
Conquering Large Zones by Exploiting Task

Allocation and Graph-Theoretical Algorithms

Chengqian Li

Dept. of Computer Science,
Sun Yat-sen University

Guangzhou 510006, China
lichengq@mail2.sysu.edu.cn

Abstract. The Multi-Agent Programming Contest is to stimulate re-
search in the area of multi-agent systems. In 2012, for the first time, a
team from Sun Yat-sen University, Guangzhou, China, participated in
the contest. The team is called AiWYX, and consists of a single mem-
ber, who has just finished his undergraduate study. The system mainly
exploits three strategies: strengthening action preconditions, task alloca-
tion optimization, and surrounding larger zones with shorter boundaries.
With these strategies, our team is able to conquer large zones as early as
possible, optimize collaboration, and ensure efficiency. The system was
implemented in C++, and in this paper, we will introduce the design and
architecture of AiWYX, and discuss the algorithms and implementations
for these strategies.

Keywords: multi-agent system, distributing algorithm, task allocation
optimization.

1 Introduction

The Multi-Agent Programming Contest (MAPC) [1,2] is held annually, in order
for researchers to deepen the understanding about the cooperations and compe-
titions among rational agents and also develop some powerful strategies in such
environments. This year, for the first time, a team from Sun Yat-sen Univer-
sity, Guangzhou, China, participated in the contest. The team, called AiWYX,
reached the fifth place in the contest. It consists of only one member: the author
of this paper. I have just obtained my Bachelor degree and am now a PhD can-
didate. I am a member of the knowledge representation and reasoning group led
by Professor Yongmei Liu. My motivation in participating in this contest was to
gain experiences in designing multi-agent systems in order to facilitate my future
research in this area. These years I am actively involved in the ACM Interna-
tional Collegiate Programming Contest (ICPC, see http://icpc.baylor.edu).
Before this competition I had completed an undergraduate honors thesis on
Squirrel World, which was proposed by Hector Levesque as an adaptation of the
Monty Karel robot world written by Joseph Bergin and colleagues in Python
(see http://csis.pace.edu/~bergin/MontyKarel). In Squirrel World, squir-
rels need to move around on a two-dimensional grid and gather acorns. Squirrels

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 234–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Conquering Large Zones by Exploiting Task Allocation 235

have both effectors (to do things in the world) and sensors (to gather informa-
tion). Everything is known to the squirrels at the outset except for the locations
of the acorns and some wall obstacles. The first squirrel or the first team of
squirrels who gathers a certain number of acorns wins the game. I have adopted
some of the strategies I developed for Squirrel World in the MAPC competition.

2 System Analysis and Design

I took part in the contest using the language C++, without using any multi-agent
programming languages. There are two reasons for this. Firstly, my background
is ACM/ICPC, so I am proficient in this language which is well-known for its
efficiency and I did not program in Java which is not so efficient. Secondly, I did
not have enough time to adapt myself to multi-agent programming languages.

We have exploited decentralization in implementing various strategies, how-
ever, the current implementation is restricted because we only deal with com-
mon knowledge [6]. When any agent’s knowledge state is updated, other agents’
knowledge state will be updated in precisely the same way, because of the as-
sumption of common knowledge. Furthermore, we assume that communications
between agents are perfect in this implementation. As to how to implement such
strategies on a computer, we apply for a piece of main memory from the oper-
ating system, which stores the common knowledge. Hence, each agent has the
same authority to access this memory space in order to communicate with other
agents.

While such a team of agents is running in the competition, all agents have the
goal that their team should reach a score higher than that of their rival. In any
state of the world, any agent knows exactly what she should do next to achieve
this goal and will start a new task immediately after completing one. In fact an
agent can attain her goal by herself or through collaboration with others. Given
a task, when there is only one agent intending to accomplish it, she will act by
herself. However, if there are more, all such agents will collaborate to accomplish
their task, that is, the task will be allocated to the agents in an optimal way.
Moreover, the agents here are aggressive, that is, they keep exploring new areas
of the world, never passively waiting for changes of the environment. Finally, in
any state of the world, any agent is able to perform some action to achieve the
goal, never lost in a dead-end.

To design and implement my system, I had spent about 250 hours. During
this period, I did not discuss the design and strategies of my agent team with
others, and I did not test my agents playing with other teams. I once tested my
program by myself on a single computer, that is, I started a competition between
two multi-agent teams, both of which were equipped with my own program. Both
of them randomly selected a strategy at the beginning, thus they usually exploit
different strategies, which helps me evaluate my team.

236 C. Li

3 Software Architecture

I used C++ as the programming language, because it is so efficient and various
mature data structures and algorithms are easy to code in C++. Each of the
agents runs a separate programwhich is designed at four different levels, from the
decision level to the physical level, as is described in Fig.1. Level 1 is the decision
level, which generates an action, or applies for joining a group, according to the
current state. Such a group are to accomplish a task which cannot be handled
by a single agent. For example, conquering a zone is a task, which cannot be ac-
complished by a single agent and need a group of them. If an action is generated,
the agent will herself perform it, otherwise she will join a group for coordinating
the task. If more than one agent applies for the same task, the first who applies
will become a manager responsible for coordinating this group of agents in an
optimal way. This manager agent produces the coordination in its program ar-
chitecture at Level 2 (scheduling level), so Level 2 is responsible for scheduling
and allocating tasks to each of them. Level 3 is responsible for manipulating and
visiting the knowledge base (KB). When a percept is received by an agent, Level
3 will automatically update the knowledge base. On the other hand when being
asked about the current state, it will retrieve specific information from the KB,
so we call it reasoning level. Level 4 (physical level) contains various physical
implementations, including KB, network communication (TCP/IP), and special
algorithms such as string processing, Dijkstra algorithm [4], breadth-first search
algorithm [3], minimum cost flow algorithm [8] and Hungarian algorithm [5,7].

Decision Level Scheduling Level

Physical Level

Reasoning Level

Join a Group

Group Allocated Tasks

Ask about
the State

the Current State the Current State
Ask about
the State

Update and
Retrieve Knowledge

Knowledge Base, Special Algorithms,
TCP/IP Protocol…

Fig. 1. Agent Model Diagram

Conquering Large Zones by Exploiting Task Allocation 237

To develop my system, I used Gedit Text Editor in Linux system, together
with the g++ compiler. With the flexible C++ programming language, I was
able to implement all the features of my system quite efficiently, so no features
are lost in my implementation. Although I did not distribute the agents on dif-
ferent machines when I participated in the contest, I am actually able to do
so with minor adjustments, that is, to modify the number of user names and
passwords in the initialization file. When agents are on the same machine, they
communicate with each other by sharing main memory, otherwise they do so
via the TCP/IP protocol. In the receive-percept period, if an agent receives a
new percept, she will immediately perform reasoning to figure out her current
state and update her knowledge base. In the meantime any other agent will nei-
ther think nor perform actions, until this update is completed. In the send-action
period, each agent reasons on her knowledge base to figure out her state, then re-
acts according to our previously computed classification, before the action is sent
to the server. Furthermore a multi-thread TCP/IP sender will send the action to
the server. Note that our program is so efficient that any agent is always able to
send her action to the server before the next percept arrives. The most difficult
part of the whole development process was the optimization of team strategies.
That is, how to classify all the possible states and how to compute the optimal
action wrt each specific class. Roughly I solved these problems after a series of
observations, experiments, and comparisons. In classification, I considered roles,
injury, emergency, etc, and in the end, there were nearly 100 specific classes. For
example, suppose there is an agent who knows that her role is a repairer and
that she is neither injured nor in emergency, e.g., her energy value is too low.
And if there is an injured teammate in her location, she will retrieve all these
pieces of information from her knowledge base and consider all these factors to
compute which specific state she is in. And she will finally generate a reaction
to repair the injured. To design agents who react responsively and effectively, I
classified all possible states, and for each class, compute the optimal response
beforehand. In total, I wrote 10,000 lines of C++ code for my system.

4 Strategies, Details and Statistics

The main strategy of my agent system is that the whole team survey the edges
and probe the nodes of the whole map to search for available areas, and then
they try to occupy areas with higher values. If any minor event occurs, such as
encountering enemies or getting injured, the agent will abort her task. No matter
whether they are exploring a map or trying to occupy some area, the agents will
cooperate in an optimal manner, avoiding redundant work, so that they are able
to accomplish the task with the lowest cost.

4.1 Task Allocation

Given a set of tasks w[1, . . . , n] and the same number of agents a[1, . . . , n], an
arrangement can be denoted as a matrix Arn×n, where Ari,j = 1 if task wi is

238 C. Li

allocated to agent aj , otherwise, Ari,j = 0. Here our strategy is that each of
the agents is allocated exactly one task, so in each of the rows and columns
of Ar, there is exactly one ‘1’. We use matrix Cn×n to denote the costs (the
number of steps or energy value an agent needs to accomplish a task), where
Ci,j denotes the cost needed for agent ai to complete task wj . Considering
all possible arrangements, we hope to find a minimal value v such that each
agent accomplishes her allocated task with costs no more than v. Let S be the
set of possible arrangements such that the maximum cost is minimal, and let
T be the elements in S such that the total cost is minimal. Algorithm 1, as
shown in the following, returns one element in T . It involves two procedures,
Maximum matching(Agents,Tasks,Edges) based on Hungarian algorithm [5,7],
and Min cost flow(source, sink, Agents, Tasks, Edges, Cost) which is
just the one in [8]. Table 1 shows the test results of Algorithm 1. Each row
shows a specific type of 10 experiments, where the first three columns show the
number of agents, tasks and edges respectively. The fourth here shows the aver-
age number of edges whose value is not greater than v . The last column shows
the average running time.

We allocate each agent a unique task so that repetitive work is avoided so that
we are able to minimize the total cost. As mentioned earlier, when any agent
receives a new percept, any other agent will not perform any actions until this
percept is passed to all of them. This ensures that all agents share a synchronized
knowledge base based on the presumption of common knowledge. Each time an
agent arrives at an unexplored location, she surveys this location, obtaining all
adjacent nodes and the costs of respective edges. In this way, all locations ex-
plored form a connected component and the agents know all information about
this subgraph, including the shortest path between any two nodes in this com-
ponent. Their strategy now is to move to those nodes on the boundary, survey
them and then continue this process again and again. This will accelerate the
process of searching for more valuable areas. To avoid the case that two agents
move to the same location to survey, and to minimize the total cost, we use
Algorithm 1 to inform each agent where they should go. To communicate with
the server, we use a multi-threaded TCP/IP protocol.

I have designed a particular strategy for each of the five roles in the game.
When an agent realizes that she is acting in a certain role, say, repairer, she will
follow the respective strategy. Only explorers will accept the mission of exploring
the map and probing the value of the newly encountered node. After finishing
exploring, they will join a group to conquer a large zone. Here sentinels will join
a group to survey all the edges and after that, will join another group to conquer
a large zone just as what the explorers do. If some enemies are found and the
team does not know their roles and specific states, inspectors will join a group
to inspect those enemies, to collect such information. Otherwise, they will join
a group to survey all the edges and then join another group to conquer a large
zone just as what sentinels do. If some injured teammates are found, repairers
will run to them and repair them, otherwise, they will join a group to survey
the edges and then another group to conquer a large zone in the same way.

Conquering Large Zones by Exploiting Task Allocation 239

input : Agents, Tasks, Cost

output: arrangements

// binary search

low← minx∈Agents,y∈Tasks Cost(x,y) − 1
high ← maxx∈agents,y∈Tasks Cost(x,y)

while low+1 ≤ high do

mid← �low+high
2

�
Edges← {(x,y)|x ∈ Agents, y ∈ Tasks, Cost(x,y) ≤ mid}
if Maximum matching(Agents,Tasks,Edges) == |Tasks| then
// Hungarian algorithm

high← mid

else
low← mid

end

end
Edge← {(x,y)|x ∈ Agents, y ∈ Tasks, Cost(x,y) ≤ high}
Edges← Edges ∪ {(source,x)|x ∈ Agents} ∪ {(x,sink)|x ∈ Tasks}
Cost(source,x) ← 0// for all x ∈ Agents

Cost(x,sink) ← 0// for all x ∈ Tasks

Min cost flow(source, sink, Agents, Tasks, Edges, Cost)

for (x,y) ∈ Edges do
if flow(x,y)==1 then

// flow is defined in Min cost flow

arrangements(x) ← y

end

end
return arrangements

Algorithm 1. Min max cost tast allocation(agents,works,cost)

Table 1. Experimental results for Algorithm 1 (value of edge < 10000)

Agents Tasks Edges Remaining edges Time

20 300 3000 62 0.0039s
20 1000 10000 65 0.0088s
100 1000 50000 485 0.0571s
200 1000 100000 1243 0.1634s
500 1000 250000 3641 0.8317s
1000 1000 500000 8153 4.5360s

If some enemies are discovered, saboteurs will go to front line and fight with
those enemies, otherwise, they just do what sentinels do in the same occasion.

4.2 Expanding Zones

Expanding a boundary node B, means adding all adjacent nodes of B, which
are not occupied by the enemies, into the current zone. The agents first choose

240 C. Li

input : Nodes, Edges, value, Enemy Nodes

output: Best Zone

for x ∈ Nodes do
Neighborx ← {y|(x,y) ∈ Edges}

end
Can Not Expand← {x|x ∈ Enemy Nodes or Enemy Nodes ∩ Neighborx 	= ∅}
// cannot be Expanded if an enemy is at or right beside

for i = 0 to p2 − 1 do
// p2 is a prime number, assumed 1000007

Hash Zonesi ← ∅
end
for start node ∈ Nodes do

Bound← {start node}
Zone← Bound

while ∃x.x ∈ Bound ∧ (Neighborx − Zone− Enemy Nodes 	= ∅) do
// there exists a non-enemy point right outside the boundary

if Bound ⊆ Can Not Expand then // no point can be Expanded
S← {x|minx∈Bound |Eat Nodesx|}
// the set of points needing the least agents if eating

T← {x|maxx∈S
∑

y∈Neighborx−Zone−Enemy Nodes valuey}
// set of nodes in S maximizing total cost

Zone← Zone ∪ {x|x ∈ Neighbory − Zone− Enemy Nodes ∧miny∈T y}
// Select any point in T, expand it

else
S← {x|minx∈Bound−Can Not Expand |Expand Nodesx|}
T← {x|maxx∈S

∑
y∈Neighborx−Zone valuey}

Zone← Zone ∪ {x|x ∈ Neighbory − Zone ∧miny∈T y}
// Select any point in T, expand it

end
Bound← {x ∈ Zone|Neighborx 	⊆ Zone}
if

∑
x∈Best Zone valuex <

∑
x∈Zone valuex then

Best Zone← Zone

end
hash← (

∑
xi∈Zone,0≤i<|Zone| xi × p

1i
) mod p2

// p1 and p2 are prime numbers, p1 is 1007 and p2 is 1000007

if Zone ∈ Hash Zoneshash then
break

end
Hash Zoneshash ← Hash Zoneshash ∪ Zone

end

end
return Best Zone

Algorithm 2. Expand(Nodes, Edges, value, Enemy Nodes)

Conquering Large Zones by Exploiting Task Allocation 241

Table 2. Experimental results for Algorithm 2

Nodes Edges Enemies Time Time (distributed)

100 300 20 0.0207s 0.002s
200 600 20 0.2910s 0.006s
300 900 20 1.2581s 0.013s
400 1200 20 3.5527s 0.023s
500 1500 20 7.4012s 0.034s
1000 3000 20 > 30s 0.128s

each node which is not occupied by enemies as a point zone and then repeat the
following: find the boundary node P such that after expanding P the boundary
increases the least (possibly by a negative number), and then, expand it. During
the expanding process, we maintain the best zone found in the past, with the
highest value. We say a zone B1 is superior to another one B2 if B1 is more
valuable than B2. In details, we have the following Algorithm 2. The complexity
of this algorithm is O(N2M), where N is the number of nodes and M is the
number of edges in the graph. This is because the zone will only be expanded
at most N times and at each expanding, at most M edges will be traversed.
Table 2 shows the test results of Algorithm 2, where the first two columns show
the number of nodes and edges respectively, and the third column shows the
number of enemies, that is, the number of nodes occupied by enemies. The
last two columns show the average running time for centralized and distributed
algorithms respectively. Notice that in each type of experiments, the sum of
the running time over all the machines for the distributed algorithm, is several
times greater than the running time of the centralized algorithm, because in
the centralized algorithm, we apply the hashing technique to examine whether
a zone had already been computed before.

Note that Algorithm 2 can be made distributed, in that the expanding proce-
dure can simultaneously begin at any number of nodes on the map. In particular,
if we have as many machines as the nodes, we allocate each machine a unique
node and instruct it to run a separate expanding procedure with that node.

4.3 Strategy Details

Formally below is the evaluation function for estimating the value of a zone:

valueZone =
∑

i∈Zone
valuei. (1)

Our agents will calculate the most promising zone with Algorithm 2 and then
move to the boundary of that zone and conquer it. Among them, the sabo-
teurs always attack the nearest agent of the rival, so that this group of agents
always attack the nearest area occupied by the enemies. If they are attacked

242 C. Li

by the enemies, they will recompute a new area not occupied by the enemies,
and then move there. All agents are equipped with exactly the same program,
however, at each step during the contest, the strategy can be changed with a
relatively small probability. Intuitively given an area, the safest strategy is to
fully cover its boundary, that is, each boundary node is occupied by an agent.
However, we sometimes take some risk, hoping to occupy more with the same
number of agents. One possible risky strategy is that there is at least an agent
at any two adjacent boundary nodes. At the start of the contest, we exploit such
risky strategy to conquer an area. If this area is often disturbed by enemies,
we will recompute a new area with the aforementioned safe strategy and then
move there. To summarize, two factors can trigger strategy changes: (1) whether
a conquered area is often disturbed; (2) a relatively small probability. During
the procedure of path finding, we exploit Dijkstra Algorithm and Breadth-First
Search Algorithm, and we also use Algorithm 1 to prevent any two agents from
exploring the same location. During the contest, there is a certain strategy that
only saboteurs will buy sabotage device and shield, and the strength value will
always be equal to the health value or one unit more. However, according to
empirical results, it is best not to buy any facilities. Considering that this does
not cause big problems, at the start we randomly make a choice between these
strategies. In the contest, we value achievements, from which we are able to
obtain some scores at each step, so we try to acquire achievements swiftly, never
spending them.

As mentioned earlier, all agents in our team are rational and good team play-
ers, that is, each will always try to complete the mission of the group. Moreover,
recall that all communications are perfect and all agents will not perform any
actions when a certain percept is being passed in the group. In our team all the
agents are armed with exactly the same program so that they have equal status.
When a list of agents are applying for the same mission, one of them will become
a temporary project manager, which is responsible for allocating the mission in
an optimal way. Later this project manager will become an ordinary agent and
each agent will accomplish her allocated mission separately. Hence we organize
our agents explicitly and no hierarchy is exploited. When an agent encounters
something emergent, she immediately interrupts her allocated mission and tell
all others in the group. The group will possibly relax the team mission so that
they are able to accomplish it without this agent. Agents are able to perform
planning in path finding and they need complete knowledge about the (local)
initial state. Here we do not call a planner, but exploit Dijkstra Algorithm to
obtain a shortest path from the source to the destination. To synchronize with
the server, the agents use multi-thread TCP/IP listeners to listen to the message
from the server, and decide what actions to perform accordingly. Furthermore,
a multi-thread TCP/IP sender will send the action to the server. Note that our
program is so efficient that any agent is always able to send her action to the
server before the next percept arrives.

Conquering Large Zones by Exploiting Task Allocation 243

5 Conclusion

The participation of this contest has greatly improved my knowledge of multi-
agent systems and stimulated my interest in conducting research in this area. I
have learnt some important strategies to improve the performance of my agent
team. Firstly, agents should be trained beforehand to strengthen the precon-
ditions of their actions in order to reduce the search space. For example, the
agents would realize that any node should not be surveyed repeatedly so they
strengthen the precondition of the survey action. Secondly, the agents should
record some optimal solutions in some cases, then with the learned experiences,
they will be able to make best responses in similar cases. For instance, if a sabo-
teur encounters an enemy for the first time, she deliberates over the optimal
strategy, attacks that enemy, and learns that experience. Then if similar cases
happen next time, she will simply behave according to this experience, with-
out deliberation. Thirdly, the agents should keep a balance between maximizing
their worst outcome and minimizing the best outcome of their enemies in the
meantime.

One strong point of our team is that we use Algorithm 1 for task allocation
to avoid repetitive work, hence decreasing cost of the team. Also, Algorithm 2
ensures that our agents are able to search for a large area, and then occupy it.
Another is that our team is efficient in that it only takes the team about 0.2
second to make all decisions, on the 300-edge and 800-node map, in a perfect net-
work. This enables us to develop more complex strategies in future contests. The
weaknesses of our team are that we do not have a good strategy for disturbing
the opponents and we are not able to defend our own area effectively. Because
there is a great number of agents and the map is complex, our programs have
to run with great efficiency. Hence we choose C++, which is known for its effi-
ciency and flexibility, supporting various data structures and algorithms. Next
year we are going to exploit effective strategies to attack enemies’ zone and pro-
tect our own zone. The performance this year is not so satisfactory and there
are many reasons: this was the first time for us to participate, the team con-
sisted of only one member, I have just finished my undergraduate study with
little research experience, and I had not enough time to implement all the ideas.
For the next year, some changes we would think beneficial include: (1) servers
should never send repetitive static information so as to relieve the pressure of
network communication; (2) a percept should contain no information about the
teammates because the agents should communicate with each other to broadcast
such information.

Acknowledgements. I thank Professor Yongmei Liu for introducing me to the
Multi-Agent Programming Contest. I am deeply grateful to Yi Fan for his gener-
ous and valuable help with the writing of this paper. This project was supported
by the Natural Science Foundation of China under Grant No. 61073053.

244 C. Li

References

1. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: Special issue about Multi-
Agent-Contest I. In: Annals of Mathematics and Artificial Intelligence, vol. 59.
Springer, Netherlands (2010)

2. Behrens, T., Dix, J., Köster, M., Hübner, J.: Special issue about Multi-Agent-
Contest II. In: Annals of Mathematics and Artificial Intelligence, vol. 61. Springer,
Netherlands (2011)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Section 22.2: Breadth-first
search. In: Introduction to Algorithms, pp. 531–539. MIT Press and McGraw-Hill
(2001)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische
Mathematik, vol. 1, pp. 260–271. Springer (1959)

5. Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices. J. of Res.
the Nat. Bureau of Standards 69 B, 125–130 (1965)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. The
MIT Press, Cambridge (1995)

7. Kuhn, H.W., Yaw, B.: The Hungarian method for the assignment problem. Naval
Res. Logist. Quart, 83–97 (1955)

8. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations
Research 41(2), 338–350 (1993)

	Conquering Large Zones by Exploiting Task Allocation and Graph-Theoretical Algorithms
	1 Introduction
	2 System Analysis and Design
	3 Software Architecture
	4 Strategies, Details and Statistics
	4.1 Task Allocation
	4.2 Expanding Zones
	4.3 Strategy Details

	5 Conclusion
	References

