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Abstract. We propose a new cognitive robot control architecture in
which the cognitive layer can be programmed by means of the agent pro-
gramming language Goal. The architecture exploits the support that
agent-oriented programming offers for creating cognitive robotic agents,
including symbolic knowledge representation, deliberation via modular,
high-level action selection, and support for multiple, declarative goals.
The benefits of the architecture are that it provides a flexible approach
to develop cognitive robots and support for a clean and clear separation
of concerns about symbolic reasoning and sub-symbolic processing. We
discuss the design of our architecture and discuss the issue of translating
sub-symbolic information and behavior control into symbolic represen-
tations needed at the cognitive layer. An interactive navigation task is
presented as a proof of concept.

1 Introduction

The main motivation for our work is the need for a flexible, generic, high-level
control framework that facilitates the development of re-taskable robot systems
and provides a feasible alternative to the usual task- and domain-dependent
development of high-level robot control. As cognitive robots are supposed to
handle complex reasoning problems in dynamic environments [1], we believe
that agent-oriented programming offers such an approach as it supports the
programming of cognitive agents. Using agent programs to create the cognitive
layer in a robot control architecture is natural and provides several benefits. It
becomes relatively easy to adapt the control at the cognitive layer itself to various
domains. This approach is flexible and, if functionality of other layers is generic
and can be used in multiple task domains, facilitates reuse. An agent-based
approach, moreover, provides support for autonomous, reactive, and proactive
behaviors and also endows a robot with the required deliberation mechanism to
decide what to do next [2]. Of course, generality may come at a trade-off and
does not imply that a generic architecture will always perform better than a
dedicated robot control architecture [3].

Designing and developing a cognitive robot control architecture poses several
challenges. Robots are embedded systems that operate in physical, dynamic
environments and need to be capable of operating in real-time. A range of per-
ception and motor control activities need to be integrated into the architecture.
This poses a challenge for a cognitive, symbolic architecture as “it can be partic-
ularly difficult to generate meaningful symbols for the symbolic components of
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cognitive architectures to reason about from (potentially noisy) sensor data or
to perform some low-level tasks such as control of motors” [4]. Ideally, moreover,
such an architecture should provide support for the integration or exchange of
new and different sensors and behaviors when needed. Given the complexity and
the number of components needed in a robot control architecture, one also needs
to consider how all the processing components in the system communicate and
interact with each other [5].

The main focus and contribution of this paper is to provide a simple but
also generic and flexible solution to integrate the knowledge representation and
reasoning capabilities needed for a cognitive robot [6, 7]. As perception and
action need to be tightly coupled for a cognitive robot to be able to operate
effectively [1], we also discuss this relationship. We propose an agent-based cog-
nitive robot control architecture that integrates low-level sub-symbolic control
with high-level symbolic control into the robot control framework. We use the
agent programming language Goal [8, 9] for implementing the cognitive layer,
whereas low-level execution control and processing of sensor data are delegated
to components in other layers in the proposed architecture. Goal, among oth-
ers, supports goal-oriented behavior and the decomposition of complex behav-
ior by means of modules that can focus their attention on relevant sub-goals.
Goal has already been successfully applied to control real-time, dynamic envi-
ronments [10], and here we demonstrate that it also provides a feasible approach
for controlling robots. In our approach, the cognitive layer is cleanly separated
from the other layers by using the Environment Interface Standard (EIS; [11]).
As a proof of concept, we will use a task, in which a robot will navigate in an
office environment in order to deliver a message to one of our colleagues, to show
how the agent-based cognitive control can be realized in physical robots. The
main contribution of our proposed architecture is that it provides:

– a decoupled framework for combining low-level behavioral robot control with
high-level cognitive reasoning,

– a generic interface for mapping sensory information to symbolic representa-
tions needed at the cognitive layer, and

– a flexible mechanism in the cognitive layer for synchronizing percepts and
actions.

The paper is structured as follows. Section 2 briefly discusses some related work.
Section 3 presents and discusses the design of the cognitive robot control architec-
ture. Section 4 presents a proof of concept implementation. Section 5 concludes
the paper and discusses future work.

2 Related Work

Cognitive robots are autonomous and intelligent robot systems that can perform
tasks in real world environments without any external control, and are able to
make decisions and select actions in dynamic environments [12]. It remains a
challenge, however, to integrate the symbolic problem solving techniques such
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as knowledge representation, reasoning, and planning developed within artificial
intelligence with sub-symbolic functions such as perception and motor control
on a robot [13]. It has been argued, however, that knowledge representation
is important to enable robots to reason about its environment [1, 6, 7]. Here
we briefly discuss some related work that either explicitly aims at developing
a cognitive robot architecture or uses some kind of symbolic representation for
controlling a robot.

The work that is most similar in spirit to our own is that of [14] and [15].
In [14] the high-level language Golog is used for controlling a robot. Golog sup-
ports writing control programs in a high-level, logical language, and provides an
interpreter that, given a logical axiomatization of a domain, will determine a
plan. [15] proposes teleo-reactive programming for controlling a robot. A teleo-
reactive program consists of multiple, prioritized condition-action rules. How-
ever, neither Golog nor teleo-reactive programming provide a BDI perspective
on programming agents. Moreover, these papers do not discuss the robot control
architecture that allows the symbolic framework to control the robot.

CRAM [2] is a software toolbox designed for controlling the Rosie robot plat-
form developed at the Technische Universität München. It makes use of Prolog
and includes a plan language that provides a construct for concurrent
actions. The CRAM approach also aims at providing a flexible alternative to
pre-programmed robot control programs. [16] proposes to use a common sense
ontology for defining predicates for high-level control of a robot that is integrated
into the CRAM architecture. One difference between the CRAM and our approach
is that the reasoning and planning components are two separate components in
CRAM whereas they are integrated into an agent architecture in our robot control
framework. Moreover, we propose the use of an explicit interface component for
connecting the low-level and high-level control in our architecture that allows
for a clean separation of concerns.

It has been argued that building robot systems for environments in which
robots need to co-exist and cooperate with humans requires taking a cognitive
stance [17] . According to [17], translating the key issues that such robot sys-
tems have to deal with requires a cognitive robot control architecture. Taking
a cognitive stance towards the design and implementation of a robot system
means that such a system needs to be designed to perform a range of cogni-
tive functions. Various cognitive architectures, such as ACT-R [18] and SOAR [19],
have been used to control robots. These architectures were not primarily aimed
at addressing the robot control problem and in this sense are similar to agent
programming languages, the technology that we advocate here for controlling
robots. SOAR has been used to control the hexapod HexCrawler and a wheeled
robot called the SuperDroid [4]. ADAPT (Adaptive Dynamics and Active Percep-
tion for Thought) is a cognitive architecture based on SOAR that is specifically
designed for robotics [20]. The SS-RICS (Symbolic and Sub-symbolic Robotic In-
telligent Control System) architecture for controlling robots is based on ACT-R;
SS-RICS is intended to be a theory of robotic cognition based on human cogni-
tion [21, 3]. This work mainly focuses on integrating a broad range of cognitive
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capabilities into an architecture instead of on more pragmatic issues related to
programming cognitive robotics and reuse. Unlike [22], we are not mainly con-
cerned here with the long-term goal of developing robotic systems that have the
full range of cognitive abilities of humans based on a cognitive architecture such
as SOAR. Our work is oriented towards providing a more pragmatic solution for
the robot control problem as discussed above. Still our work may contribute to
the larger goal that [22] sets as there appear to be quite a few similarities between
BDI-based agents and cognitive architectures such as ACT-R and SOAR).

3 Cognitive Robot Control Architecture

This section introduces our cognitive robot control architecture. We discuss sev-
eral issues including the processing and mapping of sensory data to a symbolic
representation, the translation of high-level decisions into low-level motor control
commands, and the interaction of the various architecture components.

3.1 Overall Design of the Architecture

A high-level overview of our layered architecture is shown in Figure 1. The ar-
chitecture consists of four layers including a symbolic, cognitive layer realized by
means of the agent programming language Goal, a middle layer for controlling
robot behavior (written in C++), and a hardware control layer (using URBI1,
a robotic programming language). The Environment Interface Standard (EIS)
layer provides the technology we have used to manage the interaction between
the symbolic and sub-symbolic layers. We argue here that EIS provides a tool
that can be extended to deal with the issue of translating sub-symbolic sensory
data that consists typically of noisy, incomplete, and quantitative measurements
into symbolic representations that are needed in the symbolic cognitive lay-
ers to support reasoning. Note that the environment layer is not part of the
architecture but refers to the physical environment that the robot operates in.

The main functionality for controlling a robot is placed in the behavioral con-
trol layer. In addition to the functions such as (object) recognition, navigation,
localization, path planning and other common functions, this layer is also respon-
sible for communicating with the higher-level symbolic components, including
the interpretation of symbolic messages that represent actions and making the
robot perform these actions in its physical environment.

The interface layer acts as a bridge between the behavioral and cognitive
control layers. Because these layers use different languages for representing sub-
symbolic and symbolic information, respectively, we need an interface to trans-
late between these representations. The cognitive control layer acts as a task
manager for the robot and provides support for managing the robot’s mental
state which allows the robot to keep track of what is happening while executing
a task.

1 http://www.urbiforge.org/

http://www.urbiforge.org/
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Fig. 1. The overall design of the architecture

3.2 System Architecture and Components

A robot control architecture provides an organizational structure for software
components that control a robotic system [23]; such architectures are specialized
because of the unique requirements that embedded systems such as robots im-
pose on software. Here we will discuss the detailed architecture shown in Figure 2
that we propose that matches the layered architecture framework of Figure 1.

Robot Platform. The architecture has been implemented on the humanoid
NAO robot platform from Aldebaran Robotics.2 We have used the URBI middle-
ware [24] that provides the urbiscript language for interfacing with the robot’s
hardware. We have chosen URBI instead of the Robot Operating System (ROS3)
platform because it does not include the orchestration layers present in URBI

that provide support for parallel, tag-based, and event-driven programming of
behavior scripts. When the application is executed, an urbiscript program, which
initializes all API parameters of sensors and motors (e.g., the resolution and
frame rate of camera images), is sent to configure the robot platform.

Behavioral Control. The behavioral control layer is written in C++, con-
necting the robot hardware layer with higher layers via a TCP/IP connection.
This layer is mainly responsible for information processing, knowledge process-
ing, communication with the deliberative reasoning layer and external robots,
and action and behavior executions. All of these components can operate con-
currently. The main functional modules include:

– Sensing, for processing sensory data and receiving messages from other
robots. Sensors that have been included are sonar, camera, microphone, an
inertial sensor, and all sensors monitoring motors. Because the memory space

2 http://www.aldebaran-robotics.com/
3 http://www.ros.org/

http://www.aldebaran-robotics.com/
http://www.ros.org/
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Fig. 2. Overview of the agent-based cognitive robot architecture

required for camera images is significantly bigger than that for other sensors,
the transmission of images is realized via a separate communication channel.

– Memory, for maintaining the global memory and working memory for the
behavioral layer. In global memory, a map of the environment and proper-
ties of objects or features extracted from sensor data are stored. We have
used a 2D grid map for representing the environment. This map also keeps
track which of the grid cells are occupied and which are available for path
planning. The working memory stores temporary sensor data (e.g., images,
sonar values) that are used for updating the global memory.

– Information Processor, for image processing. This component provides
support for object recognition, feature extraction and matching, as well
as for information fusion. Information fusion is used to generate more re-
liable information from the data received from different sensors. For exam-
ple, the odometry navigation component is only able to provide a rough
estimate of the robot’s position due to joint backlash and foot slippage. To
compensate for this, the robot has also been equipped with the capability
to actively re-localize or correct its position by means of predefined land-
marks. We have used the OpenCV [25] library to implement algorithms and
methods for processing images captured by the camera. Algorithms such as
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Harris-SIFT [26], RANSAC [27], and SVM [28] for object recognition and
scene classification have been integrated into this module.

– Environment Configurator, for interpreting and classifying events that
occur in the environment. For example, when the output of the left sonar
exceeds a certain value, this module may send a corresponding event message
that has been pre-configured. This is useful in case such readings have special
meaning in a domain. In such cases, an event message may be used to indicate
what is happening and which objects and features such as human faces and
pictures have been detected. This is a key component in our approach for
mapping sub-symbolic data to symbolic representations.

– Navigation includes support for localization, odometry, path planning and
mapping components, which aid the robot in localizing itself and in plan-
ning an optimal path to a destination in a dynamic, real-time environment.
Several transformations between layers are required for navigation. The cog-
nitive layer uses a 2D Grid-map Coordinate System (GCS) which is also
used by the the path planning component. When following a planned path,
after each walking step, the odometry component is used for keeping track
of the robot’s actual position and for providing the real-time coordinates of
the robot which are used for planning its next walking step. The odometry
sensors, however, provide the robot’s coordinates in a so-called World Co-
ordinate System (WCS) that needs to be mapped to the robot’s position in
the 2D Grid-map Coordinate System (GCS) for path planning. At the low-
est layer that executes the walking steps, moreover, the GCS position has
to be transformed into the Local Coordinate System (LCS) that the robot
platform uses for actual motor movements.

– Communication, which provides outputs from the Environment Configu-
rator to the interface layer and receives action messages from this same layer.
The communication component mainly is a technical component that acts
as a Server/Client infrastructure and uses the TCP/IP protocol for actual
message delivery. The behavior layer in the architecture initiates and starts
up a unique server to which a cognitive layer can connect as a client (thus
facilitating the swapping of control from one robot to another).

– Debugger Monitor provides several GUIs that are useful for debugging
robot programs, enabling developers to visualize sensory data and allow-
ing them to set specific function parameters. This component also includes
a Wizard of Oz interface to conduct human-robot interaction experiments.

– Action Execution, for instructing a robot to perform concrete behaviors
and actions. The actions include motion movements such as walking and
turning around while the behaviors include predefined body gestures such
as sitting down, standing up and raising the arms of a humanoid robot.

Environment Interface. The interface layer between the behavior and cogni-
tive layers has been built using a software package called Environment Interface
Standard (EIS; [11]). The core components in this layer are an Environment
Model component that establishes a connection between the cognitive layer with
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the behavioral control layer, an Environment Management component that ini-
tializes and manages the interface, and an Environment Interface component
that provides the actual bridge between the cognitive and behavioral layer.

The benefit of using EIS for implementing the interface layer is that it already
provides a well-defined and structured language for representing knowledge, the
so-called Environment Interface Language (EIL). Moreover, various agent plat-
forms support EIS which implies that our architecture may be reused to connect
languages other than Goal without much effort to the robot platforms that
are supported by the architecture. We thus obtain immediately a clear, simple
but sufficiently expressive target language for mapping sub-symbolic data main-
tained in the behavioral layer to symbolic percepts used in the cognitive layer.
Because this language is already supported by Goal , this allows us moreover
to focus completely on the problem of mapping sub-symbolic data to the EIL
language. We discuss a generic scheme to do this in Section 3.4 below.

Deliberative Reasoning and Decision Making. Knowledge representation
and reasoning is an essential component for a cognitive robot that allows such
a robot to keep track of what is happening in its environment and to make ra-
tional decisions to change that environment [7, 6]. The cognitive control layer
provides support for reasoning and decision making. In our architecture, we
employ the Goal agent programming language for programming the high-level
cognitive agent that controls the robot. Goal is a language for programming
logic-based, cognitive agents that use symbolic representations for their beliefs
and goals from which they derive their choice of action. Due to space limita-
tions, we do not describe Goal agent programs in any detail here but refer the
interested reader for more information to [8, 9]. In Section 4, we will use a navi-
gation task to illustrate how a Goal agent program can be used for deliberative
reasoning and decision making for controlling a robot.

3.3 Decoupled Architecture Layers

Similar to most layered architectures, we also distinguish reactive and delib-
erative control in our architecture. In our architecture these layers are loosely
coupled and connected through a separate interface layer. We have deliberately
chosen for this setup. Alternatively, these layers could have been more tightly
coupled. Tight coupling has some benefits such as a more robust integration
and a reduced communication overhead which often leads to higher performance
than loosely coupled systems [29]. These benefits are obtained by using a memory
component that is shared and directly accessible by all other components. This
also avoids the need to “duplicate” information at different layers, although one
should note that also in a tightly coupled setup mappings between sub-symbolic
and symbolic data are needed. The disadvantages of a more tightly coupled
approach are an increased complexity of the architecture and a higher interde-
pendence between architecture components. As a consequence, it becomes more
difficult to extend such architectures in order to be able to handle a range of
different tasks [29].
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Our choice to opt for decoupled layers is motivated by our objective to design
an architecture that is as flexible as possible. A benefit of decoupling is that it
provides for a clean separation of concerns. Moreover, decoupling of these lay-
ers facilitates the more or less independent programming of high-level, cognitive
agents that control a robot as well as of lower-level behavioral functions. An
agent programmer, for example, does not need to spend time handling object
recognition. Similarly, a behavior programmer who codes in C++ does not have
to consider decision making nor even master the agent programming language
used in the cognitive layer. The main challenge that needs to be faced in a decou-
pled approach is how to translate or transform sub-symbolic data to symbolic
representations, an issue to which we turn next.

3.4 Knowledge Acquisition and Representation

We have designed a generic method for transforming sub-symbolic data to sym-
bolic representations that can be used in the cognitive layer. The main function
of the interface layer is to perform the actual transformation. The interface layer
thus needs to be provided with the functionality to process all sub-symbolic data
that is sent to this layer by the behavioral layer. Of course, the type of data that
needs to be processed and transformed depends on the robot platform that is
used and the sensors available on that platform. In our case, we have listed all
the available sensors and associated functionality for processing raw sensor data
in the first two columns of Table 1. The key issue is how to interpret and map the
sub-symbolic data obtained through sensors to a symbolic representation that
is useful for decision making in the cognitive layer. In essence, what we need
in order to obtain a transformation is a coding scheme. Such a coding scheme
should not only indicate how to map data to a particular representation but also
allow to specify when such a translation should be performed.

The solution that we propose as a generic solution for creating a coding scheme
for transforming data into symbols is to use a standard template. To this end, we
have used XML to create such a standard message template with the following
structure:

<?xml version="1.0"?>
<message_percept>
<descriptor sensor="sensors" function="name">

<para1>parameter</para1>
<para2>parameter</para2>
<para3>parameter</para3>
...

</descriptor>
</message_percept>

Every data item sent from the robotic behavioral layer to the interface layer uses
the above XML template, where sensor indicates which sensor this data item is
produced from, function refers to the name of the function used for processing
the sensor data, and para1, para2, para3) are parameters of functions that may
have various number of parameters.

The XML schema above is used by the interface layer for mapping data items
to symbolic representations in a generic and flexible manner. For each sensor
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and associated functions, an XML schema is stored in a database used by the
interface layer. Table 1 shows how to process the data from several sensors and
map them to corresponding symbolic representations.

Table 1. Knowledge acquisition and representation

Sensors Processing Acquisition and Mapping Representation

Sonar value
sonarLeftVal

thr2 ≤ para1 < thr1 obstacle(left)

. . . ≤ para1 < thr2 collision(left)

sonarRightVal
thr2 ≤ para1 < thr1 obstacle(right)

. . . ≤ para1 < thr2 collision(right)

Inertial value

placeEstimation

para1 = x, para2 = y
in(room)

[x, y] ∈ room
para1 = x, para2 = y

inFrontOf(room)
[x, y] ∈ room.hallway

relativePose para1 = x, para2 = y position(x,y)

walkIsActive
para1 = “true” walking

para1 = “false” static

Camera image

featureRecognition para1 = feature feature(feature)

colorDetection para1 = color color(color)

shapeDetection para1 = shape shape(shape)

absolutePose para1 = x, para2 = y position(x,y)

sceneClassification
para1 = “true” doorOpen

para1 = “false” doorClosed

As the number of the parameters of processing functions are various in order
to convey different messages, we will discuss several conditions with respect to
the various parameters, illustrating how to obtain adequate coding schemes using
the XML schema proposed.

Functions with Binary Parameter. Some functions, such as walkIsActive,
sceneClassification, only have a binary parameter, namely “true” or “false”
value. Suppose the robot needs to figure out if the door in front of it is open or
closed. What the deliberative reasoning needs is the symbolic percept: doorOpen
or doorClosed. In order to obtain this percept, the knowledge processing func-
tion: sceneClassification should analyze the images from the robot’s camera.
SVM can be chosen as a discriminative classifier for scene classification. As a
statistical learning technique, SVM should also handle the uncertainty problem
of sensory data, in which the state of the door (i.e., histogram of images) first
has to be trained to obtain an appropriate threshold for classification. The The
knowledge acquisition and mapping procedure in the interface layer uses the
XML schema to examine the contents:

<descriptor sensor="Camera image" function="sceneClassification">
<para1="true"><interpreter>"doorOpen"</interpreter> </para1
<para1="false"><interpreter>"doorClosed"</interpreter></para1

</descriptor>
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If the para1 is “true”, this data item can be interpreted as doorOpen; likewise,
if it is “false”, a doorClosed percept can be generated.

Functions with Threshold Parameter. Some functions, such as
sonarLeftVal, sonarRightVal, have a threshold parameter. Typically, a pa-
rameter will be examined to see if it exceeds a particular threshold or not. But
in many practical situation, one parameter should be compared with two or
more different thresholds so as to match to corresponding categories. Taking the
sonarLeftVal as an example in Table 1, the XML schema in this case can be
expressed as:

<descriptor sensor="Sonar value" function="sonarLeftVal>
<thr1=0.8><interpreter>"obstacle(left)"</interpreter> </thr1
<thr2=0.5><interpreter>"collision(left)"</interpreter></thr2

</descriptor>

If the data item intends to represent obstacle(left), the para1 should satisfy:
0.5 ≤ para1 < 0.8; if it intends to represent collision(left) as we have not
define the third threshold thr3, the para1 only needs to satisfy: para1 < 0.5.
Note that this function can have as many as categories if we continually add
thresholds and define corresponding interpreters.

Functions with Argument Parameter. The functions, such as
relativePose, absolutePose and placeEstimation, have argument param-
eters, which provide position information of 2D coordinates: x and y. For
relativePose and absolutePose, the coordinate data do not need to be
mapped to specific symbolic representation, but we still need to add symbolic
predicate (i.e., position()) in this percept message so that the cognitive layer
can understand what kind of percepts it belongs to.

However, The placeEstimationhandles the topological localization problems
for place estimation. When a robot knows its 2D coordinate in the world map,
the robot can know its topological position (e.g., in room A or in front of room
A). The XML database for this condition can be:

<descriptor sensor="Camera image" function="placeEstimation">
<rect x1=0, y1=100, x2=100, y2=0 ><interpreter>"in(roomA)"</interpreter></rect
<rect x1=0, y1=200, x2=100, y2=100 ><interpreter>"in(roomB)"</interpreter></rect
<rect x1=0, y1=300, x2=100, y2=200 ><interpreter>"in(roomC)"</interpreter></rect
...
<rect x1=100, y1=100, x2=200, y2=0 ><interpreter>"inFrontOf(roomA)"</interpreter></rect
<rect x1=100, y1=200, x2=200, y2=100 ><interpreter>"inFrontOf(roomB)"</interpreter></rect
<rect x1=100, y1=300, x2=200, y2=200 ><interpreter>"inFrontOf(roomC)"</interpreter></rect
...

</descriptor>

The attribute of the rect describes a rectangle region defined by its upper left
and lower right coordinates. If the parameters of the function locate within a
defined region, namely (x1 ≤ x ≤ x2) ∪ (y2 ≤ y ≤ y1). Once the environmental
map is known, the topological places can be defined in detail using this XML
schema.



An Agent-Based Cognitive Robot Architecture 65

Functions with Identification Parameter. Several functions, such as the
featureRecognition, colorDetection and shapeDetection, are associated
with an identification parameter. The identification is generated from these func-
tions in the robotic behavior layer. For example, as has been discussed the global
memory stores the properties of features in the robotic behavior layer so as to
recognize pictures using Harris-SIFT and RANSAC image processing techniques.
We can use the identification of these pictures to match to the correct represen-
tation. However, some functions’ identification parameter is relatively vague and
not clear enough to represent a complete percept, and we need to combine this
them in the interface layer. The XML schema in our case for this condition
can be:

<descriptor sensor="Camera image" function="colorDetection">
<para1="red"><interpreter>"red"</interpreter> </para1
<para1="green"><interpreter>"green"</interpreter></para1
...

</descriptor>
<descriptor sensor="Camera image" function="shapeDetection">

<para1="circle"><interpreter>"ball"</interpreter> </para1
<para1="rectangle"><interpreter>"box"</interpreter></para1
...

</descriptor>

In the query and matching codes of the interface layer, the interpreter should
be combined to form a complete percept, such as redball, redbox, greenbox
and so forth.

The mechanism for knowledge acquisition and representation in the environ-
ment interface layer can support for a flexible, generic mapping approach. When
a specific percept (e.g., in(roomA)) about the environment needs to be inte-
grated in a task, we can just modify the XML database in the interface layer.

3.5 Information and Control Flow

A key issue in robot control architectures is the information and control flow.
Each component in such an architecture needs to have access to the relevant
information in order to function effectively. In line with the overall architec-
ture of Figure 1 and layered architectures in general, different types of data
are associated with each of the different layers. The information flow follows a
strict bottom-up processing scheme whereas the control flow employs a strict
top-down scheme. At the lowest level all raw sensory data is captured and then
sent to the behavioral layer. The behavioral layer has a diverse set of functions
to process the sensory data. By using the quantitative results of these functions,
corresponding symbolic representations can be matched based on XML schema
in the interface layer. Finally, the cognitive layer can use these symbolic percepts
for deliberative reasoning.

Actions are selected for execution by the cognitive layer. These actions are
translated by the interface layer into behaviors that can be executed by the be-
havioral layer which in turn are translated into motor control commands in the
lowest layer. Action commands are symbolic messages. For example, the cog-
nitive layer may decide to sent goto(roomA). A message like this needs to be
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parsed in the EIS interface layer to extract the parameters of the message. Sub-
sequently, the behavioral layer will call the navigation component to actually
perform the action. Because such behavior components take time to complete,
moreover, it is important to monitor progress. Monitoring may happen at dif-
ferent layers. However, the behavioral layer typically plays a key role here. For
example, due to the unreliability of walking (e.g. foot slippage), the path the
robot follows needs to be continually re-evaluated and re-planned in real-time.
The navigation component monitors and manages this action execution, until
the robot arrives at the correct place of the room.

3.6 Synchronization of Perceptions and Actions

An inevitable problem in physical robot control is the synchronization prob-
lem of percepts and actions. In general, on the one hand, robots in physical
world usually perceive its environment in real-time, and consequently sensors
generate duplicated perceptual information that is useless for reasoning. On the
other hand, decision making is usually faster than action execution on a robot.
Typically, an action command has not been completed before another action
command is sent for execution by the cognitive layer. Therefore, we need some
means to synchronize the layers. As the functionality we need can be realized by
the cognitive layer itself, we discuss some synchronization mechanisms that can
be implemented in the cognitive layer.

The interface layer by itself does not guarantee that only those percepts
needed by the cognitive layer are provided. In fact, this layer will typically pro-
duce a large number of (more or less) the same percepts repeatedly because the
behavioral layer and the cognitive layer run in their own thread. For example,
assuming the camera image frame rate is 30 fps, and the scene classification
algorithm is fast enough, when the robot is standing in front of an open door
and intends to figure out the state of the door. In this case, the cognitive layer
will receive the same percept doorOpen 30 times in 1 second. Because many
actions take typically much longer to execute on a robot, the repetition of this
percept in such a short period of time does not provide much useful information
to the cognitive layer. By sending these percepts nevertheless to the cognitive
layer may still affect the reasoning and decision making in various ways. Apart
from potential processing overhead, however, Goal provides various ways to
deal with repeated percepts. The following code illustrates how a programmer
can handle a stream of percepts in a flexible way:

init module{
knowledge{%can add other items in knowledge base that the robot knows.

doorOpen:- not(doorClosed).
}%can define init belief base, goals, and action specifications.

}
event module{

program{
if bel(percept(doorOpen), doorClosed) then insert(doorOpen).
if bel(percept(doorClosed), doorOpen) then delete(doorOpen).

}%can define the rules of putting percepts in the belief base.
}
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The rules in the event module are also called event or percept rules. These rules
specify how percepts can modify a robot’s belief about its environment. In the
code snippet above, once a percept doorOpen is received, the robot will hold the
belief that this door is open. So, other duplicated doorOpen percepts coming
from the EIS layer will not affect the reasoning and decision making.

Another aspect of the synchronization problem is the actions that are sent
from the cognitive layer to the interface layer. Action executions usually have
duration and take time to be accomplished. For example, if a robot’s is to enters
roomA and then show an arm raising gesture. When the robot holds a belief
that it is in(roomA), it should execute a command gesture(arm-raising).
However, showing an arm raising gesture cannot be accomplished immediately.
An associated problem might be when the gesture has not been finished, another
gesture(arm-raising) command will be generated for executing because the
robot still holds the belief that when it is in roomA, it should perform this
gesture. Furthermore, some actions can be run in parallel, but some actions
cannot. This problem is very common during many action executions. To cope
with it, the cognitive control layer provides a very flexible programming style
for synchronizing actions:

main module{
program{

if bel(in(roomA), static, not(showingGesture))
then insert(showingGesture) + gesture(arm-raising) + say("Hi, Let’s take a coffee break!").
... % other rules for reasoning and decision making.

}

Only does the robot believe that it is in(roomA), static (i.e., not
walking), and not(showingGesture), the cognitive layer can generate the
gesture(arm-raising) command. As the say() action can be performed in
parallel with the gesture() action, such action can be generated so that they
can be performed at the same time. We notice that the showingGesture will be
inserted into the belief base of the robot once the robot begins to show the ges-
ture. As a result, even if the gesture(arm-raising) has not been accomplished,
and the robot is still in(roomA), the cognitive layer will not generate a dupli-
cated gesture(arm-raising) action command. By adding particular beliefs
in the belief base, we can have a flexible approach achieve the synchronization
of actions in the cognitive layer.

4 Navigation Task as an Example

To further illustrate our proposed architecture, we will use a navigation task
as an example to explain how the agent-based cognitive control can be used to
perform physical robots’ tasks. The robot platform is a humanoid robot NAO
(See Figure 3(a)) built by Aldebaran Robotics. In this task, the NAO robot acts
as a message deliverer which is supposed to enter the destination room (e.g.,
roomA) and deliver a message to the people in the room.

The task is carried out in a domestic corridor environment. A predefined map
has been built for the robot to localize itself. The robot begins walking from
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(a) (b) (c)

Fig. 3. The navigation task: (a) humanoid robot NAO, (b) the GUI of the robotic
behavior layer, (c) the cognitive reasoning in Goal

a starting place: placeB, and the goal of the robot is to enter the destination
roomA, to show an arm-raising gesture, and eventually to deliver a coffee-break
message. Figure 3(b) shows the main GUI of the behavioral layer, and Figure 3(c)
shows the GUI for the cognitive layer implemented in Goal.

Figure 4 is the Goal agent program for reasoning and decision making.
The information that the robot knows about its environment consists of the
knowledge and of the beliefs. The main differences between the knowledge
base and the belief base is that the knowledge base is static and cannot be
changed at runtime, whereas the belief base will be updated to keep track of
the current state of the environment. Specifically, knowledge defines rules (e.g.,
static:- not(walking)), which cannot be modified; however, beliefs lists
what the robot believes about the current environment (i.e., current belief is
in(placeB), but after a while the belief might be in(placeC)). The goals sec-
tion lists the concrete goals that the robot has to achieve. Action specifications
are enumerated in actionspec section. Each action specification also defines the
preconditions pre{}: when the action can be performed, and the postconditions
post{}: the effects of performing this action. In each reasoning cycle, the event
module can modify the robot’s belief base based on the percepts from its envi-
ronment or other robots’ messages. In the main module, action rules are defined
as strategies or policies for action selection.

Although this navigation task is simple, it shows how the agent-based cognitive
control uses the symbolic percepts, generated fromuncertain, quantitative sensory
data, to keep track of a robot’s beliefs about its environment. Based on its beliefs,
the robot can infer what actions should execute in order to achieve its goals.

5 Conclusion and Future Work

The navigation task that the robot has performed in the above section demon-
strates the feasibility of using a cognitive layer to control physical robots by
means of agent-oriented programming. It also demonstrates that the clean sepa-
ration of sub-symbolic and symbolic layers via the interface layer. Although our
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1 init module{
2 knowledge{
3 static:- not(walking).
4 doorOpen:- not(doorClosed).

5 }
6 beliefs{
7 in(placeB).
8 }
9 goals{

10 messageDlivered.
11 }
12 actionspec{
13 goto(Place){
14 pre{static} post{true}
15 }
16 enter(Room){
17 pre{static} post{true}
18 }
19 gesture(Behavior){
20 pre{static} post{true}
21 }
22 say(Text){
23 pre{static} post{true}
24 }
25 % ... add other action functions
26 }
27 }
28 main module{
29 program{
30 if bel(in(placeB), static, not(inFrontOf(roomA))) then adopt(inFrontOf(roomA)).
31 if a-goal(inFrontOf(Room)) then goTo(Room).
32

33 if bel(inFrontOf(roomA), static, not(in(roomA)), doorOpen) then adopt(in(roomA)).
34 if a-goal(in(Room)) then enter(Room).
35

36 if bel(in(roomA), static, not(showingGesture))
37 then insert(showingGesture) + gesture(arm-raising)+ say("Hi, Lets take a coffee break!").
38 }
39 }
40 event module{
41 program{
42 if bel(percept(inFrontOf(Place))) then {
43 if bel(not(inFrontOf(Place))) then insert(inFrontOf(Place)).
44 if bel(inFrontOf(OldPlace)) then insert(not(inFrontOf(OldPlace)), inFrontOf(Place))).
45 }
46 if bel(percept(in(Room))) then {
47 if bel(not(in(Room))) then insert(in(Room)).
48 if bel(in(OldRoom)) then delete(in(OldRoom)) + insert(in(Room)).
49 }
50 if bel(percept(doorOpen), doorClosed) then insert(doorOpen).
51 if bel(percept(doorClosed), doorOpen) then delete(doorOpen).
52

53 if bel(percept(walking), not(walking), static) then insert(walking, not(static)).
54 if bel(percept(static), walking, not(static)) then insert(static, not(walking)).
55

56 % ... add other percepts
57 }
58 }

Fig. 4. Goal agent programming for cognitive control
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general architecture is similar to the layered approaches that have been used in
many robot projects [30–33], we believe that the use of EIS provides a more prin-
cipled approach to manage the interaction between sub-symbolic and symbolic
processors. Of course, it is important that the cognitive layer (agent program)
needs adequate perceptions to make rational decisions given its specific envi-
ronment. Our architecture provides sufficient support from various components
dealing with perception, knowledge processing, and communication to ensure
this. Especially, it provides a generic, flexible interface to map sensory data into
symbolic knowledge for the cognitive layer.

Future work will concentrate on applying our proposed architecture for multi-
robot teamwork in the Block World for Teams environment [34], in which each
robot can exchange their perceptions and share their mental states in the cog-
nitive layer so as to coordinate their actions.
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