G,B) is an L-soft set (Y,D), where D = A ∩ B,
and ∀t ∈ D, Y (t) = F (t)⊗G(t), denoted by (F,A)⊗̃(G,B) = (Y,D).

Example 7. Suppose X = {x1, x2, x3}, and L = [0, 1] with a ⊗ b = max(a +
b − 1, 0), a → b = min(1 − a + b, 1) (Lukasiewicz Structure). (F1, A1) and
(F2, A2) are two L-soft sets, see Example 3. (F1, A1)⊗̃(F2, A2) = (F5, A5), where
A5 = A1 ∩ A2 = {t1, t2, t3}; and F5(t1) = {0.1/x1}, F5(t2) = {0.9/x1, 0/x2},
F5(t3) = {0/x1, 0/x2, 0.2/x3}.
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Similarly, we also define the extended ⊗ of (F,A), (G,B), it is an L-soft set
(Z,C), where C = A ∪B, and ∀t ∈ C,

Z(t) =

⎧⎨
⎩
F (t) if t ∈ A−B
G(t) if t ∈ B −A
F (t)⊗G(t) if t ∈ A ∩B

(11)

written as (F,A)⊗(G,B) = (Z,C).

In Example 7, (F1, A1)⊗(F2, A2) = (Z,C), where C = A1 ∪ A2 = {t1, t2, t3,
t4}, and Z(t1) = F4(t1), Z(t2) = F4(t2), Z(t3) = F4(t3), Z(t4) = F2(t4).

When ⊗ = ∧, the extended (restricted) ⊗ coincides with the extended (re-
stricted) intersection, respectively. Clearly, we have,

Proposition 2. (1) (F,A)
⋂̃
(F,A) = (F,A) ! (F,A) = (F,A),

(2) (F,A)
⋂̃
(G,B) = (G,B)

⋂̃
(F,A), (F,A) ! (G,B) = (G,B) ! (F,A),

(F,A)⊗̃(G,B) = (G,B)⊗̃(F,A), (F,A)⊗(G,B) = (G,B)⊗(F,A),

(3) (F,A)⊗̃(G,B)⊆̃(F,A)
⋂̃
(G,B)⊆̃(F,A) ! (G,B)⊆̃(F,A)

⋃̃
(G,B),

(F,A)⊗̃(G,B)⊆̃(F,A)⊗(G,B)⊆̃(F,A) ! (G,B)⊆̃(F,A)
⋃̃
(G,B),

(4) (F,A)
⋂̃
ΓA = (F,A), (F,A) ! ΓA = (F,A),

(F,A)⊗̃ΓA = (F,A), (F,A)⊗ΓA = (F,A),

(5) (F,A)
⋂̃
ΦA = ΦA, (F,A) ! ΦA = ΦA,

(F,A)⊗̃ΦA = ΦA, (F,A)⊗ΦA = ΦA,

(6) (F,A)⊗̃(G,B)⊆̃(F,A)
⋂̃
(G,B)⊆̃(F,A),

(F,A)⊗̃(G,B)⊆̃(F,A)
⋂̃
(G,B)⊆̃(G,B).

In [1], B. Ahmad and Athar Kharal defined arbitrary union and intersection of
a family of fuzzy soft sets. As generalizations of the above operators, we define
infinitely union, infinitely extended intersection operators on LS(X).

Definition 9. On LS(X), the infinitely union of a system of L-soft sets θi =
(Fi, Ai) is an L-soft set (H,C), where C =

⋃
i

Ai, H : C → LX , for every t ∈ C,

H(t) =
∨
i∈It

Fi(t), where It = {i | t ∈ Ai}, denoted by
⋃̃
θi.

The infinitely extended intersection of a system of L-soft sets θi = (Fi, Ai)
is an L-soft set (K,C), where C =

⋃
i

Ai, K : C → LX, for every t ∈ C,

K(t) =
∧
i∈It

Fi(t), where It = {i | t ∈ Ai}, denoted by ! θi.

Example 8. Follows Example 3. Suppose (Fi, Ai) is a system of L-soft sets,
i = 2k, Ai = {t1, t2}, and Fi : Ai → LX , Fi(t1) = {0.99 · · ·9︸ ︷︷ ︸

i

/x1, 0.7/x2},

Fi(t2) = {0.5/x1, 1/i/x2}; i = 2k + 1, Ai = {t1, t3}, and Fi : Ai → LX ,
Fi(t1) = {1/i/x1, 0.4/x2, 0.99 · · ·9︸ ︷︷ ︸

i

/x3}, Fi(t3) = {0.5/x1, 0.99 · · ·9︸ ︷︷ ︸
i

/x2, 0.6/x3},
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where k = 1, 2, 3, · · ·. Then we have
⋃̃
i

(Fi, Ai) = (F,A), where A = {t1, t2, t3},
and F : A→ LX , F (t1) = {1/x1, 0.7/x2, 1/x3}, F (t2) = {0.5/x1, 1/x2}, F (t3) =
{0.5/x1, 1/x2, 0.6/x3}. !(Fi, Ai) = (G,B), where B = {t1, t2, t3}, and G : B →
LX , G(t1) = {0.4/x2}, G(t2) = {0.5/x1} G(t3) = {0.5/x1, 0.9/x2, 0.6/x3}.
We obtain the following proposition about the infinity union, and the infinity
extended intersection.

Proposition 3. (De Morgan Law) Suppose L satisfies the law of double nega-
tion, (Fi, Ai) is a system of L-soft sets over X, then

(1) !i(Fi, Ai)c = (
⋃̃
i

(Fi, Ai))
c, (2) (!i(Fi, Ai))c =

⋃̃
i

(Fi, Ai)
c.

We close the section by considering the influence of the distributivity law of L
on the above two operators. If L satisfies the distributivity law, i.e., a∧ (b∨ c) =
(a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) hold for a, b, c ∈ L, we have

(F,A) ! ((G,B)
⋃̃

(H,C)) = ((F,A) ! (G,B))
⋃̃

((F,A) ! (H,C)),

(F,A)
⋃̃

((G,B) ! (H,C)) = ((F,A)
⋃̃

(G,B)) ! ((F,A)
⋃̃

(H,C)). (12)

If L satisfies the join infinity distributivity law, i.e., a∧ ∨
i∈I

bi =
∨
i∈I

a∧ bi, where
a ∈ L, bi ∈ L for i ∈ I, we have

(F,A) !
⋃̃

i∈I(Gi, Bi) =
⋃̃

i∈I(F,A) ! (Gi, Bi). (13)

Furthermore, If L satisfies the completely distributivity law, i.e.,
∨
i∈I

∧
j∈J

aij =∧
α:I→J

∨
i∈I

aiα(i), where aij ∈ L for i ∈ I, j ∈ J , we may obtain

⋃̃
i∈I !j∈J (Fij , Aij) = !α:I→J

⋃̃
i∈I(Fiα(i), Aiα(i)). (14)

Note that I, J are two index sets.

In conclusion, suppose L satisfies the distributivity law (the join infinity dis-
tributivity law, the completely distributivity law), then LS(X) also satisfies the

corresponding one with respect to the operators
⋃̃

and !.

4 Rough L-Soft Sets

In the section, we define the two rough operators on LS(X) by means of Nϕ, Hϕ

on LX , and investigate some of their properties.

First, we define two rough operators N,H on LS(X) in following manner.
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Definition 10. For every θ = (F,A), for every t ∈ A, let

F∗(t) : A→ LX , F∗(t) = Nϕ(F (t)),

F ∗(t) : A→ LX , F ∗(t) = Hϕ(F (t)). (15)

Then we obtain two L-soft sets N(θ) = (F∗, A), H(θ) = (F ∗, A). The operators
N,H are called the lower and upper rough approximations of L-soft sets. If
N(θ) = H(θ), the L-soft set θ is said to be definable; otherwise (N(θ), H(θ)) is
called a pair of rough L-soft set.

We present the following example.

Example 9. Let (F,A) = (F1, A1) defined in Example 2, we may obtain,

F∗(t1) = Nϕ(F (t1)) = {1/x1}, F∗(t2) = Nϕ(F (t2)) = {1/x1, 1/x2},
F∗(t3) = Nϕ(F1(t3)) = {1/x1, 0.2/x2, 1/x2}; and
F ∗(t1) = Hϕ(F1(t1)) = {0.5/x1}, F ∗(t2) = Hϕ(F1(t2)) = {0.5/x1, 0.5/x2},
F ∗(t3) = Hϕ(F1(t3)) = {0.5/x1, 0.2/x2, 0.5/x2}. (See Example 1).

Then N(θ) = (F∗, A), H(θ) = (F ∗, A) is the lower and upper approximations of
θ = (F,A).

Next, we investigate some properties about N,H on LS(X).
In the classical case, N andH are monotone increasing, i.e., if A ⊆ B, N(A) ⊆

N(B) and H(A) ⊆ H(B) hold. For LS(X), from the point of view of graded
approach, we will prove the two rough operators N,H are monotone increasing
for the subsethood degrees, see Proposition 4(2) and (3).

Proposition 4. (1) N(ΓA) = ΓA, H(ΦA) = ΦA,
(2) S(θ1, θ2) ≤ S(N(θ1), N(θ2)), (3) S(θ1, θ2) ≤ S(H(θ1), H(θ2)).

Proof. We prove (2) only.

(2) For θ1 = (F,A), θ2 = (G,B) ∈LS(X), and every x ∈ X ,

S(θ1, θ2)⊗ F∗(t)(x) = S(θ1, θ2)⊗Nϕ(F (t))(x)

= [
∧
t∈A

S(F (t), G(t))] ⊗ [
∨

{a/x}∈M
a⊗ S(ϕ({a/x}), F (t))]

≤ S(F (t), G(t)) ⊗ [
∨

{a/x}∈M
a⊗ S(ϕ({a/x}), F (t))]

=
∨

{a/x}∈M
S(F (t), G(t)) ⊗ a⊗ S(ϕ({a/x}), F (t))

≤ ∨
{a/x}∈M

a⊗ S(ϕ({a/x}), G(t))

= Nϕ(G(t))(x)

= G∗(t)(x). (16)

So S(θ1, θ2) ≤ F∗(t)(x) → G∗(t)(x), thus S(θ1, θ2) ≤ S(N(θ1), N(θ2)) holds.
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Clearly, for θ1 = (F,A), θ2 = (G,B) ∈LS(X), if θ1⊆̃θ2, we also have
N(θ1)⊆̃N(θ2), H(θ1)⊆̃H(θ2).

In [7], the set of all lower approximations and the set of all upper ap-
proximations form complete lattices. For LS(X), we also obtain the following
propositions.

Proposition 5. Suppose {θi | i ∈ I} ⊆LS(X), we have

(1)
⋃̃
i∈IN(θi)⊆̃N(

⋃̃
i∈Iθi), (2) N(!i∈Iθi)⊆̃ !i∈I N(θi),

(3) H(!i∈Iθi)⊆̃ !i∈I H(θi).

Proposition 6. Suppose L satisfies idempotency [2], then for θ1, θ2 ∈LS(X),
we have

(1) H(θ1)⊗̃H(θ2) = H(θ1⊗̃θ2), (2) H(θ1)⊗H(θ2) = H(θ1⊗θ2).
Proposition 7. Q = {H(θ) | θ ∈ LS(X) } is closed for

⋃̃
, that is, suppose

{θi | i ∈ I} ⊆ Q, then H(
⋃̃
i∈I
θi) ∈ Q.

Proof. Suppose {θi = (Fi, Ai) | i ∈ I} ⊆ Q, let θ = (F,A) =
⋃̃
i∈I
θi, where

A =
⋃
i∈I

Ai, and for every t ∈ A, F (t) =
∨
i∈It

Fi(t), where It = {i | t ∈ Ai}.

Then for every x ∈ X , and t ∈ A =
⋃
i∈I

Ai, we have

F ∗(t)(x) = Hϕ(F (t))(x)

= Hϕ(
∨
i∈It

Fi(t))(x)

= [
∨

{a/x}∈M
a⊗ ρ(ϕ({a/x}), ∨

i∈It
Fi(t))](x)

= [
∨

{a/x}∈M
a⊗ ∨

i∈It
ρ(ϕ({a/x}), Fi(t))](x)

= [
∨
i∈It

∨
{a/x}∈M

a⊗ ρ(ϕ({a/x}), Fi(t))](x)

=
∨
i∈It

Hϕ(Fi(t))(x)

=
∨
i∈It

F ∗
i (t)(x). (17)

Note 1. By the above propositions, we know that if L satisfies idempotency, Q
is a semilattice with respect to

⋃̃
, and the minimal element is ΦE , the greatest

element is ΓE .

In fact, Definition 3 may be seen as a special case of Definition 10. As shown in
Section 2.2, M is the set of all singletons. If we choose M as the collection of all
possible parameters, i.e., E =M ; for every L-set Ã, Ã = {A(x)/x | x ∈ X} ⊆M .
For Ã, we consider F : Ã → LX , then (F, Ã) is an L-soft set, where for t ∈ Ã,
F (t) = Ã. According to Definition 10, we also obtain Definition 3.
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5 Conclusions

In the paper, first, we generalized the notion of a soft set in fuzzy setting, and
defined L-order, L-equivalence relation, the union, the extended (restricted) in-
tersection, the infinite union, the extended (restricted)infinite intersection, ⊗̃,
⊗ and complement on the collection of all L-soft sets. Second, we defined two
rough operators on LS(X) induced by the two rough operators [3] on LX , and
investigated some of their properties.
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Abstract. This paper presents an analog circuit generating mechanism based on 
connecting point guidance existing in circuit netlist. With the proposed 
mechanism, the initial circuit topology can be a random netlist, and the 
evolutionary operation can be executed directly on connecting point. Also, the 
knowledge of graph theory is introduced for evaluating the degree of diversity 
of circuit structures. Experimental results show that the proposed mechanism is 
beneficial to improve the diversity of topology in population. In the case of no 
robustness evolution mechanism, the diversity of topology in population can 
improve the fault tolerance of population.  

Keywords: Analog circuit, circuit topology, evolutionary programming. 

1 Introduction 

Analog circuit module plays an important role in many electronic systems. Unlike 
digital circuit design, analog circuit design doesn't have nature CAD tools. The task of 
analog circuit design is very complicate and the final result largely depends on the 
designers' knowledge and experience. In the past, researchers pay many attentions to 
analog circuit design automation with the application of artificial intelligence [1-9]. 
Koza et al. [1] propose a tree-coded scheme with genetic programming, by which the 
circuit topological structure is determined by the tree storage structure and 
connection-modifying functions. Lohn at el. [2] propose a linear-coded mechanism 
combining with genetic algorithm, which has been successfully used in evolutionary 
design of analogy filters and amplifiers. Grimbleby [3] propose a kind of netlist-based 
representation method which can directly generate circuit with a few restriction on 
the topology structures of circuits. Zebulum at el. [4] apply the netlist-based 
representation to the synthesis of circuits with three-terminal component. [5-6] limit 
the number of components, where the number of components is different from the 
length of chromosomes. 
                                                           
* Corresponding author. 
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In all the above methods, encoding method presented in [1] is complicated, the 
connection type of component is set in advance in [2], and the circuit topological 
structure is determined by connection type. Since a certain amount of connections 
cannot include all kinds of topologies, the encoding method has limitation on circuit 
topological structure. The netlist-based encoding mechanism directly generates the 
topology of circuits by connecting points. Topologies generated by this method are 
more flexible, thereby the method is helpful to get rich topologies. However, the 
length of chromosomes in [3-6] is fixed. This situation is not conducive to the 
diversity of population.  

This paper presents a connecting point guidance circuit generating mechanism. It 
constructs the topology of a circuit by all its connecting points. The number of 
components in a circuit is determined both by the number of connecting points and 
the number of components connected to every connecting point. It directly operates 
the connecting points by mutation operators during evolution. These mutation 
operators offer a more flexible approach to obtain rich topologies. Experimental 
results show that the connecting point guidance circuit generating mechanism is 
beneficial to improve the diversity of topologies in population. In the case of no 
robustness evolution mechanism, the diversity of circuit topologies in population can 
improve the fault-tolerance of population. 

2 Circuit Generating  

This new circuit generating mechanism is based on connecting point of circuits, 
where the number of components in a circuit is determined both by the number of 
connecting points and the number of components connected to every connecting 
point. In this way, the number of components of the candidate circuits will be 
changeable and flexible, on condition that these two parameters have not been fixed at 
the stage of initialization. Genetic operators are directly associated with encoding 
method, we adopt five kinds of mutation operators which specially designed for 
connecting point guidance circuits generating mechanism. These five mutation 
operators are complete to the evolutionary process, and can produce any circuit 
structure.  

2.1 Netlist Generating 

Netlist-based encoding method of circuit was firstly proposed by Grimbleby in [3]. 
The netlist-based encoding method we used here is different from previous ones. Our 
method is to control the number of components in a circuit by the number of 
connecting points and the number of components connected to every connecting 
point. It is clear, if these two parameters are fixed, the number of components in 
circuit are same in initialized population. As a solution, we can get diverse individuals 
by setting the range of the two parameters. We set a parameter MC to control the 
number of connecting point, and another parameter 

iN  to control the number of 

components that the i-th connecting point connected. When these two parameters are 
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variable, the number of component in every circuit is unfixed. On the basic of 
embryonic circuit (see left in Fig. 1), 0 represents ground, 1 represents input and 255 
represents output, connecting points in a circuit are [0,1,2,..., MC,255]. The length of 
the circuit is L ,  

2
*

2

MC
L N

+ =   
 . (1) 

Assume that N of a circuit is from 2 to 5, then 

2 2
2* 5*

2 2

MC MC
L

+ +   ≤ ≤      
 . (2) 

If the range of MC is from 4 to 10, the length of the circuit is from 6 to 30. 
The right figure in Figure 1 shows the map of a random netlist. We take a 

connecting point connect at least two not parallel components in whole circuit as 
guiding principle to avoid invalid circuits as much as possible. We use real number 
encoding technique to initialize population, e.g., 1 represents resistance, 2 represents 
capacitance, and 3 represents inductance. Thus, the value of every component can 
randomly be selected by its type and the corresponding range of value. 

Us
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Fig. 1. Left: the embryonic circuit of analog filter ; right: the process of netlist generating 

2.2 Mutation Operations 

We adopt five mutation operators according to the actual requirements. These five 
mutation operators are enough to generating any kinds of topologies. 

1. parameter change: select a component randomly, replace its value with a new 
one which randomly select from the range of parameter. 
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2. type change: select a component randomly, the type is changed to a different one 
and the parameter is changed simultaneously. 

3. point change: randomly select two different connecting point in circuit netlist, 
then swap them.  

4. component adding by point: select two different connecting points randomly in 
circuit netlist, connect the two connecting points by one component, its type and 
value are randomly selected. 

5. component deletion: delete a component which is randomly selected from circuit 
netlist by merging the two connecting points into one.  

In these five mutation operators, the last three are specially designed for connecting 
point, they can flexibly operate circuit topology, and can produce circuits with any 
topology. Mutation operation is likely to produce invalid individuals in evolutionary 
process , we take a connecting point connect at least two non-parallel components in 
an whole circuit as guiding principle to avoid invalid circuits as much as possible. 

2.3 The Measurement of Circuit Topology 

It is said that small world patterns exist in electronic circuits in [10]. Taking circuits 
as graphs, graphs with a small world structure are highly clustered but path length will 
be small [10]. Here, we choose clustering coefficient to describe circuit topology. We 
simplify circuits by series and parallel until their topologies contains only nodes, the 
node is the connecting point which connect three or more than three components. 

Assume that node i has k edges to other nodes, the maximum number of edges 
between the ik  nodes is 2

ikC , and the actual number of edges is iE . The clustering 

coefficient of a circuit is the average of all nodes, i.e., 

3 2
1

1

i

N
i

i k

E
C

N C=

=   . (3) 

From the perspective of geometry, the clustering coefficient of node i is the 
number of triangles connected to node i relative to the number of ternary group with 
the center of node i. 

It can be found that the clustering coefficient above can only reflect the topology of 
triangle, not include the quadrilateral topology. For this reason, we have  

4 3
1

21

i

N
i

i k

E
C

N C=

=   . (4)

where, 2iE  denotes the number of quadrilaterals connected to node i. The 

measurement coefficient of topologies can be 3 4C C Cα β= + , and 1α β+ = . In this 

paper, we have 0.5α β= = . 
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3 Evolutionary Method 

The search engine we adopt in this paper is evolutionary programming [11], it is a 
kind of evolutionary algorithm based on population. The number of initialized 
individuals is NP, every individual produce a child after mutation operation, every 
time one mutation operator is randomly selected to operate a individual. Each 
iteration we select ten percent of optimal individuals from parents and children, others 
are selected by stochastic tournament mechanism. The process of analog circuit 
design is described as follow: 

1. Randomly generate the initial population of NP individuals with the 
connecting point guidance circuit generating mechanism, each circuit is 
stored in a two-dimensional array just like the right figure in Figure 1, nX  

denote the n-th individual, { }1, ,n NP∀ ∈  . 

2. Evaluate the fitness of each individual in the population based on the fitness 
function in [1]. 

3. Each individual nX , n = 1,…,NP, produce a offspring nX  by a kind of 

mutation operators which are randomly selected from five mutation operators 
with equal probability. 

4. Calculate the fitness of each offspring '
nX  as step 2, { }1, ,n NP∀ ∈  . 

5. Select 0.1 NP∗ optimal individuals out of '
n nX X∪ , { }1, ,n NP∀ ∈  , the 

other 0.9 NP∗ individuals are selected by q stochastic tournament mechanism 

in remaining population. For each individual ia , { }1, ,1.9i NP∀ ∈ ∗  in 

remaining population, q opponents are chosen randomly with equal 
probability, iscore  is the number of individuals whose fitness are bigger than 

ia . After the process of comparison, sort the individuals by the rising trend of 

their scores. Then select 0.9 NP∗  individuals with high scores to the parents 
of the next generation. 

6. Stop if the halting criterion is satisfied; otherwise, go to step 3. 

4 The Experiments and Results 

We take analog filter as experimental observation object. The goal of experiments is 
to automatically design analog lowpass filters using evolutionary programming. The 
transition zone is from 1000 Hz to 2000Hz, the ripple of passband is 30mV or less and 
the ripple of stopband is 1mV or less. 

There are many kinds of faults, they can be roughly divided into two classes, 
parameter perturbations and topology failures. We use topology failure model to test 
every component in circuits with single point of short and disconnection damages[8]. 
A crucial-component in a circuit is the component whose failure will result in the 
losing of its original function. 
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4.1 Filter Design 

Population size is set to 200 individuals, and each run proceeds for 400 generations. 
The results shown in Figure 2 are chosen from ten runs. Top left shows the best 
fitness through generation, fitness of four runs decrease gradually indicate that 
populations are convergent. Top right shows a schematic of lowpass filter, it is 
satisfied the specification and randomly selected from four runs. From the schematic 
we can see that the circuit evolved by the connecting point guidance circuit generating 
mechanism contains novel topology, rather than the traditional filters contain only T-
shaped and π -shaped topology. Bottom left shows the change of circuits' length in 
population in four runs, we can see that the number of component in population is 
changeable and flexible. Bottom right shows the change of circuit structure in 
population in four runs, we can see that there are a variety of topologies in population. 
These experiments illustrate that the connecting point guidance circuits generating 
mechanism proposed by this paper can be a potential assistant method to design 
analog circuits. It is beneficial to improve the diversity of topology in population and 
produce novel circuit topology. 
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Fig. 2. The results of four runs which chosen from ten runs in lowpass filter design. Top left: 
Fitness of best circuit through generation in four runs; Top right: a circuit randomly selected 
which satisfy the specification. Bottom left: the average and the mean square error of circuits' 
length in four populations; Bottom right: the average and the mean square error of measurement 
coefficient in four populations; The same color represents the same population 
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4.2 Fault Tolerance Test 

The statistics of fault tolerant performance of individuals in population can better 
indicate the fault tolerance of population, so we can choose some individuals which 
meet the design requirements from populations, then test their fault tolerance. 

Suppose tolerancef  is the fault tolerance, it is the sum of single point fault model test 

in Eq. (5). Assume that the number of component in a circuit is n, and T is a threshold, 
if the fitness of single point fault model test is bigger than T, the weight of fitness is 
0.1, else the weight is 0.01. 


=

=
n

i
tolerance ifitness

n

w
f

1

)(  . (5) 
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Fig. 3. The results of fault tolerance test. Left: the fault-tolerance performance of top right with 
single point of shorts and disconnection damages; Right: the fault tolerance of 30 individuals 
randomly selected in ten runs with single point of shorts and disconnection damages, and they 
all match the specification. 

In Figure 3, left reflects the fault tolerance of top right in Figure 2, we can see that 
there is one crucial-component in circuit when we have single point short damage, 
and four crucial-components with disconnection damage. The tolerancef  of single point 

short damage test is 3.7770, and the tolerancef
 
of single point disconnection damage 

test is 11.6282, the circuit's fault tolerance to disconnection damage is worse than 
short damage.

 We choose 30 different individuals which meet the specification from ten runs, 
then test them with single point of short and disconnection damages respectively. It 
can be seen from right in Figure 3 that most individuals have some degree of fault 
tolerance. The circuits are randomly selected, so we have reasons to believe that rich 
topologies can bring a certain degree of fault tolerance to population. 

5 Conclusion 

In this paper, we propose a connecting point guidance circuit generating mechanism, 
this mechanism coordinates with evolutionary programming can evolve analog 
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circuits. This circuit generating mechanism almost has no limit on circuit topology, 
circuits evolved by this method have various number of components. The 
experimental results shows that the connecting point guidance circuit generating 
mechanism benefits to improve the diversity of topologies in population. In the case 
of no robustness evolution mechanism, rich topologies can bring a certain degree of 
fault tolerance to population. In the following work, we would use this circuit 
generating mechanism in the evolution of circuits which contain three-terminal 
components, even circuits with multiport modularized circuit, and make connecting 
point guidance circuit generating mechanism become a universal assist to netlist-
based representation in analog design automation. 
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Abstract. Organizational routines are collective phenomena with multiple 
actors involved in. In this paper, we introduce the evolutionary game theory 
into the study of organizational routines, and build up an evolutionary game 
model of organizational routines on complex networks. On the bases of this 
model, we provide a multi-agent based simulation via Swarm package. The 
results of our research show that: the evolutionary game theory – with the aid of 
multi-agent simulation as well – can afford us a general framework for 
formalized quantitative analysis, and provide an absolutely novelty directions 
for the researches of organizational routines based on mathematical methods.  

Keywords: organizational routines, individual habits, small-world network, 
evolutionary game theory, agent-based simulation. 

1 Introduction 

Organizational routines are some specific generative systems that may produce 
“repetitive and recognizable patterns of interdependent actions”, carried out by 
multiple actors within a pre-existing social context [1], [2], [3]. Some recent efforts 
have been paid to identify the micro-foundations of organizational routines that 
focused on the role of individual actors [4], and argued that there is a recursive 
relation between individual habits and routines in the organizational-level. On one 
hand, organizational routines are virtually some special structures of interlocking 
individual habits and they operate through the triggering of these individual habits. 
On the other hand, individual habits are the fundamental building blocks in the 
individual-level from which organizational routines emerge. They are the basis and 
individual analogue of organizational routines [5], [6]. 

While from the perspective of the evolutionary game theory, an organizational 
routine can be regarded as some evolutionary process for which all the individual 
actors devote to reaching a specific consensus or equilibrium among their interaction 
activities [7]. However, what do the internal dynamics work during the evolution of 
organizational routines? In this paper, we try to introduce the Evolutionary Game 
Theory (EGT) into our study, and discuss the evolutionary trajectories of 
organizational routines on one of a specific type of complex networks – i.e., the 
small-world networks. The paper is organized as follows: In the second section, an 
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evolutionary game model of organizational routines is given as the theoretical 
foundation of our study. In the third section, an agent-based simulation model is build 
up, and the simulation results are discussed on the small-world networks. And the 
forth section is the conclusion. 

2 Design of the Model 

2.1 Complex Networks for Individual Actors Involved in the Routine 

Organizational routines are collective phenomena carried out by distributed multiple 
actors that may be located in different places and belong to different organizational 
units. These actors act depending on their own knowledge contexts, capabilities, and 
the roles they play during the implementation of the routines, and linked with each 
other by interactions – i.e., all the individual actors involved in the routine are 
interacting with each other on some type of complex networks. And network topology 
plays a crucial role in determining the system’s dynamic properties [8], [9], [10]. In 
general, there are mainly three kinds of complex network to be considered – namely, 
local, small-world, and random networks. These different types of networks may 
share the same number of actors (i.e., nodes), but differ in terms of the pattern of 
connections, sees as in fig. 1[8]. The first is the regular network, which is indeed a 
lattice that consists of the undetermined amount of actors who are placed on the ring-
shaped networks. For example, the most frequently used structure is that within which 
every actor located has two neighbors in both directions that they are certain to play 
with. That is, there are four connections that are certain for each of the actors playing 
on the regular lattice. 

 

Fig. 1. Regular, small-world, and random networks 

The second is the random network which is placed at the opposite end of the 
spectrum from the regular network. On a random network, individual actors are 
randomly connected with each other, and the other actors they interact are not limited 
to the immediate neighborhood but are randomly drawn from the entire population. 
That is, Actors play this type of network structure are not clustered but may have 
short average path lengths. 

The third is the small-world network that can be created from a regular lattice by 
randomly rewiring each of the links with some probability p. The effect rewiring is to 
substitute some short-range connections with long-range ones, which may reduce 
drastically the average distance between randomly chosen pair of sits and produce a 
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small world phenomenon characteristic to many social networks. Thus, small-world 
networks are highly clustered and the minimum path length is relatively short. This 
means that most of the actors are still connected to their nearest neighbors, but now a 
very small number of new links can directly connect two actors that are far apart from 
each other. However, the probability p plays an important role in dominating the 
structure of the networks. That is, if p = 1 (which means that all connections are 
replaced), the rewiring process may yield the well-investigated random graphs. While 
in the limit p → 0, the depicted structure is equivalent to the regular lattice.  

2.2 Theoretical Foundation of the Evolutionary Game 

We suppose that there are only two groups of actors involved in a routine – namely, 
group A and group B – the number of actors each of the group consists is agent1Num 
and agent2Num, respectively. Actors from each of the groups have only two 
behavioral strategies – i.e., the one is of maintaining the current habitual behavior, 
and the other is of searching for a new way of behaviors to follow. We may denote 
the former behavioral strategy as x1, and the latter as x2. Further, we have that: 
If actors of both the two groups play behavioral strategy x1, there is no additional 
efforts needed, and they get the payoff as V1 and V2, respectively. Similarly, if they 
both play strategy x2, then an excess return VΔ  would be attained (that is, VΔα  for 
actors from group A and ( ) VΔ− α1  for actors from group B, respectively, where α  

is a coefficient, 10 ≤≤ α ), and a cost C should be paid for their searching activities 
(that is, Cβ for actors from group A and ( )Cβ−1  for actors from group B, 

respectively, where β  is a coefficient, 10 ≤≤ β ).  

However, If actors of both the two groups play different behavioral strategies, then 
the ones searching for new behaviors (playing strategy x2) may gain an additional 
return (denoting as 

1VΔ  for actors from group A and 
2VΔ  for actors from group B, 

respectively), and pay for the cost ( Cβ for actors from group A and ( )Cβ−1  for 

actors from group B, respectively). While the other ones adopting strategy x1 would 
gain an excess return (denoting as EV1 for actors from group A and EV2 for actors 
from group B, respectively), but no costs should be paid – i.e., the hitchhike 
phenomenon occurring. The payoff matrix of this game is given as in table 1. 

Table 1. The payoff matrix of the evolutionary game 

 
 

Actors of group B 

x1 x2 

Actors of 
group A 

x1 21, VV  CVV,EVV )1(2211 β−−Δ++  

x2 2211 EVV,CVV +−Δ+ β  CVV,CVV )1()1(21 βαβα −−Δ−+−Δ+  

Note: all the parameters in table 1 are bigger than 0, and there are relations as that: 
CV >Δ , CV β>Δ 1

, and ( )CV β−>Δ 12
. 
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Let 
Aθ ( )10 ≤≤ Aθ  and 

Bθ ( )10 ≤≤ Bθ be the proportion of actors of both the 

group A and B that play behavioral strategy x2, respectively. Then, the proportion of 
actors of these two groups that play strategy x1 is ( )Aθ−1  and ( )Bθ−1 , respectively. 

Then, we can get the expect payoffs for actors of group A that playing strategy x1 and 
x2 as that:  

( ) ( ) ( )11111 EVVV BB
x

A ++−= θθπ  (1)

( ) ( )( ) ( )CVVCVV BB
x

A βαθβθπ −Δ++−Δ+−= 11112  (2)

And the average payoff for actors from group A is as that: 

( ) ( ) ( )

( )[ ]11111

211

EVVVCVEVV BAB

x
AA

x
AAA

−Δ−Δ+−Δ++=
+−=

αθβθθ
πθπθπ  (3)

Accordingly, the expect payoffs for actors of group B that playing strategy x1 and x2 
are as that: 

( ) ( ) ( )22211 EVVV AA
x

B ++−= θθπ  (4)

( ) ( )( ) ( )CVVCVV AA
x

B )1()1()1(1 222
2 βαθβθπ −−Δ−++−−Δ+−=  (5)

And the average payoff for actors of group B is as that: 

( ) ( ) ( )

( )[ ]22212 )1()1(

1 21

EVVVCVEVV ABA

x
BB

x
BBB

−Δ−Δ−+−−Δ++=
+−=

αθβθθ
πθπθπ  (6)

2.3 Evolutionary Mechanisms of the Routine 

There are typically three mechanisms for actors to evolve their behavioral strategies. 
The first is by incentives. All the actors involved in the routine are bounded rational – 
i.e., they only have limited information and constrained computational capacities [11], 
and they consider the pursuit of maximum returns as their basic motives for 
interacting with each other. This means that an actor may change his behavioral 
strategy if and only if the payoff he gains is less than both of the expected and the 
average one of the whole group he belongs to. That is, for any actor (i, j) from group i 
(i = A, B; 1 ≤ j ≤ agent1Num while i = A, or 1 ≤ j ≤ agent2Num while i = B), at the 
time t, he would choose a partner from the other group randomly, and earn his payoff 
as ( ) ( )kx

i
t
jiU π=,

 (where, k = 1, 2). And we have that: 

(1) If the current behavioral strategy is x1, then the actor would change to x2 at the 
time t + 1 if and only ( ) ( ){ }i

x
i

t
jiU ππ ,min 1

, <  

(2) If the current behavioral strategy is x2, then he would change to x1 at the time t 
+ 1 if and only if ( ){ }i

x
ijiU ππ ,min 2

, <  
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The second is by imitation [6]. According to [12], we adopt the following formula to 
describe this mechanism as that: 

( )
( ) ( )( )[ ]τt

ki
t
ji

t
jki UU

p
,,

, exp1
1

−+
=  (7)

Where, the coefficient ( )t
jkip ,

 represents the probability of actor j from group i to 

imitate the behavioral strategy from its nearest neighbor k at the time t + 1; Ui,j and 
Ui,k are the payoffs of the actor j and k of the group i, respectively; and the parameter 
τ is a constant given arbitrarily. 

The third is by improvisation. Organizational routines are not just simply followed 
or reproduced – rather, individual actors have choices between whether to do so, or 
whether to amend the routine [1], [13], [14], [15]. That is, actors involved in 
organizational routines are allowed to take up one of their behavioral strategies 
randomly with a very small given probability improve_P. 

3 A Multi-Agent Based Simulation Study 

3.1 Why the Multi-Agent Based Simulation 

As the complex and dynamic characteristics inherited in social and economic 
phenomena, traditional tools – such as mathematics and experimental techniques etc. 
– are often becoming powerless in their applications. While the simulation method –
the multi-agent based simulation especially– with its arising and development in the 
past few years, is being more and more popular in studies of social complex and 
dynamic problems, and earns vast applications [16], [17]. 

The multi-agent based simulation method takes the systems’ macro-phenomena as 
the results of interactions between and within the micro-individuals [17], [18]. By 
defining the active agents and their environments, as well as describing rules of the 
interactions between and within these agents, we can execute simulation experiments 
via computer and reveal some emergences in the macro-level. Based on the overview 
about lots of works in which multi-agent based models have been used, [17] showed 
that there were associated relationships between multi-agent based models and the 
simulation of social phenomena with complex and dynamic characteristics inherited. 
Therefore, multi-agent based simulation can be regarded as an effective method for 
studying the emergence process from individuals to social organizations. 

3.2 Simulation Results and Discussion 

In this paper, we assume that some fixed relationships have long been formed among 
all the individual actors involved in the routine – that is, actors from each of the 
groups have connections only with a certain number of others (which we call as their 
nearest neighbors), and are organized with a given network typology – especially, the  
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small-world network is considered in our model (where, we let the coefficient p that 
dominating network typologies in fig. 1 as that p = 0.005). While every actor of group 
A would be randomly linked with 1 to agent1CopNum numbers of actors from group 
B, (which we call as pairs of copartners), and every actor in group B would be 
randomly linked with 1 to agent2CopNum number of actors from group A, likewise. 

Then, by considering individual actors involved in the routine as “active agents”, 
we realize the multi-agent based simulation of this evolutionary game model via the 
Swarm Package [19]. Let the coefficients of the payoff matrix in table 1 as follows: 
agent1Num = agent2Num = 120, agent1CopNum = agent2CopNum = 4, V1 = V2 = 
10, VΔ = 3.4, 

1VΔ = 
2VΔ = 2, EV1 = EV2 = 1.2, C = 1, α = β = 0.5, improve_P = 

0.001, τ = 0.01, we can obtain the simulation results as shown in fig. 2 and fig. 3.  

  
(a) small-world network of 

individual actors of group A 
(b) small-world network of 
individual actors of group B

(c) random network of actors 
between group A and B 

Fig. 2. Network typology of the individual actors involved in the routine 

 
(a) behavioral strategies distribution of 

individual actors of group A
(b) behavioral strategies distribution of 

individual actors of group B 

 
(c) imitation/improvisation of individual 

actors of both group A and B
(d) total revenues of individual actors of 

both group A and B

Fig. 3. The simulation results with the given scenario 
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From the simulation results, we have the conclusion that: at the beginning of the 
simulation, as all the individual actors of both the group A and B are taking the 
behavioral strategy x1, the game is at a relatively stable state. However, some actors 
may search for and adopt the behavioral strategy x2 occasionally due to the 
improvisation activities, and obtain much more revenues (when 

CV β>Δ 1
and ( )CV β−>Δ 12

). Further, the nearest neighbors associated with these 

actors would imitate and learn to adopt the new strategy with the motivation of 
pursuing much more payoffs, which may lead to the spread of behavioral strategy x2 
within the whole group of both A and B. Simultaneously, if there are some actors of 
one group that take the behavioral strategy x1, then, their copartners from the other 
group are also tending to adopt the strategy x2 (when CV β>Δ 1

and ( )CV β−>Δ 12
). 

While actors of this group change their behavioral strategies from x1 to x2, their 
copartners from the other group would also tend to choose x2 (when 

1EVCV >−Δ βα and ( ) ( ) 21-1 EVCV >−−Δ βα ). 

Thus, underlying these two dynamical mechanisms – i.e., the one is of playing 
games between individual actors of both the two groups A and B, and the other is of 
imitating and learning between these actors within the same group – all the individual 
actors involved in the routine interact with each other, and mutually result in an 
evolutionary stable state that actors of both the two groups take x2 as a common 
strategy. This implies that the routine is evolved in the organizational-level. 

4 Conclusions 

Organizational routines are collective phenomena that come out through repeated 
interaction among multiple actors involved in [2], [3], [14]. In this paper, by 
introducing the evolutionary game theory into our study, we try to investigate 
organizational routines from a “bottom-up” way. The contributions of our work are 
that: 

Firstly, we build up an evolutionary game model as a formalized description of the 
micro-dynamics of organizational routines. This may afford a general framework for 
quantitative analysis and provide an absolutely new way for the researches of 
organizational routines based on mathematical methods. 

Secondly, we try to discuss the evolution of organizational routines on complex 
networks – especially, the small-world network, and provide a multi-agent based 
simulation model via Swarm package. With the aid of computer tools, we can develop 
some particular simulation studies, and even discover some additional patterns. And 
these, may shed some light on studying complex and dynamic social phenomena 
through artificial experiments. 

However, there are still some further problems to solve, such as the details of 
factors that have impacts on the evolution of organizational routines, the influence of 
different network typologies of individual actors involved in the routines, the inter-
relationships between different kinds of individual behaviors and their complicated 
interactions, and so forth. All of these may hint some directions of our future work. 
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Abstract. The fault-tolerant evolutionary design based on negative-correlation 
redundancy technique is an effective way to improve the fault-tolerance of 
analog circuits with uncertain faults. In the existing negative-correlation 
redundancy evolutionary framework (ENCF), the negative-correlation penalty 
coefficient plays an important role, and it affects the performance of ENCF 
greatly. However, the value of the negative-correlation penalty coefficient is 
heavily dependent on the experience of designers. In this paper, we propose a 
new negative-correlation redundancy evolutionary framework based on 
stochastic ranking strategy. In order to make comparisons with the existing 
researches, we employ analog filter as a design example. Experimental results 
show that the framework proposed in this paper can generate negatively 
correlated redundancies without specifying the penalty coefficient, and it shows 
a relatively high ability to convergence compared to ENCF.  

Keywords: Negative-correlation, analog circuit, fault-tolerant, stochastic 
ranking, genetic algorithm. 

1 Introduction 

Analog circuit is a necessary part of modern electronic systems. The fault-tolerant 
design of analog circuit is especially important when it is working in harsh 
environment, such as the battle field and outer space. Usually, designers need to 
prepare multiple redundant circuits instead of single circuit to an electronic system to 
increase its fault-tolerant performance. One of the key factors of this heterogeneous 
redundancy approach is how to generate diverse analog redundant modules with 
different structures. Therefore, the research of designing diverse analog redundant 
modules effectively has the potential value. 

There are only a few works on the fault-tolerant circuits evolutionary design based 
on redundancy technique. T. Schnier and X. Yao [1] used negative correlation 
approach to make individuals of population as diverse as possible and use majority 
mechanism to combine the evolved multiple digital circuits to generate fault-tolerant 
                                                           
* Corresponding author. 
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circuit. Liu and He [2], [3], [4] proposed ENCF to design negatively correlated analog 
circuits by the negative correlation information communication among three different 
populations, and chosen the best circuit as the output of the ensemble, experimental 
results show that this method can improve the robustness-generation ability of analog 
circuits with uncertain faults. Kim et al. [5], [6] employed evolutionary strategy 
(single population and multi-population, respectively) to design multiple redundant 
circuits and used the weight summing circuit to build fault-tolerant ensemble circuits. 
Chang and He [7] added structure space crowding factor and genotype similarity 
penalty into fitness function to evolve multiple analog redundant modules diversely. 
The negatively correlated redundancy evolutionary technique proposed in [3] is a 
promising way for fault-tolerant evolutionary design of analog circuits with uncertain 
faults.  

The task of negative-correlation redundancy evolutionary framework is generating 
analog redundant modules, and they are negatively correlated each other in the 
frequency region. The existing ENCF framework proposed by Liu and He [3] is able 
to evolve the negatively correlated analog redundancies automatically. In this 
framework, an interactive-evaluate strategy is used, and the interactive-evaluation 
fitness function is defined by the sum of the circuit function and the negative-
correlation penalty function. A negative-correlation penalty coefficient is used to 
adjust the weight of negative-correlation degree to the circuit function, and it 
influences the performance of ENCF greatly [2], [4]. But its value is hard to 
determine, in order to find a proper negative-correlation penalty coefficient value, a 
predefined monotonically non-decreasing sequence [0.25 0.5 0.75 1] has to be used in 
ENCF, and a trial-and-error process must be used in this situation. Although this 
penalty function method used in ENCF is a suitable approach, but the value of 
negative-correlation penalty coefficient is heavily dependent on the experience of the 
designers.  

In this paper, we try to introduce the idea of stochastic ranking [8] into the problem 
of designing the negatively correlated analog redundancies, and propose a new 
negative-correlation redundancy evolutionary framework based on stochastic ranking 
strategy. Our experimental results on the low-pass filter show that the framework can 
generate negative-correlation analog redundancies without specifying the negative-
correlation penalty coefficient. Compare to ENCF, this framework can avoid the 
problem of determine the hard-to-set value of penalty coefficient, and it shows a 
relatively high ability to convergence to the negatively-correlated analog 
redundancies. 

2 Negatively Correlated Analog Redundancies Design  

There are two parts in this section. Firstly, we briefly analyze the existing ENCF 
framework; Then we will explain why we introduce the stochastic ranking into the 
problem of designing negatively correlated analog redundancies and show the detail 
description of the new negative-correlation evolutionary framework proposed in this 
paper.  
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2.1 Analysis of the Existing ENCF Framework 

Inspired by the advantages of negative correlation strategy in the neural network 
ensemble systems [9], [10], Liu and He [3] firstly introduced negative correlation into 
the field of fault-tolerant of analog circuit. The negative-correlation define in analog 
circuit is based on the outputs of analog circuits, that is using the output error between 
the under-design circuit and the design goal to define the negative-correlation among 
three different circuits. In ENCF, the fitness function given by Eq. (1) guides the 
evolution of the negative-correlation analog modules. A negative-correlation penalty 
coefficient λ is used to adjust the weight of negative-correlation degree to the circuit 
function. The value of the negative-correlation is hard to determine. If the negative-
correlation penalty coefficient is not chosen well, analog redundancies may meet their 
functional requirements but they are not negatively correlated.  

λ= + ∗Fitness Fit P . (1)

Where Fit denotes the circuit function as the objective value given by Eq. (2).  

1

( ( ) ( ))
N

n n
n

Fit f x F x
=

= − . (2)

P denotes the negative-correlation degree as the penalty term given by Eq. (3). 

1 1,

(( ( ) ( )) ( ( ) ( )))
= = ≠

= − ∗ − 
N M

i n i n j n j n
i j i j

P f x F x f x F x . (3)

Where N is the number of the whole sampling points, M is the number of the analog 
redundancy, fi(xn) denotes the actual circuit output of the ith sampling, Fi(xn) denotes 
the design goal of the ith sampling. 

According to Eq. (1), different negative-correlation penalty coefficients define 
different fitness functions. A fit individual under one fitness function may not be fit 
under another different fitness function. Different values of negative-correlation 
penalty coefficients represent different weights in objective value and negative-
correlated degree. When the objective value of the best individual in the population 
falls down to a very small value, this weighted summing method could bring bad 
influence. The individuals with better performance cannot be separated from those 
individuals with worse performance but higher negative-correlation value. In the 
researches on numerical constrained optimization, researchers use stochastic ranking 
[8] method to solve this problem. Finding a near-optimal negative-correlation penalty 
coefficient is equivalent to ranking individuals in a population adaptively.  

Thus, we transform the problem of designing negatively correlated redundant 
modules for robust analog circuit into how to rank individuals according to the 
function requirements of the analog redundancies and their negative-correlation 
degree in the frequency region. Thus, the fitness value representing the circuit 
function can be isolated with the negative-correlation degree, the mutual interference 
between the two variables can be prevented, and the algorithm performance can 



 A Novel Negative-Correlation Redundancy Evolutionary Framework 559 

 

become better. We propose a new evolutionary framework based on the stochastic 
ranking strategy, and the framework is described in the next section. 

2.2 Detail Description of the New Framework  

Designing negatively-correlated analog redundancies is based on analog circuit 
evolution design. Before evolving analog redundancies, we should encode analog 
circuits. We use the linear representation method proposed in [11], which is an 
effective circuit representation for analog circuit automatic design. We choose genetic 
algorithm as the evolution engine, which has been demonstrated to be an efficient 
evolutionary algorithm [3], [11]. In the evolutionary framework proposed in this 
paper, the key strategies are double population strategy, candidate strategy and the 
stochastic ranking strategy. 

The process of the new negative-correlation evolutionary algorithm is described as 
follows:  

Step1: Initial two populations randomly. Then evaluate all the individuals 
according to Eq. (2), and choose the individual with best fit as the candidate 
individual for each population. 

Step2: The two populations evolve simultaneously by the genetic operations 
(selection, crossover and mutate), evaluate the new populations and compute the 
correlation degree between all the individuals and the candidate in another population 
according to Eq. (3), respectively .  

Step3: Use the stochastic ranking to sort all the individuals in the two population 
simultaneously.  

Step4: Choose some individuals into the next generation, renew the two 
populations' candidates, respectively. Go back to Step2. 

In Step 3: Stochastic ranking is the most important factor in the new evolutionary 
framework proposed in this paper. The detail usage of stochastic ranking is that given 
any pair of two adjacent individuals, the ratio of comparing them (in order to 
determine which is fitter) according to the function of the circuit is 1, if they are 
negatively-correlated; Otherwise, it is Pf . Pf is introduced here to use only the circuit 
function for comparisons in ranking in the feasible regions (that is the negative 
correlation region) of the search space. That is when the analog redundancies are 
negatively-correlated, we just compare their circuit function, the smaller the circuit 
function fitness value the better; Otherwise, if rand() < Pf , we still compare the 
function of the circuits; If rand() > Pf , we compare the correlation degree of the 
analog redundancies, the more negative the better.  

Compared to ENCF, the most outstanding feature of the new framework proposed 
in this paper is that it employs stochastic ranking strategy to balance the circuit 
function and the negative correlation degree stochastically, and it don't need to 
determine the value of negative-correlation penalty coefficient. 
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3 Experiments and Result Discussions 

Experiments are employed to value whether the framework in this paper can generate 
negative-correlation analog redundant modules without a negative-correlation penalty 
coefficient. In order to make comparisons with ENCF, we use the typical low-pass filter 
design problem shown in [3] as a case. Its design specification is shown in Table 1. A 
platform with Matlab and Winspice is employed. In the evolutionary process, the 
population number is 2, population size is 200, crossover rate is 0.8, mutation rate is 0.1, 
the maximum number of components in a circuit is 20, the best value of Pf is 0.45 and 
the number of generation is 200.  

We make experiments for 40 independent runs. Fig. 1-Fig. 3 show the 
corresponding results. From the amplitude-frequency curves of the best pair of 
circuits shown in Fig.1, we can see that the two low-pass filters both meet the 
functional requirements and they are negatively correlated visually. Fig.2 (a) shows 
the fitness track of the two modules. The fit value goes down to zero quickly, it means 
the both of the analog modules meet the functional requirements. Fig.2 (b) shows the 
negative-correlation evolutionary track of the two negatively correlated low-pass 
filters in 40 runs. From it, we can observe that after the 150th generation, they appear 
to keep the negative-correlation relationship all the time. Fig.3 gives the circuit blocks 
of the optimal negatively correlated low-pass filters.  

From the results, we can see that the stochastic ranking strategy works well,  
and the evolutionary framework proposed in this paper is capable of generating 
analog redundancies and the most important is that it needs not specifying the 
negative-correlation penalty coefficient. 

We also make comparisons between the framework proposed in this paper and 
ENCF [3] in the same conditions to verify the performance of the framework 
proposed in the paper. Independent experiments on both evolutionary framework runs 
40 times, respectively. If circuit function meets and they are negatively correlated at 
the same time, That means the framework successfully converge. Two key 
comparison indexes are the number of successful convergence and ratio of 
convergence. The ratio of convergence is defined by the quotient between numbers of 
successful convergence and the whole 40 runs. Population size is 200, and the number 
of generation is 200. Table 2 shows the comparison results in 40 independent 
statistical runs. The index ENCF_ λ _x denotes the ENCF framework when negative- 
correlation penalty coefficient is x. In ENCF, x is marked by [0.25 0.5 0.75 1].  

Table 1. The specifications of the under-design low-pass filters in the experiments 

F p (Hz) Fs (Hz) K p (dB) Ks (dB) 

1000 2000 -3 -60 
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Fig. 1. The amplitude-frequency curves of the best pair of circuits 
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Fig. 2. Statistical results of 40 runs. a The fitness track of circuit function; b The negative-
correlation evolutionary track of the two analog redundancies. 

Table 2. Experimental comparison results between our framework and ENCF 

Evolutionary 
Framework 

Numbers of 
convergence 

Ratio of 
convergence 

Framework in this paper     35    87.5% 

ENCF_ λ _0.5     24    60% 

ENCF_ λ _0.25     16    40% 

ENCF_ λ _0.75     12    30% 

ENCF_ λ _1.00     12    30% 

From the Table 2, we can see that a trial-and-error process has to be used in ENCF 
in order to find a proper negative-correlation penalty coefficient. When the negative-
correlation penalty coefficient is 0.5 (this value is not known in advance), the number 
of successful convergence is the most, and the ratio of convergence is 60%. However, 
compared to the ratio of convergence of the framework proposed in this paper, whose 
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ratio is 87.5%, it is not so good. The new framework don't need to choose the hard-to-
set value of the negative-correlation penalty coefficient, thus, saving much resources. 

From the results, we can conclude that the framework proposed in this paper can 
generate negatively correlated analog modules with a relatively high ability to 
convergence, and it doesn't have to choose the penalty coefficient, thus, the trial-and-
error process is not necessary compared to ENCF. 

 

(a) 

 

(b) 

Fig. 3. The circuit diagrams of the best pair negatively-correlated redundancies. a One evolved 
filter and b another filter negatively correlated with the first circuit in a. 

4 Conclusion 

The performance of the existing evolutionary negative-correlation redundancy 
framework proposed in [3] is affected greatly by the negative-correlation penalty 
coefficient, but the value of the negative-correlation penalty coefficient is dependent 
on the experience of the designers. In this paper, we propose a new negative-
correlation redundancy evolutionary framework based on stochastic ranking strategy. 
Our experiment results suggest that the new framework is capable of evolving the 
negatively correlated analog redundant modules efficiently. The most important is 
that it solves the problem of the hard-to-set value of the negative-correlation penalty 
coefficient used in ENCF. Compared to ENCF, this framework can avoid the use of 
the negative-correlation penalty coefficient, thus, the trial-and-error process is not 
needed and it shows a relatively high ability to convergence to the negatively 
correlated analog redundancies.  



 A Novel Negative-Correlation Redundancy Evolutionary Framework 563 

 

Acknowledgments. This work is supported by National Nature Science Foundation 
of China under Grant 60975051 and 61273315. 

References 

1. Schnier, T., Yao, X.: Using Negative Correlation to Evolve Fault-Tolerant Circuits. In: 
Proceedings of the 5th International Conference on Evolvable Systems, pp. 35–46 (2003) 

2. Liu, M., He, J.: Negatively-Correlated Redundancy Circuits Evolution: A New Way of 
Robust Analog Circuit Synthesizing. In: Third International Workshop on Advanced 
Computational Intelligence, Suzhou, Jiangsu, China, August 25-27 (2010) 

3. Liu, M., He, J.: An Evolutionary Negative-Correlation Framework for Robust Analog-
Circuit Design under Uncertain Faults. IEEE Transactions on Evolutionary Computation 
(2012) 

4. Liu, M.: Analog circuits evolution design and the study of negative-correlation 
evolutionary framework for fault tolerant of analog circuits. Science and Technology 
University of Science and Technology of China, Anhui (2012) 

5. Kim, K.-J., Wong, A., Lipson, H.: Automated synthesis of resilient and tamper-evident 
analog circuits without a single point of failure. Genet Program Evolvable Mac 11(2010), 
34–59 (2010) 

6. Kim, K.-J., Chob, S.-J.: Automated synthesis of multiple analog circuits using 
evolutionary computation for redundancy-based fault-tolerance. Applied Soft Computing 
12(4), 1309–1321 (2012) 

7. Chang, H., He, J.: Structure diversity design of analog circuits by evolution computation 
for fault-tolerance. In: 2012 International Conference on Systems and informatics (2012) 

8. Runarsson, T.P., Yao, X.: Stochastic Ranking for Constrained Evolutionary Optimization. 
IEEE Transactions on evolutionary computation 4(3) (2012) 

9. Liu, Y., Yao, X.: Ensemble Learning Via Negative Correlation. Neural Networks 12, 
1399–1404 (1999) 

10. Liu, Y., Yao, X., Higuchi, T.: Evolutionary Ensembles with Negative Correlation 
Learning. IEEE Transactions on Evolutionary Computation 4(4), 380–387 (1999) 

11. Lohn, J.D., Colonbano, S.P.: A Circuit Representation Techniques for Automated Circuit 
Design. IEEE Transactions on Automatic Control 3(3), 205–219 (1999) 



Y. Tan, Y. Shi, and H. Mo (Eds.): ICSI 2013, Part I, LNCS 7928, pp. 564–571, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Intelligent Modeling and Prediction of Elastic Modulus  
of Concrete Strength via Gene Expression Programming 

Amir Hossein Gandomi1, Amir Hossein Alavi2, T.O. Ting3,∗ , and Xin-She Yang4 

1 Department of Civil Engineering, The University of Akron, Akron, OH 44325-3905, USA 
2 Department of Civil and Environmental Engineering, Engineering Building,  

Michigan State University, East Lansing, MI, 48824, USA 
3 Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, 

Suzhou, Jiangsu Province, P.R. China 
4 School of Science and Technology, Middlesex University Hendon Campus, London, UK 

ag72@uakron.edu, alavi@msu.edu, toting@xjtlu.edu.cn, 
x.yang@mdx.ac.uk  

Abstract. The accurate prediction of the elastic modulus of concrete can be 
very important in civil engineering applications. We use gene expression 
programming (GEP) to model and predict the elastic modulus of normal-
strength concrete (NSC) and high-strength concrete (HSC). The proposed 
models can relate the modulus of elasticity of NSC and HSC to their 
compressive strength, based on reliable experimental databases obtained from 
the published literature. Our results show that GEP can be an effective method 
for deriving simplified and precise formulations for the elastic modulus of NSC 
and HSC. Furthermore, the comparison study in the present work indicates that 
the GEP predictions are more accurate than other methods.  

Keywords: Tangent elastic modulus, Normal and High strength concrete, Gene 
expression programming, Compressive strength, Formulation. 

1 Introduction 

In many civil engineering applications, to estimate the material properties such as 
elastic modulus is very important to meet design requirements. For example, the 
elastic modulus of normal and high strength concrete is a key parameter in structural 
engineering, and this parameter helps to determine the static and time-dependent 
deformation and system behaviour. It is also related to the assessment of other key 
processes such as creep, shrinkage, crack propagation and control in both reinforced 
concrete and prestressed concrete [1,2]. From the slope of a stress-strain curve of a 
given concrete material, we can estimate the elastic modulus of the sample.  

Despite its importance, the elastic modulus is not usually measured in situ as it is 
time-consuming and expensive. The common practice is to estimate it using empirical 
relationships, based on various codes of practice. Such models often link the elastic 
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modulus with compressive strength, which essentially eliminate the need for going 
through laborious and time-consuming direct measurements from load-deformation 
curve [2, 3]. 

In recent years, techniques such as pattern recognition systems have received much 
attention in civil engineering applications. These systems are trained based on 
empirical data and thus can extract various discriminators. Loosely speaking, in the 
context of engineering applications, Artificial Neural Networks (ANNs), Fuzzy Logic 
(FL), Adaptive Neuro Fuzzy Inference System (ANFIS), and Support Vector Machine 
(SVM) can all be referred to as pattern recognition methods. Not surprisingly, these 
techniques have been used in predicting the elastic modulus of normal and high 
strength concrete (NSC and HSC) [4-6]. Although ANNs, FL, ANFIS, and SVM are 
successful in prediction, they cannot produce explicit equations for predictions, and 
thus limiting their usage.  

In this paper, we present an alternative approach to produce explicit equations for 
elastic modulus of concrete materials by using genetic programming (GP), and this 
partly overcomes the limitations of ANNs, FL, ANFIS, and SVM for this type of 
applications. To achieve this goal, we investigate a relatively new variant of GP, 
namely gene expression programming (GEP) [7] that have been used to solve civil 
engineering applications such as concrete modeling [2,8,9]. In our predictions and 
model formulation, we have used reliable databases of previously published test 
results. A comparative study is carried out between the results obtained by GEP and 
those obtained from the buildings codes [10-13], compatibility aided [14, 15], FL [4], 
and ANN [5] models. The rest of the paper is organized as follows: Section 2 
provides a brief description of the gene expression programming. In Section 3, a 
detailed study of model prediction of concrete strength and parameters using GEP is 
presented. Further, Section 4 provides the performance comparison and analysis and 
finally we draw brief conclusions in Section 5. 

2 Gene Expression Programming 

Genetic programming is a branch of artificial intelligence techniques that creates 
computer programs to solve a problem by mimicking the evolution of living or 
biological organisms [16]. In essence, the main aim of this method is to use inputs and 
their corresponding output data samples so as to create a computer program that 
connects them with the minimum fitting or prediction errors. The major difference 
between GP and genetic algorithms (GA) is the way of representing the solutions. In 
GA, a solution is represented by a string of numbers, either binary or real, while in  
the classical GP, solutions are represented as computer programs in terms of tree 
structures and are the expressed in a functional programming language (such as LISP) 
[2, 8]. In GP, a random set or population of individuals (computer programs) are 
created and evolved in an iterative manner to achieve sufficient diversity. A 
comprehensive description of GP can be found in Koza (1992) [16]. GEP is a new 
variant of GP first proposed by Ferreira [17]. GEP has five main components: 
function set, terminal set, fitness function, control parameters, and termination 
condition. GEP uses a fixed length of character strings to represent solutions in a 
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domain of interest, which are then expressed as parse trees with different sizes and 
shapes. These trees are called GEP expression trees (ET). A main advantage of the 
GEP technique is that its creation of genetic diversity in solution is simplified and 
carried out using genetic operators that work at the chromosome level. In GEP, 
individuals are selected and copied into the next generation according to their fitness 
by the so-called roulette wheel sampling technique, together with elitism. This 
essentially guarantees the survival and cloning of the best individual to the next 
generation, which may speed up the overall convergence rate. Variations in the 
population are introduced by applying single or several genetic operators on selected 
chromosomes, and these genetic operators include crossover, mutation and rotation 
[7, 18]. The GEP algorithm has four main steps until it reaches one of the stop criteria 
[9, 17]: 

I. Randomly generating the fixed-length chromosomes as initial population. 
II. Expressing chromosomes as expression trees and evaluating fitnesses. 

III. Selecting the best individuals according to their fitnesss to reproduce with 
modification. 

IV. Repeating the steps II an III until a termination condition is reached. 

3 GEP-Based Modelling of Elastic Modulus of NSC and HSC 

The main goal of this study is to obtain the prediction equations for elastic modulus 
(Ec) of NSC and HSC in terms of compressive strength (fc) in the following generic 
form: 

( ) ffE cc =
 

(1) 

Hence, there is only one parameter that has been used for the GEP models as the input 
variable. Using reliable databases for the NSC and HSC, two different GEP-based 
formulas for the elastic modulus of NSC and HSC can be obtained. In this study, 
basic arithmetic operators and mathematical functions are utilized to obtain the 
optimum GEP models. The actual number of generation depends on the number of 
possible solutions and complexity of the problem. However, it must be set properly 
before the runs. A large number of generations has to be tested so as to find the 
models with minimum errors. The program is run iteratively until there is no longer 
significant improvement in the performance of the models, or a specified number of 
iterations is reached. The values of the other parameters are  selected, based on some 
previously suggested values [7, 18] or determined by a trial and error approach. For 
the GEP-based analysis, we adopted the computer software known as GeneXproTools 
[19]. The best GEP model is chosen on the basis of a multi-objective strategy as 
below: 

i. The simplicity of the model, although this is not a predominant factor. 
i. The goodness of the best fit on the training set of data. 
iii. The best fitness value on a test set of unseen data. 

The first objective can be controlled by the user through the parameter settings (e.g., 
head size or number of genes), while for the other two objectives, the following 
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objective function (Obj) is constructed as  a  measure  of  how  well  the  model fits 
the experimental data [2].  The selection criterion of the best GEP model is based on  
the minimization of the following function: 

2 2

2Train Test Train Test Test

All Train All Test

N N MAE N MAE
Obj

N R N R

 −= + 
 

 (2) 

where NTrain, NTest and NAll are the numbers of training, testing and whole, 
respectively, of data. R and MAE are the correlation coefficient and mean absolute 
error, respectively. The above objective function has taken into account the changes 
of R and MAE together. Higher R values and lower MAE values result in lower Obj 
and, consequently, corresponds to a more precise model. In addition, the above 
function has also taken into account the effects of different data divisions between the 
training and testing data. 

3.1 Experimental Database 

The experimental database of previously published test results consist of 89 and 70 
test results for the elastic modulus of HSC and NSC, respectively [7]. Descriptive 
statistics of the variables used in the model development are given in Fig. 1.  

    

Fig. 1. Descriptive statistics of the variables 

For the analysis, the data sets have been divided into training and testing subsets. 
The training data are applied in the learning process via genetic evolution whereas the 
validation data were used to measure the prediction capability of the obtained models 
on data that played no role in building the models. Out of 89 data sets for HSC, 69 
values were taken for training of the GEP algorithm and the remaining 20 values are 
used for the testing and prediction. For NSC, 57 values are taken for the training 
process and the remaining 13 values are used for testing of the models. Out of a the 
total 159 data sets for HSC and NSC, 126 values were used for the training, 33 values 
were used for the testing of the generic model for both HSC and NSC. From these 
simulation, training and multiple runs, the main results can be summarized in the 
following sections. 
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3.2 Explicit Formula for Elastic Modulus of HSC and NSC 

The GEP-based formulation of the Ec of HSC in terms of fc is as given below: 

( )277 3
, ++= cGEPc fE  (3) 

This proposed model for the Ec of HSC gives a value of 5.462 (Obj=5.462). The 
expression tree of the above formulation is given in Fig. 2. The comparisons of the 
GEP predicted values against experimental elastic modulus of HSC are shown in  
Fig. 3. 

 

Fig. 2. Expression tree for Ec of HSC (d0 = fc) 

 

Fig. 3. Predicted versus experimental Ec of HSC using the GEP model 

The GEP-based formulation of the Ec of NSC in terms of fc can be written as 

3 875 2100c ,GEP cE f ,= −  (4) 
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which yields an Obj value of 7.841. The expression tree of the above formulation is 
given in Fig. 4. Comparisons of the GEP predicted values against experimental elastic 
modulus of NSC are shown in Fig. 5. 

 

Fig. 4. Expression tree for Ec of HSC and NSC (d0 = fc) 

 

Fig. 5. Predicted versus experimental Ec of NSC using the GEP model 

4 Performance Analysis  

Table 1 shows the prediction performance of the GEP models, Iranian (NBS) [10], 
American (ACI 318-95) [11], Norwegian (NS 3473) [12], and Turkish (TS 500) [13] 
codes, two compatibility aided model [14, 15], FL [6], and ANN [7] models for the Ec 
of NSC and HSC, respectively. It can be clearly seen from this table that the proposed 
GEP models provide more accurate predictions than the available codes and models 
for the elastic modulus of HSC and NSC. However, the exception is the FL and ANN 
models for HSC provide better results than the GEP models.  
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Table 1. Comparisons between the GEP models and other models in the literature 

HSC  NSC 

Model MAE (%) R  Model  MAE (%) R 
FL [6] 0.0368 0.6130  FL [6] 0.1031 0.5536 
ANN [7] 0.0365 0.6354  ANN [7] 0.1032 0.5151 
ACI [11] 0.1808 0.6024  ACI [11] 0.1327 0.5784 
NS [12] 0.2124 0.5916  NBS [10] 0.1057 0.5719 
[14] 0.0412 0.5577  TS [13] 0.1411 0.5693 
[15] 0.1354 0.6002  [15] 0.1028 0.5839 
GEP 0.0374 0.6005  GEP 0.0982 0.5795 

Numerically, although the ANN and FL models have a good performance, they do 
not give any explicit function or formula. ANN has only final synaptic weights to 
obtain the outcome in a parallel manner. The determination of the fuzzy rules in FL is 
also a non-trivial task [8]. In addition, the ANN and FL approaches are appropriate to 
be used as a part of a computer program and may not be suitable for practical 
calculations such as in situ applications.   

5 Conclusion 

We have adopted a relatively new technique, GEP, to obtain best-fit equations for 
predicting the elastic modulus of HSC and NSC. Two design formulas for the elastic 
modulus have been obtained via GEP using a reliable database of previously 
published elastic modulus test results. The database is used for the training and testing 
of the prediction models. The GEP models can indeed give reliable estimations of the 
elastic modulus of HSC and NSC. The obtained formulas and proposed approach can 
outperform the other existing models in nearly all cases. In addition to the advantages 
of the acceptable accuracy, the GEP-based prediction equations are really simple to 
use, and can thus be used reliably for practical pre-planning and pre-design purposes 
by simple calculations. Such simple models for estimating elastic moduli are 
advantageous due to the demand in carrying out destructive, sophisticated and time-
consuming laboratory tests. Further studies can focus on the extension of the proposed 
approach to model prediction equations for other time-consuming tasks and key 
parameters in engineering applications with reliable databases. 
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