
Mehdi Dastani
Jomi F. Hübner
Brian Logan (Eds.)

 123

LN
AI

 7
83

7

10th International Workshop, ProMAS 2012
Valencia, Spain, June 2012
Revised Selected Papers

Programming
Multi-Agent Systems

Lecture Notes in Artificial Intelligence 7837

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Mehdi Dastani Jomi F. Hübner
Brian Logan (Eds.)

Programming
Multi-Agent Systems

10th International Workshop, ProMAS 2012
Valencia, Spain, June 5, 2012
Revised Selected Papers

13

Volume Editors

Mehdi Dastani
Utrecht University, Intelligent Systems Group
Utrecht 3508 TB, The Netherlands
E-mail: m.m.dastani@uu.nl

Jomi F. Hübner
Federal University of Santa Catarina
Department of Automation and Systems Engineering
Florianópolis, 88040-900, Brazil
E-mail: jomi@das.ufsc.br

Brian Logan
University of Nottingham, School of Computer Science
Nottingham, NG8 1BB, UK
E-mail: brian.logan@nottingham.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38699-2 e-ISBN 978-3-642-38700-5
DOI 10.1007/978-3-642-38700-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939791

CR Subject Classification (1998): I.2.9, I.2.11, I.2, D.1, D.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These are the proceedings of the International Workshop on Programming Multi-
Agent Systems (ProMAS 2012), the tenth of a series of workshops. Over the last
decade, the ProMAS workshop series has provided a venue for state-of-the-art
research in programming languages and tools for the development of multi-agent
systems. ProMAS aims to address both theoretical and practical issues related
to developing and deploying multi-agent systems. It has provided a forum for the
discussion of techniques, concepts, requirements and principles central to multi-
agent programming technology, including the theory and application of agent
programming languages, the specification, verification and analysis of agent sys-
tems, and the implementation of social structures in agent-based systems. Many
of these concepts and techniques have subsequently found widespread applica-
tion in agent programming platforms and systems.

For the tenth edition of ProMAS, we received 14 submissions which were
reviewed by members of the Program Committee. Of these papers, ten were
accepted for presentation during the worksop and included in this proceedings
volume after being improved by the authors based on the reviewers’ comments
and discussion at the workshop. We are pleased to be able to present proceedings
with high-quality papers covering a wide range of topics in multi-agent system
programming languages, including language design and efficient implementation,
agent communication, and robot programming.

In addition to regular papers, this volume includes six papers from the Multi-
Agent Programming Contest 2012 (MAPC). The practical experience with non-
trivial problems provided by the Multi-Agent Programming Contests has been
invaluable in improving some of the best-known platforms for multi-agent pro-
gramming. The paper from Michael Köster, Federico Schlesinger, and Jürgen Dix
presents the contest organization and the main results. The following papers are
from the participants and report their specific strategies and results.

We would like to thank the ProMAS Steering Committee for giving us the
opportunity to organize this workshop. We also want to express our gratitude to
the Program Committee members and additional reviewers, to the participants
of the workshops, and especially to the authors for their original contributions.
We thank the organizers of the AAMAS conference for hosting and supporting
the organization of the ProMAS workshops since the first edition in 2003.

We hope the ProMAS community continues to contribute to the design of
programming languages and tools that are both principled and at the same time
practical for “industrial-strength” multi-agent systems development.

February 2013 Mehdi Dastani
Jomi F. Hübner

Brian Logan

Organization

The 10th International Workshop on Programming Multi-Agent Systems
(ProMAS-2012) took place with the 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2012) in Valencia, Spain,
on June 5, 2012.

Organizing Committee

Mehdi Dastani Utrecht University, The Netherlands
Jomi F. Hübner Federal University of Santa Catarina, Brazil
Brian Logan University of Nottingham, UK

Steering Committee

Rafael H. Bordini Federal University of Rio Grande do Sul, Brazil
Mehdi Dastani Utrecht University, The Netherlands
Juergen Dix Clausthal University of Technology, Germany
Amal E.F. Seghrouchni University of Paris VI, France

Program Committee

Natasha Alechina University of Nottingham, UK
Lacramioara Astefanoaei Laboratoire d’Informatique de Grenoble, France
Matteo Baldoni University of Turin, Italy
Olivier Boissier Ecole des Mines de St Etienne, France
Juan Botia Blaya University of Murcia, Spain
Lars Braubach University of Hamburg, Germany
Rem Collier University College Dublin, Ireland
Louise Dennis University of Liverpool, UK
Vladimir Gorodetsky Russian Academy of Sciences, Russia
Francisco Grimaldo Universitat de Valencia, Spain
James Harland RMIT, Australia
Koen Hindriks Delft University of Technology, The Netherlands
Benjamin Hirsch Technical University of Berlin, Germany
Max Knobbout Utrecht University, The Netherlands
João Leite Universidade Nova de Lisboa, Portugal
Viviana Mascardi Genova University, Italy
Philippe Mathieu University Lille 1, France
John-Jules Ch. Meyer Utrecht University, The Netherlands

VIII Organization

Jorg Muller Clausthal University of Technology, Germany
Peter Novák Czech Technical University, Czech Republic
Alexander Pokahr University of Hamburg, Germany
Alessandro Ricci University of Bologna, Italy
Birna van Riemsdijk Delft University of Technology,

The Netherlands
Ralph Ronnquist Intendico, Australia
Sebastian Sardina RMIT University, Australia
Ichiro Satoh NII, Japan
Michael Ignaz Schumacher University of Applied Sciences Western

Switzerland, Sierre, Switzerland
Kostas Stathis Royal Holloway, University of London, UK
Bas Steunebrink University of Lugano, Switzerland
John Thangarajah RMIT, Australia
Pankaj Telang Cisco, USA
Wamberto Vasconcelos University of Aberdeen, UK
Jørgen Villadsen DTU Informatics, Denmark
Neil Yorke-Smith American University of Beirut, Lebanon and

SRI International, USA
Yingqian Zhang Delft University of Technology,

The Netherlands

Additional Reviewers

Antonin Komenda
Matthias Knorr
Andrea Santi

Table of Contents

eJason: An Implementation of Jason in Erlang . 1
Álvaro Fernández Dı́az, Clara Benac Earle, and Lars-Åke Fredlund

Conceptual Integration of Agents with WSDL and RESTful Web
Services . 17

Lars Braubach and Alexander Pokahr

Agent Programming Languages Requirements for Programming
Autonomous Robots . 35

Pouyan Ziafati, Mehdi Dastani, John-Jules Meyer, and
Leendert van der Torre

An Agent-Based Cognitive Robot Architecture . 54
Changyun Wei and Koen V. Hindriks

A Programming Framework for Multi-agent Coordination of Robotic
Ecologies . 72

M. Dragone, S. Abdel-Naby, D. Swords, G.M.P. O’Hare, and
M. Broxvall

Evaluation of a Conversation Management Toolkit for Multi Agent
Programming . 90

David Lillis, Rem W. Collier, and Howell R. Jordan

Compact and Efficient Agent Messaging . 108
Kai Jander and Winfried Lamersdorf

Query Caching in Agent Programming Languages . 123
Natasha Alechina, Tristan Behrens, Koen V. Hindriks, and
Brian Logan

Typing Multi-agent Programs in simpAL . 138
Alessandro Ricci and Andrea Santi

Learning to Improve Agent Behaviours in GOAL . 158
Dhirendra Singh and Koen V. Hindriks

The Multi-Agent Programming Contest 2012 . 174
Michael Köster, Federico Schlesinger, and Jürgen Dix

X Table of Contents

SMADAS: A Cooperative Team for the Multi-Agent Programming
Contest Using Jason . 196

Maicon Rafael Zatelli, Daniela Maria Uez, José Rodrigo Neri,
Tiago Luiz Schmitz, Jéssica Pauli de Castro Bonson, and
Jomi Fred Hübner

Reimplementing a Multi-Agent System in Python . 205
Jørgen Villadsen, Andreas Schmidt Jensen,
Mikko Berggren Ettienne, Steen Vester,
Kenneth Balsiger Andersen, and Andreas Frøsig

Multi-Agent Programming Contest 2012 – TUB Team Description 217
Axel Heßler, Thomas Konnerth, Pawel Napierala, and
Benjamin Wiemann

LTI-USP Team: A JaCaMo Based MAS for the MAPC 2012 224
Mariana Ramos Franco, Luciano Menasce Rosset, and
Jaime Simão Sichman

Conquering Large Zones by Exploiting Task Allocation and
Graph-Theoretical Algorithms . 234

Chengqian Li

Author Index . 245

eJason: An Implementation of Jason in Erlang�

Álvaro Fernández Dı́az, Clara Benac Earle, and Lars-Åke Fredlund

Babel Group. Universidad Politécnica de Madrid, Spain
{avalor,cbenac,fred}@babel.ls.fi.upm.es

Abstract. In this paper we describe eJason, a prototype implementa-
tion of Jason, the well-known agent-oriented programming language, in
Erlang, a concurrent functional programming language. The reason for
choosing Erlang as the implementation vehicle is the surprising number
of similarities between Jason and Erlang, e.g., both have their syntac-
tical roots in logic programming, and share an actor-based process and
communication model. Moreover, the Erlang runtime system implements
lightweight processes and fast message passing between processes. Thus,
by mapping Jason agents and agent-to-agent communication onto Erlang
processes and Erlang process-to-process communication, we can create a
very high-performing Jason implementation, potentially capable of sup-
porting up to a hundred thousand concurrent actors. In this paper we
describe in detail the implementation of Jason in Erlang, and provide
early feedback on the performance of the implementation.

1 Introduction

Among the different agent-oriented programming languages, AgentSpeak [13] is
one of the most popular ones. It is based on the BDI architecture [14,17], which
is central in the development of multiagent systems. AgentSpeak allows the im-
plementation of rational agents by the definition of their know-how, i.e. how each
agent must act in order to achieve its goals. AgentSpeak has been extended into
a programming language called Jason [7,9]. Jason refers to both the AgentSpeak
language extension and the related interpreter that allows its execution in Java.
Thus, Jason is an implementation of AgentSpeak that allows the construction
of multiagent systems that can be organized in agent infrastructures distributed
in several hosts. It allows the interfacing to the JADE Framework [5,6], thus
generating multiagent systems fully compliant to FIPA [1,12] specifications. To
effortlessly distribute the agent infrastructure over a network, the use of the
SACI [11,2] middleware is suggested. Jason has been designed to address the de-
sirable properties of rational agents identified in [16]: autonomy, proactiveness,
reactiveness and social ability. In the rest of the paper we assume that the reader
is familiar with Jason [9].

A significant new trend in processor architecture has been evident for a few
years. No longer is the clock speed of CPUs increasing at an impressive rate,

� This work has been partially supported by the following projects: DESAFIOS10
(TIN2009-14599-C03-00) and PROMETIDOS (P2009/TIC-1465).

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 Á. Fernández Dı́az, C.B. Earle, and L.-Å. Fredlund

rather we have started to see a race to supply more processor elements in main-
stream multi-core CPU architectures coming from Intel and AMD. Initially, the
software industry has been slow in reacting to this fundamental hardware change,
but today, utilising multiple cores is the only way to improve software system
performance. With traditional programming languages (such as Java, C, C++,
etc.) writing bug-free concurrent code is hard, and the complexity grows quickly
with the number of parallel tasks. As a result, alternative languages, with less
error-prone concurrency primitives, are attracting more attention.

Following this trend, the Erlang programming language [3,10] is gaining mo-
mentum. The usage has increased, and among the users are large organisations
like Facebook, Amazon, Yahoo!, T-Mobile, Motorola, and Ericsson. The most
prominent reasons for the increased popularity of Erlang are lightweight con-
currency based on the actor model, the powerful handling of fault tolerance,
the transparent distribution mechanisms, the generic OTP design patterns, and
the fact that the language has functional programming roots leading to a small,
clean code base.

In this paper we report on our experience translating the Jason program-
ming language to Erlang. The similarities between Jason and Erlang – both are
inspired by Prolog, both support asynchronous communication among compu-
tational independent entities (agents/processes) – make the translation rather
straightforward. By implementing Jason in Erlang we offer the possibility to
Erlang programmers of using an agent-oriented programming language like Ja-
son integrated in Erlang. To Jason programmers, the approach gives them the
possibility of executing their code in the Erlang runtime system, which is partic-
ularly appropriate for running robust multiagent systems with a large number
of concurrent and distributed agents.

Moreover, as the syntax of Erlang is inspired by Prolog 1, e.g., having atoms
beginning with a lowercase letter, and single-assignment variables beginning with
an uppercase letter, etc., we hope to reduce the conceptual gap for a Jason
programmer interested in modifying the Jason meta-level (e.g., changing the
selector functions, and implementing actions) by adopting Erlang, compared to
having to use Java. Perhaps even more interesting is the potential for introducing
Erlang programmers to the world of BDI programming through this new Jason
implementation. This is a group of programmers already used to thinking of
programming systems composed of independent communicating agents (or in
the terminology of Erlang, processes), and superficially familiar with the syntax
of Jason. To us it appears that the conceptual gap between programming agents
in Jason, and functions and processes in Erlang, is smaller than for many other
programming languages (Java).

A prototype of the implementation of Jason in Erlang is available at

git : //github.com/avalor/eJason.git

The rest of the paper is organized as follows. Before explaining the translation,
the main characteristics of Erlang are briefly described in Sect. 2. Then, in

1 Not surprisingly, as the first implementation of Erlang was written in NU Prolog [4]

eJason: An Implementation of Jason in Erlang 3

Sect. 3 the translation of the Jason constructs, the Jason reasoning cycle, the
process orchestration of eJason, and the current limitations of the approach are
explained. Some early benchmarks results for the eJason prototype are reported
in Sect. 4. Finally, a summary of our conclusions and items for future work
appear in Sect. 5.

2 Erlang

Erlang [3,10] is a functional concurrent programming language created by Erics-
son in the 1980s. The chief strength of the language is that it provides excellent
support for concurrency, distribution and fault tolerance on top of a dynami-
cally typed and strictly evaluated functional programming language. It enables
programmers to write robust and clean code for modern multiprocessor and dis-
tributed systems. In this section we briefly describe the key aspects of Erlang.

2.1 Functional Erlang

In Erlang basic values are: integers, floats, atoms (starting with a lowercase
letter), bit strings, binaries, and funs (to create anonymous functions), and pro-
cess identifiers (pids). The compound values are lists and tuples. Erlang syntax
includes a record construct which provides syntactic sugar for accessing the ele-
ments of a tuple by name, instead of by position. Functions are first class citizens
in Erlang. For example, consider the declaration of the function factorial that
calculates the factorial of a number.

factorial(0) -> 1;

factorial(N) when N > 0 -> N * factorial(N - 1).

As in Prolog, variable identifiers (N) start with a capital letter, and atoms
(factorial) with a lowercase letter. Like Prolog, Erlang permits only single
assignment to variables.

As virtually all functional programming languages, Erlang supports higher
order functions.

2.2 Concurrent and Distributed Erlang

An Erlang system (see Fig. 1) is a collection of Erlang nodes. An Erlang node (or
Erlang Run-time System) is a collection of processes, with a unique node name.
Communication is asynchronous and point-to-point, with one process sending a
message to a second process identified by its pid. Messages sent to a process are
put in its message queue, also referred to as a mailbox. Informally, a mailbox is
a sequence of values ordered by their arrival time. Mailboxes can in theory store
any number of messages. Although mailboxes are ordered, language constructs
permit retrieving messages from the process mailbox in arbitrary order.

4 Á. Fernández Dı́az, C.B. Earle, and L.-Å. Fredlund

Fig. 1. An Erlang multi-node system

As an alternative to addressing a process using its pid, there is a facility for
associating a symbolic name with a pid. The name, which must be an atom,
is automatically unregistered when the associated process terminates. Message
passing between processes in different nodes is transparent when pids are used,
i.e., there is no syntactical difference between sending a message to a process in
the same node, or to a remote node. However, the node must be specified when
sending messages using registered names, as the pid registry is local to a node.

A unique feature of Erlang that greatly facilitates building fault-tolerant sys-
tems is that processes can be “linked together” in order to detect and recover
from abnormal process termination. If a process P1 is linked to another process
P2, and P2 terminates with a fault, process P1 is automatically informed of the
failure of P2. It is possible to create links to processes at remote nodes.

As an integral part of Erlang, the OTP library provides a number of very
frequently used design patterns (behaviours in Erlang terminology) for imple-
menting robust distributed and concurrent systems. The most important OTP
design patterns are generic servers that implement client/server architectures,
and supervisors, to build robust systems. Other OTP design patterns implement,
for instance, a publish-subscribe mechanism, and a finite state machine.

3 Implementing Jason in Erlang

This section describes the implementation of a subset of Jason in Erlang.

3.1 A Simple Running Example in Jason

To illustrate the implementation of Jason in Erlang, we use the example in Fig. 2,
which illustrates the main syntactical elements of the Jason language.

eJason: An Implementation of Jason in Erlang 5

init_count(0). (a)

max_count(2000). (b)

next(X,Y) :- Y = X + 1. (c)

!startcount. (d)

+!startcount : init_count(X) <- +actual_count(X); (e)

!count.

+!count: actual_count(X) & max_count(Y) & X < Y <- (f)

?next(X, NewCount);

-+actual_count(NewCount);

!count.

+!count: actual_count(X) & max_count(Y)& X >= Y <- (g)

.print("Terminated count").

Fig. 2. A simple Jason agent

This somewhat artificially programmed agent is a counter, which prints a
message when finished. The initial beliefs of the agent are (a), representing that
the agent believes the initial value to be zero, and (b), representing that the agent
believes that it has to count up to 2000. There is one rule (c), expressing the
successor relation for numbers. The agent’s initial goal (d) is to start counting.
There are three plans (e), (f) and (g). Plan (e) initializes the actual counter by
adding a new belief to the agent’s belief base and introduces a new achievement
goal !count. That goal can be achieved by plans (f) and (g), whose context’s
are disjoint and, thus, can never be considered as applicable plans at the same
time. When plan (g) is executed, which occurs when the agent has counted up
to its limit, it prints a message and the agent remains waiting as there are no
more events. We kindly direct the reader to [9] for a complete definition of the
Jason programming language and its interpreter, as a detailed description of the
different features of Jason lies beyond the scope of this paper.

3.2 An Overview of the Implementation

Jason is both a programming language which is an extension of AgentSpeak, and
an interpreter of this programing language in Java. The constructs of the Jason
programming language can be separated into three main categories: beliefs, goals
and plans. The Jason interpreter runs an agent program by means of a reasoning
cycle that provides the operational semantics of the agent. This semantics has
been formalised and can be found in [9].

6 Á. Fernández Dı́az, C.B. Earle, and L.-Å. Fredlund

The translation of beliefs and goals to Erlang is rather straightforward since
they represent the knowledge of an agent, rather than its behaviour (with the
exception of rules). Common Erlang data types and functions are used to trans-
late these Jason constructs to Erlang. Initially we used the third party software
ERESYE [15] (ERlang Expert SYstem Engine) to implement the belief base of
each agent. ERESYE is a library to write expert systems and rule processing
engines using the Erlang programming language. It allows to create multiple
engines, each one with its own facts and rules to be processed. We decided to
use this software as the term storage service due to its capabilities to store Er-
lang terms and to also retrieve them using pattern matching. Nevertheless, due
to the way in which we used this software, the resulting Jason implementation
was rather inefficient. Therefore we decided to implement our own belief base.
This later implementation represents the belief base of each agent as a list of
ground terms. The translation of beliefs, goals and rules to Erlang is explained
in Sect. 3.3

The implementation of plans is more convoluted due to their dynamic nature.
Every plan is composed by one or more formulas that must be evaluated sequen-
tially. However, the formulas in a plan may not all be executable in the same
reasoning cycle. The representation of plans in Erlang, and their execution by a
tail-recursive Erlang function, is explained in Sect. 3.4.

A higher-level view of the different Erlang processes implementing the Jason
reasoning cycle [9] and the communication between them is described in Sect. 3.5,
while Sect. 3.6 provides the details. Basically, the reasoning cycle of each agent
is handled by a different Erlang process.

Finally Sect. 3.7 enumerates the limitations of eJason, with respect to imple-
menting the full Jason language, at the time of writing this paper.

3.3 Translation of Jason Beliefs and Goals into Erlang

Here we describe how the different constructs for representing and inferring
knowledge of Jason are implemented.

Variables. To represent the bound and unbound variables of a plan we use a
variable valuation that is updated as variables become bound to values. Con-
cretely, a valuation for a plan is represented by an Erlang tuple where values are
associated with distinct variables ordered according to the order in which these
variables first occur in the plan. For instance, a possible valuation for the second
plan (f) in Fig. 2 would be {0, 2000, ’_’}, thus binding X to 0, Y to 2000 and
leaving NewCount unbound.

Beliefs. Every agent possesses its own belief base, i.e., each agent can only ac-
cess and update its own belief base. In a first version of eJason, we used ERESYE
in the following manner. Each agent ran its own ERESYE engine, which spawned
three Erlang processes for each belief base. Early experiments showed that this
implementation was rather inefficient. For instance, the eJason implementa-
tion of the counter example could only handle around four thousand agents.

eJason: An Implementation of Jason in Erlang 7

An alternative is to use a single ERESYE engine for all agents, and provide some
means to isolate the beliefs of each agent from everyone else’s. We discarded this
approach because the autonomy of agents would have been compromised. For
instance, a failure in the ERESYE engine would cause a failure in the belief
base of all agents. Therefore, we decided to implement our own belief base in
a separate module, named beliefbase, which provides the functionality to access
and update a belief base without having to create a separate Erlang process. As
explained earlier, this belief base is represented as a list of Erlang terms, where
each term in the list corresponds to a different belief.

A belief, i.e., either an atom or a ground formula, is represented in eJason as
an Erlang tuple. An atom belief is represented in Erlang as the tuple containing
the atom belief itself, e.g., {atom belief }. A ground formula belief is represented
by an Erlang tuple with three elements. The first element is the name of the
predicate, the second is a tuple which enumerates the arguments of the predicate,
and the third is a list containing a set of annotations. Each annotation can either
be an atom or a predicate and is represented in the same manner as a belief. As
an example, the belief base of the running example (with an added annotation):

init_count(0).

max_count(2000)[source(self)].

is translated to the following Erlang term:

{ init_count, {0}, [] }.

{ max_count, {2000}, [{source,{self},[]}] }.

Rules. Each rule in Jason is represented as an Erlang function. This function,
when provided with the proper number of input parameters, accesses the belief
base, if necessary, and returns a function that can be used to compute, one at a
time, all the terms that both satisfy the rule and match the input pattern.

Goals. Goals are represented in the same way as beliefs. Nevertheless, they are
never stored in isolation, but as part of the body of an event, as specified below.

Events. As we have not yet implemented perception of the agent environment,
events always correspond to the explicit addition or deletion of beliefs, or the
inclusion of achievement and test goals. An event is composed of an event body,
an event type, and a related intention. The event body is a tuple that contains
two elements. The first element is one of the atoms {added belief, removed belief,
added achievement goal, added test goal}. The second element is a tuple that
represents the goal or belief whose addition or deletion generated the event. The
event type is either the atom internal or the atom external, with the obvious
meaning. The related intention is either a tuple, as described below, or the atom
undefined to state that the event has no related intention. The only internal
events that possess a related intention are the events corresponding to the ad-
dition of goals, as their intended means will be put on top of that intention.
The intended means for the rest of events will often generate new intentions.

8 Á. Fernández Dı́az, C.B. Earle, and L.-Å. Fredlund

When a relevant plan for the event is selected, the list of Erlang functions that
execute the formulas in its body is added either on top of a related intention
or as a brand new intention (e.g. in the case of external events). For instance,
consider the following formulas in the body of a plan belonging to some intention
Intention:

+actual_count(NewCount);

?next(X, NewCount);

The events generated after their respective execution would be:

{event, internal, {added_belief,

{actual_count,{NewCount}, []} }, undefined }

{event, internal, {added_test_goal,

{next, {X, NewCount}, []} }, Intention}

For the sake of clarity, the variable Intention appears as placeholder for the real
representation of the corresponding related intention.

3.4 Implementing Jason Plans in Erlang

Body of a Plan. Every Jason plan is composed by one or more formulas that
must be evaluated in a sequence. However, these formulas are not all necessarily
evaluated during the same reasoning cycle of the agent, e.g., due to the presence
of a subgoal that must be resolved by another plan. To be able to execute the
formulas separately, each formula is implemented by a different Erlang function.
Then, the representation of the body of a Jason plan is a list of Erlang functions.
Each of these functions implements the behaviour of a different formula from the
Jason plan. The order of these functions in the list is the same order of the body
formulas they represent. The implementation and processing of the formulas
in a plan body is the most intricate task in the implementation of Jason in
Erlang.

Plans. A Jason plan is represented by a record having three components: a
trigger, a context and body. The trigger element is a function which, applied to
the body of an event, returns either the atom false if the plan does not belong
to the set of relevant plans for the event or the tuple {true,InitialValuation},
where InitialValuation provides the bindings for the variables in the trigger.
The context is a function which, when applied to the initial valuation obtained
from the trigger, returns a function used to compute, one by one, the possible
valuations for the variables in the trigger and context that satisfy the context.
Finally, the body element is the list of Erlang functions that implement the body
of the plan, as described before.

As an example, consider the plan for agent counter:

+!startcount : init_count(X) <- +actual_count(X);

!count.

eJason: An Implementation of Jason in Erlang 9

The plan record generated for the plan above is

{plan, fun start_count_trigger/1,

fun start_count_context/1,

[Fun1, Fun2]}

where the start_count_trigger/1 and start_count_context/1 functions im-
plement the trigger and the context respectively. The list at [Fun1,Fun2] rep-
resents the plan body, where Fun1 implements the formula +actual_count(X)

and Fun2 implements the formula !count.

Intentions. The stack of partially instantiated plans that compose each of the
Jason intentions is represented as a list of Erlang records. Each of these records
is composed of four elements. The first element is the event that triggered the
plan. This element is kept as a meta-level information that can be accessed
by the intention selection function. For instance, we could give priority to the
execution of intentions whose partially instantiated plan on top of the stack
resolves a test goal. The second element is the plan record chosen by the option
selection function and, again, is intended to serve as a meta-level information
accessible by the intention selection function. The third element is a tuple that
represents the intended means of the intention plan, i.e. the bindings for the
variables in the partially instantiated plan. The fourth element is a list of Erlang
functions, representing the formulas of the partially instantiated plan that have
not been executed yet. If an intention is selected for execution, the record for
the partially instantiated plan on top of it (i.e. the first element of the list that
represents the intention) is obtained. Then, the function at the head of the
list of Erlang functions in the fourth element of this record is applied to the
current variable valuation. Finally, this last function is removed from the list.
This process amounts to processing the formula on top of the intention stack as
is required by the specification in [9].

Selection Functions. The event, plan and intention selection functions for a
MAS can be customised by providing new implementations (in Erlang) of the
functions selectEvent, selectPlan and selectIntention.

3.5 Process Orchestration and Communication

The multiagent system generated by the translation from Jason to Erlang maps
each agent to an Erlang process, all executing on the same Erlang node. Each
Erlang agent process can be accessed using either its process identifier, or the
name of the Jason agent. The name of the agent is associated with the Erlang
process using the Erlang process registry. In the case where multiple agents are
created with the same name, an integer (corresponding to the creation order) is
appended to the registered name to keep such names unique. An item for future
work is to extend Jason with new mechanisms to create multiple agents from
the same agent definition, and to associate symbolic names with such agents, as
the present mechanisms are somewhat unwieldy.

10 Á. Fernández Dı́az, C.B. Earle, and L.-Å. Fredlund

The communication between agents is implemented using Erlang message
passing. As an example, consider a system where the agent alice sends different
messages to agent bob by executing the internal action formulas:

.send(bob, tell, counter(3)}

.send(bob, untell, price(coffee,300))

.send(bob, achieve, move_to(green_cell))

The actions are mapped to the following Erlang expressions:

bob ! {communication,alice,{tell,{counter,{3},[]}}}.

bob ! {communication,alice,{untell,{price,{coffee,300},[]}}}.

bob ! {communication,alice,{achieve,{move_to,{green_cell},[]}}}).

The Erlang expression Receiver ! Message deposits Message into the mailbox
of agent Receiver. The atom communication is used to declare the message type.
It is included in the implementation to enable processes to exchange other types
of messages, possibly not related to agent communication, in a future extension
of eJason.

Agent bob can process the different messages sent by alice by checking its
mailbox, which is performed automatically in every iteration of the reasoning
cycle. The Erlang expression that retrieves the message from the process mailbox:

receive

{communication,Sender,{Ilf,Message}} ->

case Ilf of

tell -> ... %% Process tell message

untell -> ... %% Process untell message

achieve -> ... %% Process achieve message

end.

These examples show how easily the agent communication between Jason agents
can be implemented in Erlang. The simple yet efficient process communication
mechanism of Erlang is one of the principal motivations to implement Jason
agents using the Erlang programming language.

In the example above, all the agents are located in the same MAS architecture;
messaging between agents in different architectures would be easy to support
too, and would not require the use of a communication middleware like SACI.
However, such an extension is not yet implemented in eJason.

3.6 Representing the Jason Reasoning Cycle in Erlang

The Jason reasoning cycle [8] must of course be represented in eJason. We im-
plement the reasoning cycle using an Erlang function reasoningCycle with a

eJason: An Implementation of Jason in Erlang 11

single parameter, an Erlang record named agentRationale, which represents the
current state of the agent. The elements of this record are: an atom that spec-
ifies the name of the agent, a list that stores the events that have not yet been
processed, the list of executable intentions for the agent, the list of executable
plans, a list of the terms that compose the agent belief base, and three elements
(selectEvent, selectPlan and selectIntention) bound to Erlang functions
implementing event, plan and intention selection for that particular agent (in
this manner each agent can tailor its selection functions; appropriate defaults
are provided).

Below a sketch of the reasoningCycle function is depicted, providing further
details on how eJason implements the reasoning cycle of Jason agents:

reasoningCycle(OldAgent) ->

Agent = check_mailbox(OldAgent), (1)

#agentRationale

{events = Events,

belief_base = BB,

agentName = AgentName,

plans = Plans,

intentions = Intentions,

selectEvent = SelectEvent,

selectPlan = SelectPlan,

selectIntention = SelectIntention} = Agent,

{Event,NotChosenEvents} = SelectEvent(Events), (2)

IntendedMeans =

case Event of

[] -> []; %% No events to process

_ ->

RelevantPlans = findRelevantPlans(Event,Plans), (3)

ApplicablePlans = unifyContext(BB, RelevantPlans), (4)

SelectPlan(ApplicablePlans) (5)

end,

AllIntentions = % The new list of intentions is computed

processIntendedMeans(Event,Intentions,IntendedMeans),

case SelectIntention(AllIntentions) of (6)

{Intention,NotChosenIntentions} ->

Result = executeIntention(BB,Intention), (7)

NewAgent = (8)

applyChanges

(Agent#agentRationale

{events = NotChosenEvents,

intentions = NotChosenIntentions},

Result),

reasoningCycle(NewAgent); (9)

end.

12 Á. Fernández Dı́az, C.B. Earle, and L.-Å. Fredlund

This record is updated during the execution of each reasoning cycle:

(1) At the beginning of each reasoning cycle, the agent checks its mailbox and
processes its incoming messages, adding new events.

(2) The event selection function included in the agentRationale record is applied
to the list of events also included in the same record. The result of the
function evaluation is an Erlang record of type event. This record represents
the unique event that will be processed during the current reasoning cycle.

(3) The function trigger of every plan is applied to the body of the selected
event. For every distinct valuation returned by a trigger function, a new
plan is added to the list of relevant plans. Each relevant plan is represented
by a plan record along with a valuation for the parameter variables.

(4) Next, the context function of each relevant plan is evaluated. The result of
each function application is either an extended valuation, possibly binding
additional variables, or the failure to compute a valuation that is consis-
tent with both the trigger and the context. For each remaining valuation,
a new plan is added to the set of applicable plans. Each applicable plan is
represented by a set of variable bindings along with a plan record.

(5) The plan selection function is applied to the list of applicable plans. The
result obtained is an applicable plan that represents the new intended means
to be added to the list of intentions.

(6) The intention selection function is applied to the list of executable intentions.
It selects the intention that will be executed in the current reasoning cycle.
Note that, as specified by the Jason formal semantics, this intention may
not necessarily be the intention that contains the intended means for the
event processed at the beginning of the reasoning cycle.

(7) The first remaining formula of the plan that is at the head of the chosen
intention is evaluated. The result of evaluating a function may generate new
internal or external events, e.g. by adding a new belief to the belief base.

(8) The new events generated are added to the list of events stored in the agen-
tRationale record representing the state of affairs of the agent. If the formula
evaluated was the last one appearing in a plan body, the process implement-
ing the plan body terminates. If, moreover, the plan that finished was the
last remaining plan in the corresponding intention, the intention itself is
removed from the list of executable intentions.

(9) Finally a new reasoning cycle is started by repeating steps 1-9 with the new
updated agentRationale record.

3.7 Jason Subset Currently Supported

eJason currently supports only a subset of the Jason constructs needed to im-
plement complex multi-agent systems. However, we foresee no major difficulties
in adding the additional features not currently supported, and expect to do so
in the near future. The features of the Jason language not currently supported
are the following:

eJason: An Implementation of Jason in Erlang 13

1. Belief annotations. Even though our Jason parser accepts code with belief
annotations, these annotations are not taken into account when resolving
plans (e.g., when checking whether a plan context is satisfied).

2. Annotations on plan labels. The meta-level information associated with
plans is removed during the lexical analysis.

3. Plan failure handling. Whenever a plan fails, e.g., because test goal in
the plan body cannot be successfully resolved, the whole intention that the
plan belongs to is dropped. Moreover, no new event is generated as a result
of the plan failure.

4. Environment. The environment of eJason programs is not currently mod-
elled. Therefore, no external actions, except console output, are allowed and
no perception phase is required.

5. Distribution. There is no support for distributed agents.
6. Communication. The only illocutionary forces that are properly processed

are tell, untell and achieve. Messages with any other kind of illocutionary
force are ignored and dropped from the mailbox of the agent.

7. Library of internal actions. The only internal actions considered are
“.print” (to display text on the standard output) and “.send” (to interact
with other agents in the same multiagent system).

8. Unbound plan triggers. The trigger of every plan must be either an atom
or a predicate (whose parameters do not need to be bound) but never a
variable.

9. Decomposition operator. The binary operator “=..”, used to (de)construct
literals (i.e. predicates and terms), is not accepted by the parser.

10. Code order. The grammar accepted by the parser is similar to the sim-
plified one presented in Appendix 1 of [9]. Therefore, the source code to be
translated must state first the initial beliefs and rules, followed by the initial
goals and, finally, the different plans.

11. Multiagent system architecture. There is only one kind of agent infras-
tructure implemented. It runs all the agents in a multiagent system within
the same Erlang node.

4 Experiments

To test the performance of eJason, we use two simple Jason programs. The first
is the counter example of Fig. 2 in Section 3.1. The second represents an agent
that outputs two greeting messages on the console. To add some complexity to
the behaviour, the contents of those messages are obtained from the set of beliefs
of the agent using queries which have both bound and unbound variables. The
examples were run using different numbers of homogeneous agents, i.e., all the
agents behaved the same. All of them were run under Ubuntu Linux version
10.04 in a computer with two 2.53 GHz processors. With these examples, we
want to measure the execution time of the generated MAS and their scalability
with respect to the number of agents in the system.

14 Á. Fernández Dı́az, C.B. Earle, and L.-Å. Fredlund

Table 1. Execution times for the counter multiagent system

Number of Jason eJason
Agents Execute Time (magnitude) Execution Time (milliseconds)

10 milliseconds 2

100 milliseconds 46

1000 seconds 181

10000 minutes 1916

100000 not measurable 18674

500000 not measurable 97086

800000 not measurable 165522

Table 2. Execution times for the greetings multiagent system

Number of Jason eJason
Agents Execute Time (magnitude) Execution Time (milliseconds)

10 milliseconds 1

100 milliseconds 15

1000 seconds 143

10000 minutes 1550

100000 not measurable 154415

300000 not measurable 484371

The preliminary results are presented in Tables 1 and 2.
The results indicate that the multiagent systems generated by eJason scale

to some hundreds of thousands of agents with an average execution time of a
few seconds. Regarding the multiagents systems generated by Java-based Jason,
we can see that they required more time to execute (the exact time quantities
could not be precisely measured) and that it was not possible to increase the
number of agents over a few thousands (in the cases labeled as not measurable
a java.lang.OutOfMemoryError exception was raised).

Clearly these are only preliminary findings as more thorough benchmarking
is needed.

5 Conclusions and Future Work

In this paper we have described a prototype implementation of eJason, an im-
plementation of Jason, an agent-oriented programming language, in the Erlang
concurrent functional programming language. The implementation was rather
straightforward due to the similarities of Jason and Erlang. eJason is able to
generate Erlang code for a significant subset of Jason. Early results are promis-
ing, as the multiagent systems running under the Erlang runtime system can
make use of the Erlang lightweight processes to compose systems of thousands of
agents, where the process generation, scheduling, and communication introduce
a negligible overhead. We also describe and motivate some of the implementation

eJason: An Implementation of Jason in Erlang 15

decisions taken during the design and implementation phases, such as e.g. the
use of the ERESYE tool during an early stage and its later replacement.

Clearly, the similarities between the capabilities of agents and the Erlang pro-
cesses are many, with the exception of the support for programming rational
reasoning in Jason. We believe that the existence of eJason can help attract Er-
lang programmers to the MAS community, by providing them a convenient and
largely familiar platform in which to program rational agents, while being able
to implement the rest (adapting interpreter meta behaviour, and actuators for
the environment) in Erlang itself. Moreover we believe that the MAS community
can benefit from having access to the efficient concurrency and distribution ca-
pabilities of Erlang, while maintaining backward compatibility with legacy code,
and without the need to develop a new agent-based language.

Clearly, as eJason is still a prototype, there are numerous areas for future work
and improvement. The subset of Jason implemented at the moment is quite
small; it is, for example, necessary to add support for belief annotations and
plan labeling. Moreover, we plan to add support in eJason for robust distributed
agent architectures. An essential item for near future work is the implementation
of a means for agents to act on their environment. We intend to make eJason
agents capable to cause changes in their environment using actions programmed
either in Java or Erlang, i.e., there should be no need to rewrite the large body
of existing Java code for Jason environment handling. Besides, we expect to be
able to use the agent inspection mechanisms already implemented in e.g. JEdit.

Another item for future work includes prototyping extensions to Jason; we
believe that eJason is a good platform on which to perform such experiments.
Finally we also intend to experiment with model checking, applied on the result-
ing Erlang code, to verify Jason multiagent systems.

References

1. Foundation for Intelligent Physical Agents, Agent Communication Language,
http://www.fipa.org/specs/fipa00061/SC00061G.html

2. Simple Agent Communication Infrastructure, http://www.lti.pcs.usp.br/saci/

3. Armstrong, J.: Programming Erlang: Software for a concurrent world. The Prag-
matic Bookshelf (2007)

4. Armstrong, J., Virding, R., Williams, M.: Use of Prolog for developing a new
programming language. In: Proc. of the International Conference on Practical Ap-
plication of Prolog (1992)

5. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a Java agent development
framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.)
Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated
Organizations, vol. 15, pp. 125–147. Springer (2005)

6. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley Series in Agent Technology. Wiley (April 2007)

7. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentSpeak using jason.
In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164.
Springer, Heidelberg (2006)

http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.lti.pcs.usp.br/saci/

16 Á. Fernández Dı́az, C.B. Earle, and L.-Å. Fredlund

8. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Journal of Autonomous Agents and Multi-Agent Sys-
tems 12, 2006 (2006)

9. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley Series in Agent Technology. John Wiley & Sons
(2007)

10. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly Media (2009)
11. Hübner, J.F.: Um modelo de reorganização de sistemas multiagentes. PhD thesis,

Universidade de São Paulo, Escola Politécnica, Brazil (2003) (in Portuguese)
12. O’Brien, P.D., Nicol, R.C.: FIPA - Towards a Standard for Software Agents. BT

Technology Journal 16, 51–59 (1998)
13. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.

In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

14. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proceedings
of the first Interntional Conference on Multi-Agent Systems, ICMAS 1995, pp.
312–319 (1995)

15. Di Stefano, A., Gangemi, F., Santoro, C.: ERESYE: artificial intelligence in erlang
programs. In: Sagonas, K.F., Armstrong, J. (eds.) Erlang Workshop, pp. 62–71.
ACM (2005)

16. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

17. Wooldridge, M.: Reasoning about rational agents. MIT Press (2000)

Conceptual Integration of Agents with WSDL
and RESTful Web Services

Lars Braubach and Alexander Pokahr

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{braubach,pokahr}@informatik.uni-hamburg.de

Abstract. Agent communication has been standardized by FIPA in or-
der to ensure interoperability of agent platforms. In practice only few
deployed agent applications exist and agent technology remains a niche
technology that runs its own isolated technology stack. In order to facili-
tate the integration of agents with well-established and used technologies
the connection of agents with web services plays an important role. This
problem has traditionally been tackled by creating translation elements
that accept FIPA or web service requests as input and produce the oppo-
site as output. In this paper we will show how a generic integration of web
services can be achieved for agents that follow our active components ap-
proach. Active components allow encapsulating agent behavior in black
box components that may act as service providers and consumers with
explicit service interfaces. Thus, the integration approach will directly
make use of these services. Concretely, the presented approach aims at
answering two important questions. First, how can specific functionality
of an existing agent system be made available to non-agent systems and
users? Second, how can an agent system seamlessly integrate existing
non agent functionality? The first aspect relates to the task of service
publication while the latter refers to external service invocation. In this
paper a generic conceptual approach for both aspects will be presented
and it will be further shown how a specific integration with both WSDL
and RESTful web services can be achieved. Example applications will be
used to illustrate the approach in more details.

1 Introduction

One prime objective of the FIPA standards is ensuring interoperability between
different agent platforms by defining e.g. the message format and communication
protocols. As these standards have been made over 10 years ago they could not
foresee that in practice agent technology would not be adopted to a high degree
so that interoperability between agent systems is not a key concern nowadays. In
practice, also the need for interoperability between different kinds of technologi-
cal systems was present for a long time and with web services a set of standards
has emerged that is generally accepted and has already proven its usefulness
within many industry projects.

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 17–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 L. Braubach and A. Pokahr

Fig. 1. Motivating scenario

From a developer perspective, standards-based interconnections are impor-
tant for two main reasons (cf. Fig. 1). First, specific functionality that is needed
by the software to be built could be available from another vendor as a ser-
vice. Hence, it would be beneficial if it is possible to seamlessly integrate such
existing functionality in the agent system and hence let it reuse this outbound
knowledge. Second, it should be possible to expose functionality of a newly built
application in a standardized way, such that it can be easily incorporated in
other external applications. Both aspects, accessing external functionality and
exposing functionality to external applications, call for openness, i.e. open and
standardized interfaces for encapsulating the accessed or exposed functionality
in programming language and middleware independent way.

This paper tackles the question, how existing web service standards and mod-
els can be integrated into agent platforms, or more specifically:

– How can (partial) functionality be exposed as web service to external system
users on demand (cf. Figure 1, left)?

– How can existing web services be integrated as functionality inside of the
system in an agent typical way (cf. Figure 1, bottom)?

The rest of this paper is structured as follows. Next, Section 2 gives a background
of the active components programming model. The web service integration con-
cept is described in Section 3. Illustrative examples in Section 4 show how the
concept is put into practice. Related work is discussed in Section 5, before the
paper closes with conclusions and an outlook in Section 7.

2 Active Components Fundamentals

The service component architecture (SCA) is a recent standard, proposed by
several major industry vendors including IBM, Oracle and TIBCO, that aims at

Conceptual Integration of Agents with WSDL and RESTful Web Services 19

Fig. 2. Active component structure

providing a high-level design approach for distributed systems [9]. SCA fosters
clearly structured and hierarchically decomposed systems by leveraging service
orientation with component concepts. In an SCA design a distributed system is
seen as set of interacting service providers and consumers that may reside on
possibly different network nodes. Each component may act as service provider
and consumer at the same time and defines its interfaces in terms of provided
and required services in line with the traditional component definition of [15].
From a conceptual point of view SCA simplifies the construction of distributed
systems but also has inherent limitations that delay widespread adoption.

Two aspects are especially crucial. First, even though a system is seen as set of
interacting components, these components are rather statically connected with so
called wires between required and provided services. The underlying assumption
is that at deployment time all component instances are known and can be directly
bound together. This assumption is not true for many systems with components
or devices appearing or vanishing at runtime. Second, the interactions between
components are supposed to be synchronous. This keeps the programming model
simple but may lead to concurrency problems in case component services are
accessed by multiple service requesters at the same time. Low level mechanisms
like semaphores or monitors have to be employed to protect the component state
from inconsistencies, but these mechanisms incur the danger of deadlocks if used
not properly.

Active components build on SCA and remedy these limitations by introduc-
ing multi-agent concepts [3,12,13]. The general idea consists in using the actor
model as fundamental world model for SCA components [8]. This means that
components are independently behaving actors that do not share state and com-
municate only asynchronously. In this way concurrency management can be em-
bedded into the infrastructure freeing developers from taking care of ensuring
state consistency of components.1 As it is fundamental property of the actor

1 Asynchronous communication helps avoiding technical deadlocks. Of course, at the
application layer circular waits can be created making the components wait on each
other. In contrast, to a technical deadlock, in this case no system resources (threads)
are bound to the waiting entities. Furthermore, the “application deadlocked” com-
ponents remain responsive and can answer other incoming service requests or act
proactively.

20 L. Braubach and A. Pokahr

Fig. 3. Service publication and usage

model that actors come and go over time, active components do not encourage
static binding of components but instead rely on dynamic service discovery and
usage. In Fig. 2 an overview of the synthesis of SCA and agents to active compo-
nents is shown. It can be seen that the outer structure of SCA components is kept
the same and the main difference is the newly introduced internal architecture
of components. The internal architecture of active components is used to encode
the proactive behavior part of a component that can be specified additionally
to provided service implementations. More details about the integration can be
found in [3].

3 Web Service Integration Concept

In this section the overall integration concept as well as more detailed design
choices will be presented. In Fig. 3 the ideas of publication and usage are
sketched. The publication (cf. Fig. 3a) assumes that an agent is present that
wants to make available some part of its functionality as web service for external
users. The publication process thus has to ensure that a proper web service is
generated and made available. In contrast, the usage approach (cf. Fig. 3b) aims
at making accessible an existing web service to other agents from a multi-agent
system. Here, the service functionality has to be wrapped in an agent conform
manner, i.e. here a new agent is created for a service.

3.1 Making Functionality Accessible as Web Service

In order to make functionality of an application available to external system
users, component services can be dynamically published at the runtime of the
system. In general, it has to be determined when, where and how a service should
be published. A common use case consists in performing the service publication
according to the lifecycle state of the underlying component service. For this rea-
son, per default, service publication and shutdown is automatically checked for
when a component service is started or ended. The component inspects the pro-
vided service type descriptions for publish information and indirectly uses this
information to publish/shutdown the service via delegation to the infrastruc-
ture. The publish information is composed of four aspects: publish type, publish
id, mapping and properties. To support arbitrary kinds of service publications
such as REST (Representational State Transfer) [5] and WSDL (Web Services
Description Language) [17] the component uses the publish type from the service

Conceptual Integration of Agents with WSDL and RESTful Web Services 21

Fig. 4. Web Publishing

specification to dynamically look up a suitable service publisher (cf. Figure 4).
This is done by iterating over all available service publishers until one is found
that supports the requested publish type. In case a suitable publisher could be
found it is instructed to publish or retreat the component service. Otherwise the
publication has failed and an exception is raised within the service provider com-
ponent. As an additional task the publisher may also support the advertisement
of the newly deployed service within a service registry that can be accessed from
external users. The service user can use the service information from the registry
to locate the service and issue requests to it. The service itself acts as a proxy,
which forwards the request the actual service provider and waits for a reply.
The service provider executes the service domain logic and returns the service
results to the proxy which in turn delivers it to the external user. It has to be
noted that the incoming web service request is synchronous and therefore blocks
until the internal asynchronous component service processing has been finished.
In the following it will be shortly explained how WSDL and REST publishing
work.

WSDL Publisher. Conceptually, a direct correspondence between methods of
the component service and the operations of the WSDL service is assumed, i.e.
both services are syntactically and semantically equivalent with one minor excep-
tion. The exception is that WSDL services are mostly assumed to be synchronous
whereas component services follow the actor model and are asynchronous. There-
fore, publishing a component service requires the original asynchronous service
interface being rewritten as synchronous version. Based on this interface the
proxy web service component can be automatically generated using dynamic
class creation using bytecode engineering or Java dynamic proxies.

Publishing a WSDL service is supported extensively in Java environments and
also directly within the JDK. Most web containers like Axis2 and JDK internal
lightweight container allow publishing annotated Java pojos (plain old java ob-
jects, i.e. simple objects). The container automatically reads the Java interface
of the pojo and uses the additional annotation information to produce a WSDL
description of the service. Java types are mapped using JAXB2 databinding to
corresponding or newly created XML schema types. In normal cases the mes-
sage signatures of the Java interface are sufficient for creating the WSDL and
2 http://jaxb.java.net/

http://jaxb.java.net/

22 L. Braubach and A. Pokahr

only for edge cases further annotation metadata needs to be stated. For Jadex,
therefore a default WSDL publisher is provided that creates an annotated Java
pojo based on the supplied synchronous service interface and feds this into the
web container to host the new service under the given URL.

REST Publisher. REST service interfaces are potentially very different from
object oriented service interfaces as they follow the resource oriented architec-
ture style [5]. In REST the idea is that services work with resources on web
servers and employ the existing HTTP communication protocol to address these
resources via URIs. In addition, REST proposes special semantics to the differ-
ent kinds of HTTP requests, e.g. a GET request should be used to retrieve a
resource and PUT to create a new one. Taking this into account, a one-to-one
mapping between method signatures of the object oriented service interface and
REST methods is not directly possible or the ideal result.3 Hence, the idea is to
allow a very flexible mapping between both kinds of representations. In general,
three different types of mappings are supported ranging from fully automatic,
over semi automatic with additional mapping information to completely man-
ual descriptions. Mapping information that needs to be generated encompasses
the set of methods that should be published and for each method the following
information:

– URL: i.e. the address that can be used to reach the service method. Typ-
ically, the URL of a service method is composed of two sections. The first
section refers to the service itself and the second section refers to the method.
This scheme treats methods as subresources of the service resource. In case
multiple methods with the same name but different signatures exist it has
to be ensured that different URLs are produced.

– Consumed and produced media types: REST services are intended to be
usable from different clients such as browsers or other applications. These
clients may produce and consume different media types such as plain text,
XML or JSON. The REST service can be made accepting and producing
different media types without changing the service logic by using data con-
verters like JAXB for XML and Jackson4 for JSON. The conversions from
and to the transfer formats are done automatically via the REST container
infrastructure respecting the given media types.

– Parameter types: i.e. the parameter types the rest service expects and the
return value type it produces. In the simplest case these types directly

3 It has to be noted that characteristics like stateless interactions and cacheability,
which are often associated with REST services, do not render REST useless for
implementing multi-agent interactions. First, the web resources in REST are stateful
being subject of creation, manipulation and deletion. Second, cacheability means
that operations should be idempotent, which is achieved when e.g. mapping parts
of an interaction protocol to the HTTP request types GET and HEAD. Given that
for each stateful interaction a new REST resource is created both properties can be
preserved.

4 http://jackson.codehaus.org/

http://jackson.codehaus.org/

Conceptual Integration of Agents with WSDL and RESTful Web Services 23

correspond to the object oriented parameter types of the underlying service
interface but often RESTful APIs intend to use basic string parameters in the
URL encoded format of HTTP. If there is a mismatch between the object
oriented and the RESTful interface, parameter mappers can be employed
that transparently mask the conversion process. It has to be noted that the
transformation of parameter values is n:m, meaning that n input values of the
component service need to be mapped to m parameters of the REST service.
Therefore, it has to be ensured that as well more than less parameters can
be generated from the incoming value set. Parameter type generation is done
in addition to conversions with regard to the consumed and produced media
types.

– HTTP method type: REST defines specific meanings for HTTP method
types like put, get, post, delete that roughly correspond to the CRUD (create,
retrieve, update, delete) pattern. This means that different HTTP method
types should be used depending on the action that should be executed on a
web resource. Mapping these types from a method signature is hardly pos-
sible as the method semantics is not available to the mapper. Nevertheless,
using other HTTP methods than originally intended is not prohibited per
se. Possible negative effects that may arise concern efficiency as some of
the method types are considered being idempotent so that existing HTTP
caching can further be used.

The architecture of the REST publisher is more complex than the WSDL pub-
lisher. It partitions work into two phases. In the first phase the given component
service interface is analyzed with respect to the methods that should be gener-
ated and how these should be represented in REST. For this purpose it is first
checked if the developer provided custom mapping data via an annotated inter-
face or a (possibly abstract) base class or if no mapping information has been
given at all. If no mapping information is available, the publisher will use all
interface methods and guess their REST interpretation. The same will be done
for an annotated interface and all abstract methods if a base class was used. All
given public non-abstract methods of a base class with REST annotations will
be kept so that the user implementations are not be touched. The used heuris-
tics for automatic method generation is very simple and tries to determine the
different REST characteristics (according to the descriptions above) especially
including the REST method type. To determine the REST method type the
parameter and return value types are considered. As a default, the generator
tries to interpret methods as GET and only assumes POST, if GET is not pos-
sible, e.g., due to complex data types, which could not be sent in GET requests.
The generator is thus currently limited to using GET and POST methods and
requires the developer to add specific mapping information if other types shall
be used. Therefore, the generator has been developed as extension point for
the REST publisher so that it can be easily exchanged with an enhanced ver-
sion if necessary. Nonetheless, our experience with REST publication is that for
more complicated services a dedicated mapping should be crafted manually by

24 L. Braubach and A. Pokahr

Fig. 5. Web Service Invocation

developer and the generator is mainly helpful for simple services and for rapid
prototyping REST publications during manual development.

The result is a list of methods with exact descriptions how these methods
should be created in REST. This list is passed on to the second stage in which a
Java class is generated for the REST service via bytecode engineering. The gener-
ator first creates Java method signatures using the method name and parameter
types produced in the first phase. Afterwards, it creates Java annotations for the
REST specific mapping information according to the JAX-RS specification5. The
publisher can directly pass this class to the REST container, which ensures that
the service is made available.

3.2 Integrating Existing Web Services

Integrating web services aims at making usable existing functionalities as com-
ponent services (cf. Fig. 5). In this way access to external functionalities can be
masked and be used in the same way as other middleware services. Challenges
in this integration are mainly limited to the question how an external service
can be adequately mapped to the middleware and how it can be made acces-
sible to service clients. The conceptual approach chosen is based on wrapper
components, which act as internal service providers for the external functional-
ity. A wrapper component offers the external functionality as provided service
with an interface that on the one hand mimics the original service interface and
on the other hand complies to the asynchronous requirements of the middle-
ware, i.e. in the simplest case the internal interface is the asynchronous version
of the external interface. The implementation of the provided service is repre-
sented by a specific forward mechanism that dispatches the call to the external
web service. To resolve the synchronous/asynchronous mismatch a decoupled
invocation component is used. For each service call such an invocation compo-
nent is created, which is solely responsible to perform the synchronous opera-
tion. While the operation is pending the invocation component remains blocked,
but as it has no other duties than performing the call this is not troublesome.

5 http://jax-rs-spec.java.net/

http://jax-rs-spec.java.net/

Conceptual Integration of Agents with WSDL and RESTful Web Services 25

This pattern keeps the wrapper component responsive and lets it accepting con-
current service invocations without having to wait until the previous call has
returned.

WSDL Wrapper. The WSDL wrapper component heavily relies on the exist-
ing JAX-WS technology stack.6 One core element of this stack is a tool called
wsimport that is used to automatically generate Java data and service classes
for a given WSDL URL. The generated code can directly be used to invoke the
web service from Java. Based on this generated code the asynchronous service
interface has to be manually defined relying on the generated data types for
parameters. For this reason no further parameter mappings need to be defined.
The wrapper component itself declares a provided service with this interface and
uses a framework call to dynamically create the service implementation.

REST Wrapper. The REST wrapper is based on JAX-RS technology but cur-
rently does not employ automatic code generation.7 Instead, the asynchronous
component service interface has to be created manually based on the REST
service documentation. The interface definition should abstract away from the
REST resource architecture and give it a normal object oriented view. The map-
ping of the component service towards the REST service is done with a map-
ping file represented as annotated interface. This annotated interface contains
all methods of the original service interface and adds mapping information for
the same types of information that already have been used for publishing, i.e.
for each method the URL for the REST call, the consumed and produced media
types, parameter and result mappings as well as the HTTP method type. The
wrapper component definition is done analogously to the WSDL version with
one difference. Instead of using a generated service implementation, the REST
wrapper uses a dynamic proxy that uses the mapping interface to create suitable
REST invocations.

4 Example Applications

In this section the publish and invocation web service integration concept will
be further explained by using small example applications. The domain used to
show how service publication can be achieved is a simple banking service, which
offers operations for account management. For simplicity reasons it has been
stripped down to one method called getAccountStatement, which is used to fetch
an account statement viable for a specifiable date range. Integration of external
services is shown using a WSDL geolocation service for IP addresses and the
Google REST chart API.
6 http://jax-ws.java.net/
7 Automatic code generation can only be used for REST services that supply a web

application description (WADL file) of themselves that represents the pendant to the
WSDL file of an XML web service. Similar to wsimport, a tool called wadl2java is
available that is able to create Java classes for data types and services of the REST
service. A problem is that WADL has not reached W3C standard status and also is
not in widespread use in practice.

http://jax-ws.java.net/

26 L. Braubach and A. Pokahr

01: public interface IBankingService {
02: public IFuture<AccountStatement> getAccountStatement(Date begin, Date end);
03: }
04:
05: public interface IWSBankingService {
06: public AccountStatement getAccountStatement(Date begin, Date end);
07: }
08:
09: @Agent
10: @ProvidedServices(@ProvidedService(type=IBankingService.class,
11: implementation=@Implementation($component)
12: publish=@Publish(publishtype="ws", publishid="http://localhost:8080/banking",
13: mapping=IWSBankingService.class)
14: public class BankingAgent implements IBankingService {
15: . . .
16: }

Fig. 6. Java code for publishing a WSDL service

4.1 WSDL Publishing

Figure 6 shows how the service publication is specified in the Jadex active com-
ponents framework. The existing component service interface IBankingService
(lines 1-3), which uses asynchronous future return values8 (see line 2) is aug-
mented with a synchronous interface IWSBankingService (lines 5-7) providing
the same methods. In the component definition (lines 9-16) the declaration of the
provided service (lines 10-13) is extended with the publish information (lines 12,
13) specifying the target URL and the newly defined synchronous interface (line
12). In the publish information the publish type is set to WSDL web services
(ws). In this example, the banking service is implemented by the component
itself (line 14), which is stated in the provided service declaration using the
predefined variable $component (similar to this in Java).

4.2 REST Publishing

As introduced earlier, REST publishing is supported in fully automatic, semi
automatic and manual modes. In Figure 7 the fully automatic variant is shown,
which is similar to the WSDL variant but doesn’t require a synchronous interface
to be manually derived. In contrast to the example above, the publish type is set
to REST services (rs, line 8). The fully automatic mode uses internal heuristics
to generate appropriate REST methods, which is difficult in many cases. Hence,
additional mapping information can be supplied in both other modes. For this
purpose an annotated Java interface or (abstract) class can be employed.
8 A future [14] represents the result of an asynchronous computation, i.e. the future

object is immediately returned to the caller will contain the real result value when
it has been computed. The caller can use the future to check if the result already
has been produced or use a listener to get a notification when this happens.

Conceptual Integration of Agents with WSDL and RESTful Web Services 27

01: public interface IBankingService {
02: public IFuture<AccountStatement> getAccountStatement(Date begin, Date end);
03: }
04:
05: @Agent
06: @ProvidedServices(@ProvidedService(type=IBankingService.class,
07: implementation=@Implementation($component)
08: publish=@Publish(publishtype="rs",publishid="http://localhost:8080/banking")))
09: public class BankingAgent implements IBankingService {
10: . . .
11: }

Fig. 7. Java code for publishing a REST service

01: public interface IRSBankingService {
02: @GET
03: @Path(“getAS/”)
04: @Produces(MediaType.TEXT_HTML)
05: @MethodMapper(value=”getAccountStatement”,params={Date.class, Date.class})
06: @ParametersMapper(@Value(clazz=RequestMapper.class))
07: @ResultMapper(@Value(clazz=BeanToHTMLMapper.class))
08: public String getAccountStatement(Request request);
09: }

Fig. 8. REST publish mapping information

In case of an interface the method signatures are enhanced with REST annota-
tions as shown in Figure 8. It can be seen that a method getAccountStatement()
with one parameter of type Request (line 8) is delegated to a component service
method with the same name but other parameter types. The method mapper
annotation is used to specify the target method (line 5) and additional parameter
and result mapper can be added to transform the corresponding values (lines 6
and 7). In this case a request mapper is used to extract two dates from a request
and the result is generated as HTML using a simple bean property mapper. This
example also shows the difference between parameter and media types. The Java
return type in this example is string but the additional produces annotation (line
4) tells the client that it can expect HTML.

If even more flexibility is needed, instead of an interface a class can be used
(not shown). In this class it is possible to add abstract methods and anno-
tate them in the same way as in the interface. Additionally, other non abstract
methods can be implemented with arbitrary domain logic to bring about ser-
vice functionalities. If no generation is wanted, the wrapper class can also be
implemented completely by the programmer.

In Fig. 9 a screenshot of the banking REST web interface is shown. This
web site is produced by a banking agent with a publish annotation as shown
above. This interface is automatically generated by the getServiceInfo() method
and is per default linked to the root resource URL of the service (here local-
host:8080/banking1/). It can be seen that the web site contains a new part for

28 L. Braubach and A. Pokahr

Fig. 9. Banking REST web service screenshot

01: public interface IGeoIPService {
02: public IFuture<GeoIP> getGeoIP(String ip);
03: }
04:
05: @Agent
06: @ProvidedServices(@ProvidedService(type=IGeoIPService.class,
07: implementation=@Implementation($component.createServiceImplementation(
08: new Mapping(GeoIPService.class)))
09: public class GeoIPAgent {
10: . . .
11: }

Fig. 10. Java code for invoking a WSDL service

each service method with basic information about it, i.e. the method signature,
REST call details, the URL and a form with input fields for all parameters.
According to the media types the service method is able to consume a choice
box is added to allow the user specifying in which format the input string shall
be interpreted. This can be seen in the getAccountStatement() method, which
accepts JSON and XML. Currently, the result value of a method call is produced
in the same media type as the request but it is easily possible to add another
control that allows to request the service to produce an alternative format.

4.3 WSDL Invocation

WSDL service invocation is illustrated using a geo IP service, which offers a
method to determine the position of an IP address. After having generated the
Java classes for data types and service using wsimport, based on the generated

Conceptual Integration of Agents with WSDL and RESTful Web Services 29

01: public interface IChartService {
02: public IFuture<byte[]> getBarChart(int width, int height, double[][] data,
03: String[] labels, Color[] colors);
04: }
05:
06: public interface IRSChartService {
07: @GET
08: @Path(“https://chart.googleapis.com/chart/”)
09: @Produces(MediaType.APPLICATION_OCTET_STREAM)
10: @ParametersMapper(@Value(clazz=ChartParameterMapper.class))
11: @ResultMapper(@Value(clazz=ChartResultMapper.class))
12: public IFuture<byte[]> getBarChart(int width, int height, double[][] data,
13: String[] labels, Color[] colors);
14: . . .
15: }
16:
17: @Agent
18: @ProvidedServices(@ProvidedService(type=IChartService.class,
19: implementation=@Implementation($component.createServiceImplementation(
20: IRSChartService.class))
21: public class ChartAgent {
22: . . .
23: }

Fig. 11. Java code for invoking a REST service

service interface an asynchronous version needs to be defined (cf. lines 1-3 in Fig-
ure 10). In the component declaration (lines 5-11) a provided service is specified
using the asynchronous service interface (line 6) and an automatically generated
implementation (lines 7-8). The framework method that is called to create the
implementation takes as argument the wsimport generated service class.

4.4 Rest Invocation

REST invocation is exemplified using the Google chart API, which can be used
to create chart images of different types for a given data set. The implementation
is shown in Figure 11. It consists of the asynchronous service interface (lines 1-
4), the REST service mapping (lines 6-13) and the chart component definition
(lines 17-23). For illustration purposes the component interface is reduced to one
method that can be used to create a bar chart. The method expects the width
and height of the image to produce, possibly multiple data series, label texts
and series colors as input and produces an png image as output. The mapping is
defined within an interface called IRSChartService (lines 6-15). It declares that
the generated REST call uses HTTP GET on the google chart URL. In addition,
parameter mappers for in- and output values need to be employed (lines 10-11,
mapper code not shown) as the REST API expects a specific textual encodings
for the data. The component implementation is very similar to the WSDL variant
with exception of the mapping definition in terms of an interface.

30 L. Braubach and A. Pokahr

Fig. 12. Chart application screenshot

Fig. 12 shows a chart application screenshot. In the background the Jadex con-
trol center window of the platform is displayed while in the foreground the chart
window is shown. The application consists of two agents. The ChartProvider
agent that takes over the wrapper role and offers an IChartService instance and
on the other hand the ChartUser agent which own the graphical user interface
for entering chart requests and displaying the resulting chart graphics. On the
lower left hand side of the control center the running agent instances with re-
quired and provided services are depicted. It can be seen that the ChartProvider
offers an IChartService and the ChartUser requires an IChartService. The pro-
cessing is done as follows. After a user has entered some configuration data in the
chart window including e.g. width and height of the target image, series data,
and colors, and issued a chart request via pressing the draw button, the chart
user agent fetches its required chart service (which is dynamically searched on
request) and calls the getBarChart() method. The service call is received by the
user agent, which automatically transfers it to a REST call and hands it over to
the external REST provider. The result is passed back to the user agent which
displays the corresponding chart in the window for the user.

5 Related Work

In this section, the features of the approach proposed in this paper will be dis-
cussed with respect to the following areas of related work: 1) programming level
frameworks, i.e. APIs and tools that ease the usage of web services from inside a
general purpose programming language like Java, 2) middleware extensions that

Conceptual Integration of Agents with WSDL and RESTful Web Services 31

aim at a conceptual integration between web services and agent middleware and
3) SCA standards and implementations that, although they don’t focus on asyn-
chronous programming, are an important conceptual inspiration of this work.

The approach presented in this paper is unique with respect to the simulta-
neous conceptual treatment of both directions of web service integration: publi-
cation and access. Treating both the same way has advantages e.g. with regard
to developers only having to learn one API for both aspects. Programming level
frameworks such as JAX-WS and Axis29 also follow this direction to the ad-
vantage of the programmer. E.g. in JAX-WS the developer can use the same
techniques to generate Java classes and interfaces from an existing WSDL or
vice versa, regardless if she wants to publish or access a web service. Interest-
ingly, the conceptual integrations of middleware extensions focus usually on only
one aspect. E.g. in the area of agent platforms, [6,11,2] are examples for dealing
with exposing agent services as web services. On the contrary [16,10] discuss web
service invocation from agents. The ProActive middleware [1] provides support
both for web service invocation as well as web service publication. Yet, only the
publication part provides a conceptual integration into the ProActive program-
ming model by allowing to directly expose methods of ProActive objects as web
services. The invocation part on the other hand is merely a set of utility classes
comparable to other programming level frameworks. In [7] a transparent usage
of web services as interoperability enabler for agents is fostered. They present an
extension for JADE, which is based on the idea of having agents with a head and
body, meaning that the cognitive agent part can be complemented with a web
service body. This leads to an infrastructure, in which communication of agents
is conceptually based on FIPA ACL, but can be technically transformed to web
service invocations via SOAP. In addition, the approach also aims at bridging or-
ganizational borders by supporting content semantics via ontologies. Unlike the
aforementioned approaches, the SCA standards treat service publication and
invocation at the same conceptual level. Due to the prevalent synchronous pro-
gramming model, SCA lacks an additional wrapper level for decoupling caller
and callee during service invocation or execution.

Another important aspect of the approach presented here is the unified treat-
ment of WSDL and RESTful web services. Most existing integration work is
devoted to WSDL web services, e.g. [6,11,10,16] in the agent area and also im-
plemented in ProActive. The main reason for this is probably the explicitly typed
nature of the WSDL that lends itself to automatic code generation. REST on
the other hand is much more free in the way a service is defined and used and
thus requires more manual implementation or mapping specification. Publica-
tion of REST services is treated in [2], although they only support a simplistic
mapping of only one operation per service. Similar to the conceptual middle-
ware extensions, most programming level frameworks focus on one type of web
service, with many standards (JAX-WS and JAX-RS) and non-standards based
implementations being available for each type. One exception is Apache CXF10,

9 http://axis.apache.org/axis2/java/core/
10 http://cxf.apache.org/

http://axis.apache.org/axis2/java/core/
http://cxf.apache.org/

32 L. Braubach and A. Pokahr

that incorporates APIs for RESTful as well as WSDL services. Yet, CXF does
not aim at unification for the programmer, but at implementing the different
available standards. The SCA standards only deal with WSDL web services and
define a ws binding for provided and required SCA component services. Some
available SCA implementation like Tuscany11 and Frascati12 additionally offer
proprietary support for RESTful services. Yet, both require JAX-RS annota-
tions in the service implementations that hinder a transparent usage of the same
component functionality as WSDL and REST service.

In summary, the approach presented in this paper picks up earlier work on
web services support for agent platforms, incorporates and extends existing ideas
from SCA and combines a unified treatment of REST and WSDL with a concep-
tual model for an agent-style asynchronous provision and invocation of services.

6 Discussion and Current Limitations

In this paper a solution for the publication and invocation of web services has
been presented. In constrast to other agent approaches it is not based on mes-
sage conversions between an agent language (FIPA) and a web service language
(SOAP or HTTP in case of REST). Instead, due to the more object oriented na-
ture of active components, it becomes possible to directly use Java interfaces as
service specifications, which closes the gap between services and agents to a large
extent and is an improvement of the status-quo with respect to usability from a
developer’s perspective. The conceptual approach resembles the SCA proposal
in this respect closely and extends it for agents. On basis of the service interfaces
different annotations have been conceived making publication and invocation of
web services a simple and rather descriptive task. Despite its advantages, the ap-
proach is not easily transferrable to other purely message based agent platforms
like JADE. Although, the general ideas of publication and invocation could be
kept, the explicit object oriented service representation is missing and an addi-
tional API layer would have to be introduced that is able to convert between
service invocations and the agent’s internal architecture. E.g. for JADE agents,
the publication of a web service could mean that a corresponding agent behavior
is instantiated for each service invocation. The behavior could then be imple-
mented, like other JADE agent behaviors, as a simple Java class that encodes
the agent’s execution logic for reacting to the service invocation.

The approach in this paper also has some limitations that represent interest-
ing topics of possible further work. With respect to service publication currently
only service publishers exist that are able to publish a service on a web container
that resides at the same host as the agent platform. In many business scenarios,
it would be desirable having publishers that can deploy a service on a dedicated
web container as in many cases web access is restricted from outbound comput-
ers to a specific web server instance. Another limitation consists in using only

11 http://tuscany.apache.org/
12 http://wiki.ow2.org/frascati/Wiki.jsp?page=FraSCAti

http://tuscany.apache.org/
http://wiki.ow2.org/frascati/Wiki.jsp?page=FraSCAti

Conceptual Integration of Agents with WSDL and RESTful Web Services 33

synchronous web services as support for asynchronous solutions is steadily in-
creasing. Ultimate goal would be preserving the asynchronous service interfaces
so that no substantial difference between Jadex and web service inferfaces exist
any longer. Recent developements such as Ajax, Comet, Servet-API 3.0 etc. un-
derline that in the web area stronger support for long lasting and asynchronous
interactions gains traction. Concretely, regarding WSDL services, with JAX WS
2.0 it is already possible to automatically generate asynchronous service meth-
ods and also create asynchronous clients. Similarily, with the upcoming JAX RS
2.0 specification the same will be supported for for Java REST services.

7 Conclusions and Outlook

Web services are important for interoperability and extensibility as they allow
integrating external functionality into applications as well as developed func-
tionality being integrated in external applications. This paper focuses on web
services support for agent platforms.

The proposed model provides a conceptual integration for both the publi-
cation of application functionality as web service as well as the invocation of
external web services. To avoid dependencies between the implementation of
application functionality and specific web services technology such as WSDL or
REST, the model incorporates two important abstraction layers. First, the wrap-
per and invocation agents map a synchronous external web service interface to
an asynchronous one and register the mapped service description transparently
inside the middleware, such that external and internal services can be access in
the same way. Second, publish services take care of exposing internal services
as external web services and different publish services for REST and WSDL
technology allow the same internal services to be transparently published using
these different approaches.

The integration concept has been implemented as part of the open source
active components platform Jadex13. Besides the simple examples presented in
this paper, the web services integration is currently being put into practice in a
commercial setting that deals with business intelligence processes and activities
in heterogeneous company networks [4].

References

1. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Deploying, Composing, for the Grid. In: Grid Computing: Software
Environments and Tools. Springer (January 2006)

2. Betz, T., Cabac, L., Wester-Ebbinghaus, M.: Gateway architecture for Web-based
agent services. In: Klügl, F., Ossowski, S. (eds.) MATES 2011. LNCS, vol. 6973,
pp. 165–172. Springer, Heidelberg (2011)

13 http://jadex.sourceforge.net/

http://jadex.sourceforge.net/

34 L. Braubach and A. Pokahr

3. Braubach, L., Pokahr, A.: Addressing challenges of distributed systems using active
components. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica,
C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 141–151. Springer,
Heidelberg (2011)

4. Braubach, L., Pokahr, A.: Developing Distributed Systems with Active Compo-
nents and Jadex. Scalable Computing: Practice and Experience 13(2), 3–24 (2012)

5. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. PhD thesis (2000) AAI9980887

6. Greenwood, D., Buhler, P., Reitbauer, A.: Web service discovery and composition
using the web service integration gateway. In: Proceedings of the IEEE Interna-
tional Conference on e-Technology, e-Commerce, and e-Services (EEE 2005), pp.
789–790. IEEE Computer Society (2005)

7. Karaenke, P., Schuele, M., Micsik, A., Kipp, A.: Inter-organizational interoperabil-
ity through integration of multiagent, web service, and semantic web technologies.
In: Fischer, K., Müller, J.P., Levy, R. (eds.) ATOP 2009 and ATOP 2010. LNBIP,
vol. 98, pp. 55–75. Springer, Heidelberg (2012)

8. Karmani, R., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a compar-
ative analysis. In: Proceedings of the 7th International Conference on Principles
and Practice of Programming in Java, PPPJ 2009, pp. 11–20. ACM, New York
(2009)

9. Marino, J., Rowley, M.: Understanding SCA (Service Component Architecture),
1st edn. Addison-Wesley Professional (2009)

10. Nguyen, X.T., Kowalczyk, R.: WS2JADE: Integrating web service with jade agents.
In: Huang, J., Kowalczyk, R., Maamar, Z., Martin, D., Müller, I., Stoutenburg, S.,
Sycara, K. (eds.) SOCASE 2007. LNCS, vol. 4504, pp. 147–159. Springer, Heidel-
berg (2007)

11. Overeinder, B., Verkaik, P., Brazier, F.: Web service access management for in-
tegration with agent systems. In: Proceedings of the 2008 ACM Symposium on
Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, pp. 1854–1860
(2008)

12. Pokahr, A., Braubach, L.: Active Components: A Software Paradigm for Dis-
tributed Systems. In: Proceedings of the 2011 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT 2011). IEEE Computer Society
(2011)

13. Pokahr, A., Braubach, L., Jander, K.: Unifying agent and component concepts -
jadex active components. In: Dix, J., Witteveen, C. (eds.) MATES 2010. LNCS,
vol. 6251, pp. 100–112. Springer, Heidelberg (2010)

14. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM Queue 3(7),
54–62 (2005)

15. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. ACM Press and Addison-Wesley (2002)

16. Varga, L.Z., Hajnal, Á.: Engineering web service invocations from agent systems.
In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, pp. 626–635. Springer, Heidelberg (2003)

17. World Wide Web Consortium (W3C). Web Services Description Language (WSDL)
(June 2007)

Agent Programming Languages Requirements

for Programming Autonomous Robots

Pouyan Ziafati1,3, Mehdi Dastani3,
John-Jules Meyer3, and Leendert van der Torre1,2

1 SnT, University of Luxembourg
2 CSC, University of Luxembourg

3 Intelligent Systems Group, Utrecht University
{pouyan.ziafati,leon.vandertorre}@uni.lu,

{M.M.Dastani,J.J.C.Meyer}@uu.nl

Abstract. This paper presents four requirements for BDI-based agent
programming languages to facilitate the implementation of autonomous
robot control systems. The first requirement is to support the integration
of these languages with robotic frameworks. The second requirement is
real-time reaction and response to events. The real-time reactivity prob-
lem in the BDI architecture is discussed and a distributed BDI archi-
tecture is proposed to approach this problem. The third requirement is
to extend the BDI architecture with sensory management components
for the management of sensory events and detecting complex events.
The fourth requirement is the representation of complex plans and the
coordination of the parallel execution of plans. These requirements are
derived from an extensive survey of current autonomous robot program-
ming tools and architectures and a study of a home-care application
scenario for the NAO robot.

Keywords: Agent Programming Languages, Cognitive Robotics.

1 Introduction

Recent advances in robotic perception, actuation and software engineering have
enabled robots to perform complex tasks such as baking a cake [3]. However,
to achieve complex goals in an unstructured and dynamic environment, a robot
needs a deliberative behavior to reason about its objectives to select appropri-
ate actions. Various agent programming languages (APLs) such as 2APL [10],
AgentSpeak(L), [1] and Jason [5] (see [4] for a survey) have been developed to im-
plement autonomous systems with deliberative behaviors. Deliberative behavior
in these languages is implemented based on the BDI (Belief-Desire-Intention) ar-
chitecture [29,30] inspired by the BDI model of human practical reasoning [21].
However, the application domains of such languages so far have been mainly
limited to cognitive software agents in simulated toy examples. Current agent
programming languages reveal various shortcomings when applied in robotics
[20,33].

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 35–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

36 P. Ziafati et al.

The recent availability of affordable autonomous robots such as NAO hu-
manoid robot1 and open-source robotic frameworks such as ROS2 facilitates
research on APLs in autonomous robotics. Robotics provides an important and
challenging domain to research on design and development of APLs. Moreover,
APLs might facilitate the development of autonomous robots beyond the sup-
port provided by current robot programming languages. Our research aim is
to provide a systematic support of autonomous robot programming for APLs in
general and for 2APL in particular. We work on a home-care application scenario
for the NAO robot as a test bed.

This paper discusses the problem of developing a robot’s control (i.e. decision-
making) component in APLs to control and coordinate the robot software pro-
cesses. It contributes by presenting four requirements for APLs to support the
implementation of a robot’s control component. The first requirement is related
to the integration of a control component, developed in an APL, in a robot’s
software framework. An APL should support the interaction of the robot’s con-
trol component with its other components. ROS is introduced as today’s de facto
standard robotic framework to be supported by APLs. The second requirement
addresses how APLs can support the development of a control component op-
erating in real-time. Distributed BDI architecture is proposed to approach the
reactivity problem in BDI architecture. The third requirement discusses the sup-
port needed from APLs to manage and process sensory events received by the
robot’s control component. The fourth requirement presents the need for the
representation of complex plans, to synchronize the execution of a robot’s ac-
tions in complex arrangements, and for coordinating the parallel execution of the
robot’s plans including resource management and handling conflicting plans.

Exploring our home-care robot application scenario presented in section 2,
we faced the problems of real-time control, sensory event management, plan
execution control and integration with other robot’s software components as ba-
sic shortcomings of current APLs to support programming autonomous robots.
To provide a systematic analysis of APLs’ requirements for autonomous robot
programming, this paper provides a through survey of various robot program-
ming tools and architectures. Generalizing from the approaches taken by current
robotic programming tools and architectures, the paper presents a set of require-
ments to address the above problems in APLs. The presented requirements are
limited to single robotic applications. Multi-robot scenarios impose other re-
quirements on APLs for coordination, cooperation and communication between
robots which have been left for further research.

The remainder of this paper is organized as follows. Section 2 presents a
running example. Section 3 discusses the integration with robotic frameworks
and introduces ROS. Section 4 is devoted to the discussion of real-time reactivity.
Section 5 presents the need to support the development of sensory management
components to process sensory events. Section 6 discusses the required plan
execution control capabilities. Section 7 Concludes the paper.

1 http://www.aldebaran-robotics.com/en/
2 http://www.ros.org

http://www.aldebaran-robotics.com/en/
http://www.ros.org

APLs Requirements for Programming Autonomous Robots 37

2 Running Example

Araz and Mori are old and have Alzheimer. Moreover, Mori is under medica-
tion. To help them living easier and increase their safety, their children have
bought them a NAO robot personal assistant. NAO helps them by performing
the following tasks:

1. T1: To remind Mori to take drug A every morning at 10 am. To remind
Mori, NAO calls, “Take drug A Mori”. When NAO hears the response back,
“OK, I will take A”, it considers the task as successfully finished.

2. T2: To check if drug A is finished. Drug A’s color is red and is placed in
a white box. NAO should check the box every afternoon to see if there are
enough A in the box. If drug A is finished, NAO asks Mori if he has already
ordered. Otherwise, it orders itself by sending an email to drugstore.

3. T3: To open the door if a visitor rings the bell. NAO checks the visitor
face from the door camera; if it recognizes the face, it opens the door by
pressing the OPEN DOOR BUTTON. Otherwise it informs Araz and Mori
by calling, “A stranger is behind the door”. In this case, the task is finished
when NAO hears the response back, “Ok, I check it”.

4. T4: To frequently check if there is any trash (a black cube) on the table and
throw it to the trash can.

5. T5: To remind Araz and Mori about the places of their personal objects. E.g.
Mori goes in front of the NAO’s camera or introduces himself by saying, “It’s
Mori” and asks NAO, “Remember my key is on the desk”. He can later ask
NAO, “Where is my key?”. NAO should answer, “On the desk”.

6. T6: To bring drinks from the kitchen table on users requests.
7. T7: If Araz or Mori calls, “Help!”, NAO should call for emergency assistance

by pressing a RED BUTTON placed in the the room. Also in T1 and T3,
If NAO communicates with Araz/Mori for 3 times and does not hear the
response back, NAO calls for emergency assistance as it might be sign of a
dangerous situation.

2.1 Analysis of the Example

Implementation of the NAO control component poses various challenges to APLs.
– Integration with Robotic Software: the NAO software composed of many

components such as face-recognition, voice-recognition, object-recognition,
move-base and grasp-controller. The control component should interact with
these components to receive sensory data and to configure and control their
operations.

– Sensory Data Management: the control component receives streams of events
such as recognized faces, phrases and objects, and events of the robot’s and
users’ locations in time. Such sensory data should be managed and processed
to extract relevant information to the control component operations.

– Plan Execution Control: Some NAO’s plans such as going and checking if
there are enough drug A in the box requires complex sequential and par-
allel arrangements of action executions synchronized in time and based on

38 P. Ziafati et al.

conditional and floating contingencies. Moreover, plans such as helping the
user and serving drinks are conflicting and cannot be executed in parallel.
NAO’s resources should be managed, conflicts between plans should be re-
solved based on plan priorities, and the failure, suspension or abortion of a
plan should be properly handled.

– Real-Time Reactivity: in addition to scheduling plans based on their priori-
ties and deadlines, the control component should react to events in real-time.
E.g. It should recognize the user help request and react to it within a second.

3 Integration with Robotic Frameworks

A robot’s software functional layer is composed of a large number of components
to provide different robot’s action and perception capabilities and processing al-
gorithms such as image processing, path planning and motion control. In order
to cope with ever growing scale and scope of robotic software, a wide variety
of robotic frameworks has been developed to facilitate the development, re-use
and maintainability of the functional layer modules [19,16]. Advantages of these
frameworks include: providing standard interfaces for accessing heterogeneous
robotic hardwares; facilitating robotic software development and reuse by com-
ponent based software development technique; providing software development
tools such as programming environments; and providing open-source repositories
of robotic softwares.

A robot’s control component developed in an APL needs to interact with
functional layer modules to receive sensory data and to control and coordinate
their operations. To facilitate the use of APLs for developing robotic control
systems, these languages should support the programming of a control compo-
nent interactions with functional layer modules developed in robotic frameworks.
This requires suitable interfaces to integrate with existing robotic frameworks.
Such interfaces ideally provide built-in support for communication and control
mechanisms of robotic frameworks in general, and in particular ROS which has
become the de facto standard open-source robotic framework.

ROS (Robot Operating System)[34] is a flexible framework for developing a
robotic functional layer. The ROS repository has an ever increasing number of
state-of-the-art software packages for interfacing various robotic hardware, and
for performing different robotic tasks such as SLAM, image processing, etc. Pro-
viding access to such advanced robotic software packages significantly eases the
rapid prototyping and development of complex robotic applications. Using ROS,
functional layer modules (i.e. nodes) can be developed in different languages such
as C++, Python and Java. These modules can be started, killed, and restarted
at runtime and communicate with each other in a peer-to-peer fashion. Sev-
eral different styles of communication between modules are provided, including
synchronous service based (i.e. request/reply) interaction, asynchronous publish-
subscriber based streaming of data, and key-value based storage/retrieval of data
on/from a central server. ROS modules communicate by exchanging messages
based on a simple standard language similar to C language data structures.

APLs Requirements for Programming Autonomous Robots 39

ROS supports robotic simulators such as Stage, Gazebo and MORSE. Moreover
ROS has been integrated with many other robotic frameworks such as Open-
RAVE, Orocos, and Player.

To integrate with ROS, we have developed an environment interface for 2APL
which facilitates the implementation of interacting with ROS components using
ROS communication mechanisms. We have used ROS to create a functional layer
for NAO, providing basic robotic capabilities such as face recognition, voice recog-
nition and a number of high-level actions such as sit-down(), stand-up(), turn-
neck(O) and walk-to(X,Y). Using 2APL and ROS, we have developed a demo ap-
plication in which movements of NAO are controlled by voice. Also NAO can be
commanded to remember the face of a user and whenever a user greets NAO, if
NAO recognizes the user’s face, it greets the user by his/her name.

4 Real-Time Reactivity

Providing a proper balance between deliberation and reaction has been always
a major concern in research on robotic control systems [12,22,32]. On the one
hand, a complex deliberation capability is desired for an autonomous robot to
generate plans to achieve its goals, taking into account its limited resources,
and on the other hand, it requires a time-bounded reactivity to events from its
dynamic environment. Time-bounded reactivity to events can be essential for a
robot’s safety, its functionalities and the safety of its environment. Similar to the
work of Ingrand and Coutance [18], the real-time properties we consider for a
BDI control component are the reaction time (i.e. the maximum delay between
the arrival of an event to the control component and when the control component
takes it into account), and the response time (i.e. the maximum delay between
the event arrival and when the execution of its corresponding plan is finished or
rejected).

The real-time control problem of our concern here is not the real-time low-
level actuation control such as a robot’s end-effector trajectory tracking. Such
real-time behavior is expected from the robot’s functional layer. However, the
real-time operation and responsiveness of the robot’s control layer, controlling
and coordinating the functional layer, is important as well.

Example 1. Consider the case that NAO’s control component should react to
the user’s help request within a second from receiving such a request. It would
be unacceptable if the NAO would respond to a request only after finishing its
current task, or more generally would react with a long delay.

This section discusses how the reactivity problem is addressed in various robotic
architectures and provides an insight about how to approach this issue in the
BDI architecture.

4.1 Sense-Plan-Act

In the BDI deliberation cycle, it is desirable to update beliefs with the new infor-
mation (i.e. percepts) made available during the last cycle, to process events and

40 P. Ziafati et al.

goals to choose the best course of plans to follow, and to execute the plans. If
each deliberation cycle processes all available percepts, events and goals and exe-
cutes all generated plans, the BDI architecture resembles much the sense-plan-act
paradigm which was the base of early examples of robot control architectures
such as Shakey [26]. The sense-plan-act architecture embeds the deliberative
component of a robot at the heart of the robot’s control loop. The problem is
that in dynamic environments, a generated plan might become invalid before the
plan can be fully executed. Moreover, while a robot is deliberating, it is unable
to react to events.

To decrease the reaction time in BDI architecture, one could apply a selection
function to process only a subset of input events in each deliberation cycle.
However, this can lead to the starvation of some events, if other events preferred
by such a selection function occur in some high frequency. One could also execute
only a subset of actions of generated plans in each cycle. However this can
not be an efficient strategy and may lead to the starvation of plans due to
the deliberation cycle computational cost. Moreover, even the time needed for
executing a single blocking external action might be long enough to pose an
unacceptable increase in the deliberation cycle reaction time.

4.2 Behavior-Based

Following the failure of the sense-plan-act paradigm in controlling robots and
pioneered by the Brooks’ subsumption architecture [6], behavior-based robotics
aims to drive a robot’s control behavior without an explicit representation of the
robot’s world model. In this paradigm, rather than having a planning capability
or an explicit goal-oriented behavior, a robot’s behavior is emerged as the sum
result of a set of concurrent and distributed behaviors.

Although behavior-based robotics has shown to be successful in program-
ming complex robots, the control and coordination problem of the concurrent
and possibly competing behaviors in such architectures is still an open challenge.
To tackle this problem, state of the art behavior-based architectures such as iB2C
[28] and DBN [23] provide different action selection mechanisms and modulariza-
tion techniques. This allows creating modules of hierarchies of behaviors imple-
menting a robot’s high-level behaviors. However, these works do not address how
the possible conflicts between the behaviors in lower-levels of the hierarchies of
different high-level behaviors can be efficiently resolved, which in turn decreases
the re-usability of behavior modules when to be executed concurrently. More-
over, the lack of explicit representation of the state in a robot’s program reduces
its readability and makes its debugging difficult. Although much can be learned
from behavior-based robotics, specially for developing a robot’s functional layer,
the application of such approach in building autonomous robots with complex
conflicting goals is in question and hence it is not further discussed in this
paper.

APLs Requirements for Programming Autonomous Robots 41

4.3 Three Layered Architecture

To provide a deliberation capability and at the same time preserving reactivity,
robotic research has come up with different hybrid architectures. Perhaps the
most well known and used hybrid architecture is the classic three layered ar-
chitecture [12,17]. This architecture is composed of 3 components. A functional
component interfacing with hardware and providing low-level perception and ac-
tion capabilities. A deliberative component producing plans to achieve a robot’s
goals and supervising the temporal execution of plans. Finally, an executive (i.e.
sequencer) which resides between the other two and its main functionality is
context-dependent execution of plans generated by the deliberative component.
It refines plans into low-level actions that can be executed to control modules of
the functional component, reacts to events and provides limited monitoring and
plan failure recovery mechanisms.

The design principle behind the three layered architecture is to encapsulate
the time-consuming deliberation processes into a deliberative component and
increase reactiveness by providing a separate executive component with a much
faster reaction time than that of the deliberative component. However, as men-
tioned in [22], the use of different models, syntax and semantics in different
layers leads to some design and implementation issues. Firstly, the redundancy
of maintaining common information in separate worldmodels in deliberative and
executive components causes additional overhead in maintaining the system and
can lead to inconsistencies between the two. Secondly, diagnostics of plan failures
can be difficult as the deliberative component might not have relevant informa-
tion about the failure causes. Thirdly, the plan execution might be less efficient
because the executive does not have a global view of the plan. Due to these and
other reasons, it is desirable to avoid the decomposition of the control layer into
heterogeneous components.

4.4 Distributed Control Architectures

To address the problem of heterogeneous control components in hybrid architec-
tures, state of the art research on robotic control architectures proposes different
approaches to develop a distributed control layer under a unified framework, two
representatives of such are described below.

T-REX. T-REX [32] provides a unified framework for interleaved deliberation
(i.e. planning) and execution (i.e. sensing and action). T-REX control architec-
ture comprises a set of coordinated concurrent control loops named reactors,
and a functional layer encapsulating a robot low-level functionalities. Reactors
maintain their own view of the world and have their own control functionalities
and temporal properties (i.e. lookahead window for deliberation and deliberation
latency), therefore allow for partitioning a control problem in both functional
and temporal horizons. T-REX has a central and explicit notion of time which
allows execution of all reactors to be synchronized by an internal clock, ensur-
ing the current state of the control system to be kept consistent and complete.

42 P. Ziafati et al.

The unit of time in T-REX is a tick, defined in external units on a per applica-
tion basis. A deliberation time for each reactor in T-REX is bounded by its own
deliberation latency, which is defined as a number of ticks. When a deliberation
requires more than one tick, it should be defined as a proper sequence of steps to
allow for interleaving synchronization (i.e. information exchange) in each tick.

ContrACT. The programming model of ContrACT [27] decomposes a robot
control software into a set of controllable modules. Modules are independent
real-time software tasks, which, depending on their types, use different commu-
nication models such as blocking/non-blocking and publish-subscribe/request-
reply to communicate with each other. Some modules are reactive to events they
receive, named asynchronous, and others are executed periodically, named syn-
chronous. There is also a single scheduler module, implementing a scheduling
algorithm to schedule the synchronous modules according to a set of constraints
defined on the module itself (e.g. duration of the execution) and on composition
of modules (e.g. precedence constraints, shared resources mutual exclusion, etc).
To achieve this scheduling, the scheduler module works with operating system
priorities and activation requests sent to modules.

4.5 Real-Time APLs

This section discusses the real-time properties of AgentSpeak(RT) [39] as of the
state of the art research on real-time agent programming languages. However,
the presented arguments are general and similarly applicable to other works
such as PRS [18]. AgentSpeak(RT) extends an agent’s intentions (i.e. generated
plans) with deadlines, specifying the time by which the agent should respond to
events, and with priorities, specifying the relative importance of responding to
particular events. In each deliberation cycle, the agent commits to a priority-
maximal set of intentions which is a maximally feasible set of intentions while
preferring higher priority intentions.

The deliberation cycle of AgentSpeak(RT) consists of the sequential applica-
tion of the following four functions. The evt() function generates a set of events
based on the agent’s percepts P and external goals G received during the last
cycle. For each of these events, the opt() function generates a set of applicable
plans and chooses one of them. The sched() function merges the new gener-
ated plans and existing plans and returns a set of feasible plans in deadline
order. Finally, the exec() function executes the first action of the first plan in
the schedule. Under certain conditions, it can be shown that the execution time
of the AgentSpeak(RT)’s deliberation cycle is bounded by a constant δc. The
upper-bound on the deliberation cycle depends on different factors including the
maximum number of events that can be generated by evt() and the maximum
expected execution time (i.e. tmax) of any action in the agent program.

The upper-bound on the AgentSpeak(RT) reaction time is at least δc as an
event (e.g. an external goal) which arrives just after starting the evaluation of
evt() could be only recognized (i.e. read from the input buffer) after the current
deliberation cycle is passed. This means all events caused from the percepts and

APLs Requirements for Programming Autonomous Robots 43

goals received during the last cycle should be processed, corresponding plans
should be generated, selected and scheduled, and an action is executed before
recognizing the new arrived event. The question is what if an important event
should be serviced in a short time such that having the possible delay of δc for its
recognition is unacceptable? The following presents two initial ideas to approach
the problem of real-time reactivity in APLs.

4.6 Interrupting the Deliberation Cycle

To increase the reactivity, one possible approach is to interrupt the deliberation
cycle from its normal operation on arrival of an event. As described above, the
upper bound on the reaction time is directly related to tmax, the upper-bound
on actions’ execution times. To decrease the reaction time caused by tmax, even
if it was possible to decompose a long running action into a sequence of actions
with smaller execution times, that would cause such long running action to be
executed within a larger number of deliberation cycles rather than executed nor-
mally by one. This in turns reduces the efficiency due to the computational cost
caused by executing extra deliberation cycles that might result the correspond-
ing plan to miss its deadline. Interrupting the deliberation cycle in some cases
can be useful to address this issue. To illustrate this, the following discusses two
such cases that interrupting the deliberation cycle during the execution of an
external action can be beneficial.

In the first case, consider that an external action is executed by another
computational resource than the one used by the deliberation cycle. While the
action is being executed and the deliberation cycle is waiting for the result, the
arrival of a new event interrupts the deliberation cycle, a plan is generated in
response, and it is evaluated whether a priority-maximal set of intentions from
the current set of plans (including the newly generated one) can be scheduled
(not necessary in the deadline order) if the current action is allowed to finish its
execution. If it is determined that a priority-maximal set can be only scheduled
by immediate execution of another plan, the current action (and corresponding
plan) is aborted to allow the execution of the other.

In the second case, consider that an action and the agent deliberation cycle
share the same computational resource. In this case, it depends on the application
whether interrupting the deliberation cycle by arrival of a new event is desirable,
as the action, being currently executed, should be interrupted to handle the in-
terrupt (i.e. to generate plan for the new event and evaluate the schedule). Only
then it can be determined if the interrupt was necessary or not. If the newly ar-
rived event is of the highest priority, needs to be executed immediately and there
is no other plan with the same priority in the current schedule, it can be shown
that the interrupt is always necessary for committing to a priority-maximal set.
However, in the general case, one cannot know in advance whether the interrupt
is necessary before re-scheduling and needs to decide heuristically on application
basis when to enable the interrupt. Nevertheless, systematic and clean support

44 P. Ziafati et al.

of interrupting the deliberation cycle provided with a precise operational seman-
tics can be beneficial in improving the reactiveness of the deliberation cycle and
hence deserves further investigation.

4.7 Distributed BDI Architecture

On the one hand, a central control component based on sense-plan-act paradigm
would most probably fail to satisfy reactivity requirements of a robot. On the
other hand, while the behavior-based robot programming paradigm facilitates
developing robots with robust behaviors and high degrees of reactivity, develop-
ment and debugging of a robot’s program in this paradigm becomes increasingly
more difficult as the complexity of the robot’s tasks increases. At the same time,
hybrid architectures which decompose a robot control system into heterogeneous
control components with different levels of reactivity are not well suited and lead
to various design and development issues. Therefore, state of the art research on
design of robotic control architectures propose unified frameworks for develop-
ment of distributed robot control systems.

To ensure reactivity, the deliberation cycle in BDI architecture interleaves
planning and action execution. However, this comes with the cost of the starva-
tion of events and plans. We discussed how the use of interrupts can be advan-
tageous to partly address this issue, however the benefits of the interrupt are in
limited cases and more importantly, it complicates the operational semantics of
an agent and its programming. Therefore, we believe that one of the most suit-
able approach to the problem of reactivity when implementing a robot control
system in a BDI architecture is to follow the lessons from decades of robotic
research and decompose the control system into a set of distributed BDI-based
control components under a unified framework. In addition to possibly providing
better support to modularity, re-usability and more easier and efficient use of
parallel and distributed computing resources, and hence, better software devel-
opment experience, a distributed BDI-based control architecture in particular
can provide an effective solution, when the nature of a problem allows for its de-
composition into a set of tasks with different priorities and real-time constraints.
For example one control component can be devoted to deliberate and generate
plans for the long-term mission of a robot and the other can be devoted to handle
current goals and events in real-time. Another example is NAO which only needs
to guarantee real-time response when its user asks for help. Here, a BDI-based
control component with the highest priority on robot resources can be devoted
to handle such situation.

In a distributed setting, a set of control components with different levels of
computational complexity (i.e. deliberation capabilities) can be utilized to provide
solutions for different tasks according to their real-time requirements. Some BDI-
based control components can be devoted to implement simple event handling
tasks to guarantee real-time reaction and response to critical events and other
BDI-based control components can be used to implement complex goal-based de-
liberative behaviors with relaxed real-time properties. To facilitate the develop-
ment of real-time BDI-based distributed control systems, suitable methodologies

APLs Requirements for Programming Autonomous Robots 45

and tools are needed to develop real-time BDI-based control components and an-
alyze and guarantee their real-time properties. This requires careful design and
implementation of a version of agent programming language dedicated to the de-
velopment of real-time BDI-based components. An example of such work is the
commercial C-BDI3 agent platform. Also a dedicated architecture is required to
provide necessary mechanisms for communication between and coordination of
distributed BDI-based control components. Such coordination can be performed
by a central system clock such as the approached followed by T-REX or performed
more asynchronously for example by dynamic prioritization of components sim-
ilar to the approach followed by ContrACT or by following ideas such as inhibi-
tion/stimulation from the behavior-based robotics. There have been already some
research recognizing advantages of encapsulating BDI programs into BDI mod-
ules (e.g. see [8,15]), however a concrete framework for a distributed BDI control
architecture is still missing.

5 Processing Sensory Events

The robot’s control component receives streams of sensory events from the func-
tional layer modules, providing information about the robot itself and its envi-
ronment. Control component uses this information to update the robot’s beliefs
and goals and to control the execution of the robot’s plans. The information
provided by functional modules should be processed and maintained to extract
the knowledge relevant to the control component operations.

Example 2. To find a requested drink to serve, NAO moves around and scans
the kitchen table from different positions using its laser scanner. The object-rec
component uses the acquired point cloud data to generate events of identified
objects, and their positions with respect to the NAO head coordination frame.
In each position that NAO makes a pause to scan the table, base-pos and head-
pos components generate events of its body position with respect to the world
and its head position with respect to its body coordination frames respectively.
Receiving these events asynchronously, the control component should filter them
for the position of the specific drink NAO is looking for. To grasp the drink, its
position should be computed with respect to the world coordination frame by
applying transformations of head-to-body and body-to-world relative positions.

Example 3. When NAO hears, “remember my key is on the desk”, it recognizes
the commanding user as the last person who has introduced himself or has been
appeared in front of its camera. From events of recognized faces and phrases,
the control component should maintain the information of the NAO current
commander at a time.

Programming an autonomous robot, the processing and the maintenance of
sensory events include, but are not limited to, the following event-processing
operations.

3 http://www.aosgrp.com/products/c-bdi

http://www.aosgrp.com/products/c-bdi

46 P. Ziafati et al.

– Filtering events based on their contents. E.g. filtering out events of recognized
objects for the object NAO is looking for.

– Pattern detection and transformation: E.g. finding the event pattern in which
events of the recognition of the requested drink, base position and head
position occur at the same time (i.e. finding relative positions of head and
body at the time of the scan of the table in which the requested drink has
been recognized), computing the position of the drink with respect to the
world coordination frame and generating such information as a new event.

– Integrating a domain knowledge. E.g. filtering events of recognized objects
for non-alcoholic drinks, based on an ontology of objects and drinks stored
as a domain knowledge.

– Maintaining an event history: E.g. maintaining the history of the last person
who has introduced himself or has been seen by NAO over time.

The event-processing support provided by current robotic frameworks is limited
to low-level filtering mechanisms such as publish-subscribe messaging patterns4

or processing specific types of sensory events such as position information5. On
the one hand, robotic frameworks do not provide a general tool for processing
sensory events [14]. On the other hand, APLs do not support the processing
of events either. Events in APLs are processed as part of the deliberation cy-
cle, preventing event-processing to be performed in a concurrent, parallel and
event driven manner. Moreover, they process events using event handling rules
which generate plans in response. This brings an extra cost of plan generation
and execution. Furthermore, they do not support the programming and efficient
implementation of the processing of events. This forces a developer to provide
his own choice of tool [7,31] or simply implement event processing operations in
an ad-hoc manner using APLs or conventional programming languages such as
C++ or Java.

APLs should provide a systematic support for the processing of sensory events
to extract relevant information for the robot’s control component operations. To
this end, APLs should support the development of sensory management com-
ponents to allow the parallel and concurrent processing of sensory events. This
includes the programming language support for the high-level representation of
event-processing operations and an efficient implementation of such operations.
Event-processing operations should be defined with precise semantics to address
problems caused by possible asynchronous and delayed arrival of events. More-
over, the implementation of the interactions between the control component and
sensory management components should be supported. This includes the ac-
cess of the control component to the information processed and maintained by
sensory management components both through querying (i.e. active perception)
and receiving events (i.e. passive perception). A possible approach to support
event-processing in APLs is to integrate and extend existing event-processing
languages [9].

4 http://www.ros.org/wiki/Topics
5 http://www.ros.org/wiki/tf

http://www.ros.org/wiki/Topics
http://www.ros.org/wiki/tf

APLs Requirements for Programming Autonomous Robots 47

6 Plan Execution Control

Current APLs provide simple mechanisms for the execution control of a robot’s
generated plans. Such mechanisms are often a combination of sequence, paral-
lel, atomic, random order (AND), ordered choice (XOR), random choice (OR),
conditional choice (IF) and iteration (FOR, WHILE) plan operators. In order
to facilitate the programming of autonomous robots, able to achieve complex
goals in parallel, different mechanisms are necessary to deal with temporal and
functional constraints related to a robot’s tasks and its physics, and for a proper
parallel use of a robot’s resources.

Robotic research has developed many specialized execution languages to
represent and execute plans that are generated manually by robotic software
developers or automatically by planning systems [38,2,24]. Such languages pro-
vide various mechanisms for synchronizing, coordinating and monitoring the
executions of plans. This section discusses different plan execution control mech-
anisms needed by autonomous robots. A check list of such requirements is pre-
sented based on generalizing from the analysis of different plan execution control
functionalities provided by TDL [36], PLEXIL [37], APEX [11], SMACH [2],
RoboGraph [24], SMARTTCL [35], PRS [13] and PRS-lite [25] plan execution
languages and programming tools.

6.1 Representation of Complex Plans

To allow the representation of complex plans, plan operators are needed to syn-
chronize the execution of actions/plans in complex arrangements, beyond the
simple sequential and parallel settings provided by the existing APLs.

Example 4. To check if there are enough drug A in the box, NAO goes and stays
in an specific distance to the box (Location L) and orients its head camera toward
the box (Orientation O). Then it takes a picture to analyze if the box is empty
or not. To achieve this goal efficiently, NAO performs both Move To(L) and
Orient Head(O) actions in parallel. The picture needs to be taken only after both
Move To(L) and Orient Head(O) actions have been successfully performed. Also
it might be necessary to wait for a few seconds after maintaining the specified
location and orientation, to stabilize the camera before taking the picture. If it
is turned out that the box is empty, NAO sends an email to drugstore to order
the drug and then waits for the confirmation. If it receives no response in an
hour, it informs Mori about the situation.

Programming autonomous robots requires APLs to be enriched with advanced
mechanisms to synchronize the execution of actions/plans in order and time.
Current robot programming languages support the following mechanisms.

– Hierarchical task decomposition. A complex plan is decomposed into a set
of other plans (i.e. sub-plans) in sequence and parallel orderings at different
levels of a hierarchy.

– Controllability of the execution of a plan at different levels of its hierarchy.

48 P. Ziafati et al.

– Execution of actions in blocking and non-blocking modes.
– Supporting conditional contingencies, loops, temporal constraints and float-

ing contingencies (i.e. event driven task execution) in the task tree de-
composition. The execution of sub-plans (i.e. when to start, stop, suspend,
resume/restart or abort a plan/action) is controlled and monitored by dif-
ferent conditions related to temporal constraints on the absolute time, con-
straints on execution status of other sub-plans, occurrence of certain events
and constraints on robot’s beliefs. Some conditions should be checked before
starting/resuming a plan/action, some conditions should be checked con-
tinuously during a plan/action execution and some should be checked after
finishing a execution of the plan/action.

– Control on expansion of a sub-plan such as complete expansion before exe-
cution or incremental expansion in runtime.

Considering above requirements, the major lack of support in current APLs
is the representation and the coordination of the parallel execution of sub-
plans/actions and the event-driven controlling and monitoring of the sub-plan/
action executions.

Example 5. When Mori says, “NAO, follow the red ball”, NAO should run ball-
recognition and search-ball actions in parallel. The ball-recognition action starts
the corresponding image processing task to process camera images for a ball.
The search-ball action starts a behavior to look around. When an event of the
recognition of a ball is received, NAO stops these two actions and starts the
follow-ball action.

6.2 Monitoring and Resource Management

To achieve multiple goals and respond to events in parallel, robot’s plans need
to be executed concurrently.

Example 6. When NAO is moving toward the drug box to check if it’s empty
or not, it should be at the same time able to respond to Mori if he asks, ”NAO,
where is my key?”.

The problem in parallel and concurrent execution of robot’s plans is that their
execution can be conflicting due to a robot’s functional and resource constraints.
Hence, the execution of plans should be coordinated based on plan priorities
and deadlines. Moreover, the failure, suspension or abortion of a plan should be
handled in a proper way to guarantee a safe and an efficient execution of its
tasks.

Example 7. Consider the case that NAO has picked up a piece of trash and going
to throw it into the trash can. Suddenly, NAO hears a user asking for help. To be
able to help the user, NAO should go to the Red Button and have empty hands
to press it. This has two conflicts with the plan of throwing the trash into the
trash as to execute that plan, NAO needs to walk to the trash can having trash
in its hand. As helping the user is of the highest priority, NAO should leave the
trash and start walking toward the Red Button immediately.

APLs Requirements for Programming Autonomous Robots 49

Example 8. When NAO is carrying a trach to the trash-can, various situations
can happen. If Mori orders NAO to pause, NAO should maintain a safe position
and waits for his order to resume its plan. If a guest rings the bell, NAO should
put the trash safely on the ground, opens the door and continue its cleaning. If
Mori asks for help, NAO should immediately throw away the trash no matter
how and go to press the Red Button.

Programming autonomous robots requires APLs to support the coordination
of the parallel execution of plans and handling their failures and preemptions.
Current robot programming tools and languages suggest the following as corre-
sponding requirements.

– Representing and determining conflicts between plans (e.g. explicit represen-
tation by denoting the resources they require or by providing shared variables
and locking mechanisms).

– Resolving plan conflicts based on their priorities and deadlines. This includes
dynamic prioritization and preemption.

– Supporting various policies to deal with preempted and failed plans such as
stopping, suspending or aborting a preempted plan.

– Recovering from a plan preemption and performing wind-down activities
after suspension and before resuming a plan.

To address these requirements, current APLs should be extended to model and
resolve plan conflicts. Moreover, current plan failure handling mechanisms should
be extended to support the handling of plan preemptions.

7 Conclusion

The paper addresses four basic problems of programming autonomous robots
in current APLs, namely, real-time reactivity, sensory data management, plan
execution control and integration with robotic software. An application scenario
for NAO robot is presented to facilitate research on applying APLs in robotics.
The application scenario has been designed in a way to be realizable using cur-
rent open-source robotic software components with a minimum effort on the
development of the robot’s low-level sensory data processing and action control
capabilities. At the same time, it provides a challenging application for APLs.
Guided by the NAO application scenario, and through a study of current au-
tonomous robot programming tools and architectures, the paper presents four
general requirements for APLs to support programming autonomous robots.

The first requirement is integration with existing robotic frameworks in gen-
eral, and in particular with ROS as today’s de facto standard robotic framework.
APLs should support the component communication mechanisms of current
robotic frameworks to ease the programming of the robot’s control component
interactions with other robot’s software components. Integration with robotic
frameworks can encourage the use of APLs by robotic community and facili-
tates their use for rapid prototyping and development of autonomous robots.

50 P. Ziafati et al.

The second requirement is supporting the development of sensory manage-
ment components. Such components should enable a unified representation of
heterogeneous events, integrating a domain knowledge, filtering events, detect-
ing complex patterns of events and extracting the information relevant to the con-
trol component operations. The information maintained and processed by sensory
management components should be accessible by the control component both
asynchronously as events and by querying on-demand. APLs should support such
sensorymanagement and processing operations by providing a high-level language
for the representation of these operations and their efficient implementations.

The third requirement is extending the current plan execution control mecha-
nisms of APLs. Plans should support the representation of hierarchies of actions
including concurrent actions. The execution of actions in a plan hierarchy should
be governed by sequential and temporal orderings, and based on conditional and
floating contingencies. Moreover, APLs should support the representation of con-
flicts between the parallel execution of plans and resolving such conflicts based
on plan priorities and deadlines. Furthermore, the failure, suspension or abortion
of a plan should be handled in a proper way to robot operates safe and correct.

The fourth requirement is real-time reactivity to events. The problem of real-
time reactivity in BDI architecture is discussed in details and distributed BDI
architecture is proposed to approach the reactivity problem for a robot’s BDI-
based decision layer. In a distributed setting, some BDI-based components are
developed to provide bounded reaction and response time to critical events and
others are devoted to more deliberative behaviors. To this end, a specific version
of an APL is required to be dedicated for the development of real-time control
components. The semantics and implementation of such a version should guar-
antee safe and bounded-time computations to enable analysis and guaranteeing
required real-time properties of a control component. Also a dedicated architec-
ture and runtime environment is required to support the real-time coordination
and communication of different control components of a robot.

One part of the future work is to address the presented requirements by
developing necessary methodologies and set of software libraries and tools for
APLs in general and for 2APL in particular. We envision a ROS architecture
consisting of a distributed set of control and functional components. Sensory
components of a robot process sensory data to various levels of abstraction. Sen-
sory management components manage and process sensory events received from
sensory components to extract relevant information for the control component
operations. Control components provide different control functionalities (e.g. de-
liberative, reactive, plan failure handling) and share beliefs and goals. A subset
of these components should operate in real-time and guarantee bounded reac-
tion and response time to events. A unified framework guides and facilitates the
development of a distributed set of control components and their coordination.

The other part of the future work is developing and exploring the NAO appli-
cation scenario to further research on applying APLs in robotics. One important
subject to address is the APLs requirements for programming multi-robot ap-
plication scenarios.

APLs Requirements for Programming Autonomous Robots 51

References

1. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS (LNAI),
vol. 1038, pp. 42–55. Springer, Heidelberg (1996)

2. Bohren, J., Cousins, S.: The SMACH high-level executive. Robotics and Automa-
tion Magazine (2010)

3. Bollini, M., et al.: Bakebot: Baking cookies with the pr2. In: The PR2 Workshop:
Results, Challenges and Lessons Learned in Advancing Robots with a Common
Platform, IROS (2011)

4. Bordini, R., Braubach, L., Dastani, M., Fallah, A.E., Gomez-Sanz, J., Leite, J.,
O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages and plat-
forms for multi-agent systems. Informatica 30, 33–44 (2006)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. Wiley Series in Agent Technology (2007)

6. Brooks, R.A.: Intelligence Without Representation. Artificial Intelligence 47,
139–159 (1991)

7. Buford, J., Jakobson, G., Lewis, L.: Extending BDI Multi-Agent Systems with
Situation Management. In: The Ninth International Conference on Information
Fusion, Florence, Italy (2006)

8. Cap, M., Dastani, M., Harbers, M.: Belief/Goal Sharing Modules for BDI Lan-
guages. In: Proceedings of CSSE 2011, pp. 87–94 (2011)

9. Cugola, G., Margara, A.: Processing Flows of Information: From Data Stream to
Complex Event Processing. ACM Computing Surveys Journal (2011)

10. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008) ISSN:1387-2532

11. Freed, M.: Managing Multiple Tasks in Complex, Dynamic Environments. In:
Proceedings of the National Conference on Artificial Intelligence, Madison, WI
(1998)

12. Gat, E.: On Three-Layer Architectures, Artificial Intelligence and Mobile Robots.
MIT Press (1998)

13. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of
the Sixth National Conference on Artificial Intelligence (AAAI 1987), Seattle, WA,
pp. 677–682 (1987)

14. Heintz, F., Kvarnstrom, J., Doherty, P.: Bridging the sense-reasoning gap:
DyKnow-stream-based middleware for knowledge processing. Journal of Advanced
Engineering Informatics 24(1), 14–25 (2010)

15. Hindriks, K.V.: Modules as Policy-Based Intentions: Modular Agent Programming
in GOAL. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M.
(eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 156–171. Springer, Heidelberg
(2008)

16. Inigo-Blasco, P., et al.: Robotics software frameworks for multi-agent
robotic systems development. Robotics and Autonomous Systems (2012),
doi:10.1016/j.robot.2012.02.004

17. Ingrand, F., Lacroix, S., Lemai-Chenevier, S., Py, F.: Decisional Autonomy of
Planetary Rovers. Journal of Field Robotics 24(7), 559–580 (2007)

18. Ingrand, F.F., Coutance, V.: Real-Time Reasoning using Procedural Reasoning.
Technical Report 93-104, LAAS/CNRS, Toulouse, France (1993)

19. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots:
A survey. Autonomous Robots 22(2), 101–132 (2007)

52 P. Ziafati et al.

20. Verbeek, M.: 3APL as programming language for cognitive robots. Master’s thesis,
ICS, Utrecht University (2002)

21. Bratman, M.: Intentions, Plans, and Practical Reason. Harvard University Press
(1987) 24, 113, 144

22. Estlin, T., et al.: Decision-Making in a Robotic Architecture for Autonomy. In:
Proceedings of the International Symposium on AI, Robotics and Automation for
Space, Montreal, Canada (2001)

23. Kertesz, C.: Dynamic behavior network. In: IEEE 10th International Symposium
on Applied Machine Intelligence and Informatics (SAMI), pp. 207–212 (2012)

24. Lopez, J., Perez, D., Zalama, E.: A framework for building mobile single and multi-
robot applications. Robotics and Autonomous Systems 59(3-4), 151–162 (2011)

25. Myers, K.L.: A procedural knowledge approach to task-level control. In: Proceed-
ings of the Third International Conference on AI Planning Systems. AAAI Press
(1996)

26. Nilsson, N.J.: Shakey the robot. Technical Report 323, AI Center, SRI Interna-
tional,333 Ravenswood Ave., Menlo Park, CA 94025 (April 1984)

27. Passama, R., Andreu, D.: ContrACT: a software environment for developing con-
trol architecture. In: 6th National Conference on Control Architectures of Robots,
p. 16 (2011)

28. Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems
using the behavior-based control architecture iB2C. Robot. Auton. Syst. 58(1),
46–67 (2010)

29. Rao, A., Georgeff, M.: Modeling rational agents within a BDI architecture. In:
Proceedings of Second International Conference on Knowledge Representation and
Reasoning (KR 1991), pp. 473–484. Morgan Kaufmann (1991)

30. Rao, A., Georgeff, M.: BDI Agents: From Theory to Practice. In: Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS 1995), pp.
312–319 (June 1995)

31. Ranathunga, S., et al.: Identifying events taking place in second life virtual environ-
ments. Applied Artificial Intelligence: An International Journal 26(1-2), 137–181
(2012)

32. Rajan, K., Py, F., McGann, C., Ryan, J., O’Reilly, T., Maughan, T., Roman, B.:
Onboard Adaptive Control of AUVs using Automated Planning and Execution.
In: Intnl. Symposium on Unmanned Untethered Submersible Technology (UUST),
Durham, NH (August 2009)

33. Ross, R.J.: MARC - Applying Multi-Agent Systems to Service Robot Control, MSc
Thesis, University College Dublin (2003)

34. Quigley, M., et al.: Ros: an open source roboting system. In: ICRA Workshop on
Open Source Software (2009)

35. Steck, A., Schlegel, C.: SmartTCL: An Execution Language for Conditional Re-
active Task Execution in a Three Layer Architecture for Service Robots. In:
Int. Workshop on DYnamic languages for RObotic and Sensors systems (DY-
ROS/SIMPAR), Germany, pp. 274–277 (2010)

36. Simmons, R., Apfelbaum, D.: A Task Description Language for Robot Control. In:
IROS (1998)

37. Verma, V., Jonsson, A., Pasareanu, C., Simmons, R., Tso, K.: Plan Execution
Interchange Language (PLEXIL) for Executable Plans and Command Sequences.
In: Proceedings of the International Symposium on Artificial Intelligence, Robotics
and Automation in Space (i-SAIRAS) (2005)

APLs Requirements for Programming Autonomous Robots 53

38. Verma, V., Jonsson, A., Simmons, R., Estlin, T., Levinson, R.: Survey of command
execution systems for NASA spacecraft and robots. In: Plan Execution: A Reality
Check Workshop at the International Conference on Automated Planning and
Scheduling (ICAPS) (2005)

39. Vikhorev, K., Alechina, N., Logan, B.: Agent programming with priorities and
deadlines. In: Proceedings of the Tenth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, pp. 397–404 (May
2011)

An Agent-Based Cognitive Robot Architecture

Changyun Wei and Koen V. Hindriks

Interactive Intelligence, Delft University of Technology, The Netherlands
{C.Wei,K.V.Hindriks}@tudelft.nl

Abstract. We propose a new cognitive robot control architecture in
which the cognitive layer can be programmed by means of the agent pro-
gramming language Goal. The architecture exploits the support that
agent-oriented programming offers for creating cognitive robotic agents,
including symbolic knowledge representation, deliberation via modular,
high-level action selection, and support for multiple, declarative goals.
The benefits of the architecture are that it provides a flexible approach
to develop cognitive robots and support for a clean and clear separation
of concerns about symbolic reasoning and sub-symbolic processing. We
discuss the design of our architecture and discuss the issue of translating
sub-symbolic information and behavior control into symbolic represen-
tations needed at the cognitive layer. An interactive navigation task is
presented as a proof of concept.

1 Introduction

The main motivation for our work is the need for a flexible, generic, high-level
control framework that facilitates the development of re-taskable robot systems
and provides a feasible alternative to the usual task- and domain-dependent
development of high-level robot control. As cognitive robots are supposed to
handle complex reasoning problems in dynamic environments [1], we believe
that agent-oriented programming offers such an approach as it supports the
programming of cognitive agents. Using agent programs to create the cognitive
layer in a robot control architecture is natural and provides several benefits. It
becomes relatively easy to adapt the control at the cognitive layer itself to various
domains. This approach is flexible and, if functionality of other layers is generic
and can be used in multiple task domains, facilitates reuse. An agent-based
approach, moreover, provides support for autonomous, reactive, and proactive
behaviors and also endows a robot with the required deliberation mechanism to
decide what to do next [2]. Of course, generality may come at a trade-off and
does not imply that a generic architecture will always perform better than a
dedicated robot control architecture [3].

Designing and developing a cognitive robot control architecture poses several
challenges. Robots are embedded systems that operate in physical, dynamic
environments and need to be capable of operating in real-time. A range of per-
ception and motor control activities need to be integrated into the architecture.
This poses a challenge for a cognitive, symbolic architecture as “it can be partic-
ularly difficult to generate meaningful symbols for the symbolic components of

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 54–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Agent-Based Cognitive Robot Architecture 55

cognitive architectures to reason about from (potentially noisy) sensor data or
to perform some low-level tasks such as control of motors” [4]. Ideally, moreover,
such an architecture should provide support for the integration or exchange of
new and different sensors and behaviors when needed. Given the complexity and
the number of components needed in a robot control architecture, one also needs
to consider how all the processing components in the system communicate and
interact with each other [5].

The main focus and contribution of this paper is to provide a simple but
also generic and flexible solution to integrate the knowledge representation and
reasoning capabilities needed for a cognitive robot [6, 7]. As perception and
action need to be tightly coupled for a cognitive robot to be able to operate
effectively [1], we also discuss this relationship. We propose an agent-based cog-
nitive robot control architecture that integrates low-level sub-symbolic control
with high-level symbolic control into the robot control framework. We use the
agent programming language Goal [8, 9] for implementing the cognitive layer,
whereas low-level execution control and processing of sensor data are delegated
to components in other layers in the proposed architecture. Goal, among oth-
ers, supports goal-oriented behavior and the decomposition of complex behav-
ior by means of modules that can focus their attention on relevant sub-goals.
Goal has already been successfully applied to control real-time, dynamic envi-
ronments [10], and here we demonstrate that it also provides a feasible approach
for controlling robots. In our approach, the cognitive layer is cleanly separated
from the other layers by using the Environment Interface Standard (EIS; [11]).
As a proof of concept, we will use a task, in which a robot will navigate in an
office environment in order to deliver a message to one of our colleagues, to show
how the agent-based cognitive control can be realized in physical robots. The
main contribution of our proposed architecture is that it provides:

– a decoupled framework for combining low-level behavioral robot control with
high-level cognitive reasoning,

– a generic interface for mapping sensory information to symbolic representa-
tions needed at the cognitive layer, and

– a flexible mechanism in the cognitive layer for synchronizing percepts and
actions.

The paper is structured as follows. Section 2 briefly discusses some related work.
Section 3 presents and discusses the design of the cognitive robot control architec-
ture. Section 4 presents a proof of concept implementation. Section 5 concludes
the paper and discusses future work.

2 Related Work

Cognitive robots are autonomous and intelligent robot systems that can perform
tasks in real world environments without any external control, and are able to
make decisions and select actions in dynamic environments [12]. It remains a
challenge, however, to integrate the symbolic problem solving techniques such

56 C. Wei and K.V. Hindriks

as knowledge representation, reasoning, and planning developed within artificial
intelligence with sub-symbolic functions such as perception and motor control
on a robot [13]. It has been argued, however, that knowledge representation
is important to enable robots to reason about its environment [1, 6, 7]. Here
we briefly discuss some related work that either explicitly aims at developing
a cognitive robot architecture or uses some kind of symbolic representation for
controlling a robot.

The work that is most similar in spirit to our own is that of [14] and [15].
In [14] the high-level language Golog is used for controlling a robot. Golog sup-
ports writing control programs in a high-level, logical language, and provides an
interpreter that, given a logical axiomatization of a domain, will determine a
plan. [15] proposes teleo-reactive programming for controlling a robot. A teleo-
reactive program consists of multiple, prioritized condition-action rules. How-
ever, neither Golog nor teleo-reactive programming provide a BDI perspective
on programming agents. Moreover, these papers do not discuss the robot control
architecture that allows the symbolic framework to control the robot.

CRAM [2] is a software toolbox designed for controlling the Rosie robot plat-
form developed at the Technische Universität München. It makes use of Prolog
and includes a plan language that provides a construct for concurrent
actions. The CRAM approach also aims at providing a flexible alternative to
pre-programmed robot control programs. [16] proposes to use a common sense
ontology for defining predicates for high-level control of a robot that is integrated
into the CRAM architecture. One difference between the CRAM and our approach
is that the reasoning and planning components are two separate components in
CRAM whereas they are integrated into an agent architecture in our robot control
framework. Moreover, we propose the use of an explicit interface component for
connecting the low-level and high-level control in our architecture that allows
for a clean separation of concerns.

It has been argued that building robot systems for environments in which
robots need to co-exist and cooperate with humans requires taking a cognitive
stance [17] . According to [17], translating the key issues that such robot sys-
tems have to deal with requires a cognitive robot control architecture. Taking
a cognitive stance towards the design and implementation of a robot system
means that such a system needs to be designed to perform a range of cogni-
tive functions. Various cognitive architectures, such as ACT-R [18] and SOAR [19],
have been used to control robots. These architectures were not primarily aimed
at addressing the robot control problem and in this sense are similar to agent
programming languages, the technology that we advocate here for controlling
robots. SOAR has been used to control the hexapod HexCrawler and a wheeled
robot called the SuperDroid [4]. ADAPT (Adaptive Dynamics and Active Percep-
tion for Thought) is a cognitive architecture based on SOAR that is specifically
designed for robotics [20]. The SS-RICS (Symbolic and Sub-symbolic Robotic In-
telligent Control System) architecture for controlling robots is based on ACT-R;
SS-RICS is intended to be a theory of robotic cognition based on human cogni-
tion [21, 3]. This work mainly focuses on integrating a broad range of cognitive

An Agent-Based Cognitive Robot Architecture 57

capabilities into an architecture instead of on more pragmatic issues related to
programming cognitive robotics and reuse. Unlike [22], we are not mainly con-
cerned here with the long-term goal of developing robotic systems that have the
full range of cognitive abilities of humans based on a cognitive architecture such
as SOAR. Our work is oriented towards providing a more pragmatic solution for
the robot control problem as discussed above. Still our work may contribute to
the larger goal that [22] sets as there appear to be quite a few similarities between
BDI-based agents and cognitive architectures such as ACT-R and SOAR).

3 Cognitive Robot Control Architecture

This section introduces our cognitive robot control architecture. We discuss sev-
eral issues including the processing and mapping of sensory data to a symbolic
representation, the translation of high-level decisions into low-level motor control
commands, and the interaction of the various architecture components.

3.1 Overall Design of the Architecture

A high-level overview of our layered architecture is shown in Figure 1. The ar-
chitecture consists of four layers including a symbolic, cognitive layer realized by
means of the agent programming language Goal, a middle layer for controlling
robot behavior (written in C++), and a hardware control layer (using URBI1,
a robotic programming language). The Environment Interface Standard (EIS)
layer provides the technology we have used to manage the interaction between
the symbolic and sub-symbolic layers. We argue here that EIS provides a tool
that can be extended to deal with the issue of translating sub-symbolic sensory
data that consists typically of noisy, incomplete, and quantitative measurements
into symbolic representations that are needed in the symbolic cognitive lay-
ers to support reasoning. Note that the environment layer is not part of the
architecture but refers to the physical environment that the robot operates in.

The main functionality for controlling a robot is placed in the behavioral con-
trol layer. In addition to the functions such as (object) recognition, navigation,
localization, path planning and other common functions, this layer is also respon-
sible for communicating with the higher-level symbolic components, including
the interpretation of symbolic messages that represent actions and making the
robot perform these actions in its physical environment.

The interface layer acts as a bridge between the behavioral and cognitive
control layers. Because these layers use different languages for representing sub-
symbolic and symbolic information, respectively, we need an interface to trans-
late between these representations. The cognitive control layer acts as a task
manager for the robot and provides support for managing the robot’s mental
state which allows the robot to keep track of what is happening while executing
a task.

1 http://www.urbiforge.org/

http://www.urbiforge.org/

58 C. Wei and K.V. Hindriks

Robot Platform

Environment

Urbi Server (Urbiscript)

Robotic Behavioral Control

Environment Interface

Cognitive Control

TCP/IP

TCP/IP

Agent-based Language: GOAL

Functional processing
(Processing sensory data for desired information)

XML Schema Mapping
(Mapping features, objects, faces, etc.)

quantitative value

symbols

Symbolic action commands

Behavior execution
(Monitoring and executing behaviors)

Parsing commands
(Parsing function name and its parameters)

singles for invoking components

Symbolic messages

Information flow

Capturing sensors
(Capturing raw sensory data)

Binary data

Control flow

Robot SDK function execution
(Executing SDK functions and controlling motors)

Singles for invoking SDK functions

Fig. 1. The overall design of the architecture

3.2 System Architecture and Components

A robot control architecture provides an organizational structure for software
components that control a robotic system [23]; such architectures are specialized
because of the unique requirements that embedded systems such as robots im-
pose on software. Here we will discuss the detailed architecture shown in Figure 2
that we propose that matches the layered architecture framework of Figure 1.

Robot Platform. The architecture has been implemented on the humanoid
NAO robot platform from Aldebaran Robotics.2 We have used the URBI middle-
ware [24] that provides the urbiscript language for interfacing with the robot’s
hardware. We have chosen URBI instead of the Robot Operating System (ROS3)
platform because it does not include the orchestration layers present in URBI

that provide support for parallel, tag-based, and event-driven programming of
behavior scripts. When the application is executed, an urbiscript program, which
initializes all API parameters of sensors and motors (e.g., the resolution and
frame rate of camera images), is sent to configure the robot platform.

Behavioral Control. The behavioral control layer is written in C++, con-
necting the robot hardware layer with higher layers via a TCP/IP connection.
This layer is mainly responsible for information processing, knowledge process-
ing, communication with the deliberative reasoning layer and external robots,
and action and behavior executions. All of these components can operate con-
currently. The main functional modules include:

– Sensing, for processing sensory data and receiving messages from other
robots. Sensors that have been included are sonar, camera, microphone, an
inertial sensor, and all sensors monitoring motors. Because the memory space

2 http://www.aldebaran-robotics.com/
3 http://www.ros.org/

http://www.aldebaran-robotics.com/
http://www.ros.org/

An Agent-Based Cognitive Robot Architecture 59

Navigation

Sensing / Sensors Acting / Actuators

Other RobotsEnvironment

Memory

Working Memory

Global Memory

Messages Interpreter

Environment
Configurator

Features Configuration

Objects Configuration

Localization

Odometry

Debug Monitor

Sensor Information GUI

Communication GUI

Manual Control GUI

Camera Calibration GUI

Grid Map GUI

Communication

Action Execution

Events Configuration

Environment
Mode

Perception

Robot Hardware Platform

Environment

Robot Platform

Urbi Server (Urbiscript Execution Cycle)

HardwareEnvironment Local Software

[C++ Robotic Behavior Layer]
Information Processing,
Knowledge Processing,
Action Execution

[Java Environment Interface Layer]
Bridge of Communication,
Environment Management

[GOAL Agent]
Reasoning,
Decision Making,
Action Selection

C++ Application Java Application GOAL Agent

Grid Map

Path Planning

Knowledge Processing

Perception Deliver

Action ReceiverInformation Processor

Wireless Connection

Environment
Management

Action

Environment
Interface

Reasoning

Decision Making

Objects Recognition

Features Matching

Features Extraction

Behaviors

Motions

Action

Perception
Knowledge

Belief Maintaining

Goals

Information Fusion

Fig. 2. Overview of the agent-based cognitive robot architecture

required for camera images is significantly bigger than that for other sensors,
the transmission of images is realized via a separate communication channel.

– Memory, for maintaining the global memory and working memory for the
behavioral layer. In global memory, a map of the environment and proper-
ties of objects or features extracted from sensor data are stored. We have
used a 2D grid map for representing the environment. This map also keeps
track which of the grid cells are occupied and which are available for path
planning. The working memory stores temporary sensor data (e.g., images,
sonar values) that are used for updating the global memory.

– Information Processor, for image processing. This component provides
support for object recognition, feature extraction and matching, as well
as for information fusion. Information fusion is used to generate more re-
liable information from the data received from different sensors. For exam-
ple, the odometry navigation component is only able to provide a rough
estimate of the robot’s position due to joint backlash and foot slippage. To
compensate for this, the robot has also been equipped with the capability
to actively re-localize or correct its position by means of predefined land-
marks. We have used the OpenCV [25] library to implement algorithms and
methods for processing images captured by the camera. Algorithms such as

60 C. Wei and K.V. Hindriks

Harris-SIFT [26], RANSAC [27], and SVM [28] for object recognition and
scene classification have been integrated into this module.

– Environment Configurator, for interpreting and classifying events that
occur in the environment. For example, when the output of the left sonar
exceeds a certain value, this module may send a corresponding event message
that has been pre-configured. This is useful in case such readings have special
meaning in a domain. In such cases, an event message may be used to indicate
what is happening and which objects and features such as human faces and
pictures have been detected. This is a key component in our approach for
mapping sub-symbolic data to symbolic representations.

– Navigation includes support for localization, odometry, path planning and
mapping components, which aid the robot in localizing itself and in plan-
ning an optimal path to a destination in a dynamic, real-time environment.
Several transformations between layers are required for navigation. The cog-
nitive layer uses a 2D Grid-map Coordinate System (GCS) which is also
used by the the path planning component. When following a planned path,
after each walking step, the odometry component is used for keeping track
of the robot’s actual position and for providing the real-time coordinates of
the robot which are used for planning its next walking step. The odometry
sensors, however, provide the robot’s coordinates in a so-called World Co-
ordinate System (WCS) that needs to be mapped to the robot’s position in
the 2D Grid-map Coordinate System (GCS) for path planning. At the low-
est layer that executes the walking steps, moreover, the GCS position has
to be transformed into the Local Coordinate System (LCS) that the robot
platform uses for actual motor movements.

– Communication, which provides outputs from the Environment Configu-
rator to the interface layer and receives action messages from this same layer.
The communication component mainly is a technical component that acts
as a Server/Client infrastructure and uses the TCP/IP protocol for actual
message delivery. The behavior layer in the architecture initiates and starts
up a unique server to which a cognitive layer can connect as a client (thus
facilitating the swapping of control from one robot to another).

– Debugger Monitor provides several GUIs that are useful for debugging
robot programs, enabling developers to visualize sensory data and allow-
ing them to set specific function parameters. This component also includes
a Wizard of Oz interface to conduct human-robot interaction experiments.

– Action Execution, for instructing a robot to perform concrete behaviors
and actions. The actions include motion movements such as walking and
turning around while the behaviors include predefined body gestures such
as sitting down, standing up and raising the arms of a humanoid robot.

Environment Interface. The interface layer between the behavior and cogni-
tive layers has been built using a software package called Environment Interface
Standard (EIS; [11]). The core components in this layer are an Environment
Model component that establishes a connection between the cognitive layer with

An Agent-Based Cognitive Robot Architecture 61

the behavioral control layer, an Environment Management component that ini-
tializes and manages the interface, and an Environment Interface component
that provides the actual bridge between the cognitive and behavioral layer.

The benefit of using EIS for implementing the interface layer is that it already
provides a well-defined and structured language for representing knowledge, the
so-called Environment Interface Language (EIL). Moreover, various agent plat-
forms support EIS which implies that our architecture may be reused to connect
languages other than Goal without much effort to the robot platforms that
are supported by the architecture. We thus obtain immediately a clear, simple
but sufficiently expressive target language for mapping sub-symbolic data main-
tained in the behavioral layer to symbolic percepts used in the cognitive layer.
Because this language is already supported by Goal , this allows us moreover
to focus completely on the problem of mapping sub-symbolic data to the EIL
language. We discuss a generic scheme to do this in Section 3.4 below.

Deliberative Reasoning and Decision Making. Knowledge representation
and reasoning is an essential component for a cognitive robot that allows such
a robot to keep track of what is happening in its environment and to make ra-
tional decisions to change that environment [7, 6]. The cognitive control layer
provides support for reasoning and decision making. In our architecture, we
employ the Goal agent programming language for programming the high-level
cognitive agent that controls the robot. Goal is a language for programming
logic-based, cognitive agents that use symbolic representations for their beliefs
and goals from which they derive their choice of action. Due to space limita-
tions, we do not describe Goal agent programs in any detail here but refer the
interested reader for more information to [8, 9]. In Section 4, we will use a navi-
gation task to illustrate how a Goal agent program can be used for deliberative
reasoning and decision making for controlling a robot.

3.3 Decoupled Architecture Layers

Similar to most layered architectures, we also distinguish reactive and delib-
erative control in our architecture. In our architecture these layers are loosely
coupled and connected through a separate interface layer. We have deliberately
chosen for this setup. Alternatively, these layers could have been more tightly
coupled. Tight coupling has some benefits such as a more robust integration
and a reduced communication overhead which often leads to higher performance
than loosely coupled systems [29]. These benefits are obtained by using a memory
component that is shared and directly accessible by all other components. This
also avoids the need to “duplicate” information at different layers, although one
should note that also in a tightly coupled setup mappings between sub-symbolic
and symbolic data are needed. The disadvantages of a more tightly coupled
approach are an increased complexity of the architecture and a higher interde-
pendence between architecture components. As a consequence, it becomes more
difficult to extend such architectures in order to be able to handle a range of
different tasks [29].

62 C. Wei and K.V. Hindriks

Our choice to opt for decoupled layers is motivated by our objective to design
an architecture that is as flexible as possible. A benefit of decoupling is that it
provides for a clean separation of concerns. Moreover, decoupling of these lay-
ers facilitates the more or less independent programming of high-level, cognitive
agents that control a robot as well as of lower-level behavioral functions. An
agent programmer, for example, does not need to spend time handling object
recognition. Similarly, a behavior programmer who codes in C++ does not have
to consider decision making nor even master the agent programming language
used in the cognitive layer. The main challenge that needs to be faced in a decou-
pled approach is how to translate or transform sub-symbolic data to symbolic
representations, an issue to which we turn next.

3.4 Knowledge Acquisition and Representation

We have designed a generic method for transforming sub-symbolic data to sym-
bolic representations that can be used in the cognitive layer. The main function
of the interface layer is to perform the actual transformation. The interface layer
thus needs to be provided with the functionality to process all sub-symbolic data
that is sent to this layer by the behavioral layer. Of course, the type of data that
needs to be processed and transformed depends on the robot platform that is
used and the sensors available on that platform. In our case, we have listed all
the available sensors and associated functionality for processing raw sensor data
in the first two columns of Table 1. The key issue is how to interpret and map the
sub-symbolic data obtained through sensors to a symbolic representation that
is useful for decision making in the cognitive layer. In essence, what we need
in order to obtain a transformation is a coding scheme. Such a coding scheme
should not only indicate how to map data to a particular representation but also
allow to specify when such a translation should be performed.

The solution that we propose as a generic solution for creating a coding scheme
for transforming data into symbols is to use a standard template. To this end, we
have used XML to create such a standard message template with the following
structure:

<?xml version="1.0"?>
<message_percept>
<descriptor sensor="sensors" function="name">

<para1>parameter</para1>
<para2>parameter</para2>
<para3>parameter</para3>
...

</descriptor>
</message_percept>

Every data item sent from the robotic behavioral layer to the interface layer uses
the above XML template, where sensor indicates which sensor this data item is
produced from, function refers to the name of the function used for processing
the sensor data, and para1, para2, para3) are parameters of functions that may
have various number of parameters.

The XML schema above is used by the interface layer for mapping data items
to symbolic representations in a generic and flexible manner. For each sensor

An Agent-Based Cognitive Robot Architecture 63

and associated functions, an XML schema is stored in a database used by the
interface layer. Table 1 shows how to process the data from several sensors and
map them to corresponding symbolic representations.

Table 1. Knowledge acquisition and representation

Sensors Processing Acquisition and Mapping Representation

Sonar value
sonarLeftVal

thr2 ≤ para1 < thr1 obstacle(left)

. . . ≤ para1 < thr2 collision(left)

sonarRightVal
thr2 ≤ para1 < thr1 obstacle(right)

. . . ≤ para1 < thr2 collision(right)

Inertial value

placeEstimation

para1 = x, para2 = y
in(room)

[x, y] ∈ room
para1 = x, para2 = y

inFrontOf(room)
[x, y] ∈ room.hallway

relativePose para1 = x, para2 = y position(x,y)

walkIsActive
para1 = “true” walking

para1 = “false” static

Camera image

featureRecognition para1 = feature feature(feature)

colorDetection para1 = color color(color)

shapeDetection para1 = shape shape(shape)

absolutePose para1 = x, para2 = y position(x,y)

sceneClassification
para1 = “true” doorOpen

para1 = “false” doorClosed

As the number of the parameters of processing functions are various in order
to convey different messages, we will discuss several conditions with respect to
the various parameters, illustrating how to obtain adequate coding schemes using
the XML schema proposed.

Functions with Binary Parameter. Some functions, such as walkIsActive,
sceneClassification, only have a binary parameter, namely “true” or “false”
value. Suppose the robot needs to figure out if the door in front of it is open or
closed. What the deliberative reasoning needs is the symbolic percept: doorOpen
or doorClosed. In order to obtain this percept, the knowledge processing func-
tion: sceneClassification should analyze the images from the robot’s camera.
SVM can be chosen as a discriminative classifier for scene classification. As a
statistical learning technique, SVM should also handle the uncertainty problem
of sensory data, in which the state of the door (i.e., histogram of images) first
has to be trained to obtain an appropriate threshold for classification. The The
knowledge acquisition and mapping procedure in the interface layer uses the
XML schema to examine the contents:

<descriptor sensor="Camera image" function="sceneClassification">
<para1="true"><interpreter>"doorOpen"</interpreter> </para1
<para1="false"><interpreter>"doorClosed"</interpreter></para1

</descriptor>

64 C. Wei and K.V. Hindriks

If the para1 is “true”, this data item can be interpreted as doorOpen; likewise,
if it is “false”, a doorClosed percept can be generated.

Functions with Threshold Parameter. Some functions, such as
sonarLeftVal, sonarRightVal, have a threshold parameter. Typically, a pa-
rameter will be examined to see if it exceeds a particular threshold or not. But
in many practical situation, one parameter should be compared with two or
more different thresholds so as to match to corresponding categories. Taking the
sonarLeftVal as an example in Table 1, the XML schema in this case can be
expressed as:

<descriptor sensor="Sonar value" function="sonarLeftVal>
<thr1=0.8><interpreter>"obstacle(left)"</interpreter> </thr1
<thr2=0.5><interpreter>"collision(left)"</interpreter></thr2

</descriptor>

If the data item intends to represent obstacle(left), the para1 should satisfy:
0.5 ≤ para1 < 0.8; if it intends to represent collision(left) as we have not
define the third threshold thr3, the para1 only needs to satisfy: para1 < 0.5.
Note that this function can have as many as categories if we continually add
thresholds and define corresponding interpreters.

Functions with Argument Parameter. The functions, such as
relativePose, absolutePose and placeEstimation, have argument param-
eters, which provide position information of 2D coordinates: x and y. For
relativePose and absolutePose, the coordinate data do not need to be
mapped to specific symbolic representation, but we still need to add symbolic
predicate (i.e., position()) in this percept message so that the cognitive layer
can understand what kind of percepts it belongs to.

However, The placeEstimationhandles the topological localization problems
for place estimation. When a robot knows its 2D coordinate in the world map,
the robot can know its topological position (e.g., in room A or in front of room
A). The XML database for this condition can be:

<descriptor sensor="Camera image" function="placeEstimation">
<rect x1=0, y1=100, x2=100, y2=0 ><interpreter>"in(roomA)"</interpreter></rect
<rect x1=0, y1=200, x2=100, y2=100 ><interpreter>"in(roomB)"</interpreter></rect
<rect x1=0, y1=300, x2=100, y2=200 ><interpreter>"in(roomC)"</interpreter></rect
...
<rect x1=100, y1=100, x2=200, y2=0 ><interpreter>"inFrontOf(roomA)"</interpreter></rect
<rect x1=100, y1=200, x2=200, y2=100 ><interpreter>"inFrontOf(roomB)"</interpreter></rect
<rect x1=100, y1=300, x2=200, y2=200 ><interpreter>"inFrontOf(roomC)"</interpreter></rect
...

</descriptor>

The attribute of the rect describes a rectangle region defined by its upper left
and lower right coordinates. If the parameters of the function locate within a
defined region, namely (x1 ≤ x ≤ x2) ∪ (y2 ≤ y ≤ y1). Once the environmental
map is known, the topological places can be defined in detail using this XML
schema.

An Agent-Based Cognitive Robot Architecture 65

Functions with Identification Parameter. Several functions, such as the
featureRecognition, colorDetection and shapeDetection, are associated
with an identification parameter. The identification is generated from these func-
tions in the robotic behavior layer. For example, as has been discussed the global
memory stores the properties of features in the robotic behavior layer so as to
recognize pictures using Harris-SIFT and RANSAC image processing techniques.
We can use the identification of these pictures to match to the correct represen-
tation. However, some functions’ identification parameter is relatively vague and
not clear enough to represent a complete percept, and we need to combine this
them in the interface layer. The XML schema in our case for this condition
can be:

<descriptor sensor="Camera image" function="colorDetection">
<para1="red"><interpreter>"red"</interpreter> </para1
<para1="green"><interpreter>"green"</interpreter></para1
...

</descriptor>
<descriptor sensor="Camera image" function="shapeDetection">

<para1="circle"><interpreter>"ball"</interpreter> </para1
<para1="rectangle"><interpreter>"box"</interpreter></para1
...

</descriptor>

In the query and matching codes of the interface layer, the interpreter should
be combined to form a complete percept, such as redball, redbox, greenbox
and so forth.

The mechanism for knowledge acquisition and representation in the environ-
ment interface layer can support for a flexible, generic mapping approach. When
a specific percept (e.g., in(roomA)) about the environment needs to be inte-
grated in a task, we can just modify the XML database in the interface layer.

3.5 Information and Control Flow

A key issue in robot control architectures is the information and control flow.
Each component in such an architecture needs to have access to the relevant
information in order to function effectively. In line with the overall architec-
ture of Figure 1 and layered architectures in general, different types of data
are associated with each of the different layers. The information flow follows a
strict bottom-up processing scheme whereas the control flow employs a strict
top-down scheme. At the lowest level all raw sensory data is captured and then
sent to the behavioral layer. The behavioral layer has a diverse set of functions
to process the sensory data. By using the quantitative results of these functions,
corresponding symbolic representations can be matched based on XML schema
in the interface layer. Finally, the cognitive layer can use these symbolic percepts
for deliberative reasoning.

Actions are selected for execution by the cognitive layer. These actions are
translated by the interface layer into behaviors that can be executed by the be-
havioral layer which in turn are translated into motor control commands in the
lowest layer. Action commands are symbolic messages. For example, the cog-
nitive layer may decide to sent goto(roomA). A message like this needs to be

66 C. Wei and K.V. Hindriks

parsed in the EIS interface layer to extract the parameters of the message. Sub-
sequently, the behavioral layer will call the navigation component to actually
perform the action. Because such behavior components take time to complete,
moreover, it is important to monitor progress. Monitoring may happen at dif-
ferent layers. However, the behavioral layer typically plays a key role here. For
example, due to the unreliability of walking (e.g. foot slippage), the path the
robot follows needs to be continually re-evaluated and re-planned in real-time.
The navigation component monitors and manages this action execution, until
the robot arrives at the correct place of the room.

3.6 Synchronization of Perceptions and Actions

An inevitable problem in physical robot control is the synchronization prob-
lem of percepts and actions. In general, on the one hand, robots in physical
world usually perceive its environment in real-time, and consequently sensors
generate duplicated perceptual information that is useless for reasoning. On the
other hand, decision making is usually faster than action execution on a robot.
Typically, an action command has not been completed before another action
command is sent for execution by the cognitive layer. Therefore, we need some
means to synchronize the layers. As the functionality we need can be realized by
the cognitive layer itself, we discuss some synchronization mechanisms that can
be implemented in the cognitive layer.

The interface layer by itself does not guarantee that only those percepts
needed by the cognitive layer are provided. In fact, this layer will typically pro-
duce a large number of (more or less) the same percepts repeatedly because the
behavioral layer and the cognitive layer run in their own thread. For example,
assuming the camera image frame rate is 30 fps, and the scene classification
algorithm is fast enough, when the robot is standing in front of an open door
and intends to figure out the state of the door. In this case, the cognitive layer
will receive the same percept doorOpen 30 times in 1 second. Because many
actions take typically much longer to execute on a robot, the repetition of this
percept in such a short period of time does not provide much useful information
to the cognitive layer. By sending these percepts nevertheless to the cognitive
layer may still affect the reasoning and decision making in various ways. Apart
from potential processing overhead, however, Goal provides various ways to
deal with repeated percepts. The following code illustrates how a programmer
can handle a stream of percepts in a flexible way:

init module{
knowledge{%can add other items in knowledge base that the robot knows.

doorOpen:- not(doorClosed).
}%can define init belief base, goals, and action specifications.

}
event module{

program{
if bel(percept(doorOpen), doorClosed) then insert(doorOpen).
if bel(percept(doorClosed), doorOpen) then delete(doorOpen).

}%can define the rules of putting percepts in the belief base.
}

An Agent-Based Cognitive Robot Architecture 67

The rules in the event module are also called event or percept rules. These rules
specify how percepts can modify a robot’s belief about its environment. In the
code snippet above, once a percept doorOpen is received, the robot will hold the
belief that this door is open. So, other duplicated doorOpen percepts coming
from the EIS layer will not affect the reasoning and decision making.

Another aspect of the synchronization problem is the actions that are sent
from the cognitive layer to the interface layer. Action executions usually have
duration and take time to be accomplished. For example, if a robot’s is to enters
roomA and then show an arm raising gesture. When the robot holds a belief
that it is in(roomA), it should execute a command gesture(arm-raising).
However, showing an arm raising gesture cannot be accomplished immediately.
An associated problem might be when the gesture has not been finished, another
gesture(arm-raising) command will be generated for executing because the
robot still holds the belief that when it is in roomA, it should perform this
gesture. Furthermore, some actions can be run in parallel, but some actions
cannot. This problem is very common during many action executions. To cope
with it, the cognitive control layer provides a very flexible programming style
for synchronizing actions:

main module{
program{

if bel(in(roomA), static, not(showingGesture))
then insert(showingGesture) + gesture(arm-raising) + say("Hi, Let’s take a coffee break!").
... % other rules for reasoning and decision making.

}

Only does the robot believe that it is in(roomA), static (i.e., not
walking), and not(showingGesture), the cognitive layer can generate the
gesture(arm-raising) command. As the say() action can be performed in
parallel with the gesture() action, such action can be generated so that they
can be performed at the same time. We notice that the showingGesture will be
inserted into the belief base of the robot once the robot begins to show the ges-
ture. As a result, even if the gesture(arm-raising) has not been accomplished,
and the robot is still in(roomA), the cognitive layer will not generate a dupli-
cated gesture(arm-raising) action command. By adding particular beliefs
in the belief base, we can have a flexible approach achieve the synchronization
of actions in the cognitive layer.

4 Navigation Task as an Example

To further illustrate our proposed architecture, we will use a navigation task
as an example to explain how the agent-based cognitive control can be used to
perform physical robots’ tasks. The robot platform is a humanoid robot NAO
(See Figure 3(a)) built by Aldebaran Robotics. In this task, the NAO robot acts
as a message deliverer which is supposed to enter the destination room (e.g.,
roomA) and deliver a message to the people in the room.

The task is carried out in a domestic corridor environment. A predefined map
has been built for the robot to localize itself. The robot begins walking from

68 C. Wei and K.V. Hindriks

(a) (b) (c)

Fig. 3. The navigation task: (a) humanoid robot NAO, (b) the GUI of the robotic
behavior layer, (c) the cognitive reasoning in Goal

a starting place: placeB, and the goal of the robot is to enter the destination
roomA, to show an arm-raising gesture, and eventually to deliver a coffee-break
message. Figure 3(b) shows the main GUI of the behavioral layer, and Figure 3(c)
shows the GUI for the cognitive layer implemented in Goal.

Figure 4 is the Goal agent program for reasoning and decision making.
The information that the robot knows about its environment consists of the
knowledge and of the beliefs. The main differences between the knowledge
base and the belief base is that the knowledge base is static and cannot be
changed at runtime, whereas the belief base will be updated to keep track of
the current state of the environment. Specifically, knowledge defines rules (e.g.,
static:- not(walking)), which cannot be modified; however, beliefs lists
what the robot believes about the current environment (i.e., current belief is
in(placeB), but after a while the belief might be in(placeC)). The goals sec-
tion lists the concrete goals that the robot has to achieve. Action specifications
are enumerated in actionspec section. Each action specification also defines the
preconditions pre{}: when the action can be performed, and the postconditions
post{}: the effects of performing this action. In each reasoning cycle, the event
module can modify the robot’s belief base based on the percepts from its envi-
ronment or other robots’ messages. In the main module, action rules are defined
as strategies or policies for action selection.

Although this navigation task is simple, it shows how the agent-based cognitive
control uses the symbolic percepts, generated fromuncertain, quantitative sensory
data, to keep track of a robot’s beliefs about its environment. Based on its beliefs,
the robot can infer what actions should execute in order to achieve its goals.

5 Conclusion and Future Work

The navigation task that the robot has performed in the above section demon-
strates the feasibility of using a cognitive layer to control physical robots by
means of agent-oriented programming. It also demonstrates that the clean sepa-
ration of sub-symbolic and symbolic layers via the interface layer. Although our

An Agent-Based Cognitive Robot Architecture 69

1 init module{
2 knowledge{
3 static:- not(walking).
4 doorOpen:- not(doorClosed).

5 }
6 beliefs{
7 in(placeB).
8 }
9 goals{

10 messageDlivered.
11 }
12 actionspec{
13 goto(Place){
14 pre{static} post{true}
15 }
16 enter(Room){
17 pre{static} post{true}
18 }
19 gesture(Behavior){
20 pre{static} post{true}
21 }
22 say(Text){
23 pre{static} post{true}
24 }
25 % ... add other action functions
26 }
27 }
28 main module{
29 program{
30 if bel(in(placeB), static, not(inFrontOf(roomA))) then adopt(inFrontOf(roomA)).
31 if a-goal(inFrontOf(Room)) then goTo(Room).
32

33 if bel(inFrontOf(roomA), static, not(in(roomA)), doorOpen) then adopt(in(roomA)).
34 if a-goal(in(Room)) then enter(Room).
35

36 if bel(in(roomA), static, not(showingGesture))
37 then insert(showingGesture) + gesture(arm-raising)+ say("Hi, Lets take a coffee break!").
38 }
39 }
40 event module{
41 program{
42 if bel(percept(inFrontOf(Place))) then {
43 if bel(not(inFrontOf(Place))) then insert(inFrontOf(Place)).
44 if bel(inFrontOf(OldPlace)) then insert(not(inFrontOf(OldPlace)), inFrontOf(Place))).
45 }
46 if bel(percept(in(Room))) then {
47 if bel(not(in(Room))) then insert(in(Room)).
48 if bel(in(OldRoom)) then delete(in(OldRoom)) + insert(in(Room)).
49 }
50 if bel(percept(doorOpen), doorClosed) then insert(doorOpen).
51 if bel(percept(doorClosed), doorOpen) then delete(doorOpen).
52

53 if bel(percept(walking), not(walking), static) then insert(walking, not(static)).
54 if bel(percept(static), walking, not(static)) then insert(static, not(walking)).
55

56 % ... add other percepts
57 }
58 }

Fig. 4. Goal agent programming for cognitive control

70 C. Wei and K.V. Hindriks

general architecture is similar to the layered approaches that have been used in
many robot projects [30–33], we believe that the use of EIS provides a more prin-
cipled approach to manage the interaction between sub-symbolic and symbolic
processors. Of course, it is important that the cognitive layer (agent program)
needs adequate perceptions to make rational decisions given its specific envi-
ronment. Our architecture provides sufficient support from various components
dealing with perception, knowledge processing, and communication to ensure
this. Especially, it provides a generic, flexible interface to map sensory data into
symbolic knowledge for the cognitive layer.

Future work will concentrate on applying our proposed architecture for multi-
robot teamwork in the Block World for Teams environment [34], in which each
robot can exchange their perceptions and share their mental states in the cog-
nitive layer so as to coordinate their actions.

References

1. Levesque, H., Lakemeyer, G.: Cognitive robotics. Handbook of Knowledge Repre-
sentation, 869 (2008)

2. Beetz, M., Mosenlechner, L., Tenorth, M.: CRAM - A Cognitive Robot Abstract
Machine for Everyday Manipulation in Human Environments, pp. 1012–1017.
IEEE (2010)

3. Kelley, T.D.: Developing a psychologically inspired cognitive architecture for
robotic control: The symbolic and subsymbolic robotic intelligence control system.
Advanced Robotic 3, 219–222 (2006)

4. Hanford, S.D., Janrathitikarn, O., Long, L.N.: Control of mobile robots using
the soar cognitive architecture. Journal of Aerospace Computing Information and
Communication 5, 1–47 (2009)

5. Hawes, N., Sloman, A., Wyatt, J., Zillich, M., Jacobsson, H., Kruijff, G., Brenner,
M., Berginc, G., Skocaj, D.: Towards an Integrated Robot with Multiple Cognitive
Functions, vol. 22, pp. 1548–1553. AAAI Press, MIT Press, Menlo Park, Cambridge
(1999/2007)

6. Tenorth, M., Jain, D., Beetz, M.: Knowledge processing for cognitive robots. KI-
Künstliche Intelligenz 24, 233–240 (2010)

7. Tenorth, M., Beetz, M.: Knowrob - knowledge processing for autonomous personal
robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2009, pp. 4261–4266. IEEE (2009)

8. Hindriks, K.: Programming rational agents in goal. In: Multi-Agent Programming:
Languages, Tools and Applications, pp. 119–157. Springer US (2009)

9. http://ii.tudelft.nl/trac/goal (2012)
10. Hindriks, K.V., van Riemsdijk, M.B., Behrens, T.M., Korstanje, R., Kraaijenbrink,

N., Pasman, W., de Rijk, L.: Unreal goal agents. In: AGS 2010 (2010)
11. Behrens, T., Hindriks, K., Dix, J.: Towards an environment interface standard for

agent platforms. Annals of Mathematics and Artificial Intelligence, 1–35 (2010)
12. Shanahan, M., Witkowski, M.: High-level robot control through logic. Event Lon-

don, 104–121 (2000)
13. Duch, W., Oentaryo, R., Pasquier, M.: Cognitive architectures: Where do we go

from here? In: Proceeding of the 2008 Conference on Artificial General Intelligence,
pp. 122–136 (2008)

14. Soutchanski, M.: High-level Robot Programming and Program Execution (2003)

http://ii.tudelft.nl/trac/goal

An Agent-Based Cognitive Robot Architecture 71

15. Coffey, S., Clark, K.: A Hybrid, Teleo-Reactive Architecture for Robot Control
(2006)

16. Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: Oro, a knowl-
edge management platform for cognitive architectures in robotics. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (2010)

17. Burghart, C., Mikut, R., Stiefelhagen, R., Asfour, T., Holzapfel, H., Steinhaus,
P., Dillmann, R.: A cognitive architecture for a humanoid robot: a first approach.
Architecture, 357–362 (2005)

18. Anderson, J.R., Lebiere, C.: The atomic components of thought, vol. 3. Erlbaum
(1998)

19. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intel-
ligence. Artificial Intelligence 33, 1–64 (1987)

20. Benjamin, P., Lyons, D., Lonsdale, D.: Designing a robot cognitive architecture
with concurrency and active perception. In: Proceedings of the AAAI Fall Sympo-
sium on the Intersection of Cognitive Science and Robotics (2004)

21. Avery, E., Kelley, T., Davani, D.: Using cognitive architectures to improve robot
control: Integrating production systems, semantic networks, and sub-symbolic pro-
cessing. System 77 (1990)

22. Laird, J.E.: Toward cognitive robotics. In: Proceedings of SPIE, vol. 7332, pp.
73320Z–73320Z–11 (2009)

23. Bekey, G.A.: Autonomous Robots: From Biological Inspiration to Implementation
and Control. The MIT Press (2005)

24. Baillie, J.C.: Urbi: Towards a universal robotic low-level programming language.
In: 2005 IEEE RSJ International Conference on Intelligent Robots and Systems,
pp. 820–825 (2005)

25. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
26. Azad, P., Asfour, T., Dillmann, R.: Combining Harris interest points and the SIFT

descriptor for fast scale-invariant object recognition. In: 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 4275–4280. IEEE (2009)

27. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM 24, 381–395 (1981)

28. Mika, S., Schaefer, C., Laskov, P., Tax, D., Müller, K.R.: Support vector machines,
vol. 1, pp. 1–33. Springer (2004)

29. Kurfess, F.: Integrating symbol-oriented and subsymbolic reasoning methods into
hybrid systems. In: From Synapses to Rules-Discovering Symbolic Rules from Neu-
ral Processed Data, pp. 275–292. Kluwer Academic Publishers (2002)

30. Qureshi, F., Terzopoulos, D., Gillett, R.: The cognitive controller: A hybrid, de-
liberative/reactive control architecture for autonomous robots. In: Orchard, B.,
Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 1102–1111.
Springer, Heidelberg (2004)

31. Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive
navigation. Robotics and Autonomous Systems 6, 105–122 (1990)

32. Connell, J.H.: SSS: a hybrid architecture applied to robot navigation, vol. 3, pp.
2719–2724. IEEE Comput. Soc. Press (1992)

33. Gat, E.: Integrating Planning and Reacting in a Heterogeneous Asynchronous Ar-
chitecture for Controlling Real-World Mobile Robots, pp. 809–815. Citeseer (1992)

34. Johnson, M., Jonker, C., van Riemsdijk, B., Feltovich, P.J., Bradshaw, J.M.: Joint
activity testbed: Blocks world for teams (BW4T). In: Aldewereld, H., Dignum, V.,
Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 254–256. Springer, Heidelberg
(2009)

A Programming Framework for Multi-agent

Coordination of Robotic Ecologies

M. Dragone1, S. Abdel-Naby1, D. Swords1, G.M.P. O’Hare1, and M. Broxvall2

1 University College Dublin, Dublin (UCD), Ireland
mauro.dragone@ucd.ie

2 Örebro University, Fakultetsgatan 1, SE-70182, Örebro, Sweden

Abstract. Building smart environments with Robotic ecologies, com-
prising of distributed sensors, actuators and mobile robot devices facili-
tates and extends the nature and form of smart environments that can be
developed, and reduces the complexity and cost of such solutions. While
the potentials of such an approach makes robotic ecologies increasingly
popular, many fundamental research questions remain open. One such
question is how to make a robotic ecology self-adaptive, so as to adapt to
changing conditions and evolving requirements, and consequently reduce
the amount of preparation and pre-programming required for their de-
ployment in real world applications. This paper presents a framework for
the specification and the programming of robotic ecologies. The frame-
work extends an existing agent system and integrates it with the pre-
existing and dominant traditional robotic and middleware approach to
the development of robotic ecologies. We illustrate how these technolo-
gies complement each other and offer a candidate technology to pursue
adaptive robotic ecologies.

1 Introduction

This paper presents a framework for the specification and the programming of
robotic ecologies. The framework extends an existing agent system and inte-
grates it with the pre-existing and dominant traditional robotic and middleware
approach to the development of robotic ecologies.

Robotic ecologies constitute an emerging paradigm, which transcends tradi-
tional borders between the fields of robotics, sensor networks, and ambient intel-
ligence (AmI). Central to the robotic ecology concept is that complex tasks are
not performed by a single, very capable robot (e.g., a humanoid robot butler),
instead they are performed through the collaboration and cooperation of many
networked robotic devices (including mobile robots, static sensors or actuators,
and automated home appliances) performing several steps in a coordinated and
goal oriented fashion.

One of the key strengths of such an approach is the possibility of using al-
ternative mechanisms by which to accomplish application goals when multiple
courses of actions are available. For instance, a robot seeking to reach the user
in another room may decide to localize itself with its on-board sensors, or to

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 72–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Programming Framework for Multi-agent Coordination 73

avail itself of the more accurate location information from a localization system.
However, while having multiple options is a potential source of robustness and
adaptability, the combinatorial growth of possible execution traces compromises
scalabiliy. Adapting, within tractable time frames, to dynamically changing goals
and environmental conditions is made more challenging when these conditions
fall outside those envisioned by the system designer.

In the EU FP7 project RUBICON (Robotic UBIquitous COgnitive Network)
[1][2] we tackle these challenges by seeking to develop goal-oriented robotic ecolo-
gies that exhibit a tightly coupled, self-sustaining learning interaction among all
of their participants. Specifically, we investigate how all the participants in the
RUBICON ecology can cooperate in using their past experience to improve their
performance by autonomously and proactively adjusting their behaviour and
perception capabilities in response to a changing environment and user needs.

An important pre-requisite of such an endeavour, which is addressed in this
paper, is the necessary software infrastructure underpinning the specification,
integration, and the distributed management of the operations of robotic ecolo-
gies. Specifically, this work builds upon the Self -OSGi [3] [4], a modular and
lightweight agent system built over Java technology from the Open Service Gate-
way Initiative (OSGi) [5], and (i) extends it to operate across distributed plat-
forms, and (ii) integrates it with the PEIS middleware, previously developed as
part of the Ecologies of Physically Embedded Intelligent Systems project [6].

The remainder of the paper is organized in the following manner: Section 2
provides an overview of the state of the art techniques for the coordination of
robotic ecologies, with an emphasis on those pursued within the PEIS initiative
- the starting point for the control of RUBICON robotic ecologies. Section 3
presents the Self -OSGi component & service-based agent framework, and the
way it has been recently extended and integrated with PEIS. Section 4 illus-
trates the use of the resulting multi-agent framework with two robotic ecology
experiments. Finally, Section 5 summarizes the contributions of this paper and
points to some directions to be explored in future research.

2 PEIS

The PEIS kernel [7] and related middleware tools represent a suite of software,
previously developed as part of the PEIS project [6] in order to enable commu-
nication and collaboration between heterogeneous robotic devices.

The PEIS kernel is written in pure C (with binding for Java and other lan-
guages) and with as few library and RAM/processing dependencies as possible
to maximize compatibility with heterogeneous devices.

PEIS includes a decentralized mechanism for collaboration between separate
processes running on separate devices which allows for automatic discovery, high-
level communication and collaboration through subscription based connections.
It also offers a shared, tuple space blackboard that allows for high level col-
laboration and dynamic self-configuration between different devices through the
exchange and storage of tuples (key-value pairs) used in associating any piece of

74 M. Dragone et al.

data (and related meta-information, such as timestamps and MIME types), to
a logical key.

2.1 Tuples and Meta-tuples

A tuple’s key in PEIS consists of two parts: (name, owner) where name is a
string key for the tuple, and owner is the address (id) of a PEIS responsible for
the tuple.

In the most simple scenario for executing a collaboration between compo-
nents, producers create data in their own tuple space and consumers establish
subscriptions to these tuples to access the data that is to be used.

However, consuming components cannot know in advance from where to read
the data to be used. Meta tuples offer a mechanism to address this problem. By
using these as inputs it is possible for consumers to read hard coded meta tuples
from their own tuplespace. This corresponds to meta tuples acting as named
input ports in other middleware.

To configure such a consumer, a configuration writes the id and key of tuples
produced by any producer. The consumer will then automatically subscribe to,
and read the data from, the producer. From the developers’ point of view this
makes programming configurable components very simple since input tuples then
can be read with a simple API call and the kernel automatically handles the
setting up and removing of new subscriptions as the configuration is changed.
This is in the following (pseudo-code) example.

Producer 42:
while (true):
setTuple "temperature" <= sensorReading()

Consumer 22:
subscribeIndirectTuple(peisId(), "heat")
while true:

T = findIndirectTuple("heat")
... do something with T ...

Configurator:
setTuple "22.heat" <= "META 42 temperature"

2.2 PEIS-Init

PEIS relies on a program called PEIS-Init to act as central location on each host
to start or stop and monitor the execution of functional components. To this end,
PEIS-init component relies on a set of component files on the local machine to
determine which component can run on it and what their semantic descriptions
are. For each possible component, PEIS-init subscribes to tuples to set the start,
stop or restart state of the components. It forks and executes the corresponding
software components if the components are requested to be run (i.e. when their
reqState tuples are set to value on), monitors their inputs, outputs and execution
states (restarting them if necessary) and stops the components when they are

A Programming Framework for Multi-agent Coordination 75

no longer needed (when their reqState tuple is set to off). Noticeably, PEIS is
agnostic to the type of semantic used to describe the components. The respon-
sibility of managing and using components’ semantic description is delegated to
external coordinator components, as discussed in the next section.

2.3 Action Coordination and Configuration for Robotic Ecologies

Computing which actions are to be performed by individual devices has been
traditionally solved in a centralized manner by using an action planner that
reasons about the possible outcomes of different actions on a given model of the
environment [8].

Fig. 1. A simple PEIS-Ecology (taken from [6]). Left: The ceiling cameras provide
global positioning to the robot. The robot performs the door opening action by asking
the refrigerator to do it. Right: Corresponding functional configuration of the devices
involved

We call the set of devices that are actively exchanging data in a collaborative
fashion at any given time the configuration of the ecology. The task of computing
the configuration to be used at any given time in order to accomplish the actions
generated by an action coordinator can also be modeled explicitly as a search
problem and solved, either, in a dedicated configuration planner or as an integral
step of the action planning process.

This is illustrated in Figure 2 where a configuration plans for a subset of the
available devices to perform specific localization tasks in order to assist the robot
Astrid to navigate and open a refrigerator door.

In our work we propose to distribute certain aspects of these tasks over a
number of agents with varying responsibilities and functionalities in order to
lead to better scalability, robustness and fault tolerance.

Agent and Multi Agent Systems (MASs) are regarded as a general-purpose
paradigm by which to facilitate the co-ordination of complex systems built
in terms of loosely-coupled, situated, autonomous and social components (the
agents). In particular, the Belief Desire Intention (BDI) agent model, used in the
Self -OSGi framework discussed in the following section, provides a simple, yet,
extensible model of agency that explicitly addresses the production of rational
and autonomous behaviour by agents with limited computational resources.

76 M. Dragone et al.

3 Self -OSGi

Self -OSGi [3] [4] is a BDI agent framework built on OSGi Java technology and
purposefully designed to support the type of collaboration envisaged within the
ubiquitous and embedded systems targeted by RUBICON.

The component & service orientation used in the design of Self -OSGi is an
highly popular, mainstream approach used to build modular software systems.
Component & service frameworks operate by posing clear boundaries (in terms
of provided and required service interfaces) between software components and
by guiding the developers in re-using and assembling these components into
applications. Self -OSGi addresses the lack of common adaptation mechanisms
in these frameworks by leveraging their previously unexploited similarities with
the BDI agent model.

3.1 OSGi

OSGi specification [5] is currently the most widely adopted technology for build-
ing modular control systems for networked home applications, with many imple-
mentations targeting computationally constrained platforms. Within the AAL
domain, OSGi-based middleware have long been used to provide the technical
basis for integrating network devices and services, e.g. in EU projects such as
Amigo, OASIS, SOPRANO, and their recent consolidation in the UniversAAL
platform.

OSGi defines a standardised component model and a lightweight container
framework, built above the JVM, which is used as a shared platform for network-
provisioned services and components specified through Java interfaces and Java
classes. Each OSGi platform facilitates the dynamic installation and manage-
ment of units of deployment, called bundles, by acting as a host environment
whereby various applications can be executed and managed in a secured and
modularised environment. An OSGi bundle is packaged in a Jar file and organ-
ises the frameworks internal state and manages its core functionalities. These
include both container and life cycle operations to install, start, stop and re-
move components as well as checking dependencies.

The separation between services and their actual implementations is the key
to enable system adaptation. With OSGi, in addition to syntactic matching of
service interfaces, developers can also associate lists of name/value attributes to
describe the semantic of each service, and use the LDAP filter syntax to search
the services that match given search criteria. Furthermore, Declarative Services
(DS) for OSGi offers a declarative model for managing multiple components
within each bundle and also for automatically publishing, finding and binding
their required/provided services, based on XML component definitions. However,
DS only matches pre-defined filters with pre-defined services attributes of already
active components, but does not consider the automatic instantiation of new
components, the context-sensitive selection of their services, or the automatic
recovery from their failure - all necessary features for the construction of context-
aware, adaptive systems.

A Programming Framework for Multi-agent Coordination 77

3.2 Component and Service Based Agent Model

Self -OSGi addresses the issues outlined in the previous section by translating the
BDI agent model [9] into general component & service concepts. In particular,
the separation between the services interface and the services implementation is
the basis for implementing both the declarative and the procedural components
of BDI-like agents, and also for handling dynamic environments, by replicating
their ability to search for alternative applicable plans when a goal is first posted
or when a previously attempted plan has failed.

Belief Model: As in the Jadex agent language [10], Self -OSGi represents beliefs
as simple Java objects. Compared to agent toolkits where beliefs are stored as
logic predicates, objects have the advantage of providing a strong typed definition
of agent’s beliefs. In addition, within Self -OSGi, a belief set is implemented as
a Belief Set component with clearly defined interfaces, which are used to access
any data that may affect the value of its beliefs.

Service Goal Model: Goals, describing the desires that the agent may possibly
intend, are represented in Self -OSGi by the (Java) interfaces of the services that
may be used to achieve them, or service goals.

Service goals may represent either: (i) performative sub-goals defining the
desired conditions to bring about in the world and/or in the systems state - for
instance, the method ”(void) beAt(X, Y)” in the goal service GoalNavigation
may be used by a robotic agent to represent the goal of being at a given location
- and (ii) knowledge sub-goals subtending the exchange of information. For
instance, the method ”Image getImage()” in the GoalImage service goal may
be used to express the goal of retrieving the last video frame captured by one
camera. In addition, service goals attributes may be used to further characterise
each service goal, e.g. the characteristic of the information requested/granted,
as well as important non-functional parameters. In particular, attributes may
be used to identify the entity (a specific robot agent or part of it) responsible of
some perceptual and/or acting process. For instance, the attribute Agent may
be used to represent the name of the robot providing video frames, while the
attribute Side may be used to specify to which one of the robotic cameras (left
or right eye) the video corresponds to.

Component Plan Model: A plan, describing the means to achieve a goal (its
post-condition), is represented by the component - component plan - imple-
menting (providing) it. A component plan may require a number of service goals
in order to post sub-goals, to perform actions, and also to acquire the informa-
tion it needs to achieve its post-condition. For instance, a Navigator component
plan may process the images from a robots camera and control the velocity and
the direction of the robot to drive it safely toward a given location. The same
component plan may subscribe to range data from a laser sensor, to account for
the presence of obstacles on its path.

78 M. Dragone et al.

Semantic Descriptions: Self -OSGi re-uses the OSGi XML component de-
scriptions and enriches them with properties guiding its agent-like management
of components’ dependencies and components’ instantiation.

As a way of example, the following is part of the XML documents describing
a Navigation, a CameraLocalization and a LaserLocalization component plans.

In order to clarify its correspondence with the BDI model it represents, each
XML is preceded with a comment in the form e : Ψ ← P where P is the body of
the plan, e is the event that triggers the plan (the plan’s post-conditions), and
Ψ is the context for which the plan can be applied (which corresponds to the
preconditions of the plan).

GoalNavigation(?Agent) : true ← {achieve(GoalLocalization(?Agent)); ...}

<scr:component ... factory="Navigation" name="Navigator">
<implementation class= "Navigator"/>
<property name="?Agent" type="String" value="The name of the robot supposed to move">
<service>

<provide interface="GoalNavigation"/>
</service>
<reference cardinality="0..1" interface= "GoalLocalization" policy="dynamic"
target="(Agent=?Agent)>
</scr:component>

GoalLocalization(?Agent) : (light > 30) ← {achieve(GoalV ideo(?Agent)); ...}

<scr:component ... factory="CameraLocalization" name="CameraLocalization">
<implementation class= "CameraLocalization"/>
<property name="?Agent" type="String" value="The name of the robot to be localized">
<service>

<provide interface="GoalLocalization"/>
</service>
<reference cardinality="0..1" interface= "GoalVideo" name="Video" target="(Agent=?Agent)/>
<property name="self.osgi.precondition.LDAP" value="(light>30)"/>
</scr:component>

GoalLocalization(?Agent) : true ← {achieve(GoalLaser(?Agent)); ...}

<scr:component ... factory="LaserLocalization" name="CameraLocalization">
<implementation class= "LaserLocalization"/>
<property name="?Agent" type="String" value="The name of the robot to be localized">
<service>

<provide interface="GoalLocalization"/>
</service>
<reference cardinality="0..1" interface= "GoalLaser" name="Laser" target="(Agent=?Agent)/>
</scr:component>

Post-Conditions: The post-conditions of both component plans are specified
with the OSGi XML service element. The Navigation component plan imple-
ments a move-to navigation behaviour in order to provide the service goal Goal-
Navigation, while both the CameraLocalization and the LaserLocalization com-
ponent plans implement localization methods in order to provide localization
updates through the service goal GoalLocalization, that is:

interface GoalNavigation {
void beAt (Location location);

}

A Programming Framework for Multi-agent Coordination 79

interface GoalLocalization {
Location getLocation();

}

Service Goal Requirements: Service goal requirements are declared using
OSGi XML reference elements. The definition of Navigator declares its require-
ment of localization information as dynamic, in order to allow OSGi to activate
it even when the reference to the Localization service goal is not resolved, thus
avoiding to having to commit to a specific localization mechanism before the
behaviour is started.

Noticeably, the definition of CameraLocalization includes Self -OSGi-specific
property fields, self.osgi.precondition.LDAP, whose value may be used to char-
acterise the context when the component plan is applicable. In the example, the
LDAP pre-condition describes how CameraLocalization can only be used when
the intensity of the ambient light, e.g. sensed by a light sensor component, is
believed to be above a given threshold.

Variables: In order to link post-conditions with pre-conditions and service goal
requirements, Self -OSGi allows the use of variable attributes whose name starts
with the special character ”?”. Variables may be used as names of the property
associated to a component plan in order to specify that the component plan
can be instantiated with any value for that property. In such a case, the value
of the variable is used as default value of the property. For instance, both the
Navigator and the CameraLocalization component plans declare the property
Agent to specify that they can be used by any agent to achieve, respectively,
the GoalNavigation and the GoalLocalization service goals. Once the respective
component plans have been instantiated for a specific robot agent, i.e. Turtle-
Bot, the services they provide will have an Agent attribute with value TurtleBot.
However, in order for the same services to work, they must receive updates, re-
spectively, of location and video data related to the same robot agent. Both
XML descriptions specify this dependency by repeating the attribute ?Agent in
the reference elements describing their required service goals. It is the respon-
sibility of Self -OSGi to propagate the value of these variable properties from
the post-condition/service side to the requirement/reference side, for instance,
to wire a Navigator component activated in the TurtleBot robot agent, with a
LaserLocalization activated for the same robot agent, rather than using the pure
syntactic match (which could be satisfied by any localization data, e.g. related
to other robots or used to represent the location of a human user).

3.3 Core Implementation

The interested reader is refered to Dragone [3], for more detailed information on
the internal architecture of each Self -OSGi platform.

The main difference from traditional agent platforms, such as the Agent Fac-
tory (AF) platform developed in UCD [11], is that agent container functionalities
are built directly over the OSGi bundle and component container. In addition,
rather than employing logic-based agent languages, Self -OSGi’s goals and plans
are directly specified in Java, as discussed in the previous sections.

80 M. Dragone et al.

As a way of example, the following code is used to send a robot to a given
location by initializing a standard OSGi ServiceTracker object to request the
GoalNavigation service goal, before invoking it by passing the location coor-
dinates. The special attribute selfosgi=true is used to demand the Self -OSGi
management of the call. Noticeably, no other modifications are required to stan-
dard OSGi programming.

ServiceTracker tracker = new ServiceTracker(...,

context.createFilter("(\&(objectClass="+GoalNavigation.class.getName()+") (selfosgi=true)").open();

(GoalNavigation)(tracker.waitForService(0)).beAt (100, 200);

The service goal request is intercepted by Self -OSGi, which queries the OSGi
DS for the list of all the components able to provide the requested service (i.e.
LaserLocalization and CameraLocalization in the example). After that, Self -
OSGi implements the BDI cycle by (i) finding all the component plans (installed
in the same OSGi platform) with satisfied pre-conditions (i.e. which hold against
the current content of the belief set), and (ii) instantiating (loading) and activat-
ing the most suitable one by using user-provided ranking components. Finally,
Self -OSGi installs a proxy between the client that has originally requested a
service goal, and the component activated to provide it. It is thanks to this me-
diation, that Self -OSGi can catch failures in the instantiated services activation,
and trigger the selection of alternative component plans.

In the localization example, these features are used to make the robot reach
its destination while opportunistically exploiting any suitable localization mech-
anism, for instance, starting with the CameraLocalization and then switching to
the LaserLocalization if the first fails when the ambient light drops below the
given threshold.

4 Distributed Self -OSGi and PEIS Integration

While the Self -OSGi system described in [3] [4] and summarised in the previous
section was limited to components and services running on a single platform and
single JVM, the latest Self -OSGi version described in this paper has been fitted
with extension mechanisms in order to provide seamless system distribution.

By default, such mechanisms leverage the R-OSGi distributed extension of
OSGi to support service goal invocation across remote platforms. The other
distributed extension of OSGi, D-OSGi, specifically targets Web Services tech-
nology and poses a much bigger overhead - 10MB - compared to the 230KB of
R-OSGi footprint. R-OSGi can be deployed in minimal OSGi implementations
and uses a very efficient network protocol. This makes it ideal for small and
embedded devices with limited memory and network bandwidth.

Both R-OSGi and D-OSGi allows programs to bind and invoke remote services
through port and proxy mechanisms. To this end, application components must
register their services for remote access. Subsequently, other peers must connect
to the R-OSGi registry of their peers to get access to their remote services.

A Programming Framework for Multi-agent Coordination 81

Within Self -OSGi, the framework automatically manages these steps so that
distribution becomes totally transparent to the application developer. In addi-
tion, Self -OSGi extends its automatic instantiation and selection of component
plans to multiple platforms by integrating agent-based negotiation protocols
within the standalone Self -OSGi system.

In the example depicted in Figure 2, a model bundle containing the speci-
fications of three service goals (their Java interfaces) is equally shared by four
platforms (A, B, C, D). However, the implementation of these service goals is dis-
tributed across the system. Specifically, platform A hosts two component plans
implementing two of the service goals while platform D hosts one implementation
of the service goal missing in platform A.

Developers can install a number of protocol components to handle the distri-
bution of service goal requests. Thanks to OSGi DS, the fitting of a distribu-
tion protocol is done completely transparently from the application components,
which do not need to be aware of their distribution across platforms.

Distribution protocols can range from simple delegation mechanism, which
routes the service goal requests to specific platforms in the network, to more com-
plex agent-style negotiation protocols, such as the contract net protocol (CNP)
depicted in Figure 2. The latter can be used to query a group of platforms - which
can be discovered via any network discovery solution - through a call for proposal
(CFP) message. Upon reception of such a message, each platform will lookup
their XML component repository and - in the case they can satisfy the request -
reply with a bid message reporting the details of the component plan they con-
sider most suitable to satisfy it. At this point, the original requester (platform
A in the example) can evaluate all bids, including its own, before sending a mes-
sage (to platform D in the example) to accept the best bid. Upon reception of
the accept message, the chosen platform will instantiate the selected component
plan and automatically register with R-OSGi the service goal it provides. The
initiating platform will then retrieve the reference to the service goal from the
remote platform, create a proxy, and export it to the local OSGi registry.

Within the RUBICON Control Architecture, the distributed extension of Self -
OSGi has the following roles:

– provide a semantic vocabulary for expressing the capabilities and the re-
quirements of all available devices and software components in the ecology,
in order to support self-organization capabilities and the modular specifica-
tion of the behaviour of the robotic ecology.

– enhance system’s scalability by framing it as a multi-agent system in order
to leverage agent communication languages (ACLs) and multi-agent system
(MAS) coordination & negotiation protocols.

– reduce the gap between the mainstream software solutions traditionally used
in AmI/AAL domains and the state of the art techniques used in agent-
oriented software engineering and in the control of robotic ecologies.

The final element to allow the use of the same mechanisms for the coordination
of robotic ecologies is the interface between Self -OSGi and the PEIS middleware
discussed in Section 2.

82 M. Dragone et al.

Fig. 2. Automatic distribution of Self -OSGi Systems

Specifically, the PEIS tuplespace is used to:

1. serve as platform discovery mechanism, by leveraging its peer-to-peer com-
munication functionalities to re-create on each platform the directory of all
the platforms available over the network. Self -OSGi uses these directories to
find out the url of remote instances of Self -OSGi, before using R-OSGi to
contact them by sending service goal requests and conducting auction-based
negotiation protocols.

2. communicate with the PEIS-Init components installed on each platform, in
order to manage PEIS components running outside the JVM, such as robotic
behaviour components implemented in native C/C++ languages. In these
cases, component plans in Self -OSGi acts as proxies of the underlying PEIS
components they manage. A basic implementation - PEIS Component Moni-
tor - provides generic functionalities to start/stop/configure peis components
by setting the value of special tuples used to propagate these instructions
via the tuplespace.

5 Testing Tools and Examples

For the purpose of testing and demonstrating the overall implementation of the
multi-agent framework presented in this paper, we have developed a set of PEIS
tools capable of visualizing and even simulating each component of a robotic
ecology. These tools are intended to simplify the development and debugging of
the agent based tools and their interaction with the robotic ecology, and facilitate
their adoption in real world situations.

A Programming Framework for Multi-agent Coordination 83

Fig. 3. Test scenario: before and after self-configuration

5.1 Configuration Example

The first example illustrated in this section shows the ability of our framework to
automatically generate a sequence of configurations to perform a given task in the
current context (state). The test has been performed in a low-fidelity simulator
emulating the behaviour of real devices distributed over three platforms:

1. a robot (robot-1) equipped with a laser ranging sensor, an odometry sensors,
and a navigation component plan.

2. a robot (robot-2) equipped with a 3D ranging camera, an odometry sensors,
a navigation and a tracking component plan.

3. a server (server) with an installation of a simultaneous localization and
mapping (SLAM) component plan.

Simulated components allow us to while running the full framework for specifi-
cation, introspection, deployment, communication and configuration

Scenario: In order to drive the robots, both navigation component plans must
rely on odometry and localization information (their service goal requirement).
However, none of the robot platforms have enough computational power to run
a localization component plan locally. Fortunately, an instance of the SLAM
component plan - running on the server - can provide location updates, as long
as it receives data from both one ranging sensor and from the odometry of
the robot. In addition, robot-2 can use its 3D ranging camera to observe the
scene from an external point of view, and compute its position relative to robot-
1. Robot-2 can use this information and the knowledge of its own location, to
provide an estimate of the absolute location of robot-1, which may then be used
by robot-1 as an alternative to the location updates sent by the server.

These two alternative configurations, illustrated in Figure 3, can be easily de-
duced from the following dependencies (expressed in BDI-style notation here for
simplicity in place of their actual XML form) between the localization, odome-
try, navigation and tracking service goals. The definition of these dependencies,

84 M. Dragone et al.

i.e. the set of service goals and component plans, is packaged into a shared model
OSGi bundle that is installed on all the platforms of the ecology, while the XML
files specify which component plan implementation is actually available to which
platform.

SERVER:

GoalNavigation(?Agent) : true ← {achieve(GoalLocalization(?Agent)&GoalOdometry(?Agent)); }

ROBOT-1:

GoalLocalization(?Agent) : true ← {achieve(GoalRanging(?Agent)); ...}
GoalRanging(?Agent) : true ← {achieve(GoalLaser(?Agent)); }

ROBOT-2:

GoalLocalization(?Agent) : true ← {achieve(GoalRanging(?Agent)); }
GoalRanging(?Agent) : true ← {achieve(GoalKinect(?Agent)); }
GoalLocalization(?Agent1) : true ← {achieve(GoalKinect(?Agent2)&GoalLocalization(?Agent2)); }

Finally, figure 4 and 5 show the outputs of the PEIS visualization tools, re-
spectively showing the timeline and the connectivity graph of the wiring of the
component plans in the ecology during the different phases of the experiment.
In particular, the diagrams illustrate the status of the robotic ecology (1) after
robot-1 was tasked to move to a given location, (2) after its laser was (artificially)
disconnected to simulate a component failure, and (3) after the system had re-
covered from failure. The whole process can be summarised with the following
steps:

1. robot-1 issues a Localization(robot-1) service goal request , before assigning
it to server, which is randomly preferred to the robot-2 (the other bidder,
as the post-condition of its tracking component plan also matches with the
requested service goal).

2. server instantiates a SLAM component plan and issues two service goal re-
quests to satisfy its service goal requirements, respectively for Ranging(robot-
1) and Odometry(robot-1), before assigning both of them to robot-1 (the only
bidder).

3. upon failure of the robot-1 ’s laser, the SLAM component plan on server also
fails and robot-1 re-issues a Localization(robot-1) request. However, since the
last time the SLAM component plan has failed, this time the service goal is
assigned to robot-2.

4. robot-2 instantiates a tracking(robot-1) component plan, causing the issuing
of requests for Localization(robot-2) and the successive wiring between its
sensors and a new SLAM component plan on the server.

5.2 Task Allocation Example

This section illustrates a second example showing the ability of our framework
to manage task allocation for a multi-robot system. The example consists of two
robots (Figure 6.a) and a server. Both robots have identical functionality and are
running the Robotic Operating System (ROS) framework [12]. In addition, both

A Programming Framework for Multi-agent Coordination 85

Fig. 4. PEIS Timeline Visualization Tool

robots and the server run instances of Self -OSGi and the PEIS middleware. PEIS
Navigation components are running on both robots. The PEIS Navigation com-
ponents accept goal tuples describing navigation way-points, and submit those
goals to the underlying ROS navigation stack, which then performs localiza-
tion and path-finding functionality. The PEIS Navigation components provide
progress updates via a progress tuple. Progress is described by the estimated
distance from the goal. The server runs a Navigation Monitor component also
offering the GoalNavigation service. However, rather than actually implementing
this service, that component is used to monitor the performance of the actual
navigator component running on the robot, as shown in (Figure 6.b), by sub-
scribing and reading its output tuple in order to monitor its progress toward
its goal. In this manner, when a GoalNavigation service is first posted to Self -
OSGi, this will first activate a monitor component on the server and then wire
it to the navigator component of one of the two available robots. In the case
that the first selected robot fails, e.g. due either to an hardware, physical or
software problem, the monitor component will notice either the interruption of
the progress feedback, or a problem in its values. Self -OSGi will then search
for another component able to provide the GoalNavigation service to recover
from the failure. Since another Navigator component is available on the second
robot, that robot is then allocated the original goal. Noticeably, this last step
is performed by using the same auction-based schema described in the previous

86 M. Dragone et al.

Fig. 5. PEIS Connectivity Graph Visualization Tool

section. Furthermore, Self -OSGi may cooperate with the monitor components
to remember past component performances and to find the expected value of
each configuration option.

In this manner, Self -OSGi’s re-configuration can be used as a basis for task
allocation, with the added advantage that monitor components help further
grounding the semantic of functional components (which is described by their
XML component representations) by linking them with the operative description
of what the components must achieve once activated.

6 Related Work

The general problem of self-configuration of a distributed system is addressed
in several fields, including ambient intelligence [13][14], web service composition
[15], distributed middleware [16], and autonomic computing [17]. These works,
however, do not address the same type of problem considered here: functional co-
ordination of a robotic ecology, in which the components of the system exchange
continuous streams of data and can interact with the physical world.

Classical AI planning such as STRIPS based operators can easily be extended
to take the role of high-level coordinators for robotic ecologies [8]. However,
these planning methods suffer from a number of challenges that make them less
than ideal. The first of these challenges is due to the demands on robustness
combined with a demand of combinatorial generality where the possible combi-
nations of devices should be able to provide functionalities to assist other de-
vices is expected to grow superlinearly as more devices are added to the ecology.
Secondly, as the environments become increasingly complex and unstructured,
these planning methods tend to increase in complexity and to become intractable.

A Programming Framework for Multi-agent Coordination 87

Fig. 6. Task Allocation Experiment: a) wiring, b) robots performing the experiment

Purely reactive configuration of robotic ecologies have also been explored
within the PEIS project [18]. Such an approach creates its configurations by
instantiating plan-based task operators used to represent components and their
operative dependencies. As in Self -OSGi, searching for suitable configuration is
done in a reactive (one-step look-ahead) manner. Most noticeably on the multi-
robot front, [19] [20] presents a distributed reasoning system, called ASyMTRe-
D, which enables a team of robots to form coalitions to accomplish a multi-robot
task through tightly-coupled sensor sharing. Such an approach represents com-
petences using biologically-inspired schema abstractions grounded in the infor-
mation theoretical work of Donald, et al. [21], and which share many similarities
with the XML component semantic descriptions described used in Self -OSGi.
Specifically, both representations can be used to explicitly model the conver-
sion among information types that are specified with referent entities. However,
compared to those approaches, our work with Self -OSGi is concerned with ex-
tending this type of component representations and incorporating them into
mainstream, agent & component-based programming frameworks to be used for
the specification and programming robotic ecologies.

7 Conclusions and Future Work

This paper has described the distributed extension of the Self -OSGi agent frame-
work and its integration with pre-existing middleware employed for the control
of robotic ecologies. The resulting framework provides re-usable, lightweight,

88 M. Dragone et al.

modular end extensible mechanisms for the specification and the development
of decentralized coordination mechanisms for robotic ecologies.

While a multi-agent approach is often adopted for robot system design, a
key and original result of our approach is that both system distribution and
system adaptation become orthogonal concerns thus freeing the developers to
tackle application requirements. Once application components are implemented,
and their semantic and inter-dependencies described with Self -OSGi XML files,
they can be freely distributed over the network, and thereafter the distributed
Self -OSGi will automatically manage their instantiation and configuration to
achieve application’s objectives.

Future work will test the framework with larger scale problems and also seek
to adapt agent/planning integration and agent learning techniques to tackle some
of the main limitations of our architecture, such as its lack of look-ahead and its
reliance on hard-coded pre-conditions of component plans.

Acknowledgment. This work has been supported by the EU FP7 RUBICON
project (contract n. 269914).

References

1. Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., López, R.,
Maguire, L., Mcginnity, T.M., Micheli, A., Renteria, A., O’Hare, G.P., Pecora,
F.: Robotic UBIquitous COgnitive network. In: Novais, P., Hallenborg, K., Tapia,
D.I., Rodŕıguez, J.M.C. (eds.) Ambient Intelligence - Software and Applications.
AISC, vol. 153, pp. 191–195. Springer, Heidelberg (2012)

2. Robotic UBIquitous COgnitive Network, http://fp7rubicon.eu
3. Dragone, M.: Component & Service-based Agent Systems: Self-OSGi. In: ICAART

(1), pp. 200–210 (2012)
4. Dragone, M.: A BDI Model for Component and Service-Based Systems: Self-OSGi.

In: PAAMS, pp. 67–72 (2012)
5. Alliance, O.: OSGi Service Platform: The OSGi Alliance. IOS Press, US (2007)
6. Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R., Rashid, M.J., Seo,

B., Cho, Y.J.: The PEIS-Ecology Project: Vision and results. In: IROS, pp. 2329–
2335 (2008)

7. Broxvall, M.: The PEIS Kernel: A Middleware for Ubiquitous Robotics. In: Proc.
of the IROS 2007 Workshop on Ubiquitous Robotic Space Design and Applications
(2007)

8. Lundh, R., Karlsson, L., Saffiotti, A.: Plan-Based Configuration of an Ecology of
Robots. In: ICRA, pp. 64–70 (2007)

9. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for
Systems of BDI Agents (1996)

10. Pokahr, A., Braubach, L., Lamersdorf, W.: A Goal Deliberation Strategy for BDI
Agent Systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns,
M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer, Heidelberg
(2005)

11. Ross, R., Collier, R., O’Hare, G.M.P.: AF-APL: Bridging Principles & Practices
in Agent Oriented Languages. In: Bordini, R.H., Dastani, M., Dix, J., El Fal-
lah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 66–88.
Springer, Heidelberg (2005)

http://fp7rubicon.eu

A Programming Framework for Multi-agent Coordination 89

12. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: An open-source robot operating system. In: ICRA Workshop on
Open Source Software, Anchorage, USA (2009)

13. Kaminsky, A.: Infrastructure for Distributed Applications in Ad Hoc Networks of
Small Mobile Wireless Devices. Tech. rep., Rochester Institute of Technology, IT
Lab (2001)

14. Hellenschmidt, M., Kirste, T.: Self-organization for Multicomponent Multimedia
Environments. In: Proc. of the UniComp Workshop on Ubiquitous Display Envi-
ronments (2004)

15. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

16. Oaks, S., Traversat, B., Gong, L.: JXTA in a Nutshell. O’Reilly, Sebastopol (2002)
17. Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart,

J.O., White, S.R.: A Multi-Agent Systems Approach to Autonomic Computing.
In: AAMAS, pp. 464–471 (2004)

18. Gritti, M., Broxvall, M., Saffiotti, A.: Reactive Self-Configuration of an Ecology of
Robots. In: Proc. of the ICRA 2007 Workshop on Network Robot Systems, Rome,
Italy, pp. 49–56 (2007)

19. Parker, L.E., Tang, F.: Distributed multi-robot coalitions through asymtre-d. In:
Proc. of IEEE International Conference on Intelligent Robots and Systems, Ed-
monton, Canada (2005)

20. Zhang, Y., Parker, L.E.: Iq-asymtre: Synthesizing coalition formation and execution
for tightly-coupled multirobot tasks. In: Proc. of IEEE International Conference
on Intelligent Robots and Systems, Taipai, Taiwan (2010)

21. Donald, B.R., Jennings, J., Rus, D.: Towards a theory of information invariants for
cooperating autonomous mobile robots. Technical report, Ithaca, NY, USA (1993)

Evaluation of a Conversation Management

Toolkit for Multi Agent Programming

David Lillis, Rem W. Collier, and Howell R. Jordan

School of Computer Science and Informatics
University College Dublin

{david.lillis,rem.collier}@ucd.ie,
howell.jordan@lero.ie

Abstract. The Agent Conversation Reasoning Engine (ACRE) is in-
tended to aid agent developers to improve the management and relia-
bility of agent communication. To evaluate its effectiveness, a problem
scenario was created that could be used to compare code written with
and without the use of ACRE by groups of test subjects.

This paper describes the requirements that the evaluation scenario
was intended to meet and how these motivated the design of the problem.
Two experiments were conducted with two separate sets of students and
their solutions were analysed using a combination of simple objective
metrics and subjective analysis. The analysis suggested that ACRE by
default prevents some common problems arising that would limit the
reliability and extensibility of conversation-handling code.

As ACRE has to date been integrated only with the Agent Factory
multi agent framework, it was necessary to verify that the problems
identified are not unique to that platform. Thus a comparison was made
with best practice communication code written for the Jason platform, in
order to demonstrate the wider applicability of a system such as ACRE.

1 Introduction

The Agent Conversation Reasoning Engine (ACRE) is a suite of components and
tools to aid the developers of agent oriented software systems to handle inter-
agent communication in a more structured and reliable manner [1]. To date,
ACRE has been integrated into the Agent Factory multi-agent framework [2]
and is available for use with any of the agent programming languages supported
by Agent Factory’s Common Language Framework [3]. Related work is presented
in Section 2, followed by an overview of ACRE itself in Section 3.

The principal focus of this paper is to describe an experiment that was
conducted to evaluate the benefits that ACRE can provide in a communication-
heavy Multi Agent System (MAS). Section 4 outlines the motivations under-
pinning the design of the experiment and discusses how a scenario was designed
with these in mind. In particular, we identified a number of variables that should
be eliminated so as to ensure that comparisons of ACRE and non-ACRE code
would be fair. This scenario was given separately to two classes of students:

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 90–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Evaluation of a Conversation Management Toolkit 91

one undergraduate and one postgraduate. The students were required to de-
velop agents that could interact with a number of provided agents in order to
trade virtual stocks and properties for profit. For each class, the subjects were
divided into two groups: one using ACRE and one working without.

The code was analysed both objectively and subjectively and comparisons
were made between ACRE and non-ACRE code. This analysis is presented for
each of the two classes in Sections 5 and 6 respectively. We then examined some
conversation handling code written for the Jason multi agent platform [4] to
draw some conclusions about the wider applicability of this work in Section 7.
Conclusions and ideas for future work are contained in Section 8.

2 Related Work

Although many well-known agent frameworks and languages have support for
some Agent Communication Language (ACL), less attention has been paid to
conversations between agents, where two or more agents will exchange multiple
messages that are related to the same topic or subject, following a pre-defined
protocol. The JADE toolkit provides specific implementations of a number of the
FIPA interaction protocols [5]. It also provides a Finite State Machine (FSM) be-
haviour to allow custom interaction protocols to be defined in terms of how they
are handled by the agents. Jason includes native support for communicative acts,
but does not provide specific tools for the development of agent conversations
using interaction protocols [4]. A similar level of support has previously been
present within the Agent Factory framework prior to the adoption of ACRE.

Agent toolkits with support for conversations include COOL [6], Jackal [7] and
KaOS [8]. Other than FSMs, alternative representations for protocols include
Coloured Petri Nets [9] and Global Session Types [10].

The comparative evaluation of programming toolkits, paradigms and lan-
guages is a matter of some debate within the software engineering community.
One popular approach is to divide subjects into two groups with each asked
to perform the same task [11–13]. To the greatest extent possible, objective
quantitative measures are used to draw comparisons between the two groups.
A common concept to evaluate is that of programmer effort, which has been
measured in numerous different ways including development time [11, 12], non-
comment line count [12] and non-commented source code statements [14]. These
measures are used to ensure that a new approach does not result in a greater
workload being placed on developers using it.

3 ACRE

ACRE is a framework that aims to give agent programmers greater control
over the management of conversations within their MASs. It is motivated by
the fact that many widely-used Agent Oriented Programming (AOP) languages
and frameworks require communication to be handled on a message-by-message
basis, with no explicit link between related messages. It frequently tends to be

92 D. Lillis, R.W. Collier, and H.R. Jordan

left as an exercise for the developer to ensure that messages that form part of
the same conversation1 are interpreted as such. This section provides a brief
overview of ACRE’s capabilities. For further information, it is presented in some
detail in [1].

The principal components of ACRE are as follows:

– Protocol Manager (PM): The PM is shared amongst all agents residing on the
same agent platform. It accesses online protocol repositories and downloads
protocol definitions at the request of agents.

– Conversation Manager (CM): Each agent has its own CM, which is respon-
sible for monitoring all its communication so as to group individual messages
into conversations. Messages are compared to known protocol definitions and
existing conversations to ensure that they are consistent with the available
descriptions of how communication should be structured.

– ACRE/Agent Interface (AAI): Unlike the PM and CM, the AAI is not
platform-independent, with its implementation dependent on the framework
and/or AOP language being employed. The AAI serves as the API to the
CM and PM: agents can perceive and act upon the ACRE components.

Additionally, the wider ACRE ecosystem provides an XML format for defining
custom interaction protocols, a standard for the organisation of online protocol
repositories and a suite of tools to aid developers in communication handling.
These tools include a graphical protocol designer, a runtime conversation debug-
ger, a GUI to manage and explore protocol repositories and a runtime protocol
view to show what protocols have been loaded on an agent platform.

ACRE’s representation of protocols uses FSMs where transitions between
states are activated by the sending and receiving of messages. An example of
this can be seen in Figure 1. Here, the conversation is begun by a message being
sent that matches any of the transitions emanating from the initial “Start” state.
When this occurs, the variables (prefixed by the ? character) are bound to the
values contained in the message itself. This will, for example, fix the name of the
conversation initiator (bound to the ?player variable) and the other participant
(?broker) so that subsequent messages must be sent to and from those agents.

If a message fails to match the specification of the relevant protocol, the CM
will raise an error to make the agent aware of this. This feature is not readily
available in existing AOP languages, as these typically depend on event trig-
gers to positively match an expected message, with unrecognised or malformed
messages being silently ignored if they match no rule.

From an AOP developer’s point-of-view, ACRE facilitates the implementation
of interaction protocols by automatically checking messages against known pro-
tocols and conversations, providing information about the state of conversations
as well as making available a set of actions that operate on them. The informa-
tion available includes the participants in a conversation, the conversation state,

1 In this work we draw a distinction between protocols, which define how a series
of related messages should be structured and conversations, which are individual
instances of agents following a protocol.

Evaluation of a Conversation Management Toolkit 93

Fig. 1. An ACRE protocol

the messages that make up the conversation history and the protocol a conver-
sation follows. Additionally, the agent is made aware of conversation events such
as the conversation being advanced, cancellation, timeouts and errors (such as
messages failing to match a transition in a defined protocol). Available actions
include creating or advancing a conversation, cancelling existing conversations
or communicating protocol errors to other participants.

Figures 2 and 3 show short code samples, written in AF-AgentSpeak (an adap-
tation of Rao’s AgentSpeak(L) [15] that is inspired by Jason [4]), showing how
a simple interaction could be carried out with and without ACRE respectively.
From these samples, the difference in approach may be seen.

The ACRE code adds the contact details of another agent only once, referring
thereafter only to its name (“banker” in this example). Additionally, the events,
beliefs and actions refer to details of a conversation (identified by a unique con-
versation identifier, ?cid). The second rule reacts to a conversationAdvanced

event, which indicates that a conversation has been advanced by the communi-
cation of a message to a state named “done”. This state name is taken from the
definition of the protocol that the conversation is following. The variables ?cid
and ?length will be matched to the unique identifier of the conversation and the

94 D. Lillis, R.W. Collier, and H.R. Jordan

+initialized : true <-

acre.init,

acre.addContact(agentID(banker,addresses("local:localhost"))),

acre.start(open,banker,request,openAccount);

+conversationAdvanced(?cid,done,?length) :

conversationProtocolName(?cid,open) <-

+bankAccount;

Fig. 2. Communicating in AF-AgentSpeak using ACRE

+initialized : true <-

+openingAccount(banker),

.send(request,agentID(banker,addresses("local:localhost")),openAccount);

+message(inform,agentID(?sender,?addr), openedAccount(?id,?amt)) :

openingAccount(?sender) <-

+bankAccount;

Fig. 3. Communicating in AF-AgentSpeak without using ACRE

length of the conversation respectively. The conversation length is included to
ensure that different messages that result in the same state (where the protocol
contains a loop) will produce distinct events.

Without ACRE, messages are dealt with individually, with conversation han-
dling left to the developer (in this example, the openingAccount(banker) belief
records that the Player is engaging with the Banker agent to open a bank ac-
count). In addition, the name and address of the other agent must be provided
each time a message is sent, and matched for every incoming message.

4 Evaluation Experiment

In order to evaluate the usefulness of ACRE, an experiment was designed whereby
two groups of participants would write AOP code to tackle a particular prob-
lem. One group was required to write their code using the capabilities of ACRE
whereas the other worked without ACRE. Before describing the experiment that
was conducted, it is important to outline the motivations involved in its creation.

4.1 Motivations

The design of the problem was guided by the desire for the scenario to be
communication-focused, accessible and reproducible, with a clearly defined im-
plementation sequence and a clear reward for active agents, so that is it not
possible for an agent to benefit by being inactive. Some of these motivations
are specific to this particular experiment but many are desirable properties of

Evaluation of a Conversation Management Toolkit 95

any experiment where programming languages, paradigms or tools are being
evaluated comparatively. These motivations are discussed in more detail below.

– Focus on Communication: The aim of the evaluation was to engage in a
scenario that was communication-heavy. To facilitate this, it was decided
that the problem should require developers to create a single agent, so that
they would not be distracted from the core focus by having to deal with issues
such as co-ordination and co-operation. A group of “core agents” would be
provided with accompanying protocols, with which the participant’s agent
must interact. Communicating with the core agents should be required from
the beginning, with no progress being possible without communication.

– Accessibility: As the primary focus of the scenario is communication, little
complex reasoning should be required to build a basic implementation that
can perform well.

– Reproducibility: Every non-deterministic environment state change and core
agent decision should be recorded, so that the experiment can be exactly
replicated. Given a deterministic player agent, each replication should yield
identical results.

– Clearly defined goal: From the point of view of participants, the assigned
tasks, time allowed and scoring criteria should be clear.

– Clearly defined implementation sequence: Participants should not be able
to gain a better score merely by implementing parts of their solution in a
different order. The easiest way to ensure this is to fix the task order. In
the context of a communication-heavy experiment, task ordering may be
enforced by making later protocols dependent on others, thus avoiding the
need to monitor participants directly.

– Rewards for Active Agents: There should be no features of the experiment
where an agent implementing that feature is at a disadvantage when com-
pared to an agent that does not implement it.

4.2 Scenario

The scenario chosen for the experiment was a simple asset trading game. Each
participant was asked to develop an agent named Player. This agent was required
to interact with a number of provided core agents in order to buy and sell virtual
stocks and properties so as to increase the amount of money they had. The core
agents were as follows:

– Banker: The Banker agent maintains a Player’s bank account. The first task
of each agent is to interact with the Banker to open an account, in which an
initial amount of virtual currency is placed.

– Stockbroker: This agent is responsible for buying and selling stocks. Players
earn money by buying from the Stockbroker and selling later at a profit.

– Guru: The Guru agent is aware of how the market operates and can provide
tips on which stocks will rise quickly in price and which should be avoided.

96 D. Lillis, R.W. Collier, and H.R. Jordan

– Auctioneer: Properties can be bought from the Auctioneer agent. The value
of properties rises quickly so they offer a method of making greater profits
than on the stock market alone.

– Bidder: Bidders will participate in auctions organised by the Player to buy
properties that the Player has previously purchased from the Auctioneer.

A number of features of the game were created with the motivations outlined
above in mind. The focus on communication is maintained by providing a num-
ber of protocols that the core agents are capable of following. Each protocol is
based on one or more of the FIPA interaction protocols. These are summarised in
Table 1. An illustration of one of these protocols is shown in Figure 1, namely the
protocol invoked to buy stock from the Stockbroker agent. Similar illustrations
were available for all protocols.

Table 1. Core Agent Protocols

Agent Protocol Based On Purpose

Banker open request Open a bank account
enquiry query Query your bank balance

Stock Broker listing query Get a list of available stocks
price query Query the price of a particular stock
portfolio query Query details of stocks currently owned
buy request Buy a quantity/value of a particular stock
sell request Sell a quantity/value of a particular stock

Guru subscribe subscribe Subscribe to the guru agent’s stock tips

Auctioneer subscribe subscribe, Subscribe to details of new auctions and
english-auction participate in these auctions.

Bidder sell contract-net Sell a property

The clearly defined goal of the task is maximise capital. Thus participants are
aware of what they need to do in order to be successful.

As a result of the accessibility motivation, the scenario is designed so that
a Player can be successful using a simple strategy, without requiring advanced
reasoning. This is important when experiment participants are time-constrained.

By default, the movement of stock prices is determined randomly. An internal
clock is used to track the time of the experiment: stock prices may change on
every “tick” of the clock. A reproducible experiment may be conducted by loading
pre-prepared stock prices at the beginning of the experiment, thus ensuring that
the price movements are repeated across multiple experiments.

The ordering of the core agents in the list above reflects the order in which
they should be interacted with, thus creating a clearly defined implementation
sequence. The tasks are designed so that successfully completing a task will be
dependent on previous tasks being completed first. Although there are no tech-
nical restrictions on the order in which participants may choose to implement
the tasks, these dependencies discourage them from writing their implementa-
tions in a different order. For example, selling items to bidders is impossible

Evaluation of a Conversation Management Toolkit 97

before interacting with the Auctioneer to buy properties. However, these cannot
be bought prior to interacting with the stock market, as the minimum property
price is deliberately set to be higher than the Player’s initial capital. Similarly,
the advice of the Guru is useless unless an agent can use it when interacting
with the Stockbroker, and it is impossible to buy or sell stocks without having
previously opened an account with the banker.

To reward active agents, the stock price calculation mechanism is intentionally
artificial, in that the price of stocks always rises. This rewards developers for
implementing features, to the detriment of idle agents. If stock prices can fall,
an agent that does not participate in the market may end with more money than
one that has interacted with a Stockbroker but that has lost money in doing so.

5 First Experiment

The experiment was first conducted with a final year undergraduate class in
Fudan University, Shanghai, China. The evaluation was conducted as part of a
module on Agent Oriented Programming. None of the participants had previous
experience in developing MASs or in using an AOP language.

For consistency, all participants were required to write their code in AF-
AgentSpeak so as to run within the Agent Factory framework. This removes any
bias associated with the use of different AOP languages or frameworks.

Students were allowed three hours in a supervised laboratory setting in which
to create their solutions. The fixed time period allows quantitative comparisons
to be done with regard to the number of protocols each student implemented.
The choice of a supervised in-class test ensured that each student submitted
their own work. Subjects were permitted to access lecture notes and refer to
manuals and user guides relating to Agent Factory, AF-AgentSpeak and ACRE.

The participants were divided into two groups of equal size using a random
assignment: one group was requested to implement their solution using the ex-
tensions provided by ACRE whereas the other group was requested to implement
their solution using the existing Agent Factory message-passing capabilities. In
preparation for the experiment, a practical session was conducted so the partic-
ipants had the opportunity to gain familiarity with both forms of message han-
dling. This occurred a week prior to the evaluation so as to afford the students
sufficient time to get accustomed to agent communication. Previous practical
sessions held as part of the module exposed the participants to other aspects of
AF-AgentSpeak and AOP programming in general.

The class consisted of 46 students in total, therefore 23 were asked to im-
plement each type of solution. One student from the non-ACRE group did not
attend the evaluation, leaving 45 submissions. Additionally one other student
from the non-ACRE group instead submitted a solution that did use ACRE.

Of the remaining 21 students in the non-ACRE group, one submission was
not included in this research as only one protocol had been attempted and this
attempt had not been successful, leaving a total of 20 non-ACRE submissions.

98 D. Lillis, R.W. Collier, and H.R. Jordan

24 submissions were received that had used ACRE. Again, one of these has
not been included in this analysis, as the agent submitted did not successfully
interact with any core agent. This left a total of 23 submissions using ACRE.

The submissions were evaluated using both objective and subjective measures.
Initially, some simple objective measures were employed to measure programmer
effort (following the examples outlined in Section 2). Following this, the imple-
mentations were examined to identify any issues that the implementations may
have failed to address.

5.1 Objective Measures

The principal aim of ACRE is to help developers to deal with complex communi-
cation more easily. As such, it is important to ensure that the use of ACRE does
not add to the effort required to develop MASs. Objective measures are required
to attempt to quantify programmer effort. Two simple metrics were employed
for this purpose: 1) the number of protocols implemented within a specified time
period and 2) the number of non-comment lines of code per protocol.

The first of these can be used to compare the two participant groups in terms
of the time taken to implement protocols. Because of the ordering of the tasks,
participants are encouraged to implement the protocols in the same order as
one another. For example, it is not productive for a participant to begin by
implementing the complex auctioneer protocols while others are implementing
the simple protocol required to open a bank account. This helps to prevent the
metric being skewed by certain subjects being delayed by the order in which
they chose to implement their system.

Because there is variation in the number of protocols successfully implemented
by each participant, the count of code lines is averaged for the number of pro-
tocols implemented. Again, the clear implementation sequence means that this
is to the greatest extent possible measuring like-with-like.

Table 2. Objective measures of programmer effort for the first experiment

Protocols Implemented Lines per Protocol

ACRE 5.43 18.35
Non-ACRE 5.85 27.06

Table 2 shows the average number of protocols implemented by each group,
along with the average number of non-comment lines of code present per protocol
implemented. For the number of protocols implemented, the difference is not
statistically significant using an unpaired t -test for p = 0.05. There is, however,
a statistically significant difference in lines per protocol using the same test.

It can be seen that participants in the ACRE group implemented marginally
fewer protocols on average within the three-hour period. However, as this differ-
ence is not significant, it indicates that the speed of development is comparable

Evaluation of a Conversation Management Toolkit 99

whether ACRE is being used or not. This suggests that ACRE does not impose a
steep learning curve compared to traditional methods of conversation handling.

It is interesting that the ACRE implementations did tend to have significantly
fewer lines of code per protocol. Although this is a somewhat crude metric, it
does suggest that the automated conversation handling of ACRE may reduce the
amount of code that is required in order to successfully implement protocols.

Although objective measures are desirable in any evaluation, it is important
to take a subjective view of the code also. While no significant difference in
the amount of programmer effort required was observed, these metrics do not
capture the quality of the implementations. The next section presents subjective
analysis of the code submitted that attempts to identify this quality.

5.2 Subjective Assessment

The adoption of ACRE will be most beneficial if it improves code quality. To
gauge this, the code was examined and a number of issues were found to be
prevalent in the non-ACRE code. These issues meant that the solutions that
were submitted were very closely tied to the scenario as presented, and would
have required much more additional work to be done for an extended MAS.

By its nature, AF-AgentSpeak reacts to the receipt of messages using rules
that have a triggering event and a context. The triggering event is a some event
that has occurred (i.e. a change in the belief base) whereas the context is a set
of beliefs that should be present for the rule to be relevant. When writing non-
ACRE code in AF-AgentSpeak, the event that triggers the rule is the receipt of
an incoming message and the context consists of beliefs about the state of the
conversation (checking the sender, ensuring that the message follows the correct
preceding message etc.). This can be seen in Figure 3. For the issues that were
identified, the context of the rules were not written in the best way possible.

Identification of Issues. The particular issues that were identified are as
follows. Words in parentheses are short descriptions that are used to refer to
each issue in the ensuing analysis:

– No Checking of Message Senders (Sender): Incoming messages were matched
only using their performative and content, with no checks in place to ensure
they were sent by the correct agent.

– No Checking of Conversation Progress (Progress): As the messages followed
particular protocols, they were exchanged in a clearly-defined sequence.
Many programmers did not attempt to check the context of messages that
were received, treating them as individual messages.

– Hard-coded name checking (Name): When the message sender was checked,
it was frequently the case that the name of the sender was hard-coded.

– Checking addresses (Address): Agent’s addresses were also hard-coded.

While a solution that includes these issues is capable of successfully participating
in the trading scenario, their presence means that additional effort would be

100 D. Lillis, R.W. Collier, and H.R. Jordan

required to adapt the solution for a more open agent system or if the scenario
were to be extended with additional protocols and/or agents.

When an agent fails to check the identity of the sender, this may have un-
intended consequences. For example, a Player agent would normally react to
a recommendation from the Guru to buy a particular stock by following that
recommendation. In a more open MAS, a malicious agent may send recommen-
dations that cause other players to buy stocks that will not perform well. All
that would be required is to send a message with the same performative and
content as the Player would expect from the Guru.

Similarly, a Player that does not record the state of conversations is also sus-
ceptible to exploitation. For example, the protocol for buying stock (shown in
Figure 1) insists that the Player must have accepted a proposal to buy stock be-
fore the purchase proceeds. However, without a notion of conversation, a Player
may be persuaded that it has bought some quantity of a stock without it being
involved in the process. If this is combined with the message sender not being
checked, an agent other than a Stockbroker may trick a Player into buying stocks
it had no intention to buy. As an aside, it is interesting to note that those agents
that did record the progress of a conversation tended to use the state names
provided in the ACRE FSM diagrams, suggesting that even for developers who
do not use ACRE (or lack ACRE support in their AOP platform of choice), the
availability of protocols defined in this way is useful for visualising and reasoning
about conversations.

The two other issues relate to the difficulty in re-using the code for an extended
scenario where conversations are conducted with different agents and/or multiple
platforms. Even where the sender of a message was checked, it was frequently
the case that this was hard-coded into the context of every rule. As such, the
code was capable of conducting a conversation only with an agent of a specific
name. If the scenario were to be extended so that multiple agents were capable
of engaging in the same protocols (e.g. two Stockbroker agents that handled
a different set of stocks) then these rules would all require re-writing to allow
for additional agents. Similarly, hard-coding the addresses in the context of each
rule limits the code to single platform MASs. Adding agents on another platform
will also require all rules to be rewritten.

Because ACRE’s Conversation Manager automatically performs checking of
this type, such issues cannot arise within ACRE code. As illustrated in the code
from Figure 2, the triggering event is typically that a conversation has advanced,
with the context being used to check other details about the conversation. Con-
versation participants need only be named when the conversation is initiated.

Assuming a pre-existing conversation, a conversationAdvanced event can
only be triggered by a message that has been sent by the existing participant
to the conversation and has a performative and content that match the next
expected message in the protocol. If a message is sent by a different agent, an
unmatchedMessage event is raised to indicate that the message does not belong
to any particular conversation. This means that it is not necessary to check the

Evaluation of a Conversation Management Toolkit 101

message sender for each rule relating to communication, as the event cannot be
triggered by the wrong agent.2

This automatic checking also guards against out-of-sequence messages. In the
example of the buying protocol shown in Figure 1, the Conversation Manager in-
sists that the messages be communicated in the specified sequence, so the Stock-
broker cannot inform the Player of a successful purchase unless the Player has
previously agreed to that purchase (again, an unmatchedMessage event would
be triggered).

Thus the use of ACRE automatically protects against these issues, meaning
that were the MAS be more open or the scenario extended, far less effort would be
required to adapt the existing ACRE code to the altered circumstances. ACRE
can be seen to prevent certain coding styles that would restrict the extensibility
and reusability of communication-handling code. Although subjects were not ex-
plicitly instructed to create generic code with wider applicability, we believe that
ACRE’s prevention, by default, of these type of problems is a strong argument
in its favour.

Prevalence of Issues. For each of the issues outlined in the previous section,
it is necessary to measure how prevalent they are amongst the implementations
that were submitted. Each implementation was given one of three classifications
with regard to each of the four issues identified:

– Not susceptible: The issue was not present for any rule in the implementation.
– Totally susceptible: The issue in question was present in every rule where it

was relevant.
– Somewhat susceptible: The issue was present for some relevant rules but not

all. This ranges from those implementations where a check was omitted only
once to those where the check was only performed for one rule.

In relation to hard-coded name and address checking, these issues could not be
present in agents that were totally susceptible to the issue of checking message
senders. For those agents that did not check message senders at all, it is not
possible for these other issues to arise. For this reason, in the following analysis,
the figures shown for these two issues are displayed as a percentage of those
agents in which is was possible for them to arise.

Table 3 shows the prevalence of the issues amongst the non-ACRE submis-
sions. Figures in parentheses are the absolute number of subjects each percentage
relates to. Agents that were totally susceptible to the Sender issue are not in-
cluded in the calculations for Name or Address, as these are only based on the
number of agents that attempted to check the message sender.

From these, it can be seen that the issues raised were widespread amongst
non-ACRE developers. The hard-coding of agents’ addresses is the only issue
that was found in less than half of relevant agents.

2 ACRE does not protect against messages sent by an agent other than that identified
in the message’s sender field. This type of secure communication is considered to
be a task for the underlying Message Transport Service.

102 D. Lillis, R.W. Collier, and H.R. Jordan

Table 3. Issues present in non-ACRE code for the first experiment

Sender Progress Name Address

Totally Susceptible 40% (8) 55% (11) 67% (8) 25% (3)

Somewhat Susceptible 30% (6) 30% (6) 0% (0) 17% (2)

Not Susceptible 30% (6) 15% (3) 33% (4) 58% (7)

Over two thirds of agents would react to messages sent by the wrong agent at
least some of the time, with 40% failing to ever check the identity of a message
sender. Of those that did check, two thirds hard-coded the name of the sender,
which would require every rule to be re-written if the scenario was to be altered.

Just three participants (15%) always checked that messages were in the correct
order. On further analysis, all of these implementations were somewhat suscep-
tible to the Sender issue, which meant that there were no submissions where no
issues were found.

The following Section describes a second run of the same experiment using
different participants. The results of this can be compared to those presented
above to further demonstrate the extent to which the issues identified here appear
in code written by more experienced programmers.

6 Second Experiment

The same experiment was repeated later with a different set of participants. On
this occasion, the subjects were part of a part-time Masters-level Agent Ori-
ented Software Engineering module in University College Dublin, Ireland. These
students are experienced professional software developers working in industry,
although none had prior experience with AOP.

For this group, classes were conducted daily for five days. This included prac-
tical work each afternoon to allow students to become familiar with AOP. Com-
munication handling and ACRE were introduced on the fourth day and the
evaluation occurred on the fifth day. Thus these students had less preparation
time than those in the first experiment.

Students were again divided into two groups by random assignment. In a
class of 19 students, 10 submitted ACRE-based solutions while the remaining 9
students created non-ACRE agents. The scenario was conducted in exactly the
same way as for the first experiment.

6.1 Objective Measures

The objective metrics employed were the same as in Section 5.1. The results
are presented in Table 4. As with the first experiment, the ACRE participants
implemented marginally fewer protocols, though this difference was not statis-
tically significant. Overall, fewer protocols were implemented compared to the

Evaluation of a Conversation Management Toolkit 103

first experiment. This may have been as a result of the shorter preparation time
available to these students. For the lines of code per protocol metric, it can be
seen that both groups of ACRE students wrote a very similar amount of code.
However, it is interesting to note that the number of lines written per non-ACRE
protocol in the second experiment is lower. Again, however, this difference is not
statistically significant.

Table 4. Objective measures of programmer effort for the second experiment

Protocols Implemented Lines per Protocol

ACRE 4.4 18.93
Non-ACRE 4.67 14.87

Given the small sample size in the second experiment, it is difficult to draw
concrete conclusions based on quantitative objective analysis. However, the met-
rics do add support to the argument that ACRE does not add to the amount of
programmer effort required to create a communication-heavy agent program.

6.2 Subjective Analysis

For a subjective analysis of the second set of students’ submitted code, it is
interesting to determine the extent to which the issues that became apparent
in the first experiment are also present in the second. Table 5 shows the preva-
lence of these issues in the non-ACRE code from the second experiment. The
percentages in Table 5 are of the total of 9 non-ACRE students for the Sender
and Progress issues. For the Name and Address issues, these are calculated from
the 4 participants that were either totally or somewhat susceptible to the Sender
issue. This is calculated in the same was as in Table 3.

Table 5. Issues present in non-ACRE code for the second experiment

Sender Progress Name Address

Totally Susceptible 56% (5) 78% (7) 100% (4) 0% (0)

Somewhat Susceptible 0% (0) 22% (2) 0% (0) 0% (0)

Not Susceptible 44% (4) 0% (0) 0% (0) 100% (4)

A notable difference between these results and those arising from the first ex-
periment is that on this occasion, no student hard-coded addresses when checking
message senders. It is of interest, however, that several students hard-coded ad-
dresses for some outgoing messages. This was not a feature of the code received
for the first experiment.

104 D. Lillis, R.W. Collier, and H.R. Jordan

As with the first experiment submissions, no solution was submitted that
was completely immune from all of the common issues identified. Over half the
participants failed to ever check the sender of incoming messages. Whenever this
check was performed, it was always done by means of a hard-coded agent name.
For the Progress issue, almost a quarter of subjects made some attempt to check
for the correct message sequence. However, no student implemented this type of
checking every time it was appropriate.

We believe that the findings of the two experiments described provide a strong
argument in favour of the use of a conversation-handling technology such as
ACRE that provides automated conversation checking and exception handling
facilities without adding to the overall effort a programmer must go to when
programming MASs in which communication plays a significant part.

7 Comparison with Jason

The issues identified above arose specifically within AOP code using one spe-
cific programming language (AF-AgentSpeak) on one agent platform (Agent
Factory). To show that ACRE’s conversation-handling capabilities could have a
wider benefit than this single configuration, it was necessary to perform further
analysis. To this end, we sought to examine how conversations are handled in
a different agent framework that also lacks built-in conversation and protocol
management. For this to be effective, we required that some best-practice con-
versation handling code must be available, so that any issues identified would
not be as a result of poor coding practice or a lack of familiarity with the full
capabilities of the language or platform.

Jason is a MAS development platform that makes use of an extended version of
AgentSpeak(L) as its AOP language [4]. It supports inter-agent communication
using KQML-like messages. However, it lacks built-in support for conversation
handling and protocol definitions. Jason was chosen for this analysis for two
principal reasons. Firstly, it is a popular, well-known platform. Secondly, a book
is available that was written by Jason’s developers that includes sample code
for performing a variety of tasks, including inter-agent communication [4]. As
this code is written by the platform’s developers, we assume that it represents
recommended best-practice.

Figure 4 is an extract from an implementation of a contract net protocol for
Jason [4, p. 134]. This implementation is provided by the developers of Jason
to illustrate how an interaction protocol may be implemented for that platform.
The extract shows a plan that makes up part of the agent that initiates and
coordinates the contract net. It is intended to be used when all bids have been
received, so as to find the winner (line 7) and create an intention to announce
the result to all the participants (line 9).

In the same way as the trading game presented in this paper, the sample MAS
in which this agent was designed to run consists of a fixed set of agents with a
particular purpose. Specifically, all other agents in the system were intended as
participants in the contract net. As such, no allowance is made in the code for

Evaluation of a Conversation Management Toolkit 105

1 @lc1[atomic]

2 +!contract(CNPId) : cnp_state(CNPId,propose) <-

3 -+cnp_state(CNPId,contract);

4 .findall(offer(O,A),propose(CNPId,O)[source(A)],L);

5 .print("Offers are ",L);

6 L \== []; // constraint the plan execution to at least one offer

7 .min(L,offer(WOf,WAg)); // sort offers, the first is the best

8 .print("Winner is ",WAg," with ",WOf);

9 !announce_result(CNPId,L,WAg);

10 -+cnp_state(Id,finished).

Fig. 4. Sample Jason rule forming part of an implementation for Contract Net protocol

proposals being received from agents that were not party to the initial call for
proposals. This can be seen in line 4 of the extract, which creates a list of offers
that have been received based on any proposal that has been received from any
source. This is the same as the Sender issue identified above. Extending this
code for a more open MAS would require modification of the code to check that
agents sending proposals are expected to do so. Jason does provide a method
named SocAcc (meaning “socially acceptable”) that can prevent some types of
message being processed if they are sent by inappropriate agents. Although this
could be used to prevent non-participating agents from sending proposals, it is
not sufficiently fine-grained to prevent an agent that is a party to one contract
net from sending a proposal relating to another.

Figure 4 also illustrates that a Jason agent could also be susceptible to the
“Progress” issue. The cnp state belief in this extract is used to track the state
of the conversation. As the code in question is written by experts, this belief is
present in a number of plans so that the state of the contract net conversation
is known at all times. However, as our evaluation has shown, less experienced
programmers are more prone to omitting this type of checking.

Another issue arises in the choice of an identifier for the conversation (referred
to as the CNPId variable in the extract shown). As presented, this ID is manually
specified in the original intention that triggers the start of the contract net (not
shown). ACRE assigns IDs to conversations automatically, meaning that the
programmer need not be concerned with this aspect of conversation handling.

From this analysis, it can be seen that in the absence of integrated conver-
sation handling, AOP developers using Jason are also susceptible to the issues
outlined above. We believe that the type of conversation handling ACRE pro-
vides would help to avoid these pitfalls and so aid the development of reliable,
scalable protocol implementations.

8 Conclusions and Future Work

We have described experiments whereby two groups of students were required
to solve a communication-focused problem with and without the use of ACRE.

106 D. Lillis, R.W. Collier, and H.R. Jordan

Objective metrics applied to the first experiment indicated that ACRE can re-
duce the amount of code required to implement the protocols provided when
compared to implementing protocols without ACRE. However, similar metrics
did not produce a statistically significant difference in the second case, although
it should be noted that the sample size was much smaller. The metrics used did
not indicate that ACRE adds to the effort required of programmers to implement
conversations, which suggests that its learning curve is not overly steep.

On further subjective analysis, a number of issues arose with non-ACRE code.
These would require substantial modification of the code if the scenario were ex-
tended by the addition of additional Player agents, duplicate core agents, similar
protocols or malicious agents of any type. The issues observed cannot occur with
the use of ACRE, as the automatic conversation management ensures that both
message senders and sequence are checked without developer intervention. These
issues were present in code submitted as part of both experiments and no sub-
mission was received that was immune from all problems identified.

We also analysed some best-practice conversation-handling code written for
Jason and observed that the issues identified are applicable to that platform. We
therefore suggest that a conversation management framework such as ACRE is
generally desirable to aid the development of communication-heavy MASs.

8.1 Evolution of the Trading Game

The scenario as described has potential for further refinement in order to be
usable as a more general-purpose evaluation platform.

– In its current guise, the trading scenario accommodates a single Player agent.
A logical next step to take would be to allow a multi-player head-to-head
to take place. This would mean that Player agents are in direct competition
for auctions, as well as potentially creating a situation whereby one Player
agent may take advantage of poorly-coded opponents by exploiting one or
more of the issues identified in the above analysis.

– Although the facility to save and re-run particular games is possible, at
present no predefined games have been created. A library of game configu-
rations would allow for a variety of scenarios where, for example, auctions
would take greater or lesser importance so a single strategy would not nec-
essarily be best in all situations.

– The system agents provided as part of the trading game all behave as ex-
pected, meaning that none of them send out-of-sequence messages to test
the error-handling of the Player agents. A more difficult trading game would
require this to be handled.

– As an alternative to multi-player games, a malicious rogue system agent
could be included. The behaviour of this agent would not be described in
the specification other than to state that it may send any message at any
time. This would attempt to impersonate the existing system agents to ex-
ploit agents that do not check messages senders. It would be interesting to
measure the effect this additional requirement would have on the time taken
to develop implementations of protocols.

Evaluation of a Conversation Management Toolkit 107

References

1. Lillis, D., Collier, R.W.: Augmenting Agent Platforms to Facilitate Conversation
Reasoning. In: Dastani, M., El Fallah Seghrouchni, A., Hübner, J., Leite, J. (eds.)
LADS 2010. LNCS, vol. 6822, pp. 56–75. Springer, Heidelberg (2011)

2. Muldoon, C., O’Hare, G.M.P., Collier, R.W., O’Grady, M.J.: Towards Pervasive
Intelligence: Reflections on the Evolution of the Agent Factory Framework. In:
El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent
Programming: Languages, Platforms and Applications and Applications, pp. 187–
212. Springer US, Boston (2009)

3. Russell, S., Jordan, H., O’Hare, G.M.P., Collier, R.W.: Agent Factory: A Frame-
work for Prototyping Logic-Based AOP Languages. In: Klügl, F., Ossowski, S.
(eds.) MATES 2011. LNCS, vol. 6973, pp. 125–136. Springer, Heidelberg (2011)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley-Interscience (2007)

5. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: JADE Programmer’s Guide
(JADE 4.0) (2010)

6. Barbuceanu, M., Fox, M.S.: COOL: A language for describing coordination in multi
agent systems. In: Proceedings of the First International Conference on Multi-
Agent Systems, ICMAS 1995, pp. 17–24 (1995)

7. Cost, R.S., Finin, T., Labrou, Y., Luan, X., Peng, Y., Soboroff, I., Mayfield, J.,
Boughannam, A.: Jackal: a Java-based Tool for Agent Development. Working Pa-
pers of the AAAI 1998 Workshop on Software Tools for Developing Agents. AAAI
Press (1998)

8. Bradshaw, J.M., Dutfield, S., Benoit, P., Woolley, J.D.: KAoS: Toward an
industrial-strength open agent architecture. Software Agents, 375–418 (1997)

9. Huget, M.P., Koning, J.L.: Interaction Protocol Engineering. Communications,
291–309 (2003)

10. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic Generation of Self-
Monitoring MASs from Multiparty Global Session Types in Jason. In: Baldoni,
M., Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI),
vol. 7784, pp. 76–95. Springer, Heidelberg (2013)

11. Hochstein, L., Basili, V.R., Vishkin, U., Gilbert, J.: A pilot study to compare
programming effort for two parallel programming models. Journal of Systems and
Software 81(11), 1920–1930 (2008)

12. Luff, M.: Empirically Investigating Parallel Programming Paradigms: A Null Re-
sult. In: Workshop on Evaluation and Usability of Programming Languages and
Tools, PLATEAU, pp. 43–49 (2009)

13. Rossbach, C.J., Hofmann, O.S., Witchel, E.: Is Transactional Programming Actu-
ally Easier? ACM SIGPLAN Notices 45(5), 47–56 (2010)

14. VanderWiel, S.P., Nathanson, D., Lilja, D.J.: Complexity and performance in par-
allel programming languages. In: Second International Workshop on High-Level
Programming Models and Supportive Environments, pp. 3–12 (1997)

15. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

Compact and Efficient Agent Messaging

Kai Jander and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{jander,lamersd}@informatik.uni-hamburg.de

Abstract. Messages are considered to be a primary means of communi-
cation between agents in multi-agent systems. Since multi-agent systems
are used for a wide variety of applications, it also includes applications
like simulation and calculation of computer generated graphics which
need to employ a large number of messages or very large messages. In
addition, another set of applications target hardware which is resource
constrained in either bandwidth or processing capacity. As a result, these
applications have different requirements regarding their messages than
other agent message formats. This paper proposes useful properties of
agent messages and evaluates them with regard to different types of ap-
plications. Based on this evaluation a message format for Jadex called
Jadex Binary is proposed which emphasizes properties which are not
traditionally the focus of agent message formats and compare it to well-
known formats based on those properties.

1 Introduction

Multi-agent systems enable the development of scalable and highly dynamic
applications, which facilitates their deployment on infrastructure such as struc-
turally and spatially distributed systems and the integration of mobile devices
in such systems. An important means for coordinating agents within an appli-
cation is the use of messages passed between agents. This mechanism is one of
the reasons that allow the autonomous behavior of agents which enables them
to be shielded from direct influence from the rest of the system and establish a
measure of robustness

Nevertheless, certain classes of applications deployed on such systems have
special requirements which appear to be in conflict with the focus of traditional
agent message formats. Examples of this type of applications include real-time
audio and video communication, distributed simulation and real-time distributed
computer generated image (CGI) animation.

Traditionally, these requirements have not been the focus of agent messaging,
which tends to target other useful properties that are important to other types
of applications. As a result, it would broaden the scope of agent systems to
specifically support such application by providing an alternative message format
that focuses on the requirements of those applications.

In the following section we will try to identify typical requirements for agent
messages and distill the ones that are especially important to the aforementioned

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 108–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Compact and Efficient Agent Messaging 109

classes of applications. We will then present some typical message formats and
attempt to identify which criteria they attempt to fulfill. Finally, we will present
a compact message format that caters to the special class of application with real-
time and bandwidth-restricted sets of requirements and compare it to traditional
agent message formats, demonstrating key advantages for this special set of
applications.

2 Features of Agent Message Formats

Since multi-agent applications cover a large spectrum of potential applications,
there are a number of features of agent messages which are particularly useful
for different classes of applications. In addition to different application classes,
different points in the development cycle may emphasize the importance of cer-
tain features over others. While there is a potentially large number of features
that could be potentially useful, we will consider the following six features which
appear to be features that are commonly requested for agent message:

– Human Readability allows humans to read messages with standard tools like
text viewers without the help of decoders or other special tools.

– Standard Conformance requires messages to conform to a published message
format standard or language standard, allowing interaction between systems
conforming to those standards.

– A Well-formed Structure defines a valid form for messages, allowing the
system to distinguish between valid and invalid messages.

– Editability goes beyond human readability by allowing users to edit and
restructure messages using standard tools like text editors.

– Performance describes the computational requirements to encode and de-
code messages.

– Compactness defines the smallness of the encoded messages.

In order to evaluate these features we will use and example set of four common
types of applications which are often used in practice. The first type are real-
time applications, where latency becomes a primary concern. Examples of this
type of application can be found in any real-time communication system such
as voice or video conference systems. In those type of applications high latency
has a considerable negative impact on the usefulness of the application and may
make its use outright impossible.

The second type of applications are cross-platform applications such as ap-
plications using Agentcities (see [1]), which involves the use of multiple agent
platforms and multiple types of agents. Being able to correctly interpret messages
from other agents or platforms is key for such applications.

Another common type of applications are enterprise backend applications.
These applications often run on application servers on high-performance in-
tranets. It is key for such applications to provide quick access to the services
required by the business in order to maintain high productivity.

110 K. Jander and W. Lamersdorf

The final type of applications are mobile applications, where a large number
of nodes involved in the application are physically mobile and are typically con-
nected using wireless connections. This means that the nodes are often restricted
in terms of computational resources and network bandwidth. Energy supply is
a key factor here, requiring modest use of resources even when more would be
available.

Fig. 1. Importance of message format features for different types of applications

Figure 1 shows the application types and the importance of the message for-
mat features. Some application types such as real-time applications and mobile
applications have similar feature importance profiles for different reasons. While
latency requires prudent use of resources for real-time applications, it is the en-
ergy and physical restrictions that make it a necessity for mobile applications. For
cross-platform application the ability to interpret messages is key, so a standard-
conformant and well-formed message format takes precedence over compactness
and performance. Enterprise backend applications are more mixed, in that while
the intranet typically provides abundant bandwidth, the large number of request
still require good performance.

While an agent may have the option to open raw connection to other agents,
bypassing the platform messaging service and supplying its own encoding and
protocol, this is usually not advisable for the following reasons: On the one hand,
developing an efficient transfer protocol involves a non-trivial amount of effort.
It would therefore ease development effort if the agent message layer could be
used. On the other hand, the agent system may be running within a restricted
environment. For example, enterprise applications typically run on servers where
the communication is tightly controlled for both support and security reason.
As a result, an agent may not be allowed to make connections outside what is
provided by the agent platform.

Furthermore, there is another aspect concerning application development. In
practice, there is often a distinction between the development phase of an appli-
cation and the production use in a business. For example, during development,
applications often include additional logging and debug code to identify faults,
includes the use of assertions to validate program invariants and the use of tests
to validate functionality. During production use, these features are often omitted
in favor of higher throughput or lower latency.

Figure 2 demonstrates this difference between the two stages with regard
to agent message formats. During development being able to easily read and
modify messages helps finding protocol errors and other implementation errors.

Compact and Efficient Agent Messaging 111

Fig. 2. Importance of message format features during development and production use

In addition, a well-formed structure allows the use of validation tools to ensure
message correctness. However, this changes during production use where good
encoding and decoding performance and message compactness aids both system
throughput and latency. While in use during production, this takes precedence
over issues like message readability since, for the most part, it is no longer
necessary for humans to read the agent messages.

The next section will take a look at common agent message formats that have
been traditionally in use for multi-agent systems and show how well they support
the proposed message format features. This will show that there is potential for
improvements on both performance and compactness if the other features are
less of a concern.

3 Related Work

Over time, multi-agent system have used a variety of message formats. Early
system used simple ad-hoc languages in string-based formats, however, this re-
sulted in languages that were specific to the application and made it difficult
for multi-agent systems to communicate. As a result, languages were developed
to allow interchange between agent applications and agent system. One early
attempt at defining an agent language was the Knowledge Query and Manip-
ulation Language (KQML - see [2]). However, it was quickly recognized that a
standard language is useful for allowing communication between different agent
system.

As a result, message formats and languages had to be standardized. The Foun-
dation of Intelligent Physical Agents (FIPA) therefore proposed two standards,
the FIPA Agent Communication Language (ACL - see [3] for the message struc-
ture and a specific language for the message content called FIPA SL (see [4])
with different levels of complexity reaching from FIPA SL0 to FIPA SL2, both
of which are used in popular agent platforms such as JADE (see [5]).

This distinction between structure and content in later formats as well, for ex-
ample, while the Jadex Agent Platform (cf. [6]) uses an XML-based format called
Jadex XML, it distinguishes between message and content encoding. However,
in case of Jadex, it uses Jadex XML for encoding both the message and content.
Since the bulk of the message for the types of applications being targeted tends
to be the content, the focus of this paper will be content encoding. However, like
with Jadex XML, the same principles can be applied to the message encoding
as well.

112 K. Jander and W. Lamersdorf

Fig. 3. Feature support by different methods of agent content encoding

When considering the agent format features proposed in Section 2, it becomes
clear that while some features are well-supported, some other features were not
the focus of those formats (cf. Fig. 3). For example, FIPA SL, being a text-based
format, is fairly well readable and editable by humans, has a definition of a well-
formed structure and is a standard for agent messaging with wide support for
many agent platforms. Jadex XML on the other hand, while not being a widely-
used standard, has a well-defined and openly accessible schema and allows a
human user to easily read and edit agent messages.

However, neither compactness nor performance seem to be the focus of either
language. This is likely to be the result of those features being in conflict with
others. For example, a compact format tends to be hard for a human to read.

The need of certain application for the performance and compactness features
is recognized by JADE. While discouraged due to standard non-conformance,
JADE supports adding content objects to messages instead of a string-based
content. It then uses the Java language serialization feature (see [7]). However,
while this approach is fairly compact and certainly complying with the perfor-
mance feature, it has multiple drawbacks. First, for a number of reasons listed
in the specification it only supports classes that explicitely declare to implement
a market interface. While it is trivial to add the interface, for legacy classes the
source code may be unavailable.

In addition, some useful built-in classes like BufferedImage do not implement
this marker interface and there is no way to easily retrofit the serialization system
to support this class. Furthermore, there tend to be compatibility issues with
serialization, requiring a versioning convention. The ObjectOutputStream class
used to serialize object also uses some clever caching mechanisms which can be
confusing to the user. For example, writing an object to the stream, modifying
it, then writing it again results in the object reproduced twice in the unmodified
state when unserialized unless an explicit reset is issued. Finally, as we will
show, the compactness of the serialization format can be further improved upon,
especially without an additional compression cycle.

In the next section we will introduce an agent message format for Jadex called
Jadex Binary that focuses solely on the compactness and performance features.
This message format will be an alternative to the default Jadex XML which can
be used by application that have a strong need for those two features. We will
then evaluate this new format based on those features and compare it to the
other formats.

Compact and Efficient Agent Messaging 113

4 Format Description

Since the primary goal of the Jadex Binary format is to emphasize the com-
pactness and performance properties of the format, it uses a binary instead of a
string-based encoding for the messages. The primary concern is the serialization
of the objects representing the message, such as, but not exclusively, ontology ob-
jects. In addition, some techniques are employed to prefer the compact encoding
of common cases of data over the rare cases, providing some simple compression
based on the meta-information available from the objects. The format is based
on a set of techniques to encode primitive types which are then used to encode
more complex data. The following subsections will start with the primitive types
and then progress to more complex types such as bean objects.

4.1 Variable-Sized Integers

A key concept used in Jadex Binary are variable-sized integers. The goal is to
encode unsigned integer values in a variable-sized format that encodes small
values with less space than larger ones. The technique is based on the encoding
technique of element IDs in the Extensible Binary Meta-Language (EBML - see
[8]), which again is based on the variable Unicode-encoding UTF-8 (see [9]).

Fig. 4. Examples of variable-sized integers and their value ranges

A variable-sized integer is byte-aligned and consists of at least one byte (cf.
Fig. 4). The number of zero bits starting from the highest-order bits before the
first bit values one denotes the number of additional bytes called extensions that
belong to this variable integer. The rest of the byte is then used to encode the
highest-order bits of the integer value, the extensions then providing the lower
order bits of the value, which is then shifted by a constant equal to the end of the
previous value range plus one. This technique of storing integer value uses less
space to encode small values at the expense of additional space of high values.

The next part will describe the encoding of boolean values in the format which
can be used to extend variable integers to support negative values. Furthermore,
variable integers are also heavily used for the string encoding.

4.2 Boolean Values

At first glance, encoding boolean values appears to be trivial since it only requires
to store a single bit. However, a data stream which is not byte-aligned requires

114 K. Jander and W. Lamersdorf

a considerable amount of processing to shift and pad bit during encoding and
decoding, impacting the performance property of the format. As a result, a
byte-aligned format is highly preferable. The Java language solves this issue by
simply using a full byte to encode a single boolean value, however, this approach
essentially wastes seven of the eight bits in the byte which is incompatible with
the demand of a compact format.

Fig. 5. Encoding of boolean values in the message: The first boolean value writes a
byte-sized bit field that is reused by the next seven values

Therefore, multiple boolean values are packed into a single bit. This is ac-
complished by writing a full byte where the first boolean value is written and
updating that byte whenever additional boolean values are added (cf. Fig. 5).
When the byte is filled with eight boolean values, another byte is written to the
stream when the ninth boolean value is written. While the update cycles require
some additional overhead on part of the encoder by having to update an earlier
part of the byte stream, it reduces overhead for the decoder. During decoding,
the byte is read when its first boolean value is read and then buffered for later
reads.

This enables efficient storage of boolean values. This can be combined with
the variable integer encoding to provide support for signed variable integers.
This is accomplished by writing a boolean sign flag before writing the absolute
value as a variable integer.

4.3 Strings

String encoding is a key part in ensuring compactness since a large part of
messages tend to be strings. When a string is written by the encoder, it is first
checked whether the string is already known. If not, the string is assigned a
unique numerical ID and added to the set of known strings called the string
pool.

The encoder then uses variable integer encoding to write the ID to the stream
(cf. Fig 6). The string is then encoded using UTF-8 and its encoded size is

Compact and Efficient Agent Messaging 115

Fig. 6. When a string is occured for the first time in a message, it is encoded in full
and assigned a unique ID allowing later occurences to be encoded by referencing the
ID

written to the stream as a variable integer, followed by the encoded string itself.
If the string is already known by the encoder, the encoder simply writes its ID
as a variable integer, avoiding duplicate storage of the string.

Since the number of unique strings in a message is usually less than 128,
a single byte is sufficient to encode any following occurence of a string using
variable integer encoding. Furthermore, the size of strings tend to be short,
generally less than 16511 bytes or even 127 bytes, especially if few characters are
used outside the first 128 unicode characters is used, allowing the string size to
be encoded in one or two bytes.

All strings share the same string pool, whether it is used to encode an actual
string or if it is used for other internal purposes such as type encoding. This
maximizes the chance of finding duplicate strings in the pool, reducing message
size.

4.4 Other Primitives

Other primitive values consist of integer and floating point types byte, short,
int, long, float and double. All of these values are simply translated into network
byte order (see e.g. [10]) and added to the message. The only exception are 32-
bit int value. In many cases, these values are used as a kind of default integer
type. For example, the Java language treats all untyped integer literals as being
of this type. This leads to a disproportionately large set of int-typed values to
consists of small numbers.

As a result, we found it to be advantageous with regards to the compactness
property to encode 32-bit int values as variable-sized integers in the message
data. While this can lead to large values being encoded with more bytes than
the 4 bytes such a value represents, for most values the size is actually lower
than 4 bytes, providing an overall net advantage in terms of size.

4.5 Complex Objects

Complex objects are needed to encode messages containing ontology objects
and their sub-objects. Aside from certain special cases which are discussed
in the following subsections, complex objects have a type or class and con-
tain a number of fields that can either be primitives or other complex objects.

116 K. Jander and W. Lamersdorf

For this reason they can be traverse recursively, encoding each sub-object when
it occurs. The encoder only needs to keep track of objects that have already
been encountered in order to avoid reference loops (Object A containing Object
B containing Object A).

Fig. 7. A complex object is encoded using its class name, the number of sub-objects
and pairs of field names and encoded sub-objects

As a result, the format for complex object can be straightforward (cf. Fig 7).
It starts with the fully-qualified class name, defining the type of the object. This
is written to the message data using the string writing technique described in
Section 4.3. Since some sub-objects may not be defined (i.e. reference null), not
all of the sub-objects need to be encoded. Therefore, the class name is followed by
the number of encoded sub-objects. This number is written to the message data
as a variable integer as describe in Section 4.1. Then the sub-objects are written
by first writing the name of the field in the object containing the sub-object,
then recursively encoding the sub-object itself. During decoding, the decoder
first reads the class name and instantiates an object of that class. Then it reads
the number of subobjects and finishes by decoding the sub-objects themselves,
adding them to the object using the appropriate accessor methods.

Generally, it is expected that the objects offer accessor methods as described
in the Java Bean specification [ref?] and the encoder will only encode fields for
which such accessor methods are available. However, using annotations, a class
may declare that the encoder should encode the field regardless of the existance
of accessor methods. In this case the fields are access directly using the reflection
API.

4.6 Arrays

Arrays are encoded in a manner similar to complex objects, starting with the
array type and concatenating the number of array components and the compo-
nents themselves. However, since the array type already provides information
about the array components, this information can be used to reduce the amount
of information that needs to be stored about the components. The array en-
coding therefore supports two modes, a raw mode which is used for primitive
type values and a complex mode for objects. In raw mode, the components are
just written without additional information about the type of each component.
This can be done in case of primitive types for two reasons: First, primitive types

Compact and Efficient Agent Messaging 117

cannot be subclassed, thus the array type is always sufficient to derive the com-
ponent type and furthermore, primitive values are passed by value and thus do
not have a null reference.

This is not the case for objects. The array type may only point at a super-
class of the component object and the component object may simply be a null
reference. This means that type information about each array component needs
to be included. However, in most cases it is safe to assume that the array type
describes the type of the component. Therefore, each component is preceded by
a boolean value indicating whether further component type information is stored
or if the type information can be derived from the array type. Only if this flag
indicates that type information is stored, such in the case of subclasses or null
values, the flag is followed by the type information. Otherwise, the component
object is directly appended after the boolean flag.

In the next section we will evaluate Jadex Binary in terms of the performance
and compactness features and compare it to three other message formats. This
was done with a series of test in which the message formats were measured and
evaluated.

5 Evaluation

In order to evaluate the performance and compactness feature of Jadex Binary,
we conducted a series of tests. The experiments were conducted using an Intel
i5 750 processor with four cores clocked at 2.67 GHz. The machine was supplied
with 8 GiB of memory, however, the Java heap size was limited to 2 GiB. The
Java environment used was the Oracle Java SE 6 Update 31 which was running
on a current version of Gentoo Linux compiled for the x86-64 instruction set
with an unpatched Linux 3.2.2 kernel.

The content formats used were FIPA SL, the built-in Java serialization, Jadex
XML and Jadex Binary. The JADE agent platform 4.1.1 using the BeanOntology
was used as a representative of Java SL encoding. An test class representing
an agent action was used as data set to be encoded. The agent action sample
contained a 514 byte string literal, a second string containing a randomized long
value encoded as string, a single integer value, an array of 20 integer literals,
an array of boolean values and finally an array of objects of the class itself to
represent recursively contained sub-objects.

For the compactness tests, this array contained 100 further instances of the
class, which themself had the field set to null. For the performance tests, the
number of objects in that array was varied, starting at 10000 objects and in-
creasing in steps of 10000 up to 100000 objects. The compactness was measured
by counting the number of bytes of the encoded content. If the encoded content
was a string, it was converted to a byte representation using UTF-8 encoding
(other encodings like UTF-16 would have been possible but would have resulted
in worse results). For the performance, the time between start and end of the
encoding cycle was measured, other tasks like encoder and object setup was not
considered.

118 K. Jander and W. Lamersdorf

In the following, we will present the results of both the performance and the
compactness features. While the test data is certainly artificial, we have tried to
supply what we think is a good cross-section of possible data cases.

5.1 Performance

In order to avoid interference with lazy initialization procedures and the just-in-
time compilation of the Java VM, all performance tests were run twice, with the
results of the first test run being discarded. This allowed the Java environment to
compile the code and the encoding framing to initialize constants during the first
pass so that the real performance figures could be obtained during the second
pass.

Fig. 8. Results for the performance test runs, the Jade FIPA SL encoding requiring an
especially long time

The result of the tests can be seen in Figure 8. While the encoding times of
all encoding seem to increase linearly, the FIPA SL encoding provided by JADE
seems to require an unusually long time. As expected, both Jadex Binary and
the Java serialization mechanism provide substantially better results, however,
even Jadex XML which is not intended to be optimized for this format feature
still offers substantially lower encoding times than the FIPA SL encoding.

Figure 9 gives a closer look to the three highest performing formats. While
Jadex Binary clearly provides an advantage over Jadex XML by roughly a factor
of two, the Java serialization is almost an order of magnitude faster. Initial
analysis seems to suggest this is due to the use of the Java Reflection API used
by both Jadex XML and Jadex Binary, which the Java serialization mechanism
can avoid due to its built-in nature. However, Java serialization has further
drawbacks as outlined in Section 3, meaning it is not a general solution to the
problem and has a more narrow scope of environments in which it can be useful,
for example, when dealing with highly homogeneous environments.

Compact and Efficient Agent Messaging 119

Fig. 9. Performance results using the same data set as Fig. 8 with JADE FIPA SL
encoding excluded

5.2 Compactness

In order to test for content compactness, the test object was passed to the
encoder and the number of bytes of the encoded object was measured. Since the
test object contained a fair amount of test data, the resulting content sizes were
expected to be large.

As can be seen in Figure 10, the differences between the four formats are quite
substantial. Jadex XML is barely half the size of the FIPA SL encoding and both
Java serialization and Jadex Binary are substantially smaller still. In fact, Jadex
Binary clearly provided the most compact representation of the test object,
being smaller than even the Java serialization format by a factor of roughly 2.5.
A fair amount of this is likely to be due to redundant information, especially of
string values, which Jadex Binary can exploit (though Jadex XML uses a similar
mechanism). In addition, text-based formats like FIPA SL and Jadex XML use
a large amount of redundant strings to represent their formatting, such as tags
in the case of XML.

In order to test this assumption, another set of tests was performed, which
were identical to the previous tests but added an additional compression pass,
converting it to the gzip-format, which uses the DEFLATE algorithm (see [11])
to reduce data redundancy. The results shown in Figure 11 substantiate the
assumption. The DEFLATE algorithm drastically reduced the redundancies in
both FIPA SL and Jadex XML with FIPA SL now even coming out ahead of
Jadex XML. Nevertheless, both Java serialization and Jadex binary still show
an advantage in compactness with Jadex Binary maintaining a slim margin of
Java serialization.

120 K. Jander and W. Lamersdorf

Fig. 10. Content sizes in bytes after encoding the object and further compressing the
format with gzip

Fig. 11. Content sizes in bytes after encoding the object and further compressing the
format with gzip

Since the compression pass substantially reduces the size of even verbose for-
mats, it may suggest that starting out with a compact format only gives a
marginal advantage. However, since data compression is not free in terms of
computation time, this has to be weighed against the performance message fea-
ture. Despite the DEFLATE algorithm being a comparably fast compression
algorithm, Figure 12 shows that it adds substantially to the total encoding time
of the content. In fact, the additional time require seems to grow with the num-
ber of bytes in the uncompressed content, which appears reasonable considering
the algorithm must evaluate every byte of the uncompressed data to produce a
reversible output.

As a result, data compression does not appear to be generally beneficial when
both performance and compactness are important, however, it is another useful
tool to adjust the balance between the two language features. In the next section
we will discuss further improvements and future work and provide a conclusion
on the performance of Jadex Binary.

Compact and Efficient Agent Messaging 121

Fig. 12. An additional compression pass increases total encoding time

6 Future Work and Conclusion

The evaluation of Jadex Binary in Section 5 seems to give sufficient evidence
that Jadex Binary already has significant advantages in both compactness and
performance. However, the performance results of the Java serialization shows
that further performance improvements may be possible. One way of further
reducing the overhead of Jadex Binary is to reduce the use of the Java Reflec-
tion API to access complex objects. This could be accomplished by injecting
bytecode-engineered delegate classes which use direct method calls to retrieve
and set bean properties.

In addition, the encoder and decoder of Jadex Binary are largely independent
of the Jadex platform. It would therefore be possible to port the message format
to other agent platforms in order to offer an alternative compact format for agent
communications for applications that require it.

Overall, Jadex Binary is able to represent agent messages in a compact form
and performs in a reasonably fast manner. Since these two features were the pri-
mary goal of Jadex Binary, it does so by sacrificing others like human readability.
Nevertheless, if those features are important, other language already provide suf-
ficient support. This allows a developer of a multi-agent system to pick the kind
of format that provides the best match for the requirements of the application.

References

1. Willmott, S., Dale, J., Burg, B., Charlton, P., O’Brien, P.: Agentcities: A World-
wide Open Agent Network. Agentlink News 8 (November 2001)

2. Finin, T., Weber, J., Wiederhold, G., Genesereth, M., McKay, D., Fritzson,
R., Shapiro, S., Pelavin, R., McGuire, J.: Specification of the KQML agent-
communication language – plus example agent policies and architectures. Tech.
Rep. EIT TR 92-04 (1993)

122 K. Jander and W. Lamersdorf

3. FIPA ACL Message Structure Specification: Foundation for Intelligent Physical
Agents (FIPA), document no. FIPA00061 (December 2002), http://www.fipa.org

4. FIPA SL Content Language Specification: Foundation for Intelligent Physical
Agents (FIPA), document no. FIPA00008 (December 2002), http://www.fipa.org

5. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - A Java Agent Devel-
opment Framework. In: Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni,
A. (eds.) Multi-Agent Programming: Languages, Platforms and Applications, pp.
125–147. Springer (2005)

6. Pokahr, A., Braubach, L.: From a research to an industrial-strength agent platform:
Jadex V2. In: Fill, H.-G., Hansen, H.R., Karagiannis, D. (eds.) Business Services:
Konzepte, Technologien, Anwendungen - 9. Internationale Tagung Wirtschaftsin-
formatik, WI 2009, pp. 769–778. Österreichische Computer Gesellschaft (February
2009)

7. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd,
2nd edn. Addison-Wesley (2005)

8. Wiesner, C., Lhomme, S., Cannon, J.: Extensible Binary Meta-Language (EBML)
(2012), http://ebml.sourceforge.net/

9. The Unicode Consortium. The Unicode Standard. Addison Wesley (2006)
10. Hoffman, P., Yergeau, F.: UTF-16, an encoding of ISO 10646. RFC 2781, Internet

Engineering Task Force (February 2000), http://www.ietf.org/rfc/rfc2781.txt
11. Deutsch, L.P.: DEFLATE Compressed Data Format Specification version 1.3. RFC

1951, Internet Engineering Task Force (May 1996),
http://www.ietf.org/rfc/rfc1951.txt

http://www.fipa.org
http://www.fipa.org
http://ebml.sourceforge.net/
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc1951.txt

Query Caching in Agent Programming Languages

Natasha Alechina1, Tristan Behrens2, Koen V. Hindriks3, and Brian Logan1

1 School of Computer Science,
University of Nottingham,
Nottingham NG8 1BB UK

2 Department of Informatics,
Clausthal University of Technology,

Germany
3 Department of Intelligent Systems,

Delft University of Technology,
The Netherlands

Abstract. Agent programs are increasingly widely used for large scale, time
critical applications. In developing such applications, the performance of the
agent platform is a key concern. Many logic-based BDI-based agent program-
ming languages rely on inferencing over some underlying knowledge represen-
tation. While this allows the development of flexible, declarative programs, re-
peated inferencing triggered by queries to the agent’s knowledge representation
can result in poor performance. In this paper we present an approach to query
caching for agent programming languages. Our approach is motivated by the ob-
servation that agents repeatedly perform queries against a database of beliefs and
goals to select possible courses of action. Caching the results of previous queries
(memoization) is therefore likely to be beneficial. We develop an abstract model
of the performance of a logic-based BDI agent programming language. Using our
model together with traces from typical agent programs, we quantify the possi-
ble performance improvements that can be achieved by memoization. Our results
suggest that memoization has the potential to significantly increase the perfor-
mance of logic-based agent platforms.

1 Introduction

Belief-Desire-Intention (BDI) based agent programming languages facilitate the devel-
opment of rational agents specified in terms of beliefs, goals and plans. In the BDI
paradigm, agents select a course of action that will achieve their goals given their be-
liefs. To select plans based on their goals and beliefs, many logic-based BDI-based
agent programming languages rely on inferencing over some underlying knowledge
representation. While this allows the development of flexible, declarative programs, re-
peated inferencing triggered by queries to the agent’s knowledge representation can
result in poor performance. When developing multiagent applications for large scale,
time critical applications such performance issues are often a key concern, potentially
adversely impacting the adoption of BDI-based agent programming languages and plat-
forms as an implementation technology.

In this paper we present an approach to query caching for agent programming lan-
guages. Our approach is motivated by the observation that agents repeatedly perform

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 123–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

124 N. Alechina et al.

queries against a database of beliefs and goals to select possible courses of action.
Caching the results of previous queries (memoization) is therefore likely to be benefi-
cial. Indeed caching as used in algorithms such as Rete [1] and TREAT [2] has been
shown to be beneficial in a wide range of related AI applications, including cognitive
agent architectures, e.g., [3], expert systems, e.g., [4], and reasoners, e.g., [5]. However
that work has focused on the propagation of simple ground facts through a dependency
network. In contrast, the key contribution of this paper is to investigate the potential of
caching the results of arbitrary logical queries in improving the performance of agent
programming languages. We develop an abstract model of the performance of a logic-
based BDI agent programming language, defined in terms of the basic query and update
operations that form the interface to the agent’s knowledge representation. Using our
model together with traces from typical agent programs, we quantify the possible per-
formance improvements that can be achieved by memoization. Our results suggest that
memoization has the potential to significantly increase the performance of logic-based
agent platforms.

The remainder of the paper is organised as follows. In Section 2 we introduce an ab-
stract model of the interface to a logic-based BDI agent’s underlying knowledge repre-
sentation and an associated performance model. Section 3 presents experimental results
obtained from traces of typical agent programs and several key observations regarding
query and update patterns in these programs. Section 4 introduces two models to exploit
these observations and improve the efficiency of the use of Knowledge Representation
Technologies (KRTs) by agent programs. Section 5 discusses related work, and Section
6 concludes the paper.

2 Abstract Performance Model

In this section, we present an abstract model of the performance of a logic-based agent
programming language as a framework for our analysis. The model abstracts away de-
tails that are specific to particular agent programming languages (such as Jason [6],
2APL [7], and GOAL [8]), and focuses on key elements that are common to most, if not
all, logic-based agent programming languages.

The interpreter of a logic-based BDI agent programming language repeatedly exe-
cutes a ‘sense-plan-act’ cycle (often called a deliberation cycle [9] or agent reasoning
cycle [6]). The details of the deliberation cycle vary from language to language, but in
all cases it includes processing of events (sense), deciding on what to do next (plan),
and executing one or more selected actions (act). In a logic-based agent programming
language, the plan phase of the deliberation cycle is implemented by executing the set
of rules comprising the agent’s program. The rule conditions consist of queries to be
evaluated against the agent’s beliefs and goals (e.g., plan triggers in Jason, the heads
of practical reasoning rules in 2APL) and the rule actions consist of actions or plans
(sequences of actions) that may be performed by the agent in a situation where the
rule condition holds. In the act phase, we can distinguish between two different kinds
of actions. Query actions involve queries against the agent’s beliefs and goals and do
not change the agent’s state. Update actions, on the other hand, are either actions that
directly change the agent’s beliefs and goals (e.g., ‘mental notes’ in Jason, belief update

Query Caching in Agent Programming Languages 125

actions in 2APL), or external actions that affect the agent’s environment, and which
may indirectly change the agent’s beliefs and goals.

In a logic-based agent programming language, the agent’s database of beliefs and
goals is maintained using some form of declarative knowledge representation technol-
ogy. Queries in the conditions of rules and query actions give rise to queries performed
against the knowledge representation. Update actions give rise (directly or indirectly)
to updates to the beliefs and goals maintained by the knowledge representation. For
example, Figure 1 illustrates example rules from Jason, 2APL and GOAL agent pro-
grams, which select a move action to move a block in the Blocks World environment.
While the rules appear quite different and have different components, the evaluation of

+!on(X,Y) <- !clear(X); !clear(Y); move(X,Y).

(a) Jason

allOnTable <- on(X,Y) and clear(X) and not(Y=table) |
{ @blocksworld(move(X,table),); On(X,table) }

(b) 2APL

if a-goal(tower([X| T])) then move(X, table).

(c) GOAL

Fig. 1. Example Blocks World rules

the conditions of each rule gives rise to similar queries to the underlying knowledge
representation. In this example, the terms on, clear and tower are predicates which
are evaluated by querying the belief and goal bases of the agents. Similarly, the agent
programs use logical rules (Horn clauses) to represent knowledge about the environ-
ment. For example, Figure 2 illustrates a rule used in the Jason Blocks World agent to
determine whether a set of blocks constitutes a tower.

tower([X]) :- on(X,table).
tower([X,Y|T]) :- on(X,Y) & tower([Y|T]).

Fig. 2. Example Jason logical rule

The 2APL and GOAL agents use the same recursive rule in Prolog format with ‘&’
replaced by ‘,’. Similarly, in each case, execution of external actions such as move and
internal belief and goal update actions give rise to updates to the agent’s beliefs and
goals, either indirectly through perception of the environment (in the case of external
action) or directly (in the case of internal actions).

From the point of view of the agent’s knowledge representation, the three steps in
the sense-plan-act cycle can therefore be mapped onto two kinds of knowledge rep-
resentation functionality. The knowledge representation must provide functionality for

126 N. Alechina et al.

querying an agent’s beliefs and goals when applying rules or executing query actions in
the agent’s plans, and for updating an agent’s beliefs and goals upon receiving new in-
formation from other agents or the environment, or because of internal events that occur
in the agent itself. Our performance model therefore distinguishes two key knowledge
representation phases that are common to virtually all logic-based agent programming
languages: a query phase and an update phase. The two phases together constitute an
update cycle.

Fig. 3. Update Cycle

The model is illustrated in Figure 3. The query phase includes all queries processed
by the agent’s knowledge representation in evaluating rule conditions to select a plan
or plans, and in executing the next step of the agent’s plans (e.g., if the next step of
a plan is a belief or goal test action). The update phase includes all updates to the
agent’s knowledge representation resulting from the execution of the next step of a
plan, where this step changes the agent’s state directly (e.g., the generation of subgoals
or the addition or deletion of beliefs and goals), and updating the agent’s state with
new beliefs, goals, messages or events at the beginning of the next sense-plan-act cycle.
Note that update cycles do not necessarily correspond one-to-one to deliberation cycles.
For example, in Jason and 2APL the action(s) performed at the end of a deliberation
cycle may be internal actions (such as test actions) that do not update the agent’s beliefs
and goals, and in these languages the query phase may include queries from several
deliberation cycles. In what follows, we assume that the query phase occurs first and
the update phase second, but our results do not depend on this particular order and a
similar analysis can be performed if the order of the phases is reversed.

To develop our performance model in detail, we must first make the query/update
interface to the agent’s knowledge representation precise. Different agent program-
ming frameworks utilise different types of databases to store different parts of the
agent’s state. For example, most logic-based agent programming languages use dif-
ferent databases for beliefs and for goals, and almost all languages (with the exception
of GOAL) maintain bases that store plan-like structures or intentions. Here we focus
on those aspects common to most logic-based agent programming languages, namely
operations on the agent’s beliefs and goals, and abstract away from the details of their
realisation in a particular agent platform. In particular, we ignore operations performed
on databases of intentions or plans. Although agent platforms do perform operations on

Query Caching in Agent Programming Languages 127

intentions and plans that can be viewed as queries and updates, these operations vary
widely from platform to platform and typically do not involve logical inference.

The first key KRT functionality is querying a database. A query assumes the presence
of some inference engine to perform the query. In many agent platforms, a distinction is
made between performing a query to obtain a single answer and to obtain all answers. In
what follows, we abstract away from the details of particular inference engines provided
by different agent platforms and represent queries by the (average) time required to
perform the query. The second key functionality is that of modifying or updating the
content of a database. With the exception of recent work on the semantic web and
on theory progression in situation calculus, update has not been a major concern for
classical (non-situated) reasoners. However it is essential for agents as they need to be
able to represent a changing and dynamic environment. All the agent platforms we have
investigated use a simple form of updating which involves simply adding or removing
facts. In cases where the agent platform adopts the open world assumption, one needs
to be slightly more general and support the addition and removal of literals (positive
and negated facts).

Based on this model, we can derive an analysis of the average case performance for
a single update cycle of an agent. Our analysis distinguishes between costs associated
with the query phase and the update phase of an update cycle. We assume that the agent
performs on average N queries in the query phase of an update cycle. If the average
cost of a query is cqry , then the average total cost of the query phase is given by

N · cqry
In general, the same query may be performed several times in a given update cycle. (We
provide support for the fact that queries are performed multiple times in a cycle below.)
If the average number of unique queries performed in an update cycle is K , then on
average each query is performed n = N/K times per cycle.

The total average cost of the update phase of an update cycle can be derived similarly.
In logic-based agent programming languages, updates are simple operations which only
add or remove facts (literals) from a database, so it is reasonable to consider only the
total number of updates when estimating the cost of the update phase. If U is the average
number of updates (i.e., adds and deletes) per cycle and cupd is the average cost of an
update, then the average total cost of the update phase is given by

U · cupd
Combining both the query and update phase costs yields:

N · cqry + U · cupd (1)

3 Experimental Analysis

To quantify typical values for the parameters in our abstract performance model, we
performed a number of experiments using different agent platforms and agent and en-
vironment implementations. We stress that our aim was not to determine the absolute

128 N. Alechina et al.

or relative performance of each platform, but to estimate the relative average number of
queries and updates performed by ‘typical’ agent programs, and their relative average
costs on each platform, in order to determine to what extent caching may be useful as a
general strategy for logic-based agent programming languages. To this end, we selected
three well known agent platforms (Jason [6], 2APL [7] and GOAL [8]), and five existing
agent programs/environments (Blocks World, Elevator Sim, Multi-Agent Programming
Contest 2006 & 2011, and Wumpus World).

The agent platforms were chosen as representative of the current state of the art
in logic-based agent programming languages, and span a range of implementation ap-
proaches. For example, both 2APL and GOAL use Prolog engines provided by third
parties for knowledge representation and reasoning. 2APL uses the commercial Prolog
engine JIProlog [10] implemented in Java, whereas GOAL uses the Java interface JPL
to connect to the open source SWI-Prolog engine (v5.8) which is implemented in C
[11]. In contrast, the logical language used in Jason is integrated into the platform and
is implemented in Java.

The agent programs were chosen as representative of ‘typical’ agent applications,
and span a wide range of task environments (from observable and static to partially
observable and real-time), program complexity (measured in lines of code, LoC), and
programming styles. The Blocks World is a classic environment in which blocks must
be moved from an initial position to a goal state by means of a gripper. The Blocks
World is a single agent, discrete, fully observable environment where the agent has full
control. Elevator Sim is a dynamic, environment that simulates one or more elevators in
a building with a variable number of floors (we used 25 floors) where the goal is to trans-
port a pre-set number of people between floors [12]. Each elevator is controlled by an
agent, and the simulator controls people that randomly appear, push call buttons, floor
buttons, and enter and leave elevators upon arrival at floors. The environment is partially
observable as elevators cannot see which buttons inside other elevators are pressed nor
where these other elevators are located. In the 2006 Multi-Agent Programming Contest
scenario (MAPC 2006) [13] teams of 5 agents explore grid-like terrain to find gold and
transport it to a depot. In the 2011 Multi-Agent Programming Contest scenario (MAPC
2011) [14] teams of 10 agents explore ‘Mars’ and occupy valuable zones. Both MAPC
environments are discrete, partially observable, real-time multi-agent environments, in
which agent actions are not guaranteed to have their intended effect.

Finally, the Wumpus World is a discrete, partially observable environment in which
a single agent must explore a grid to locate gold while avoiding being eaten by the
Wumpus or trapped in a pit. For some of the environments we also varied the size of
the problem instance the agent(s) have to deal with. In the Blocks World the number
of blocks determines the problem size, and in the Elevator Sim an important parameter
that determines the size of a problem instance is the number of people to be moved
between floors. The size of problem instances that we have used can be found in the
first column of Tables 2 through 6.

It is important to stress that, to avoid any bias due to agent design in our results,
the programs were not written specially for the experiments. While our selection was
therefore necessarily constrained by the availability of pre-existing code (in particular
versions of each program were not available for all platforms), we believe our results are

Query Caching in Agent Programming Languages 129

Table 1. Agents and Environments

Environment Agent Agent Deliberation
Platform LoC Cycles

Blocks World Jason 34 104-961
2APL 64 186-1590
GOAL 42 16-144

Elevator Sim 2APL 367 3187-4010
GOAL 87 2292-5844

MAPC 2006 Jason 295 2664
MAPC 2011 GOAL 1588 30

Wumpus World Jason 294 292-443

representative of the query and update performance of a broad range of agent programs
‘in the wild’. Table 1 summarises the agents, environments and the agent platforms that
were used in the experiments.

3.1 Experimental Setup

To perform the experiments, we extended the logging functionality of the three agent
platforms, and analysed the resulting query and update patterns in the execution traces
for each agent/environment combination. The extended logging functionality captured
all queries and updates delegated to the knowledge representation used by the agent
platform and the cost of performing each query or update.

In the case of 2APL and GOAL, which use a third party Prolog engine, we recorded
the cost of each query or update delegated to the respective Prolog engine. In these
languages, Prolog is used to represent and reason with percepts, messages, knowledge,
beliefs, and goals. Action preconditions and test goals are also evaluated using Pro-
log. Prolog queries and updates to the Prolog database therefore account for all costs
involved in the query and update phases of an update cycle. In the case of Jason, the
instrumentation is less straightforward, and involved modifying the JASON belief base
to record the time required to query and update percepts, messages, knowledge and
beliefs.1 The time required to process other types of Jason events, e.g., related to the
intentions or plans of an agent, was not recorded.

We ran each of the agent/environment/platform combinations listed in Table 1 un-
til the pattern of queries and updates stabilised (i.e., disregarding any ‘start up’ period
when the agent(s), e.g., populate their initial representation of the environment). For dif-
ferent agent environments, this required different numbers of deliberation cycles (listed
in the Deliberation Cycles column in Table 1). For example, fewer deliberation cycles
are required in the Blocks World to complete a task than in other environments, whereas
in the Elevator Sim environment thousands of deliberation cycles are required to reach
steady state. For the real-time Multi-Agent Programming Contest cases, the simulations
were run for 1.5 minutes; 1.5 minutes is sufficient to collect a representative number of

1 In contrast to 2APL and GOAL, Jason does not have declarative goals.

130 N. Alechina et al.

cycles while keeping the amount of data that needs to be analysed to manageable pro-
portions. For each agent/environment/platform run, the time required to perform each
query or update resulting from the execution of the agent’s program was logged, re-
sulting in log files as illustrated in Figure 4. Here, add and del indicate updates, and

...
add on(b2,table) 30
add on(b9,b10) 43
del on(b4,b6) 21
query tower(’.’(X,T)) 101
query tower(’.’(b7,[])) 51
...

Fig. 4. Example log file

query indicates a belief or goal query, followed by the updated belief or goal, or query
performed, and the time required in microseconds.

3.2 Experimental Results

In this section we briefly present the results of our analysis and highlight some ob-
servations relating to the query and update patterns that can be seen in this data. We
stress that our aim is not a direct comparison of the performance of the agent programs
or platforms analysed. The performance results presented below depend on the tech-
nology used for knowledge representation and reasoning as well as on the machine
architecture used to obtain the results. As such the figures provide some insight in how
these technologies perform in the context of agent programming but cannot be used
directly to compare different technologies. Rather our main focus concerns the patterns
that can be observed in the queries and updates that are performed by all programs and
platforms, and the potential performance improvement that might be gained by caching
queries on each agent platform.

We focus on the update cycles that are executed during a run of an agent. Recall that
these cycles may differ from the deliberation cycle of an agent. An update cycle consists
of a phase in which queries are performed which is followed by a subsequent phase in
which updates are performed on the databases that an agent maintains. Note that update
cycles do not correspond one-to-one to deliberation cycles. In particular, both Jason and
2APL agents execute significantly more deliberation cycles than update cycles as can
be seen by comparing Table 1 with the tables below. The phases are extracted from log
files by grouping query and add/del lines.

We analysed the log files to derive values for all the parameters in the abstract model
introduced in Section 2, including the average number queries performed at each up-
date cycle N , the average number of unique queries performed in an update cycle K ,
the average number of times that the same query is performed in an update cycle N/K ,
the average cost of a query cqry , the average number of updates performed in an up-
date cycle U , and the average cost of an update cupd . We also report the number of

Query Caching in Agent Programming Languages 131

update cycles for each scenario we have run. Finally, we report the average percentage
of queries that are repeated in consecutive update cycles, p. That is, p represents the
average percentage of queries that were performed in one cycle and repeated in the next
update cycle.

The Jason and 2APL agents were run on a 2 GHz Intel Core Duo, 2 GB 667 MHz
DDR2 SDRAM running OSX 10.6 and Java 1.6. The GOAL agents were run on a 2.66
GHz Intel Core i7, 4GB 1067 MHz DDR3, running OSX 10.6 and Java 1.6. Query and
update costs are given in microseconds. The Size column in Tables 2a – 2c refers to the
number of blocks in Blocks world. In Tables 3a and 3b for the Elevator Sim, Size refers
to the number of people that randomly are generated by the simulator. The size column
in Table 6 refers to the size of grid used: KT2 is a 6× 5 grid with one pit, KT4 a 9× 7
grid with 2 pits, and KT5 a 4× 4 grid with 3 pits.

The results for the Blocks World environment are given in Tables 2a – 2c. Note that
the average query and update costs for the GOAL agent decrease when the number of
blocks increases. This effect can be explained by the fact that in this toy domain the
overhead of translating queries by means of the JPL interface to SWI-Prolog queries
is relatively larger in smaller sized instances than in larger sized ones. Also note that
the costs found for GOAL agents cannot be used to draw conclusions about the per-
formance of SWI-Prolog because of the significant overhead the Java interface JPL
introduces.

Table 2. Blocks World

(a) Jason

Size N K n p cqry U cupd Update cycles
10 4.6 3.3 1.39 70% 485 1.1 376 16
50 4.8 3.3 1.46 82% 286 1.0 1057 79

100 5.1 3.3 1.54 82% 317 1.0 2788 152

(b) 2APL

Size N K n p cqry U cupd Update cycles
10 41.1 26.8 1.56 58% 8554 1.8 294 46
50 104.8 78.2 1.34 59% 22335 1.8 273 230
100 235.4 165.8 1.42 59% 49247 1.8 435 460

(c) GOAL

Size N K n p cqry U cupd Update cycles
10 26.0 17.6 1.48 59% 89 2.6 58 16
50 100.3 66.0 1.52 63% 64 2.7 35 70
100 153.3 105.7 1.45 70% 59 2.9 29 144

The results for the Elevator Sim environment are given in Tables 3a and 3b. Tables 4
and 5 give the results for the MAPC 2006 & 2011 environments, and the results for the
Wumpus World environment are shown in Table 6.

132 N. Alechina et al.

Table 3. Elevator Sim

(a) 2APL

Size N K n p cqry U cupd Update cycles
10 11,214.3 290.3 38.63 52% 97979 2.0 2971 16
50 1,800.7 206.5 8.72 71% 88839 1.1 674 163

100 1,237.7 202.9 6.10 71% 82766 1.1 456 215

(b) GOAL

Size N K n p cqry U cupd Update cycles
10 29.5 12.1 1.16 92% 29 1.0 39 5844
50 28.44 23.7 1.20 92% 30 1.0 37 3636

100 34.3 28.6 1.20 90% 31 1.0 36 2292

Table 4. Multi-Agent Programming Contest 2006, Jason

Size N K n p cqry U cupd Update cycles
N/A 4.6 3.7 1.25 76% 256 1.1 96 379

Table 5. Multi-Agent Programming Contest 2011, GOAL

Size N K n p cqry U cupd Update cycles
N/A 80.5 66.0 1.22 82% 66 28.0 45 30

Table 6. Wumpus World, Jason

Size N K n p cqry U cupd Update cycles
KT2 8.9 7.4 1.2 59% 671 1.0 173 18
KT4 9.1 7.6 1.2 55% 1170 1.0 166 24
KT5 8.0 6.7 1.2 52% 664 1.0 428 18

As can be seen, even in simple environments like the Blocks World, agent pro-
grams may perform many queries in a single update cycle (see Table 2). In the Blocks
World experiments, the total number of queries performed during a run ranges from 417
queries for the GOAL agent in the small 10 blocks problem instance in only 16 deliber-
ation cycles to 108, 300 queries for the 2APL agent in the 100 blocks problem instance
in 1590 deliberation cycles. Given that the Blocks World environment involves only a
small number of beliefs and that the agents use only a few logical rules, this implies
that the same query is repeated many times. A similar pattern can be seen in the other
experiments. In all cases, the average number of times a query is performed in a single
cycle is consistently larger than 1, with N/Kranging from 1.16 (Table 3b) up to 38.63
(3a). Our first observation is therefore that queries are consistently repeated in a single
update cycle by all agents in all environments and across all the platforms investigated.

Observation 1. In a single update cycle, the same query is performed more than once,
i.e., we have n > 1.

Query Caching in Agent Programming Languages 133

A second observation that follows consistently from the data is that large percentages
of queries are repeated each update cycle. We have found that 22% up to even 92% of
queries are repeated in consecutive update cycles.

Observation 2. A significant number of queries are repeated at subsequent update cy-
cles, i.e., p > 20%.

Secondly, in all agent/environment/platform combinations investigated, in a single de-
liberation cycle an agent performs only a few (perhaps only one) actions that directly
or indirectly change the state of the agent. This is also supported by the fact that the
number of deliberation cycles in most cases is larger than the number of update cycles.
In other words, the execution of a deliberation cycle does not always result in an update.
Comparing the average number of updates with the average number of unique queries,
we consistently find that many more queries are performed than updates in each cycle.

Observation 3. The number of updates U (add, deletes) performed in an update cycle
is significantly smaller than the number of unique queries K performed in that cycle,
i.e. K � U .

Note that all three observations are independent of the size or complexity of the envi-
ronment, the complexity of the agent program or the agent platform used. This strongly
suggest that the query and update performance of agent programs in the platforms in-
vestigated can be significantly improved.

4 Query Caching

The observations in the previous section suggest that efficiency can be significantly
increased by memoization, i.e. by caching query results. The cache stores answers to
queries, so that if the same query is performed again in the same update cycle, the
answers can be returned without recourse to the underlying knowledge representation.

In this section, we first show how to modify the interface to the underlying knowl-
edge representation to incorporate caching. We then extend the abstract performance
model introduced in Section 2 in order to analyse the potential increase in performance
of caching, and derive a relationship between n = N/K and the costs of maintaining
the cache which characterises when caching is likely to be beneficial.

4.1 Extending the Knowledge Representation Interface

The most straightforward approach to exploit the fact that some queries are performed
multiple times in a single update cycle, is to add the results of a query to the cache the
first time it is performed in an update cycle, and then retrieve the results from the cache
if the query is reevaluated at the same update cycle. Although very simple in requiring
no information about the average number of times each unique query is repeated in a
cycle, as we show below, if the cost of cache insertion is sufficiently low, significant
performance improvements can be achieved. Moreover, such an approach requires only
a very loose coupling between the cache and the underlying knowledge representation.

134 N. Alechina et al.

The cache simply acts as a filter: if a query is a cache hit the results are immediately
returned by the cache; if a query is a cache miss, the query is delegated to the knowledge
representation and the results stored in the cache, before being returned to the agent
program.

The use of a cache requires an extension of the KRT interface with a cache opera-
tion lookup to lookup entries, an operation put to put entries into the cache, and an
operation clear to clear the cache again. The basic approach can be implemented as
shown in the algorithm below.

Listing 1.1. Query Cache

1 % Query Phase
2 clear(cache)
3 FOR EACH query Qi DO
4 IF lookup(Qi, answer, cache)
5 THEN return(answer)
6 ELSE DO
7 answer = query(Qi, beliefbase)
8 put(Qi:answer, cache)
9 return(answer)

10 ENDDO
11 ENDDO

Of course, by only storing the query results, it is not possible to detect when cache
entries are invalidated, so the cache needs to be cleared at the start of each query phase in
an update cycle and rebuilt from scratch. In addition, when compiling an agent program,
care is required to ensure that differences in variable names are resolved so that similar
queries are retrieved from the cache instead of being recomputed. For example, the
queries q(X,Y) and q(A,B) which represent the same query but use different variables
should not result in a cache miss.

The cache can be implemented by a hash table. Given Observation 2, the size of the
hash table can be tuned to optimal size after one or two cycles. By implementing the
cache as a hash table, the insertion costs cins of an entry are constant and the evaluation
costs of performing a query a second time are equal to the lookup costs, i.e. a constant
chit that represents the cost for a cache hit. This results in the following performance
model, adapted from the model in Section 2:

K · (cqry + cins) +N · chit + U · cupd (2)

It follows that whenever

cqry >
K

N −K
· cins + N

N −K
· chit (3)

it is beneficial to implement a cache. That is, the cache increases performance whenever
the average query cost is greater than the average lookup cost of a query plus the aver-
age insertion cost times the proportion of unique to non-unique queries (for N > K).

Query Caching in Agent Programming Languages 135

As expected, the larger the average number of times n a query is performed in a single
cycle, the larger the expected efficiency gains. In the worst case in which all queries are
only performed once in a cycle, i.e. n = 1, the cache will incur an increase in the cost
which is linear in the number of queries, i.e. N · (cins + chit).

4.2 Experimental Evaluation

To estimate values for cins and chit and the potential improvement in performance
that may be obtained from caching, we implemented the caching mechanism described
in algorithm 1.1 and evaluated its performance by simulating the execution of each
agent platform with caching using the query and update logs for the Blocks World and
Elevator Sim experiments. The cache is implemented as a single hash table that is filled
the first time a query is performed in a query phase and cleared when the first update is
performed in the subsequent update phase.

As might be expected, the cost of both cache insertions and hits were low. For our
implementation, the cost chit was about 1 microsecond (0.45− 1.16μs) with a similar
value for cins (0.29− 0.83μs).

Even in the experiment with the lowest value of n (the Elevator Sim agent pro-
grammed in GOAL with 10 people to be transported) the condition of equation 3 is
satisfied and performance is improved by caching. In this case, n = 1.16 and cQ = 29
(see Table 3b), and we have 29 > 1/0.16 + 1 = 7.25. The average estimated gain per
cycle in this case is 42μs, which can be computed using equation 2 and subtracting the
first from the last. The performance gained even in this case is about 10%. In all other
cases the gains of using single cycle caching are substantially larger.

5 Related Work

There is almost no work that directly relates to our study of the performance of knowl-
edge representation and reasoning capabilities incorporated into agent programming.
As far as we know, our study is the first to investigate patterns in the queries and up-
dates that are performed by agent programs. In [15] it was observed that agent pro-
grams appear to spend most of their time in evaluating conditions for adopting plans,
although the author’s proposed solution was to adopt a plan indexing scheme, rather
than to optimize query evaluation in general. In [16] the performance of the FLUX and
GOLOG agent programming languages is studied. Another GOLOG-style language,
Indi-GOLOG, implements caching [17]. GOLOG-like languages, however, do not im-
plement a deliberation cycle based on the BDI paradigm.

Performance issues of BDI agents have been studied in various other contexts. To
mention just a few examples, [18] proposes an extended deliberation cycle for BDI
agents that takes advantage of environmental events and [19] proposes the incorpora-
tion of learning techniques into BDI agents to improve their performance in dynamic
environments. The focus of these papers is on integrating additional techniques into
an agent’s architecture to improve the performance of an agent instead of on the KRT
capabilities of those agents.

136 N. Alechina et al.

6 Conclusion

We presented an abstract performance model of the basic query and update operations
that define the interface to a logic-based BDI agent’s underlying knowledge representa-
tion. Using this model, we analysed the performance of a variety of different agent pro-
grams implemented using three different agent platforms. To the best of our knowledge,
our study is the first to analyse query and update patterns in existing agent program-
ming languages. Although preliminary, our results suggest that in logic-based agent
platforms, knowledge representation and reasoning capabilities account for a large part
of the execution time of an agent. In particular, three key observations suggest that
integrating memoization into agent programming languages have the potential to sig-
nificantly increase the performance of logic-based agent platforms: the same queries
are performed more than once in a single update cycle, large number of queries are
repeated in subsequent cycles, and the number of queries is typically much larger than
the number of updates performed.

We showed how the interface to the underlying knowledge representation of an agent
platform can be modified to incorporate caching, and extended the abstract performance
model to quantify the potential performance improvements that can be achieved by
memoization of queries. Our results indicate that even simple query caching techniques
have the potential to substantially improve the performance across a wide range of
application domains.

The work presented here is limited to a single agent update cycle. Our results, and
in particular the observation that a significant number of queries are repeated in subse-
quent agent cycles, suggests that further performance improvements may be obtained
by extending caching to multiple cycles. Extending our abstract performance model and
implementation to account for such queries is an area of further work.

References

1. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1), 17–37 (1982)

2. Miranker, D.P.: TREAT: A better match algorithm for AI production systems. In: Proceedings
of the Sixth National Conference on Artificial Intelligence, AAAI 1987, pp. 42–47. AAAI
Press (1987)

3. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An architecture for general intelligence.
Artificial Intelligence 33, 1–64 (1987)

4. Software Technology Branch, Lyndon B. Johnson Space Center Houston: CLIPS Reference
Manual: Version 6.21 (June 2003)

5. Jena (2011), http://jena.sourceforge.net/
6. Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-

peak using Jason. Wiley (2007)
7. Dastani, M.: 2APL: a practical agent programming language. International Journal of Au-

tonomous Agents and Multi-Agent Systems 16(3), 214–248 (2008)
8. Hindriks, K.V.: Programming Rational Agents in GOAL. In: Multi-Agent Programming, pp.

119–157. Springer (2009)
9. Dastani, M., de Boer, F.S., Dignum, F., Meyer, J.J.C.: Programming agent deliberation. In:

Proceedings of the Second International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 97–104. ACM (2003)

http://jena.sourceforge.net/

Query Caching in Agent Programming Languages 137

10. JIProlog (2011), http://www.ugosweb.com/jiprolog/
11. SWI-Prolog (2011), http://www.swi-prolog.org/
12. Elevator Simulator (2011),

http://sourceforge.net/projects/elevatorsim/
13. Dastani, M., Dix, J., Novak, P.: The first contest on multi-agent systems based on compu-

tational logic. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp.
373–384. Springer, Heidelberg (2006)

14. Behrens, T., Dix, J., Köster, M., Hübner, J. (eds.): Special Issue about Multi-Agent-Contest
II. Annals of Mathematics and Artificial Intelligence, vol. 61. Springer, Netherlands (2011)

15. Dennis, L.A.: Plan indexing for state-based plans. In: Sakama, C., Sardina, S., Vasconcelos,
W., Winikoff, M. (eds.) DALT 2011. LNCS, vol. 7169, pp. 3–15. Springer, Heidelberg (2012)

16. Thielscher, M.: Pushing the envelope: Programming reasoning agents. In: AAAI Workshop
Technical Report WS-02-05: Cognitive Robotics. AAAI Press (2002)

17. Giacomo, G.D., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A high-level pro-
gramming language for embedded reasoning agents. In: Bordini, R.H., Dastani, M., Dix, J.,
Fallah-Seghrouchni, A.E. (eds.) Multi-Agent Programming: Languages, Platforms and Ap-
plications, pp. 31–72. Springer (2009)

18. Koch, F., Dignum, F.: Enhanced deliberation in BDI-modelled agents. In: Demazeau, Y.,
Dignum, F., Corchado, J.M., Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp.
59–68. Springer, Heidelberg (2010)

19. Singh, D., Sardina, S., Padgham, L., James, G.: Integrating learning into a BDI agent for
environments with changing dynamics. In: Proceedings of the International Joint Conference
on Artificial Intelligence, IJCAI, pp. 2525–2530 (2011)

http://www.ugosweb.com/jiprolog/
http://www.swi-prolog.org/
http://sourceforge.net/projects/elevatorsim/

Typing Multi-agent Programs in simpAL

Alessandro Ricci and Andrea Santi

DISI, University of Bologna
via Venezia 52, 47023 Cesena, Italy

{a.ricci,a.santi}@unibo.it

Abstract. Typing is a fundamental mechanism adopted in mainstream
programming languages, important in particular when developing pro-
grams of a certain complexity to catch errors at compile time, before
executing a program, and to improve the overall design of a system. In
this paper we introduce typing also in agent-oriented programming, by
using a novel agent programming language called simpAL, which has been
conceived from scratch to have this feature.

1 Introduction

Typing is an important mechanism introduced in traditional programming lan-
guages, particularly useful if not indispensable when developing programs of a
certain complexity [19,16,6,4]. Generally speaking, the definition of a (strong
and static) type system in a programming language brings two main benefits.
First, it enables compile time error checking, greatly reducing the cost of er-
rors detection—from both a temporal and economic point of view. Second, it
provides developers with a conceptual tool for modeling generalization/special-
ization relationships among concepts and abstractions, eventually specializing
existing ones through the definition of proper sub-types and making it possi-
ble to fully exploit the principle of substitutability [29] for supporting a safe
extension and reuse in programming.

We argue that these features could be very useful and important also for
agent-oriented programming (AOP), in particular as soon as AOP is investi-
gated as a paradigm for developing software systems in general [25]. To authors’
knowledge, there are no agent-oriented programming languages (APLs) in the
state-of-the-art that fully support typing and related features. Consequently, the
support which is provided by existing languages to catch errors before executing
the system is quite weak. To this purpose, in this paper we describe an ap-
proach that introduces typing in agent-oriented programming, in particular by
means of a novel agent programming language called simpAL, which has been
conceived from scratch to have this feature. simpAL, whose general design and
concepts have been recently introduced elsewhere [26], has been conceived on the
one side drawing inspiration from existing APLs based on the BDI model [23]
– AgentSpeak(L) [22] / Jason [2] in particular – and existing meta-models such
as the A&A [18] (Agents and Artifacts), along with related frameworks such as

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 138–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Typing Multi-agent Programs in simpAL 139

CArtAgO [24]. On the other side, it has been designed having in mind agent-
oriented programming as an evolution of Object-Oriented Programming, to be
explored as a paradigm for general-purpose computing and software develop-
ment [25]. Generally speaking, simpAL is not meant to be as flexible and effec-
tive as existing APLs for tackling the development of agent-based systems in
the context of Distributed Artificial Intelligence, but it is meant to provide more
robust and effective features for the development of general software systems yet
characterized by elements of complexity related to concurrency, distribution, de-
centralization of control, reactivity, etc. In that perspective, typing – as well as
other mechanisms not considered in the paper such as inheritance – is considered
an essential feature.

The remainder of the paper is organized as follows: In Section 2, first we
briefly remind the role of typing for programming in general, then we discuss
what kind of errors we aim at detecting by introducing typing in agent-oriented
programming, as an improvement of the current error checking support provided
by existing APLs in the state-of-the-art. Section 3 contains the core contribution
of the paper, which is about introducing typing in agent-oriented programming,
taking simpAL as target programming language. Finally, in Section 4 we discuss
related work and in Section 5 we provide concluding remarks.

2 Bringing Types in Agent-Oriented Programming:
Desiderata

2.1 On the Role of Typing for Programming

In the context of programming and software development, typing plays an im-
portant role in helping programmers organise computational structures and use
them correctly [19,17]. In general, a type is a collection of computational entities
that share some common property. A type system can be defined as a tractable
syntactic method for proving the absence of certain program behaviours by clas-
sifying phrases according to the kinds of values they compute [19]. In the most
general case, type systems and type theory refer to a broad field of study in
logics, mathematics and philosophy. Here we consider their specific applications
in programming languages, where three main uses of types can be identified [17]:

– Detecting errors – type errors occur when a computational entity, such as
a function or a data value, is used in a manner that is inconsistent with
the concept it represents. For instance, in the case of OO programming
languages, invoking a method which is not part of the object (class) interface
or passing wrong parameters, or rather assigning wrong values to an object’s
instance fields. Static type checking allows early detection of these kind of
errors, that can be fixed then before running the program.

– Program organisation and documentation – in modern programming lan-
guages types can be used to represent concepts related to the problem to be
solved and their relationships, providing an important support for the high-
level organisation of programs, improving their readability, understanding

140 A. Ricci and A. Santi

and maintenance. For instance, in a object-oriented CAD program using
an interface/type Shape with some draw method to represent geometrical
shapes, and different classes (Rectangle, Circle, etc.) – one for each specific
concrete shape and a concrete draw behavior. Type systems enforce disci-
plined programming and this is important in particular in the context of
large-scale software composition, where they typically form the backbone
of the modules used to package and tie together the components of a large
system. Module’s interfaces are typically seen as the types of the module.

– Efficiency – typing makes it possible to avoid (some) error checking at run-
time (since it has been done already at compile time), so improving perfor-
mance. Generally speaking, types provide information to the compiler about
the computational entities in the program that could be useful to produce
optimized code to be executed.

These uses are not bound to any specific programming language or paradigm,
so an interesting question for us is if and how they could be exploited also in
the context of agent-oriented programming. In this paper we focus in particular
on error detecting, even if the notion of type introduced in simpAL (that will
be presented in Section 3) has been devised to be of help also for improving
organisation and optimisations of programs.

2.2 Detecting Errors in Current APLs

The support for (static) error detecting in current state-of-the-art APLs is quite
limited, much weaker indeed compared to what we have e.g. in (statically) typed
object-oriented programming languages.

Besides mere syntactical controls, there are APLs – e.g. Jason [2] – that do not
provide any particular kind of checks, while others – such as 2APL [7], GOAL [11]
and AFAPL [28] – provide some basic mechanisms for static errors detection. For
example in 2APL warnings are generated when undefined belief update actions
are referenced in the agent code. Similar controls are present in GOAL where a
check is done about non-existing user-defined actions referenced in agent pro-
grams. For what concerns AFAPL instead, an old version of the language provides
a quite rich set of static controls [3] (e.g. for incorrectly specified activity identi-
fiers, for mistyped imports, etc.), nevertheless such controls have been removed
– or just not re-implemented yet – in the current version of the language.

Overall, MAS developers are forced to deal at runtime with a set of program-
ming errors that should be detected instead statically, before running the MAS
program. In the following we provide some main examples of such programming
errors, using a set of simple Jason source code snippets. We intentionally choose
to consider samples written in only one APL just for making the description
simple and terse. However, beside mere syntactical differences related to specific
language constructs, through these samples we are able to outline a set of general
considerations related to programming errors that do not hold only for Jason,
but also apply to others state-of-the-art APLs.

Typing Multi-agent Programs in simpAL 141

1 // agent ag0
2 iterations("zero").
3

4 !do_job.
5

6 +! do_job
7 <- ...
8 -+iterations(N+1);
9 ...

10 ?num_iterations(N).
11

12 +msgbel
13 <- .print("Message received").
14

15 // agent ag1
16 !send_msg.
17

18 +! send_msg
19 <- .send(ag0 , tell , msg_bel).

1 // agent ag2
2 !do_job.
3

4 +! do_job
5 <- .send(ag3 ,achieve ,floor_cleaned);
6 ...
7 !dojob.
8

9 //agent ag3
10 +! car_cleaned
11 <- ...

1 // agent a4
2 iterations("zero").
3

4 +envPerceptA(ValueA)
5 <- ...
6 actionA (10 ,20);
7 ?iterations(I)
8 actionA (10,I);
9 actionB(I);

10 actionB (10);
11 ?envPerceptC(ValueC);
12 nonExistingAction("hello").
13

14 +envPerceptC(Value)
15 <- ...

Fig. 1. Source code snippets showing a set of typical programming errors in Jason
concerning: belief-related errors (on the left), goal-related errors (on top right) and
agent-environment interaction errors (on bottom right)

First we consider issues related to beliefs, using the the snippet shown in Fig. 1
on the left. One of the most common belief-related errors concerns referencing
non-existing beliefs in agent code, causing: (i) plan failures – e.g. line 10 where,
due to a typo, we try to retrieve the belief iterations(N) using the predicate
num iterations(N) – and, (ii) the disabling of meaningful plans due to triggering
events referring to non-existing perceivable events—e.g. the triggering event of
the plan reported at lines 12-13 does not match the event generated by the
reception of the message (+msg bel) sent by agent ag1 (line 19). Another beliefs-
related issue concerns the possibility to write agent programs in which the same
beliefs are bound to different value types in the course of agent execution. We
argue that this can be problematic both from a conceptual viewpoint – i.e. a
belief meant to be used for storing numeric information should not be used
later also for storing strings literals – and also because such a permission can
cause different runtime errors. For example the belief update action reported at
line 8, being the belief iterations initialized with a string value (line 2), is not
semantically correct and it hence produces, when executed, a runtime error.

We consider now issues related to goals, and in particular to goals as-
signment. It is possible to write correct MAS programs from a syntactical
point of view, in which however wrong goals are assigned to agents at run-
time, where wrong means e.g. goals that are unknown by the agents. Let’s
consider the case of agent ag2 requesting to agent ag3 the achievement of the goal

142 A. Ricci and A. Santi

floor cleaned (line 5 in Fig. 1, top right). Agent ag3 is not able to achieve such
a goal and the programmer can detect this issue only at runtime, by properly
investigating why the MAS is not behaving as it is supposed to. As another
example, the wrong goal self-assignment made by ag2 (line 7 in Fig. 1, top right)
– i.e. goal !do job is referred as !dojob – is detected only at runtime when the
agent realizes that it has no plan for dealing with the goal !dojob.

Finally we consider issues related to agent-environment interactions in agent
programs. To this end we refer to the source code snippet reported in Fig. 1
on bottom right in which an agent ag4 works in a classical Jason envi-
ronment providing to the agent the external actions actionA(<int>,<int>)

and actionB(<String>); and generating percepts envPerceptA(<int>) and
envPerceptB(<String>). Even for what concerns agent-environment interactions
it is quite simple to write source code that is correct from a mere syntactical per-
spective that however contains several errors from the semantic one. The source
code reported in Fig. 1 on bottom right shows a set of the most common errors
that can be made, and that can not be detected statically, when interacting with
the environment in an agent program. In detail such errors are: (i) the invoca-
tion of environment actions providing arguments of the wrong type (e.g. line 8
and line 10), (ii) the invocation of non-existing environment actions (line 12),
and (iii) the referencing of non existing percepts in both plan bodies (line 11)
and in plan triggering events (line 14).

Some of the errors presented here – e.g. referencing a belief/goal that does not
exists – may be detected statically quite easily, by enforcing the declaration of
all the symbols in the MAS program in order to be effectively used. These errors
are mainly related to the presence of typos, and they could be easily detected at
compile time by constructing proper symbol tables to be used for the managing
of symbols resolutions. For other kinds of errors instead – such as invoking an
environment action with wrong arguments types, sending to an agent a message
that exists but that the agent can not understand, etc. – the previous assumption
is no longer sufficient. The introduction of typing would allow to detect even this
kind of errors in a static manner, before running the MAS program.

3 Typing in simpAL

Before concentrating on the typing issue, first we give a brief overview of the
main elements of the simpAL language. A prototype version of the simpAL plat-
form – implemented in Java, including a compiler, an interpreter/virtual ma-
chine and an Eclipse-based IDE providing an editor with typical features such
as context-assist, code completion, etc.1 – is available for download as an open-
source project2, and can be used to test the examples discussed in this section.
Because of lack of space, only those aspects of the language that are important

1 Some snapshots of the IDE at work are available on the simpAL web site at
http://tinyurl.com/832o8hk

2 http://simpal.sourceforge.net

http://tinyurl.com/832o8hk
http://simpal.sourceforge.net

Typing Multi-agent Programs in simpAL 143

for this paper will be considered—the interested reader can refer to [26] and to
the technical documentation on the web site for a more extensive account.

3.1 simpAL Overview

The main inspiration for simpAL abstractions comes – on the one side – from the
A&A model [18] and from the BDI (Belief-Desire-Intention) model, in particular
from its implementation in existing APLs, Jason in particular. On the other side,
differently from existing BDI-based APLs, simpAL has been conceived concep-
tually as an extension of OOP languages with a further separated abstraction
layer based on agent-oriented abstractions. The OOP layer – based on Java, but
it could be any OOP language – is meant to be used solely to represent and
manipulate abstract data types and data structures in general. All the other
issues that, for instance, are related to concurrent programming (e.g. threads,
synchronized methods, etc.) or I/O programming (e.g. network, GUI, OS related
functionalities, etc.) are meant to be tackled using the agent-oriented abstraction
layer.

By adopting a typical anthropomorphic and social view of computation, a
simpAL program is given by an organization composed by a dynamic set of
agents concurrently working in a shared, possibly distributed, environment.
Agents are those components of the program (system) designed to perform au-
tonomously tasks, that can be assigned both statically and dynamically to them.
Autonomously means in this case that given a task to do, they pro-actively decide
what actions to do and when to do them, promptly reacting to relevant events
from their environment, fully encapsulating the control of their behavior. To per-
form their tasks, agents can create and use resources and tools, called generically
artifacts. Artifacts are useful to represent those non-autonomous components of
our program, the basic bricks composing the environment of the organization,
providing some kind of functionality or service—such as easing agent communi-
cation and coordination (e.g. a blackboard), or interfacing agents with external
environment or the user (e.g. a GUI, a socket), or wrapping external systems
(e.g. a data-base, a web-service) or even simply helping agent work (e.g. a shared
counter). An artifact can be used by a single agent or can be designed to be con-
currently and safely used by multiple agents (e.g. a shared knowledge base, a
shared calendar for alarms, etc.).

Agent interactions can occur in two basic ways that can be combined together:
either indirectly through the environment (by using the same artifacts), or di-
rectly by means of asynchronous messages. In particular, agents have a basic
set of communicative actions, that allow for sending messages either to inform
or ask about some data or to assign/work with tasks. Agent-artifact interaction
is based instead on the concept of use and observation, reminding the way in
which artifacts are used by people in human environments. In order to be used,
an artifact provides a set of operations, corresponding to the set of actions avail-
able to agents to use it. This implies that the repertoire of an agent’s actions
at runtime depends on the artifacts that the agent knows and can use. Besides
operations, the usage interface of an artifact includes also observable properties,

144 A. Ricci and A. Santi

as observable information concerning the dynamic state of the artifact which
may be perceived and exploited by agents accordingly.

The overall (dynamic) set of agents and artifacts can be organized in one or
multiple logical containers called workspaces, possibly in execution on different
nodes of the network. An agent can also use – concurrently and transparently –
artifacts located in different workspaces, not necessarily only those that belong
to the workspace where the agent is running.

The computational model/architecture adopted for simpAL agents is a sim-
plified version of the BDI one, implementing a sense-plan-act like execution
cycle [26,27], but using OOP instead of logic programming to represent and
manipulate data structures. An agent has a belief base, as a long term private
memory storing information about: (i) the private state of an agent, (ii) the ob-
servable state of the environment, and (iii) information communicated by other
agents. In simpAL the belief base is composed by a set of beliefs represented by
simple variable-like information items, characterized by a name, a type, and a
value—which could be any data object3. To perform tasks, an agent exploits the
plans available in its plan library. Plans are modules of procedural knowledge
specifying how to act and react to the events of the environment in order to ac-
complish some specific task. The set of plans in the plan library depends on the
scripts loaded by the agent. As detailed later on, scripts are modules containing
the description of set of plans, written by the agent programmers. An agent can
handle multiple tasks in execution at a time.

3.2 Typing Agents with Tasks and Roles

In a software engineering perspective, a type defines a contract about what one
can expect by some computational entity. In the case of objects, this concerns
their interface, i.e. what methods can be invoked (and with which parameters)
or – in a more abstract view – what messages can be handled by the objects.
Conceptually, messages are the core concept of objects: receiving a message is
the reason why an object moves and computes something. This is actually true
also for active objects and actors.

Agents introduce a further level of abstraction. An agent does something
because – first of all – it has a task to do (or rather a goal to achieve or maintain).
It is quite intuitive then to define the type of an agent as its contract w.r.t. the
organizational environment where it is immersed. In other words, conceiving
the type of an agent as what one can expect by the agent in terms of the set
of possible tasks that can be assigned to that agent. Following this idea we
introduce the notion of role to explicitly define the type of an agent as the set of

3 It is worth remarking that in existing agent-oriented languages beliefs are typically
represented by first-order logic literals, denoting information that can be used by
reasoning engines. However the logic representation is not necessarily part of the
belief concept, as remarked by Rao and Georgeff in [23]:“[beliefs] can be viewed as
the informative component of the system state” and “[beliefs] may be implemented as
a variable, a database, a set of logical expressions, or some other data structure”([23],
p. 313).

Typing Multi-agent Programs in simpAL 145

1 role Thermostat {
2

3 task AchieveTemperature {
4 input -params {
5 targetTemp: double;
6 threshold: double;
7 }}
8

9 task KeepTemperature {
10 input -params {
11 inputView: UserView ;
12 }
13 understands {
14 newThreshold: double;
15 }}
16

17 task DoSelfTest {
18 talks -about {
19 malfunctionDescr:
20 MalfunctionInfo;
21 }}}

1 usage -interface Conditioner {
2 obs-prop isHeating: boolean ;
3 obs-prop isCooling: boolean ;
4

5 operation startHeating(speed: double);
6 operation startCooling(speed: double);
7 operation stop();
8 }

1 usage -interface Thermometer {
2 obs-prop currentTemp: double;
3 }

1 usage -interface UserView {
2 obs-prop desiredTemp: double;
3 obs-prop threshold: double;
4 obs-prop thermStatus:
5 acme.ThermostatStatus;
6 }

Fig. 2. Definition of an agent role (on the left) and artifact interfaces (on the right)

the possible types of tasks that any agent playing that role is able to do. Fig. 2
on the left shows the definition of a role in simpAL. A role is identified by a
name (e.g. Thermostat) and it includes the definition of the set of task types.
A task type is identified by a unique identifier (name) inside the role. It defines
a contract between the task assigner and assignee, in terms of a set of typed
input/output parameters – input-params block and output-params block (not
shown on this simple example) – and set of messages that can be understood by
the task assignee – understands block – and the task assigner—talks-about

block. A task type instance is like a record with the parameters assigned to
some value. Typed attributes may contain any value/object of any Java class,
plus also the identifiers of entities that are first-class simpAL abstractions, such
as artifacts, agents, tasks, etc., which are typed too.

In simpAL information exchanges are always contextualized to tasks: so an
agent A can send an information to another agent B only referring to a task
instance t, without explicitly referring to B. A predefined action for exchanging
messages among agents (tell) is provided:

1 /* the assigner tells a newThreshold msg to the assignee */
2 tell achieveTempTaskInstance.newThreshold = 100
3 /* the assignee tells a malfunctionDescr msg to the assigner */
4 tell doSelfTestTaskInstance.malfunctionDescr = new MalfunctionInfo(..)

The concept of role defining the agent type allows us to do error checking on:
(a) the behavior of the agent implementing the role, checking that the agent im-
plementation (the how) conforms to role definition (the what); (b) the behavior
of the agents that aim at interacting with agents implementing a particular role,
checking that: (i) they would request the accomplishment only of those tasks

146 A. Ricci and A. Santi

that are specified by the role, and (ii) they would send only those messages that
the tasks’ assignee can understand.

Case (a) concerns performing two different controls when compiling agent
scripts, which are the basic construct used to define agent concrete behavior (a
brief description of agent scripts is reported in a separate box following Fig. 3).
The first control is responsible of validating the script’s plans w.r.t. the task
types defined in the roles implemented by the script. The error checking rule
states informally:

– for an agent script S, for each type of task T defined in any role R imple-
mented by S, it must exist (at least) one plan P for T .

Given this rule, the ACMEThermostat script implementing the Thermostat role
reported in Fig. 3 is correct, while a script like the following one:

1 agent -script IncompleteThermostatImpl implements Thermostat {
2 plan -for AchieveTemperature { ... }
3 plan -for DoSelfTest { ... }
4 }

would report an error message about missing a plan for a declared task, i.e.
KeepTemperature.

The second control concerns checking messages that an agent playing certain
roles tells to its tasks assigners (how assign a task to an agent is described below).
This can be done by using the set of messages listed in the talks-about block
of tasks definition. The checking rule in this case states:

– in a plan P related to a task type T , the messages sent by the assignee
to the task assigner can only be the ones listed in T ’s talks-about block.
In addition, the type of the messages sent must be compatible w.r.t. the
message types defined in T .

Referring to the ACMEThermostat script, the only message that can be sent to
tasks’ assigners is the message malfunctionDescr in the context of the task
type DoSelfTest (Fig. 3 line 66, where the prefix this-task. is used to identify
the assignee’s task instance—i.e, the task instance for which the plan will be
instantiated at runtime), a task that can be used to check the correct functioning
of the thermostat.

Case (b) concerns instead checking: (i) the assignment of tasks to agents
playing a certain role R, and (ii) messages sent by a task assigner to the task
assignee. Task assignment can be done in two ways.

1 assign -task taskInstanceTodo to: AgentId
2 do -task taskInstanceTodo task -recipient: AgentId

The first is through a predefined action assign-task. The action succeeds as
soon as the task is successfully assigned to the assignee. It can also be used
without specifying the target agent, so as for an agent to allocate the task to
itself. The second is through a predefined action named do-task, which instead
waits for the completion of the specified task instance—i.e. the action succeeds
only when the task instance is successfully completed by the assignee.

Typing Multi-agent Programs in simpAL 147

1 agent -script ACMEThermostat implements Thermostat in SmartHome {
2

3 savedThreshold: double
4

5 plan -for AchieveTemperature {
6 #using: console@mainRoom , thermometer@bedRoom , conditioner@bedRoom
7

8 println(msg: "Achieving temperature "
9 + this -task.targetTemp + " from " + currentTemp);

10 savedThreshold = this -task.threshold;
11 {
12 #completed -when:
13 java.lang.Math.abs(this -task.targetTemp - currentTemp) < savedThreshold
14

15 every -time currentTemp > (this -task.targetTemp + savedThreshold)
16 && !(isCooling in conditioner) => startCooling(speed: 1) on conditioner
17 every -time currentTemp < (this -task.targetTemp - savedThreshold)
18 && !(isHeating in conditioner) => startHeating(speed: 1) on conditioner
19 };
20 stop()
21 }
22

23 plan -for KeepTemperature {
24 #using: console@mainRoom , thermometer , conditioner , userView@mainRoom
25

26 quitPlan : boolean = false;
27 {
28 #completed -when: quitPlan
29

30 achiveTempTask: AchieveTemperature =
31 new -task AchieveTemperature(targetTemp: desiredTemp in userView ,
32 threshold: threshold in userView);
33 assign -task achiveTempTask
34

35 every -time changed desiredTemp => {
36 drop -task achiveTempTask;
37 achiveTempTask = new -task AchieveTemperature(targetTemp: desiredTemp ,
38 threshold: threshold);
39 assign -task achiveTempTask
40 }
41

42 every -time changed currentTemp : !is -doing -any AchieveTemperature => {
43 assign -task new -task AchieveTemperature(targetTemp: desiredTemp ,
44 threshold: savedThreshold)
45 }
46

47 every -time changed thermStatus
48 : thermStatus.equals(acme.ThermostatStatus.OFF) => {
49 if (isCooling || isHeating){
50 stop()
51 };
52 drop -task achiveTempTask;
53 quitPlan = true
54 }
55

56 every -time told this -task.newThreshold => {
57 #atomic
58 savedThreshold = this -task.newThreshold
59 }
60 }
61 }
62

63 plan -for DoSelfTest {
64 ...
65 if (someCondition) {
66 tell this -task.malfunctionDescr = new MalfunctionInfo(...)
67 }
68 ...
69 }
70 }

Fig. 3. Definition of a script in simpAL

148 A. Ricci and A. Santi

Defining Agent Scripts in simpAL (Fig. 3)

The behavior of an agent can be programmed in simpAL through the definition of scripts, that are loaded and executed by

agents at runtime. Here we give a very brief account directly by using the ACMEThermostat example Fig. 3. The definition

of an agent script includes the script name, an explicit declaration of the roles played by the script and then the script

body, which contains the declaration of a set of beliefs and the definition of a set of plans. Beliefs in simpAL are like simple

variables, characterized by a name, a type and an initial value. The ACMEThermostat script has just one belief, to keep

track of the current threshold temperature to consider while doing its job. Beliefs declared at the script level are a sort

of long-term memory of the agent, useful to keep track of information that could be accessed and updated by any plan

in execution, and whose lifetime is equal to the one of the agent (script). Plans contain the recipe to execute tasks. The

ACMEThermostat script has three plans, to achieve a certain temperature value (lines 5-21), to maintain a temperature value

(lines 23-61), and to do some self test (lines 63-69). To do the AchieveTemperature task, the plan starts cooling or heating

– using the conditioner – as soon as the current temperature is too high (lines 15-16) or too low (lines 17-18) compared

to the target one (and the threshold)—the current temperature is observed by the thermometer. The information about

the target temperature (this-task.targetTemp) derives from the related parameter of the task, while the belief about the

current temperature (currentTemp) is related to the observable property of the thermometer artifact used in the plan. As

soon as the current temperature is in the good range, the plan completes—stopping the conditioner if it was working.

To do the KeepTemperature task, the plan achieves the desired temperature by immediately self-assigning the sub-task

AchieveTemperature (line 33), which is executed also as soon as the desired temperature changes (lines 35-40) or the current

temperature changes and the agent is not already achieving the temperature (line 42-45). The belief about the desired

temperature (desiredTemp) comes from the observable property of the userView artifact used in the plan. Also, as soon as

a message about a new threshold is told by the task assigner, the internal value of the threshold is updated (lines 56-59).

The plan quits if the agent perceives from the userView artifact that the user has switched off the thermostat (lines 47-54).

In that case, before quitting the plan, the conditioner is stopped if it was working. Finally, to do the SelfTest task, the

agent performs some diagnostic operations (not reported in the sources) and if some malfunction condition is verified, a

report containing the malfunction description is sent to the task assigner (line 66).

Explanations about some key elements of the syntax and semantics of plans follow—a more comprehensive description

can be found here [26,27] and on simpAL technical documentation. The definition of a plan includes the specification of

the type of task for which the plan can be used and a plan body, which is an action rule block. The action rule block

contains the declaration of a set of local beliefs – that are visible only inside the block, as a kind of short-term memory

– and a set of action rules specifying when executing which action. In the simplest case, an action rule is just an action

and a block could be a flat list of actions. In that case, actions are executed in sequence, i.e. every action in the list is

executed only after perceiving the event that the previous one has completed. In the most general case, an action rule is of

the kind: every-time | when Event : Condition => Action meaning that the specified action can be executed every time

or once that (when) the specified event occurs and the specified condition – which is a boolean expression over the agent

beliefs base – holds. If not specified, the default value of the condition is true. Events concern percepts related to either one

of (i) the environment, (ii) messages sent by agents or (iii) actions execution. All events are actually uniformly modeled

as changes to some belief belonging to agent belief base, given the fact that observable properties, messages sent, and

action state variables are all represented as beliefs. Furthermore, the syntax for specifying events related to a change of an

observable property is changed ObsProp (e.g. line 35), the one for specifying the update of a belief about an information told

by another agent is told What (e.g. line 56). If no event is specified, the predefined meaning is that the rule can be triggered

immediately, but only once. Given that, the execution of a flat list of actions can be obtained by a sequence of action rules

with only the action specified, separated by a semicolon (;). Actions can be: (i) external actions to affect the environment,

i.e. operations provided by some artifact, (ii) communicative actions to directly interact with some other agent (to tell some

belief, to assign a task, etc.), or (iii) predefined internal actions (to update internal beliefs, to manage tasks in execution,

etc). An action can be also an action rule block {...}, which allows then to nest action blocks. Finally, the definition of

an action rule block includes the possibility to specify some predefined attributes, for instance: the #using: attribute to

specify the list of artifacts identifiers used inside the block (an artifact can be used/observed only if explicitly declared), the

#completed-when: attribute to specify the condition for which the action rule block execution can be considered completed,

the #atomic attribute to specify that the action rule block must be executed as a single action, without being interrupted

or interleaved with blocks of other plans in execution (when the agent is executing multiple tasks at a time).

Typing Multi-agent Programs in simpAL 149

In both cases, we can enforce, statically, that:

– given a belief Id of type R, storing the identifier of some agent play-
ing the role R, then for any action assign-task t to: Id or do-task

t task-recipient: Id , there must exist a task type T in R such that t is
a value (instance) of T . In case of task self-assignment the belief Id storing
the agent identifier is implicit (it refers to the current agent).

Then, given a script fragment with a belief myThermostat: Thermostat, we
have the following list of the main errors that can be caught at compile time:

1 /* compilation ok */
2 assign -task AchieveTemperature(targetTemp:21, threshold:2) to: myThermostat
3

4 /* error: no tasks matching CleanTheRoom in role Thermostat */
5 do -task CleanTheRoom() task -recipient: myThermostat
6

7 /* error: no targetT param in AchieveTemperature */
8 /* error: missing threshold param */
9 assign -task AchieveTemperature(targetT : 21) to: myThermostat

10

11 /* error: wrong type for the param value targetTemp */
12 /* error: missing threshold param */
13 do -task AchieveTemperature(targetTemp: "21") task -recipient: myThermostat

The definition of a task type includes also the type of messages that the as-
signer can send to the task assignee. Given that, we can then check in agent
scripts that the beliefs specified in the assigner’s tell actions – those in which
the task instance identifier is not this-task. – are among those listed in the
understands block of the assignee role R, and that the types of the beliefs are
compatible. In the example, when doing the task KeepTemperature, an agent
playing the Thermostat role can be told about the new threshold to adopt –
which is represented by the message newThreshold – by the assigner. Examples
of checks follow:

1 keepTempTask: KeepTemperature
2 /* compilation ok */
3 tell keepTempTask.newThreshold = 2
4

5 /* error: aMsg is not listed in KeepTemperature understands block */
6 tell keepTempTask.aMsg = "hello"
7

8 /* error: wrong type for the belief newThreshold
9 * told to an agent playing the role Thermostat */

10 tell keepTempTask.newThreshold = "2"

Finally, some other kinds of errors can be checked in scripts at compile time
thanks to the explicit declaration of beliefs (and their types): finding errors in
plans about beliefs that are not declared neither as beliefs at the script level,
nor as local beliefs of plans, nor as parameters of the task; or about beliefs that
are assigned with expressions of wrong type.

3.3 Typing the Environment

On the environment side, we introduce the notion of usage interface defining
the type of the artifacts, separated from its implementation provided by artifact

150 A. Ricci and A. Santi

1 artifact ACMEConditioner implements Conditioner {
2 nTimesUsed: int;
3

4 init (){
5 isCooling = false; isHeating = true; nTimesUsed = 0;
6 }
7

8 operation startCooling(speed: double){
9 nTimesUsed++;

10 isCooling = true; isHeating = false;
11 ...
12 }
13

14 operation startHeating(speed: double){...}
15

16 operation stop(){
17 isCooling = false; isHeating = false;
18 ...
19 }}

Fig. 4. Definition of an artifact template in simpAL. Artifact templates are used like
classes in OOP, i.e. as templates to create instances of artifacts, defining then their
internal structure and behavior. This figure shows the implementation of the toy
ACMEConditioner artifact, implementing the Conditioner interface. The definition of
a template includes the name of the template, the explicit declaration of the interfaces
implemented by the template and then a body containing the declaration of the in-
stance typed state variables of the artifact (e.g. nTimesUsed, line 2) – which are hidden,
not observable – and the definition of operations’ behavior. An operation is defined by a
name (e.g. startCooling) (line 8), a set of keyword-based parameters (e.g. speed) and
a body. The body is very similar to the one found in imperative OO languages – Java
in this case is taken as main reference – so it is a block with a sequence of statements,
including local variable declarations, control-flow statements, object related statements
(object creation, method invocation, etc) and some pre-defined statements related to
artifact functioning, that allow, for instance, for suspending the execution of the oper-
ation until some specified condition is met, or to terminate with a failure the operation
execution.

templates. A usage interface is identified by a name and includes the specifica-
tion of (i) the observable properties, and of (ii) the operations provided by all
the artifacts implementing that interface—which correspond to the actions that
agent can do on those kind of artifacts.

Fig. 2 on the right shows the definition of the artifacts used in the
ACMEThermostat script, namely Conditioner – representing the interface of
conditioner devices modeled as artifacts, used by agents to heat or cool –
Thermometer – used by agents to be aware of the current temperature – and
UserView – representing the interface of those GUI artifacts used to interact
with the human users, in particular to know what is the desired temperature.
Fig. 4 shows the skeleton of the definition of an artifact template implementing
the Conditioner interface.

The introduction of an explicit notion of type for artifacts allows us to define a
way to address two main issues: (a) on the agent side, checking errors about the
actions (i.e. artifacts operations) and percepts (related to artifacts observable

Typing Multi-agent Programs in simpAL 151

state); (b) on the environment side, checking errors in artifact templates (i.e.
the implementation), controlling that they conform to the implemented usage
interfaces (i.e the type specification).

The case (a) concerns checking the action (rules) in plan bodies, so that: for
each action OpName(Params) on Target , specified in an action rule, meaning
the execution of an operation OpName over an artifact identifier Target whose
type is I:

– there must exist an operation defined in the interface I matching the oper-
ation request;

– the action rule must appear in an action rule block (or in any of its parent
block) where Target has been explicitly listed among the artifact used by
the agent through the #using: attribute.

Examples of checks, given a fragment of a script with e.g. a belief cond:

Conditioner:

1 /* compilation ok */
2 startCooling (speed: 1) on cond
3

4 /* error: unknown operation switchOn */
5 switchOn () on cond
6

7 /* error: unknown parameter time in startCooling operation */
8 startCooling (speed: 2 time: 10) on cond
9

10 /* error: wrong type for the param value speed */
11 startCooling (speed: "fast") on cond

The target of an operation (e.g., on cond) can be omitted (as it happens in some
points in plans of ACMEThermostat shown in Fig. 3) when there is no ambiguity
with respect to the target of the artifacts that are currently used by the agent
(specified in the #using: attribute).

On the event/percept side, we can check beliefs representing artifact observ-
able properties in the event template of rules and in any expression appearing
either in the context or in action rule body, containing such beliefs. For what
concerns event templates, given an action rule: updated Prop in Target :

Context => Action, where the event concerns the update of the belief about
an observable property Prop in the artifact of type I denoted by Target, then
the following checks apply:

– there must exist an observable property defined in I which matches Prop;
– the action rule must appear in an action rule block (or in any of its parent

block) where Target has been explicitly listed among the artifacts used by
the agent through the #using: attribute.

As in the case of operations, in Target can be omitted if there is no ambiguity
about the artifact which is referred.

Examples of checks follow, supposing to have a fragment of a script with
beliefs cond: Conditioner and therm: Thermometer about a conditioner and
thermometer artifact:

152 A. Ricci and A. Santi

1 /* compilation ok */
2 updated currentTemp => println (msg: "the temperature has changed ")
3 updated currentTemp : isHeating
4 => println (msg: "the temperature has changed while heating ...")
5 sum: double = currentTemp in therm + 1
6

7 /* error: unknown obs property isHeating in Thermometer type */
8 updated isHeating in therm => ...
9

10 /* error: wrong type */
11 bak: boolean = currentTemp in therm

On the environment side (case (b)) the definition of the interface as a type allows
for checking the conformance of artifact templates that declare to implement that
interface, so that:

– for each operation signature Op declared in any of the interfaces I imple-
mented by the template, the template must contain the implementation of
the operation;

– for any observable property Prop that appears in expressions or assignments
in operation implementation, then the declaration of the observable property
must appear in one of the interfaces implemented by the template and the
corresponding type expression must be compatible.

Finally, the explicit declaration of observable properties (in interfaces) and (hid-
den) state variables in artifact templates – the latter can be declared also as
local variable in operations – allow for checking errors in the implementation of
operations about the use of unknown observable properties/variables or about
the assignment of values with a wrong type.

3.4 Typing the Overall Program Structure

In simpAL we use the notion of organization (recalling the human organization
metaphor) to define the main of the overall multi-agent program. We introduce
then the type of an organization, called organization model. An organization
model is identified by a name and it used to explicitly define the workspace-based
logic structure of the application. Besides the definition of its name, a workspace
declaration in an organization model can include the explicit declaration of the
identifiers (literals) of instances of artifacts and agents – along with their types
– that are known to be available in that workspace4. Such identifiers are like
global references that can be then referred in any agent script – so as to identify
“well-known” agents to communicate with or artifacts to use – which explicitly
declares to play a role R inside that organization model.

As a simple example, Fig. 5 (on the left) shows the definition of the
SmartHome organization model, with: (i) a mainRoom workspace hosting the
userView artifact and an agent majordomo of type HomeAdmin, and (ii) a

4 In general, a workspace can contain at runtime also agents/artifacts not declared
in the organization model: both can be dynamically created by agents by means of
specific actions.

Typing Multi-agent Programs in simpAL 153

1 org -model SmartHome{
2

3 workspace mainRoom {
4 userView : UserView
5 majordomo: HomeAdmin
6 }
7

8 workspace bedRoom {
9 thermostat: Thermostat

10 conditioner: Conditioner
11 thermometer: Thermometer
12 }}

1 org ACMESmartHome implements SmartHome{
2

3 workspace mainRoom {
4 majordomo = Majordomo()
5 init -task: AdminHouse()
6 userView = ACMEControlPanel()
7 }
8

9 workspace bedRoom {
10 thermostat = ACMEThermostat()
11 conditioner = ACMEConditioner()
12 thermometer = ACMEThermometer()
13 }}

Fig. 5. Example of the definition of an organization model in simpAL (on the left) and
the a main organization file implementing the model (on the right)

bedRoom workspace hosting the remaining agents and artifacts. Given this or-
ganization model definition, then it is possible e.g. in the plan for the task
KeepTemperature of the ACMEThermostat script (Fig. 3) to refer directly to the
artifact userView@mainRoom.

Then a notion of concrete organization is introduced to define a concrete
application instance, referring to an existing organization model. An example of
organization definition is shown in Fig. 5 (on the right), sketching the definition
of an ACMESmartHome concrete organization. A simpAL program in execution is
a running instance of an organization.

The notion of organization model, defining the type for a simpAL organization,
allows us to: (a) perform additional error checking controls in scripts explicitly
declared in the context of an organization of a certain type, and (b) control
that a concrete organization (i.e. the implementation) is conform w.r.t. its type
specification (i.e. organization model). The case (a) allows to check, in those
scripts sources declared inside an organizational context, that all the used literals
refer to existing symbols defined in the related organization model.

On the organization side (case (b)), the definition of an organization model
OrgModel as a type allows for checking the conformance of a concrete organi-
zation instance Org that declares to implement that model, so that:

– each workspace Wsp declared in OrgModel must be defined also in Org;
– each artifact literal ArtLit of type I defined inside a workspace Wsp in

OrgModel must be must be correctly instantiated in the concrete organiza-
tion Org. In particular such literal must be instantiated in Wsp, specifying
an artifact template ArtT empl implementing the usage interface I and, if
needed, providing the initial parameters required by ArtT empl;

– each agent literal AgLit of type R defined inside a workspace Wsp in
OrgModel must be must be correctly instantiated in the concrete organiza-
tion Org. In particular such literal must be instantiated in Wsp, specifying
an agent script AgScript implementing the role R.

It is worth remarking that in the definition of a concrete organization Org im-
plementing an organization model OrgModel, additional workspaces, agent and

154 A. Ricci and A. Santi

artifact instances can be added to the ones initially declared in OrgModel. Ex-
amples of static checks that can be done follow, supposing to have a fragment of
an organization that declares to implement the SmartHome organization model
defined in Fig. 5.

1 org DummyHome implements SmartHome {
2 /* compilation ok: new workspace */
3 workspace newWsp {
4 otherConsole = Console ()
5 }
6 workspace bedRoom {
7 /* error: missing instantiation of thermostat agent */
8 conditioner = ACMEConditioner() /* compilation ok */
9 /* error: wrong type. ACMEConditioner does

10 not implement the required Thermometer role */
11 thermometer = ACMEConditioner()
12 }}
13 /* error: missing mainRoom workspace */

As a final remark, the notion of organization used here is not meant to be as rich
as the one that appears in MAS organization modelling. The main objective of
introducing this concept here is to have a way to define rigorously the structure
of the overall multi-agent program and to introduce some typing also at this
level, in order to check errors at compile time related to the implementation of
the overall program structure.

4 Related Work

As far as authors’ knowledge, types and type systems have not received partic-
ular attention so far in the context of agent programming languages and agent-
oriented programming.

In [10,9] a discussion about integrating algebraic data types, roles, and ses-
sion types in the context of agent-oriented programming is sketched, starting
from high-level similarities between certain aspects of an agent programming
language (2APL) and a functional programming language (Haskell). Algebraic
data types are used to constrain the content of messages; roles to constrain how
particular agents interact, and sessions, to describe slices of the global interac-
tions in the agent system. Together, these language features are introduced to
support organisational concepts, as devised in agent-oriented methodologies and
frameworks. Howver, the paper does not introduce an explicit notion of type for
agents so as to improve static error checking.

Those agent-oriented platforms that are based or integrated with object-
oriented languages / environments (e.g. JACK [14], Jade [1], Jadex [21]) can
benefit of typing and static type checking provided by the lower-level OO layer
(e.g. Java); however, such benefits are typically limited to the OO computa-
tional entities used in agent programs. So, it is not possible to detect at compile
time errors related to e.g. the assignment of wrong tasks to agents or send-
ing wrong messages—as far as authors’ knowledge based on papers and official
documentation.

Typing Multi-agent Programs in simpAL 155

Active Components are a recent development of the Jadex project, aiming at
providing programming and execution facilities for distributed and concurrent
systems [20]. The general idea is to consider systems to be composed of active
(autonomous) components acting as service providers and consumers, following
the Service Component Architecture (SCA) defined in the context of service ori-
ented architectures. Communication among active components is preferably done
then using service invocations, as defined by the service/component interfaces.
Even if the approach does not clearly define a notion of type for agents (it is not
its objective), this makes it possible to improve the kind of errors that could be
detected at compile time by exploiting the service/component interfaces.

Besides sequential programming languages, type systems have been widely
used for analyzing the behavior also of concurrent programs and systems of
concurrent processes, to reason about deadlock-freedom, safe usage of locks,
etc. [30,15]. In particular, the notion of session type has been introduced to spec-
ify complex interaction protocols, verified by static type checking [12]. Session
types, and in particular multiparty session types [13], could be used to impose
(and verify statically) restrictions on the pattern of interaction. These aspects
are important indeed also in the context of programming languages based on
agent-oriented abstractions and will be considered in our future work.

5 Concluding Remarks

The definition of a notion of type for agents, artifacts and organizations makes
it possible to clearly separate the specification from the implementation, getting
a first kind of substitutability. In particular, in every context of the program in
which an agent playing some role R is needed, we can (re-)use any concrete agent
equipped with a script – whose source code can be unknown, having only the
compiled version – implementing the role R. Also, in every context of the pro-
gram where an artifact providing the functionalities described by the I interface
is needed, we can (re-)use any concrete artifact instance of an artifact template
implementing the interface I. This enables a first level of reuse and evolvability,
without the need of having the source codes. Improved version of agents and
artifacts implementing some roles/interfaces can be introduced without doing
any change in the other components that interact with them —if the roles and
interfaces are not changed.

Indeed this is just a first step towards fully supporting the principle of sub-
stitutability, as defined in the context of OOP [29]. This requires the definition
of a proper subtyping relationship, to define roles/interfaces as extensions of ex-
isting ones. This is part of our future work, exploring subtyping as a mechanism
providing a sound and safe way to conceive the incremental modification and
extension of agents/artifacts and their conceptual specialization.

Other important works in our agenda include: the definition of a proper formal
model of the type system described in this paper – following a previous work in-
troducing a core calculus for agents and artifacts [5] – so as to rigorously analyze
its properties; and the improvement of typing for messages and communication

156 A. Ricci and A. Santi

protocols, eventually exploiting results available both in agent-oriented program-
ming literature and outside, such as the work on session types [8].

Finally, many of the concepts and abstractions on which simpAL is based
can be found also in agent-oriented software engineering methodologies (an easy
example is the very notion of role): these will be used then as a main reference
for eventually refining and enriching how such concepts are currently modeled
in simpAL.

References

1. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade: A software framework
for developing multi-agent applications. Lessons learned. Information & Software
Technology 50(1-2), 10–21 (2008)

2. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. John Wiley & Sons, Ltd. (2007)

3. Collier, R.: Debugging agents in agent factory. In: Bordini, R.H., Dastani, M., Dix,
J., El Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS (LNAI), vol. 4411, pp.
229–248. Springer, Heidelberg (2007)

4. Cook, W.R., Hill, W., Canning, P.S.: Inheritance is not subtyping. In: Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1990, pp. 125–135. ACM, New York (1990)

5. Damiani, F., Giannini, P., Ricci, A., Viroli, M.: A calculus of agents and artifacts.
In: Cordeiro, J., Ranchordas, A., Shishkov, B. (eds.) ICSOFT 2009. CCIS, vol. 50,
pp. 124–136. Springer, Heidelberg (2011)

6. Danforth, S., Tomlinson, C.: Type theories and object-oriented programmimg.
ACM Comput. Surv. 20(1), 29–72 (1988)

7. Dastani, M.: 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

8. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006)

9. Grigore, C., Collier, R.: Supporting agent systems in the programming language.
In: Hübner, J.F., Petit, J.-M., Suzuki, E. (eds.) Web Intelligence/IAT Workshops,
pp. 9–12. IEEE Computer Society (2011)

10. Grigore, C.V., Collier, R.W.: Af-raf: an agent-oriented programming language with
algebraic data types. In: Proceedings of the Compilation of the Co-located Work-
shops on DSM 2011, TMC 2011, AGERE! 2011, AOOPES 2011, NEAT 2011, &
VMIL 2011, SPLASH 2011 Workshops, pp. 195–200. ACM, New York (2011)

11. Hindriks, K.V.: Programming rational agents in goal. In: Multi-Agent Program-
ming, pp. 119–157. Springer US (2009)

12. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

13. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284 (2008)

14. Howden, N., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agentsTM

— summary of an agent infrastructure. In: Proc. of 2nd Int. Workshop on Infras-
tructure for Agents, MAS, and Scalable MAS (2001)

Typing Multi-agent Programs in simpAL 157

15. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K.,
Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Founda-
tional Support. LNCS, vol. 2757, pp. 439–453. Springer, Heidelberg (2003)

16. Meyer, B.: Static typing. In: ACM SIGPLAN OOPS Messenger, vol. 6, pp. 20–29.
ACM (1995)

17. Mitchell, J.: Concepts in Programming Languages. Cambridge University Press
(2002)

18. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3) (December 2008)

19. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)
20. Pokahr, A., Braubach, L., Jander, K.: Unifying agent and component concepts:

Jadex active components. In: Dix, J., Witteveen, C. (eds.) MATES 2010. LNCS,
vol. 6251, pp. 100–112. Springer, Heidelberg (2010)

21. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Multi-Agent Pro-
gramming. Kluwer (2005)

22. Rao, A.: AgentSpeak (L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

23. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: First Inter-
national Conference on Multi Agent Systems, ICMAS 1995 (1995)

24. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23,
158–192 (2011)

25. Ricci, A., Santi, A.: Agent-oriented computing: Agents as a paradigm for computer
programming and software development. In: Proc. of the 3rd Int. Conf. on Future
Computational Technologies and Applications, Future Computing 2011, Rome,
Italy. IARIA (2011)

26. Ricci, A., Santi, A.: Designing a general-purpose programming language based
on agent-oriented abstractions: the simpAL project. In: Proc. of AGERE! 2011,
SPLASH 2011 Workshops, pp. 159–170. ACM, New York (2011)

27. Ricci, A., Santi, A.: From actors to agent-oriented programming abstractions in
simpal. In: Proceedings of the 3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity, SPLASH 2012, pp. 73–74. ACM, New
York (2012)

28. Ross, R., Collier, R., O’Hare, G.M.P.: AF-APL – bridging principles and prac-
tice in agent oriented languages. In: Bordini, R.H., Dastani, M., Dix, J., El Fal-
lah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 66–88.
Springer, Heidelberg (2005)

29. Wegner, P., Zdonik, S.B.: Inheritance as an incremental modification mechanism
or what like is and isn’t like. In: Gjessing, S., Chepoi, V. (eds.) ECOOP 1988.
LNCS, vol. 322, pp. 55–77. Springer, Heidelberg (1988)

30. Yoshida, N., Hennessy, M.: Assigning types to processes. Inf. Comput. 174(2),
143–179 (2002)

Learning to Improve Agent Behaviours in GOAL

Dhirendra Singh and Koen V. Hindriks

Interactive Intelligence Group, Delft University of Technology, The Netherlands

Abstract. This paper investigates the issue of adaptability of behaviour
in the context of agent-oriented programming. We focus on improving
action selection in rule-based agent programming languages using a re-
inforcement learning mechanism under the hood. The novelty is that
learning utilises the existing mental state representation of the agent,
which means that (i) the programming model is unchanged and using
learning within the program becomes straightforward, and (ii) adaptive
behaviours can be combined with regular behaviours in a modular way.
Overall, the key to effective programming in this setting is to balance
between constraining behaviour using operational knowledge, and leav-
ing flexibility to allow for ongoing adaptation. We illustrate this using
different types of programs for solving the Blocks World problem.

Keywords: Agent programming, rule selection, reinforcement learning.

1 Introduction

Belief-Desire-Intention (BDI) [1] is a practical and popular cognitive framework
for implementing practical reasoning in computer programs, that has inspired
many agent programming languages such as AgentSpeak(L) [2], JACK [3], Jason [4],
Jadex [5], CANPLAN [6], 3APL [7], 2APL [8], and Goal [9], to name a few. Despite
its success, an important drawback of the BDI model is the lack of a learn-
ing ability, in that once deployed, BDI agents have no capacity to adapt and
improve their behaviour over time. In this paper, we address this issue in the
context of BDI-like rule-based agent programming languages. Particularly, we
extend the Goal agent programming language [9] for practical systems [10, 11]
with a new language primitive that supports adaptive modules, i.e., modules
within which action choices resulting from programmed rules are learnt over
time. While we have chosen Goal for this study, our approach applies generally
to other rule-based programming languages. We use an off-the-shelf reinforce-
ment learning [12] mechanism under the hood to implement this functionality.

Our aim is to allow agent developers to easily program adaptive behaviours
using a programming model that they are already familiar with, and without
having to explicitly delve into machine learning technologies. Our idea is to lever-
age the domain knowledge encoded into the agent program, by directly using the
mental state representation of the agent for learning purposes. This has the key
benefits that (i) the programmer need not worry about knowledge representation
for learning as a separate issue from programming; (ii) the programming model

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 158–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Learning to Improve Agent Behaviours in Goal 159

for adaptive behaviours remains the same as before; and (iii) learning and pro-
gramming become truly integrated in the sense that their effectiveness depends
directly on the mental state representation used by the programmer.

The key idea is that learning may exploit the underspecification that is inher-
ent in agent programming [13]. That is, agent programs often generate multiple
options for actions without specifying how to make a final choice between these
options. This is a feature of agent programming because it does not require a
programmer to specify action selection to unnatural levels of detail. The moti-
vation of our work is to exploit this underspecification and potentially optimize
action selection by means of automated learning where it may be too compli-
cated for a programmer to optimize code. The first challenge is to add a learning
mechanism to agent programming in a generic and flexible way and to naturally
integrate such a mechanism in a way that burdens the programmer minimally.
The second challenge is to do this in such a way that the state space to be
explored by the learning mechanism can still be managed by the program. Our
approach addresses both challenges by re-using the mental state representation
available in the agent program. Although our approach also facilitates managing
the state space, there remain issues for future work that need to be dealt with
in this area in particular. To this end, we draw some lessons learned from our
work and discuss some options for dealing with this issue.

One of the aims of our work is to explore the impact of various representations
or program choices on the learning mechanism. Even though our objective is to
impose minimal requirements on the programmer’s knowledge of machine learn-
ing, the program structure will have impact on the learning performance. Ideally,
therefore, we can give the programmer some guidelines on how to write agent
programs that are able to effectively learn. It is well-known that the represen-
tation language is a crucial parameter in machine learning. Given an adequate
language, learning will be effective, and given an inadequate one learning will
be difficult if not impossible [14]. Applied to agent-oriented programming this
means that it is important to specify the right predicates for coding the agent’s
mental state and to provide the right (modular) program structure to enhance
the effectiveness of learning. If the programmer is not able to use knowledge to
guide program design, one may have to search a larger space, may require more
examples and time, and in the worst case, learning might be unsuccessful.

The remainder of the paper is as follows. Section 2 introduces the Goal
language and reinforcement learning, followed by an overview of related works
in Section 3. Section 4 describes the integration of Goal and reinforcement
learning and Section 5 presents experiments in the Blocks World. We conclude
with a discussion of limitations and future directions of this work in Section 6.

2 Preliminaries

We now briefly discuss how agent programs and cognitive architectures select
the action to perform next. In other words, we discuss how the mechanism we
want to extend with a learning capability works. Following this, we introduce
the reinforcement learning framework that we have used in this work.

160 D. Singh and K.V. Hindriks

2.1 Agent Programming Languages

Agent programming languages (APLs) based on the BDI paradigm are rule-
based languages [15, 16]. Rules may serve various purposes but are used among
others to select the actions or plans that an agent will perform. An agent program
may perform built-in actions that are provided as programming constructs that
are part of the language itself or it may perform actions that are available in
an environment that the agent is connected to. Environment actions give the
agent some control over the changes that occur in that environment. The types
of rules that are used in APLs varies. Generally speaking, however, rules have a
condition that is evaluated on the agent’s mental state (rule head) and have a
corresponding action or plan that is instantiated if the rule fired (rule body).

Rules are evaluated and applied in a reasoning cycle that is part of the agent
program’s interpreter. Agent interpreters for APLs implement a sense-plan-act
cycle or a variant thereof. In a typical interpreter, for example, the percepts re-
ceived from an environment are processed by some predefined mechanism. Most
often this is an automatic mechanism (that may be customisable as in Jason) [4],
but not necessarily; in Goal, for example, so-called percept rules are available
for processing incoming percepts and similar rules are available for processing
messages received from other agents (2APL has similar rules [8]). During this
stage, either before or after processing the percepts, typically the messages re-
ceived from other agents are processed. These steps are usually performed first
to ensure the mental state of the agent is up to date. Thereafter, the interpreter
will evaluate rules against the updated mental state and select applicable rules.
After determining which rules are applicable one or more of these rules is fired,
resulting in one or more options to perform an action or add a plan to a plan
base. Some selection mechanism (that again may be customised as e.g. in Jason)
then is used to arbitrate between these multiple options, or, as is the case in for
example Goal, a choice is randomly made. Finally, an action is executed either
internally or an action is sent to the environment for execution.

One aspect of these interpreters is that they may generate multiple applicable
rules and options for performing actions. If multiple options are available, then
the agent program is underspecified in the sense that it does not determine a
unique choice of action. It is this feature of agent architectures that we will
exploit and can be used by a learning mechanism for optimising the agent’s
choice of action [17, 18].

2.2 Reinforcement Learning

Reinforcement learning [12] is a formal framework for optimally solving mul-
tistage decision problems in environments where outcomes are only partly at-
tributed to decision making by the agent and are partly stochastic. The general
idea is to describe the value of a decision problem at a given time step in terms
of the payoffs received from choices made so far, and the value of the remaining
problem that results from those initial choices. Formally, at each time step t in
a multistep problem, the agent perceives state s ∈ S of the environment and
chooses an action a ∈ As that causes the environment to transition to state s′ in

Learning to Improve Agent Behaviours in Goal 161

the next time step t+1 and return a reward with the expected value r ∈ R(s, a).
Here S is the set of all possible states, As is the set of all possible actions in
a given state s, and R(s, a) is the function that determines the reward for tak-
ing an action a in state s. The probability that the process advances to state
s′ is given by the state transition function P (s′|s, a). The agent’s behaviour is
described by a policy π that determines how the agent chooses an action in any
given state. The optimal value in this setup can be obtained using dynamic pro-
gramming and is given by Bellman’s equation (Equation 1) [19], that relates the
value function V ∗(s) in one time step to the value function V ∗(s′) in the next
time step. Here, γ ∈ [0, 1) is the discount factor that determines the importance
of future rewards.

V ∗(s) = R(s, a) + max
a∈As

γ
∑

s′
P (s′|s, a)V ∗(s′). (1)

In the reinforcement learning setting both P (s′|s, a) and R(s, a) are unknown.
So the agent has little choice but to physically act in the environment to observe
the immediate reward, and use the samples over time to build estimates of the
expected return in each state, in the hope of obtaining a good approximation
of the optimal policy. Typically, the agent tries to maximise some cumulative
function of the immediate rewards, such as the expected discounted return Rπ(s)
(Equation 2) at each time step t. Rπ(s) captures the infinite-horizon discounted
(by γ) sum of the rewards that the agent may expect (denoted by E) to receive
starting in state s and following the policy π.

Rπ(s) = E{rt+1 + γrt+2 + γ2rt+3 + . . .}. (2)

One way to maximise this function is to evaluate all policies by simply following
each one, sampling the rewards obtained, and then choosing the policy that gave
the best return. The obvious problem with such a brute force method is that
the number of possible policies is often too large to be practical. Furthermore,
if rewards were stochastic, then even more samples will be required in order to
estimate the expected return. A practical solution, based on Bellman’s work on
value iteration, is Watkins’ Q-Learning algorithm [20] given by the action-value
function (Equation 3). The Q-function gives the expected discounted return
for taking action a in state s and following the policy π thereafter. Here α
is the learning rate that determines to what extent the existing Q-value (i.e.,
Qπ(s, a)) will be corrected by the new update (i.e., R(s, a)+γmaxa′(Q(s′, a′))),
and maxa′(Q(s′, a′)) is the maximum possible reward in the following state, i.e.,
it is the reward for taking the optimal action thereafter.

Qπ(s, a) ← Qπ(s, a) + α
[
R(s, a) + γmax

a′
(Q(s′, a′))−Qπ(s, a)

]
. (3)

In order to learn the Q-values, the agent must try out available actions in each
state and learn from these experiences over time. Given that acting and learning
are interleaved and ongoing performance is important, a key challenge when
choosing actions is to find a good balance between exploiting current knowledge

162 D. Singh and K.V. Hindriks

to get the best reward known so far, and exploring new actions in the hope of
finding better rewards.

3 Related Work

In most languages for partial reinforcement learning programs, the programmer
specifies a program containing choice points [21]. Because of the underspecifica-
tion present in agent programming languages, there is no need to add such choice
points as multiple options are generated automatically by the agent program it-
self. There is little existing work in integrating learning capabilities within agent
programming languages. In PRS-like cognitive architectures [2, 4, 22, 3] that are
based in the BDI tradition, standard operating knowledge is programmed as
abstract recipes or plans, often in a hierarchical manner. Plans whose precondi-
tions hold in any runtime situation are considered applicable in that situation
and may be chosen for execution. While such frameworks do not typically sup-
port learning, there has been recent work in this area. For instance, in [23] the
learning process that decides when and how learning should proceed, is itself de-
scribed within plans that can be invoked in the usual manner. Our own previous
investigations in this area include [24–26] where decision tree learning was used
to improve hierarchical plan selection in the JACK [3] agent programming lan-
guage. That work bears some resemblance here in that the aim was to improve
choice of instantiated plans as we do for bound action options in this study.
In [17] we integrated Goal and reinforcement learning as we do in this paper,
with the key difference that now (i) a learning primitive has been added to the
Goal language to explicitly support adaptive behaviours, and (ii) a much richer
state representation is used, i.e., the mental state of the agent.

Among other rule-based systems, ACT-R [27, 28] is a cognitive architecture
primarily concerned with modelling human behaviour, where programming con-
sists of writing production rules [29] that are condition-action pairs to describe
possible responses to various situations. Learning in ACT-R consists of forming
entirely new rules from sample solutions encountered, as well as updating the
utilities of existing rules from ongoing experience. While not a programming
language per se, ACT-R learning is nevertheless quite related in that Q-Learning
is also used to learn rule preferences. SOAR [30] also uses production rules to
capture procedural knowledge about the domain. It uses a process called chunk-
ing to create new production rules based on the results of subgoals, in a kind
of explanation-based learning. SOAR-RL [31] integrates reinforcement learning
to improve operator selection based on experience, similar to learnt utilities in
ACT-R. ICARUS [32] is a cognitive architecture that incorporates ideas from work
on production systems, hierarchical task networks, and logic programming. It
uses a form of explanation-based learning to find the task hierarchy in hierarchi-
cal task networks. Overall, ACT-R, SOAR and our work share similarities in the
way reinforcement learning is used to learn rule preferences, however the moti-
vations are quite different. While ACT-R is heavily used in cognitive psychology
research to model human behaviour, and SOAR is a general cognitive architec-
ture for building intelligent systems, Goal is an agent programming language

Learning to Improve Agent Behaviours in Goal 163

in the BDI tradition. For us, the key motivation for integrating learning is to
make adaptive technologies more accessible to agent programmers.

4 The GOAL Agent Programming Language

Goal is a logic-based agent programming language similar to 2APL [8] and Jason

[4]. Goal agents maintain a dynamic mental state consisting of beliefs and goals
that are represented in Prolog. Goal agents also have a static knowledge base
that is part of their mental state and consists of domain knowledge. They may
perform built-in actions that update their mental state or send a message as well
as actions that are available in the environment that the agent is connected to.
Environment actions are specified using a STRIPS-like pre- and post-condition
specification. A Goal agent derives its choice of action from its beliefs and
goals (in combination with its knowledge) by means of rules. Rules consist of a
condition that is evaluated on the mental state of the agent and one or more
actions that may be executed if the condition holds. In addition, Goal supports
multiple types of rules, rule evaluation strategies, and modules that facilitate
structured programming.

Figure 1 provides a listing of a simple example Goal agent program for the
BlocksWorld [33]. We have used this program also in our experiments to evaluate
the learning mechanism we have added to the language. The Blocks World is a
well studied toy domain that has been used extensively in artificial intelligence
research. The setup consists of a fixed number of blocks that are sitting on a table
big enough to hold them all. Each block exists on top of exactly one other object
that can either be another block or the table itself. Each block is considered to
be clear when no other block exists on top of it. There is only one type of action
that is possible in this domain: move a single clear block, either from another
block onto the table, or from an object onto another clear block. A problem
specification in this domain consists of an initial configuration of blocks, as well
as the desired configuration. The task for the agent is to move blocks around
one at a time until the final configuration is realised.

The program processes percepts and randomly selects an action that is en-
abled in the Blocks World environment. The init module consists of code to
initialize the mental state of the agent and a single action specification for the
move(X,Y) action that the agent can perform in the Blocks World. The Prolog

rules in the knowledge section of this module define the concepts of a block
and a block being clear. An initial goal is specified in the goals section. Ini-
tially the agent has no beliefs; the agent must first perceive the environment to
obtain information about the blocks’ configuration. The event module is exe-
cuted at the start of each decision or reasoning cycle of an agent. Its purpose
is to process received percepts (and messages). The two forall rules part of
this module process the percepts received at the start of the cycle of the form
percept(on(X,Y)). The first rule checks whether the agent sees that a block X

is on top of a block Y and inserts this fact if the agent does not currently believe
it; the second rule removes facts that are believed but not perceived (assuming
full observability this is a sound rule).

164 D. Singh and K.V. Hindriks

1 init module {

2 knowledge{

3 block(X) :- on(X,_).

4 clear(X) :- block(X), not(on(_,X)).

5 clear(table).

6 }

7 actionspec{

8 move(X,Y) {

9 pre{ clear(X), clear(Y), on(X,Z), not(on(X,Y)) }

10 post{ not(on(X,Z)), on(X,Y) }

11 }

12 }

13 goals{ on(b1,table), on(b2,b1), on(b3,b2), on(b4,b3). }

14 beliefs{}

15 }

16 event module { program {

17 forall bel(percept(on(X,Y)), not(on(X,Y))) do insert(on(X,Y)).

18 forall bel(on(X,Y), not(percept(on(X,Y)))) do delete(on(X,Y)).

19 }}

20 main module { program[order=random] {

21 if bel(true) then move(X,Y).

22 }}

Fig. 1. A simple Goal agent for solving the Blocks World problem

The main module consists of the decision logic for acting in the environment
and selects actions after the mental state has been updated with the most recent
perceptual information. The option order=random associated with the program
section of the module indicates that rule evaluation occurs in random order
(other options are to evaluate in linear order and to evaluate all rules in either
linear or random order). In the example agent of Figure 1 there is only one rule
that is always applicable because the condition bel(true) always holds and
there is always an action enabled in a Blocks World environment. Note that a
rule is evaluated by evaluating its condition and the precondition of the (first,
if there are more) action of the rule. A rule that is applicable generates a non-
empty set of options which are actions that may be performed by the agent.
Only one of these actions is performed in a rule of the form if ... then ...

and the action is randomly selected in that case. One might say that the program
underspecifies what the agent should do. This may be useful if a programmer
does not know how to select or care for a unique action and may be exploited
by a learning mechanism to optimise the behavior of the agent, which is exactly
the focus of this paper. Where more than one action is applicable, the agent
must decide which one to choose and execute. In this work we are concerned
with improving this action selection based on the ongoing experiences of the
agent.

Learning to Improve Agent Behaviours in Goal 165

Implementing Adaptive Behaviours in GOAL
There are two key aspects of the adaptive framework in Goal that we describe
now, (i) the programming model that describes how adaptive behaviour mod-
ules can be specified by the agent programmer using the language of Goal,
and (ii) the underlying reinforcement learning implementation that makes it all
possible.

Let us start with how adaptive behaviours can be specified in the programming
model of Goal. An important consideration for us when deciding what the
programming interface should consist of was to keep as much of the machine
learning technologies insulated from the programmer as possible. The motivation
for this was to keep the programming model as simple and as close to the existing
model as possible in order to allow easy uptake by existing Goal programmers.
Our stance here has been that agent programmers are not experts in machine
learning and so they will be reluctant to try a new feature of the language if it
required new expertise and significant changes to their programming style.

The first design choice for us was how the knowledge representation aspect
of machine learning should be combined in the agent programming model with-
out sacrificing programming flexibility and avoiding significant overhead. We
achieve this by making the knowledge representation for learning to be the same
as the knowledge representation for the agent program. That is to say that the
“state” in the reinforcement learning sense is the mental state of the agent that
comprises of its beliefs and goals. All that is required is to provide a translation
function that automatically maps the mental state of the agent to a suitable
state id (a number) used for reinforcement learning. The second decision was to
make learning a modular feature in line with the Goal philosophy of modular
programming, to allow regular and adaptive behaviours to be easily combined.

The result is a very easy to use programming model where learning can simply
be enabled as desired using a new order=adaptive option in the program section
of a module. For example, to change the regular program module in the agent of
Figure 1 to an adaptive one, we only have to change order=random as follows:

main module { program[order=adaptive] {

if bel(true) then move(X,Y).

}}

With this specification, all possible action bindings will be evaluated by the
underlying learning mechanism and action selection will be governed by the
Q-values derived over repeated runs, rather than being random as it was before.

The benefit is that the agent programmer does not have to explicitly think
about learning as being separate from programming, bar adhering to some basic
guidelines. The only recommendation we have for the programmer is to not
use the belief base of the agent as a long term memory store if learning is to
be used. This means to not keep adding belief facts that only serve to keep a
history of events. For example, a programmer may choose to store the history of
every choice it made in a maze solving problem. If the programmer then enables
learning such as to optimise the maze exploration strategy, then it will likely not
deliver any useful results quickly due to the very large state space created by the

166 D. Singh and K.V. Hindriks

belief base. A similar argument also applies for adding new goals to the mental
state, but it is generally not as much of a problem since programs do not add
new goals during execution to the same extent as they do beliefs. We must add
here that in some problems this representation is unavoidable. In future work,
we hope to address such cases by allowing learning to select a more appropriate
context by decoupling the mental state into relevant and not relevant parts
using a dependency graph that is already part of the Goal implementation. For
instance, in the maze example, if the exploration module code does not depend
on the history of beliefs being added, then it should be possible to automatically
isolate them from the state representation for learning purposes.

The final decision was on how rewards should be specified for reinforcement
learning within the Goal programming framework. We do this using the existing
Environment Interface Standard (EIS) that Goal uses to connect to external
environments. The addition is a new “reward” query from Goal that, if im-
plemented by the environment, returns the reward for the last executed action.
If, however, the plugged environment does not support this query, then the re-
ward is simply an evaluation of the goals of the agent: if all the goals have been
achieved, then the reward is 1.0, otherwise it is 0.0. The idea is that learning
can be enabled regardless of whether a reward signal is available from the envi-
ronment, in which case the agent tries to optimise the number of steps it takes
to achieve its goals. A future extension might be to give partial rewards between
0.0 and 1.0 based on how many independent goals have been satisfied. However,
it is unclear if rewards based solely on the agent’s goals are always useful in
learning, such as in programs that add or remove goals from the mental state.

In this study we use a Q-Learning implementation where the precise action-
value function is maintained in memory. It should be noted here that this imple-
mentation does not scale well to large state spaces. Of course, we could use an
approximation of the action-value function, such as a neural network, to store
this in a compact manner. However, our focus here is not so much to use an
efficient reinforcement learning technology as it is to see how such learning can
be integrated into agent programming in a seamless manner. For this reason, in
this version of the work, we have kept the basic Q-Learning implementation.

A simple action-selection strategy is to select the best known action most
of the time, but every once in a while choose a random action with a small
probability, say ε. This strategy is well known as ε-greedy and is the one we
use in this work. In future work we plan to experiment with more advanced
strategies. For instance, in the so-called Boltzmann selection strategy, instead
of picking actions randomly, weights are assigned to the available actions based
on their existing action-value estimates, so that actions that perform well have
a higher chance of being selected in the exploration phase.

Under the hood we have implemented a Java-based interface that allows us
to plug in a generic reinforcement learning algorithm into Goal. The idea is to
be able to offload the task of providing and maintaining the machine learning
technology to the relevant expert. It will also allow us to easily update the default
Q-Learning implementation with a more efficient one in the future.

Learning to Improve Agent Behaviours in Goal 167

5 Experiments

Here we describe the Blocks World domain that we used as a testbed for our
experiments, and then the three different programs to solve it. We analyse the
results quantitatively in terms of the average number of steps taken by the
agent to achieve its goal, as well as qualitatively in terms of how the design of
the program impacts learning performance.

We have chosen the Blocks World domain for our experiments for several rea-
sons. First, the domain is simple to understand and programming strategies are
easy to describe and compare at a conceptual level. Second, despite its simplicity,
finding optimal solutions in this domain is known to be an NP-hard problem [34].
Finally, decisions in this domain often involve choosing between several options
that could potentially be optimised using learning.

There are various ways of programming a strategy for solving the Blocks
World. For example, one way would be to dismantle all blocks onto the table
one by one, and then stack them into the desired configuration from there. This
is in fact a reasonable “baseline” strategy because it is easy to see that the
upper bound for the number of steps needed to solve a problem with n blocks is
2(n− 1) which is the case when one must dismantle a single tower (which takes
n− 1 moves for a tower of height n) to construct a different single tower (that
takes another n − 1 moves). The average number of steps for this algorithm
is less intuitive but has been shown to be 2(n − √

n) [33]. For this work, we
will compare three other solutions to the problem, and see how they compare
amongst themselves and against this baseline strategy.

Program A. A very simple strategy for solving the BlocksWorld is to randomly
select some block that is clear and move it to some randomly chosen place
on top of another object. Effectively, this strategy tries to achieve the final
configuration by randomly changing the current configuration for as long as
needed until it eventually stumbles upon the solution. This strategy is given
by the program listing in Figure 1, and is contained in the following code
segment:

main module { program[order=random] {

if bel(true) then move(X,Y).

}}

This is certainly not the most effective way to solve the problem, and while
it works reasonably well for small problems of two to four blocks, it quickly
becomes unusable beyond six blocks. Nevertheless it is useful for this study
since we are interested in improving action selection using learning, and one
would imagine there is a lot of room for improvment in this strategy.

Program B. An improvement on the random strategy is this actual Blocks
World program written in Goal by an agent programmer:

main module { program[order=random] {

if bel(on(X,Y), clear(X), clear(Z)), a-goal(on(X,Z)) then move(X,Z).

if bel(on(X,Y), not(clear(X))), a-goal(on(X,Z)) then adopt(clear(X)).

if a-goal(on(X,Z)), bel(on(X,Y), not(clear(Z))) then adopt(clear(Z)).

168 D. Singh and K.V. Hindriks

if bel(on(X,Y), clear(X)), a-goal(clear(Y)) then move(X,table).

if bel(on(X,Y), not(clear(X))), a-goal(clear(Y)) then adopt(clear(X)).

}}

This strategy uses the following line of thought: If the agent has a goal to
have some block X on top of Z, then move X onto Z if possible. If not possible
because X cannot be moved, then clear whatever block is obstructing X. On
the other hand, if it is Z that is blocked then clear it first. Finally, repeatedly
clear blocks that are obstructing other blocks that are to be cleared.

Program C. A more sophisticated solution that comes bundled with the Goal
distribution uses a higher level notion of misplaced blocks to decide if a block
should be moved. To do this it provides a recursive definition of a Tower.
Then a block is considered misplaced if the agent still has a goal to have a
tower with block X on top. Given these definitions, the strategy is relatively
simple and uses only two rules. The idea is to either move a misplaced block
onto the table, or move a block onto another block if the move is constructive,
i.e., results in a desired tower configuration.

knowledge{

...

tower([X]) :- on(X, table).

tower([X, Y| T]) :- on(X, Y), tower([Y| T]).

}
program[order=linear] {

#define misplaced(X) a-goal(tower([X| T])).

#define constructiveMove(X,Y) a-goal(tower([X, Y| T])), bel(tower([Y| T])).

if constructiveMove(X, Y) then move(X, Y).

if misplaced(X) then move(X, table).

}

We conducted several experiments with the three example programs A, B, and
C, for problems with upto 10 blocks. Each run of the experiment consisted of
a series of randomly generated problems that were solved using the program
first in its original form and then using adaptive ordering (i.e., by substituting
[order=adaptive] in the program module options). Since problems are ran-
domly generated and the number of moves required to solve them can vary
significantly, we used a moving average of 20 results over the series of generated
problems to get the average number of steps for any problem of a given size.
Finally, we ran 20 repeats of each experiment and report the average number of
moves taken to achieve the fixed goal of building a given tower configuration.

For all of our experiments, we used the following parameters’ settings. The
ε value for the action selection strategy was set to always explore 10% of the
time. For Q-Learning we set the learning rate α to 1.0 and the discount factor
γ to 0.9. It should be noted that these settings will obviously impact learning,
and these default values may not work as well in other domains. An option in
the future might be to setup learning “profiles” that the programmer can select
between based on some basic usage guidelines.

Learning to Improve Agent Behaviours in Goal 169

0 1,000 2,000

101

102

(a) Program A

0 1,000 2,000
0

5

10

Original Adaptive

(b) Program B

0 1,000 2,000
0

2

4

(c) Program C

0 2,000 4,000
101

102

103

(d) Program A

0 2,000 4,000
0

10

20

30

(e) Program B

0 2,000 4,000
0

2

4

6

8

(f) Program C

Fig. 2. Comparison of the number of moves (y-axis) over successive episodes (x-axis)
to solve randomly generated worlds of four (top row) and six (bottom row) blocks,
with original (light shade) and adaptive (dark shade) rule ordering

Results
Figure 2 shows the results of running the programs A, B, and C, with and
without adaptive behaviours enabled (in dark and light shading respectively).
Figure 2a, Figure 2b, and Figure 2c are results for problems with four blocks,
while Figure 2d, Figure 2e, and Figure 2f are for problems with six blocks.

Program A: In Figure 2a, the light shading shows that the average number
of steps taken by the original A to solve problems with four blocks is around
350 moves. This is not very surprising since A is really only trying to solve the
problem using random moves. The dark shading shows the results for the same
set of problems and the same A, but using adaptive rule ordering. While ini-
tially the program performs similarly as it tries to find the first few solutions,
it improves to around seven moves per problem by 100 episodes. Beyond that
it improves progressively and by the end of the experiment at 2000 episodes
the program takes around five moves per problem. Compared to our baseline
program that averages 2(n −√

n) = 4, i.e., four moves for a problem with four
blocks, we can already see that the learnt ordering gives competitive perfor-
mance. Figure 2d shows the same A for problems with six blocks using adaptive
ordering. We have not included results for the original program since it takes

170 D. Singh and K.V. Hindriks

over 30000 moves on average per problem. For adaptive mode, this number im-
proves to about 60 moves by the 100th episode, and progressively to around 12
moves by 4000 episodes. This gets us close to the baseline of 2(n − √

n) = 7.1
but not quite there. It would be possible to improve further if the program was
allowed to run for more episodes, but the improvement will occur very slowly.
We also did not run this program for problems with more than six blocks as
solving larger problems becomes impractical with this strategy.

Program B : Figure 2b shows the performance of the original B for problems
with four blocks at around 11 moves. The performance is already reasonable to
start with as it is a more informed programmed strategy than A. With adaptive
ordering, the performance improves to around five moves per problem by 100
episodes. This is on par with the performance of A at 2000 episodes. At the end
of the experiment, the program performs slightly above 4.5 moves and is close
to optimal. For six blocks, the original program averages around 28 moves per
problem as shown in Figure 2e. In adaptive mode, this improves to around 58
moves by 100 episodes, and at the end of the experiment to around 10 moves.
This is higher than the baseline of 7.1 moves but slightly better than adaptive
performance with A that averages around 12 moves in that timeframe. Overall,
B performs far better than A due to its informed strategy, and this performance
also translates to faster and better learning.

Program C : In contrast to the other programs, C is already known to perform
close to optimal, and achieves around 4.5 moves on average per problem of four
blocks as shown in Figure 2c. With adaptive ordering, this does not seem to
improve in the 2000 episodes that we ran the experiment for. This is expected
since the program is already performing close to optimal. However, interestingly
we know from previous studies that C does not perform optimally for certain
“deadlock” cases. We would have hoped to overcome this using learning but from
the averaged results this is not evident as there is no significant difference in the
performance with and without learning. Importantly, for six blocks, for the first
time in the experiments we see that the adaptive ordering actually performs
worse than the original program in Figure 2f, albeit by only 0.25 moves per
problem on average at its worst. On closer analysis this seems to be because
we simply have not run the experiment long enough. Certainly the difference
between the two modes of execution is diminishing as the experiment progresses
and is evident in Figure 2f. We should note that regardless, the performance
of C with or without learning is significantly better than the other programs at
around 8 moves and only slightly higher than the baseline case of 2(n−√

n) = 7.1.
Overall, we can conclude that C is already very informed about the domain, so
learning is not very useful in this case.

Interestingly, in all experiments, adaptive mode does not do any worse than
the default behaviour. This is a useful insight for agent programmers who may
otherwise feel reluctant to try a “black box” technology that directly impacts
the performance of the agent but that they do not really understand. Another
important point is that the performance improvement with adaptive mode is
very much tied to the problem at hand and does not necessarily generalise to
other related problems. For instance, the learning from four-block problems does

Learning to Improve Agent Behaviours in Goal 171

not generalise to six-block problems and the agent programmer should be aware
that one cannot simply plug-and-play learnt values between problems. While this
feature may be desirable in many domains, it is nevertheless a shortcoming that
comes with the ease of use of the programming model that completely insulates
the programmer from the knowledge representation used for learning.

6 Discussion and Conclusion

In this paper we have shown how the mental state representation of an agent
program may be exploited to significantly increase the effectiveness of the pro-
gram through ongoing learning. The novelty is that this performance improve-
ment comes almost for free since the programming model remains relatively
unchanged. In particular, we presented an enhancement to the Goal agent pro-
gramming language that allows adaptive behaviours to be easily programmed.
The new language primitive is implemented using a Q-Learning mechanism un-
der the hood, and allows action choices resulting from programmed rules to be
improved over time based on the ongoing experience of the agent. A key feature
of this enhancement is that it can be readily used by agent programmers who are
non-experts in machine learning, since the learning feature has little impact on
the programming model. We demonstrated the usability of the framework in the
Blocks World domain and analysed the programmer’s role in balancing between
fixed and flexible behaviour using three sample solutions for the problem.

The results in Section 5, however, also indicate that scalability (i.e. managing
the size of the state space) remains an important challenge. The main tool a
programmer currently has in our approach to integrating learning into Goal to
reduce the state space is to add and exploit knowledge about the environment in
the agent program. Even though the use of domain knowledge may reduce the
size of the state space, which corresponds one-to-one with the number of beliefs
and goals of the agent, the state space still quickly becomes very large in the
Blocks World environment with an increasing number of blocks [33].

We have used and integrated a standard Q-Learning approach to reinforce-
ment learning. It is well-known that such an approach is unable to handle all
but the smallest state spaces [14]. Our approach, however, does not depend on
this particular choice of learning technique that has been used here mainly to
demonstrate the viability of the approach. In order to handle bigger state spaces
it is clear that we need some abstraction technique.

The ease of use of the new adaptive functionality in Goal is appealing from
a programming point of view as shown in this study. The downside is that a
programmer may waste valuable time in trying to improve performance where it
is simply not possible within the constraints of the learning framework and the
mental state representation used. For example, in a maze world, the only way
to distinguish between two T-junctions that “look” identical is to trace back the
history of actions that led to the junctions. Here the underlying reinforcement
learning framework is inadequate for learning if the mental state only consists
of the current percepts of the agent. Keeping the history in the mental state
would help but will make the learning impractical even for simple problems.

172 D. Singh and K.V. Hindriks

This drawback also highlights the need for future work to better understand
how aware a programmer needs to be of the learning model. It would be useful
in this context to develop design patterns that serve as guidelines for imple-
menting adaptive behaviours in typical scenarios. Another avenue for future
work is in deciding which mental state atoms are more relevant than others, in
order to improve learning times in large state spaces. One option is to automati-
cally learn such useful “features” of the agent’s mental state using regularization
techniques [35].

Acknowledgments. This research is supported by the 2011 Endeavour Re-
search Fellowship program of the Australian government.

References

1. Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
KR, pp. 473–484. Morgan Kaufmann (1991)

2. Rao, A.: Agentspeak(l): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

3. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents: Com-
ponents for intelligent agents in Java. AgentLink Newsletter 2, 2–5 (1999)

4. Bordini, R., Hübner, J., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason. Wiley-Interscience (2007)

5. Pokahr, A., Braubach, L., Lamersdorf, W.: JADEX: Implementing a BDI-
infrastructure for JADE agents. EXP - in Search of Innovation (Special Issue on
JADE) 3(3), 76–85 (2003)

6. Sardina, S., Padgham, L.: A BDI agent programming language with failure recov-
ery, declarative goals, and planning. Autonomous Agents and Multi-Agent Sys-
tems 23(1), 18–70 (2010)

7. Hindriks, K., Boer, F.D., Hoek, W.V.D., Meyer, J.: Agent programming in 3APL.
Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

8. Dastani, M.: 2APL: A practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

9. Hindriks, K.: Programming Rational Agents in GOAL. Multi-Agent Tools: Lan-
guages, Platforms and Applications, 119–157 (2009)

10. Hindriks, K.V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N.,
Pasman, W., de Rijk, L.: unreal goal bots - conceptual design of a reusable inter-
face. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS, vol. 6525,
pp. 1–18. Springer, Heidelberg (2011)

11. Hindriks, K., Neerincx, M.A., Vink, M.: The iCat as a natural interaction partner.
In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F.
(eds.) AAMAS 2011 Workshops. LNCS, vol. 7068, pp. 212–231. Springer, Heidel-
berg (2012)

12. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press (1998)

13. Rao, A., Georgeff, M.: BDI agents: From theory to practice. In: Proceedings of the
First International Conference on Multi-Agent Systems (ICMAS), San Francisco,
pp. 312–319 (1995)

14. Džeroski, S., Raedt, L.D., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43, 7–52 (2001), doi:10.1023/A:1007694015589

Learning to Improve Agent Behaviours in Goal 173

15. Bordini, R.H., Dix, J., Dastani, M., Seghrouchni, A.E.F.: Multi-Agent Program-
ming: Languages, Platforms and Applications. Multiagent Systems, Artificial So-
cieties, and Simulated Organizations, vol. 15. Springer (2005)

16. Bordini, R.H., Dix, J., Dastani, M., Seghrouchni, A.E.F.: Multi-Agent Program-
ming: Languages, Tools and Applications. Springer (2009)

17. Broekens, J., Hindriks, K., Wiggers, P.: Reinforcement Learning as Heuristic for
Action-Rule Preferences. In: Collier, R., Dix, J., Novák, P. (eds.) ProMAS 2010.
LNCS, vol. 6599, pp. 25–40. Springer, Heidelberg (2012)

18. Hindriks, K.V., van Riemsdijk, M.B.: Using temporal logic to integrate goals and
qualitative preferences into agent programming. In: Baldoni, M., Son, T.C., van
Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp.
215–232. Springer, Heidelberg (2009)

19. Bellman, R.E.: Dynamic Programming. Princeton University Press (1957)
20. Watkins, C.J.: Learning from delayed rewards. PhD thesis, King’s College London

(1989)
21. Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning

agents. In: Eighteenth National Conference on Artificial Intelligence, Menlo Park,
CA, USA, pp. 119–125. American Association for Artificial Intelligence (2002)

22. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated
Organizations, vol. 15, pp. 149–174. Springer (2005)

23. Subagdja, B., Sonenberg, L., Rahwan, I.: Intentional learning agent architecture.
Autonomous Agents and Multi-Agent Systems 18, 417–470 (2009)

24. Singh, D., Sardina, S., Padgham, L.: Extending BDI plan selection to incorporate
learning from experience. Robotics and Autonomous Systems 58, 1067–1075 (2010)

25. Singh, D., Sardina, S., Padgham, L., Airiau, S.: Learning context conditions for BDI
plan selection. In: Proceedings of Autonomous Agents and Multi-Agent Systems
(AAMAS), pp. 325–332 (May 2010)

26. Singh, D., Sardina, S., Padgham, L., James, G.: Integrating learning into a BDI
agent for environments with changing dynamics. In: Toby Walsh, C.K., Sierra, C.
(eds.) Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), Barcelona, Spain, pp. 2525–2530. AAAI Press (July 2011)

27. Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y.: An inte-
grated theory of the mind. Psychological Review 111(4), 1036 (2004)

28. Fu, W., Anderson, J.: From recurrent choice to skill learning: A reinforcement-
learning model. Journal of Experimental Psychology: General 135(2), 184 (2006)

29. Klahr, D., Langley, P., Neches, R.: Production system models of learning and
development. The MIT Press (1987)

30. Laird, J., Rosenbloom, P., Newell, A.: Chunking in soar: The anatomy of a general
learning mechanism. Machine Learning 1(1), 11–46 (1986)

31. Nason, S., Laird, J.: Soar-rl: Integrating reinforcement learning with soar. Cognitive
Systems Research 6(1), 51–59 (2005)

32. Nejati, N., Langley, P., Konik, T.: Learning hierarchical task networks by observa-
tion. In: International Conference on Machine Learning, pp. 665–672. ACM Press
(2006)

33. Slaney, J., Thiébaux, S.: Blocks world revisited. Artificial Intelligence 125(1-2),
119–153 (2001)

34. Gupta, N., Nau, D.: On the complexity of blocks-world planning. Artificial Intel-
ligence 56(2-3), 223–254 (1992)

35. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The
Journal of Machine Learning Research 3, 1157–1182 (2003)

The Multi-Agent Programming Contest 2012

Michael Köster, Federico Schlesinger, and Jürgen Dix

Department of Informatics, Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

{dix,michael.koester,federico.schlesinger}@tu-clausthal.de

Abstract. The Multi-Agent Programming Contest, MAPC, is an an-
nual, community-serving competition that attracts groups from all over
the world. Its aim is to facilitate advances in programming multiagent
systems (MAS) by (1) developing benchmark problems, (2) enabling
head-to-head comparison of MAS’s and (3) supporting educational ef-
forts in the design and implementation of MAS’s. We report about its
eighth edition and give a detailed overview of the participants strategies
and the overall contest.

1 Introduction

This paper serves as an introduction to the subsequent papers in this proceedings
volume, each of which describes a team that participated in this years edition.
We give a comprehensive overview of the Multi-Agent Programming Contest1

2012, an annual international event that has started in 2005 as an attempt to
stimulate research in the field of programming multi-agent system by 1) iden-
tifying key problems, 2) collecting suitable benchmarks, and 3) gathering test
cases which require and enforce coordinated action that can serve as milestones
for testing multi-agent programming languages, platforms and tools. In 2012 the
competition was organised and held for the eighth time.

Research communities in general benefit from competitions that attempt to
evaluate different aspects of the systems under consideration and furthermore
allow for comparing state of the art systems, act as a driver and catalyst for
developments and pose challenging research problems.

In this paper we (1) briefly introduce the Contest and its infrastructure, (2)
elaborate on the 2012 scenario and its differences with the 2011 edition, (3)
introduce the seven teams that took part in the tournament, and (4) present
results and findings acquired before, during and after the tournament.

More detailed information about the strategies of the teams are to be found
in the remaining six papers in this volume.

1.1 Related Work

The Multi-Agent Programming Contest has generated quite a few publications
over the years [9,10,11,3,4,1,8]. For a detailed account on the history of the

1 http://multiagentcontest.org

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 174–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org

The Multi-Agent Programming Contest 2012 175

contest as well as the underlying simulation platform, we refer to [1,8,5,6]. A
quick non-technical overview appears in [2].

Similar contests, competitions and challenges have taken place in the past
few years. Among them we mention Google’s AI challenge2 , the AI-MAS Win-
ter Olympics3, the Starcraft AI Competition4, the Mario AI Championship5 ,
the ORTS competition6, and the Planning Competition7. Every such competi-
tion rests in its own research niche. Originally, our Contest has been designed
for problem solving approaches that are based on formal approaches and com-
putational logics. But this is not a requirement to enter the competition.

1.2 The Contest from 2005–2012

From 2005 to 2007 we used a classical gold miners scenario [10] and introduced
the MASSim platform: A platform for executing the Contest tournaments.

From 2008 to 2010 we developed the cows and cowboys scenario which has
been designed to enforce cooperative behavior among agents [4]. The topology
of the environment was represented by a grid that contained, besides various
obstacles, a population of simulated cows. The goal was to arrange agents in
a manner that scared cows into special areas, called corrals, in order to get
points. While still maintaining the core tasks of environment exploration and
path planning, we also made the use of cooperative strategies an obligation.

The agents on Mars scenario, used during the 2012 edition and discussed in
this paper, was firstly introduced in 2011 [5]. In short, we have generalized the
environment topology to a weighted graph. Agents were expected to coopera-
tively establish a graph covering while standing their ground in an adversarial
setting and reaching achievements.

2 MAPC 2012: Agents on Mars

In this section we give a detailed overview of the 2012 agents on Mars scenario
and point out differences to the scenario from 2011.

2.1 The Scenario

It is now a tradition to accompany the technical description of each scenario
with a motivating little story:

In the year 2033 mankind finally populates Mars. While in the beginning
the settlers received food and water from transport ships sent from earth

2 http://aichallenge.org/
3 http://www.aiolympics.ro/
4 http://eis.ucsc.edu/StarCraftAICompetition
5 http://www.marioai.org/
6 http://skatgame.net/mburo/orts/
7 http://ipc.icaps-conference.org/

http://aichallenge.org/
http://www.aiolympics.ro/
http://eis.ucsc.edu/StarCraftAICompetition
http://www.marioai.org/
http://skatgame.net/mburo/orts/
http://ipc.icaps-conference.org/

176 M. Köster, F. Schlesinger, and J. Dix

shortly afterwards – because of the outer space pirates – sending these
ships became too dangerous and expensive. Also, there were rumors going
around that somebody actually found water on Mars below the surface.
Soon the settlers started to develop autonomous intelligent agents, so-
called All Terrain Planetary Vehicles (ATPV), to search for water wells.
The World Emperor – enervated by the pirates – decided to strengthen
the search for water wells by paying money for certain achievements.
Sadly, this resulted in sabotage among the different groups of settlers.

Now, the task of your agents is to find the best water wells and occupy
the best zones of Mars. Sometimes they have to sabotage their rivals to
achieve their goal (while the opponents will most probably do the same) or
to defend themselves. Of course the agents’ vehicle pool contains specific
vehicles. Some of them have special sensors, some are faster and some
have sabotage devices on board.

Last but not least, your team also contains special experts, e.g. the
repairer agents, that are capable of fixing agents that are disabled. In
general, each agent has special expert knowledge and is thus the only one
being able to perform a certain action. So your agents have to find ways
to cooperate and coordinate among them.

The environment’s topology is constituted by a weighted graph. Each vertex
has a unique identifier and a number that indicates its value. Each edge has a
number that represents the costs of moving from one of its vertices to the other.
These vertex-values are crucial for calculating the values of zones. A zone is a
subgraph that is covered by a team of agents according to a coloring algorithm
that is based on a domination principle.

Several agents can stand on a single vertex. If a set of agents dominates such a
vertex, the vertex gets the color of the dominating team. A previously uncolored
vertex that has a majority of neighbors (at least 2) with a specific color, inherits
this color as well. Finally, if the overall graph contains a colored subgraph that
constitutes a frontier or border, all the nodes that are inside this border are
colored as well. This means that agents can color or cover a subgraph that has
more vertices than the overall number of agents. Figure 1 shows a screenshot of
a relatively small map, depicting, amongst other things, the graph coloring.

Before elaborating on the agent roles we have to specify the effectoric capa-
bilities of the agents. Each agent, or vehicle, has a state that is defined by its
position on the map, its current energy available for executing actions and its
current health. On top of that, each team has a budget for equipping the vehicles
during the simulation. These actions8 are defined by the scenario:

– skip is the noop-action, which does not change the state of the environment,

– recharge increases the current energy of a vehicle by a fixed factor and can
be performed at any time without costs,

8 Of course, all the actions that cost energy will fail if the vehicle under consideration
does not have enough energy.

The Multi-Agent Programming Contest 2012 177

Fig. 1. A screenshot of the agents on Mars scenario

– attack decreases the health of an opponent, standing on the same vertex, if
successfully executed and decreases the current energy of the attacker,

– parry parries an attack and decreases the energy of the defending agent,
– goto moves the vehicle to a neighboring vertex while decreasing its energy

by the weight of the traversed edge,
– probe yields the exact value of the vertex the vehicle is standing on and

decreases the probing vehicle’s energy,
– survey yields the exact weights of visible edges while decreasing the energy,
– inspect costs energy and yields the internals of all visible opponents,
– buy equips the vehicle with new components, which increase its performance,

and cost money, and
– repair repairs a teammate, which again costs energy.

We have defined five different roles. Each team consists of four vehicles for each
role, that is a total of twenty vehicles per team. This number increased from
the 2011 edition, where teams were composed by 2 vehicles for each role, to-
taling 10 vehicles. Each role defines the vehicle’s internals and its capabilities.

178 M. Köster, F. Schlesinger, and J. Dix

The roles differ with respect to energy, health, strength and visibility range. The
effectoric capabilities are as follows:

– explorer can skip, move to a vertex, probe a vertex, survey visible edges,
buy equipment and recharge its energy,

– repairer can skip, move to a vertex, parry an attack, survey visible edges,
buy equipment, repair a teammate and recharge its energy,

– saboteur can skip, move to a vertex, parry an attack, survey visible edges,
buy equipment, attack an opponent and recharge its energy,

– sentinel can skip, move to a vertex, parry an attack, survey visible edges,
buy equipment and recharge its energy,

– inspector can skip, move to a vertex, inspect visible opponents, survey
visible edges, buy equipment and recharge its energy.

Achievements are tasks that, if fulfilled, contribute to the teams’ budgets. We
have defined a set of achievements that includes having zones with fixed values,
inspecting a specific number of vehicles, probing a number of vertices, surveying
a fixed number of edges and successfully performing and parrying a number of
attacks.

In each step, each vehicle is provided with its currently available percepts:

– the state of the simulation, i.e. the current step,
– the state of the team, i.e. the current scores and money,
– the state of itself, i.e. its internals,
– all visible vertices, i.e. identifier and team,
– all visible edges, i.e. their vertices’ identifiers,
– all visible vehicles, i.e. their identifier, vertices and team,
– probed vertices, i.e. their identifier and values,
– surveyed edges, i.e. their vertices’ identifiers and weights, and
– inspected vehicles, i.e. their identifiers, vertices, teams and internals.

After sending percepts, the server grants some time for deliberation. After that
the new state is computed. The simulation state transition is as follows:

1. collect all actions from the agents,
2. let each action fail with a specific probability,
3. execute all remaining attack and parry actions,
4. determine disabled agents,
5. execute all remaining actions,
6. prepare percepts,
7. deliver the percepts.

The introduction of the agents on Mars scenario was also accompanied by the
release of an environment interface that has been developed to be compatible
with the environment interface standard [7]. This standard allows Java based
problem solving approaches to make use of a jar-file provided by the organizers
that facilitated connecting to and communicating with the MASSim server. This
is done my mapping the whole communication to Java-method invocations and
callbacks.

The Multi-Agent Programming Contest 2012 179

2.2 Changes and Modifications to the Scenario from 2011

As already mentioned, we increased the number of agents to 20 and provided
them with more energy. This results in less recharging and gives them more
freedom: in 2011, recharge was by far the most used action.

The visualisation was improved a lot (zones as well as high-valued vertices are
highlighted, costs of the edges are depicted by their thickness. The last action
from an agent at each vertex is illustrated: (1) green circle: successful sense
action (probe, survey, inspect), (2) red circle: last action failed, (3) yellow star:
successful attack, (4) indigo star: successful parry, (5) pink star: successful repair,
and (6) crossed out: disabled.

Agents are now getting feedback as to why their actions failed (if they did).
The (automatic) generation of maps has been improved (a map contains now
several centers).

3 The Tournament

During past editions of the Contest, stability (i.e., the capacity to send actions to
the MASSim server in time) was a big problem for some teams. It also affected
the overall quality of the Contest and the possibility to draw conclusions about the
strategies by looking at the results. To address this, we decided for the 2012 edition
to implement a qualification round, in which teamswere required to show that they
were able to maintain good stability (i.e. timeout-rates below 5%) during a round
of test matches. Only then they were allowed to take part in the tournament.

3.1 Participants and Results

Nine teams from all around the world registered for the Contest. Seven of them
were able to pass the qualification round and took part in the tournament (see
Table 1). Full introductions of the teams can be found in [12] and in the papers
included in this volume.

Table 1. Participants of the 2012 edition

Team Affiliation Platform/Language

AiWYX Sun Yat-Sen University, China C++
PGIM Islamic Azad University of Malayer, Iran Prometheus, JACK
LTI-USP University of Sao Paulo, Brazil Jason, CArtAgO, Moise
SMADAS-UFSC Federal University of Santa Catarina, Brazil Jason
Python-DTU Technical University of Denmark Python
Streett - , USA Java
TUB TU Berlin, Germany JIAC

TeamAiWYX was a single-developer team from Sun Yat-Sen Univerity, China.
The agents were developed in C++, using no agent-specific technologies. The
approach used is centralized, where one agent gets all the percepts from the
other agents and makes the decisions for the whole team.

180 M. Köster, F. Schlesinger, and J. Dix

TeamPGIMcomes from the Islamic AzadUniversity ofMalayer, Iran. The 3 de-
velopers used agent-specific technologies for developing their team: Prometheus,
JACK. Nevertheless the team organization is not distributed, and agents broad-
cast their percepts.

Team LTI-USP from University of Sao Paulo, Brazil had three developers.
Agents were implemented using Jason, CArtAgO and Moise. There is one agent
that determines the best strategy, but each agent has its own thread, with its
own beliefs, desires and intentions. Agents broadcast new percepts, but commu-
nication load decreases over time.

Team SMADAS-UFSC is from Federal University of Santa Catarina, Brazil.
It had six team members. The language of choice for agent development was
Jason. Besides normal agent-communication provided by Jason, agents shared a
common data-structure (blackboard) for storing the graph topology.

Team Python-DTU from the Technical University of Denmark is a regular
contender of the Multi-Agent Programming Contest. For this edition it registered
6 members. As team’s name suggest, Python was the language of choice. The
agents follow a decentralized approach, where coordination is achieved through
distributed algorithms, e.g. for auction-based agreement.

Team Streett was composed by a single independent developer from the USA.
Agents were developed in Java, based on the sample agents provided with the
MASSim platform. Agents shared only vital information and coordination was
achieved by sharing location data.

Team TUB, TU Berlin, Germany, is another regular contender of the Multi-
Agent Programming Contest, that presented for this edition as a single-developer
team. The agents are developed in the JIAC platform (which won the contest
several times in previous years).

The tournament took place from 10th to 12th September 2012. Each day
each team played against two other teams so that in the end all teams played
against all others. We started the tournament each morning at 10 am and finished
at around 3 pm. A match between two teams consisted of 3 simulations only
differing in the size of the graph. For a win the team got 3 points and for a draw
1 point. The results of this year’s Contest are shown in Table 2.

Table 2. Results

Pos. Team Score Difference Points

1 SMADAS-UFSC 2778057 : 1043023 1735034 51
2 Python-DTU 2738397 : 1095251 1643146 48
3 TUB 2090849 : 1600914 489935 30
4 LTI-USP 1627177 : 1845601 -218424 27
5 AiWYX 2301358 : 1526768 774590 24
6 PGIM 1130432 : 2047735 -917303 9
7 Streett 192694 : 3699672 -3506978 0

Two teams, SMADAS-UFSC and Python-DTU, stood out from the rest and
the tournament winner was decided by the match that confronted them, during
the second day of the competition. SMADAS-UFSC won two of three simulations

The Multi-Agent Programming Contest 2012 181

of that match and was crowned champion, leaving Python-DTU as runner-up for
the second consecutive year. Both teams won all the matches they played against
the rest of the teams without losing any simulations. The mid-table teams TUB,
LTI-USP and AiWYX where relatively close while playing against each other.
They could not catch up with the first two teams but clearly differentiated from
the last two.

Thanks to the qualification round (as well as the optional test matches of-
fered before it), there were no stability issues during the Contest. This was a
great improvement compared to previous editions. Although some of the teams
experimented a few crashes from time to time, the promptness of the develop-
ers to restart their agents ensured that the results of the simulation were not
affected by these isolated events.

3.2 Overview of the Teams’ Strategies

In this section we collect a few facts about the participating teams. For more
detailed information we refer to the articles in these proceedings.

SMADAS: The winner of this years contest, from Brazil, used Jason, a ded-
icated MAS programming language. For some algorithms, Java was used
to implement them, rather than Jason. The development needed 500 per-
son hours distributed among 6 people. They used 7900 lines of code, 2400
of which were written in Java. Communication with the server was done
through the EISMASSIM interface.

The system is decentralized. Agents were executed on the same machine
to use shared memory (blackboard programming). But updating the black-
board was computationally difficult and thus could only be done every 3
steps.

The strategy was first to explore the map, find the best potential zones
(high values) and then to conquer and defend them. An interesting idea was
to make the opponents spend their money using a special agent: Hulk. If
the team detects that there is no particular buying strategy, then the Hulk
agent changes its behaviour.

They claim that the good performance is based on the various strategies
that make the team very flexible against different opponents. Defending of
the zones can still be improved.

Python-DTU: The danish team ended as runner-up for the second time in
a row. The team did not use a dedicated platform or MAS programming
language. They choose Python for efficiency and to have complete control
over all features in the implementation. However, the team used the organi-
zational model of Moise.

The solution they implemented is decentralized and heavily based on
communications between the agents and on an auction-based agreement al-
gorithm. They invested 300 person hours distributed among 6 people. 1500
lines of codes were written.

182 M. Köster, F. Schlesinger, and J. Dix

The strategy is based on dividing the game in three phases: randomly
trying for achievements in the first phase, taking control of high valued areas
and sending out explorers in the second phase, and trying to expand in the
third phase.

The team claims that their buying algorithm has been detected in the
qualification phase and a clever counter strategy was developed by another
team that eventually led to the defeat.

TUB: The german team TUB, winner of several contests in the past, entered
the contest for the 4th time (but with different team members). They use a
centralized approach where agents share all their perceptions and intentions.
It required 640 person hours (and 8000 lines of code)

First the agents probe and survey the whole graph. Explorers, attackers,
repairers and inspectors only contribute to the zoning algorithm, if they have
done their dedicated tasks. The team tries to find a balance between zoning
and achievements points.

The team claims that they did not foresee very aggressive playing methods
and that this led to several lost games.

LTI-USP: The motivation of the second brazilian team, (one professor and 2
students without previous experience in this scenario, was to test the Ja-
CaMo framework (CArtAgO, Jason and Moise). They used a centralized
approach for coordinating the agents and communication via speech-acts.
300 person-hours were invested and 3000 lines of code (a third in AgentS-
peak, the rest in Java) were written.

The strategy was not to divide the game into phases but the agents into
three subgroups: two for occupying zones and one for sabotaging the enemy.
Communication with the server was through the EISMASSIM interface. The
repairer agents stay where they are and wait until damaged agents come and
see them. The sentinels always parry when an opponent saboteur is there
and the own saboteurs always attack opponents in the same vertex.

No defense strategy has been implemented and the team claims that this
was responsible for not doing better in the contest (zones were instable).

AiWYX: The chinese team consisted of just one person, a bachelor of sci-
ence. He has a background in knowledge representation, game theories and
distributed algorithms and used just plain C++. He invested ca. 250 person-
hours and wrote 10000 lines of code. No agent programming technology was
used at all, the system was centralized, all agents share their knowledge to
build the map.

The strategy is to first go for areas where nobody else is and trying to
expand them. If enemies attack, the agents draw back and look for better
zones rather than attacking the enemies. Agents can dynamically change
their behaviour at run-time. A big problem was that the agents did not
attack the enemy team and that attacks from the enemy were not parried in
a suitable way which resulted in instability of the zones.

PGIM: The iranian team consisted of one scientist and three students. They in-
vested 8000 person-hours in total, using 7000 lines of code, to develop a de-
centralized system. After careful evaluation they chose Prometheus and Jack.

The Multi-Agent Programming Contest 2012 183

Due to licensing problems, they could not use Jack and had to redo all in
Java. Due to some misunderstanding of the scenario, they chose to first at-
tack and destroy the opponents repairer agent, then to attack other agents
and only in the third place to consider building zones.

Instability of the zones and not being able to conquer zones of some value
were the main drawbacks.

Streett: This team consisted of an american student who, unfortunately, did
not provide us with any information about his team.

4 Interesting Simulations

In this section we analyse three of the most interesting games using our newly
developed statistics module. This involves analysing the following charts: (1)
summed-up scores, (2) zone scores and achievement scores, (3) zone stabilities.

The summed-up score consists of the achievement-score plus the zone-score.
Note that the achievement score decreases, when the buy action is executed.

Summed-Up Scores: This chart depicts the summed-up score of each team
in each step of the current simulation.

Zone Scores and Achievement Scores: This chart combines the charts for
the step-score (zone-scores+ achievement-scores) and the achievement-scores.
The zone-score derives from the number and value of the currently dominated
nodes, while the achievement score sums up (across all categories) all the
achievements so far.

Zone Stabilities: This chart depicts the zone stabilities of each team in each
step of the current simulation. The zone stability increases for one team, if
the team can hold all conquered nodes over a longer period of time. If nodes
are lost, the value decreases. The exact computation is as follows: For each
node that is dominated by a team in a certain step the counter is increased
by one. If the team does not dominate the node anymore the counter is reset.
The overall zone stability is then the sum of all node counter values.

4.1 SMADAS-UFSC vs. Python-DTU – Simulation 1

The first simulation of the match between SMADAS-UFSC and Python-DTU
was a close victory for the winners of the contest, by 127.546 to 121.312. The
complete visualization of the simulation can be downloaded from our webpage9.
Both teams started even, with a very small edge to Python-DTU in the first few
steps. Then, SMADAS-UFSC took over from step 35 until step 259. Python-
DTU managed to recover the lead at that point for around 50 steps but with no
considerable difference. Finally, SMADAS-UFSC took over again from step 309
until the end of the simulation, with a tendency to further increase the score
difference. Figure 2, which shows the summed scores at each step, presents this
visually.

9 http://www.multiagentcontest.org/downloads?func=fileinfo&id=1133

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1133

184 M. Köster, F. Schlesinger, and J. Dix

Fig. 2. SMADAS-UFSC vs. Python-DTU
(Sim 1): Summed scores

Fig. 3. SMADAS-UFSC vs. Python-DTU
(Sim 1): Step-scores and Achievement
points

Figure 3 shows the step-score at each step (i.e., the value of the zone plus
the unused achievement points at each step). To better display how the score
is composed, also the unused achievement points at each step are displayed in
the figure. Changes in step-score suggest that both teams attempted to conquer
differentiated overlapping zones, as both teams maintained their zone value al-
ways above a relatively high minimum, but at several points in the graph the
increase in the score for one team is correlated with a decrease in the opponent’s
score.

Achievements and Buying Strategy. Also from Figure 3 it becomes clear
that the difference in achievement points is much more significant than the dif-
ference in the total score. Even though Python-DTU had more valuable zones
during most steps of the simulation, SMADAS-UFSC earned more points per
step because of achievement points. The buying strategy proved to be crucial: the
clever strategy implemented by SMADAS-UFSC, which consisted in buying im-
provements for only one of their saboteurs in an attempt to drive the other teams
to spend more achievement points in more agents, worked perfectly in this case.
Both teams earned the same number of achievements points: 68. But Python-
DTU spent 48 of those points improving the saboteurs, whereas SMADAS-UFSC
only used 16 for improving one of theirs. This meant a difference that at the end
of the match was of 32 extra points per step for SMADAS-UFSC with little
variations after step 350, which was not easily compensated by the zone-score.
A point to remark here is that doubling the number of agents per team with re-
gards to the previous edition of the Multi-Agent Programming Contest increased
the efficacy of this strategy.

It is worth noticing that, while SMADAS-UFSC attempted to start their
buying strategy as early as possible (and also to earn as many achievements as
early as possible), Python-DTU’s approach was to compensate for the aggressive

The Multi-Agent Programming Contest 2012 185

buying strategy by delaying the first round of buys until step 150. Half of
the 16 achievement points spent by SMADAS-UFSC were spent before step
10. Their strategy also attempted to detect whether the other time was buy-
ing improvements to limit their own buys, and that explains the later buys at
step 175.

Nevertheless, even when in general the buying strategy played in favor of
UFSC-SMADAS, there seems to be a correlation between the first bulk of buys
for Python-DTU at step 150 and an increase in their step scores. On the other
hand, at that point of the simulation both teams were still scattered on the map
and had not yet committed to defend a certain area.

Fig. 4. SMADAS-UFSC vs. Python-DTU (Sim 1): Zones’ Stability

Zone Stability. The zone-stability10 graph in Figure 4 reaffirms the idea of
overlapping but differentiated zones. Both teams’ zone-stability have a clear
tendency towards increasing, which means that a number of nodes remain un-
challenged. At the same time, none of the zone-stability lines is smooth, which
means that several nodes were being lost and recovered during simulation.

Two examples of area domination, one for each team, are presented in Figures
5 and 6. In Figure 5, at step 338 the value of the zone for Python-DTU was 223
and 140 for SMADAS-UFSC. In Figure 6, at step 417 those were respectively
160 and 219.

10 The zone-stability is a measure that increases when a team keeps dominance of
a node, without taking into account the values of the nodes. It was designed for
post-match analysis only, as it is not used for computing the scores.

186 M. Köster, F. Schlesinger, and J. Dix

Fig. 5. SMADAS-UFSC vs. Python-DTU
(Sim 1): Simulation after 338 steps

Fig. 6. SMADAS-UFSC vs. Python-DTU
(Sim 1): Simulation after 417 steps

Actions per Role

SMADAS-UFSC. SMADAS-UFSC’s Explorers used the recharge action the
most, 55 percent of the times, followed by the goto action (35 percent). The
probe action was used 303 times (10 percent), 302 of which were successful even
though the map had only 300 vertices. The survey action was only used 16 times
(less than 1 percent). The Sentinels executed the recharge action half of the
times, followed by the goto action (38 percent). They also used the parry action
10 percent of the times and the survey action only 2 percent. The Saboteurs were
quite aggressive, using the attack action in 51 percent of all cases (85 percent
of the attacks were successful). The recharge action was used 32 percent of the
times, And the goto action in only 16 percent of the cases, meaning they were
somehow static. The survey action was also only used in less than 1 percent of
the times (18) and the buy action, as mentioned before, was used 8 times. The
Repairers executed goto, recharge and repair close to a third of the times
each (39 percent, 30 percent, and 28 percent respectively). They also chose the
survey action and the parry action around 1 percent of the times each. Finally,
the Inspectors used mainly the recharge action (58 percent) followed by the
goto action (38 percent). The survey action was used only 63 times (2 percent)
and the inspect action even less, 33 times (1 percent).

Python-DTU. The Explorers from Python-DTU used the recharge action ex-
tensively, 75 percent of the times. The goto action, in contrast, was used 15
percent of the times. The probe action was used on 305 occasions (10 percent),
of which 300 were successful (the number of vertices on the map). The survey

action was used only in two occasions. The Sentinels also used the recharge

action 75 percent the times. It was followed by the parry action, 13 percent of

The Multi-Agent Programming Contest 2012 187

the times, although less than half of the parries were successful. They used the
goto action even less than the Explorers, only 8 percent of the times. They also
used the survey action 5 percent of the times. The Saboteurs used the attack

action 38 percent of the times (76 percent of the attacks were successful). The
recharge and goto actions were used 30 percent of the times each. The buy ac-
tion was used 24 times. They used the survey action only once. The Repairers
executed the goto action 35 percent of the times and the repair action 34 per-
cent. The third choice was the recharge action, 26 percent of the times. They
opted for the parry action 83 times (3 percent, less than half of the parries were
successful) and for the survey action 36 times (1 percent). Finally, the Inspec-
tors used the recharge action the most (67 percent). They used the inspect

action much more than they rivals (24 percent) and the goto action much less
(9 percent). They only surveyed in 4 occasions.

4.2 SMADAS-UFSC vs. Python-DTU – Simulation 2

The second simulation of the match between the winners and runner-ups of the
contest was won by the latter, by an even closer score of 120.450 to 115.076.
Thus Python-DTU maintained the lead during the whole simulation, although
SMADAS-UFSC reduced that difference to just 2.474 points at step 578. This
is shown in Figure 7. The complete visualization of the simulation can be down-
loaded at our webpage 11.

Fig. 7. SMADAS-UFSC vs. Python-DTU
(Sim 2): Summed scores

Fig. 8. SMADAS-UFSC vs. Python-DTU
(Sim 2): Step-scores and Achievement
points

Zone Scores and Stability. Figure 8 presents the Step-scores and achievement
points at each step of simulation 2. In spite of the two high peaks in the score
for SMADAS-UFSC, the advantage for Python-DTU was clear during most of
the simulation.

11 http://www.multiagentcontest.org/downloads?func=fileinfo&id=1120

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1120

188 M. Köster, F. Schlesinger, and J. Dix

Fig. 9. SMADAS-UFSC vs. Python-DTU
(Sim 2): Simulation after 362 steps

Fig. 10. SMADAS-UFSC vs. Python-
DTU (Sim 2): Simulation after 481 steps

The map in this simulation has different characteristics compared to the first
simulation: The most valuable nodes were scattered towards the outer edges of
the graph. A clear pattern of which zones each team would attempt to dominate
and keep, did not emerge until around step 250. Two different moments during
the simulation are presented in Figure 9, at step 362, where the value of the
zone for Python-DTU was 176 and 64 for SMADAS-UFSC; and in Figure 10, at
step 481, where the values were 172 and 243 respectively. Both figures exemplify
what happened during the game, once the teams settled for a region of the map:
Python-DTU conquered two zones far away from each other, and although those
zones were not very big, they were very stable: In fact, one of the two remained
practically unchanged during most of the simulation.

SMADAS-UFSC, on the other hand, managed to build the biggest and most
valuable zone by isolating the bottom of the map. However, this was an un-
stable zone that they were not able to keep for a very long time. Furthermore,
SMADAS-UFSC’s agents were not standing on the most valuable nodes of that
zone, so whenever the zone collapsed, those nodes were lost and thus the zone-
score decreased significantly.

Figure 11 shows this difference with respect to zone-stability for each team.
As zone-stability takes into account the number of nodes in the zones, the two
peaks in the zone-score of SMADAS-UFSC are also slightly reflected in the
zone-stability graph. Nevertheless, zone-stability for Python-DTU is still much
higher.

Achievements and Buying Strategy. During the second simulation, the buy-
ing strategy applied was the same as during the first one. This time, SMADAS-
UFSC earned 68 achievement points and spent 14, whereas Python-DTU earned

The Multi-Agent Programming Contest 2012 189

Fig. 11. SMADAS-UFSC vs. Python-DTU (Sim 2): Zones’ Stability

66 and used 40. Nonetheless, as it can be seen in Figure 8, during this simu-
lation the difference in achievement-points was not enough to compensate the
difference in the zone-scores.

Actions per Role

SMADAS-UFSC. The Explorers of team SMADAS-UFSC used the recharge

action in 61 percent of all cases, followed by goto (31 percent) and probe (8
percent). The survey action was only executed 10 times and the buy action was
not used at all. Also, the Sentinels spend a lot of their time for recharging, i.e.,
the recharge action was used in 60 percent of all cases. Additionally, the main
actions for this role were the goto action (31 percent) and the parry action
(7 percent / 5 percent successful). Although the intended main purpose of the
sentinel was to be used for surveying the edges the survey action was just used
in 2 percent of the cases. Probably, because of the high visibility range of this
role together with the information of the other roles these few executions were
still enough. Finally, this type of agent did not buy anything. The behaviour
of the Saboteurs was implemented in the following way. The attack command
was executed 1302 times, i.e., in 43 percent of all cases, and was almost always
successful (1123 times or 37 percent). The recharge action (37 percent) and
the goto action (19 percent) were the second and third most used actions. The
survey (25 times) and buy (7 times) action were only used sometimes, however
the buy action was only used by this particular role. The main purpose of the
Repairers was to go to some agents and repair them, therefore the goto (37
percent), the recharge (34 percent), and the repair (26 percent) action were

190 M. Köster, F. Schlesinger, and J. Dix

used most often. The survey action was executed 42 times and the parry action
37 times (out of that 21 were successful). This is a huge difference to the Python-
DTU Repairer that parried just one attack. Lastly, the Inspectors used mainly
the recharge (72 percent) and goto action (25 percent). The survey action was
used 53 times and inspect 20 times.

Python-DTU. The Explorers of team Python-DTU however used the recharge
action extensively (more than 75 percent of all cases), followed by the goto action
(14 percent) and probe action (8 percent). The survey and buy action were
never used. The Sentinels executed the recharge action quite often (62 percent),
followed by the parry (18 percent in total, but only 6 percent successful) and
the goto action (12 percent). The survey action (7 percent) was only used
seldom. The buy action was not used at all. The Saboteurs used the attack

action in 39 percent of the cases. 33 percent were successful. A little bit less was
the recharge action executed (33 percent in total / 30 percent successful). The
goto action was applied in 27 out of hundred times. Additionally, this agent was
the only one using the buy action. The action was used exactly 20 times, i.e.,
in 0.67 percent of the cases. Finally, the agent did not use the survey action
once. The Repairers executed goto in 38 of the cases, followed by the repair

(28 percent) and recharge action (33 percent in total / 31 percent successful).
The survey action was used 17 times, the parry action just three times (out of
that only one was successful) and the buy action was never executed. Finally, the
Inspectors used mainly the recharge action (83 percent), followed by inspect

(11 percent) and goto (5 percent). The survey action was executed 5 times and
buy was never used.

4.3 PGIM vs. AiWYX – Simulation 1

The team AiWYX clearly won all simulations against PGIM . While the first
simulation ended 81562 to 212016, the second resulted in 68748 to 107600 and
the last in 75846 to 112466. The final position of AiWYX was 5 and PGIM got
the 6th place.

During the beginning of the match both teams were at the same level. At
step 170 AiWYX conquered an area of more than 640 nodes but was not able to
keep it for a longer period (cf. Figure 14). At step 312 AiWYX finally stabilized
its zone(s) (cf. Figure 16 and 15). The team PGIM , however, was not able to
conquer zones larger as 160 nodes and got therefore only the achievement for
holding 80 nodes at the same time.

AiWYX used a novel strategy (not seen in the competition so far) for building
zones: Instead of trying to conquer a small zone, probing the nodes in order to
increase the value of the zone and finally defending, the team was positioning
itself around an opponent’s zone and thereby isolating the opponents zone from
the rest of the graph. Figure 14 shows such a zone. At step 312 AiWYX finally
stabilized its zone(s) (cf. Figure 15 and 16). As one can see this resulted in very
large zones, basically containing all nodes the opponents did not conquer.

The Multi-Agent Programming Contest 2012 191

Fig. 12. PGIM vs. AiWYX (Sim 1):
Summed scores

Fig. 13. PGIM vs. AiWYX (Sim 1): Step-
scores and Achievement points

Fig. 14. Simulation after 170 steps Fig. 15. Simulation after 312 steps

Nevertheless due to the lack of probing all conquered nodes the team AiWYX
did not score all possible points but only a small subset. Additionally, the strat-
egy was highly depending on the size of the map and more effective on larger
maps. That is probably the reason why the team AiWYX scored the most points
per simulation but did not reach a better place in the competition.

The complete visualization of the simulation can be downloaded from our
webpage 12. In the following, we will discuss this simulation in more detail.

Scores. The evolution of the zone scores and achievement points are depicted
in Figure 13. While the development of the achievement points is similar (both
teams did not invest the points for agent improvements), the flows of the zone

12 http://www.multiagentcontest.org/downloads?func=fileinfo&id=1148

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1148

192 M. Köster, F. Schlesinger, and J. Dix

scores are different. From step 0 to 300 it was a head to head competition but
after step 312 AiWYX was able to occupy a large zone and PGIM was not able
to increase its zone score anymore.

Zone Stability. The zone stability of team PGIM was low, i.e., under 500
points per step. In contrast, the zone stability of AiWYX was quite good and
was almost always higher than that for PGIM . This is one reason why the team
AiWYX won the match.

Fig. 16. PGIM vs. AiWYX (Sim 1): Zones’ Stability

Achievements. The team AiWYX conquered a zone with an impressive value
of 640 points, attacked 640 times the opponents successfully, probed 160 nodes,
and surveyed 640 edges. Additionally, It inspected 20 times an opponent. An
interesting fact is that the agents did not try to parry an attack.

The team PGIM made the following highest achievements: It conquered
an area of 80 nodes, attacked 320 successfully, probed 80 nodes and surveyed
640 edges. It inspected 10 times an opponent and parried 40 times attacks
successfully.

Actions per Role

AiWYX. The Explorers of team AiWYX used the recharge action extensively
(more than 50 percent of all cases), followed by the goto action (35 percent) and
probe action (10 percent). The survey action was just used in just 1.7 percent.
The Sentinels executed the recharge action quite often (53 percent), followed by
the goto action (32 percent) and the survey action (4 percent). The Saboteurs

The Multi-Agent Programming Contest 2012 193

used the goto action in 42 percent of the cases, followed by the attack (35
percent) and recharge action (22 percent). The Repairers executed goto in 54
the cases, followed by the repair (26 percent) and recharge action (18 percent).
Finally, the Inspectors used mainly the goto (41 percent) and recharge action
(56 percent). The inspect was just used 18 times (0.6 percent). survey was
executed in 1.73 percent of the cases.

PGIM. The Explorers of team PGIM however used the goto action in 56 percent
of all cases. 19 percent of the time they executed the skip action which does not
have an effect. It would be more efficient to use the recharge action instead.
This action was used in 11 percent of the cases. Finally, probe and survey were
executed 8 and 5 percent of the times. The behaviour of the Sentinels was not
optimal. The skip action was the most often used action (49 percent) followed
by a goto command (37 percent). parry (2 percent), survey (4 percent), and
recharge (8 percent) were just used seldom. Also the behaviour of the Saboteurs
was not implemented in a good way. The skip action was used 1304 times, i.e., 43
percent of all cases although a recharge (13 percent) would be more efficient.
The goto action was executed in 27 percent of all cases, followed by survey

(3 percent) and attack (14 percent). For the Repairers the goto action was
the main action (48 percent). This was followed by the repair (18 percent)
and recharge action (21 percent). The skip action was executed 296 times,
that corresponds to 10 percent. survey was used 84 times, i.e., 2,8 percent.
The Inspectors used mainly the goto action (55 percent), followed by skip (26
percent) while recharge (14 percent) would be the better option. survey was
used in 4 percent of the cases and inspect just 21 times (0,7 percent).

5 Summary, Conclusion and Future of the Contest

This paper provides an overview of the most recent edition of the Multi-Agent
Programming Contest. We have introduced the Contest in general, and we elab-
orated on the current scenario in a more detailed way. We have also introduced
the teams that took part and evaluated their performance. We compared three of
the more interesting matches using our new visualisation and statistics modules.

This is our third newly designed scenario that we will also use, with some
modifications and lessons learned from the 2012 edition, for the Contest in 2013.
It is time to lean back and consider what we have achieved so far. What con-
clusions (if any) can we draw from the “Agents on Mars” scenario? Can we
observe some trends in the quality of the teams? What is the impact on the Pro-
MAS community? While these are critical and difficult questions that might be
answered differently by different people, we collect a few observations that we
consider relevant.

– Both times a dedicated Multi-Agent Programming Language/Platform won,
but runner-up was Python-DTU, which did not use a dedicated platform,
but was inspired by MAS technology.

194 M. Köster, F. Schlesinger, and J. Dix

Nevertheless, other examples (e.g., the teams ranked 5–7 in this years
edition) show that ad hoc implementations seem to perform worse than
MAS inspired systems.

– The introduction of a qualification round increased the stability of the teams
and therefore the whole contest a lot. This feature will be kept.

– Teams performing for the second time usually perform better. But the win-
ners were both first time participants.

– The contest helped a lot to find bugs in the used platforms. This is an
observation we made throughout the history of the contest. So it seems the
scenario is demanding and most features of the used platform/language are
indeed used (so that potential bugs surface). One team participated exactly
because of this reason (testing their platform).

– We usually end up with as few as 7 to 9 teams that seriously want to par-
ticipate. We believe this number could be much higher and does not really
show a great impact on our community. On the other hand we have quite a
variation: it is not always the same participants. Over the last 3 years, we
had 20 different teams participating.

– The overall performance of the teams improved a lot with each new contest,
although we increased the complexity considerably (size of the map, number
of agents, difficulty of the task).

– Compared with the cows and cowboys scenario, we see much more coopera-
tion among the agents, more dynamic behaviour, and a lot more interaction
with the opposing team. In addition, the data to be handled (observing the
environment, messages between the agents) has also increased a lot. While
we have not yet excluded centralized approaches, the sheer amount of data
makes it difficult for the systems to provide each agent with the central
memory of the whole system.

Also, in the current scenario, the computational costs of Dijkstra’s algo-
rithm is high so that it is not feasible for all agents to execute it at the same
time.

– In the current scenario, there are indications that buying health and strength
is much more important than investing the money for other reasons. Thus
it may pay off to find a more balanced scenario that allows for more diverse
strategies of the teams. This point makes us reconsider the precise values of
the different parameter we have in our scenario.

The amount of work that went into implementing a team varied from one person
with 250 person-hours to 6 people with 800 person hours and from 1500 to 10000
lines of code (the latter because no dedicated technology was used, interestingly,
that was done by one single person).

It would be interesting to assess if it would be beneficial to steer the Contest
into a more specialized direction in order to strengthen its niche in the research
ecology. This includes but is not limited to focusing on the planning aspect
of the competition, leaving behind path planning as the main facet of agent
deliberation.

The Multi-Agent Programming Contest 2012 195

We could also focus on using a massive number of agents: lots of agents with
different roles and thus different capabilities. This would allow us to take into
account the scalability of agent-oriented programming platforms.

Additionally it would be worthwhile to focus on agent communication and to
evaluate that aspect of the tournament by routing agent-messages through the
MASSim server for proper evaluation.

Last but not least, the most important part of the contest are the contestants:
We hope to attract more teams in the future — the contest is an excellent
opportunity for a student project on Bachelor or Master level.

References

1. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P. (eds.): Special Issue about
Multi-Agent-Contest. Annals of Mathematics and Artificial Intelligence, vol. 59.
Springer, Netherlands (2010)

2. Behrens, T., Dastani, M., Dix, J., Hübner, J., Köster, M., Novák, P., Schlesinger,
F.: The Multi-Agent Programming Contest. AI Magazine 33(4), 111 (2012),
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2439

3. Behrens, T., Dix, J., Köster, M., Hübner, J.: The Multi-Agent Programming Con-
test: Environment Interface and Contestants in 2010. Annals of Mathematics and
Artificial Intelligence, Netherlands, vol. 61(4). Springer (2011)

4. Behrens, T.M., Dastani, M., Dix, J., Novák, P.: Agent contest competition: 4th
edition. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS
(LNAI), vol. 5442, pp. 211–222. Springer, Heidelberg (2009)

5. Behrens, T., Dix, J., Hübner, J., Köster, M., Schlesinger, F.: MAPC 2011 Documen-
tation. Technical Report IfI-12-01, Clausthal University of Technology (December
2012)

6. Behrens, T., Dix, J., Hübner, J., Köster, M., Schlesinger, F.: MAPC 2011 Evalu-
ation and Team Descriptions. Technical Report IfI-12-02, Clausthal University of
Technology (December 2012)

7. Behrens, T., Hindriks, K., Dix, J.: Towards an environment interface standard for
agent platforms. Annals of Mathematics and Artificial Intelligence 61, 3–38 (2011)

8. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.F.: The Multi-agent
Programming Contest 2011: A Résumé. In: Dennis, L.A., Boissier, O., Bordini,
R.H. (eds.) ProMAS 2011. LNCS, vol. 7217, pp. 155–172. Springer, Heidelberg
(2012)

9. Dastani, M., Dix, J., Novak, P.: The first contest on multi-agent systems based
on computational logic. In: Toni, F., Torroni, P. (eds.) CLIMA VI. LNCS (LNAI),
vol. 3900, pp. 373–384. Springer, Heidelberg (2006)

10. Dastani, M., Dix, J., Novák, P.: The second contest on multi-agent systems based
on computational logic. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA VII. LNCS
(LNAI), vol. 4371, pp. 266–283. Springer, Heidelberg (2007)

11. Dastani, M., Dix, J., Novák, P.: Agent contest competition: 3rd edition. In: Dastani,
M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS
(LNAI), vol. 4908, pp. 221–240. Springer, Heidelberg (2008)

12. Köster, M., Schlesinger, F., Dix, J.: MAPC 2012 Evaluation and Team Descrip-
tions. Technical Report IfI-13-01, Clausthal University of Technology (January
2013)

https://www.aaai.org/ojs/index.php/aimagazine/article/view/2439

SMADAS: A Cooperative Team for the

Multi-Agent Programming Contest Using Jason

Maicon Rafael Zatelli, Daniela Maria Uez, José Rodrigo Neri,
Tiago Luiz Schmitz, Jéssica Pauli de Castro Bonson, and Jomi Fred Hübner

Department of Automation and Systems Engineering
Federal University of Santa Catarina

CP 476, 88040-900 Florianópolis - SC - Brasil
{xsplyter,dani.uez,jrf.neri,tiagolschmitz,jpbonson}@gmail.com,

jomi@das.ufsc.br

Abstract. In this paper we describe the SMADAS system used for the
Multi-Agent Programming Contest in 2012. This contest offers an useful
context to evaluate tools, techniques, and languages for programming
MAS. It is also a good opportunity to learn agent programming and test
new features we are developing in our projects. Throughout the paper we
highlight the main strategies of our team and comment on the advantages
and disadvantages of our system as well as some improvements that still
could be done. One important result from this experience regards the
agent programming language we used, it provides suitable abstractions
for the development of complex system and shows an increment in its
maturity since no bugs was discovered this year.

1 Introduction

The empirical evaluation of proposals in the context of Multi-Agent Systems
(MAS) is a quite complex task and the Multi-Agent Programming Contest [1,3]1

offers an useful context for doing this evaluation. In particular, the latest Mars
scenario has emphasised solutions based on cooperation, coordination, and de-
centralisation which are important topics for our research. This contest is thus
selected as the environment to evaluate the proposals being developed by the
authors in their master and Phd thesis. Among the authors, we have one PhD
student, three master students, and one undergraduate student. The main ap-
proach is (i) to develop a base MAS for the contest, then (ii) the master and PhD
students will change the base system using their corresponding proposals, and
finally (iii) each proposal can be evaluated and compared against the base sys-
tem. In this paper we report the development and the main features of this base
team, called SMADAS (the acronym of our research group). Another objective
for attending the contest is to improve the experience in developing MAS. Since
most of the authors are just beginning on the domain, the concrete experience
is important for their overall learning and maturity in critical analysis.

1 http://multiagentcontest.org

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 196–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://multiagentcontest.org

SMADAS 197

2 System Analysis and Design

For the analysis of our systems, we adopted a prototype driven approach instead
of a well known software engineering methodology because the problem seemed
quite simple to solve and we had no experience with them. Thus we decided that
it was better to use our time developing the system than learning a methodology.

Based on the agent contest scenario description, we divided the overall prob-
lem in sub-problems, each one analysed in detail: exploration, exploitation, at-
tack and defense, buy, repair, and inspection. A team member was engaged with
programming each strategy discussed on biweekly meetings. Forty five versions
of the system were produced in this phase. These versions were tested and com-
pared with the best teams from the last contest [6,8,7,2] and also against our
own versions of the system in order to select the most efficient one. In these
preliminary tests, we identified some good strategies for the final implementa-
tion. To develop the SMADAS system, we spent about 500 hours, most of them
testing the strategies.

The system has 20 agents of five types: repairer, saboteur, explorer, sentinel,
and inspector. We considered two main distinct phases: exploration, in which the
explorers identify all vertices and nodes in the map and find the best zones, and
exploitation, where all agents try to conquest and defend these zones. During
the match, if an agent senses a nearby enemy it calls a saboteur to attack it,
and also if the agent is damaged it tries to find a repairer to be fixed.

Our agents are able to decide their own actions, however this autonomy pro-
duces some conflicting situations like two agents deciding to exploit different
zones. These situations are solved using a centralized approach, which consists
of a specific agent been responsible for the group decision. For example, one of
the explorers defines the zones to exploit and one of the repairers defines the
reparation order. Some conflicting situations are simply prevented by using a
predefined priority order among the agents, where agents with higher priorities
acts before agents with less priority.

The coordination among the agents is based on two communication mecha-
nisms: blackboard and message exchanging. The blackboard is used to provide
a global graph view to the agents, since some important information about the
graph structure is synchronized in it. We decided to use a blackboard because
the agents need an overall view of the scenario to be able to define the system ex-
ploitation strategy. The message exchanging is used to share information about
the inspected enemies, the ally agent actions and damages, and about the map
zones. The communication protocol used when a damaged agent needs to be re-
paired is shown in Fig. 1. It consists of the agent asking a repairer that contacts
the other repairers to find out which one is the closest to the damaged agent.
Then the other repairers inform their positions and the closest one is selected to
repair the damaged agent. Thus, the selected repairer will send to the damaged
agent the meeting path.

The SMADAS system is a truly MAS because the agents are autonomous,
reactive, and proactive. They have autonomy to decide how and when to execute
most of their actions, except the few conflicting situations explained before.

198 M.R. Zatelli et al.

Fig. 1. A communication protocol used to define which repairer will repair a damaged
agent. The damaged agent asks the repairer1 for help, the repairer1 then contacts
the others repairers to find which one is the closest to the damaged agent. All repairer
send their position and the repairer1 elects the closest one. The selected repairer then
sends the meet point to the damaged agent.

However, the agents also perform some actions in reaction to environment events,
like the start of the step or a received message. Other reactive actions occurs
when a saboteur attacks an enemy agent that is in the same vertex or when an
agent runs away or defends itself from an enemy saboteur on the same vertex.
Furthermore, the agents have a proactive behaviour, that shows up when they
try to find a better vertex that improves the team score, contact the repairer
when they are damaged, or look for enemies to attack.

3 Strategies

In our strategy both individual and group behavior are important. While the
individual behavior is important when the agents are isolated in the map, the
group behaviour is responsible for preventing redundant actions and for produc-
ing a coherent and cooperative global result. The agents are proactive in order
to get achievement points and obtaining a good score. They also use their beliefs
and the exchanged information to decide their next action.

As commented in the previous section, we consider two main strategies: ex-
ploration and exploitation. In the exploration phase the agents just explore the
map and try to get as most achievement points as possible. After step 15, our
agents go to a good zone to conquer it.

Since achievement points are important and they accumulate in each one of
the 750 steps, it is desirable to obtain them as soon as possible. However, some
achievements are more complicated to conquer after some time, hence they can
be ignored. For example, it does not make sense to survey all edges in the graph,
considering it takes a long time to be performed. Instead of it, our agents stay
in a vertex getting more score by exploiting water wells. For the same reason we

SMADAS 199

are not interested on inspecting all opponent agents, thus our inspectors only
inspect them when they are near.

After the exploration phase, the exploitation phase starts. One of our explorers
reasons about which are the two best zones in the map to be exploited. Exploiting
two zones is advantageous since the map is symmetric and it is particularly
important against teams that keep only one zone. In order to do that, we used a
modified version of the BFS algorithm, that is run for all vertex, summing their
values until some depth. The vertex with the highest sum represents where the
best zone is (zone 1). After it, the algorithm tries to find the second best vertex
to set the second best zone (zone 2), which may have some intersection with the
first one. This algorithm is not optimal because its result is always a circular
shape, when the ideal choice often has a free shape.

When the good zones are defined, an explorer organises the agents in two
groups, one for zone 1 and another for zone 2. Each group has 10 members,
with two agents of each type. The agents are then informed about the central
vertex of its zone and how far they can go from it. The central vertex of an area
is the one discovered in the exploration phase with the best sum. The distance
they can go from it defines the border of the corresponding zone. After it, the
agents are positioned in their zones. The non-saboteur agents take positions in
vertices that have two neighbour vertices belonging to our team, but without
anyone there. The saboteur agents scout their zones and attack opponents inside
it, they also attack near enemy zones. We assume that if the enemy zone is not
near, the opponent probably has a small zone and we do not need to attack
them.

Table 1 shows the strategies and plans for each type of agent. There are
plans with more steps (buy, repair, probe) and plans where the agents simply
react (attack, parry, inspect, recharge, survey). We noticed that usually long-
term plans are not a good idea, because the environment changes quickly. The
strategies are explained in more details below.

– Buy: we concluded that it is be better to do not buy many things. We noticed
it through tests between our MAS with a buying strategy where the agents
buy more things against one where the agents just buy few things, and
the second strategy won all matches in all simulations. Firstly the buying
strategy consisted of only buying upgrades for the saboteurs: buy sabotage
devices to have a strength equal to the highest enemy saboteur health value,
and buy shields to have health one time greater than the highest enemy
saboteur strength value. We did a second version of this strategy where just
one saboteur (Hulk) buys upgrades, this had the benefit of decreasing our
expenses while also making agent teams with a similar strategy waste money.
Another improvement of the buying strategy was the addition of an agent
named Coach, which received information about our enemies upgrades from
the inspectors and used them to notice whether the enemy team is buying
or not, if they were not buying anything this agent informs the agent Hulk
to stop buying upgrades in the matches against this team and then save
achievement points.

200 M.R. Zatelli et al.

– Attack: the saboteurs always attack the opponent saboteurs first, and then
the repairers. However, in the initial steps, attacking the explorers would be
a good second option too, since it would be harder for the opponent team to
explore the map. In order to prevent redundant attacks, there is a hierarchy
defining which saboteur attacks first.

– Repair: the repair strategy consists of finding the closest available repairer to
help a disabled agent, after it the repairer and the damaged agent move close
to each other. If there are no available repairers the disabled agent moves
to the closest repairer. If there is another closest disabled agent to repair or
another repairer, they cancel the process and start it again with the closest
agent.

– Parry: if there is an opponent saboteur in the same vertex that our agents,
the formula 1/N defines the parrying probability, where N is the number
of ally agents in the same vertex. This way we can prevent all agents from
parrying the same saboteur. Our agents do not parry if there are more or the
same number of ally saboteurs and opponent saboteurs, since the opponent
probably will attack our saboteurs first. If an agent chooses not to parry,
then it leaves the vertex.

– Probe: the explorers always probe the closest unprobed vertex and they
repeat it until all vertices are probed. To avoid explorers probing the same
vertex, there is a hierarchy which defines the explorers who act first.

– Inspect: the inspectors always inspects near enemies, the aim of inspection
is to identify enemy saboteurs and to check if the opponent is using a buying
strategy.

– Recharge: the agents always check if they have enough energy before doing
an action, if they do not have or it is less than 2 points, then they recharge.
They also recharge when they do not have any action to do.

– Survey: the agents only survey if there is an unsurveyed near edge. The
sentinels are the main agents responsible for doing survey, but other agents
do it too if they do not have anything to do in the step.

Table 1. Implemented strategies by agent type

Action Repairer Saboteur Explorer Sentinel Inspector

buy x(Hulk)
attack x
repair x
parry x x
probe x
inspect x
recharge x x x x x
goto x x x x x
survey x x x x x

SMADAS 201

Finally, there are strategies to expand the team zone and to stop expanding.
The goal of the first one is to conquer more vertices in the same zone: when
an agent is participating in a zone occupation and it can go to another vertex
without breaking the zone, it will do it. The second strategy stops the agents
from expanding when they have a high score and to wait for the opponents
reaction.

4 Software Architecture

This section describes the technologies and frameworks that we used to develop
our agents and how they are integrated. We used the EISMASSim framework [4]
to communicate with the contest server, since the competition is built on Java
MASSim platform and Java EISMASSim framework is distributed with the com-
petition files. The programming language used to develop our agents is Jason
(version 1.3.8) [5]. Its concept of BDI agents provided useful resources to build
our agents, like plans and intentions, which allowed us to implement the strate-
gies and to provide our agents with long-term goals. Another advantage of Jason
is its interpreter that allow us to call Java methods, which simplifies the imple-
mentation of some algorithms and enables them to run faster. These methods
are integrated with our Jason agents using internal actions. More specifically
we implemented two algorithms as Java methods: Dijkstra algorithm to find the
best path between vertices and Breadth-First Search algorithm to locate the
best area in the graph.

A blackboard was used to share and build knowledge about the environment
in the form of a graph. The process to update information in the graph has a
high computational cost, lasting more than one step. Therefore, to avoid losing
steps, the graph is updated and shared every three steps. The agent interaction
is divided in two modes: agent-to-environment and agent-to-agent. In the first
mode, in each step the EISMASSim framework receives an XML text from the
server with the agents percepts, these percepts are then translated into Jason
environment perceptions for our agents. This translation however does not hap-
pen when our team conquers the full map and the quantity of perception is so
huge that the agents are not able to process them on time. In this case, percep-
tion is disabled and a default action (e.g. recharge) is sent back to the server.
The actions of the agents are translated into text and sent to the server by EIS-
MASSim. The Fig. 2 exemplifies how actions and percepts are exchanged. The
agent-to-agent interaction uses Jason speech act based communication.

5 Results

We have tried to develop a system as complete as possible and we created several
strategies for each system feature, like exploring, exploiting, buying, repairing,
and attacking. Hence we developed many versions of the system, we exhaustively
tested each one against the others to select the more efficient. We also tested our
system during the contest test phase against the teams provided by the contest

202 M.R. Zatelli et al.

Fig. 2. Communication architecture

organisation. This approach was our main advantage in the contest and one of
the reasons we played eighteen matches against six different opponents and won
seventeen. However our system has a worse performance when it confronts a
passive system because it is not so offensive. If our agents are in a good map
zone they do not bother about the opponent: they assume that the opponent is
not in a good area. Also, our agents have no focus on defending a conquered zone
and this explains the match we lost against Python-DTU during the contest.

Two main strategies were responsible for the good performance of our sys-
tem: the buying and exploitation strategies. The buying strategy was decisive
because it forced our opponents to reinforce their agents spending a lot of their
money. In a match against Python-DTU during the tests phase, for example, we
conquered a small area but we won because we had more money. Fig. 3a shows
the achievement points from this match. In the step 175 the Python-DTU (in
blue) spent most of their money strengthening their agents and SMADAS (in
green) spent only a part of its money. In the last 400 steps, from the step 350
to the 750, we had about 23 achievement points in each step, summing 9200
achievement points. In the end, this difference allowed us to win this match, as
shown in Fig. 3b.

(a) (b)

Fig. 3. From the step 350, SMADAS-UFSC (in green) has more achievement points
than Python-DTU (in blue) (a). This difference has decided the match for SMADAS-
UFSC system (b).

SMADAS 203

Our exploitation strategy chooses two good zones in the map. It was efficient
because usually the opponents are concerned about finding and conquering just
one good zone. Thus while part of our agents are under attack in one of these
zones, the other part are scoring in another zone. This strategy earns less points
in each step, because our agents are divided in two smaller zones, but it has
better results against an offensive opponent. Fig. 4 shows a comparison from our
system performance using these two exploiting strategies. The system in green
tries to conquer one single zone and the blue system looks for two zones. The
blue system has fewer points at the beginning because it gets two smaller zones.
However after some steps where the green system loses many points disputing a
single zone, the blue system has one fixed zone scoring without any attack. This
strategy was decisive in the match against the AiWYX system.

(a) (b)

Fig. 4. The green system tries to conquer one single zone and the blue system looks
for two zones. The blue system finishes the match with a highest score because it keeps
scoring in a zone without disputing it with opponents.

6 Conclusion

Participating in the contest was a worthy experience for all the team, we learned
a lot about MAS developing and about the tools and languages we used. The
contest result, where our team got the first place, is due both to the dedication on
developing the strategies described in this papers and to the tools we used. For
instance, the Jason programming language supports agent programming with
abstract concepts like plans, beliefs, and goals which are suitable for the problem
and very expressive. Different from previous participations in the contest where
several bugs in Jason were discovered and fixed [9], we did not identify any bug
in Jason this year, which shows the maturity of this language. Although we
can evaluate the used tools positively in general, some features are still missing.
For example, it was very difficult to change, refactor, and debug the agents
code since we have 5504 lines of Jason code and 20 agent instances running

204 M.R. Zatelli et al.

concurrently. The tools provided by Jason for debugging, like the sniffer and the
mind inspector, are too specific and focused on the details. It is a hard task to
identify a bug by looking at thousand of mind samples or message traces. High
level abstractions and tools are required to help the debugging of complex MAS.

There is still a room for improvements in our system both in the strategies
and the tools. Some of the improvements will be investigated in the authors’
master and PhD thesis where proposals will be compared against the version of
the system described in this paper. One particular drawback of the system is to
be focused only on the agent aspect, all the code is “agent programming”. More
global aspects should be considered, for instance by organisation and interaction
programming as first class abstractions. For that, new models and tools need to
be developed.

For the current scenario of the contest, we would propose two improvements.
(i) Inform opponent’s score. It would allow participants to design strategies based
on the current match result, rising more confrontations. (ii) Leave the graph less
connected to increase the use of edges.

References

1. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: The multi-agent program-
ming contest from 2005-2010. Annals of Mathematics and Artificial Intelligence 59,
277–311 (2010)

2. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.F.: The multi-agent
programming contest 2011: A résumé. In: Dennis, L.A., Boissier, O., Bordini, R.H.
(eds.) ProMAS 2011. LNCS, vol. 7217, pp. 155–172. Springer, Heidelberg (2012)

3. Köster, M., Schlesinger, F., Dix, J.: The Multi-agent Programming Contest 2012. In:
Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS (LNAI), vol. 7837,
pp. 174–195. Springer, Heidelberg (2013)

4. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard
for agent platforms. Annals of Mathematics and Artificial Intelligence 61(4), 261–
295 (2011)

5. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

6. Carr, D., Russell, S., Pete, B., O’Hare, G.M.P., Collier, R.W.: Bogtrotters in space.
In: Dennis, L.A., Boissier, O., Bordini, R.H. (eds.) ProMAS 2011. LNCS, vol. 7217,
pp. 197–207. Springer, Heidelberg (2012)

7. Dekker, M., Hameete, P., Hegemans, M., Leysen, S., van den Oever, J., Smits, J.,
Hindriks, K.V.: HactarV2: An agent team strategy based on implicit coordination.
In: Dennis, L.A., Boissier, O., Bordini, R.H. (eds.) ProMAS 2011. LNCS, vol. 7217,
pp. 173–184. Springer, Heidelberg (2012)

8. Ettienne, M.B., Vester, S., Villadsen, J.: Implementing a multi-agent system in
python with an auction-based agreement approach. In: Dennis, L.A., Boissier, O.,
Bordini, R.H. (eds.) ProMAS 2011. LNCS, vol. 7217, pp. 185–196. Springer, Heidel-
berg (2012)

9. Hübner, J.F., Bordini, R.H.: Using agent- and organisation-oriented programming
to develop a team of agents for a competitive game. Annals of Mathematics and
Artificial Intelligence 59(3-4), 351–372 (2010)

Reimplementing a Multi-Agent System

in Python

Jørgen Villadsen�, Andreas Schmidt Jensen, Mikko Berggren Ettienne,
Steen Vester, Kenneth Balsiger Andersen, and Andreas Frøsig

Department of Informatics and Mathematical Modelling
Technical University of Denmark

Richard Petersens Plads, Building 321, DK-2800 Kongens Lyngby, Denmark
jv@imm.dtu.dk

Abstract. We provide a brief description of our Python-DTU system,
including the overall design, the tools and the algorithms that we used
in the Multi-Agent Programming Contest 2012, where the scenario was
called Agents on Mars like in 2011. Our solution is an improvement of
our Python-DTU system from last year. Our team ended in second place
after winning at least one match against every opponent and we only lost
to the winner of the tournament. We briefly describe our experiments
with the Moise organizational model. Finally we propose a few areas of
improvement, both with regards to our system and to the contest.

1 Introduction

This paper documents our work with the Python-DTU team which participated
in the Multi-Agent Programming Contest 2012 [7]. We also participated in the
contest in 2009 and 2010 as the Jason-DTU team [4,5], where we used the Jason
platform [3], but this year we use just the programming language Python as we
did in 2011 [6]. See http://www.imm.dtu.dk/~jv/MAS for an overview of our
activities.

The scenario is based on the scenario from 2011 and has only been changed
in a few ways. The most interesting change is the increase in number of agents
from 10 to 20 agents per team.

Our focus for the 2012 version of the contest has been on reimplementing
the system from 2011. Given that the scenario is very similar to that last year,
we decided to look into ways of improving our system. We have been exploring
the possibility of implementing an organization for the system using the Moise
organizational model [1] as part of a two-student bachelor project.

The paper is organized as follows. In section 2 we discuss some of the ideas
we have pursued. In section 3 we describe some of the facilities we have added
in the improved system. Section 4 describes in detail our strategies and how the
agents commit to goals. Finally, we conclude our work by discussing possible
improvements of our system and the contest in section 5.

� Corresponding author.

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 205–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.imm.dtu.dk/~jv/MAS

206 J. Villadsen et al.

2 System Analysis and Design

We chose to implement the system using Python as it is very fast and conve-
nient to implement experimental systems in this language. Other useful features
of Python are support of multiple programming paradigms, compact code and
dynamic typing. We did not use any multi-agent programming languages be-
cause we wanted to have complete control of everything in the implementation.
Last year we used Python 2 and we decided to upgrade to Python 3.

In order to make sure that our changes during the implementation phase
improved our system, all new algorithms and architecture changes were tested
against the older versions by comparing the data collected from the new statistics
to see if the change made any differences.

2.1 Testing Moise

This year we wanted to try to implement some kind of organization for our sys-
tem, so we made a substantial test implementation as part of a two-student bach-
elor project using the Moise organizational model [1]. We chose Moise because
we have previous experience using it in combination with the Jason platform [3].

The Moise organizational model [1] is a formalism for organizational multi-
agent systems where an organization is divided into three dimensions: struc-
tural, functional and deontic specification. The structural specification uses the
concepts of roles, role relations and groups to build the individual, social and
collective structural levels of an organization. Here, the roles an agent can enact
are defined, and it is furthermore defined how roles are linked, e.g. by allowing
agents enacting different roles to communicate. The collective level is specified
using the notion of groups, in which it is determined which roles are allowed to
be enacted and what links exists between agents both within internally in the
group and with external agents. The functional specification specifies missions
and plans using a so-called social scheme which is a goal decomposition tree
that has as root the goal of that scheme. The responsibilities for each subgoal
in a scheme are distributed in missions, which means that an agent choosing to
commit to a mission effectively chooses to commit to the goals of that mission.
The subgoals are created using the operators sequence, indicating that a goal
is fulfilled when the sequence of subgoals are fulfilled, choice, in which a goal is
fulfilled when a single subgoal is achieved, and parallelism, where all subgoals
must be fulfilled, but no specific order is required. The deontic specification is the
relation between the structural and functional specifications: it specifies on the
individual level the permissions and obligations of a role on a mission. It makes
it possible to specify that an agent enacting a certain role is obligated (or per-
mitted) to commit to certain missions, and is therefore obligated (or permitted)
to commit to the goals of that mission.

We follow the approach of S-Moise+, which is an open-source implementation
of an organizational middleware that follows the Moise-model [2]. Among other
things it consists of a special agent, the organizational manager, which maintains
consistency in the organization, i.e. by making sure that a single agent cannot

Reimplementing a Multi-Agent System in Python 207

enact two incompatible roles at the same time. This is done by letting the agents
communicate with the manager when they want to join a group, enact a role
or commit to a mission. If any such event is a violation of the organizational
specification, the organizational manager will not allow it.

The plan trees and social schemes of Moise have a large potential, due to the
fact that they will make sure that the right amount of agents will work together
toward the best goal. We have chosen to only plan for a single subgoal for each
agent, because of the very dynamic nature and the size of the map and number
of agents. This makes the plans sufficiently small for the agents to coordinate
themselves using direct communication, which makes the plan trees unnecessary.

It might be possible to split the agents into smaller groups to perform more
coordinated plans, like finding the opponent’s zones etc., but we did not have the
time to try to implement groups. In the end we decided not to use Moise as we
found that the benefits did not outweigh the needed effort to get the computation
under the time limit, due to the quite large communication overhead of the
organizational manager.

2.2 Agent Behaviour

Our resulting system is a decentralized solution with a focus on time perfor-
mance. The communication between the agents relies on shared data structures
as this is a very fast way to communicate for the agents. The Runner class which
coordinates communication is described in more detail in section 3.3.

Instead of letting the agents find goals based on their own knowledge alone
they use the distributed knowledge of the entire team. This does add some
communication which in some cases is unnecessary but in most cases the extra
knowledge will produce better goals for the agents.

In each step each agent will find its preferred goals autonomously and assign
each of them a benefit based on its own desires (i.e. the type of agent), how
many steps are needed to reach the location and so on. In order to make sure
that multiple agents will not commit to the same goal they communicate in order
to find the most suitable agent for each goal. This is done using our auction-based
agreement algorithm which will be discussed in more detail in section 4.3.

The agents in this contest are situated in an inaccessible environment which
means that the world state can change without the agents noticing from step to
step, e.g. if the opponent’s agents move outside our agents’ visibility range. Hence
our agents should be very reactive to observable changes in the environment.

The agents are only proactive in a few situations. The most important one
being the communication between a disabled agent and a repairer. They use
their shared knowledge in order to decide which of the agents should take the
last step and who should stay, so that they eventually are standing on the same
vertex instead of simply switching positions. This is implemented by considering
the current energy for each agent.

Some of our agents also attempt to be proactive by for example parrying if
an opponent saboteur is on the same vertex. Furthermore, repairers will repair
wounded agents since they are likely to be attacked again.

208 J. Villadsen et al.

2.3 Random Generation of the Map

Last year all maps had one high-valued area, indicated by numbers on the ver-
tices, as seen in figure 1. For this setting we developed an algorithm which places
the agents in defensive positions inside the area in order to defend it. For more
information we refer to the paper about our system from 2011 [6].

Fig. 1. An example of a map in the MAPC 2011

This year the map generation algorithm has been updated to create more
than one high-valued area. An example of this can be seen on figure 2, where the
size of a vertex represents its value. In some cases this lead to situations where
our agents would protect a single good area even though it would be better to
make smaller groups and have control over several areas. Therefore our previous
solution would only be effective in special cases, so we have implemented a

Reimplementing a Multi-Agent System in Python 209

Fig. 2. An example of a map in the MAPC 2012

new algorithm which takes multiple areas into consideration. The new solution
is actually much simpler and it works well for both maps with multiple areas
and maps with a single, high-valued area. In section 4.2 we describe the main
properties of this algorithm.

3 Software Architecture

The software architecture, including the auction-based agreement approach, is
thoroughly described in the paper about our system from 2011 [6] and will only
be described briefly here. The rest of this section will describe a few minor
facilities added this year.

210 J. Villadsen et al.

3.1 Considerations

The competition is built on the Java MASSim-platform and EISMASSim frame-
work which makes it easy to implement a system quickly without spending time
on server communication and protocols. However, we did not utilize this frame-
work but chose to implement our system in Python exclusively to have better
control and complete knowledge about the implementation. Another solution
based on EISMASSim, ActiveMQ and the Java implementation of Python, called
Jython, was implemented as well. This solution was discarded due to perfor-
mance issues. We also considered using a multi-agent framework such as Jason,
but due to prior experiences, we thought that the benefits where outweighed by
the increased complexity and thus chose to implement our own framework. We
chose Python as we think it is in many ways superior with respect to development
speed and succinctness compared to Java, C#, C++ and other languages that
we have experience with. Furthermore Python supports multiple programming
paradigms, including the functional, which has quite effective for this setting.

Last year we used a decentralized solution where the agents shared their per-
cepts through a shared data structures but each kept their own copy of the graph
representing the environment. The increase in the number of agents and the size
of the maps for this year’s competition, forced us to rethink and reimplement
the percept sharing. To efficiently handle the increased amount of information,
all agents share a single instance of the graph. To avoid deadlocks, percepts that
lead to updates in this graph are handled with synchronized queues which allow
safe exchange of data between multiple threads.

3.2 Testing Using Flags

A lot of testing was required for verifying that our system was improved com-
pared to our previous system, so we needed an easy way to select which algo-
rithms to use. In order to be able to run several instances of the program, we
decided to create program arguments, or flags, for the system. In the beginning
we had a configuration file in which we set flags. This was not a very practical
way to do it as we had to have multiple configuration files in order to run more
instances of the program. These flags make it possible to specify which algo-
rithms the system should use. The help page for our multi-agent system where
the different flags are described is shown below:

$ python ./bagent.py -h

usage: bagent.py [-h] [-b] [-d] [-a] [-w] [-l] [-v {0,1,2}] {a,b,Python-DTU}

positional arguments:

{a,b,Python-DTU} agent name prefix

optional arguments:

-h, --help show this help message and exit

-b, --buy make the agents shop for upgrades

-d, --dummy dummy agents

-a, --attack do attack

Reimplementing a Multi-Agent System in Python 211

-w, --weak_opp attack EXP and INS in the start of the simulation

-l, --load_pickle load vertices from pickled data

-v {0,1,2}, --verbosity {0,1,2}

The flags are used to start multiple instances of the system using different strate-
gies. For example we can test whether it is better to use our buying strategy by
starting the server and then start two instances of the system where the flag -b

was passed to one of them. This was used to test whether it was beneficial to
use our heuristics, but as we found that this was not the case we have removed
them from the system.

3.3 Code Structure and Files

We briefly describe the main classes and files:

global vars.py: We have all our global variables in this file. They are mainly
used to make the implementation more dynamic and easier to maintain.

comm.py: This is the file where we have implemented the Agent class and the
procedures used to communicate with the server. The Communicator class
is implemented as processes such that all the agents can send and receive
messages at the same time. The logic of the agents are implemented in the
util.py and algorithms.py files.

bagent.py: This is where the main program is started and where the flags
are parsed. It is also in this file that our Runner class is implemented. The
Runner class starts and lets the agents do their calculations in a sequential
fashion.

algorithms.py: Most interesting of our algorithms are implemented in this file,
including:
– The greedy zone control which will be discussed in section 4.2.
– The get goals algorithm called by each agent. This algorithm is discussed

in more detail in the paper about our system from 2011 [6].
– The best-first search used by each agent in order to find specialized goals

according to their type.

util.py: We have implemented our graph representation of the map in this file.
The file also includes a timer which was used to find bottlenecks in our code.

4 Strategies, Details and Statistics

In the competition each step of each achievement is exponentially harder to
reach than the previous, thus our agents need a way to change their goals as
the simulation progresses. We describe our strategy for getting achievements in
section 4.1 and our zone control strategy in section 4.2. We describe how the
agents decide what to do in section 4.3 and finally how communication works in
section 4.4.

212 J. Villadsen et al.

4.1 Getting Achievements

In the beginning every agent will work towards achieving as many type specific
goals as possible in a more or less disorganized fashion, e.g. the inspector will
inspect every opponent it sees.

We do this to achieve as many achievements as possible as fast as possible. We
tried implementing different heuristics to improve the first part of the strategy.
We considered the following heuristics:

Survey Heuristic: The agents always survey the vertex with the most outgo-
ing edges if the steps needed to reach the vertex are the same (figure 3). The
idea is to get survey achievements faster, but it turned out that even though
we got the first few achievements faster, the last ones were achieved a lot
later using this heuristic, so we did not use it.

Probe Heuristic: The agents probe the vertex with the highest valued neigh-
bours (figure 4). This worked very well in the scenario from 2011, but in
the 2012 scenario it can be more beneficial to first find a lot of potentially
high valued areas which can be probed later. This can be achieved using a
random walk, which will reduce the time in each area increasing the chance
that the agents might find more areas in less steps. We chose not to use the
probe heuristic since a random walk was more successful.

Attack Vulnerable Opponents: This heuristic is only applied in the first 80
steps (a simulation has 750 steps). We prefer to attack agents that cannot
parry, as this will get us more successful attacks. Furthermore, as added
value this will also lead to fewer successful parries for the opponent. This
turned out to give us a slight advantage in the beginning of the simulation,
so we chose to use it.

X3 4

Fig. 3. Illustration of the heuristic values our agents would get trying to survey, stand-
ing on the green vertex. The vertex to the left has a heuristic value of 3 because it has
three outgoing edges, whereas the one on the right has a slightly better heuristic value
of 4.

After a certain number of steps the agents will proceed to the zone control
part of our strategy. The sentinel is the only agent surveying after step 30. The
explorers keep probing until step 150 and will probe in our target area for the
next 50 steps to make sure we control as many vertices as possible. Afterwards
they will follow the zone control strategy. All other agents begin zone control
after step 150.

Reimplementing a Multi-Agent System in Python 213

5

66

56

4

4

5

6

5

Fig. 4. Illustration of the heuristic values our agents would get trying to probe, standing
on the green vertex where the blue ones are owned with the given value. The heuristic
value of the red vertices are calculated by taking the mean of the known neighbouring
vertices.

4.2 Zone Control

The zone control part of our strategy uses a very simple, but surprisingly effec-
tive, greedy algorithm. The algorithm works by first choosing the node with the
highest value, and then by choosing a potential neighbour node. The potential
value of choosing that node is then calculated as the value of the node plus the
sum of all the neighbours which, according to the graph coloring algorithm [7],
will be owned if the potential node is chosen. For each agent, the algorithm will
choose the best node according to some parts of the graph coloring algorithm.
If a vertex has not been probed the algorithm will use the value 1. This way we
take some of the area coloring algorithm from the contest into consideration and
as it is an inaccessible environment this is the best we could achieve.

This algorithm will to some extent choose the optimal area or several areas
which are still fairly easy to maintain, even though our choices are limited by
our (partial) knowledge of the map and the missing parts of the area coloring
algorithm.

During the zone control part every type of agent has a specific job.

– Repairers and saboteurs do not directly participate in the zone control, in-
stead they are trying to defend and maintain the zone.

– Inspectors keep inspecting from their given expand node, because the oppo-
nents might have bought something which we need to make a counter move
against.

– Explorers will probe unprobed vertices within the target zone. When all
vertices are probed they are assigned a vertex by the zone control strategy.

– The sentinels will stay on a vertex assigned by the zone control strategy and
will parry if some of the opponent’s saboteurs move to the sentinels position.

The last important change in the state of mind of the agents is that after step
150 the saboteurs start buying. They buy exactly enough extra health so that
they will not get disabled by a single attack from an opponent saboteur that has

214 J. Villadsen et al.

not upgraded his strength. Furthermore we buy enough strength to disable any
opponent saboteur in a single attack by buying strength for all our saboteurs
every time we inspect the opponent saboteurs and find that it has more health
than all other inspected saboteurs. This buying strategy is chosen in hope of
dominating the map which will make it possible to gain control of the zone we
want. The advantage is that we only try to out-buy in one specific field, thus
we are unlikely to use all our achievement points. As this is a quite aggressive
buying strategy we had to wait to step 150 to have enough achievement points
to execute it.

4.3 Making Decisions

The agents need a consistent way of figuring out what to do. We do this by
letting every agent find the nearest goals according to their type. They do this
by using a modified best-first search (BFS) which returns a set of goals. To make
sure that every agent always has at least one goal the BFS returns as many goals
as we have agents. This is a very agent-centered procedure meaning the agents
simply commit to the goal with the highest benefit, instead of coordinating any
bigger schemes. However, since the goals are more or less dependent on each
other there is some implicit coordination. For example the repairers will often
follow the saboteurs as these search for opponents and thus more often will share
a vertex with an opponent saboteur and get disabled.

To decide which goal to pursue the agents use an auction algorithm. Every
agent can bid on the goals they want to commit to and will eventually be assigned
the one they are best suited for. This results in a good solution, which however
might not be optimal. For further details we refer to the paper about our system
from 2011 [6].

Even though our planner calculates a few turns ahead the agents recalculate
every turn. We do this to adapt to newly discovered obstacles and facts, such
as an opponent saboteur or the fact that the agent has been disabled. The
agents will not end up walking back and forth as their previous goal will now
be one step closer, thus the benefit of the goal has increased. If another goal
becomes more valuable it means that it is a better goal than the one the agent
was pursuing, thus changing the commitment makes sense, so we do not lose
anything on recalculating each turn.

4.4 Communication

Communication and sharing of information is extremely important in any multi-
agent system. In our system every percept received by the agents are stored in a
shared data structure so that all agents have access to the complete distributed
knowledge of the team at all times.

Actual communication in our system only happens when the agents are de-
ciding what to do. When they are figuring out what to do the auction-based
agreement algorithm is used on conflicting goals and thus two agents will never
pursue the same goal.

Reimplementing a Multi-Agent System in Python 215

5 Conclusion

In the process of reimplementing and improving the Python-DTU multi-agent
system we have analysed the changes to the competition and used our findings
to design and implement better algorithms for the increasingly complex tasks.
We have considered imposing an explicit organization upon the agents, and for
this purpuse we experimented with the Moise organizational model. While it
had some advantages, such as the being able to ensure that the right amount of
agents work together toward a certain goal using by use of roles and plan trees,
we decided not to use Moise in the final version of our system, as its benefits did
not outweigh the communication overhead caused by the organizational manager
in the organizational middleware, S-moise+.

All improvements to the algorithms are quite simple, but are nevertheless ef-
fective at reaching their goals. The simplicity and specialized approach is proba-
bly one of our strengths, as it makes it easy to implement special cases when cer-
tain improvements of the algorithms were necessary. Having aggressive saboteurs
was also an advantage as it lead to the opponents being disabled often, which in
turn gave us a larger zone score. Our greatest weakness was that our uncompro-
mising attempt to have the strongest saboteurs could be countered by buying
enough health on a single saboteur to make us use most of our achievement
points for improving all of our saboteurs. This could lead to a large difference in
step score gained from achievement points each step.

The many advanced programming constructs in Python, e.g. lambda func-
tions, list comprehensions and filters made it possible to implement algorithms
very efficiently.

One thing we have noticed during the competition is that it does not seem to
pay off to buy anything other than health and strength. This meant that a lot
of teams had more or less the same strategies. We think it could be interesting
if many kinds of strategies could be sufficiently effective so that we might see the
teams following different strategies. One idea could be to introduce ranged attacks
which could be achievable through upgrades and should be limited by visibility
range. This could allow for some other strategies, since the agents need to figure
out where to hit the opponent a few steps in the future and how to avoid getting
hit themselves. Furthermore, the teams will need to use their inspectors even more
to find out whether or not to avoid possible ranged attacks from the opponent.

References

1. Hübner, J.F., Sichman, J.S., Bossier, O.: A Model for the Structural, Functional,
and Deontic Specification of Organizations in Multiagent Systems. In: Bittencourt,
G., Ramalho, G. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer,
Heidelberg (2002)

2. Hübner, J.F., Sichman, J.S., Boissier, O.: S-moise+: A Middleware for Develop-
ing Organised Multi-Agent Systems. In: Boissier, O., Padget, J., Dignum, V., Lin-
demann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.)
ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 64–78. Springer,
Heidelberg (2006)

216 J. Villadsen et al.

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons (2007)

4. Boss, N.S., Jensen, A.S., Villadsen, J.: Building Multi-Agent Systems Using Jason.
Annals of Mathematics and Artificial Intelligence 59, 373–388 (2010)

5. Vester, S., Boss, N.S., Jensen, A.S., Villadsen, J.: Improving Multi-Agent Systems
Using Jason. Annals of Mathematics and Artificial Intelligence 61, 297–307 (2011)

6. Ettienne, M.B., Vester, S., Villadsen, J.: Implementing a Multi-Agent System in
Python with an Auction-Based Agreement Approach. In: Dennis, L.A., Boissier,
O., Bordini, R.H. (eds.) ProMAS 2011. LNCS, vol. 7217, pp. 185–196. Springer,
Heidelberg (2012)

7. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.: Multi-Agent Program-
ming Contest — Scenario Description — 2012 Edition (2012),
http://www.multiagentcontest.org/

http://www.multiagentcontest.org/

Multi-Agent Programming Contest 2012 –

TUB Team Description

Axel Heßler, Thomas Konnerth, Pawel Napierala, and Benjamin Wiemann

Technische Universität Berlin, Germany

Abstract. We describe our contribution to the Multi-Agent Program-
ming Contest 2012, which has been developed by students and researchers
of the DAI-Labor at TU Berlin, Germany, using the JIAC V agent frame-
work and the agile JIAC methodology.

1 Introduction

Our team is called “TUB” and has participated consistently in the Multi-Agent
Programming Contest [1–3] since 2007. Since our first participation, we con-
sider the contest a very good opportunity to evaluate our platform and tools.
The current team has been developed in the course “Multi Agent Contest”1 by
the following students: Pawel Napierala and Benjamin Wiemann, supervised by
the following agent researchers: Thomas Konnerth and Axel Heßler (main con-
tact). We have invested 640 hours approximately to create the contest version
of our system and we are still not convinced that this version is competitive,
although we have invested twice the time of last year’s contribution.

2 System Analysis and Design

The methodology, which we have used during the course, borrows from the JIAC
methodology, and can be described as bottom-up and agile methodology: we
start with domain analysis, which is to build a first ontology: find the concepts
of the domain, their structure and relationships with each other: agents, own
team, opponents, nodes, edges, visited, probed, surveyed, weight.

As a second step the methodology says: make a role model and a user interface
(UI) prototype. A role is specified by a number of capabilities or behaviours and
the relationships with other roles. Identifying the roles was an easy task because
they are easily collected from the scenario document. We then assigned simple
and basic capabilities to the roles. As many of them were identical in each role,
we created the generalised role of the Mars invader, which is a collection of the
capabilities that all roles share, such as surveying, charging and moving. All
other roles inherit from the invader role and add special capabilities such as
probing, inspecting, and so on.

1 Project 0435 L 774 at TU Berlin, Germany.

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 217–223, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 A. Heßler et al.

Fig. 1. TUB role model

The role model was subject to many iterations. In Figure 1, an intermediate
version of the role model is shown that is very close to the final role model.
In principle, every contest agent in this role model could take every role (the
ContestAgentRole), but during this contest the roles are static properties given
by the contest server to every agent in the team. Common capabilities (goto,
survey, buy, recharge) are implemented to the DefaultDecisionBean component.
Special capabilities (probe, inspect, attack, repair) are implemented in the corre-
sponding role specific component (e.g. ExplorerDecisionBean or SaboteurDeci-
sionBean). Every agent instance has a specialization of the ServerCommunica-
tionBean component with the credentials for authentication. Finally, every agent
is instantiated once on the ContestNode, which provides the infrastructure for
acquaintance and inter-agent communication. The role model has been gener-
ated with the help of the AgentWorldEditor (AWE), which is part of the JIAC V
tool suite Toolipse. The AWE generates configurations for all agents and agent
nodes that are used by the JIAC V runtime at startup.

The UI prototype is a simple visualisation of the world graph. The problem
here is that we could not find a solution to draw the graph in a repetable way
during preparation. As a workaround we have patched the contest server to send
the coordinates that project the graph to a grid as used by the monitor tool. The
next step is implement ing the simple and basic behaviours and then evaluating
their function. After several iterations, when the basic actions can be reliably
achieved by the agent, more complex capabilities are added, such as finding the
most promising node to occupy or calculate the shortest or fastest path to an
arbitrary node, and so on. The system can be distributed over several machines
if available, without changing any line of code, even at runtime. This is one

Multi-Agent Programming Contest 2012 – TUB Team Description 219

of the features of the JIAC agent framework [5] that is usually used for MAS
administration and self-administration [6, 7]. However, we could not use this
feature during the contest due to a lack of available hardware.

The agent system that runs our bots is mostly decentralised. As we use a
component framework to build our agents, the functionalities for the roles are
implemented within a dedicated component for each role. However, in order to
simplify configuration, we decided to equip all of our agents with all components.
The agents then decide based on the first message from the server, which role
they take and keep that role for the remainder of the match. This way, it was
very easy for us, to expand the team for the 2012 contest. All we had to do was
to add a number of additional agents, and they took their roles automatically.

During the match, the basic cycle of our agents was triggered by the percep-
tions from the server. Whenever an agent receives a new perception, it starts the
decision making cycle. In this cycle, the current state is evaluated and the agent
decides what to do, based on its role. This decision is then forwarded to all other
team members. Afterwards the agent waits for some time, in order to receive the
decisions from the other team members. Depending on circumstances, this may
lead to a reevaluation of the decision. Afterwards, the final decision is send to
the server.

The only centralized or hierarchical part of the team organization is the zoning
calculation. While this calculation can be performed by every agent, we have
instead decided to let only one agent calculate the Zoning and propagate the
results to all agents that participate in the zoning. This agent is selected among
and by interested agents that want to know where to position in the zone, using
a simple voting protocol. The result is then calculated by the selected agent and
shared with the other interested agents.

Regarding the communication strategy of our team, we follow our 2007 –
2009 successful approach (e.g. in [4]) to distribute all perceptions and intentions
among all other agents, where we could reach an appreciable enhancement of
the team performance. In theory this approach should not scale very well as the
number of perceptions and intentions sent around is 2n∗ (n− 1) per cycle. How-
ever, the JIAC V framework contains a messaging middleware that is capable
of processing multicast messages for groups of agents. With this approach, each
agent only needs to send one message that is then forwarded to all agents within
the group. Thus the framework can handle the message very easily.

When it comes to coordination aspects we distinguish between explicit and
implicit coordination. Implicit coordination can be achieved when the agents
share their intentions. This notion of intention is often misunderstood when
discussing the approach in the agent community. The intention in our case more
often reflects a perform or achievement goal than the action that the agent has
decided to execute. Taking the intentions of other agents into account, the actual
agent can adopt the intention when it has a better utility or even dismiss its own
decisions in case other agents will perform better. We have yet built only a few
explicit coordination strategies into our agents, e.g. the collaboration between
inspector and saboteur, or the unhealthy agent requesting the nearest repairer.

220 A. Heßler et al.

We have implemented general agent attributes such as autonomy, proactive-
ness and reactiveness as follows: JIAC V agents have their own thread of con-
trol and decide and act autonomously. We see the agents with low health level
proactively seeking the repairer’s help using a simple request, whereas probing
or surveying has been implemented as a simple reactive behaviour: if the node
is unprobed then probe.

Finally, our team was tested during the training matches that were organized
by before the tournament in order to ensure that the agents run stable and can
send their moves to the server within the allocated time.

3 Software Architecture

We have used the JIAC V agent framework to implement the contest MAS of our
TUB team. For our agent researchers the contest is always an excellent reliability
benchmarking of the framework, and also a test case for teaching principles of
agent programming. We used a set of dedicated JIAC V plugins for the Eclipse
IDE to create basic project structures and configurations. Then we added a
number of components that were already available form last years contest, such
as server communication and zone calculation functionalities. Finally, the biggest
part of the work was invested in implementing and tuning the algorithms that
control the actual actions of the agents. This was mostly done in Java, because
the decisions and calculations are time critical, and we wanted to avoid the
overhead from interpreting our declarative agent language.

As far as algorithms are concerned we experimented with Bellman-Ford and Di-
jkstra path finding algorithms for the movement calculations. However, the final
team used a simple A-star algorithm, as other approaches proved to be to costly.
Theymay become useful again, if we delegate the path finding to a dedicated agent
that is not part of the team in future contests. Furthermore, the algorithm de-
scribed in the contest scenario was used for the calculation of the zone scores.

4 Strategies, Details and Statistics

Every agents maintains its own world model (see Figure 2). Once the perception
arrives, unknown vertices are added to the graph, which represents the physical
world where the agents act in. Already known vertices are updated with the values
from the perception. The perception is also shared with all other agents so that
they can update their world model with information that is not visible to them.

The world model also contains a number of agent lists, i.e. team bots, enemy
bots and special lists for interesting bots such as enemy’s saboteurs and enemy’s
repairers (to either destroy or avoid them depending on the role of our agent).

Furthermore, the world model is updated by a number of Zones that support
the decision process. The ownZones attribute is a list of zones that are held by
the own team, enemyZones are the enemy’s holdings as far as the own team can
see them. A safe and a semisafe area are also calculated to give the bots a map
of potential target vertices that are not reachable by enemy’s saboteurs. The

Multi-Agent Programming Contest 2012 – TUB Team Description 221

Fig. 2. Domain model

own saboteurs are more interested in the dangerous vertices because there are
the first class targets to be destroyed: enemy’s saboteurs.

The main strategy of our team is twofold: First, individual agents follows a
simple, straightforward achievement collection strategy based on their roles. The
behavior is as follows:

– Explorer: Explores the whole graph and if a node is not yet probed and
the agent is situated on the unprobed node then it will try to probe until
the probe action has been successfully achieved. If no probing is necessary,
but there are unsurveyed edges connected to the current node, the agent will
survey. Otherwise it will move to unprobed nodes.

– Repairer: If any agent is damaged and requires repairs, the repairer will
move to that agent and repair it. Other repairers are repaired with a higher
priority. If no repairs are necessary, the Repairer agents will participate in
zoning.

– Saboteur: If any agents of the opposing team are detected, the Saboteur
will try to catch them and attack them if possible. If no opposing agents are
detected, or all agents are disabled, the Saboteur will participate in zoning.
Furthermore, if enough achievement points are available, the saboteurs will
buy increases for their attack-power and health attributes.

– Sentinel: Our strategy does not contain any special tasks for Sentinels.
Therefore the Sentinels do always participate in the zoning.

– Inspector: The inspectors try to find agents of the opposing team and
inspect them. This is mainly done to get the initial achievement points for
the first ten inspects. When all opposing agents have been inspected, the
Inspectors will stop inspecting and participate in zoning.

222 A. Heßler et al.

The second part of the strategy is an algorithm that we have called “zoning”, i.e.
two or more agents try to create and extend a zone in order to achieve the maxi-
mum zone score gain. The basic algorithm is rather simple. First of all, we deter-
mine which agents participate in the zoning. Then the current zone score is cal-
culated. This calculation happens under the premise that all non-zoning moves
are executed successfully but no other agent of our team or of the opposing team
moves. In the next step, we calculate the possible permutations for this turn, i.e.
what possible moves our zoning agents can make. As we only consider agents that
participate in zoning and each agent can onlymake one step, the number of permu-
tations is not extremely large and thus computable. For each such permutation, we
calculate the zone score that results after the zoning agents have moved. Finally,
we select the permutation with the best overall score. Thus our agents perform a
local optimization for their zone score each turn.

While the initial implementation complexity and the computational cost of
this zoning algorithm were both acceptable, the performance of our zoning al-
gorithm within the contest was not very good. Obviously our agents miss the
opportunity to identify frontiers that award a high number of points, unless
these frontiers are already close to their current positions. This is likely the
most important point for improvements on our strategy in future contests.

However, we should also mention that for the actual selection of both, targets
for repairers and saboteurs, and for the zoning, we used greedy approaches. I.e.
our agents simply take the closest target that maximizes utility. Unfortunately
we could not find the time for the development of more elaborate strategies that
achieve a global optimum – be it the discovery of a good border, or the detection
of a high priority target for the saboteurs.

5 Conclusion

In summary, we are pleased withe the overall design and stability of our team.
The agents worked flawlessly, did not break down, and submitted their actions
in time to the server. However, the performance in terms of achieved scored is
not what we had hoped for. Our strategy is probably too simple, and we need to
improve the strategy for further contests. The most obvious points for this are
the detection of globally optimal frontiers that our agents should occupy and a
general improvement of situational awareness for all agents.

However, even though we think that our own performance in the contests
could be improved, we wish to thank the organizers for the opportunity to test
our framework and our agents. We think that the contests is a valuable addition
to the multi agent community and hope that it will continue to be so for many
years to come.

References

1. Behrens, T.M., Dastani, M., Dix, J., Köster, M., Novák, P.: The multi-agent pro-
gramming contest from 2005-2010 - from gold collecting to herding cows. Ann. Math.
Artif. Intell. 59(3-4), 277–311 (2010)

Multi-Agent Programming Contest 2012 – TUB Team Description 223

2. Behrens, T.M., Dix, J., Hübner, J., Köster, M.: Editorial. Ann. Math. Artif. In-
tell. 61(4), 257–260 (2011)

3. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.F.: The multi-agent
programming contest 2011: A résumé. In: Dennis, L.A., Boissier, O., Bordini, R.H.
(eds.) ProMAS 2011. LNCS, vol. 7217, pp. 155–172. Springer, Heidelberg (2012)

4. Hessler, A., Küster, T., Niemann, O., Sljivar, A., Matallaoui, A.: Cows and Fences:
JIAC V - AC’09 Team Description. In: Dix, J., Fisher, M., Novák, P. (eds.) Proceed-
ings of the 10th International Workshop on Computational Logic in Multi-Agent
Systems 2009. IfI Technical Report Series, vol. IfI-09-08. Clausthal University of
Technology (2009)

5. Hirsch, B., Konnerth, T., Heßler, A.: Merging agents and services — the JIAC
agent platform. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Tools and Applications, pp. 159–185.
Springer (2009)

6. Kaiser, S., Burkhardt, M., Tonn, J.: Drag-and-drop migration: An example of map-
ping user actions to agent infrastructures. In: van der Hoek, W., Kaminka, G.A.,
Lespérance, Y., Luck, M., Sen, S. (eds.) The First International Workshop on In-
frastructure and Tools for Multiagent Systems (May 2010)

7. Thiele, A., Kaiser, S., Konnerth, T., Hirsch, B.: MAMS service framework. In:
Kowalczyk, R., Vo, Q.B., Maamar, Z., Huhns, M. (eds.) SOCASE 2009. LNCS,
vol. 5907, pp. 126–142. Springer, Heidelberg (2009)

LTI-USP Team: A JaCaMo Based MAS

for the MAPC 2012

Mariana Ramos Franco, Luciano Menasce Rosset, and Jaime Simão Sichman

Laboratório de Técnicas Inteligentes (LTI)
Escola Politécnica (EP)

Universidade de São Paulo (USP)
{mafranko,luciano.rosset}@usp.br, jaime.sichman@poli.usp.br

Abstract. This paper describes the architecture and core ideas of the
multi-agent system created by the LTI-USP team which participated
in the 2012 edition of the Multi-Agent Programming Contest (MAPC
2012). This is the second year of the Agents on Mars scenario, in which
the competitors must design a team of agents to find and occupy the best
zones of a weighted graph. The team was developed using the JaCaMo[1]
multi-agent framework and the main strategy was to divide the agents
into three subgroups: two in charge of occupying the best zones in the
map, and the other one in charge of sabotaging the opponents.

Keywords: multi-agent system, multi-agent programming, JaCaMo,
Jason, Cartago, Moise.

1 Introduction

The Multi-Agent Programming Contest (MAPC) is held every year in an at-
tempt to stimulate research in the field of programming Multi-Agent System
(MAS) [2]. This is the second year of the Agent on Mars scenario, in which the
competitors must design a team of 20 agents to explore and occupy the best
zones of Mars, represented by a graph with valued vertices and weighted edges.

The LTI-USP, located at the University of São Paulo is one of the most
relevant research groups in multi-agent systems in Brazil. The group participated
in the 2010 edition of the MAPC [3] and the previous Cows and Cowboys scenario
was used in the last two years of the Multi-Agent course held at the Department
of Computer Engineering and Digital Systems of the University of São Paulo.

For this year’s contest the LTI-USP team was formed by Mariana Ramos
Franco (M.Sc. Student) and Luciano Menasce Rosset (Undergraduate Student),
supervised by Prof. Jaime Simão Sichman (Professor). The M.Sc. student fully
developed the multi-agent system, while the undergraduate student helped with
the tests and gave some suggestions during the discussions about the adopted
strategy.

The main motivation to participate in the contest was to test and to analyze
the JaCaMo1 framework, in order to identify the weak and strong aspects of the
platform, and its performance limitations.

1 Available at http://jacamo.sourceforge.net/

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 224–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://jacamo.sourceforge.net/

LTI-USP Team: A JaCaMo Based MAS for the MAPC 2012 225

JaCaMo [1] is a platform for multi-agent programming which supports all
levels of abstractions – agent, environment, and organisation – that are required
for developing sophisticated multi-agent systems, by combining three separate
technologies: Jason2 [4], for programming autonomous agents; CArtAgO3 [5],
for programming environment artifacts; and Moise4 [6], for programming multi-
agent organisations.

2 System Analysis and Design

For the development of this project, as the main developer of the team had not
a lot of previous experience with any multi-agent methodologies, we preferred to
follow an iterative approach, which consisted in a cyclic process of prototyping,
testing, analyzing, and refining. In the testing phase, we run our team against
a previous version, and against the test teams provided in the contest software
package. Next, after fixing the observed implementation issues and performance
problems, we analyzed how effective the current strategy was and collected new
ideas to improve it.

The adopted solution is based on the centralization of coordination, that is,
one agent is responsible for determining which the best zone in the map is, and
then conduct the other agents to occupy this zone. The choice of centralized
coordination was made to allow the rapid development of the team, since our
principal motivation was to focus on the JaCaMo platform performance issues
and not on the coordination aspects.

In our team, each agent has its own view of the world, and they communicate
with each other for the following purposes: (i) informing the others agents about
the structure of the map; (ii) informing about the agent’s or the opponent’s
position, role and status; (iii) asking for a repair; (iv) asking an agent to go to
a determined vertex.

The agents’ communication occurs via the speech acts provided by Jason and,
to reduce the communication overhead, agents broadcast to all others only the
new percepts, i.e., only percepts received from the contest server which produces
an update on the agent’s world model are broadcasted. For this reason, there
is a strong exchange of information between the agents in the beginning of the
match due to the broadcast of new percepts, specially those related to the map,
such as vertices and edges. However, the communication overhead decreases as
the agents’ world model starts to be more complete.

The agent architecture is based on the BDI model. Each agent has its own
beliefs, desires, intentions and control thread. The agents are autonomous to
decide by themselves the next action to be performed, but in cooperation with
each other, particularly with the coordinator agent. The agents are proactive in
the sense that they pursue their selected intentions over time.

2 Available at http://jason.sourceforge.net/
3 Available at http://cartago.sourceforge.net/
4 Available at http://moise.sourceforge.net/

http://jason.sourceforge.net/
http://cartago.sourceforge.net/
http://moise.sourceforge.net/

226 M.R. Franco, L.M. Rosset, and J.S. Sichman

At each step, the agent decides which new plan will be executed to achieve
a determined goal given only the state of the environment and the results of
previous steps. There are no plans that last for more than one step and the
plan’s priority is determined by the order in which the plans were declared, i.e.,
the executed plan will be the first one to have its conditions satisfied. Some high
priority plans can be considered reactive, such as the one which tells the agent
to perform a recharge when running low on energy.

Approximately 300 man-hours were invested in the team development and,
before the tournament, we participated in some test matches set by the orga-
nizers to ensure the stability of our team. Only during the competition did we
discuss the design and strategies with the other participants.

3 Software Architecture

The prime requirement for this project was to create a MAS based on the Ja-
CaMo multi-agent framework, making use of the Moise organisational artifacts.
The architecture of the LTI-USP team is shown in Figure 1.

The agents are developed using the Jason MAS platform, which is a Java-
based interpreter for an extended version of the AgentSpeak programming lan-
guage for BDI agents [7]. Each agent is composed of plans, a belief base and its
own world model. The plans are specified in AgentSpeak and the agent decides
which plan will be executed according to its beliefs and the local view of the
world.

The world model consists of a graph developed in Java, using simple data
structures and classes. It captures every detail received from the MASSim con-
test server, such as: explored vertices and edges, opponents’ position, disabled
teammates, etc. At each step, the agent’s world model is updated with the per-
cepts received from the MASSim server, and with the information received from
the other agents. The agent can access or change the state of its world model
through the developed Jason Internal Actions. Some examples of internal ac-
tions are: jia.closer repairer(Pos), which returns to the agent the position
of the closest repairer; and jia.move to target(Pos,Target,NextPos), which
tells the agent what the next movement to be performed is to achieve a desired
position in the graph.

Some of the percepts received from the MASSim server are also stored in the
agent’s belief base, such as the agent’s role, energy, position and team’s money;
allowing the agent to have a direct access to these information without a call for
a Jason Internal Action. Percepts about vertices, edges and other agents were
not stored in the belief base so as not to compromise the agent’s performance,
as it could be very expensive to update and to access the belief base with so
much information. Moreover, since we wanted to update a belief when a new
instance was inserted (instead of adding a second one), we decided to use the
IndexedBB class provided in the Jason package, a customized version of the
DefaultBeliefBase in which some beliefs are unique and indexed for faster
access.

LTI-USP Team: A JaCaMo Based MAS for the MAPC 2012 227

Fig. 1. LTI-USP Team Architecture

Agents communicate with the MASSim server through the EISMASSim
environment-interface included in the contest software-package. EISMASSim is
based on EIS5 [8], which is a proposed standard for agent-environment inter-
action. It automatically establishes and maintains authenticated connections to
the server and abstracts the communication between the MASSim server and the
agents to simple Java-method-calls and call-backs. In order to use this interface,
we extended the JaCaMo default agent architecture to perceive and to act not
only on the CArtAgO artifacts, but also on the EIS environment as well.

CArtAgO is a framework for environment programming based on the A&A
meta-model [9]. In CArtAgO, the environment can be designed as a dynamic
set of computational entities called artifacts, collected into workspaces, possibly
distributed among various nodes of a network [1]. Each artifact represents a

5 Available at http://sourceforge.net/projects/apleis/

http://sourceforge.net/projects/apleis/

228 M.R. Franco, L.M. Rosset, and J.S. Sichman

resource or a tool that agents can instantiate, share, use, and perceive at runtime.
For this project, we did not create any new artifact; we only made use of the
organisational artifacts provided in Moise.

Moise[6,10] is an organisational model for MAS based on three complementary
dimensions: structural, functional and normative. The model enables a MAS
designer to explicitly specify its organisational constraints, and it can be also
used by the agents to reason about their organisation.

The Moise structural specification defines the roles played by the agents and
the groups they take part in. As shown in Figure 2, we defined seven roles
and four groups of agents for our team. Despite the five roles specified in the
contest scenario (explorer, inspector, repairer, saboteur and sentinel), we created
two other roles: coordinator and martian. The coordinator leads the other
agents to occupy the best zones of Mars, and he does not communicate with
the MASSim server. Martian is the default role adopted by the other agents in
the beginning of the application, while they do not receive from the server the
information about which role to play.

Fig. 2. Moise structural specification of the LTI-USP team

The agents are divided into three subgroups: zone1, zone2 and sabotage.
The two first subgroups are responsible for finding and occupying the best zones
in the map, while the sabotage subgroup must attack the opponent’s best zone.
Each subgroup has a global goal associated to it.

LTI-USP Team: A JaCaMo Based MAS for the MAPC 2012 229

The Moise functional specification is composed of a set of schemes. Each
scheme decomposes global goals into simpler goals and distributes them by as-
signing missions to the agents. It also specifies how these mission are related to
each other, i.e., if they should be achieved concurrently or in a certain sequence.
We have four schemes for our team, in which the global goals associated to them
are: coordinate, occupyZone1, occupyZone2 and sabotage. In Figure 3, these
global goals are represented as the root of the trees that represent the schemes,
and the leafs are goals which can be achieved by the agents. The label which
appears just above a goal represents the mission that the agent must be com-
mitted to in order to achieve the related goal. The missions are described in the
next section.

Fig. 3. Moise functional specification of the LTI-USP team

The Moise normative specification links the structural and functional speci-
fications by defining which role has the obligation or permission to commit to
each mission. The normative specification for the LTI-USP team is shown in
Table 1.

When the team starts, the coordinator agent creates the organisational ar-
tifacts and adopts the coordinator role, while the other 20 agents connect to
the MASSim server and wait for the beginning of the simulation to known what
role to play. Despite the fact that the agent’s role is defined by their identifica-
tion/credentials, we assumed in our team that the agent will only be aware of
its role during the competition.

Once defined its role, the agent communicates with the coordinator, who
tells him which group to join and the missions to commit. We decided to make
the coordinator responsible for distributing the groups and missions among
the other agents, because by doing so we thus eliminate the performance issues
caused by two or more agents trying to adopt the same role in a group, or trying
to commit to the same mission. For example, in the beginning of the simulation,

230 M.R. Franco, L.M. Rosset, and J.S. Sichman

Table 1. Moise normative specification of the LTI-USP team

Role Mission Deontic Relation

explorer mExplore, mOccupyZone1 permission

explorer mOccupyZone2 obligation

repairer mRepairZone1, mRepairZone2 obligation

saboteur mSabotage, mOccupyZone1, mOccupyZone2 obligation

sentinel mSentinelSabotage, mOccupyZone1, mOccupyZone2 obligation

inspector mInspect, mOccupyZone1 permission

inspector mOccupyZone2 obligation

coordinator mCoordinate obligation

as all agents perceive their roles at almost the same time, it is possible that all
four saboteurs try to join the sabotage group but, as shown in Figure 2, only
one saboteur is allowed in this group. In this case, three saboteurs will fail to join
the sabotage group and will have to try to join another one. In the tests before
the competition, we noticed that the organisational actions - such as adoptRole
and commitMission - are very costly, and the number of retries performed by
all the agents could be very high, causing some agents to loose some steps in
the beginning of the simulation. Even eliminating this “concurrency” problem,
we could observe during the competition that some agents still lost some steps
until finally succeeding to commit to a mission on the organisation.

Our team consists of, approximately, 2000 lines of code in Java and 1200 lines in
AgentSpeak, and the developmentwas all carried on using the Eclipse IDEwith the
Jason plugin. Themain developer was already familiar with both the development
and the runtime platforms, i.e. ,the Eclipse IDE and the JaCaMo framework.

The agents were not distributed across several machines due to time con-
straints, but is our intention to work in the future on a distributed team, since
this is supported by JaCaMo.

4 Strategies, Details and Statistics

The team strategy is a combination of the organisational strategy, the role de-
pendent strategies and the coordination strategy.

4.1 Organisational Strategy

As previously explained, one of the team’s main strategy was to divide the agents
into three subgroups: two of them in charge of occupying the best zones in the
map, and the other one in charge of sabotaging the opponents. Below we describe
the different missions related to each group.

– occupyZone1: Agents in this group have to occupy the best zone in the graph
following the directions provided by the coordinator agent. In addition, one
of the explorers works to probe the vertices of the graph to find the best

LTI-USP Team: A JaCaMo Based MAS for the MAPC 2012 231

zones to be occupied. In the exploration, he fixes the priority to the vertices
belonging to the team’s zone. Furthermore, one inspector has the mission of
identifying the role of each agent in the opponent team. After the team has
knowledge of all the opponents’ role, the inspector joins the rest of the team
for the mission of occupying the best zone in the graph.

– occupyZone2: All the agents on this group have the exclusive mission of
occupying the second best zone in the graph, or to help the zone1 group to
form a larger area. Whether this group must join the other group or not is
determined by the coordinator.

– sabotage: This group is formed by one saboteur and one sentinel. The sabo-
teur’s mission is to attack the opponent who occupies a good vertex; and
the sentinel helps with the sabotage by moving inside the opponent’s zone.

4.2 Role-Dependent Strategies

The explorers probe every vertex and survey all edges on its path, while in-
spectors can perform an inspect action whenever an opponent is in a neighbor
vertex.

The priorities to run away, parry or attack, when an opponent is on the same
vertex, are set to each agent’s role. The saboteurs should always attack any
opponent agent in the same vertex. It should first target the saboteurs, then
repairers, and finally, the other opponents. The sentinels should always parry
in the presence of an opponents saboteur. The repairers will decide between
running away and parrying, in the presence of an opponent saboteur, depending,
respectively, on if there is another teammate in the same vertex or not. Inspectors
and explorers should always try to run away if an opponent saboteur is in the
same vertex.

Repairing a disabled or damaged agent may break the structure of the area
occupied. Having that in mind the repairers should stay put on their own vertices
and wait for damaged and disabled agents to come for repairs. The disabled or
damaged agent locates the closest repairer and heads to it, but if this repairer
already has three or more agents to be repaired, the damaged agent will proceed
to the second closest, and so on.

At each step, the team’s score is computed by summing up the values of
the zones and the current money. Thus the money obtained by the team has
a big impact on its score. For this reason, we decided to limit the buy action,
allowing the agents to purchase extension packs (such as battery, shield or
sabotageDevice) only when a defined amount of money is reached. Furthermore,
there is a specific buying strategy for each role. For example, the saboteurs can
buy sabotageDevices, while the other agents cannot buy it.

4.3 Coordination Strategy

The coordinator builds its local view of the world through the percepts broad-
casted by the other agents. Whenever the world model is updated, it computes
which the two best zones in the graph are. The best zone is obtained by calcu-
lating for each vertex the sum of its value with the value of all its direct and

232 M.R. Franco, L.M. Rosset, and J.S. Sichman

second degree neighbors. The vertex with the greatest sum of values is the center
of the best zone. Zones with the sum of values below 10 are not considered in
the calculation. The same computation is performed again to determine if there
is a second best zone, but this time removing the vertices belonging to the first
best zone from the analysis.

If two best zones are found, the coordinator agent will designate one first best
zone for zone1 group, and the second best zone for the zone2 group. Otherwise,
the same zone will be assigned for the two groups.

Given that the coordinator has assigned a zone for a group, all agents of
the group are asked to occupy an empty vertex of the target zone. When all
the agents are in the best zone, the coordinator starts to look to the neighbor
vertices of the team’s zone in which an agent can move, trying to increase the
size of this zone.

5 Conclusion

Participating in the MAPC was a great opportunity to improve our knowledge
of several multi-agent technologies by implementing a robust MAS through the
JaCaMo framework. During the development, we had to deal with at least three
different MAS technologies: Jason, CArtAgO, and Moise.

The team was built focusing to test the integration of these different MAS
technologies, and not so much on the development of a better and decentralized
strategy. Despite that, we believe that the team performed fairly well, finishing
the competition in the fourth place.

Our greatest obstacle in the development of the team was to deal with the per-
formance issues related to the use of the organisational artifacts. In a time limited
context, as faced in this competition, the performance of a platform plays an im-
portant role, and we believe that these performance requirements may be a prob-
lem to the adoption of the JaCaMo in more real scenarios. Consequently, as future
work we intend to perform a complete evaluation of the JaCaMo performance.

Besides these performance issues, the JaCaMo framework proved to be a very
complete platform for the development of sophisticated multi-agent systems, by
providing all the necessary features that we needed to developed our team.

Regarding possible extensions to the scenario, one idea is to change the score
computation to consider only the sum of the zones values. In this way, the buying
strategy will not impact directly the team score and it will be fairer to compare
different strategies.

References

1. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming (2011)

2. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.F.: The Multi-agent
Programming Contest 2011: A Résumé. In: Dennis, L.A., Boissier, O., Bordini,
R.H. (eds.) ProMAS 2011. LNCS, vol. 7217, pp. 155–172. Springer, Heidelberg
(2012)

LTI-USP Team: A JaCaMo Based MAS for the MAPC 2012 233

3. Gouveia, G., Pereira, R., Sichman, J.: The USP Farmers herding team. Annals
of Mathematics and Artificial Intelligence 61, 369–383 (2011), doi:10.1007/s10472-
011-9238-x

4. Bordini, R., Hübner, J., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason (2007)

5. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2),
158–192 (2010)

6. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems 20(3), 369–400 (2009)

7. Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

8. Behrens, T.M., Dix, J., Hindriks, K.V.: The Environment Interface Standard for
Agent-Oriented Programming - Platform Integration Guide and Interface Imple-
mentation Guide. Department of Informatics, Clausthal University of Technology,
Technical Report IfI-09-10 (2009)

9. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

10. Hübner, J., Sichman, J., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels.
International Journal of Agent-Oriented Software Engineering, 1–27 (2007)

Conquering Large Zones by Exploiting Task

Allocation and Graph-Theoretical Algorithms

Chengqian Li

Dept. of Computer Science,
Sun Yat-sen University

Guangzhou 510006, China
lichengq@mail2.sysu.edu.cn

Abstract. The Multi-Agent Programming Contest is to stimulate re-
search in the area of multi-agent systems. In 2012, for the first time, a
team from Sun Yat-sen University, Guangzhou, China, participated in
the contest. The team is called AiWYX, and consists of a single mem-
ber, who has just finished his undergraduate study. The system mainly
exploits three strategies: strengthening action preconditions, task alloca-
tion optimization, and surrounding larger zones with shorter boundaries.
With these strategies, our team is able to conquer large zones as early as
possible, optimize collaboration, and ensure efficiency. The system was
implemented in C++, and in this paper, we will introduce the design and
architecture of AiWYX, and discuss the algorithms and implementations
for these strategies.

Keywords: multi-agent system, distributing algorithm, task allocation
optimization.

1 Introduction

The Multi-Agent Programming Contest (MAPC) [1,2] is held annually, in order
for researchers to deepen the understanding about the cooperations and compe-
titions among rational agents and also develop some powerful strategies in such
environments. This year, for the first time, a team from Sun Yat-sen Univer-
sity, Guangzhou, China, participated in the contest. The team, called AiWYX,
reached the fifth place in the contest. It consists of only one member: the author
of this paper. I have just obtained my Bachelor degree and am now a PhD can-
didate. I am a member of the knowledge representation and reasoning group led
by Professor Yongmei Liu. My motivation in participating in this contest was to
gain experiences in designing multi-agent systems in order to facilitate my future
research in this area. These years I am actively involved in the ACM Interna-
tional Collegiate Programming Contest (ICPC, see http://icpc.baylor.edu).
Before this competition I had completed an undergraduate honors thesis on
Squirrel World, which was proposed by Hector Levesque as an adaptation of the
Monty Karel robot world written by Joseph Bergin and colleagues in Python
(see http://csis.pace.edu/~bergin/MontyKarel). In Squirrel World, squir-
rels need to move around on a two-dimensional grid and gather acorns. Squirrels

M. Dastani, J.F. Hübner, and B. Logan (Eds.): ProMAS 2012, LNAI 7837, pp. 234–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Conquering Large Zones by Exploiting Task Allocation 235

have both effectors (to do things in the world) and sensors (to gather informa-
tion). Everything is known to the squirrels at the outset except for the locations
of the acorns and some wall obstacles. The first squirrel or the first team of
squirrels who gathers a certain number of acorns wins the game. I have adopted
some of the strategies I developed for Squirrel World in the MAPC competition.

2 System Analysis and Design

I took part in the contest using the language C++, without using any multi-agent
programming languages. There are two reasons for this. Firstly, my background
is ACM/ICPC, so I am proficient in this language which is well-known for its
efficiency and I did not program in Java which is not so efficient. Secondly, I did
not have enough time to adapt myself to multi-agent programming languages.

We have exploited decentralization in implementing various strategies, how-
ever, the current implementation is restricted because we only deal with com-
mon knowledge [6]. When any agent’s knowledge state is updated, other agents’
knowledge state will be updated in precisely the same way, because of the as-
sumption of common knowledge. Furthermore, we assume that communications
between agents are perfect in this implementation. As to how to implement such
strategies on a computer, we apply for a piece of main memory from the oper-
ating system, which stores the common knowledge. Hence, each agent has the
same authority to access this memory space in order to communicate with other
agents.

While such a team of agents is running in the competition, all agents have the
goal that their team should reach a score higher than that of their rival. In any
state of the world, any agent knows exactly what she should do next to achieve
this goal and will start a new task immediately after completing one. In fact an
agent can attain her goal by herself or through collaboration with others. Given
a task, when there is only one agent intending to accomplish it, she will act by
herself. However, if there are more, all such agents will collaborate to accomplish
their task, that is, the task will be allocated to the agents in an optimal way.
Moreover, the agents here are aggressive, that is, they keep exploring new areas
of the world, never passively waiting for changes of the environment. Finally, in
any state of the world, any agent is able to perform some action to achieve the
goal, never lost in a dead-end.

To design and implement my system, I had spent about 250 hours. During
this period, I did not discuss the design and strategies of my agent team with
others, and I did not test my agents playing with other teams. I once tested my
program by myself on a single computer, that is, I started a competition between
two multi-agent teams, both of which were equipped with my own program. Both
of them randomly selected a strategy at the beginning, thus they usually exploit
different strategies, which helps me evaluate my team.

236 C. Li

3 Software Architecture

I used C++ as the programming language, because it is so efficient and various
mature data structures and algorithms are easy to code in C++. Each of the
agents runs a separate programwhich is designed at four different levels, from the
decision level to the physical level, as is described in Fig.1. Level 1 is the decision
level, which generates an action, or applies for joining a group, according to the
current state. Such a group are to accomplish a task which cannot be handled
by a single agent. For example, conquering a zone is a task, which cannot be ac-
complished by a single agent and need a group of them. If an action is generated,
the agent will herself perform it, otherwise she will join a group for coordinating
the task. If more than one agent applies for the same task, the first who applies
will become a manager responsible for coordinating this group of agents in an
optimal way. This manager agent produces the coordination in its program ar-
chitecture at Level 2 (scheduling level), so Level 2 is responsible for scheduling
and allocating tasks to each of them. Level 3 is responsible for manipulating and
visiting the knowledge base (KB). When a percept is received by an agent, Level
3 will automatically update the knowledge base. On the other hand when being
asked about the current state, it will retrieve specific information from the KB,
so we call it reasoning level. Level 4 (physical level) contains various physical
implementations, including KB, network communication (TCP/IP), and special
algorithms such as string processing, Dijkstra algorithm [4], breadth-first search
algorithm [3], minimum cost flow algorithm [8] and Hungarian algorithm [5,7].

Decision Level Scheduling Level

Physical Level

Reasoning Level

Join a Group

Group Allocated Tasks

Ask about
the State

the Current State the Current State
Ask about
the State

Update and
Retrieve Knowledge

Knowledge Base, Special Algorithms,
TCP/IP Protocol…

Fig. 1. Agent Model Diagram

Conquering Large Zones by Exploiting Task Allocation 237

To develop my system, I used Gedit Text Editor in Linux system, together
with the g++ compiler. With the flexible C++ programming language, I was
able to implement all the features of my system quite efficiently, so no features
are lost in my implementation. Although I did not distribute the agents on dif-
ferent machines when I participated in the contest, I am actually able to do
so with minor adjustments, that is, to modify the number of user names and
passwords in the initialization file. When agents are on the same machine, they
communicate with each other by sharing main memory, otherwise they do so
via the TCP/IP protocol. In the receive-percept period, if an agent receives a
new percept, she will immediately perform reasoning to figure out her current
state and update her knowledge base. In the meantime any other agent will nei-
ther think nor perform actions, until this update is completed. In the send-action
period, each agent reasons on her knowledge base to figure out her state, then re-
acts according to our previously computed classification, before the action is sent
to the server. Furthermore a multi-thread TCP/IP sender will send the action to
the server. Note that our program is so efficient that any agent is always able to
send her action to the server before the next percept arrives. The most difficult
part of the whole development process was the optimization of team strategies.
That is, how to classify all the possible states and how to compute the optimal
action wrt each specific class. Roughly I solved these problems after a series of
observations, experiments, and comparisons. In classification, I considered roles,
injury, emergency, etc, and in the end, there were nearly 100 specific classes. For
example, suppose there is an agent who knows that her role is a repairer and
that she is neither injured nor in emergency, e.g., her energy value is too low.
And if there is an injured teammate in her location, she will retrieve all these
pieces of information from her knowledge base and consider all these factors to
compute which specific state she is in. And she will finally generate a reaction
to repair the injured. To design agents who react responsively and effectively, I
classified all possible states, and for each class, compute the optimal response
beforehand. In total, I wrote 10,000 lines of C++ code for my system.

4 Strategies, Details and Statistics

The main strategy of my agent system is that the whole team survey the edges
and probe the nodes of the whole map to search for available areas, and then
they try to occupy areas with higher values. If any minor event occurs, such as
encountering enemies or getting injured, the agent will abort her task. No matter
whether they are exploring a map or trying to occupy some area, the agents will
cooperate in an optimal manner, avoiding redundant work, so that they are able
to accomplish the task with the lowest cost.

4.1 Task Allocation

Given a set of tasks w[1, . . . , n] and the same number of agents a[1, . . . , n], an
arrangement can be denoted as a matrix Arn×n, where Ari,j = 1 if task wi is

238 C. Li

allocated to agent aj , otherwise, Ari,j = 0. Here our strategy is that each of
the agents is allocated exactly one task, so in each of the rows and columns
of Ar, there is exactly one ‘1’. We use matrix Cn×n to denote the costs (the
number of steps or energy value an agent needs to accomplish a task), where
Ci,j denotes the cost needed for agent ai to complete task wj . Considering
all possible arrangements, we hope to find a minimal value v such that each
agent accomplishes her allocated task with costs no more than v. Let S be the
set of possible arrangements such that the maximum cost is minimal, and let
T be the elements in S such that the total cost is minimal. Algorithm 1, as
shown in the following, returns one element in T . It involves two procedures,
Maximum matching(Agents,Tasks,Edges) based on Hungarian algorithm [5,7],
and Min cost flow(source, sink, Agents, Tasks, Edges, Cost) which is
just the one in [8]. Table 1 shows the test results of Algorithm 1. Each row
shows a specific type of 10 experiments, where the first three columns show the
number of agents, tasks and edges respectively. The fourth here shows the aver-
age number of edges whose value is not greater than v . The last column shows
the average running time.

We allocate each agent a unique task so that repetitive work is avoided so that
we are able to minimize the total cost. As mentioned earlier, when any agent
receives a new percept, any other agent will not perform any actions until this
percept is passed to all of them. This ensures that all agents share a synchronized
knowledge base based on the presumption of common knowledge. Each time an
agent arrives at an unexplored location, she surveys this location, obtaining all
adjacent nodes and the costs of respective edges. In this way, all locations ex-
plored form a connected component and the agents know all information about
this subgraph, including the shortest path between any two nodes in this com-
ponent. Their strategy now is to move to those nodes on the boundary, survey
them and then continue this process again and again. This will accelerate the
process of searching for more valuable areas. To avoid the case that two agents
move to the same location to survey, and to minimize the total cost, we use
Algorithm 1 to inform each agent where they should go. To communicate with
the server, we use a multi-threaded TCP/IP protocol.

I have designed a particular strategy for each of the five roles in the game.
When an agent realizes that she is acting in a certain role, say, repairer, she will
follow the respective strategy. Only explorers will accept the mission of exploring
the map and probing the value of the newly encountered node. After finishing
exploring, they will join a group to conquer a large zone. Here sentinels will join
a group to survey all the edges and after that, will join another group to conquer
a large zone just as what the explorers do. If some enemies are found and the
team does not know their roles and specific states, inspectors will join a group
to inspect those enemies, to collect such information. Otherwise, they will join
a group to survey all the edges and then join another group to conquer a large
zone just as what sentinels do. If some injured teammates are found, repairers
will run to them and repair them, otherwise, they will join a group to survey
the edges and then another group to conquer a large zone in the same way.

Conquering Large Zones by Exploiting Task Allocation 239

input : Agents, Tasks, Cost

output: arrangements

// binary search

low ← minx∈Agents,y∈Tasks Cost(x,y) − 1
high ← maxx∈agents,y∈Tasks Cost(x,y)

while low+1 ≤ high do

mid ← �low+high
2

�
Edges ← {(x,y)|x ∈ Agents, y ∈ Tasks, Cost(x,y) ≤ mid}
if Maximum matching(Agents,Tasks,Edges) == |Tasks| then
// Hungarian algorithm

high ← mid

else
low ← mid

end

end
Edge ← {(x,y)|x ∈ Agents, y ∈ Tasks, Cost(x,y) ≤ high}
Edges ← Edges ∪ {(source,x)|x ∈ Agents} ∪ {(x,sink)|x ∈ Tasks}
Cost(source,x) ← 0// for all x ∈ Agents

Cost(x,sink) ← 0// for all x ∈ Tasks

Min cost flow(source, sink, Agents, Tasks, Edges, Cost)

for (x,y) ∈ Edges do
if flow(x,y)==1 then

// flow is defined in Min cost flow

arrangements(x) ← y

end

end
return arrangements

Algorithm 1. Min max cost tast allocation(agents,works,cost)

Table 1. Experimental results for Algorithm 1 (value of edge < 10000)

Agents Tasks Edges Remaining edges Time

20 300 3000 62 0.0039s
20 1000 10000 65 0.0088s
100 1000 50000 485 0.0571s
200 1000 100000 1243 0.1634s
500 1000 250000 3641 0.8317s
1000 1000 500000 8153 4.5360s

If some enemies are discovered, saboteurs will go to front line and fight with
those enemies, otherwise, they just do what sentinels do in the same occasion.

4.2 Expanding Zones

Expanding a boundary node B, means adding all adjacent nodes of B, which
are not occupied by the enemies, into the current zone. The agents first choose

240 C. Li

input : Nodes, Edges, value, Enemy Nodes

output: Best Zone

for x ∈ Nodes do
Neighborx ← {y|(x,y) ∈ Edges}

end
Can Not Expand ← {x|x ∈ Enemy Nodes or Enemy Nodes ∩ Neighborx 	= ∅}
// cannot be Expanded if an enemy is at or right beside

for i = 0 to p2 − 1 do
// p2 is a prime number, assumed 1000007

Hash Zonesi ← ∅
end
for start node ∈ Nodes do

Bound ← {start node}
Zone ← Bound

while ∃x.x ∈ Bound ∧ (Neighborx − Zone− Enemy Nodes 	= ∅) do
// there exists a non-enemy point right outside the boundary

if Bound ⊆ Can Not Expand then // no point can be Expanded
S ← {x|minx∈Bound |Eat Nodesx|}
// the set of points needing the least agents if eating

T ← {x|maxx∈S
∑

y∈Neighborx−Zone−Enemy Nodes valuey}
// set of nodes in S maximizing total cost

Zone ← Zone ∪ {x|x ∈ Neighbory − Zone− Enemy Nodes ∧miny∈T y}
// Select any point in T, expand it

else
S ← {x|minx∈Bound−Can Not Expand |Expand Nodesx|}
T ← {x|maxx∈S

∑
y∈Neighborx−Zone valuey}

Zone ← Zone ∪ {x|x ∈ Neighbory − Zone ∧miny∈T y}
// Select any point in T, expand it

end
Bound ← {x ∈ Zone|Neighborx 	⊆ Zone}
if

∑
x∈Best Zone valuex <

∑
x∈Zone valuex then

Best Zone ← Zone

end
hash ← (

∑
xi∈Zone,0≤i<|Zone| xi × p

1i
) mod p2

// p1 and p2 are prime numbers, p1 is 1007 and p2 is 1000007

if Zone ∈ Hash Zoneshash then
break

end
Hash Zoneshash ← Hash Zoneshash ∪ Zone

end

end
return Best Zone

Algorithm 2. Expand(Nodes, Edges, value, Enemy Nodes)

Conquering Large Zones by Exploiting Task Allocation 241

Table 2. Experimental results for Algorithm 2

Nodes Edges Enemies Time Time (distributed)

100 300 20 0.0207s 0.002s
200 600 20 0.2910s 0.006s
300 900 20 1.2581s 0.013s
400 1200 20 3.5527s 0.023s
500 1500 20 7.4012s 0.034s
1000 3000 20 > 30s 0.128s

each node which is not occupied by enemies as a point zone and then repeat the
following: find the boundary node P such that after expanding P the boundary
increases the least (possibly by a negative number), and then, expand it. During
the expanding process, we maintain the best zone found in the past, with the
highest value. We say a zone B1 is superior to another one B2 if B1 is more
valuable than B2. In details, we have the following Algorithm 2. The complexity
of this algorithm is O(N2M), where N is the number of nodes and M is the
number of edges in the graph. This is because the zone will only be expanded
at most N times and at each expanding, at most M edges will be traversed.
Table 2 shows the test results of Algorithm 2, where the first two columns show
the number of nodes and edges respectively, and the third column shows the
number of enemies, that is, the number of nodes occupied by enemies. The
last two columns show the average running time for centralized and distributed
algorithms respectively. Notice that in each type of experiments, the sum of
the running time over all the machines for the distributed algorithm, is several
times greater than the running time of the centralized algorithm, because in
the centralized algorithm, we apply the hashing technique to examine whether
a zone had already been computed before.

Note that Algorithm 2 can be made distributed, in that the expanding proce-
dure can simultaneously begin at any number of nodes on the map. In particular,
if we have as many machines as the nodes, we allocate each machine a unique
node and instruct it to run a separate expanding procedure with that node.

4.3 Strategy Details

Formally below is the evaluation function for estimating the value of a zone:

valueZone =
∑

i∈Zone
valuei. (1)

Our agents will calculate the most promising zone with Algorithm 2 and then
move to the boundary of that zone and conquer it. Among them, the sabo-
teurs always attack the nearest agent of the rival, so that this group of agents
always attack the nearest area occupied by the enemies. If they are attacked

242 C. Li

by the enemies, they will recompute a new area not occupied by the enemies,
and then move there. All agents are equipped with exactly the same program,
however, at each step during the contest, the strategy can be changed with a
relatively small probability. Intuitively given an area, the safest strategy is to
fully cover its boundary, that is, each boundary node is occupied by an agent.
However, we sometimes take some risk, hoping to occupy more with the same
number of agents. One possible risky strategy is that there is at least an agent
at any two adjacent boundary nodes. At the start of the contest, we exploit such
risky strategy to conquer an area. If this area is often disturbed by enemies,
we will recompute a new area with the aforementioned safe strategy and then
move there. To summarize, two factors can trigger strategy changes: (1) whether
a conquered area is often disturbed; (2) a relatively small probability. During
the procedure of path finding, we exploit Dijkstra Algorithm and Breadth-First
Search Algorithm, and we also use Algorithm 1 to prevent any two agents from
exploring the same location. During the contest, there is a certain strategy that
only saboteurs will buy sabotage device and shield, and the strength value will
always be equal to the health value or one unit more. However, according to
empirical results, it is best not to buy any facilities. Considering that this does
not cause big problems, at the start we randomly make a choice between these
strategies. In the contest, we value achievements, from which we are able to
obtain some scores at each step, so we try to acquire achievements swiftly, never
spending them.

As mentioned earlier, all agents in our team are rational and good team play-
ers, that is, each will always try to complete the mission of the group. Moreover,
recall that all communications are perfect and all agents will not perform any
actions when a certain percept is being passed in the group. In our team all the
agents are armed with exactly the same program so that they have equal status.
When a list of agents are applying for the same mission, one of them will become
a temporary project manager, which is responsible for allocating the mission in
an optimal way. Later this project manager will become an ordinary agent and
each agent will accomplish her allocated mission separately. Hence we organize
our agents explicitly and no hierarchy is exploited. When an agent encounters
something emergent, she immediately interrupts her allocated mission and tell
all others in the group. The group will possibly relax the team mission so that
they are able to accomplish it without this agent. Agents are able to perform
planning in path finding and they need complete knowledge about the (local)
initial state. Here we do not call a planner, but exploit Dijkstra Algorithm to
obtain a shortest path from the source to the destination. To synchronize with
the server, the agents use multi-thread TCP/IP listeners to listen to the message
from the server, and decide what actions to perform accordingly. Furthermore,
a multi-thread TCP/IP sender will send the action to the server. Note that our
program is so efficient that any agent is always able to send her action to the
server before the next percept arrives.

Conquering Large Zones by Exploiting Task Allocation 243

5 Conclusion

The participation of this contest has greatly improved my knowledge of multi-
agent systems and stimulated my interest in conducting research in this area. I
have learnt some important strategies to improve the performance of my agent
team. Firstly, agents should be trained beforehand to strengthen the precon-
ditions of their actions in order to reduce the search space. For example, the
agents would realize that any node should not be surveyed repeatedly so they
strengthen the precondition of the survey action. Secondly, the agents should
record some optimal solutions in some cases, then with the learned experiences,
they will be able to make best responses in similar cases. For instance, if a sabo-
teur encounters an enemy for the first time, she deliberates over the optimal
strategy, attacks that enemy, and learns that experience. Then if similar cases
happen next time, she will simply behave according to this experience, with-
out deliberation. Thirdly, the agents should keep a balance between maximizing
their worst outcome and minimizing the best outcome of their enemies in the
meantime.

One strong point of our team is that we use Algorithm 1 for task allocation
to avoid repetitive work, hence decreasing cost of the team. Also, Algorithm 2
ensures that our agents are able to search for a large area, and then occupy it.
Another is that our team is efficient in that it only takes the team about 0.2
second to make all decisions, on the 300-edge and 800-node map, in a perfect net-
work. This enables us to develop more complex strategies in future contests. The
weaknesses of our team are that we do not have a good strategy for disturbing
the opponents and we are not able to defend our own area effectively. Because
there is a great number of agents and the map is complex, our programs have
to run with great efficiency. Hence we choose C++, which is known for its effi-
ciency and flexibility, supporting various data structures and algorithms. Next
year we are going to exploit effective strategies to attack enemies’ zone and pro-
tect our own zone. The performance this year is not so satisfactory and there
are many reasons: this was the first time for us to participate, the team con-
sisted of only one member, I have just finished my undergraduate study with
little research experience, and I had not enough time to implement all the ideas.
For the next year, some changes we would think beneficial include: (1) servers
should never send repetitive static information so as to relieve the pressure of
network communication; (2) a percept should contain no information about the
teammates because the agents should communicate with each other to broadcast
such information.

Acknowledgements. I thank Professor Yongmei Liu for introducing me to the
Multi-Agent Programming Contest. I am deeply grateful to Yi Fan for his gener-
ous and valuable help with the writing of this paper. This project was supported
by the Natural Science Foundation of China under Grant No. 61073053.

244 C. Li

References

1. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: Special issue about Multi-
Agent-Contest I. In: Annals of Mathematics and Artificial Intelligence, vol. 59.
Springer, Netherlands (2010)

2. Behrens, T., Dix, J., Köster, M., Hübner, J.: Special issue about Multi-Agent-
Contest II. In: Annals of Mathematics and Artificial Intelligence, vol. 61. Springer,
Netherlands (2011)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Section 22.2: Breadth-first
search. In: Introduction to Algorithms, pp. 531–539. MIT Press and McGraw-Hill
(2001)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische
Mathematik, vol. 1, pp. 260–271. Springer (1959)

5. Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices. J. of Res.
the Nat. Bureau of Standards 69 B, 125–130 (1965)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. The
MIT Press, Cambridge (1995)

7. Kuhn, H.W., Yaw, B.: The Hungarian method for the assignment problem. Naval
Res. Logist. Quart, 83–97 (1955)

8. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations
Research 41(2), 338–350 (1993)

Author Index

Abdel-Naby, S. 72
Alechina, Natasha 123
Andersen, Kenneth Balsiger 205

Behrens, Tristan 123
Braubach, Lars 17
Broxvall, M. 72

Collier, Rem W. 90

Dastani, Mehdi 35
de Castro Bonson, Jéssica Pauli 196
Dı́az, Álvaro Fernández 1
Dix, Jürgen 174
Dragone, M. 72

Earle, Clara Benac 1
Ettienne, Mikko Berggren 205

Franco, Mariana Ramos 224
Fredlund, Lars-Åke 1
Frøsig, Andreas 205

Heßler, Axel 217
Hindriks, Koen V. 54, 123, 158
Hübner, Jomi Fred 196

Jander, Kai 108
Jensen, Andreas Schmidt 205
Jordan, Howell R. 90

Konnerth, Thomas 217
Köster, Michael 174

Lamersdorf, Winfried 108
Li, Chengqian 234
Lillis, David 90
Logan, Brian 123

Meyer, John-Jules 35

Napierala, Pawel 217
Neri, José Rodrigo 196

O’Hare, G.M.P. 72

Pokahr, Alexander 17

Ricci, Alessandro 138
Rosset, Luciano Menasce 224

Santi, Andrea 138
Schlesinger, Federico 174
Schmitz, Tiago Luiz 196
Sichman, Jaime Simão 224
Singh, Dhirendra 158
Swords, D. 72

Uez, Daniela Maria 196

van der Torre, Leendert 35
Vester, Steen 205
Villadsen, Jørgen 205

Wei, Changyun 54
Wiemann, Benjamin 217

Zatelli, Maicon Rafael 196
Ziafati, Pouyan 35

	Preface
	Organization
	Table of Contents
	eJason: An Implementation of Jason in Erlang
	1 Introduction
	2 Erlang
	2.1 Functional Erlang
	2.2 Concurrent and Distributed Erlang

	3 Implementing Jason in Erlang
	3.1 A Simple Running Example in Jason
	3.2 An Overview of the Implementation
	3.3 Translation of Jason Beliefs and Goals into Erlang
	3.4 Implementing Jason Plans in Erlang
	3.5 Process Orchestration and Communication
	3.6 Representing the Jason Reasoning Cycle in Erlang
	3.7 Jason Subset Currently Supported

	4 Experiments
	5 Conclusions and Future Work
	References

	Conceptual Integration of Agents with WSDL and RESTful Web Services
	1 Introduction
	2 Active Components Fundamentals
	3 Web Service Integration Concept
	3.1 Making Functionality Accessible as Web Service
	3.2 Integrating Existing Web Services

	4 Example Applications
	4.1 WSDL Publishing
	4.2 REST Publishing
	4.3 WSDL Invocation
	4.4 Rest Invocation

	5 Related Work
	6 Discussion and Current Limitations
	7 Conclusions and Outlook
	References

	Agent Programming Languages Requirements for Programming Autonomous Robots
	1 Introduction
	2 Running Example
	2.1 Analysis of the Example

	3 Integration with Robotic Frameworks
	4 Real-Time Reactivity
	4.1 Sense-Plan-Act
	4.2 Behavior-Based
	4.3 Three Layered Architecture
	4.4 Distributed Control Architectures
	4.5 Real-Time APLs
	4.6 Interrupting the Deliberation Cycle
	4.7 Distributed BDI Architecture

	5 Processing Sensory Events
	6 Plan Execution Control
	6.1 Representation of Complex Plans
	6.2 Monitoring and Resource Management

	7 Conclusion
	References

	An Agent-Based Cognitive Robot Architecture
	1 Introduction
	2 Related Work
	3 Cognitive Robot Control Architecture
	3.1 Overall Design of the Architecture
	3.2 System Architecture and Components
	3.3 Decoupled Architecture Layers
	3.4 Knowledge Acquisition and Representation
	3.5 Information and Control Flow
	3.6 Synchronization of Perceptions and Actions

	4 Navigation Task as an Example
	5 Conclusion and Future Work
	References

	A Programming Framework for Multi-agent Coordination of Robotic Ecologies
	1 Introduction
	2 PEIS
	2.1 Tuples and Meta-tuples
	2.2 PEIS-Init
	2.3 Action Coordination and Configuration for Robotic Ecologies

	3 Self -OSGi
	3.1 OSGi
	3.2 Component and Service Based Agent Model
	3.3 Core Implementation

	4 Distributed Self -OSGi and PEIS Integration
	5 Testing Tools and Examples
	5.1 Configuration Example
	5.2 Task Allocation Example

	6 Related Work
	7 Conclusions and Future Work
	References

	Evaluation of a Conversation Management Toolkit for Multi Agent Programming
	1 Introduction
	2 Related Work
	3 ACRE
	4 Evaluation Experiment
	4.1 Motivations
	4.2 Scenario

	5 FirstExperiment
	5.1 Objective Measures
	5.2 Subjective Assessment

	6 Second Experiment
	6.1 Objective Measures
	6.2 Subjective Analysis

	7 Comparison with Jason
	8 Conclusions and Future Work
	8.1 Evolution of the Trading Game

	References

	Compact and Efficient Agent Messaging
	1 Introduction
	2 Features of Agent Message Formats
	3 Related Work
	4 Format Description
	4.1 Variable-Sized Integers
	4.2 Boolean Values
	4.3 Strings
	4.4 Other Primitives
	4.5 Complex Objects
	4.6 Arrays

	5 Evaluation
	5.1 Performance
	5.2 Compactness

	6 Future Work and Conclusion
	References

	Query Caching in Agent Programming Languages
	1 Introduction
	2 Abstract Performance Model
	3 Experimental Analysis
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Query Caching
	4.1 Extending the Knowledge Representation Interface
	4.2 Experimental Evaluation

	5 Related Work
	6 Conclusion
	References

	Typing Multi-agent Programs in simpAL
	1 Introduction
	2 Bringing Types in Agent-Oriented Programming: Desiderata
	2.1 On the Role of Typing for Programming
	2.2 Detecting Errors in Current APLs

	3 Typing in
	3.1 simpAL Overview
	3.2 Typing Agents with Tasks and Roles
	3.3 Typing the Environment
	3.4 Typing the Overall Program Structure

	4 Related Work
	5 Concluding Remarks
	References

	Learning to Improve Agent Behaviours in GOAL
	1 Introduction
	2 Preliminaries
	2.1 Agent Programming Languages
	2.2 Reinforcement Learning

	3 Related Work
	4 The GOAL Agent Programming Language
	5 Experiments
	6 Discussion and Conclusion
	References

	The Multi-Agent Programming Contest 2012
	1 Introduction
	1.1 Related Work
	1.2 The Contest from 2005–2012

	2 MAPC 2012: Agents on Mars
	2.1 The Scenario
	2.2 Changes and Modifications to the Scenario from 2011

	3 The Tournament
	3.1 Participants and Results
	3.2 Overview of the Teams’ Strategies

	4 Interesting Simulations
	4.1 SMADAS-UFSC vs. Python-DTU – Simulation 1
	4.2 SMADAS-UFSC vs. Python-DTU – Simulation 2
	4.3 PGIM vs. AiWYX – Simulation 1

	5 Summary, Conclusion and Future of the Contest
	References

	SMADAS: A Cooperative Team for the Multi-Agent Programming Contest Using Jason
	1 Introduction
	2 System Analysis and Design
	3 Strategies
	4 Software Architecture
	5 Results
	6 Conclusion
	References

	Reimplementing a Multi-Agent System in Python
	1 Introduction
	2 System Analysis and Design
	2.1 Testing Moise
	2.2 Agent Behaviour
	2.3 Random Generation of the Map

	3 Software Architecture
	3.1 Considerations
	3.2 Testing Using Flags
	3.3 Code Structure and Files

	4 Strategies, Details and Statistics
	4.1 Getting Achievements
	4.2 Zone Control
	4.3 Making Decisions
	4.4 Communication

	5 Conclusion
	References

	Multi-Agent Programming Contest 2012 – TUB Team Description
	1 Introduction
	2 System Analysis and Design
	3 Software Architecture
	4 Strategies, Details and Statistics
	5 Conclusion
	References

	LTI-USP Team: A JaCaMo Based MAS for the MAPC 2012
	1 Introduction
	2 System Analysis and Design
	3 Software Architecture
	4 Strategies, Details and Statistics
	4.1 Organisational Strategy
	4.2 Role-Dependent Strategies
	4.3 Coordination Strategy

	5 Conclusion
	References

	Conquering Large Zones by Exploiting Task Allocation and Graph-Theoretical Algorithms
	1 Introduction
	2 System Analysis and Design
	3 Software Architecture
	4 Strategies, Details and Statistics
	4.1 Task Allocation
	4.2 Expanding Zones
	4.3 Strategy Details

	5 Conclusion
	References

	Author Index

