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Abstract. In this paper we discuss several approaches to time in Petri
nets. If time is considered for performance analysis, probability distri-
butions for choices should be included into the model and thus we need
Petri nets with time and stochastics. In literature, most attention is paid
to models where the time is expressed by delaying transitions and for
the stochastic case to continuous time models with exponential enabling
distributions, known by its software tools as GSPN. Here we focus on
discrete models where the time is expressed by delaying tokens and the
probability distributions are discrete, because this model class has some
advantages. We show how model checking methods can be applied for
the non-stochastic case. For the stochastic case we show how Markov
techniques can be used. We also consider structural analysis techniques,
which do not need the state space.

1 Introduction

Over the last 25 years, the modeling and analysis of time has been studied ex-
tensively in the context of Petri nets as well as of other models of concurrency.
Most of the Petri net models with time are extensions of classical Petri nets, so if
we discard the time aspects we obtain a classical Petri net. There are many dif-
ferent approaches to model time such as: delaying of instantaneous transitions,
duration of transitions, aging or delays in tokens, timers and clocks. The earliest
papers seem to be [27] which introduces delaying of transitions and [30] introduc-
ing duration of transitions. These model classes are often referred to as Merlin
time (or Time Petri Nets) and Timed Petri Nets respectively. Many authors have
contributed to these models with results on expressiveness, e.g. [13,15,20,36] and
on model checking [10,9,34,3,22]. Next to the verification questions, performance
analysis (c.f. [35,35,31,16]) is an important reason for extending models with
time features. While verification is concerned with the extremities of behavior
(like “will every service request be processed within 5 time units?”), performance
analysis is concerned with “average” behavior or “normal” behavior, i.e. behav-
ior within bounds with a specified probability (like “will 90% of service requests
be processed within 5 time units?”). To make performance analysis possible,
non-deterministic choices in models should be endowed with a probability.
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There is an overwhelming literature on timed automata and their relation-
ship to Petri nets with time,e.g. [5,24,14,12]. Most of these papers refer to timed
automata with clocks as incorporated in the UPPAAL tool [40,6]. There is also
a very extensive literature on stochastic Petri nets where the execution time of
transitions is exponentially distributed which leads to continuous time Markov
processes, see e.g. [4,26,18]. For the class of Generalized Stochastic Petri Nets,
having also instantaneous transitions, there is a famous software tool for mod-
eling and analysis GSPN [39]. This class is in fact the stochastic extension of
Merlin time, so the approach with delaying transitions. Different approaches pro-
posed for modeling time dimension in Petri nets all have their own merits and
weaknesses. Some of the approaches are questionable from the modeling point
of view but are handy for analysis purposes, while others are good for modeling
but bad for analysis.

In this paper we focus on the approach with time in tokens since we have the
feeling that this class did not obtain enough attention although it is a powerful
class both for modeling and for analysis. Extending tokens with time information
is studied in a number of works, see [19,2,21,8,23,11]. There are multiple examples
of industrial applications of this model of time in Petri nets, often called Interval
Timed Petri Nets. We restrict our focus to the discrete time setting and call the
corresponding class DTPN (Discrete Time Petri Nets). The software tools CPN
Tools [37] and ExSpect [38] are using a simplification of it. Next to that, we
will consider a stochastic variant of DTPN, called DSPN that can be seen as a
discrete alternative to the GSPN model. This class has discrete time, i.e. finite
or countable delay sets and discrete probability distributions over the choices
and it encompasses several well-known subclasses.

We start with preliminaries in Section 2. In Section 3, we compare differ-
ent options for introducing timed elements in Petri nets, without claiming to
be complete. We do not consider continuous Petri [32] nets there because the
underlying untimed net is not a classical Petri net any more. In Section 4, we
define DTPN and show how the subclasses of DTPN are related. We show by
modeling inhibitor arcs that several subclasses of DTPN are Turing complete. In
Section 5, we consider a stochastic version of DTPN and we show how classical
Markov techniques can be used to analyse them. In particular, we consider three
questions: the probability of reaching a set of states, the expected time to reach
a set of states and the equilibrium distribution. For these methods we need the
whole state space. For workflow nets, there are structural techniques that can
be combined with the others.

2 Preliminaries

We denote the set of reals, rationals, integers and naturals by R, Q, Z and N

(with 0 ∈ N), respectively. We use superscripts + for the corresponding subsets
containing all the non-negative values, e.g. Q+. A set with one element is called
a singleton. Let inf(A), sup(A), min(A) and max(A) of the set A have the usual
meaning and P(A) is the power set of A. We define max(∅) = ∞ and min(∅) =
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−∞ and we call a set {x ∈ Q|a ≤ x ≤ b} with a, b ∈ Q
+ a closed rational

interval. The set B is a refinement of set A denoted by A � B if and only if
A ⊆ Q

+ ∧ A ⊆ B ∧ sup(A) = sup(B) ∧ inf(A) = inf(B).
A labeled transition system is a tuple (S,A,→, s0) where S is the set of states,

A is a finite set of action names, →⊆ S×A×S is a transition relation and s0 ∈ S
is an initial state. We write (s, a, s′) ∈→ when s

a−→ s′. An action a ∈ A is called

enabled in a state s ∈ S, denoted by s
a−→, if there is a state s′ such that s

a−→ s′.
If s

a−→ s′, we say that state s′ is reachable from s by an action labeled a.
We lift the notion of reachability to sequences of actions. We say that a non-

empty finite sequence σ ∈ A∗ of length n ∈ N is a firing sequence, denoted

by s0
σ−→ sn, if there exist states si, si+1 ∈ S such that si

σ(i)−−→ si+1 for all

0 ≤ i ≤ n − 1. We write s
∗−→ s′ if there exists a sequence σ ∈ A∗ such that

s
σ−→ s′ and say that s′ is reachable from s.
Given two transition systems N1 = (S1, A1,→, s0) and N2 = (S2, A2,→, s′0),

a binary relation R ⊆ S1 × S2 is a simulation if and only if for all s1 ∈ S1, s2 ∈
S2, a ∈ A1, (s1, s2) ∈ R and s1

a−→ s′1 implies that there exist s′2 ∈ S2 such that

s2
a−→ s′2 and (s′1, s

′
2) ∈ R. We writeN2 	 N1 if a simulation relationR exists. IfR

and R−1 are both simulations, relationR is called a bisimulation denoted by
. If
a simulation relation R′ exists such that N1 	 N2 then N1 and N2 are simulation
equivalent. We use the notion of branching bisimulation as defined in [17].

A Petri net is a tuple N = (P, T, F ), where P is the set of places, T is
the set of transitions, with P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) is a flow
relation. An inhibitor net is a tuple (P, T, F, ι), where (P, T, F ) is a Petri net
and ι : T → P(P ) specifies the inhibitor arcs. We refer to elements of P ∪ T
as nodes and elements from F as arcs. We define the preset of a node n as
•n = {m|(m,n) ∈ F} and the postset as n• = {m|(n,m) ∈ F}.

The state of a Petri net N = (P, T, F ) is determined by its marking which
represents the distribution of tokens over the places of the net. A marking m of
a Petri net N is a bag over its places P . A transition t ∈ T is enabled in m if
and only if •t ≤ m. If N is an inhibitor net then for the enabling of transition t
in a marking m, we additionally require that m(p) = 0 for all places p ∈ ι(t). An
enabled transition may fire, which results in a new marking m′ = m − •t + t•,
denoted by m

t−→ m′.

3 Overview of Petri Nets with Time

In this section we describe several options for extending Petri nets with time.
To make the syntax uniform, we use the same definition for different classes of
timed Petri nets; in this definition we add delay sets to the arcs of a classical
Petri net. The semantics of these delay sets differ significantly in different model
classes, and additional constraints on delays will be imposed in certain cases.

Definition 1 (Timed Petri net). A timed Petri net (TPN) is a tuple
(P, T, F, δ), where (P, T, F ) is a Petri net, δ : F → P(R) is a function assigning
delay sets of non-negative delays to arcs.
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We consider δ(p, t), (p, t) ∈ F , as an input delay for transition t and δ(t, p),
(t, p) ∈ ∩F , as an output delay for transition t. We distinguish multiple subclasses
of TPNs using different combinations of the following restrictions of the delay
functions:

In-zero: Input arcs are non-delaying, i.e. for any (p, t) ∈ F , δ(p, t) = 0.
Out-zero: Output arcs are non-delaying, i.e. for any (t, p) ∈ F , δ(t, p) = 0.
In-single: Input delays are fixed values, i.e. for any (p, t) ∈ F , |δ(p, t)| = 1.
Out-single: Output delays are fixed values, i.e. for any (t, p) ∈ F , |δ(t, p)| = 1.
In-fint : Input delays are finite rational sets.
Out-fint : Output delays are finite rational sets.
In-rint : Input delays are closed rational intervals.
Out-rint: Output delays are closed rational intervals.
Tr-equal : For every transition, the delays on its input arcs are equal, i.e. for

any t ∈ T, (p1, t), (p2, t) ∈ F , δ(p1, t) = δ(p2, t)
Pl-equal : For every place, the delays on its input arcs are equal, i.e. for any

p ∈ P, (p, t1), (p, t2) ∈ F , δ(p, t1) = δ(p, t2).

There are models of time for Petri nets placing timed elements on places or tran-
sitions instead of arcs. Tr-equal allows to define a delay interval for a transition
and Pl-equal – a delay interval for a place. We can combine the restrictions (e.g.
In-zero, Out-single).

There are several dimensions on which different models of time for Petri nets
differ semantically, such as:

– Timed tokens vs untimed tokens: Some models extend tokens, and thus also
markings, with the time dimension, e.g. with timestamps to indicate at which
moment of time these tokens become consumable or/and till which time the
tokens are still consumable. A transition may fire if it has consumable tokens
on its input places. Other models keep tokens untimed, meaning in fact that
tokens are always consumable. The time semantics is then captured by time
features of places/transitions only.

– Instantaneous firing vs prolonged firing: In some models, the firing of a tran-
sition takes time, i.e. the tokens are removed from the input places of a
transition when the firing starts and they are produced in the output places
of the transition when the firing is finished. In an alternative semantics, a
potential execution delay is selected from a delay interval of a transition, but
the transition firing is instantaneous.

– Eager/urgent/lazy firing semantics : In the eager semantics, the transition
that can fire at the earliest moment is the transition chosen to fire; with the
urgent semantics the transition does not have to fire at the earliest moment
possible, but the firing may become urgent, i.e. there is a time boundary for
the firing; in the lazy semantics the transitions do not have to fire even if
they loose their ability to fire as a consequence (because e.g. the tokens on
the input places are getting too old and thus not consumable any more).

– Preemption vs non-preemption: Preemption assumes that if a transition t
gets enabled and is waiting for its firing for a period of time defined by its
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delay and another transition consumes one of the input tokens of t, then
the clock or timer resumes when t is enabled again, and thus its firing will
be delayed only by the waiting period left from the previous enabling. The
alternative is called non-preemption.

– Non-deterministic versus stochastic choices in the delays or order of firing.

We introduce the notion of a timed marking for all timed Petri nets. We assume
the existence of a global clock that runs “in the background”. The “current time”
is a sort of cursor on a time line that indicates where the system is on its journey
in time. We give the tokens a unique identity in a marking and a timestamp. The
timestamps have the meaning that a token cannot be consumed by a transition
before this time.1

Definition 2 (Marking of a TPN). Let I denote a countably infinite set of
identifiers. A marking of a TPN is a partial function m : I � P × Q with a
finite domain. For i ∈ dom(m) with m(i) = (p, q) we say that (i, p, q) is a token
on place p with timestamp q. We denote the set of all markings of a TPN by M

and we define the projection functions π, τ as π((p, q)) = p and τ((p, q)) = q.

The semantics of the different model classes are given by different transition
relations. However, they have a commonality: if we abstract from the time in-
formation, the transition relation is a subset of the transition relation of the
classical Petri net. This requirement to the semantics is expressed in the follow-
ing definition.

Definition 3 (Common properties of TPNs). A transition relation →⊆
M× T ×M of a TPN satisfies the following property: if m

t−→ m′ then:

– dom(m′\m)∩dom(m\m′) = ∅ (identities of new tokens differ from consumed
tokens),

– {π(m(i))|i ∈ dom(m\m′)} = •t and |m\m′| = |•t| (consumption from the
pre-places of t), and

– {π(m′(i))|i ∈ dom(m′\m)} = t• and |m′\m| = |t•| (production to the post-
places of t).

Given a marking m0 ∈ M, a sequence of transitions 〈t1, . . . , tn〉 is called a firing

sequence if ∃m1, . . . ,mn ∈ M : m0
t1−→ m1 . . .

tn−→ mn. We denote the finite set
of all firing sequences of a TPN N from a marking m ∈ M by FS(N,m).

There are three main classes of TPN, based on the time passing scheme chosen:

– Duration of firing (M1)
Time is connected to transitions (Tr-equal). As soon as transitions are en-
abled one of them is selected and for that transition one value is chosen from

1 By extending the time domain to Time×Time with Time ⊆ R we could talk about
“usability” of tokens, with tokens having the earliest and the latest consumption
times.
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Fig. 1. Modeling task execution times

the input delay interval. Then the tokens are consumed immediately and
new tokens for the output places are produced after the delay. The global
clock moves till either the end of the delay or to an earlier moment where
another transition is enabled. This is the Timed Petri Net model.

– Delaying of firing (M2)
Time is connected to transitions (Tr-equal). As soon as transitions are en-
abled, for each of them a delay is selected from the input delay interval. One
of the transitions having the minimal of those delays is chosen to fire after
the delay has passed. This is often called Merlin time and race semantics.

– Delaying of tokens (M3)
Time is connected to tokens (Out-rint, In-single). This is the DTPN model
where a transition can fire at the time of the maximal timestamp of its input
tokens. One of the earliest enabled transitions will fire. The input delay is
added to the timestamp in order to determine if it is consumable or not.

For modeling systems in practice, it is often possible to model synchronization
by instantaneous transitions with zero input and zero output delays. Activities
that take time are modeled by a begin transition X and an end transition Y , as
in Fig. 1. In this case, all model classes are equal since if X fires at time t then
Y will fire at t+ a+ b, where a ∈ δ(X,P ) and b ∈ δ(P, Y ). Furthermore, input
delays are handy for modeling time-outs.

Timed automata are another important class of timed models (see [6]). For
model classes M1 and M2, it is possible to translate them to timed automata
[25,14]. Some models of model class M3 (DTPN) can also be translated to timed
automata, but because of eagerness the translations is only possible for the
subclass (Tr-equal, In-single, Out-rint) (see [7]).

Generalized Stochastic Petri Nets (GSPN) is the famous class of stochastic
Petri nets. It belongs to the class of M2 (race semantics with non-preemption).
In general, non-preemption is a strange property from a practical point of view,
because independent parts of a system are “working” while waiting for the firing
of their transitions, and in case the input tokens of some transition t, being
in preparation to its firing, are taken by another transition, the preparation
work done by t is lost. However, preemption and non-preemption coincide in
case of exponentially distributed delays: if a transition with a delayed firing is
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interrupted, the rest-distribution in case of preemption is the same as the original
waiting time. Therefore these models can be transformed into a continuous time
Markov process and the analysis techniques for Markov processes can be applied.
However, exponential distributions are very restrictive for modeling in practice.
It is possible to approximate an arbitrary continuous distribution by a phase
type distributions, which are combinations of exponential distributions, but this
is not a nice solution to model arbitrary transition delay distributions, because
it blows up the state space and it disturbs the preemption property. Therefore,
in Section 5, we will introduce a stochastic version of the class of M3, which we
call DSPN .

4 Discrete Timed Petri Nets

In this section we first define the semantics of model class DTPN and we consider
two subclasses of DTPN: sDTPN and fDTPN. The subclass sDTPN satisfies
(Out-single, In-single) and an fDTPN satisfies (In-single, Out-fint). We show
that DTPN, sDTPN and fDTPN are equivalent and we will transform sDTPN,
by reducing the time component, into a strongly bisimilar labeled transition
system called rDTPN. For rDTPN we show that it has a finite reachability
graph if the underlying Petri net is bounded. So rDTPN can be used for model
checking and since it is equivalent to the general DTPN we are able to model
check them as well. For the proofs of the formal theorems we refer to [7].

4.1 Semantics of DTPN

In order to define the firing rule of a DTPN we introduce an activator. For a
transition t in a marking m the activator is a minimal subset of the marking
that enables this transition. Like in classical Petri nets, an activator has exactly
one token on every input place of t and no other tokens.

Definition 4 (Activator). Consider a TPN with the set of all markings M. A
marking a ∈ M is called an activator of transition t ∈ T in a marking m ∈ M

if (1) a ⊆ m (a coincides with m on dom(a)), (2) {π(m(i)) | i ∈ dom(a)} = •t
and |a| = |•t| (t is classically enabled), and (3) for any i ∈ dom(a) : τ(m(i)) =
min{τ(m(j))|j ∈ dom(m) ∧ π(a(j)) = π(a(i))} (i is the oldest token on that
place). We denote the set of all activators of a transition t in a marking m by
A(m, t).

The enabling time of a transition with an activator a is the earliest possible time
this transition enabled by an activator can fire. The firing time of a marking is
the earliest possible time one of the transitions, enabled by this marking, can
fire. We are assuming an eager system.

The time information of a DTPN is contained in its marking. This makes it
possible to consider the system only at the moments when a transition fires. For
this reason, we do not represent time progression as a state transition.
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Definition 5 (Enabling time, firing time). Let a be an activator of a tran-
sition t ∈ T in a marking m of a DTPN. The enabling time of transition t by
activator a is defined as et(a, t) = max{τ(a(i)) + δ(π(a(i)), t) | i ∈ dom(a)}.
The firing time of a marking m is defined as ft(m) = min{et(a, t) | t ∈ T, a ∈
A(m, t)}.
The firing time for a marking is thus completely determined by the marking
itself.

The firing of a transition and its effect on a marking are described by the
transition relation. Produced tokens are “fresh”, i.e. they have new identities.

Definition 6 (Transition relation). The transition relation of a DTPN sat-

isfies Def. 3 and moreover, for any m
t−→ m′:

– there is an a ∈ A(m, t) such that a = m \m′ ∧ ft(m) = et(a, t) < ∞, and
– ∀i ∈ dom(m′ \m) : τ(m′(i)) = ft(m) + x with x ∈ δ(t, π(m(i))).

Since the delays on arcs are nonnegative, a system cannot go back in time, i.e.

∀m,m′ ∈ M, t ∈ T : m
t−→ m′ ⇒ ft(m) ≤ ft(m′).

In order to reduce infinite delay intervals to finite ones, we introduce the
refinement of a DTPN, which is in fact a refinement of output delay intervals.
Input delays are singletons and each singleton is a refinement of itself.

Definition 7 (Refinement of a DTPN). Let N1 = (P, T, F, δ) and N2 =
(P, T, F, δ′) be DTPN. Then N2 is a refinement of N1 denoted by N1 � N2 iff
∀(x, y) ∈ F : δ(x, y)� δ′(x, y).

The refinement of a DTPN might introduce new firing sequences in the system.
Due to this property, we are able to show that a refined DTPN can simulate its
original DTPN with identical markings but not vice versa.

Theorem 8 (Simulation by refinement). Consider two DTPN’s N1 and N2

such that N1 � N2. Then ∀m ∈ M : (N2,m) 	 (N1,m) w.r.t. identity relation.
So ∀m ∈ M : FS(N1,m) ⊆ FS(N2,m).

A similar result holds for the untimed version N of a DTPN N : ∀m ∈ M :
(N,m) � (N,m)∧FS(N,m) ⊆ FS(N,m) where m is the untimed version of m.

4.2 Relationship between sDTPN, fDTPN and DTPN

For a DTPN N1 and a fDTPN N2 such that N2 � N1, we have N1 	 N2. The
question we will address here is: Is there an fDTPN such that N2 	 N1? The
answer is positive. In order to show this, we introduce a function ϕ assigning to a
DTPN a fDTPN, called its proxy, which has a finite grid on each delay interval.
This is only interesting for output delays, but we define it for all delay intervals.
The grid distance is the smallest value such that all the bounds of delay sets
and timestamps in the initial marking are multiples of it.



The Right Timing: Reflections on the Modeling and Analysis of Time 9

Fig. 2. Counter Example: DTPN simulates fDTPN

Definition 9 (Proxy fDTPN). A DTPN N = (P, T, F, δ) with an initial
marking m0 has a proxy fDTPN ϕ(N) with the same initial marking such that
ϕ(N) = (P, T, F, δ′) where:

– A = {τ(m(i)) | i ∈ dom(m0)} ∪ {min(δ(x, y),max(δ(x, y) | (x, y) ∈ F},
– ∀(x, y) ∈ F : δ′(x, y) = {i/d | i ∈ Z ∧ min(δ(x, y))/d ≤ i/d ≤

max(δ(x, y)/d)}, where d = min{k ∈ N|{k.a|a ∈ A} ⊆ N} and 1/d is
the grid distance.

The grid distance is the least common multiple of the denominators of the non-
zero elements of A expressed as non-reducible elements of Q. We introduce the
round-off of a marking, which is obtained if the timestamps are round-off to a
grid.

Definition 10 (Round-off Relation). For the set of all markings M of a
DTPN: ∀m, m̄ ∈ M : m ∼ m̄ iff dom(m) = dom(m̄) and ∀i ∈ dom(m) :
π(m(i)) = π(m̄(i)) and ∀i ∈ dom(m) : ∃k ∈ Z, d ∈ N :

(τ(m(i)) ∈ [k/d, k/d+ 1/2d] ∧ τ(m̄(i)) = k/d)∨
(τ(m(i)) ∈ (k/d+ 1/2d, (k + 1)/d] ∧ τ(m̄(i)) = (k + 1)/d)

The round-off relation preserves the order of timestamps.

Corollary 11. Let N be an DTPN with the set of all markings M. Let N̄ =
ϕ(N) be its proxy fDTPN with the set of all markings M̄. If two markings m ∈
M, m̄ ∈ M̄ : m ∼ m̄ then ∀i, j ∈ dom(m) :

τ(m(i)) = τ(m(j)) ⇒ τ(m̄(i)) = τ(m̄(j))

τ(m(i)) < τ(m(j)) ⇒ τ(m̄(i)) ≤ τ(m̄(j))

τ(m(i)) > τ(m(j)) ⇒ τ(m̄(i)) ≥ τ(m̄(j))

As a consequence of the preservation of the order of timestamps order we have:

Theorem 12 (Simulation by proxy). Let N be a DTPN and N̄ = ϕ(N) be
its proxy fDTPN with the set of all common timed markings M. Then ∀m ∈ M :
(N̄ ,m) 	 (N,m) w.r.t. the round-off relation.

The opposite is not true, i.e. a DTPN is not simulating its proxy with respect to
the round-off relation as illustrated by the example in Fig. 2. The grid distance
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Fig. 3. Construction of a DTPN from an fDTPN

d = 1/2. From the initial marking with tokens in places p1 and p2 with zero
timestamps, a marking m with tokens in places p3 and p4 with timestamps
11/16 and 10/16, respectively is reachable. In the proxy, a marking m̄ is reachable
such that m ∼ m̄, i.e. with tokens in places p3 and p4 with timestamps equal
to one. From marking m only transition b is enabled but from marking m̄ both
transitions a and b are enabled. However, by Theorem 8 we know that a DTPN
simulates its proxy w.r.t. the identity relation.

Corollary 13 (Simulation Equivalence). A DTPN N and its proxy fDTPN
N̄ = ϕ(N) are simulation equivalent for each initial marking m0 and hence
FS(N,m0) = FS(N̄ ,m0).

The final step in the reduction process is to show that any fDTPN is strongly
bisimilar to a sDTPN. This can be done by making a copy of a transition, i.e.
a new transition with the same preset and postset as the original one and with
singleton delays for each possible combination of output delays from its output
intervals. Formally this can be defined using the generalized cartesian product.
We give an example in the Fig. 3.

Definition 14 (Reduction of fDTPN to sDTPN). Let N = (P, T, F, δ)
be a fDTPN. For each t ∈ T , let At =

∏
p∈t• δ(t, p) be the generalized carte-

sian product of all its delay sets. Then, the corresponding sDTPN is the tuple
construct(N) = (P, T ′, F ′, δ′), where

T ′ = {tx | t ∈ T ∧ x ∈ At},
F ′ = {(p, tx) | (p, t) ∈ F ∧ x ∈ At} ∪ {(tx, p) | (t, p) ∈ F ∧ x ∈ At},
∀p ∈ P : ∀t ∈ T : ∀x ∈ At : δ

′(p, tx) = δ(p, t) ∧ δ′(tx, p) = x(p).

Theorem 15 (Bisimulation of fDTPN and sDTPN). Let N be an arbi-
trary fDTPN. Then N 
 construct(N).

As a consequence, for each DTPN there exists an sDTPN that is simulation
equivalent.
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4.3 Analysis of sDTPN

To analyse the behavior of DTPNs it is sufficient to consider sDTPNs. However,
since time is non-decreasing, the reachability graph of an sDTPN is usually in-
finite. Still, there is a finite time window that contains all relevant behavior,
because new tokens obtain a timestamp bounded by a maximum in the future,
i.e. the maximum of all maxima of output delays and the timestamps of tokens
earlier than the current time minus an upperbound of the input delays are irrel-
evant, i.e. they can be updated to the current time minus this upper bound. So
we can reduce the time frame of a DTPN to a finite time window. This is done
by defining a reduction function that maps the timestamps into this window. We
introduce a labeled transition system for an sDTPN that is strongly bisimilar
to it. Therefore we call this labeled transition system rDTPN, although, strictly
speaking, it is not a DTPN.

We denote by δ↑i the maximal incoming arc delay, i.e. δ↑i = max{δ(p, t)|(p, t) ∈
(P×T )∩F} and δ↑o the maximal outgoing arc delay, i.e. δ↑o = max{δ(t, p)|(t, p) ∈
(T ×P )∩F}. A reduced marking is obtained by subtracting the firing time of the
marking from the timestamp of each token in the marking with a lower bound
of −δ↑i .

Definition 16 (Reduction function). Consider an sDTPN with the set of
all markings M. The reduction function α : M → M satisfies ∀m ∈ M :
dom(α(m)) = dom(m) and ∀i ∈ dom(m) : π(α(m)(i)) = π(m(i))∧τ(α(m)(i)) =

max{−δ↑i , τ(m(i))− ft(m)}. The set of all reduced markings of a sDTPN is de-
fined as M̄ = {m ∈ M | α(m) = m}.
The reduction function is either (1) reducing the timestamp of tokens by the

firing time, or (b) mapping timestamps less than or equal to −δ↑i to −δ↑i .

Corollary 17. Let N be a sDTPN with the set of all markings M. Then ∀m ∈
M, t ∈ T : ∀i ∈ dom(m) : τ(α(m)(i)) ≥ τ(m(i)) − ft(m) ∧ A(α(m), t) = {α(e) |
e ∈ A(m, t)}.
Lemma 18. Consider a sDTPN with the set of all markings M. Then ∀m ∈
M : ft(α(m)) = 0, i.e the firing time of a reduced marking is zero.

As a consequence of Lemma 18, the reduction function α is idempotent.

Corollary 19. Let N be a sDTPN. Then ∀m ∈ M : α(α(m)) = α(m).

We will now show that, given a marking with an enabled transition, the same
transition is also enabled in its reduced marking and the new marking created
by firing this transition from both enabling markings have the same reduced
marking. Furthermore, the firing time of a marking reachable from a reduced
marking can be used to compute the arrival time in the concrete system.

Lemma 20. Consider a sDTPN with the set of markings M. Let m,m′ ∈ M :

m
t−→ m′. Then ∃m̃ ∈ M : α(m)

t−→ m̃ and ft(m̃) = ft(m′) − ft(m) and α(m′) =
α(m̃).
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For an executable firing sequence, the above theorem can be extended to the
following corollary.

Corollary 21. Let (N,M,→,m0) be a labeled transition system. Let

m0,m1 . . .mn ∈ M and m0
t1−→ m1

t2−→ . . .
tn−→ mn. Then ∃m̃0, m̃1, . . . , m̃n ∈

M : m̃0 = m0 ∧ ∀j ∈ {1, . . . , n} : α(mj−1)
tj−→ m̃j and ft(mn) =

∑n
j=0 ft(m̃j)

The reduced transition relation defines the relationship between two reduced
markings, one reachable from the other.

Definition 22 (Reduced transition relation). Let N be an sDTPN with
the set of all markings M and the set of all reduced markings M̄. The reduced

transition relation �⊆ M̄× T × M̄ satisfies ∀m̄, m̄′ ∈ M̄ : m̄
t� m̄′ ⇔ ∃m̃ ∈ M :

m̄
t−→ m̃ ∧ α(m̃) = m̄′.

Definition 23 (rDTPN). An rDTPN is a labeled transition system
(M, T,�, m̄0), where m̄0 = α(m0) is an initial marking.

For a given sDTPN, its reduced labelled transition system and timed labelled
transition system are strongly bisimilar w.r.t. reduction relation. Due to Lemma
20, the time relation in the bisimulation is implicit.

Theorem 24 (Bisimulation sDTPN and rDTPN). Consider a sDTPN
with a timed labeled transition system N = (M, T,→,m0) and its rDTPN
N̄ = (M̄, T,�, m̄0). Then N � N̄ .

The number of different timestamps in the reachability graph of the rDTPN is
finite. This is observed in several papers (see [8]). To see this, we consider first
only timestamps in Z. Since we have finitely many of them in the initial marking
and the only operations we execute on them are: (1) selection of the maximum,
(2) adding one of a finite set of delays and (3) subtracting the selected timestamp
with a minimum. So the upper bound is the maximal output delay and the lower
bound is zero minus the maximal input delay. Hence, we have a finite interval
of Z which means finitely many values for all markings. In case we have delays
in Q we multiply with the lcm of all relevant denominators, like in definition 10
and then we are in the former case.

Theorem 25. The set of timestamps in the reachability graph of a rDTPN is
finite, and so if the underlying Petri net is bounded, the reachability graph of the
rDTPN is finite.

Furthermore, using Corollary 21, given a path in the reachability graph of a
rDTPN, we are able to compute the time required to execute this path in the
original DTPN.

Finally, we sketch by two constructions how the two basic variants of DTPN,
namely DTPN-1 with (In-single, Out-zero) and DTPN-2 with (In-zero, Out-
single) can express inhibitor arcs. The models are branching bisimilar with the
classical Petri net with inhibitors. In both constructions, we add a special place
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Fig. 4. Simulating Inhibitor Arcs with Input Delays and Output Delays

called Tick that is connected to each original transition by an input and an
output arc and we replace each inhibitor by a subnet containing a silent transition
T . In DTPN-1 and DTPN-2 original transitions fire at even time units while the
silent transitions may also fire at odd time units.

5 Discrete Stochastic Petri Nets

In this section we endow the transition firings of a DTPN with probabilities. We
do this only for DTPN with (In-single, Out-fint) and we assign a probability
distribution to these intervals. Additionally, we should have a stochastic mecha-
nism to choose a transition from all enabled transitions. We do this by assigning
a non-negative weight to all transitions and draw an enabled transition x with
probability w(x)/

∑
y:enabled w(y). If there are no priorities for transitions, we

may choose all weights to be equal. Note that we could introduce stochastics
for the two other main classes, M1 and M2 in a similar way. For the class M1,
we first select a classically enabled transition with the weights and then a dura-
tion from a finite distribution associated with the transition. For the class M2,
we select for all classical enabled transitions a delay from a finite distribution
associated with the transition and then we select with the weights one of them
having the minimal delay.

Definition 26 (DSPN)
A DSPN is 6-tuple (P, T, F, δ, w, φ) , where

– (P, T, F, δ) is a DTPN with (In-single, Out-fint).
– w : T → R

+ a weight function, used to choose one of the simultaneously
enabled transitions,

– φ is a function with domain F ∩ T × P and for ∀(t, p) ∈ F :
φ(t, p) : δ(t, p) → [0, 1] such that

∑
x∈δ(t,p) φ(t, p) = 1, so φ(t, p) assigns

probabilities to δ(t, p).
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We consider two transformations to derive a Markov chain for a DSPN. The first
transformation is given in Def. 14, where for each value of a finite output delay
interval, a transition is introduced with a one point output delay, as in Fig. 3.
Here transition t has two output arcs with delay sets, one with {2, 5} and the
other {3, 6}. Let the probabilities of these intervals be (p1, p2), with p1 + p2 = 1
and (q1, q2) with q1 + q2 = 1. So w(t1) = w(t).p1.q1, w(t2) = w(t).p1.q2, w(t3) =
w(t).p2.q1. and w(t4) = w(t).p2.q2.

This transformation blows up the model and gives unreadable pictures, but
it is only for automatic processing. Now we have a model of type sDTPN and
we can forget the probabilities φ(., .) because all output delays are singletons. So
we only have to deal with the weight function w. By Theorem 15, we know that
this model is strongly bisimilar (discarding the probabilities) with the original
one so we can deal with this one. It is obvious by the construction that the
probabilities over the delays of produced tokens are the same as well. So after
these transformations we can consider a DSPN as a 5-tuple (P, T, F, δ, w).

The next transformation concerns this sDTPN model into the reduced labeled
transition system (rDTPN) as in Theorem 24 which is strongly bisimilar with
the sDTPN model. The weights can be transferred to this rDTPN model because
the underlying Petri net has not changed. We call this new model class rDSPN.
Remember that if the underlying Petri net is bounded, then rDSPN has a finite
reachability graph.

We will now add two values to an arc in the reachability graph of the rDSPN,

representing a transition m,m′ ∈ M : m
t−→ m′: (1) probability of choosing this

arc and (2) the sojourn time in a marking m′ if coming from m. Remember that
for each marking the firing time is uniquely determined, but the sojourn time
depends on the former marking. The sojourn time can be computed during the
reduction process as expressed by Lemma 20.

Definition 27 (Transition probability and sojourn time)
The transition probability Q : M×M → [0, 1] satisfies:

Qm,m′ =
∑

x:m
x−→m′

w(x) /
∑

y:∃m′′:m
y−→m′′

w(y).

For m,m′ ∈ M : r(m,m′) = ft(m′)− ft(m) is the sojourn time in marking m′ if
coming from m.

The transition probability contains all information of the reachability graph.
Finally we are able to define the Markov chain that is determined by the reach-
ability graph of the rDSPN endowed with the transition probabilities.

Definition 28 (Markov chain)
Let a rDSPN (P, T, F, δ, w) be given and let the Q be the transition probability
over the state space. Then the Markov chain of the rDSPN is a sequence of
random variables {Xn|n = 0, 1, ...}, where X0 = m0 the initial marking and Xn

is marking after n steps, such that:



The Right Timing: Reflections on the Modeling and Analysis of Time 15

P[Xn+1 = m′|Xn = m,Xn−1 = mn−1, ..., X0 = m0] = Q(m,m′)

for arbitrary m0, ...,mn−1 ∈ M.

The Markov property is implied by the fact that only the last marking before
the transition firing is taken into account.

Since a marking and an enabled transition determine uniquely the next state,
we can also consider another stochastic process {Yn|n ∈ N}, where Yn ∈ T ,
which is a stochastic firing sequence. For a firing sequence σ = (t1, ..., tn) with

m0
t1−→ m1, ...,

tn−→ mn we have

P[Y1 = t1, ..., Yn = tn|X0 = m0] = P[X1 = m1, ..., Xn = mn|X0 = m0].

So we can compute the probability for each finite firing sequence.
Markov chains are often endowed with a cost structure which is a function

assigning to a pair of successive markings a real value, called cost function. Then
we can express the total expected cost when starting in marking m as:

E[

N∑

n=0

c(Xn, Xn+1)|X0 = m].

Here, N ∈ N or N = ∞. In particular we will use the sojourn times as “cost”.
In fact we may associate a semi-Markov process to rDSPN, because the sojourn
times themselves are random variables, but in our case they are completely
determined if we know the former state. The Markov chain {Xn|n = 0, 1, ...} is
then the embedded Markov chain of the semi-Markov process [33]. We will use
the function v : M → R, which is usually called the value function for Markov
processes (see [29]): v(m) = E[

∑N
n=0 c(Xn, Xn+1)|X0 = m] for cost functions c.

We will use the Markov chain to answer three types of important questions.
We will use the cost function to express the questions and we use the Markov
property to translate our questions into Bellman equations (see [33] and [29]).

– Probability of reaching a subset,
– Expected time to leave a subset,
– Expected sojourn times in equilibrium.

Note that all these questions concern sequences of markings or equivalently
firing sequences. So they belong to LTL (see [28]).

Probability of Reaching a Subset
Let A,B ⊆ M be a subsets of the state space, A∩B = ∅. We are interested in the
probability of reachingA fromB . Here we choose c(m,m′) = 1 ifm ∈ B∧m′ ∈ A
and c(m,m′) = 0 otherwise. Further we stop as soon as we reach A. Then

∀m ∈ B : v(m) =
∑

m′∈A

Qm,m′ +
∑

m′∈B

Qm,m′ .v(m′).
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If B is finite, this can be computed, even if the underlying Petri net is
unbounded. For example if B is the set of k-bounded markings (i.e. markings
with at most k tokens per place), this computation is possible.

Expected Time to Leave a Subset. A of the state space.
Here we use a cost function c(m,m′) = r(m,m′), the sojourn time in m′, if
m,m′ ∈ A and c(m,m′) = 0 elsewhere. If m ∈ A then

v(m) =
∑

m′∈A

Qm,m′ .(r(m,m′) + v(m′)).

This can be computed even if the underlying Petri net is unbounded but A is
finite.

Expected Sojourn Times in Equilibrium
We restrict us to the case where the underlying Petri net is bounded. P[Xn =
m′|X0 = m] = Qn(m,m′) where Qn is the Q to power n. The limit of averages

exists: πm(m′) := limN→∞
∑N

n=0 Q
n
m,m′ and it satisfies

πm0(m
′) =

∑

m∈M

πm0(m).Qm,m′ .

We now assume the system is a strongly connected component (i.e. the Markov
chain is irreducible), which implies that the limit distribution π is independent of
the initial state m0. Further, we know that the expected time spent in a marking
m depends on the former marking, so the expected time of being in marking m′

is: ∑

m∈M

r(m,m′).P[Xn−1 = m|Xn = m′],

which can be rewritten using Bayes rule to:

∑

m∈M

r(m,m′).P[Xn = m′|Xn−1 = m].P[Xn−1 = m]/P[Xn = m′].

Thus, the expected sojourn time in some arbitrary marking is obtained by mul-
tiplying with P[Xn = m′]

∑

m∈M

r(m,m′).Qm,m′ .P[Xn−1 = m].

This formula could also be derived immediately as the expected sojourn time in
the next marking. For n → ∞, this converges either by the normal limit or limit
of averages to: ∑

m∈M

r(m,m′).Qm,m′ .π(m).

If we want to solve these equations using matrix calculations, we need to compute
the transition matrix of the reachability graph. However, we can also use the



The Right Timing: Reflections on the Modeling and Analysis of Time 17

method of successive approximations to approximate these values in an iterative
way using only two functions (vectors) over the state space. As an example, the
probability of reaching a set A from a set B we set: ∀m ∈ B : v0(m) = 0 and

∀m ∈ B : vn+1(m) =
∑

m′∈A

Qm,m′ +
∑

m′∈B

Qm,m′ .vn(m
′).

According to [1] we can derive for specially structured workflow nets the dis-
tribution of the throughput time of a case (i.e. the time a token needs to go
from the initial to the final place) analytically in case of DTPN with (In-zero,
Out-fint). Models of this class can be built by transition refinement, using the
patterns displayed in Fig. 5. Pattern 1 is a sequence construction. Pattern 2 is
an iteration where we have arc weights q and 1− q for the probability of contin-
uing or ending the loop. Pattern 3 is the parallel construction. Pattern 4 is the
choice, which has also arc weights q and 1− q representing the probabilities for
the choices. In Fig. 5 the intervals [a, b], [c, d] indicate the finite probability dis-
tributions. In order to be a model of this class, it must be possible to construct
it as follows. We start with an initial net and we may replace all transitions t
with |•t| = |t•| = 1 using one of the four rules. There should be a proper parse
tree for a net of this class. We associate to all transitions with output delay sets
a random variable; for the initial net the random variable U with distribution
on [a, b] and similarly random variable Y and Z for the patterns.

If we have such a net, we can apply the rules in the reversed order. If we
have at some stage a subnet satisfying to one of the four patterns, with the
finite distributions as indicated, we can replace it by an initial subnet with a
“suitable” distribution on the output delay interval. For the initial subnet we
have a random output variable U . For the sequential construction (rule 1) we
have two independent random variables Y and Z with discrete distributions
on [a, b] and [c, d] respectively. So U = Y + Z and the distribution of U is the
convolution of the distributions of Y and Z. For the parallel construction (rule 3)
we have U = max(Y, Z) which is the product distribution, i.e. P[U ≤ x] =
P[Y ≤ x].P[Z ≤ x]. For the choice (rule 4) it is a mixture of two distributions,
P[U ≤ x] = P[Y ≤ x].q+P[Z ≤ x].(1− q). The most difficult one is the iteration

(rule 2), since here we have the distribution of U :=
∑N

n=0 (Yn + Zn) where N
is a geometrically distributed random variable with distribution P[N = n] =
qn−1.(1 − q)] indicating the number of iterations and Yn and Zn are random
variables from the distributions on [a, b] and [c, d] respectively. All these random
variables are independent. The distribution of U can be derived using the Fourier
transform (see [1]). This is an approximation, since the domain of U is infinite,
even if Yn and Zn have finite domains. However, we can cut the infinite domain
with a controllable error.

Thus, we are able to reduce a complex DSPN. This method is only applicable
if the original net is safe, otherwise different cases can influence each other and
so the independency assumptions are violated.
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Fig. 5. Refinement rules

6 Conclusions

In this paper we considered Petri nets with time and stochastics, and in partic-
ular, one class of them that did not get much attention in literature: the class
with the timestamps for tokens. We call this class DTPN and show how we can
analyse the behaviour of the nets from this class in case the underlying Petri
net is bounded. We did not consider complexity but only computability, since
history has shown that methods can become feasible due to increase in comput-
ing power and smart heuristics. We considered several subclasses of DTPN and
we showed that they all are Turing complete, because they can express inhibitor
arcs, but that some have better modeling comfort, i.e. they are easier for model-
ing. The DTPN class can easily be extended to deal with stochastics, as we have
shown. Here, we have the advantage above the GSPN model that we can use
arbitrary finite distributions, while only exponential distributions can be used
in GSPN. The analysis of stochastic behavior is based on Markov chains and so
it is similar to the approach in GSPN. We also showed how analytical methods
for stochastic analysis can be incorporated in model checking.
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