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Abstract. We provide a brief description of our Python-DTU system,
including the overall design, the tools and the algorithms that we used
in the Multi-Agent Programming Contest 2012, where the scenario was
called Agents on Mars like in 2011. Our solution is an improvement of
our Python-DTU system from last year. Our team ended in second place
after winning at least one match against every opponent and we only lost
to the winner of the tournament. We briefly describe our experiments
with the Moise organizational model. Finally we propose a few areas of
improvement, both with regards to our system and to the contest.

1 Introduction

This paper documents our work with the Python-DTU team which participated
in the Multi-Agent Programming Contest 2012 [7]. We also participated in the
contest in 2009 and 2010 as the Jason-DTU team [4,5], where we used the Jason
platform [3], but this year we use just the programming language Python as we
did in 2011 [6]. See http://www.imm.dtu.dk/~jv/MAS for an overview of our
activities.

The scenario is based on the scenario from 2011 and has only been changed
in a few ways. The most interesting change is the increase in number of agents
from 10 to 20 agents per team.

Our focus for the 2012 version of the contest has been on reimplementing
the system from 2011. Given that the scenario is very similar to that last year,
we decided to look into ways of improving our system. We have been exploring
the possibility of implementing an organization for the system using the Moise
organizational model [1] as part of a two-student bachelor project.

The paper is organized as follows. In section 2 we discuss some of the ideas
we have pursued. In section 3 we describe some of the facilities we have added
in the improved system. Section 4 describes in detail our strategies and how the
agents commit to goals. Finally, we conclude our work by discussing possible
improvements of our system and the contest in section 5.
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2 System Analysis and Design

We chose to implement the system using Python as it is very fast and conve-
nient to implement experimental systems in this language. Other useful features
of Python are support of multiple programming paradigms, compact code and
dynamic typing. We did not use any multi-agent programming languages be-
cause we wanted to have complete control of everything in the implementation.
Last year we used Python 2 and we decided to upgrade to Python 3.

In order to make sure that our changes during the implementation phase
improved our system, all new algorithms and architecture changes were tested
against the older versions by comparing the data collected from the new statistics
to see if the change made any differences.

2.1 Testing Moise

This year we wanted to try to implement some kind of organization for our sys-
tem, so we made a substantial test implementation as part of a two-student bach-
elor project using the Moise organizational model [1]. We chose Moise because
we have previous experience using it in combination with the Jason platform [3].

The Moise organizational model [1] is a formalism for organizational multi-
agent systems where an organization is divided into three dimensions: struc-
tural, functional and deontic specification. The structural specification uses the
concepts of roles, role relations and groups to build the individual, social and
collective structural levels of an organization. Here, the roles an agent can enact
are defined, and it is furthermore defined how roles are linked, e.g. by allowing
agents enacting different roles to communicate. The collective level is specified
using the notion of groups, in which it is determined which roles are allowed to
be enacted and what links exists between agents both within internally in the
group and with external agents. The functional specification specifies missions
and plans using a so-called social scheme which is a goal decomposition tree
that has as root the goal of that scheme. The responsibilities for each subgoal
in a scheme are distributed in missions, which means that an agent choosing to
commit to a mission effectively chooses to commit to the goals of that mission.
The subgoals are created using the operators sequence, indicating that a goal
is fulfilled when the sequence of subgoals are fulfilled, choice, in which a goal is
fulfilled when a single subgoal is achieved, and parallelism, where all subgoals
must be fulfilled, but no specific order is required. The deontic specification is the
relation between the structural and functional specifications: it specifies on the
individual level the permissions and obligations of a role on a mission. It makes
it possible to specify that an agent enacting a certain role is obligated (or per-
mitted) to commit to certain missions, and is therefore obligated (or permitted)
to commit to the goals of that mission.

We follow the approach of S-Moise+, which is an open-source implementation
of an organizational middleware that follows the Moise-model [2]. Among other
things it consists of a special agent, the organizational manager, which maintains
consistency in the organization, i.e. by making sure that a single agent cannot
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enact two incompatible roles at the same time. This is done by letting the agents
communicate with the manager when they want to join a group, enact a role
or commit to a mission. If any such event is a violation of the organizational
specification, the organizational manager will not allow it.

The plan trees and social schemes of Moise have a large potential, due to the
fact that they will make sure that the right amount of agents will work together
toward the best goal. We have chosen to only plan for a single subgoal for each
agent, because of the very dynamic nature and the size of the map and number
of agents. This makes the plans sufficiently small for the agents to coordinate
themselves using direct communication, which makes the plan trees unnecessary.

It might be possible to split the agents into smaller groups to perform more
coordinated plans, like finding the opponent’s zones etc., but we did not have the
time to try to implement groups. In the end we decided not to use Moise as we
found that the benefits did not outweigh the needed effort to get the computation
under the time limit, due to the quite large communication overhead of the
organizational manager.

2.2 Agent Behaviour

Our resulting system is a decentralized solution with a focus on time perfor-
mance. The communication between the agents relies on shared data structures
as this is a very fast way to communicate for the agents. The Runner class which
coordinates communication is described in more detail in section 3.3.

Instead of letting the agents find goals based on their own knowledge alone
they use the distributed knowledge of the entire team. This does add some
communication which in some cases is unnecessary but in most cases the extra
knowledge will produce better goals for the agents.

In each step each agent will find its preferred goals autonomously and assign
each of them a benefit based on its own desires (i.e. the type of agent), how
many steps are needed to reach the location and so on. In order to make sure
that multiple agents will not commit to the same goal they communicate in order
to find the most suitable agent for each goal. This is done using our auction-based
agreement algorithm which will be discussed in more detail in section 4.3.

The agents in this contest are situated in an inaccessible environment which
means that the world state can change without the agents noticing from step to
step, e.g. if the opponent’s agents move outside our agents’ visibility range. Hence
our agents should be very reactive to observable changes in the environment.

The agents are only proactive in a few situations. The most important one
being the communication between a disabled agent and a repairer. They use
their shared knowledge in order to decide which of the agents should take the
last step and who should stay, so that they eventually are standing on the same
vertex instead of simply switching positions. This is implemented by considering
the current energy for each agent.

Some of our agents also attempt to be proactive by for example parrying if
an opponent saboteur is on the same vertex. Furthermore, repairers will repair
wounded agents since they are likely to be attacked again.
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2.3 Random Generation of the Map

Last year all maps had one high-valued area, indicated by numbers on the ver-
tices, as seen in figure 1. For this setting we developed an algorithm which places
the agents in defensive positions inside the area in order to defend it. For more
information we refer to the paper about our system from 2011 [6].

Fig. 1. An example of a map in the MAPC 2011

This year the map generation algorithm has been updated to create more
than one high-valued area. An example of this can be seen on figure 2, where the
size of a vertex represents its value. In some cases this lead to situations where
our agents would protect a single good area even though it would be better to
make smaller groups and have control over several areas. Therefore our previous
solution would only be effective in special cases, so we have implemented a
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Fig. 2. An example of a map in the MAPC 2012

new algorithm which takes multiple areas into consideration. The new solution
is actually much simpler and it works well for both maps with multiple areas
and maps with a single, high-valued area. In section 4.2 we describe the main
properties of this algorithm.

3 Software Architecture

The software architecture, including the auction-based agreement approach, is
thoroughly described in the paper about our system from 2011 [6] and will only
be described briefly here. The rest of this section will describe a few minor
facilities added this year.
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3.1 Considerations

The competition is built on the Java MASSim-platform and EISMASSim frame-
work which makes it easy to implement a system quickly without spending time
on server communication and protocols. However, we did not utilize this frame-
work but chose to implement our system in Python exclusively to have better
control and complete knowledge about the implementation. Another solution
based on EISMASSim, ActiveMQ and the Java implementation of Python, called
Jython, was implemented as well. This solution was discarded due to perfor-
mance issues. We also considered using a multi-agent framework such as Jason,
but due to prior experiences, we thought that the benefits where outweighed by
the increased complexity and thus chose to implement our own framework. We
chose Python as we think it is in many ways superior with respect to development
speed and succinctness compared to Java, C#, C++ and other languages that
we have experience with. Furthermore Python supports multiple programming
paradigms, including the functional, which has quite effective for this setting.

Last year we used a decentralized solution where the agents shared their per-
cepts through a shared data structures but each kept their own copy of the graph
representing the environment. The increase in the number of agents and the size
of the maps for this year’s competition, forced us to rethink and reimplement
the percept sharing. To efficiently handle the increased amount of information,
all agents share a single instance of the graph. To avoid deadlocks, percepts that
lead to updates in this graph are handled with synchronized queues which allow
safe exchange of data between multiple threads.

3.2 Testing Using Flags

A lot of testing was required for verifying that our system was improved com-
pared to our previous system, so we needed an easy way to select which algo-
rithms to use. In order to be able to run several instances of the program, we
decided to create program arguments, or flags, for the system. In the beginning
we had a configuration file in which we set flags. This was not a very practical
way to do it as we had to have multiple configuration files in order to run more
instances of the program. These flags make it possible to specify which algo-
rithms the system should use. The help page for our multi-agent system where
the different flags are described is shown below:

$ python ./bagent.py -h

usage: bagent.py [-h] [-b] [-d] [-a] [-w] [-l] [-v {0,1,2}] {a,b,Python-DTU}

positional arguments:

{a,b,Python-DTU} agent name prefix

optional arguments:

-h, --help show this help message and exit

-b, --buy make the agents shop for upgrades

-d, --dummy dummy agents

-a, --attack do attack
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-w, --weak_opp attack EXP and INS in the start of the simulation

-l, --load_pickle load vertices from pickled data

-v {0,1,2}, --verbosity {0,1,2}

The flags are used to start multiple instances of the system using different strate-
gies. For example we can test whether it is better to use our buying strategy by
starting the server and then start two instances of the system where the flag -b

was passed to one of them. This was used to test whether it was beneficial to
use our heuristics, but as we found that this was not the case we have removed
them from the system.

3.3 Code Structure and Files

We briefly describe the main classes and files:

global vars.py: We have all our global variables in this file. They are mainly
used to make the implementation more dynamic and easier to maintain.

comm.py: This is the file where we have implemented the Agent class and the
procedures used to communicate with the server. The Communicator class
is implemented as processes such that all the agents can send and receive
messages at the same time. The logic of the agents are implemented in the
util.py and algorithms.py files.

bagent.py: This is where the main program is started and where the flags
are parsed. It is also in this file that our Runner class is implemented. The
Runner class starts and lets the agents do their calculations in a sequential
fashion.

algorithms.py: Most interesting of our algorithms are implemented in this file,
including:
– The greedy zone control which will be discussed in section 4.2.
– The get goals algorithm called by each agent. This algorithm is discussed

in more detail in the paper about our system from 2011 [6].
– The best-first search used by each agent in order to find specialized goals

according to their type.

util.py: We have implemented our graph representation of the map in this file.
The file also includes a timer which was used to find bottlenecks in our code.

4 Strategies, Details and Statistics

In the competition each step of each achievement is exponentially harder to
reach than the previous, thus our agents need a way to change their goals as
the simulation progresses. We describe our strategy for getting achievements in
section 4.1 and our zone control strategy in section 4.2. We describe how the
agents decide what to do in section 4.3 and finally how communication works in
section 4.4.
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4.1 Getting Achievements

In the beginning every agent will work towards achieving as many type specific
goals as possible in a more or less disorganized fashion, e.g. the inspector will
inspect every opponent it sees.

We do this to achieve as many achievements as possible as fast as possible. We
tried implementing different heuristics to improve the first part of the strategy.
We considered the following heuristics:

Survey Heuristic: The agents always survey the vertex with the most outgo-
ing edges if the steps needed to reach the vertex are the same (figure 3). The
idea is to get survey achievements faster, but it turned out that even though
we got the first few achievements faster, the last ones were achieved a lot
later using this heuristic, so we did not use it.

Probe Heuristic: The agents probe the vertex with the highest valued neigh-
bours (figure 4). This worked very well in the scenario from 2011, but in
the 2012 scenario it can be more beneficial to first find a lot of potentially
high valued areas which can be probed later. This can be achieved using a
random walk, which will reduce the time in each area increasing the chance
that the agents might find more areas in less steps. We chose not to use the
probe heuristic since a random walk was more successful.

Attack Vulnerable Opponents: This heuristic is only applied in the first 80
steps (a simulation has 750 steps). We prefer to attack agents that cannot
parry, as this will get us more successful attacks. Furthermore, as added
value this will also lead to fewer successful parries for the opponent. This
turned out to give us a slight advantage in the beginning of the simulation,
so we chose to use it.

X3 4

Fig. 3. Illustration of the heuristic values our agents would get trying to survey, stand-
ing on the green vertex. The vertex to the left has a heuristic value of 3 because it has
three outgoing edges, whereas the one on the right has a slightly better heuristic value
of 4.

After a certain number of steps the agents will proceed to the zone control
part of our strategy. The sentinel is the only agent surveying after step 30. The
explorers keep probing until step 150 and will probe in our target area for the
next 50 steps to make sure we control as many vertices as possible. Afterwards
they will follow the zone control strategy. All other agents begin zone control
after step 150.
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Fig. 4. Illustration of the heuristic values our agents would get trying to probe, standing
on the green vertex where the blue ones are owned with the given value. The heuristic
value of the red vertices are calculated by taking the mean of the known neighbouring
vertices.

4.2 Zone Control

The zone control part of our strategy uses a very simple, but surprisingly effec-
tive, greedy algorithm. The algorithm works by first choosing the node with the
highest value, and then by choosing a potential neighbour node. The potential
value of choosing that node is then calculated as the value of the node plus the
sum of all the neighbours which, according to the graph coloring algorithm [7],
will be owned if the potential node is chosen. For each agent, the algorithm will
choose the best node according to some parts of the graph coloring algorithm.
If a vertex has not been probed the algorithm will use the value 1. This way we
take some of the area coloring algorithm from the contest into consideration and
as it is an inaccessible environment this is the best we could achieve.

This algorithm will to some extent choose the optimal area or several areas
which are still fairly easy to maintain, even though our choices are limited by
our (partial) knowledge of the map and the missing parts of the area coloring
algorithm.

During the zone control part every type of agent has a specific job.

– Repairers and saboteurs do not directly participate in the zone control, in-
stead they are trying to defend and maintain the zone.

– Inspectors keep inspecting from their given expand node, because the oppo-
nents might have bought something which we need to make a counter move
against.

– Explorers will probe unprobed vertices within the target zone. When all
vertices are probed they are assigned a vertex by the zone control strategy.

– The sentinels will stay on a vertex assigned by the zone control strategy and
will parry if some of the opponent’s saboteurs move to the sentinels position.

The last important change in the state of mind of the agents is that after step
150 the saboteurs start buying. They buy exactly enough extra health so that
they will not get disabled by a single attack from an opponent saboteur that has
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not upgraded his strength. Furthermore we buy enough strength to disable any
opponent saboteur in a single attack by buying strength for all our saboteurs
every time we inspect the opponent saboteurs and find that it has more health
than all other inspected saboteurs. This buying strategy is chosen in hope of
dominating the map which will make it possible to gain control of the zone we
want. The advantage is that we only try to out-buy in one specific field, thus
we are unlikely to use all our achievement points. As this is a quite aggressive
buying strategy we had to wait to step 150 to have enough achievement points
to execute it.

4.3 Making Decisions

The agents need a consistent way of figuring out what to do. We do this by
letting every agent find the nearest goals according to their type. They do this
by using a modified best-first search (BFS) which returns a set of goals. To make
sure that every agent always has at least one goal the BFS returns as many goals
as we have agents. This is a very agent-centered procedure meaning the agents
simply commit to the goal with the highest benefit, instead of coordinating any
bigger schemes. However, since the goals are more or less dependent on each
other there is some implicit coordination. For example the repairers will often
follow the saboteurs as these search for opponents and thus more often will share
a vertex with an opponent saboteur and get disabled.

To decide which goal to pursue the agents use an auction algorithm. Every
agent can bid on the goals they want to commit to and will eventually be assigned
the one they are best suited for. This results in a good solution, which however
might not be optimal. For further details we refer to the paper about our system
from 2011 [6].

Even though our planner calculates a few turns ahead the agents recalculate
every turn. We do this to adapt to newly discovered obstacles and facts, such
as an opponent saboteur or the fact that the agent has been disabled. The
agents will not end up walking back and forth as their previous goal will now
be one step closer, thus the benefit of the goal has increased. If another goal
becomes more valuable it means that it is a better goal than the one the agent
was pursuing, thus changing the commitment makes sense, so we do not lose
anything on recalculating each turn.

4.4 Communication

Communication and sharing of information is extremely important in any multi-
agent system. In our system every percept received by the agents are stored in a
shared data structure so that all agents have access to the complete distributed
knowledge of the team at all times.

Actual communication in our system only happens when the agents are de-
ciding what to do. When they are figuring out what to do the auction-based
agreement algorithm is used on conflicting goals and thus two agents will never
pursue the same goal.
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5 Conclusion

In the process of reimplementing and improving the Python-DTU multi-agent
system we have analysed the changes to the competition and used our findings
to design and implement better algorithms for the increasingly complex tasks.
We have considered imposing an explicit organization upon the agents, and for
this purpuse we experimented with the Moise organizational model. While it
had some advantages, such as the being able to ensure that the right amount of
agents work together toward a certain goal using by use of roles and plan trees,
we decided not to use Moise in the final version of our system, as its benefits did
not outweigh the communication overhead caused by the organizational manager
in the organizational middleware, S-moise+.

All improvements to the algorithms are quite simple, but are nevertheless ef-
fective at reaching their goals. The simplicity and specialized approach is proba-
bly one of our strengths, as it makes it easy to implement special cases when cer-
tain improvements of the algorithms were necessary. Having aggressive saboteurs
was also an advantage as it lead to the opponents being disabled often, which in
turn gave us a larger zone score. Our greatest weakness was that our uncompro-
mising attempt to have the strongest saboteurs could be countered by buying
enough health on a single saboteur to make us use most of our achievement
points for improving all of our saboteurs. This could lead to a large difference in
step score gained from achievement points each step.

The many advanced programming constructs in Python, e.g. lambda func-
tions, list comprehensions and filters made it possible to implement algorithms
very efficiently.

One thing we have noticed during the competition is that it does not seem to
pay off to buy anything other than health and strength. This meant that a lot
of teams had more or less the same strategies. We think it could be interesting
if many kinds of strategies could be sufficiently effective so that we might see the
teams following different strategies. One idea could be to introduce ranged attacks
which could be achievable through upgrades and should be limited by visibility
range. This could allow for some other strategies, since the agents need to figure
out where to hit the opponent a few steps in the future and how to avoid getting
hit themselves. Furthermore, the teams will need to use their inspectors even more
to find out whether or not to avoid possible ranged attacks from the opponent.
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