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Preface

This volume constitutes the proceedings of the 34th International Conference on
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2013).
The Petri Net conferences serve as annual meeting places to discuss the progress
in the field of Petri nets and related models of concurrency. They provide a
forum for researchers to present and discuss both applications and theoretical
developments in this area. Novel tools and substantial enhancements to existing
tools can also be presented. The satellite program of the conference comprised
three workshops, a Petri net course including basic and advanced tutorials and
an additional tutorial on the work of Carl Adam Petri and Anatol W. Holt.

The PETRI NETS 2013 conference was organized by the Università degli
Studi di Milano - Bicocca. It took place in Milan, Italy, during June 24–28,
2013. We would like to express our deepest thanks to the Organizing Committee
chaired by Lucia Pomello for the time and effort invested in the local organiza-
tion of the conference. This year the number of submitted papers amounted to
56, which included 52 full papers and 4 tool papers. The authors of the papers
represented 26 different countries. We thank all the authors who submitted pa-
pers. Each paper was reviewed by at least four referees. The Program Committee
(PC) meeting took place electronically, using the EasyChair conference system
for the paper selection process. The PC selected 20 papers (18 regular papers
and 2 tool papers) for presentation. After the conference, some authors were
invited to publish an extended version of their contribution in the Fundamenta
Informaticae journal.

We thank the PC members and other reviewers for their careful and timely
evaluation of the submissions before the meeting, and the fruitful discussions
during the electronic meeting. The Springer LNCS Team and the EasyChair sys-
tem provided high-quality support in the preparation of this volume. We are also
grateful to the invited speakers for their contribution: Kees van Hee, Kurt Jensen,
Moshe Vardi, Stéphane Lafortune, and Catuscia Palamidessi. Manuscripts of the
keynotes from Kees van Hee and from Stéphane Lafortune are included in this
volume.

Finally, we would like to pay tribute to Philippe Darondeau, member of the
Program Committee of this conference and distinguished colleague. We were
deeply shocked and saddened to learn of Philippe’s death on March 18th, just
a few days after the completion of the review process. He was an extremely
friendly and highly-respected colleague, who remained modest and was always
ready to help. Most members of our community knew and liked him and many
of us collaborated with him. His absence will be felt for many years to come.

June 2013 José-Manuel Colom
Jörg Desel
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The Right Timing: Reflections

on the Modeling and Analysis of Time

Kees van Hee and Natalia Sidorova

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee,n.sidorova}@tue.nl

Abstract. In this paper we discuss several approaches to time in Petri
nets. If time is considered for performance analysis, probability distri-
butions for choices should be included into the model and thus we need
Petri nets with time and stochastics. In literature, most attention is paid
to models where the time is expressed by delaying transitions and for
the stochastic case to continuous time models with exponential enabling
distributions, known by its software tools as GSPN. Here we focus on
discrete models where the time is expressed by delaying tokens and the
probability distributions are discrete, because this model class has some
advantages. We show how model checking methods can be applied for
the non-stochastic case. For the stochastic case we show how Markov
techniques can be used. We also consider structural analysis techniques,
which do not need the state space.

1 Introduction

Over the last 25 years, the modeling and analysis of time has been studied ex-
tensively in the context of Petri nets as well as of other models of concurrency.
Most of the Petri net models with time are extensions of classical Petri nets, so if
we discard the time aspects we obtain a classical Petri net. There are many dif-
ferent approaches to model time such as: delaying of instantaneous transitions,
duration of transitions, aging or delays in tokens, timers and clocks. The earliest
papers seem to be [27] which introduces delaying of transitions and [30] introduc-
ing duration of transitions. These model classes are often referred to as Merlin
time (or Time Petri Nets) and Timed Petri Nets respectively. Many authors have
contributed to these models with results on expressiveness, e.g. [13,15,20,36] and
on model checking [10,9,34,3,22]. Next to the verification questions, performance
analysis (c.f. [35,35,31,16]) is an important reason for extending models with
time features. While verification is concerned with the extremities of behavior
(like “will every service request be processed within 5 time units?”), performance
analysis is concerned with “average” behavior or “normal” behavior, i.e. behav-
ior within bounds with a specified probability (like “will 90% of service requests
be processed within 5 time units?”). To make performance analysis possible,
non-deterministic choices in models should be endowed with a probability.

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 K. van Hee and N. Sidorova

There is an overwhelming literature on timed automata and their relation-
ship to Petri nets with time,e.g. [5,24,14,12]. Most of these papers refer to timed
automata with clocks as incorporated in the UPPAAL tool [40,6]. There is also
a very extensive literature on stochastic Petri nets where the execution time of
transitions is exponentially distributed which leads to continuous time Markov
processes, see e.g. [4,26,18]. For the class of Generalized Stochastic Petri Nets,
having also instantaneous transitions, there is a famous software tool for mod-
eling and analysis GSPN [39]. This class is in fact the stochastic extension of
Merlin time, so the approach with delaying transitions. Different approaches pro-
posed for modeling time dimension in Petri nets all have their own merits and
weaknesses. Some of the approaches are questionable from the modeling point
of view but are handy for analysis purposes, while others are good for modeling
but bad for analysis.

In this paper we focus on the approach with time in tokens since we have the
feeling that this class did not obtain enough attention although it is a powerful
class both for modeling and for analysis. Extending tokens with time information
is studied in a number of works, see [19,2,21,8,23,11]. There are multiple examples
of industrial applications of this model of time in Petri nets, often called Interval
Timed Petri Nets. We restrict our focus to the discrete time setting and call the
corresponding class DTPN (Discrete Time Petri Nets). The software tools CPN
Tools [37] and ExSpect [38] are using a simplification of it. Next to that, we
will consider a stochastic variant of DTPN, called DSPN that can be seen as a
discrete alternative to the GSPN model. This class has discrete time, i.e. finite
or countable delay sets and discrete probability distributions over the choices
and it encompasses several well-known subclasses.

We start with preliminaries in Section 2. In Section 3, we compare differ-
ent options for introducing timed elements in Petri nets, without claiming to
be complete. We do not consider continuous Petri [32] nets there because the
underlying untimed net is not a classical Petri net any more. In Section 4, we
define DTPN and show how the subclasses of DTPN are related. We show by
modeling inhibitor arcs that several subclasses of DTPN are Turing complete. In
Section 5, we consider a stochastic version of DTPN and we show how classical
Markov techniques can be used to analyse them. In particular, we consider three
questions: the probability of reaching a set of states, the expected time to reach
a set of states and the equilibrium distribution. For these methods we need the
whole state space. For workflow nets, there are structural techniques that can
be combined with the others.

2 Preliminaries

We denote the set of reals, rationals, integers and naturals by R, Q, Z and N
(with 0 ∈ N), respectively. We use superscripts + for the corresponding subsets
containing all the non-negative values, e.g. Q+. A set with one element is called
a singleton. Let inf(A), sup(A), min(A) and max(A) of the set A have the usual
meaning and P(A) is the power set of A. We define max(∅) = ∞ and min(∅) =
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−∞ and we call a set {x ∈ Q|a ≤ x ≤ b} with a, b ∈ Q+ a closed rational
interval. The set B is a refinement of set A denoted by A � B if and only if
A ⊆ Q+ ∧ A ⊆ B ∧ sup(A) = sup(B) ∧ inf(A) = inf(B).

A labeled transition system is a tuple (S,A,→, s0) where S is the set of states,
A is a finite set of action names,→⊆ S×A×S is a transition relation and s0 ∈ S
is an initial state. We write (s, a, s′) ∈→ when s

a−→ s′. An action a ∈ A is called

enabled in a state s ∈ S, denoted by s
a−→, if there is a state s′ such that s

a−→ s′.
If s

a−→ s′, we say that state s′ is reachable from s by an action labeled a.
We lift the notion of reachability to sequences of actions. We say that a non-

empty finite sequence σ ∈ A∗ of length n ∈ N is a firing sequence, denoted

by s0
σ−→ sn, if there exist states si, si+1 ∈ S such that si

σ(i)−−→ si+1 for all

0 ≤ i ≤ n − 1. We write s
∗−→ s′ if there exists a sequence σ ∈ A∗ such that

s
σ−→ s′ and say that s′ is reachable from s.
Given two transition systems N1 = (S1, A1,→, s0) and N2 = (S2, A2,→, s′0),

a binary relation R ⊆ S1 × S2 is a simulation if and only if for all s1 ∈ S1, s2 ∈
S2, a ∈ A1, (s1, s2) ∈ R and s1

a−→ s′1 implies that there exist s′2 ∈ S2 such that

s2
a−→ s′2 and (s′1, s

′
2) ∈ R. We write N2 	 N1 if a simulation relation R exists. If R

and R−1 are both simulations, relation R is called a bisimulation denoted by
. If
a simulation relation R′ exists such that N1 	 N2 then N1 and N2 are simulation
equivalent. We use the notion of branching bisimulation as defined in [17].

A Petri net is a tuple N = (P, T, F ), where P is the set of places, T is
the set of transitions, with P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) is a flow
relation. An inhibitor net is a tuple (P, T, F, ι), where (P, T, F ) is a Petri net
and ι : T → P(P ) specifies the inhibitor arcs. We refer to elements of P ∪ T
as nodes and elements from F as arcs. We define the preset of a node n as
•n = {m|(m,n) ∈ F} and the postset as n• = {m|(n,m) ∈ F}.

The state of a Petri net N = (P, T, F ) is determined by its marking which
represents the distribution of tokens over the places of the net. A marking m of
a Petri net N is a bag over its places P . A transition t ∈ T is enabled in m if
and only if •t ≤ m. If N is an inhibitor net then for the enabling of transition t
in a marking m, we additionally require that m(p) = 0 for all places p ∈ ι(t). An
enabled transition may fire, which results in a new marking m′ = m − •t + t•,

denoted by m
t−→ m′.

3 Overview of Petri Nets with Time

In this section we describe several options for extending Petri nets with time.
To make the syntax uniform, we use the same definition for different classes of
timed Petri nets; in this definition we add delay sets to the arcs of a classical
Petri net. The semantics of these delay sets differ significantly in different model
classes, and additional constraints on delays will be imposed in certain cases.

Definition 1 (Timed Petri net). A timed Petri net (TPN) is a tuple
(P, T, F, δ), where (P, T, F ) is a Petri net, δ : F → P(R) is a function assigning
delay sets of non-negative delays to arcs.
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We consider δ(p, t), (p, t) ∈ F , as an input delay for transition t and δ(t, p),
(t, p) ∈ ∩F , as an output delay for transition t. We distinguish multiple subclasses
of TPNs using different combinations of the following restrictions of the delay
functions:

In-zero: Input arcs are non-delaying, i.e. for any (p, t) ∈ F , δ(p, t) = 0.
Out-zero: Output arcs are non-delaying, i.e. for any (t, p) ∈ F , δ(t, p) = 0.
In-single: Input delays are fixed values, i.e. for any (p, t) ∈ F , |δ(p, t)| = 1.
Out-single: Output delays are fixed values, i.e. for any (t, p) ∈ F , |δ(t, p)| = 1.
In-fint : Input delays are finite rational sets.
Out-fint : Output delays are finite rational sets.
In-rint : Input delays are closed rational intervals.
Out-rint: Output delays are closed rational intervals.
Tr-equal : For every transition, the delays on its input arcs are equal, i.e. for

any t ∈ T, (p1, t), (p2, t) ∈ F , δ(p1, t) = δ(p2, t)
Pl-equal : For every place, the delays on its input arcs are equal, i.e. for any

p ∈ P, (p, t1), (p, t2) ∈ F , δ(p, t1) = δ(p, t2).

There are models of time for Petri nets placing timed elements on places or tran-
sitions instead of arcs. Tr-equal allows to define a delay interval for a transition
and Pl-equal – a delay interval for a place. We can combine the restrictions (e.g.
In-zero, Out-single).

There are several dimensions on which different models of time for Petri nets
differ semantically, such as:

– Timed tokens vs untimed tokens: Some models extend tokens, and thus also
markings, with the time dimension, e.g. with timestamps to indicate at which
moment of time these tokens become consumable or/and till which time the
tokens are still consumable. A transition may fire if it has consumable tokens
on its input places. Other models keep tokens untimed, meaning in fact that
tokens are always consumable. The time semantics is then captured by time
features of places/transitions only.

– Instantaneous firing vs prolonged firing: In some models, the firing of a tran-
sition takes time, i.e. the tokens are removed from the input places of a
transition when the firing starts and they are produced in the output places
of the transition when the firing is finished. In an alternative semantics, a
potential execution delay is selected from a delay interval of a transition, but
the transition firing is instantaneous.

– Eager/urgent/lazy firing semantics : In the eager semantics, the transition
that can fire at the earliest moment is the transition chosen to fire; with the
urgent semantics the transition does not have to fire at the earliest moment
possible, but the firing may become urgent, i.e. there is a time boundary for
the firing; in the lazy semantics the transitions do not have to fire even if
they loose their ability to fire as a consequence (because e.g. the tokens on
the input places are getting too old and thus not consumable any more).

– Preemption vs non-preemption: Preemption assumes that if a transition t
gets enabled and is waiting for its firing for a period of time defined by its
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delay and another transition consumes one of the input tokens of t, then
the clock or timer resumes when t is enabled again, and thus its firing will
be delayed only by the waiting period left from the previous enabling. The
alternative is called non-preemption.

– Non-deterministic versus stochastic choices in the delays or order of firing.

We introduce the notion of a timed marking for all timed Petri nets. We assume
the existence of a global clock that runs “in the background”. The “current time”
is a sort of cursor on a time line that indicates where the system is on its journey
in time. We give the tokens a unique identity in a marking and a timestamp. The
timestamps have the meaning that a token cannot be consumed by a transition
before this time.1

Definition 2 (Marking of a TPN). Let I denote a countably infinite set of
identifiers. A marking of a TPN is a partial function m : I � P × Q with a
finite domain. For i ∈ dom(m) with m(i) = (p, q) we say that (i, p, q) is a token
on place p with timestamp q. We denote the set of all markings of a TPN by M
and we define the projection functions π, τ as π((p, q)) = p and τ((p, q)) = q.

The semantics of the different model classes are given by different transition
relations. However, they have a commonality: if we abstract from the time in-
formation, the transition relation is a subset of the transition relation of the
classical Petri net. This requirement to the semantics is expressed in the follow-
ing definition.

Definition 3 (Common properties of TPNs). A transition relation →⊆
M× T ×M of a TPN satisfies the following property: if m

t−→ m′ then:

– dom(m′\m)∩dom(m\m′) = ∅ (identities of new tokens differ from consumed
tokens),

– {π(m(i))|i ∈ dom(m\m′)} = •t and |m\m′| = |•t| (consumption from the
pre-places of t), and

– {π(m′(i))|i ∈ dom(m′\m)} = t• and |m′\m| = |t•| (production to the post-
places of t).

Given a marking m0 ∈ M, a sequence of transitions 〈t1, . . . , tn〉 is called a firing

sequence if ∃m1, . . . ,mn ∈ M : m0
t1−→ m1 . . .

tn−→ mn. We denote the finite set
of all firing sequences of a TPN N from a marking m ∈M by FS(N,m).

There are three main classes of TPN, based on the time passing scheme chosen:

– Duration of firing (M1)
Time is connected to transitions (Tr-equal). As soon as transitions are en-
abled one of them is selected and for that transition one value is chosen from

1 By extending the time domain to Time×Time with Time ⊆ R we could talk about
“usability” of tokens, with tokens having the earliest and the latest consumption
times.
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Fig. 1. Modeling task execution times

the input delay interval. Then the tokens are consumed immediately and
new tokens for the output places are produced after the delay. The global
clock moves till either the end of the delay or to an earlier moment where
another transition is enabled. This is the Timed Petri Net model.

– Delaying of firing (M2)
Time is connected to transitions (Tr-equal). As soon as transitions are en-
abled, for each of them a delay is selected from the input delay interval. One
of the transitions having the minimal of those delays is chosen to fire after
the delay has passed. This is often called Merlin time and race semantics.

– Delaying of tokens (M3)
Time is connected to tokens (Out-rint, In-single). This is the DTPN model
where a transition can fire at the time of the maximal timestamp of its input
tokens. One of the earliest enabled transitions will fire. The input delay is
added to the timestamp in order to determine if it is consumable or not.

For modeling systems in practice, it is often possible to model synchronization
by instantaneous transitions with zero input and zero output delays. Activities
that take time are modeled by a begin transition X and an end transition Y , as
in Fig. 1. In this case, all model classes are equal since if X fires at time t then
Y will fire at t + a + b, where a ∈ δ(X,P ) and b ∈ δ(P, Y ). Furthermore, input
delays are handy for modeling time-outs.

Timed automata are another important class of timed models (see [6]). For
model classes M1 and M2, it is possible to translate them to timed automata
[25,14]. Some models of model class M3 (DTPN) can also be translated to timed
automata, but because of eagerness the translations is only possible for the
subclass (Tr-equal, In-single, Out-rint) (see [7]).

Generalized Stochastic Petri Nets (GSPN) is the famous class of stochastic
Petri nets. It belongs to the class of M2 (race semantics with non-preemption).
In general, non-preemption is a strange property from a practical point of view,
because independent parts of a system are “working” while waiting for the firing
of their transitions, and in case the input tokens of some transition t, being
in preparation to its firing, are taken by another transition, the preparation
work done by t is lost. However, preemption and non-preemption coincide in
case of exponentially distributed delays: if a transition with a delayed firing is
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interrupted, the rest-distribution in case of preemption is the same as the original
waiting time. Therefore these models can be transformed into a continuous time
Markov process and the analysis techniques for Markov processes can be applied.
However, exponential distributions are very restrictive for modeling in practice.
It is possible to approximate an arbitrary continuous distribution by a phase
type distributions, which are combinations of exponential distributions, but this
is not a nice solution to model arbitrary transition delay distributions, because
it blows up the state space and it disturbs the preemption property. Therefore,
in Section 5, we will introduce a stochastic version of the class of M3, which we
call DSPN .

4 Discrete Timed Petri Nets

In this section we first define the semantics of model class DTPN and we consider
two subclasses of DTPN: sDTPN and fDTPN. The subclass sDTPN satisfies
(Out-single, In-single) and an fDTPN satisfies (In-single, Out-fint). We show
that DTPN, sDTPN and fDTPN are equivalent and we will transform sDTPN,
by reducing the time component, into a strongly bisimilar labeled transition
system called rDTPN. For rDTPN we show that it has a finite reachability
graph if the underlying Petri net is bounded. So rDTPN can be used for model
checking and since it is equivalent to the general DTPN we are able to model
check them as well. For the proofs of the formal theorems we refer to [7].

4.1 Semantics of DTPN

In order to define the firing rule of a DTPN we introduce an activator. For a
transition t in a marking m the activator is a minimal subset of the marking
that enables this transition. Like in classical Petri nets, an activator has exactly
one token on every input place of t and no other tokens.

Definition 4 (Activator). Consider a TPN with the set of all markings M. A
marking a ∈ M is called an activator of transition t ∈ T in a marking m ∈ M
if (1) a ⊆ m (a coincides with m on dom(a)), (2) {π(m(i)) | i ∈ dom(a)} = •t
and |a| = |•t| (t is classically enabled), and (3) for any i ∈ dom(a) : τ(m(i)) =
min{τ(m(j))|j ∈ dom(m) ∧ π(a(j)) = π(a(i))} (i is the oldest token on that
place). We denote the set of all activators of a transition t in a marking m by
A(m, t).

The enabling time of a transition with an activator a is the earliest possible time
this transition enabled by an activator can fire. The firing time of a marking is
the earliest possible time one of the transitions, enabled by this marking, can
fire. We are assuming an eager system.

The time information of a DTPN is contained in its marking. This makes it
possible to consider the system only at the moments when a transition fires. For
this reason, we do not represent time progression as a state transition.
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Definition 5 (Enabling time, firing time). Let a be an activator of a tran-
sition t ∈ T in a marking m of a DTPN. The enabling time of transition t by
activator a is defined as et(a, t) = max{τ(a(i)) + δ(π(a(i)), t) | i ∈ dom(a)}.
The firing time of a marking m is defined as ft(m) = min{et(a, t) | t ∈ T, a ∈
A(m, t)}.

The firing time for a marking is thus completely determined by the marking
itself.

The firing of a transition and its effect on a marking are described by the
transition relation. Produced tokens are “fresh”, i.e. they have new identities.

Definition 6 (Transition relation). The transition relation of a DTPN sat-

isfies Def. 3 and moreover, for any m
t−→ m′:

– there is an a ∈ A(m, t) such that a = m \m′ ∧ ft(m) = et(a, t) < ∞, and
– ∀i ∈ dom(m′ \m) : τ(m′(i)) = ft(m) + x with x ∈ δ(t, π(m(i))).

Since the delays on arcs are nonnegative, a system cannot go back in time, i.e.

∀m,m′ ∈M, t ∈ T : m
t−→ m′ ⇒ ft(m) ≤ ft(m′).

In order to reduce infinite delay intervals to finite ones, we introduce the
refinement of a DTPN, which is in fact a refinement of output delay intervals.
Input delays are singletons and each singleton is a refinement of itself.

Definition 7 (Refinement of a DTPN). Let N1 = (P, T, F, δ) and N2 =
(P, T, F, δ′) be DTPN. Then N2 is a refinement of N1 denoted by N1 � N2 iff
∀(x, y) ∈ F : δ(x, y)� δ′(x, y).

The refinement of a DTPN might introduce new firing sequences in the system.
Due to this property, we are able to show that a refined DTPN can simulate its
original DTPN with identical markings but not vice versa.

Theorem 8 (Simulation by refinement). Consider two DTPN’s N1 and N2

such that N1 � N2. Then ∀m ∈ M : (N2,m) 	 (N1,m) w.r.t. identity relation.
So ∀m ∈M : FS(N1,m) ⊆ FS(N2,m).

A similar result holds for the untimed version N of a DTPN N : ∀m ∈ M :
(N,m) � (N,m)∧FS(N,m) ⊆ FS(N,m) where m is the untimed version of m.

4.2 Relationship between sDTPN, fDTPN and DTPN

For a DTPN N1 and a fDTPN N2 such that N2 � N1, we have N1 	 N2. The
question we will address here is: Is there an fDTPN such that N2 	 N1? The
answer is positive. In order to show this, we introduce a function ϕ assigning to a
DTPN a fDTPN, called its proxy, which has a finite grid on each delay interval.
This is only interesting for output delays, but we define it for all delay intervals.
The grid distance is the smallest value such that all the bounds of delay sets
and timestamps in the initial marking are multiples of it.
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Fig. 2. Counter Example: DTPN simulates fDTPN

Definition 9 (Proxy fDTPN). A DTPN N = (P, T, F, δ) with an initial
marking m0 has a proxy fDTPN ϕ(N) with the same initial marking such that
ϕ(N) = (P, T, F, δ′) where:

– A = {τ(m(i)) | i ∈ dom(m0)} ∪ {min(δ(x, y),max(δ(x, y) | (x, y) ∈ F},
– ∀(x, y) ∈ F : δ′(x, y) = {i/d | i ∈ Z ∧ min(δ(x, y))/d ≤ i/d ≤

max(δ(x, y)/d)}, where d = min{k ∈ N|{k.a|a ∈ A} ⊆ N} and 1/d is
the grid distance.

The grid distance is the least common multiple of the denominators of the non-
zero elements of A expressed as non-reducible elements of Q. We introduce the
round-off of a marking, which is obtained if the timestamps are round-off to a
grid.

Definition 10 (Round-off Relation). For the set of all markings M of a
DTPN: ∀m, m̄ ∈ M : m ∼ m̄ iff dom(m) = dom(m̄) and ∀i ∈ dom(m) :
π(m(i)) = π(m̄(i)) and ∀i ∈ dom(m) : ∃k ∈ Z, d ∈ N :

(τ(m(i)) ∈ [k/d, k/d+ 1/2d] ∧ τ(m̄(i)) = k/d)∨
(τ(m(i)) ∈ (k/d+ 1/2d, (k + 1)/d] ∧ τ(m̄(i)) = (k + 1)/d)

The round-off relation preserves the order of timestamps.

Corollary 11. Let N be an DTPN with the set of all markings M. Let N̄ =
ϕ(N) be its proxy fDTPN with the set of all markings M̄. If two markings m ∈
M, m̄ ∈ M̄ : m ∼ m̄ then ∀i, j ∈ dom(m) :

τ(m(i)) = τ(m(j))⇒ τ(m̄(i)) = τ(m̄(j))

τ(m(i)) < τ(m(j))⇒ τ(m̄(i)) ≤ τ(m̄(j))

τ(m(i)) > τ(m(j))⇒ τ(m̄(i)) ≥ τ(m̄(j))

As a consequence of the preservation of the order of timestamps order we have:

Theorem 12 (Simulation by proxy). Let N be a DTPN and N̄ = ϕ(N) be
its proxy fDTPN with the set of all common timed markings M. Then ∀m ∈M :
(N̄ ,m) 	 (N,m) w.r.t. the round-off relation.

The opposite is not true, i.e. a DTPN is not simulating its proxy with respect to
the round-off relation as illustrated by the example in Fig. 2. The grid distance
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Fig. 3. Construction of a DTPN from an fDTPN

d = 1/2. From the initial marking with tokens in places p1 and p2 with zero
timestamps, a marking m with tokens in places p3 and p4 with timestamps
11/16 and 10/16, respectively is reachable. In the proxy, a marking m̄ is reachable
such that m ∼ m̄, i.e. with tokens in places p3 and p4 with timestamps equal
to one. From marking m only transition b is enabled but from marking m̄ both
transitions a and b are enabled. However, by Theorem 8 we know that a DTPN
simulates its proxy w.r.t. the identity relation.

Corollary 13 (Simulation Equivalence). A DTPN N and its proxy fDTPN
N̄ = ϕ(N) are simulation equivalent for each initial marking m0 and hence
FS(N,m0) = FS(N̄ ,m0).

The final step in the reduction process is to show that any fDTPN is strongly
bisimilar to a sDTPN. This can be done by making a copy of a transition, i.e.
a new transition with the same preset and postset as the original one and with
singleton delays for each possible combination of output delays from its output
intervals. Formally this can be defined using the generalized cartesian product.
We give an example in the Fig. 3.

Definition 14 (Reduction of fDTPN to sDTPN). Let N = (P, T, F, δ)
be a fDTPN. For each t ∈ T , let At =

∏
p∈t• δ(t, p) be the generalized carte-

sian product of all its delay sets. Then, the corresponding sDTPN is the tuple
construct(N) = (P, T ′, F ′, δ′), where

T ′ = {tx | t ∈ T ∧ x ∈ At},
F ′ = {(p, tx) | (p, t) ∈ F ∧ x ∈ At} ∪ {(tx, p) | (t, p) ∈ F ∧ x ∈ At},
∀p ∈ P : ∀t ∈ T : ∀x ∈ At : δ

′(p, tx) = δ(p, t) ∧ δ′(tx, p) = x(p).

Theorem 15 (Bisimulation of fDTPN and sDTPN). Let N be an arbi-
trary fDTPN. Then N 
 construct(N).

As a consequence, for each DTPN there exists an sDTPN that is simulation
equivalent.
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4.3 Analysis of sDTPN

To analyse the behavior of DTPNs it is sufficient to consider sDTPNs. However,
since time is non-decreasing, the reachability graph of an sDTPN is usually in-
finite. Still, there is a finite time window that contains all relevant behavior,
because new tokens obtain a timestamp bounded by a maximum in the future,
i.e. the maximum of all maxima of output delays and the timestamps of tokens
earlier than the current time minus an upperbound of the input delays are irrel-
evant, i.e. they can be updated to the current time minus this upper bound. So
we can reduce the time frame of a DTPN to a finite time window. This is done
by defining a reduction function that maps the timestamps into this window. We
introduce a labeled transition system for an sDTPN that is strongly bisimilar
to it. Therefore we call this labeled transition system rDTPN, although, strictly
speaking, it is not a DTPN.

We denote by δ↑i the maximal incoming arc delay, i.e. δ↑i = max{δ(p, t)|(p, t) ∈
(P×T )∩F} and δ↑o the maximal outgoing arc delay, i.e. δ↑o = max{δ(t, p)|(t, p) ∈
(T ×P )∩F}. A reduced marking is obtained by subtracting the firing time of the
marking from the timestamp of each token in the marking with a lower bound
of −δ↑i .

Definition 16 (Reduction function). Consider an sDTPN with the set of
all markings M. The reduction function α : M → M satisfies ∀m ∈ M :
dom(α(m)) = dom(m) and ∀i ∈ dom(m) : π(α(m)(i)) = π(m(i))∧τ(α(m)(i)) =

max{−δ↑i , τ(m(i))− ft(m)}. The set of all reduced markings of a sDTPN is de-
fined as M̄ = {m ∈M | α(m) = m}.

The reduction function is either (1) reducing the timestamp of tokens by the

firing time, or (b) mapping timestamps less than or equal to −δ↑i to −δ↑i .

Corollary 17. Let N be a sDTPN with the set of all markings M. Then ∀m ∈
M, t ∈ T : ∀i ∈ dom(m) : τ(α(m)(i)) ≥ τ(m(i)) − ft(m) ∧ A(α(m), t) = {α(e) |
e ∈ A(m, t)}.

Lemma 18. Consider a sDTPN with the set of all markings M. Then ∀m ∈
M : ft(α(m)) = 0, i.e the firing time of a reduced marking is zero.

As a consequence of Lemma 18, the reduction function α is idempotent.

Corollary 19. Let N be a sDTPN. Then ∀m ∈M : α(α(m)) = α(m).

We will now show that, given a marking with an enabled transition, the same
transition is also enabled in its reduced marking and the new marking created
by firing this transition from both enabling markings have the same reduced
marking. Furthermore, the firing time of a marking reachable from a reduced
marking can be used to compute the arrival time in the concrete system.

Lemma 20. Consider a sDTPN with the set of markings M. Let m,m′ ∈ M :

m
t−→ m′. Then ∃m̃ ∈ M : α(m)

t−→ m̃ and ft(m̃) = ft(m′) − ft(m) and α(m′) =
α(m̃).
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For an executable firing sequence, the above theorem can be extended to the
following corollary.

Corollary 21. Let (N,M,→,m0) be a labeled transition system. Let

m0,m1 . . .mn ∈ M and m0
t1−→ m1

t2−→ . . .
tn−→ mn. Then ∃m̃0, m̃1, . . . , m̃n ∈

M : m̃0 = m0 ∧ ∀j ∈ {1, . . . , n} : α(mj−1)
tj−→ m̃j and ft(mn) =

∑n
j=0 ft(m̃j)

The reduced transition relation defines the relationship between two reduced
markings, one reachable from the other.

Definition 22 (Reduced transition relation). Let N be an sDTPN with
the set of all markings M and the set of all reduced markings M̄. The reduced

transition relation �⊆ M̄× T × M̄ satisfies ∀m̄, m̄′ ∈ M̄ : m̄
t� m̄′ ⇔ ∃m̃ ∈M :

m̄
t−→ m̃ ∧ α(m̃) = m̄′.

Definition 23 (rDTPN). An rDTPN is a labeled transition system
(M, T,�, m̄0), where m̄0 = α(m0) is an initial marking.

For a given sDTPN, its reduced labelled transition system and timed labelled
transition system are strongly bisimilar w.r.t. reduction relation. Due to Lemma
20, the time relation in the bisimulation is implicit.

Theorem 24 (Bisimulation sDTPN and rDTPN). Consider a sDTPN
with a timed labeled transition system N = (M, T,→,m0) and its rDTPN
N̄ = (M̄, T,�, m̄0). Then N � N̄ .

The number of different timestamps in the reachability graph of the rDTPN is
finite. This is observed in several papers (see [8]). To see this, we consider first
only timestamps in Z. Since we have finitely many of them in the initial marking
and the only operations we execute on them are: (1) selection of the maximum,
(2) adding one of a finite set of delays and (3) subtracting the selected timestamp
with a minimum. So the upper bound is the maximal output delay and the lower
bound is zero minus the maximal input delay. Hence, we have a finite interval
of Z which means finitely many values for all markings. In case we have delays
in Q we multiply with the lcm of all relevant denominators, like in definition 10
and then we are in the former case.

Theorem 25. The set of timestamps in the reachability graph of a rDTPN is
finite, and so if the underlying Petri net is bounded, the reachability graph of the
rDTPN is finite.

Furthermore, using Corollary 21, given a path in the reachability graph of a
rDTPN, we are able to compute the time required to execute this path in the
original DTPN.

Finally, we sketch by two constructions how the two basic variants of DTPN,
namely DTPN-1 with (In-single, Out-zero) and DTPN-2 with (In-zero, Out-
single) can express inhibitor arcs. The models are branching bisimilar with the
classical Petri net with inhibitors. In both constructions, we add a special place
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Fig. 4. Simulating Inhibitor Arcs with Input Delays and Output Delays

called Tick that is connected to each original transition by an input and an
output arc and we replace each inhibitor by a subnet containing a silent transition
T . In DTPN-1 and DTPN-2 original transitions fire at even time units while the
silent transitions may also fire at odd time units.

5 Discrete Stochastic Petri Nets

In this section we endow the transition firings of a DTPN with probabilities. We
do this only for DTPN with (In-single, Out-fint) and we assign a probability
distribution to these intervals. Additionally, we should have a stochastic mecha-
nism to choose a transition from all enabled transitions. We do this by assigning
a non-negative weight to all transitions and draw an enabled transition x with
probability w(x)/

∑
y:enabled w(y). If there are no priorities for transitions, we

may choose all weights to be equal. Note that we could introduce stochastics
for the two other main classes, M1 and M2 in a similar way. For the class M1,
we first select a classically enabled transition with the weights and then a dura-
tion from a finite distribution associated with the transition. For the class M2,
we select for all classical enabled transitions a delay from a finite distribution
associated with the transition and then we select with the weights one of them
having the minimal delay.

Definition 26 (DSPN)
A DSPN is 6-tuple (P, T, F, δ, w, φ) , where

– (P, T, F, δ) is a DTPN with (In-single, Out-fint).
– w : T → R+ a weight function, used to choose one of the simultaneously

enabled transitions,
– φ is a function with domain F ∩ T × P and for ∀(t, p) ∈ F :

φ(t, p) : δ(t, p) → [0, 1] such that
∑

x∈δ(t,p) φ(t, p) = 1, so φ(t, p) assigns

probabilities to δ(t, p).
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We consider two transformations to derive a Markov chain for a DSPN. The first
transformation is given in Def. 14, where for each value of a finite output delay
interval, a transition is introduced with a one point output delay, as in Fig. 3.
Here transition t has two output arcs with delay sets, one with {2, 5} and the
other {3, 6}. Let the probabilities of these intervals be (p1, p2), with p1 + p2 = 1
and (q1, q2) with q1 + q2 = 1. So w(t1) = w(t).p1.q1, w(t2) = w(t).p1.q2, w(t3) =
w(t).p2.q1. and w(t4) = w(t).p2.q2.

This transformation blows up the model and gives unreadable pictures, but
it is only for automatic processing. Now we have a model of type sDTPN and
we can forget the probabilities φ(., .) because all output delays are singletons. So
we only have to deal with the weight function w. By Theorem 15, we know that
this model is strongly bisimilar (discarding the probabilities) with the original
one so we can deal with this one. It is obvious by the construction that the
probabilities over the delays of produced tokens are the same as well. So after
these transformations we can consider a DSPN as a 5-tuple (P, T, F, δ, w).

The next transformation concerns this sDTPN model into the reduced labeled
transition system (rDTPN) as in Theorem 24 which is strongly bisimilar with
the sDTPN model. The weights can be transferred to this rDTPN model because
the underlying Petri net has not changed. We call this new model class rDSPN.
Remember that if the underlying Petri net is bounded, then rDSPN has a finite
reachability graph.

We will now add two values to an arc in the reachability graph of the rDSPN,

representing a transition m,m′ ∈ M : m
t−→ m′: (1) probability of choosing this

arc and (2) the sojourn time in a marking m′ if coming from m. Remember that
for each marking the firing time is uniquely determined, but the sojourn time
depends on the former marking. The sojourn time can be computed during the
reduction process as expressed by Lemma 20.

Definition 27 (Transition probability and sojourn time)
The transition probability Q : M×M→ [0, 1] satisfies:

Qm,m′ =
∑

x:m
x−→m′

w(x) /
∑

y:∃m′′:m
y−→m′′

w(y).

For m,m′ ∈ M : r(m,m′) = ft(m′)− ft(m) is the sojourn time in marking m′ if
coming from m.

The transition probability contains all information of the reachability graph.
Finally we are able to define the Markov chain that is determined by the reach-
ability graph of the rDSPN endowed with the transition probabilities.

Definition 28 (Markov chain)
Let a rDSPN (P, T, F, δ, w) be given and let the Q be the transition probability
over the state space. Then the Markov chain of the rDSPN is a sequence of
random variables {Xn|n = 0, 1, ...}, where X0 = m0 the initial marking and Xn

is marking after n steps, such that:
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P[Xn+1 = m′|Xn = m,Xn−1 = mn−1, ..., X0 = m0] = Q(m,m′)

for arbitrary m0, ...,mn−1 ∈M.

The Markov property is implied by the fact that only the last marking before
the transition firing is taken into account.

Since a marking and an enabled transition determine uniquely the next state,
we can also consider another stochastic process {Yn|n ∈ N}, where Yn ∈ T ,
which is a stochastic firing sequence. For a firing sequence σ = (t1, ..., tn) with

m0
t1−→ m1, ...,

tn−→ mn we have

P[Y1 = t1, ..., Yn = tn|X0 = m0] = P[X1 = m1, ..., Xn = mn|X0 = m0].

So we can compute the probability for each finite firing sequence.
Markov chains are often endowed with a cost structure which is a function

assigning to a pair of successive markings a real value, called cost function. Then
we can express the total expected cost when starting in marking m as:

E[
N∑

n=0

c(Xn, Xn+1)|X0 = m].

Here, N ∈ N or N = ∞. In particular we will use the sojourn times as “cost”.
In fact we may associate a semi-Markov process to rDSPN, because the sojourn
times themselves are random variables, but in our case they are completely
determined if we know the former state. The Markov chain {Xn|n = 0, 1, ...} is
then the embedded Markov chain of the semi-Markov process [33]. We will use
the function v : M → R, which is usually called the value function for Markov
processes (see [29]): v(m) = E[

∑N
n=0 c(Xn, Xn+1)|X0 = m] for cost functions c.

We will use the Markov chain to answer three types of important questions.
We will use the cost function to express the questions and we use the Markov
property to translate our questions into Bellman equations (see [33] and [29]).

– Probability of reaching a subset,
– Expected time to leave a subset,
– Expected sojourn times in equilibrium.

Note that all these questions concern sequences of markings or equivalently
firing sequences. So they belong to LTL (see [28]).

Probability of Reaching a Subset
Let A,B ⊆M be a subsets of the state space, A∩B = ∅. We are interested in the
probability of reachingA fromB . Here we choose c(m,m′) = 1 if m ∈ B∧m′ ∈ A
and c(m,m′) = 0 otherwise. Further we stop as soon as we reach A. Then

∀m ∈ B : v(m) =
∑
m′∈A

Qm,m′ +
∑

m′∈B

Qm,m′ .v(m′).
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If B is finite, this can be computed, even if the underlying Petri net is
unbounded. For example if B is the set of k-bounded markings (i.e. markings
with at most k tokens per place), this computation is possible.

Expected Time to Leave a Subset. A of the state space.
Here we use a cost function c(m,m′) = r(m,m′), the sojourn time in m′, if
m,m′ ∈ A and c(m,m′) = 0 elsewhere. If m ∈ A then

v(m) =
∑
m′∈A

Qm,m′ .(r(m,m′) + v(m′)).

This can be computed even if the underlying Petri net is unbounded but A is
finite.

Expected Sojourn Times in Equilibrium
We restrict us to the case where the underlying Petri net is bounded. P[Xn =
m′|X0 = m] = Qn(m,m′) where Qn is the Q to power n. The limit of averages

exists: πm(m′) := limN→∞
∑N

n=0 Qn
m,m′ and it satisfies

πm0(m
′) =

∑
m∈M

πm0(m).Qm,m′ .

We now assume the system is a strongly connected component (i.e. the Markov
chain is irreducible), which implies that the limit distribution π is independent of
the initial state m0. Further, we know that the expected time spent in a marking
m depends on the former marking, so the expected time of being in marking m′

is: ∑
m∈M

r(m,m′).P[Xn−1 = m|Xn = m′],

which can be rewritten using Bayes rule to:∑
m∈M

r(m,m′).P[Xn = m′|Xn−1 = m].P[Xn−1 = m]/P[Xn = m′].

Thus, the expected sojourn time in some arbitrary marking is obtained by mul-
tiplying with P[Xn = m′]∑

m∈M

r(m,m′).Qm,m′ .P[Xn−1 = m].

This formula could also be derived immediately as the expected sojourn time in
the next marking. For n →∞, this converges either by the normal limit or limit
of averages to: ∑

m∈M

r(m,m′).Qm,m′ .π(m).

If we want to solve these equations using matrix calculations, we need to compute
the transition matrix of the reachability graph. However, we can also use the



The Right Timing: Reflections on the Modeling and Analysis of Time 17

method of successive approximations to approximate these values in an iterative
way using only two functions (vectors) over the state space. As an example, the
probability of reaching a set A from a set B we set: ∀m ∈ B : v0(m) = 0 and

∀m ∈ B : vn+1(m) =
∑
m′∈A

Qm,m′ +
∑

m′∈B

Qm,m′ .vn(m
′).

According to [1] we can derive for specially structured workflow nets the dis-
tribution of the throughput time of a case (i.e. the time a token needs to go
from the initial to the final place) analytically in case of DTPN with (In-zero,
Out-fint). Models of this class can be built by transition refinement, using the
patterns displayed in Fig. 5. Pattern 1 is a sequence construction. Pattern 2 is
an iteration where we have arc weights q and 1− q for the probability of contin-
uing or ending the loop. Pattern 3 is the parallel construction. Pattern 4 is the
choice, which has also arc weights q and 1− q representing the probabilities for
the choices. In Fig. 5 the intervals [a, b], [c, d] indicate the finite probability dis-
tributions. In order to be a model of this class, it must be possible to construct
it as follows. We start with an initial net and we may replace all transitions t
with |•t| = |t•| = 1 using one of the four rules. There should be a proper parse
tree for a net of this class. We associate to all transitions with output delay sets
a random variable; for the initial net the random variable U with distribution
on [a, b] and similarly random variable Y and Z for the patterns.

If we have such a net, we can apply the rules in the reversed order. If we
have at some stage a subnet satisfying to one of the four patterns, with the
finite distributions as indicated, we can replace it by an initial subnet with a
“suitable” distribution on the output delay interval. For the initial subnet we
have a random output variable U . For the sequential construction (rule 1) we
have two independent random variables Y and Z with discrete distributions
on [a, b] and [c, d] respectively. So U = Y + Z and the distribution of U is the
convolution of the distributions of Y and Z. For the parallel construction (rule 3)
we have U = max(Y, Z) which is the product distribution, i.e. P[U ≤ x] =
P[Y ≤ x].P[Z ≤ x]. For the choice (rule 4) it is a mixture of two distributions,
P[U ≤ x] = P[Y ≤ x].q+P[Z ≤ x].(1− q). The most difficult one is the iteration

(rule 2), since here we have the distribution of U :=
∑N

n=0 (Yn + Zn) where N
is a geometrically distributed random variable with distribution P[N = n] =
qn−1.(1 − q)] indicating the number of iterations and Yn and Zn are random
variables from the distributions on [a, b] and [c, d] respectively. All these random
variables are independent. The distribution of U can be derived using the Fourier
transform (see [1]). This is an approximation, since the domain of U is infinite,
even if Yn and Zn have finite domains. However, we can cut the infinite domain
with a controllable error.

Thus, we are able to reduce a complex DSPN. This method is only applicable
if the original net is safe, otherwise different cases can influence each other and
so the independency assumptions are violated.
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Fig. 5. Refinement rules

6 Conclusions

In this paper we considered Petri nets with time and stochastics, and in partic-
ular, one class of them that did not get much attention in literature: the class
with the timestamps for tokens. We call this class DTPN and show how we can
analyse the behaviour of the nets from this class in case the underlying Petri
net is bounded. We did not consider complexity but only computability, since
history has shown that methods can become feasible due to increase in comput-
ing power and smart heuristics. We considered several subclasses of DTPN and
we showed that they all are Turing complete, because they can express inhibitor
arcs, but that some have better modeling comfort, i.e. they are easier for model-
ing. The DTPN class can easily be extended to deal with stochastics, as we have
shown. Here, we have the advantage above the GSPN model that we can use
arbitrary finite distributions, while only exponential distributions can be used
in GSPN. The analysis of stochastic behavior is based on Markov chains and so
it is similar to the approach in GSPN. We also showed how analytical methods
for stochastic analysis can be incorporated in model checking.

References

1. van der Aalst, W.M.P., van Hee, K.M., Reijers, H.A.: Analysis of discrete-time
stochastic Petri nets. Statistica Neerlandica 54(2), 237–255 (2000)

2. van der Aalst, W.M.P.: Interval Timed Coloured Petri Nets and their Analysis.
PhD thesis, Eindhoven University of Technology (1993)

3. Abdulla, P.A., Nylén, A.: Timed Petri nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

4. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets
for the performance evaluation of multiprocessor systems. ACM Trans. Comput.
Syst. 2(2), 93–122 (1984)



The Right Timing: Reflections on the Modeling and Analysis of Time 19

5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

6. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal - a tool
suite for automatic verification of real-time systems. In: Alur, R., Sontag, E.D.,
Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996)

7. Bera, D., van Hee, K.M., Sidorova, N.: Discrete timed Petri nets. Computer Sci-
ence Report 13-03, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands (April 2013)

8. Berthelot, G., Boucheneb, H.: Occurrence graphs for interval timed coloured nets.
In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 79–98. Springer, Heidelberg
(1994)

9. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)

10. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. In: Proceedings IFIP, pp. 41–46. Elsevier Science Publishers (1983)

11. Boucheneb, H.: Interval timed coloured Petri net: efficient construction of its state
class space preserving linear properties. Form. Asp. Comput. 20(2), 225–238 (2008)

12. Bouyer, P., Haddad, S., Reynier, P.-A.: Undecidability results for timed automata
with silent transitions. Fundam. Inf. 92(1-2), 1–25 (2009)

13. Boyer, M., Roux, O.H.: On the compared expressiveness of arc, place and transition
time Petri nets. Fundam. Inf. 88(3), 225–249 (2008)

14. Cassez, F., Roux, O.-H.: Structural translation from time Petri nets to timed au-
tomata. Electron. Notes Theor. Comput. Sci. 128(6), 145–160 (2005)

15. Cerone, A., Maggiolio-Schettini, A.: Time-based expressivity of timed Petri nets
for system specification. Theor. Comput. Sci. 216(1-2), 1–53 (1999)

16. Ghezzi, C., Mandrioli, D., Morasca, S., Pezze, M.: A unified high-level Petri net
formalism for time-critical systems. IEEE Trans. Softw. Eng. 17(2), 160–172 (1991)

17. van Glabbeek, R.: The linear time-branching time spectrum. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidel-
berg (1990)

18. Haddad, S., Moreaux, P.: Sub-stochastic matrix analysis for bounds computation
- theoretical results. European Journal of Operational Research 176(2), 999–1015
(2007)

19. van Hee, K.M., Somers, L.J., Voorhoeve, M.: Executable specifications for dis-
tributed information systems. In: Proceedings of the IFIP TC 8/WG 8.1, pp. 139–
156. Elsevier (1989)

20. Jantzen, M.: Language theory of Petri nets. In: Brauer, W., Reisig, W., Rozenberg,
G. (eds.) APN 1986. LNCS, vol. 254, pp. 397–412. Springer, Heidelberg (1987)

21. Jensen, K.: An introduction to the theoretical aspects of coloured Petri nets. In: de
Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803,
pp. 230–272. Springer, Heidelberg (1994)

22. Knapik, M., Penczek, W., Szreter, M., Polrola, A.: Bounded parametric verification
for distributed time Petri nets with discrete-time semantics. Fundam. Inf. 101(1-2),
9–27 (2010)

23. Christensen, S., Kristensen, L.M., Mailund, T.: Condensed state spaces for timed
petri nets. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075,
pp. 101–120. Springer, Heidelberg (2001)

24. Lime, D., Roux, O.H.: Model checking of time Petri nets using the state class timed
automaton. Discrete Event Dynamic Systems 16(2), 179–205 (2006)



20 K. van Hee and N. Sidorova

25. Lime, D., Roux, O.H.: Model checking of time Petri nets using the state class timed
automaton. Discrete Event Dynamic Systems 16(2), 179–205 (2006)

26. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.:
Modelling with generalized stochastic Petri nets. SIGMETRICS Perform. Eval.
Rev. 26(2) (August 1998)

27. Merlin, P.M., Farber, D.J.: Recoverability of communication protocols: Implica-
tions of a theoretical study. IEEE Trans. Comm. (September 1976)

28. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE
Computer Society, Washington, DC (1977)

29. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. John Wiley and Sons, Inc., New York (1994)

30. Ramachandani, C.: Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Tenchnology, Cambridge, MA (1974)

31. Ramamoorthy, C.V., Ho, G.S.: Performance evaluation of asynchronous concurrent
systems using Petri nets. IEEE Transactions on Software Engineering 6(5), 440–449
(1980)

32. Recalde, L., Haddad, S., Silva, M.: Continuous Petri nets: Expressive power and
decidability issues. Int. J. Found. Comput. Sci. 21(2), 235–256 (2010)

33. Ross, S.M.: Introduction to Probability Models, 9th edn. Academic Press, Inc.,
Orlando (2006)

34. Valero Ruiz, V., de Frutos Escrig, D., Cuartero Gomez, F.: On non-decidability
of reachability for timed-arc Petri nets. In: Proc. 8th. International Workshop on
Petri Nets and Performance Models, pp. 188–196 (1999)

35. Sifakis, J.: Use of Petri nets for performance evaluation. In: Proceedings of the
Third International Symposium on Measuring, Modelling and Evaluating Com-
puter Systems, Bonn - Bad Godesberg, Germany, October 3-5, pp. 75–93. North-
Holland (1977)

36. Starke, P.H.: Some properties of timed nets under the earliest firing rule. In: Rozen-
berg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 418–432. Springer, Heidelberg (1990)

37. CPN website, http://www.cpntools.org/
38. ExSpecT website, http://www.exspect.com/
39. Great SPN website, http://www.di.unito.it/~greatspn/index.html
40. UPPAAL website, http://www.uppaal.org/

http://www.cpntools.org/
http://www.exspect.com/
http://www.di.unito.it/~greatspn/index.html
http://www.uppaal.org/


Eliminating Concurrency Bugs in Multithreaded

Software: An Approach Based on Control
of Petri Nets�
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Abstract. We describe the Gadara project, a research effort whose goal
is to eliminate certain classes of concurrency bugs in multithreaded soft-
ware by controlling the execution of programs at run-time. The Gadara
process involves three stages: modeling of the source code at compile
time in the form of a Petri net, feedback control synthesis, and control
logic implementation into the source code. The feedback control logic is
synthesized using techniques from supervisory control of discrete event
systems, where the specification captures the avoidance of certain types
of concurrency bugs, such as deadlocks. We focus on the case of circular-
wait deadlocks in multithreaded programs employing mutual exclusion
locks for shared data. The application of the Gadara methodology to
other classes of concurrency bugs is briefly discussed.

1 Introduction

The concepts and techniques of control engineering find numerous applications
in computer and software engineering. For instance, classical control theory, for
time-driven systems with continuous state spaces, has been applied to com-
puter systems problems involving quantitative properties, such as throughput
stabilization; see, e.g., [1]. However, many important problems in computer and
software engineering involve qualitative specifications, such as deadlock avoid-
ance, and their solution requires control-theoretic approaches for event-driven
systems with discrete state spaces, i.e., Discrete Event Systems (DES). In the
last few years, there has been increased interest in solving discrete-event con-
trol problems that arise in software and embedded systems; see, e.g., [2–10].
In particular, the paradigm of controlling software execution to avoid software
defects at run-time is receiving increased attention in the control engineering,
programming languages, and operating systems communities.
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We have been investigating how to control software execution to avoid cer-
tain classes of concurrency bugs under the so-called “Gadara Project” [11], a
multidisciplinary effort centered at the University of Michigan and pursued in
collaboration with HP Laboratories and the Georgia Institute of Technology in
the U.S. In this effort, control techniques from the field of DES, such as supervi-
sory control [12] and supervision based on place invariants [13], are employed to
synthesize control logic that is instrumented into the source code and enforces
the desired safety properties at run-time [14]. Since it is model-based and re-
lies on theoretical results in DES, this approach provably guarantees the desired
safety properties, subject to model accuracy. The principal safety property of in-
terest in the work to-date is deadlock avoidance in multithreaded programs that
use locking primitives to control access to shared data [15, 16]. Recent results
address certain types of atomicity violations in multithreaded programs [17, 18].

This paper describes and discusses the key features of the Gadara method-
ology, with relevant references. It is based on, and complements, the keynote
lecture of the first author at the 34th International Conference on Application
and Theory of Petri Nets and Concurrency (June 2013).

2 Gadara Methodology

There is a large amount of literature in computer science on the study of deadlock
using a variety of modeling and analysis techniques. Petri net models have been
used for deadlock analysis in several application domains, including computer
and manufacturing systems. In particular, several special classes of Petri nets
have been characterized and analyzed for deadlock problems that involve a set
of “processes” sharing a set of common “resources” in the context of automated
manufacturing applications; see [19, 20]. Such systems are often referred to as
Resource Allocation Systems, or RAS. RAS also occur in the context of software
systems, where processes may be threads and shared resources may be data
objects. Modeling thread creation/termination and lock/unlock operations on
shared data is in fact a classical application of Petri nets [21], and Petri nets
have been employed to model multithreaded synchronization primitives in the
popular Pthread library for C/C++ programs [22]. Petri nets were also used to
analyze deadlocks in Ada programs [23]. A review of the application of Petri
nets to computer programming is presented in [24].

The methodology developed in the Gadara project for avoidance of certain
classes of deadlocks in multithreaded software is also based on Petri net models.
The methodology relies on the extraction of a suitable model of the program
source code at compile time in the form of an enhanced Control Flow Graph
(CFG) that captures the control flow and the locking behavior of all the program
threads. This step generally requires the use of static analysis techniques (see,
e.g., [25, 26]) to ensure a more accurate model. This model is then translated
into a Petri net in a straightforward process: places in the net represent basic
blocks ( i.e., branch-free sets of consecutive instructions) in the CFG or locks
that will be acquired by the threads; transitions in the net represent transitions
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in the CFG or lock acquisition and release operations; finally, tokens represent
the states of the threads and of the locks. The special class of RAS Petri nets that
arises in this context is called Gadara nets. The reader is referred to [27] for the
formal definition of Gadara nets and for a treatment of their analytical properties
in the context of multithreaded programs that use mutually-exclusive locks to
control access to shared data. The deadlocks caused by the use of mutually-
exclusive locks are circular-mutex-wait deadlocks, where threads in a set are
waiting for one another and none can proceed. Avoidance of circular-mutex-wait
deadlocks in multithreaded programs is mapped to the problem of liveness in
Gadara nets in [27]. Liveness here refers to the property that every transition
is eventually firable from any reachable state of the net. Due to the structure
of Gadara nets, liveness is equivalent to reversibility, i.e., the initial state must
be reachable from every reachable state. Algorithms based on solving Mixed
Integer Linear Programs (MILP) are presented in [27] for determining if liveness
holds or not. The algorithms exploit the structural properties of Gadara nets,
in terms of certain classes of siphons. In this regard, we note that many works
have considered similar structural analyses for related classes of Petri nets; see,
e.g., [20, 28].

The central aspect of the Gadara methodology is its focus on synthesizing a
control strategy for the Petri net model so that the controlled system is provably
live, with respect to the model. This control strategy, referred to as the control
logic hereafter, must satisfy four key requirements in addition to liveness. The
first two requirements, denoted by (R1) and (R2), pertain to its synthesis and
the last two requirements, denoted by (R3) and (R4), pertain to its implemen-
tation. (R1): The control logic should not alter the behavior of the program; it
should only act by delaying lock acquisition or release operations performed by
the threads. (R2): The control logic should only intervene when absolutely nec-
essary; this is referred to as maximal permissiveness. A correct strategy could be
to force the threads to always execute serially; deadlock would be avoided, but
no concurrency would be allowed. (R3): The control logic must be readily trans-
latable to the original source code that is modeled by the Gadara net, thereby
allowing code instrumentation as an implementation mechanism. (R4): The run-
time overhead of the control logic must be minimized, so that the instrumented
program runs almost as fast as the original program.

The supervisory control theory for DES initiated in [12] and widely studied
since then is well suited for handling (R1) and (R2). The notion of uncontrollable
transitions (or events) captures (R1), while maximal permissiveness is handled
by the concept of the supremal controllable sublanguage of the legal language
with respect to the uncontrolled system language. Here, the legal language is
the live sublanguage of the uncontrolled system, obtained by deleting states that
deadlock and those that are in a livelock, when the initial state is the only marked
state. However, using the standard algorithms of this supervisory control theory,
as described in [29] for instance, requires building the reachability graph of the
Gadara net model of the program. Moreover, the form of the control strategy,
which is now a global function over the entire reachability graph, will perform
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poorly in terms of (R3) and (R4), unless it can be encoded in a different form.
These two considerations have motivated the control logic synthesis research
performed in the Gadara project, which is overviewed in the next section.

3 Control Logic Synthesis

Requirements (R3) and (R4) of the previous section suggest to use control places
(also called monitor places) as the control mechanism for the Gadara net model
of the program. Control places are connected to the transitions of the net, which
in turn can be mapped back to specific lines of code in the program. Instrumented
code can then be inserted at the appropriate location to implement the constraint
imposed by the control place, which is treated as a global variable. This control
mechanism only affects program execution when it reaches a point where the
corresponding transition in the Gadara net is connected to a control place. The
control synthesis task is therefore to determine a set of control places, their initial
marking, and their connectivity to the net, such that the control logic enforced
by these control places keeps the Gadara net live in a maximally-permissive
manner. Moreover, the control places should never lead to the disablement of an
uncontrollable transition in the net. In other words, the control logic enforced
by these control places should correspond exactly to the supremal controllable
sublanguage of the Gadara net subject to the live sublanguage specification
mentioned earlier.

In our efforts so far, we have used the control technique called Supervision
Based on Place Invariants (SBPI) to synthesize the desired control places. SBPI
is a control logic synthesis framework that uses control places to enforce a set
of linear inequality constraints on the reachable states of a given arbitrary Petri
net [13]. Each linear inequality corresponds to a weighted sum of the number of
tokens in each place of the net, and it will be exactly enforced by one control
place, if enforceable at all; that is, the control is correct and maximally permissive
with respect to the linear inequality. We have pursued two approaches that
leverage the SBPI technique.

Assume that we can enumerate the set of reachable states of the Gadara
net and calculate the supremal controllable sublanguage solution. This solution
corresponds to a partition of the set of reachable states of the Gadara net into
legal and illegal states. It is shown in [27] that this partition can be done using
a set of linear inequalities on the states; in other words, the set of legal states is
linearly separable. In [30], the problem of finding the minimum number of linear
inequalities for effecting the desired separation of the state space is solved using
concepts and techniques borrowed from classification theory. SBPI can then be
invoked to obtain control logic that necessitates the minimum number of control
places, which is highly correlated to the achievement of requirement (R4). This
methodology is referred to as MSCL, for Marking Separation using CLassifiers,
in subsequent works.

To avoid the explicit enumeration of the state space of the Gadara net that
must be performed to calculate the supremal controllable sublanguage solution,
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a control logic synthesis technique based on structural analysis of the Gadara
net was developed. The general framework of this methodology, called ICOG for
Iterative Control Of Gadara nets, is presented in [31], while its customization to
the case of programs modeled by Gadara nets is presented in [32] and referred
to as ICOG-O therein, since the nets involved remain ordinary throughout the
iterations. This approach does not guarantee at the outset that the number of
control places will be minimized. However, it leverages the structural properties
associated with liveness analysis in Gadara nets from [27] in the context of an
iterative scheme that eliminates illegal states by eliminating so-called resource-
induced empty siphons [20, 27]. ICOG employs siphon analysis, coupled with
SBPI, as well as a book-keeping mechanism to ensure convergence in a finite
number of iterations. At convergence, a set of control places that separates the set
of legal states from the set of illegal states is obtained. ICOG explicitly considers
the controllability properties of transitions when synthesizing the control logic,
so that no control place has an outgoing arc to an uncontrollable transition.
In effect, ICOG computes the supremal controllable sublanguage solution by
iterating directly on the Gadara net structure, using the notion of resource-
induced empty siphon to capture illegal states.

4 Discussion

The principal focus of the Gadara project so far has been the problem of circular-
wait-mutex deadlock in multithreaded software. This is an important problem
due to the prevalence of multicore computer architectures. There are numerous
other software problems where we believe control engineering techniques from the
field of DES hold great promise. These include other types of deadlocks, such as
reader-writer deadlock, condition wait/signal deadlock, inter-process deadlock,
and other concurrency issues such as race, atomicity violation, and priority in-
version. Results on the case of reader-writer deadlocks have recently appeared in
[33], while certain types of atomicity violations have been addressed in [17, 18].

A key challenge that is posed by the consideration of reader-writer locks stems
from the fact that the underlying state space is not necessarily finite; this is
because one can perceive this class of RAS as one where in writing mode, the
capacity of the resource is “one,” while in reading mode, it is “infinite.” This
obstacle is addressed in [33] by taking advantage of special structure that exists
in the set of inadmissible states, which enables a finite representation of this set
through its minimal elements.

Detecting atomicity violations is substantially more difficult than deadlock
detection. In [18], a class of atomicity violation bugs called “single-variable atom-
icity violations” is considered. Gadara nets are employed to capture this class of
bugs by control specifications expressed as linear inequalities on the net mark-
ing; adjustments to the construction of the Gadara net at modeling time are
necessary to make this possible. After adding one monitor place to enforce each
linear inequality using SBPI, the ICOG methodology is then directly applied on
the resulting controlled Gadara net to eliminate potential deadlocks introduced
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by these control places. If one is interested in obtaining the minimum-size con-
troller, in terms of number of added control places, then MSCL can be employed,
albeit the process is more involved.

5 Conclusion

The application of the control engineering paradigm and of DES techniques to
software failure avoidance opens up new avenues of research that cover the gamut
from theory to implementation. While some of the above-mentioned opportuni-
ties can be solved by existing DES control theory, better customized solutions
are often desirable. A crucial issue is scalability, which often necessitates the
development of customized algorithms that exploit problem structure. Another
crucial issue is the requirement on run-time overhead of the control logic in soft-
ware applications, which is much more stringent than in other application areas
such as manufacturing systems or process control, for instance. This leads to
numerous opportunities to advance the state-of-the-art of DES control theory.
Collaboration with domain experts is essential to construct suitable models and
to understand the implementation constraints of the control logic. We wish to en-
courage students and researchers to consider contributing to this very promising
emerging area of research.
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Abstract. We integrate two compact data structures for representing
state spaces of Petri nets: merged processes and contextual prefixes.
The resulting data structure, called contextual merged processes (CMP),
combines the advantages of the original ones and copes with several
important sources of state space explosion: concurrency, sequences of
choices, and concurrent read accesses to shared resources. In particular,
we demonstrate on a number of benchmarks that CMPs are more com-
pact than either of the original data structures. Moreover, we sketch a
polynomial (in the CMP size) encoding into SAT of the model-checking
problem for reachability properties.

1 Introduction

Model checking of concurrent systems is an important and practical way of
ensuring their correctness. However, the main drawback of model checking is
that it suffers from the state-space explosion (SSE) problem [23]. That is, even
a relatively small system specification can (and often does) yield a very large
state space. To alleviate SSE, many model-checking techniques use a condensed
representation of the full state space of the system. Among them, a prominent
technique are McMillan’s Petri net unfoldings (see, e.g. [15,6,11]). They rely on
the partial-order view of concurrent computation and represent system states
implicitly, using an acyclic unfolding prefix.

There are several common sources of SSE. One of them is concurrency, and the
unfolding techniques were primarily designed for efficient verification of highly
concurrent systems. Indeed, complete prefixes are often exponentially smaller
than the corresponding reachability graphs because they represent concurrency
directly rather than by multidimensional ‘diamonds’ as it is done in reachability
graphs. For example, if the original Petri net consists of 100 transitions that can
fire once in parallel, the reachability graph will be a 100-dimensional hypercube
with 2100 vertices, whereas the complete prefix will be isomorphic to the net
itself. However, unfoldings do not cope well with some other important sources
of SSE, and in what follows, we consider two such sources.

One important source of SSE are sequences of choices. For example, the small-
est complete prefix of the Petri net in Fig. 1 is exponential in its size since no
event can be declared a cutoff — intuitively, each reachable marking ‘remembers’
its past, and so different runs cannot lead to the same marking.
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. . .

Fig. 1. A Petri net with exponentially large unfolding prefix

Another important source of SSE are concurrent read accesses, that is, multi-
ple actions requiring non-exclusive access to a shared resource. Contextual nets
(c-nets) are an extension of Petri nets where such read accesses are modelled by
a special type of arcs, called read arcs and denoted by lines (in contrast to arrows
for the traditional consuming and producing arcs). Read arcs allow a transition
to check for the presence of a token without consuming it. As concurrent read
access to a shared resource is a natural operation in many concurrent systems,
c-nets are often the formalism of choice for a wide variety of applications, e.g.
to model concurrent database access [18], concurrent constraint programs [16],
priorities [9], and asynchronous circuits [24].

The usual way of modelling c-nets using traditional Petri nets is by replacing
read arcs by “consume-reproduce loops”: a transition consumes a token from
a place and immediately puts a token back, see Fig. 2 (a,b). Unfortunately,
this makes the unfolding technique inefficient: concurrent transitions of a c-
net reading the same place are sequentialised by this encoding, and thus all
their interleavings are represented in the unfolding, see Fig. 3 (b). This problem
can be mitigated using the place-replication (PR) encoding proposed in [24],
which replicates each place that is read by several transitions so that each of
them obtains a “private” copy of the place and accesses it using a consume-
reproduce loop, see Fig. 2 (a,c). However, the resulting unfolding may still be
large, see Fig. 3 (c). Moreover, the PR encoding can significantly increase the
sizes of presets of some transitions, considerably slowing down the unfolding
algorithm, because (with some reasonable assumptions) the problem of checking
if the currently built part of the prefix can be extended by a new instance of a
transition t is NP-complete in the prefix size and |•t| [7, Sect. 4.4].

Recently, techniques addressing these sources of SSE emerged. In [14], a new
condensed representation of Petri net behaviour called merged processes (MPs)
was proposed, which copes not only with concurrency, but also with sequences
of choices. Moreover, this representation is sufficiently similar to the traditional
unfoldings so that a large body of results developed for unfoldings can be re-used.
The main idea behind MPs is to fuse some nodes in the unfolding prefix, and use
the resulting net as the basis for verification. For example, the unfolding of the
net shown in Fig. 1 will collapse back to the original net after the fusion. It turns
out that for a safe Petri net, model checking of a reachability-like property (i.e.
the existence of a reachable state satisfying a predicate given by a Boolean ex-
pression) can be efficiently performed on its MP, and [14] provides a polynomial
reduction of this problem to SAT. Furthermore, an efficient unravelling algo-
rithm that builds a complete MP of a given safe PN has been proposed in [12].
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The experimental results in [14] indicate that this method is quite practical.
Unfortunately, MPs do not cope well with read arcs, as illustrated in Fig. 4.

An extension of the unfolding technique to c-nets was proposed in [3,24], and
a practical unfolding algorithm and SAT-based model checking for reachability-
like properties have been developed in [1,20]. The idea is to allow read arcs also
in the unfolding, which allows for significant compression in some cases — see
Fig. 3(a). The experimental results in [1, 20] demonstrate that the performance
of this method is comparable to the traditional unfoldings when c-nets have
no read arcs (i.e. can be directly interpreted as Petri nets), and can be much
better (in terms of both the runtime and the size of the generated prefix) than
traditional unfolding of plain and PR encodings of c-nets with many read arcs.
Unfortunately, this method does not cope with SSE resulting from sequences of
choices, e.g. it does not offer any improvement for the Petri net in Fig. 1, as it
contains no read arcs.

In this paper we observe that the described techniques for compressing the
unfolding prefix are in fact orthogonal, and can be combined into one that copes
with all the mentioned sources of SSE, viz. concurrency, sequences of choices
and concurrent read accesses to a shared resource. Moreover, there are striking
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Fig. 4. A c-net (a) whose contextual unfolding is isomorphic to the c-net itself, but
whose plain encoding into a Petri net has exponentially large merged process, since
no place instances in its unfolding (b) can be merged, and so there are 2n mp-events
corresponding to transition t. (For this c-net the PR encoding coincides with the plain
one, and so has the same unfolding and MP.)

similarities between the main complications that had to be overcome in the
theories of MPs and c-net unfoldings: events have multiple local configurations
(which causes difficulties in detection of cutoff events), and certain cycles (in
the flow relation in case of MPs and in the asymmetric conflict relation in case
of c-net unfoldings) have to be prohibited in valid configurations. Hence, the
combination of the two techniques is not only possible, but also is very natural.

The paper is organised as follows. In Section 2 we provide the necessary def-
initions related to c-nets and unfoldings. Section 3 — the main contribution
of this paper — introduces the notion of a contextual merged process (CMP)
and provides results to characterise the configurations of CMPs of safe c-nets.
We use these results in Section 4 to discuss the construction and SAT-based
model checking of CMPs. In Section 5 we experimentally evaluate the proposed
approach on a number of benchmark examples. In Section 6 we conclude and
outline the directions for future research.

A longer version of this paper, including proofs, is available at [22].

2 Basic Notions

In this section, we set our basic definitions and recall previous results (see [2,21]).
A multiset over a set S is a function M : S → N. The support of M is the

set M̄ := {x ∈ S | M(x) > 0} of elements in S occurring at least once in
M . We write x ∈ M if x is in the support of M . We say that M is finite iff
its support is. Given multisets M and N over S, their sum and difference are
(M + N)(x) := M(x) + N(x) and (M − N)(x) := max (0,M(x)−N(x)). We
write M ≤ N iff M(x) ≤ N(x) for all x ∈ S. Any function f : S → T can be
lifted to multisets by letting f(M)(x) :=

∑
y∈f−1(x) M(y); note that this sum is

well-defined iff finitely many of its summands are non-zero, which is always the
case if, for instance, M has a finite support. Any set can be interpreted as a
multiset in the natural way.

A contextual net (c-net) is a tuple N = 〈P, T, F, C,m0〉, where P and T are
disjoint sets of places and transitions, F ⊆ (P ×T )∪ (T ×P ) is the flow relation,
C ⊆ P × T is the context relation, and the initial marking m0 is a multiset over
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P . A pair (p, t) ∈ C is called read arc. A Petri net is a c-net without read arcs.
N is called finite if P and T are finite sets. Places and transitions together are
called nodes. Fig. 2 (a) depicts a c-net, where read arcs are drawn as undirected
lines, e.g. between p and c.

For x ∈ P ∪ T , •x := { y ∈ P ∪ T | (y, x) ∈ F } is the preset of x, x• := { y ∈
P ∪ T | (x, y) ∈ F } is the postset of x, and x := { y ∈ P ∪ T | (y, x) ∈ C ∪C−1 }
is the context of x. We assume that for each node x ∈ P ∪T the sets •x, x•, and
x are pairwise disjoint.

A marking of N is a multiset m over P . A transition t is enabled at m if
m(p) ≥ 1 for all p ∈ t ∪ •t. Such t can fire, leading to the well-defined marking
m′ :=m−•t+t•. The tuple 〈m, t,m′〉 is called a step. A marking m is reachable if
it can be obtained by a finite sequence of firings starting at m0. N is k-bounded
if m(p) ≤ k for all reachable m and all p ∈ P , and safe if it is 1-bounded. For
safe nets, we treat markings as sets of places.

Two distinct transitions t and t′ are in symmetric conflict, denoted t # t′, if
•t ∩ •t′ �= ∅, and in asymmetric conflict, written t ↗ t′, if (i) t• ∩ (•t′ ∪ t′) �= ∅,
or (ii) t ∩ •t′ �= ∅, or (iii) t # t′. Intuitively, when t ↗ t′, then if both t, t′ fire in
a run, t fires before t′. Note that t and t′ may not fire together in any run, e.g.
if t # t′, where we have t ↗ t′ and t′ ↗ t — corresponding to the intuition that
t has to fire before t′ and vice versa. In Fig. 6 (b) we have e3 ↗ e5 due to (i);
in Fig. 5 we have e1 ↗ e2 due to (ii). For a set of transitions X ⊆ T , we write
↗X to denote the relation ↗∩ (X ×X).

Let N ′ = 〈P ′, T ′, F ′, C′,m′
0〉 be a c-net. A homomorphism [24] from N to N ′

is a function h : P ∪T → P ′∪T ′ satisfying: h(P ) ⊆ P ′, h(T ) ⊆ T ′, h(m0) = m′
0,

and h restricted to •t, t•, t for all t ∈ T is a bijection to •h(t), h(t)• and h(t),
respectively. Such a homomorphism is a specialisation of Definition 4.20 in [3].

For two nodes x and y we write x <i y if either (x, y) ∈ F or x, y ∈ T and
x• ∩ y �= ∅. We write < for the transitive closure of <i, and ≤ for the reflexive
closure of <. For a node x, we define its set of causes as [x] := { t ∈ T | t ≤ x }.
A set X ⊆ T is causally closed if [t] ⊆ X for all t ∈ X .

An occurrence net is a c-net O = 〈B,E,G,D, m̃0〉 if (i) O is safe and for any
b ∈ B, we have |•b| ≤ 1; (ii) < is a strict partial order for O; (iii) for all e ∈ E,
[e] is finite and ↗[e] acyclic; (iv) m̃0 = { b ∈ B | •b = ∅ }. As per tradition, we
call the elements of B conditions, and those of E events. A configuration of O is
a finite, causally closed set of events C such that↗C is acyclic; Conf (O) denotes
the set of all configurations. For a configuration C, let cut(C) := (m̃0 ∪ C•) \ •C.
A prefix of O is a c-net P = 〈B′, E′, G′, D′, m̃0〉 such that E′ ⊆ E is causally
closed, B′ = m̃0∪E′•, and G′ and D′ are the restrictions of G and D to B′∪E′;
in such a case we write P � O.

Fig. 5 shows an occurrence net illustrating why it is necessary to restrict
configurations to sets without cycles in ↗. There are three events, and each pair
of them can fire, but not all three. Indeed, e1 ↗ e2 ↗ e3 ↗ e1 is a cycle of
asymmetric conflicts.
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Fig. 5. An occurrence net illustrating circular asymmetric conflict

A branching process of N is a pair P = 〈O, h〉, where O is an occurrence
net and h is a homomorphism from O to N with the property that h(e) =
h(e′) ∧ •e = •e′ ∧ e = e′ implies e = e′ for all events e, e′ ∈ O. For every
N , there is a unique (up to isomorphism) maximal (wrt. �) branching process
UN = 〈U, h′〉 that we call the unfolding of N [2]. Thus, any branching processes
〈O, h〉 is characterised by a prefix O of U and the restriction h of h′ to the
elements of O. For convenience, we shall often equate a branching process with
its underlying net and call it an unfolding prefix. As usual, for C ∈ Conf (UN ),
we define mark(C) := h(cut(C)).

An unfolding prefix P is called marking-complete if for any marking m reach-
able in N there exists a marking m̃ reachable in P with h(m̃) = m. For example,
UN is marking-complete but in general infinite. For bounded N , it is however
possible to compute a finite marking-complete prefix PN [2, 21].

The key notion in computing marking-complete prefixes is a history. Given
a configuration C ∈ Conf (U) and some event e ∈ C, the history of e in C is
defined as C[[e]] := { e′ ∈ C | e′ ↗∗

C e }. For e ∈ E, Hist(e) := { C[[e]] | C ∈
Conf (U) } is the set of all histories of e. The construction of a complete prefix
discovers events that do not contribute to reaching new markings of N in the
prefix: an event e is declared cutoff if for every history H of e there exists a
configuration C in P such that mark(C) = mark(H) and C ≺ H , where ≺ is
a so-called adequate order on configurations.1 The construction then excludes
events that are causal successors of e, thereby ensuring the finiteness of P while
guaranteeing its marking-completeness: for every reachable marking m of N
there is a configuration C of P such that mark(C) = m and C does not include
any cutoffs.

3 Contextual Merged Processes

In this section, we introduce the notion of contextual merged processes (CMP)
and discuss some of their properties. These results generalise those of [14], in par-
ticular it turns out that the notions of mp-configuration, defined in [14] for Petri

1 Actually, [2] defines pairs 〈e,H〉 as cutoffs; above, we chose an equivalent presentation
that will be more convenient for defining CMPs. Also, only histories are considered
for C in [2]; we come back to this point in Section 4.
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nets, and the notion of a c-net configuration from [2], both of which introduce
acyclicity constraints, can be seamlessly integrated into a common framework.

We first show (see [22] for the proofs of all results) that asymmetric conflict,
causality, and steps are, among other notions, preserved by homomorphisms.

Lemma 1. Let N and N ′ be c-nets, and h be a homomorphism from N to N ′.
If 〈m, t, m̂〉 is a step of N and h(m) is well-defined,2 then 〈h(m), h(t), h(m̂)〉 is
a step of N ′. Furthermore, for any nodes x, y and transitions t, u of N , x < y
implies h(x) < h(y) and t ↗ u implies h(t)↗ h(u).

As usual, homomorphisms preserve runs and reachable markings: if σ is a run
of N that reaches m, then h(σ) is a run of N ′ that reaches h(m), because
h(m0) = m′

0 is a well-defined marking and due to Lemma 1.
The first step to define CMPs is the notion of occurrence depth.

Definition 1 (occurrence depth). Let x be a node of a branching process
〈O, h〉. The occurrence depth of x, denoted od(x), is the maximum number of
h(x)-labelled nodes in any path in the directed graph (m̃0∪ [x]∪ [x]•, <i) starting
at any initial condition and ending in x.

Recall that the cone [x] is finite and <i is a partial order, so there is only a finite
number of paths to evaluate, and the definition is well-given.

A CMP is obtained from a branching process in two steps. First, all conditions
that have the same label and occurrence depth are fused together (their initial
markings are totalled); then all events that have the same label and environment
(after fusing conditions) are merged. Conditions in the initial marking will have,
by definition, occurrence depth 1. If n of them share the same label, they will
be fused together, and the resulting condition will be initially marked with n
tokens. This is formalised as follows:

Definition 2 (contextual merged process). Let N = 〈P, T, F, C,m0〉 be a
c-net and P = 〈〈B,E,G,D, m̃0〉, h〉 be a branching process of N . Define a net

Q = 〈B̂, Ê, Ĝ, D̂, m̂0〉, where B̂ ⊆ P × N, Ê ⊆ T × 2B̂ × 2B̂ × 2B̂, and a
homomorphism � from P to Q as follows:

– for b ∈ B, �(b) := 〈h(b), od(b)〉; set B̂ := �(B);

– for e ∈ E, �(e) := 〈h(e), �(•e), �(e), �(e•)〉; set Ê := �(E);

– Ĝ, D̂ are such that for every ê = 〈t,Pre,Cont ,Post〉 ∈ Ê we have •ê :=Pre,
ê := Cont, ê• := Post;

– m̂0(〈p, d〉) := |m̃0 ∩ { b ∈ B : h(b) = p, od(b) = d }|.

Moreover, let ĥ be the homomorphism from Q to N given by projecting the nodes
of Q to their first components. We call Merge(P) := 〈Q, ĥ〉 the merged process
of P. The merged process MN :=Merge(UN ) of the unfolding of N is called the
unravelling of N .

2 That is, h(m) is a well-defined multiset.
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Fig. 6. (a) A net; (b) its unfolding; (c) its unravelling

Fig. 6 shows a 1-safe net (taken from [14]), its unfolding, and its unravelling. For
the rest of this section, let N = 〈P, T, F, C,m0〉 be a bounded c-net, UN be its
unfolding, PN = 〈〈B,E,G,D, m̃0〉, h〉 be a branching process of N , and QN =

〈〈Ê, B̂, Ĝ, D̂, m̂0〉, ĥ〉 be the corresponding merged process, i.e. Merge(PN ). The
places of QN are called mp-conditions and its transitions mp-events. We shall
write pd for an mp-condition 〈p, d〉. Note that m̂0(p

d) equals m0(p) if d = 1 and
is 0 otherwise. An mp-event ê is an mp-cutoff if all events in �−1(ê) are cutoffs.

We denote these mp-events by Êcut.
We call a run t1t2 . . . of a c-net repetition-free if no transition occurs more

than once in it. Some properties of contextual merged processes follow.

Remark 1. The following properties hold for CMPs or c-net unfoldings:

1. In general, MN is not acyclic; see Fig. 6 (c).
2. There can be mp-events consuming conditions in the postset of an mp-cutoff.
3. There is at most one mp-condition pk resulting from fusing occurrences of

place p at depth k ≥ 1.
4. For two mp-conditions pk and pk+1, there is a directed path in the <i relation

from the former to the latter.
5. Two different conditions c1 and c2 having the same label and occurrence

depth are not causally related. Hence, if the original c-net is safe, then
↗[c1]∪[c2] contains a cycle.

6. h = ĥ ◦ �.
7. � and ĥ are homomorphisms.
8. A sequence of transitions σ is a run of N iff there exists a run σ̂ ofMN such

that σ = ĥ(σ̂).
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Additionally, if N is safe, we have:

9. � is injective when restricted to the events of a configuration.
10. Property 8 is true if we additionally require σ̂ to be repetition-free.

Note that Property 9 is still true when � is restricted to the elements of m̃0 ∪
C ∪ C•. Indeed, � is bijective when restricted to m̃0, because m̂0 is safe, and two
conditions c, c′ ∈ C• cannot be merged because ↗[c]∪[c′] would have cycles and
[c] ∪ [c′] ⊆ C.

Definition 3 (mp-configuration). A multiset of mp-events Ĉ is an mp-conf-

iguration of QN if there exists a configuration C of UN verifying �(C) = Ĉ.

As it is the case for configurations of branching processes, any mp-configura-
tion of a merged process represents a (concurrent) run of its mp-events, i.e.

there exists at least one linear ordering of the mp-events of Ĉ that is a run of
the merged process. This is because the same is true for configurations of the
associated branching process and because � is a homomorphism.

Every finite firing sequence of UN consists of a set of events that form a
configuration C, which, due to Definition 3, corresponds to an mp-configuration
Ĉ of MN . However, the inverse statement is not true: a firing sequence of MN

may consist of a multiset of events X that is not an mp-configuration since no C ∈
Conf (UN ) satisfies �(C) = X . This already holds for nets without read arcs, as
the example in Fig. 6 shows: v1v5 is a valid firing sequence ofMN corresponding
to events e1 and e6 of UN (i.e. �(e1) = v1 and �(e6) = v5) which do not form a

configuration. However, ĥ applied to v1v5 still gives a valid firing sequence t1t3
of N thanks to Remark 1 (8). Below we formalise these observations.

Definition 4 (marking-complete CMP). Let X be a finite multiset of mp-
events. The cut and marking of X are respectively defined as the multisets

cut(X) := (m̂0 + X•)− •X and mark (X) := ĥ(cut(X)).

We call QN marking-complete if for each reachable marking m of N there exists
a cutoff-free mp-configuration Ĉ in QN satisfying mark(Ĉ) = m.

The intuition behind these definitions is as follows. If X is the multiset of mp-
events associated to a finite run (i.e. the multiset M such that M(ê) = n if ê
fires n times) then cut(X) is the marking reached by this run in the CMP, and

mark(X) is the ĥ-image of cut(X), i.e. the corresponding marking of N .
Observe that in the definition of a marking-complete CMP, one could ask for a

finite run (rather than a configuration) that reaches a marking m. The resulting
definition would be equivalent, but we preferred the current variant because it (i)
mimics the analogous definition for unfoldings and (ii) avoids some unpleasant
properties of runs: e.g. finite CMPs can have infinite runs and therefore infinitely
many finite runs, which is impossible for configurations.

We now focus on the practically relevant class of safe c-nets. Here, the mapping
� lifted to configurations establishes an injective correspondence between the
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configurations of the unfolding and the mp-configurations of the unravelling.
For each mp-configuration Ĉ there exists a unique configuration C such that
Ĉ = �(C).

We give, for safe nets, characterisations of sets of mp-events that correspond
to reachable markings of N (Proposition 1) and to configurations of UN (Propo-
sition 2). They serve to aid CMP-based model-checking, as well as the direct
construction of CMPs, see Section 4. We note that the problem of generalising
these approaches to bounded, but not safe, nets is still open even for merged
processes without read arcs [14].

Proposition 1. Let QN be a marking-complete CMP of a safe c-net N . Then
a marking m is reachable in N iff there exists a cutoff-free set X of mp-events
of QN satisfying:

1. ∀ê ∈ X : ∀ĉ ∈ •ê ∪ ê : (ĉ ∈ m̂0 ∨ ∃ê′ ∈ •ĉ : ê′ ∈ X), and
2. ↗X is acyclic, and
3. m = mark(X).

Note that the conditions in Proposition 1 do not ensure that X is an mp-con-
figuration; however, they do guarantee that X corresponds to a repetition-free
run of QN , and thus are sufficient to check reachability (see the comment before
Definition 4 for an example). Finally, observe that not every repetition-free run
satisfies the first two conditions of Proposition 1: v1v3v4 is a repetition-free
run of Fig. 6 but {v1, v3, v4} violates the second condition. This means that
Proposition 1 characterizes a strict subset of repetition-free runs that are enough
for representing all reachable markings of N .

Proposition 2. If N is safe, a set of mp-events Ĉ is an mp-configuration of
QN iff it satisfies the following conditions:

1. ∀ê ∈ Ĉ : ∀ĉ ∈ •ê ∪ ê : (ĉ ∈ m̂0 ∨ ∃ê′ ∈ •ĉ : ê′ ∈ Ĉ), and
2. ↗Ĉ is acyclic, and

3. for k ≥ 1, pk+1 ∈ Ĉ• implies pk ∈ m̂0 ∪ Ĉ• and there exists a path in the
directed graph (m̂0 ∪ Ĉ ∪ Ĉ•, <i) between pk and pk+1.

A key detail in both results is that acyclicity of ↗ prohibits, at the same time,
asymmetric conflicts inherent to c-net unfoldings (Fig. 5) and cycles in the flow
relation introduced by merging (Fig. 6 (c)).

4 Computing and Analysing Complete CMPs

In this section, we discuss various algorithmic aspects of CMPs, in particular
how to construct a complete CMPs from a given safe Petri net N , and how to
use the resulting CMP to check properties of N .
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4.1 CMP Construction

Recall that a marking-complete CMP is one in which every reachable marking
m of N is the image (through ĥ) of the cut of some cutoff-free mp-configuration.
We wish to construct such a CMP in order to analyse properties of N such as
reachability or deadlock.

Indirect Methods. It follows from Section 3 that one can achieve this goal by
(i) constructing a marking-complete unfolding prefix P and (ii) applying the
construction from Definition 2 to P . Available options for step (i) are:

1. Directly construct P from N . This approach is implemented in the toolCunf
[19], which is based on the results from [21].

2. Replace all read arcs by consume-produce loops (cf. Fig. 2 (b)) and unfold the
resulting Petri net using, e.g., the tool Punf [13], obtaining some complete
prefix P ′. We then apply a “folding” operation to P ′ in which we repeatedly
carry out the following steps: (i) all conditions that were created due to a
consume-produce loop are merged and their flow arcs replaced by a read arc;
(ii) all events with the same label and the same preset after (i) are merged,
and so are their postsets. The resulting c-net prefix P has the same reachable
markings as P ′ and is therefore marking-complete. Indeed, applying this
operation to the prefix in Fig. 3 (b), which is the unfolding of Fig. 2 (b),
would yield the c-net unfolding from Fig. 3 (a).

3. A similar approach as before, but using the place-replication (PR) encoding
and adapting the folding operation accordingly (see Fig. 2 (c) and Fig. 3 (c)).

While the first approach is usually more efficient than the others [21], certain
aspects of the currently available tool support make options 2 and 3 interesting
for the purposes of comparing the resulting CMP sizes. For instance, as pointed
out in Footnote 1, Cunf declares a pair 〈e,H〉, where H is a history of e, a
cutoff if it finds another pair 〈e′, H ′〉 with mark (H ′) = mark(H) and H ′ ≺ H ;
this was motivated by the approach from Petri net unfolding [6], where an event
is declared cutoff if its local configuration leads to the same marking as the
local configuration of another event. However, Punf implements an approach
for Petri nets in which more general configurations are considered for the role of
H ′ [8], leading to smaller unfolding sizes.

Direct Method. Another option is to construct a CMP directly from the c-net
N . A similar approach for nets without read arcs was presented in [12]. No such
implementation currently exists for CMPs; in the following we describe some key
elements that are required for extending [12] to CMPs.

A procedure for direct CMP construction would start with a CMP containing
mp-conditions that represent the initial marking of N and extend it one mp-
event at a time. To know whether the current CMP Q can be extended by an
mp-event ê, one has to identify an mp-configuration Ĉ of Q and check (i) whether

Ĉ ∪ {ê} is an mp-configuration of MN and (ii) whether ê constitutes a cutoff.
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Problem (i) can be formulated as a variant of the model-checking algorithm
based on Proposition 2 that can be encoded in SAT, see Section 4.2. For (ii),

observe that an mp-configuration Ĥ corresponds to some history H of an event
e of UN with �(e) = ê iff ê is the maximal element of the relation ↗Ĥ . The

problem then corresponds to asking whether for all such Ĥ there exists another
mp-configuration Ĉ such that mark(Ĉ) = mark (Ĥ) and Ĉ ≺ Ĥ . For Ĉ, Ĥ in Q,
this problem can be encoded in 2QBF, which is more complicated than SAT but
less so than QBF in general, and for which specialised solutions exist [17].

However, as Q grows, the number of possible candidates for Ĥ may increase.
In general ê cannot be designated a cutoff until the construction has been termi-
nated, instead the possibility of adding ê may have to be re-checked periodically.

To summarise, the basic structure of the algorithm from [12] would remain
unchanged, however one needs to use the characterisation 2 of mp-configurations
rather than the non-contextual one in [12].

4.2 Model Checking CMPs

Let Q be a CMP. We briefly discuss a possible encoding for runs and mp-
configurations ofQ into SAT, using Propositions 1 and 2. Note that [14] discusses
the corresponding problems for non-contextual MPs and [20] for contextual un-
foldings. Remarkably, both problems require to encode acyclicity for different
purposes, which are united into a single acyclicity constraint in our case.

Proposition 1 says that every reachable marking m ofN is represented by some
↗-acyclic run X of Q. Reachability of m reduces, then, to the satisfiability of a
SAT formula that has variables c, e, p for mp-conditions, mp-events, and places,
respectively, such that e is true iff ê ∈ X , c iff ĉ ∈ cut(X) and p iff p ∈ mark (X).

Condition 1 of Proposition 1 demands that every event needs a causal pre-
decessor for all non-initial mp-conditions in its preset or context. Condition 3
imposes that the variables for mp-conditions and places be correctly related and
that the place variables correspond to m. Both these conditions can easily be
encoded in linear size wrt. |Q|. For the acyclicity constraint (Condition 2) there
are multiple encodings of polynomial size. We refer the reader to [14,20], where
such encodings are discussed and experimentally evaluated.

Proposition 2, used for constructing CMPs, differs from Proposition 1 in hav-
ing a more restrictive third condition. This constraint and its encoding is very
similar to the “no-gap” constraint from [14] to which we refer the reader for
details.

5 Experiments and Case Studies

In this section, we experimentally3 compare the sizes of CMPs, MPs, and un-
foldings for a number of families of c-nets. In Section 5.1, we discuss an artificial

3 All the benchmarks and tools referenced in this section are publicly available from
http://www.lsv.ens-cachan.fr/~rodriguez/experiments/pn2013/

http://www.lsv.ens-cachan.fr/~rodriguez/experiments/pn2013/
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Fig. 7. The c-net 2-Gen

family of examples that allows one to study the effects of read arcs and choice for
the various methods in isolation. Section 5.2 presents a case study on Dijkstra’s
mutual exclusion protocol. Finally, Section 5.3 shows how our methods behave
on assorted practical benchmarks.

5.1 Interplay between Read-Arcs and Choice

We study a family of c-net examples called n-Gen, shown for n = 2 in Fig. 7.
The net represents n processes that concurrently generate resources ri. Once all
ris are produced, an action t consumes them all. Resource ri can be produced if
one of two conditions is fulfilled, symbolised by transitions ti or t′i. Thus, ti, t

′
i

share context with transitions tj and t′j , respectively, whenever j �= i.
For some n ≥ 1, let Nc be the c-net n-Gen, Np its plain encoding, and Nr its

PR encoding. The unfoldings of the three nets and the MPs of Np and Nr blow
up due to at least one of the following reasons, which we explain in the sequel:
(1) choices between ti and t′i or (2) sequentialised read access to p and p′.

For (1), notice that process i can produce ri in two different ways. At least
two occurrences of each ri are thus present in the unfolding of any of the three
nets. Hence there are at least 2n ways of choosing t’s preset, i.e. at least 2n

occurrences of t and p′′ in any of the three unfoldings.
Roughly speaking, (2) refers to the same phenomena that were demonstrated

in Fig. 2 and Fig. 3. While all ti are concurrent in Nc, they are sequentialised
in Np: they all consume and produce the same p. This creates conflicts between
them, and as a result all their exponentially many interleavings are explicitely
present in UNp . Importantly, any occurrence of ti that consumes an occurrence
of p at depth d, produces an occurrence of p at depth d+ 1.

In Nr, even if all ti are still concurrent to each other, their occurrences produce
two conditions with occurrence depths 1 and 2, each labelled by their respective
private copy of p. For UNr , this again has the consequence of producing 2n ways
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Table 1. Growth of the unfoldings and MPs of the n-Gen c-nets and their encodings

Merged Processes Unfoldings
Ctx Plain PR Ctx Plain PR

O(n) O(n2) O(2n) O(2n) O(2n) O(2n)

of choosing v3’s preset, and 2n events labelled by v3. More importantly, the
private copies of ti cannot be merged with those of tj and they remain in QNr .
As a result, all 2n occurrences of v3 are also present in the MP of Nr. This
suggests that MPs of PR unfoldings may not yield, in general, much gain.

While the size of the contextual unfolding of Nc explodes due to (1), it is
unaffected by (2). On the other hand, the MP of Np effectively deals with (1), but
only partially with (2). We now see why. Notice that there are O(2n) conditions
labelled by p in UNp , all with occurrence depths between 1 and n+1. In the MP,
they are merged into the n+1 mp-conditions p1, . . . , pn+1. Since all instances of
qi and ri have occurrence-depth 1, all the exponentially many events labelled by
ti are merged into n mp-events, each consuming some pj and producing pj+1,
for 1 ≤ j ≤ n. This yields an MP of size O(n2).

Finally, the CMP of Nc deals effectively with both (1) and (2); it is, in fact,
isomorphic to N . Roughly speaking, this is because the unfolding of Nc already
deals with (2), as we said, and the ‘merging’ solves (1). Thus, the CMP is
polynomially more compact than the MP of Np and exponentially more than
the MP of Nr, or the unfoldings of Nc, Np, or Nr. See Table 1 for a summary.

While this example in itself is artificial, the underlying structures are quite
simple and commonly occur in more complex c-nets, which explains some of the
experimental results below.

5.2 Dijkstra’s Mutual Exclusion Algorithm

In this section we analyse the performance of CMPs on a well-known concurrent
algorithm for mutual exclusion due to Dijkstra [5]. What follows is a condensed
technical explanation of the algorithm, see [5] for more details.

Dijkstra’s algorithm allows n threads to ensure that no two of them are si-
multaneously in a critical section. Two Boolean arrays b and c of size n, and one
integer variable k, satisfying 1 ≤ k ≤ n, are employed. All the entries of both
arrays are initialised to true, and k’s initial value is irrelevant. All threads use
the same algorithm, which runs in two phases. During the first, thread i sets
b[i] := false, and repeatedly checks the value of b[k], setting k := i if b[k] is true,
until k = i holds. At this point, thread i starts phase 2, where it sets c[i] := false ,
and enters the critical section if c[j] holds for all j �= i. If the check fails, it sets
c[i] := true and restarts in phase 1. After the critical section, b[i] and c[i] are set
to true. Note that more than one thread could pass phase 1, and phase 2 is thus
necessary.
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b0 := t; c0 := t

k=1

b0=t

b1=t

k = 0 c1 = f?
c1=f

l1,0 l4,0

l2,0

b0 := f k = 0? c0 := f

l5,0 l6,0
c0=t

c0=f

c0 := tl3,0 k = 1? k := 0k = 1, bk = t?

c1=tb0=f

l0,0

∀j �= 0, cj = t?

Fig. 8. The fragment of 2-Dijkstra that encodes thread 0. Note that arrows from
transition b0 := t; c0 := t are only partially depicted.

We encoded Dijkstra’s algorithm into a c-net as follows. The entries of arrays
b, c are represented by two places, e.g. bi=t and bi=f . Variable k is encoded by n
places k=0, . . . , k=n−1. Places l0,i, . . . , l6,i encode thread i’s instruction pointer.
Fig. 8 shows the fragment of 2-Dijkstra that encodes thread 0. Roughly, each
transition encodes one instruction of the original algorithm [5], updating the
instruction pointer and the variables affected by the instruction. Transitions
encoding conditional instructions, like k = 0?, or ∀j �= 0, cj = t? employ read
arcs to the places coding the variables involved in the predicate.

MPs of n-Dijkstra, and in particular CMPs, exhibit a very good growth
with respect to n. Table 2 shows the figures, obtained under the same setting as
in Section 5.3. While all unfoldings are exponential in n and |T |, all the MPs are
of polynomial size. The sizes of the plain and PR unfoldings seem to increase
by a factor of 5 for each process added. The contextual unfolding reduces this
factor down to 3. The plain and PR MPs seems to fit a polynomial curve of
degree close to 3. The CMP seems to grow linearly with n2, i.e. linear with |T |,
the number of transitions in the net. As it was the case for n-Gen, PR MPs
seem to be less efficient than plain MPs on n-Dijkstra.

We note that this example exhibits some of the features explained in Sec-
tion 5.1. For instance, process 0 can transition from l5,0 to l2,0 if there exists

Table 2. Unfolding and MP sizes of n-Dijkstra, its plain, and PR encodings. Last
row obtained through regression analysis, see the text.

Net Merged Processes Unfoldings

n |T | Ctx Plain PR Ctx Plain PR

2 18 31 42 40 35 54 54
3 36 64 113 121 131 371 364
4 60 105 220 278 406 2080 1998
5 90 155 375 582 1139 10463 9822
6 126 214 589 1198 3000 49331 44993

O(n2) O(n2) O(n3) O(n3) O(3n) O(5n) O(5n)
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another process i with ci = f . Thus, for n ≥ 3 there would be a choice between
multiple (i.e. n−1) transitions in parallel to implement the check, a structure also
found in the n-Gen example. We note that such structures would also naturally
ensue from other mutual exclusion algorithms that typically involve checking for
the presence of some other event with a certain property.

5.3 Assorted Benchmarks

In this section we present experimental results for a number of benchmark ex-
amples circulating in the PN community (collected mostly by Corbett [4]). The
following consistent setup was used to produce them:

– The total adequate order proposed in [12] was used.
– All configurations were allowed as cutoff correspondents.
– The cutoff (mp-)events and post-cutoff (mp-)conditions were not counted.

The plain and PR unfolding prefixes were constructed using Punf [13], and
the contextual unfolding prefixes were computed by compressing the PR ones
with PRCompress4. The plain and PR MPs have been merged from the cor-
responding unfolding prefixes with Mci2mp, and the CMPs were merged from
the corresponding contextual unfolding prefixes using Cmerge. Note that the
direct construction of contextual unfoldings and MPs would yield the same re-
sults [12, 1].

Recall the following theoretical guarantees:

– The contextual unfolding prefix is never larger than the PR prefix.
– The plain/PR/contextual MP is never larger than the corresponding unfold-

ing prefix.

Table 3 compares the sizes of plain, PR and contextual unfolding prefixes and
MPs. The 4th and 5th columns from the left are, respectively, the number of
read arcs in the net and place replicas in its PR encoding.5 The number of
conditions and events for the plain and PR unfoldings is normalised wrt. that
of the contextual unfolding. Similarly, mp-conditions and mp-events of the plain
and PRMPs are normalised wrt. those of the CMPs. The last three columns show
the compression gains of CMPs wrt. plain and contextual unfolding prefixes, and
the gain of plain MPs wrt. plain unfolding prefixes.

One can see that CMPs are the most compact of all the considered represen-
tations.6 Furthermore, on some benchmarks, notably Key(4), it has significant
advantages over both plain and PR MPs. Interestingly, in this case the PR MP
is significantly larger than even the plain MP, which seems to be due to place
replication making the subsequent merging much less efficient. As CMPs do not
suffer from this problem, they come as a clear winner in such cases.

4 All tools available from the URL indicated in Footnote 3.
5 More precisely,

∑
p∈P,|p|>1(|p| − 1).

6 Though the PR MP of RW(1,2) has four mp-events fewer, it has many more mp-
conditions.
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6 Conclusions and Future Work

We have developed a new condensed representation of the state space of a con-
textual Petri net, called contextual merged processes. This representation com-
bines the advantages of merged processes and contextual unfoldings, and copes
with several important sources of state space explosion: concurrency, sequences
of choices, and concurrent read accesses to shared resources. The experimental
results demonstrate that this representation is significantly more compact than
either merged processes or contextual unfoldings.

We also proved a number of results which lay the foundation for model check-
ing of reachability-like properties of safe c-nets based on CMPs. In particular,
given a CMP, they allow one to reduce (in polynomial time) such a model check-
ing problem to SAT. Furthermore, since the algorithm for direct construction of
merged processes of safe Petri nets proposed in [12] is based on model checking, it
can be transferred to the contextual case, which would complete the verification
flow based on CMPs.

We currently work on implementing the proposed model checking algorithm
and on porting the algorithm for direct construction of MPs proposed in [12]
to the contextual case. (While the high-level structure of the latter algorithm
remains the same, moving from Petri nets to c-nets entails several low-level
changes in the nets representation, which pervade the whole code; thus, this
porting requires significant implementation effort.)

Another possible direction of future work is to generalise our approach. Nor-
mal Petri net unfoldings work very well when systems are entirely concurrent
and independent of one another, but many sources of state-space explosion ap-
pear when they interact. The approaches that we have combined in this work
tackle two such sources; they compress the unfolding and have further com-
monalities. While Petri net unfoldings are structurally acyclic, c-net unfoldings
and merged processes have structural cycles but could be said to be semanti-
cally acyclic: every marking can still be reached by a repetition-free execution
and hence one retains the NP-completeness of reachability problem (which is
PSPACE-complete for safe Petri nets). This poses the question whether our so-
lutions are a part of a more general phenomenon. The following example suggests
that this might be the case. Consider Fig. 9 (a). The token on place p acts as
a lock ensuring mutual exclusion between two critical sections represented by
places b1 and b2.

The two processes are independent of one another, except for the tempo-
ral restriction that they cannot possess the lock p at the same time. This im-
poses a truly semantic sequentialisation constraint (unlike the sequentialisation
in Fig. 3 (b), which is merely due to an inadequate semantics-changing encod-
ing). The traditional unfolding techniques cannot take advantage of the fact
that the processes are otherwise independent. Indeed, when the example from
Fig. 9 is scaled to n processes, a complete unfolding prefix is of size O(2n) and
a complete MP is still of size O(n2) when produced by the tool Punf.

It is conceivable that this case could be handled by treating locks explicitly
and annotating transitions with locking (P) and unlocking (V) actions, like in
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Pa
p

b1 b2

(a) (b)

t2t1

u2u1 Va Va

Pa

Fig. 9. Two processes competing for lock p: (a) a Petri net (b) a net where lock
operations are annotated on transitions

Fig. 9 (b). When multiple locks are involved, their use may introduce circu-
lar precedence constraints that can be captured with, e.g. the Lock Causality
Graphs of [10]. A suitably defined unfolding for such a case would then unfold
both processes independently, only demanding that configurations do not include
circular lock constraints. One easily observes that in such a setting, like in ours,
an event may have multiple histories that would need to be taken into account
to determine cutoffs. In Fig. 9 (b), for instance, t2 may occur either individually
or in a context in which t1, u1 must have occurred before it. It is therefore quite
conceivable that locks could be seamlessly integrated with CMPs as they once
again exhibit similar characteristics. To conclude, an interesting perspective for
the future research would be to develop a generic framework that handles such
effects.
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ω-Petri Nets
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Abstract. We introduce ω-Petri nets (ωPN), an extension of plain Petri nets with
ω-labeled input and output arcs, that is well-suited to analyse parametric concur-
rent systems with dynamic thread creation. Most techniques (such as the Karp
and Miller tree or the Rackoff technique) that have been proposed in the setting
of plain Petri nets do not apply directly to ωPN because ωPN define transition
systems that have infinite branching. This motivates a thorough analysis of the
computational aspects of ωPN. We show that an ωPN can be turned into a plain
Petri net that allows to recover the reachability set of the ωPN, but that does not
preserve termination. This yields complexity bounds for the reachability, (place)
boundedness and coverability problems on ωPN. We provide a practical algo-
rithm to compute a coverability set of the ωPN and to decide termination by
adapting the classical Karp and Miller tree construction. We also adapt the Rack-
off technique to ωPN, to obtain the exact complexity of the termination problem.
Finally, we consider the extension of ωPN with reset and transfer arcs, and show
how this extension impacts the decidability and complexity of the aforementioned
problems.

1 Introduction

In this paper, we introduce ω-Petri nets (ωPN), an extension of plain Petri nets (PN) that
allows input and output arcs to be labeled by the symbol ω, instead of a natural number.
An ω-labeled input arc consumes, non-deterministically, any number of tokens in its in-
put place while an ω-labeled output arc produces non-deterministically any number of
tokens in its output place. We claim that ωPN are particularly well suited for modeling
parametric concurrent systems (see for instance our recent work on the Grand Central
Dispatch technology [12]), and to perform parametric verification [15] on those sys-
tems, as we illustrate now by means of the example in Fig 1. The example present a
skeleton of a distributed program, in which a main function forks P parallel threads
(where P is a parameter of the program), each executing the one task function. Many
distributed programs follow this abstract skeleton that allows to perform calculations in
parallel, and being able to model precisely such concurrent behaviors is an important
issue. In particular, we would like that the model captures the fact that P is a parameter,
so that we can, for instance, check that the execution of the program always terminates
(assuming each individual execution of one task does), for all possible values of P .

� Partially supported by a ‘Crédit aux chercheurs’ of the F.R.S/FNRS.

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 49–69, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1 one_task(int k) {
2 // some work...
3 }
4 main(int P) {
5 for i := 1 to P step 1
6 fork(one_task(i))
7 }

fork K

p1

p2

one task

(a)

fork •

p1

p2

one task

(b)

fork •

p1

p2

one task

(c)

ω

Fig. 1. An example of a parametric system with three possible models

Clearly, the Petri net (a) in Fig. 1 does not capture the parametric nature of the exam-
ple, as place p1 contains a fixed number K of tokens. The PN (b), on the other hand
captures the fact that the program can fork an unbounded number of threads, but does
not preserve termination: (fork)ω is an infinite execution of PN (b), while the pro-
gramme terminates (assuming each one task thread terminates) for all values of P ,
because the for loop in line 5 executes exactly P times. Finally, observe that the ωPN
(c) has the desired properties: firing transition fork creates non-deterministically an
unbounded albeit finite number of tokens in p2 (to model all the possible executions of
the for loop in line 5), and all possible executions of this ωPN terminate, because the
number of tokens produced in p2 remains finite and no further token creation in p2 is
allowed after the firing of the fork transition.

While close to Petri nets, ωPN are sufficiently different that a thorough and careful
study of their computational properties is required. This is the main contribution of the
paper. A first example of discrepancy is that the semantics of ωPN is an infinite transi-
tion system which is infinitely branching. This is not the case for plain PN: their tran-
sition systems can be infinite but they are finitely branching. As a consequence, some
of the classical techniques for the analysis of Petri nets cannot be applied. Consider for
example the finite unfolding of the transition system [10] that stops the development
of a branch of the reachability tree whenever a node with a smaller ancestor is found.
This tree is finite (and effectively constructible) for any plain Petri net and any initial
marking because the set of markings Nk is well-quasi ordered, and finite branching of
plain Petri nets allows for the use of König’s lemma1. However, this technique cannot
be applied to ωPN, as they are infinitely branching. Such peculiarities of ωPN motivate
our study of three different tools for analysing them. First, we consider, in Section 3,
a variant of the Karp and Miller tree [16] that applies to ωPN. In order to cope with
the infinite branching of the semantics of ωPN, we need to introduce in the Karp and
Miller tree ω’s that are not the result of accelerations but the result of ω-output arcs. Our
variant of the Karp and Miller construction is recursive, this allows us to tame the tech-
nicality of the proof, and as a consequence, our proof when applied to plain Petri nets,
provides a simplification of the original proof by Karp and Miller. Second, in Section 4,
we show how to construct, from an ωPN, a plain Petri net that preserves its reachability
set. This reduction allows to prove that many bounds on the algorithmic complexity

1 In fact, this construction is applicable to any well-structured transition system which is finitely
branching and allows to decide the termination problem for example.
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Table 1. Complexity results on ωPN (with the section numbers where the results are proved).
ωIPN+R (ωOPN+R) and ωIPN+T (ωOPN+T) denote resp. Petri nets with reset (R) and transfer
(T) arcs with ω on input (output) arcs only.

Problem ωPN ωPN+T ωPN+R

Reachability Decidable and EX-
PSPACE-hard (4)

Undecidable (6)
Undecidable (6)

Place-boundedness
EXPSPACE-c (4)Boundedness Decidable (6)

Coverability Decidable and Ackerman-hard (6)

Problem ωPN ωOPN+T, ωOPN+R ωIPN+T, ωIPN+R

Termination EXPSPACE-c (5) Undecidable (6) Decidable and
Ackerman-hard (6)

of (plain) PN problems apply to ωPN too. However, it does not preserve termination.
Thus, we study, in Section 5, as a third contribution, an extension of the self-covering
path technique due to Rackoff [20]. This technique allows to provide a direct proof of
EXPSPACE upper bounds for several classical decision problems, and in particular, this
allows to prove EXPSPACE completeness of the termination problem.

Finally, in Section 6, as an additional contribution, and to get a complete picture,
we consider extensions of ωPN with reset and transfer arcs [7]. For those extensions,
the decidability results for reset and transfer nets (without ω arcs) also apply to our
extension with the notable exception of the termination problem that becomes, as we
show here, undecidable. The summary of our results are given in Table 1.

Related Works. ωPN are well-structured transition systems [10]. The set saturation
technique [1] and so symbolic backward analysis can be applied to them while the finite
tree unfolding is not applicable because of the infinite branching property of ωPN. For
the same reason, ωPN are not well-structured nets [11].

In [3], Brazdil et al. extends the Rackoff technique to VASS games with ω output
arcs. While this extension of the Rackoff technique is technically close to ours, we
cannot directly use their results to solve the termination problem of ωPN.

Several works (see for instance [4,5] rely on Petri nets to model parametric systems
and perform parametrised verification. However, in all these works, the dynamic cre-
ation of threads uses the same pattern as in Fig. 1 (b), and does not preserve termination.
ωPN allow to model more faithfully the dynamic creation of an unbounded number of
threads, and are thus better suited to model new programming paradigms (such as GCD
[12]) that have been recently proposed to better support multi-core platforms.

Remark: Missing proofs can be found in the companion technical report [13].

2 ω-Petri Nets

Let us define the syntax and semantics of our Petri net extension, called ω Petri nets
(ωPN for short). Let ω be a symbol that denotes ‘any positive integer value’. We extend
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the arithmetic and the ≤ ordering on Z to Z ∪ {ω} as follows: ω + ω = ω − ω = ω;
and for all c ∈ Z: c + ω = ω + c = ω − c = ω; c − ω = c; and c ≤ ω. The fact that
c − ω = c might sound surprising but will be justified later when we introduce ωPN .
An ω-multiset (or simply multiset) of elements from S is a function m : S �→ N∪ {ω}.
We denote multisets m of S = {s1, s2, . . . , sn} by extension using the syntax {m(s1)⊗
s1,m(s2)⊗s2, . . . ,m(sn)⊗sn} (when m(s) = 1, we write s instead of m(s)⊗s, and
we omit elements m(s) ⊗ s when m(s) = 0). Given two multisets m1 and m2, and an
integer value c we let m1 + m2 be the multiset s.t. (m1 + m2)(p) = m1(p) + m2(p);
m1−m2 be the multiset s.t. (m1−m2)(p) = m1(p)−m2(p); and c ·m1 be the multiset
s.t. (c ·m1)(p) = c×m1(p) for all p ∈ P .

Syntax. Syntactically, ωPN extend plain Petri nets [19,21] by allowing (input and out-
put) arcs to be labeled by ω. Intuitively, if a transition t has ω as output (resp. input)
effect on place p, the firing of t non-deterministically creates (consumes) a positive
number of tokens in p.

Definition 1. A Petri net with ω-arcs (ωPN) is a tuple N = 〈P, T 〉 where: P is a finite
set of places; T a finite set of transitions. Each transition is a pair t = (I, O), where:
I : P → N ∪ {ω} and O : P → N ∪ {ω}, give respectively the input (output) effect
I(p) (O(p)) of t on place p.

By abuse of notation, we denote by I(t) (resp. O(t)) the functions s.t. t = (I(t), O(t)).
When convenient, we sometimes regard I(t) or O(t) as ω-multisets of places. Whenever
there is p s.t. O(t)(p) = ω (resp. I(t)(p) = ω), we say that t is an ω-output-transition
(ω-input-transition). A transition t is an ω-transition iff it is an ω-output-transition or
an ω-input-transition. Otherwise, t is a plain transition. Note that a (plain) Petri net
is an ωPN with plain transitions only. Moreover, when an ωPN contains no ω-output-
transitions (resp. no ω-input transitions), we say that it is an ω-input-PN (ω-output-PN),
or ωIPN (ωOPN) for short. For all transitions t, we denote by effect(t) the function
O(t)−I(t). Note that effect(t)(p) could be ω for some p (in particular when O(t)(p) =
I(t)(p) = ω). Intuitively, effect(t)(p) = ω models the fact that firing t can increase the
marking of p by an arbitrary number of tokens. Finally, observe that O(t)(p) = c �= ω
and I(t)(p) = ω implies effect(t)(p) = c−ω = c. This models the fact that firing t can
at most increase the marking of p by c tokens. Thus, intuitively, the value effect(t)(p)
models the maximal possible effect of t on p. We extend the definition of effect to
sequences of transitions σ = t1t2 · · · tn by letting effect(σ) =

∑n
i=1 effect(ti).

A marking is a function P �→ N. An ω-marking is a function P �→ N ∪ {ω}, i.e.
an ω-multiset on P . Any marking is an ω-marking. For all transitions t = (I, O), I
and O are both ω-markings. We denote by 0 the marking s.t. 0(p) = 0 for all p ∈ P .
For all ω-markings m, we let ω(m) be the set of places {p | m(p) = ω}, and let
nbω (m) = |ω(m)|. We define the concretisation of m as the set of all markings that
coincide with m on all places p �∈ ω(m), and take an arbitrary value in any place from
ω(m). Formally: γ(m) = {m′ | ∀p �∈ ω(m) : m′(p) = m(p)}. We further define a
family of orderings on ω-markings as follows. For any P ′ ⊆ P , we let m1 	P ′ m2

iff (i) for all p ∈ P ′: m1(p) ≤ m2(p), and (ii) for all p ∈ P \ P ′: m1(p) = m2(p).
We abbreviate 	P by 	 (where P is the set of places of the ωPN). It is well-known
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•

p1 t1
p2 t2

p3

t4t3

ω 2

Fig. 2. An example ωPN N1. The ωPN N ′
1 is obtained by removing transition t4 (gray)

that 	 is a well-quasi ordering (wqo), that is, we can extract, from any infinite se-
quence m1,m2, . . . ,mi, . . . of markings, an infinite subsequence m1,m2, . . . ,mi, . . .
s.t. mi 	 mi+1 for all i ≥ 1. For all ω-markings m, we let ↓(m) be the downward-
closure of m, defined as ↓(m) = {m′ | m′ is a marking and m′ 	 m}. We extend ↓ to
sets of ω-markings: ↓(S) = ∪m∈S ↓(m). A set D of markings is downward-closed iff
↓(D) = D. It is well-known that (possibly infinite) downward-closed sets of markings
can always be represented by a finite set of ω-markings, because the set of ω-markings
forms an adequate domain of limits [14]: for all downward-closed sets D of markings,
there exists a finite set M of ω-markings s.t. ↓(M) = D. We associate, to each ωPN,
an intial marking m0. From now on, we consider mostly initialised ωPN 〈P, T,m0〉.

Example 2. An example of an ωPN (actually an ωOPN) N1 = 〈P, T,m0〉 is shown
in Fig. 2. In this example, P = {p1, p2, p3}, T = {t1, t2, t3, t4}, m0(p1) = 1 and
m0(p2) = m0(p3) = 0. t1 is the only ω-transition, with O(t1)(p2) = ω. This ωPN will
serve as a running example throughout the section.

Semantics. Let m be an ω-marking. A transition t = (I, O) is firable from m iff:
m(p) � I(p) for all p s.t. I(p) �= ω. We consider two kinds of possible effects for t.
The first is the concrete semantics and applies only when m is a marking. In this case,
firing t yields a new marking m′ s.t. for all p ∈ P : m′(p) = m(p) − i + o where:
i = I(t)(p) if I(t)(p) �= ω, i ∈ {0, . . . ,m(p)} if I(t)(p) = ω, o = O(t)(p) if

O(t)(p) �= ω and o ≥ 0 if O(t)(p) = ω. This is denoted by m
t−→ m′. Thus, intuitively,

I(t)(p) = ω (resp. O(t)(p) = ω) means that t consumes (produces) an arbitrary number
of tokens in p when fired. Note that, in the concrete semantics, ω-transitions are non-
deterministic: when t is an ω-transitions that is firable in m, there are infinitely many

m′ s.t. m
t−→ m′. The latter semantics is the ω-semantics. In this case, firing t = (I, O)

yields the (unique) ω-marking m′ = m−I+O (denoted m
t−→ω m′). Note that m

t−→ m′

iff m
t−→ω m′ when m and m′ are markings.

We extend the → and →ω relations to finite or infinite sequences of transitions in
the usual way. Also we write m

σ−→ iff σ is firable from m. More precisely, for a finite
sequence of transitions σ = t1 · · · tn, we write m

σ−→ iff there are m1, . . . , mn s.t. for

all 1 ≤ i ≤ n: mi−1
ti−→ mi. For an infinite sequence of transitions σ = t1 · · · tj · · · ,

we write m0
σ−→ iff there are m1, . . . ,mj , . . . s.t. for all i ≥ 1: mi−1

ti−→ mi.
Given an ωPN N = 〈P, T,m0〉, an execution of N is either a finite sequence of the

form m0, t1,m1, t2, . . . , tn,mn s.t. m0
t1−→ m1

t2−→ · · · tn−→ mn, or an infinite sequence
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of the form m0, t1,m1, t2, . . . , tj ,mj , . . . s.t. for all j ≥ 1: mj−1
tj−→ mj . We denote

by Reach(N ) the set of markings {m | ∃σ s.t. m0
σ−→ m} that are reachable from m0 in

N . Finally, a finite set of ω-markings CS is a coverability set ofN (with initial marking
m0) iff ↓(CS) =↓(Reach(N )). That is, any coverability set CS is a finite representation
of the downward-closure of N ’s reachable markings.

Example 3. The sequence t1t
K
2 is firable for all K ≥ 0 in N1 (Fig. 2). Indeed, for

each K ≥ 0, one possible execution corresponding to t1t
K
2 is given by 〈1, 0, 0〉 t1−→

〈0, 3K, 0〉 t2−→ 〈0, 3K − 1, 2〉 t2−→ 〈0, 3K − 2, 4〉 t2−→ · · · t2−→ 〈0, 2K, 2K〉. There are
other possible executions corresponding to the same sequence of transitions, because
the number of tokens created by t1 in p2 is chosen non-deterministically. Also, t1t2t

ω
4

is an infinite firable sequence of transitions. Finally, observe that the set of reachable
markings in N1 is Reach(N ) = {〈1, 0, 0〉} ∪ {〈0, i, 2 × j〉 | i, j ∈ N}. The set of
ω markings CS = {〈1, 0, 0〉, 〈0, ω, ω〉} is a coverability set of N . Note that ↓(CS) �
Reach(N ): for instance, 〈0, 1, 1〉 ∈↓(CS), but 〈0, 1, 1〉 is not reachable.

Let us now observe two properties of the semantics of ωPN, that will be useful for the
proofs of Section 3. The first says that, when firing a sequence of transitions σ that have
non ω-labeled arcs on to and from some place p, the effect of σ on p is as in a plain PN:

Lemma 4. Let m and m′ be two markings and let σ = t1 · · · tn be a sequence of
transitions of an ωPN s.t. m

σ−→ m′. Let p be a place s.t. for all 1 ≤ i ≤ n: O(ti)(p) �=
ω �= I(ti)(p). Then, m′(p) = m(p) + effect(σ)(p).

The latter property says that the set of markings that are reachable by a given sequence
of transitions σ is upward-closed2 w.r.t. 	P ′ , where P ′ is the set of places where the
effect of σ is ω.

Lemma 5. Let m1, m2 and m3 be three markings, and let σ be a sequence of transi-
tions s.t. (i) m1

σ−→ m2, (ii) m3 �P ′ m2 with P ′ = {p | effect(σ)(p) = ω}. Then,
m1

σ−→ m3 holds too.

Problems. We consider the following problems. Let N = (P, T,m0) be an ωPN:

1. The reachability problem asks, given a marking m, whether m ∈ Reach(N).
2. The place boundedness problem asks, given a place p of N , whether there exists

K ∈ N s.t. for all m ∈ Reach(N ): m(p) ≤ K . If the answer is positive, we say
that p is bounded (from m0).

3. The boundedness problem asks whether all places of N are bounded (from m0).
4. The covering problem asks, given a marking m of N , whether there exists m′ ∈

Reach(N ) s.t. m′ � m.
5. The termination problem asks whether all executions of N are finite.

2 A set U ⊆ S is upward-closed wrt to a partial order ≤ iff for all u ∈ U and s ∈ S: u ≤ s
implies that s ∈ U .
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A coverability set of the ωPN is sufficient to solve boundedness, place boundedness
and covering, as in the case of Petri nets. If CS is a coverability set of N , then: (i) p
is bounded iff m(p) �= ω for all m ∈ CS; (ii) N is bounded iff m(p) �= ω for all p
and for all m ∈ CS; and (iii), N can cover m iff there exists m′ ∈ CS s.t. m 	 m′.
As in the plain Petri nets case, a sufficient and necessary condition of non-termination
is the existence of a self covering execution. A self covering execution of an ωPN N =

〈P, T,m0〉 is a finite execution of the form m0
t1−→ m1 · · ·

tk−→ mk
tk+1−−−→ · · · tn−→ mn

with mn � mk:

Lemma 6. An ωPN terminates iff it admits no self-covering execution.

Example 7. Consider again the ωPN N1 in Fig. 2. Recall from Example 3 that, for
all K ≥ 0, t1t

K
2 is firable and allows to reach 〈0, 2K, 2K〉. All these markings are

thus reachable. These sequences of transitions also show that p2 and p3 are unbounded
(hence, N1 is unbounded too), while p1 is bounded. Marking 〈0, 1, 1〉 is not reachable
but coverable, while 〈2, 0, 0〉 is neither reachable nor coverable. Finally, N1 does not
terminate (because t1t2t

ω
4 is firable), while N ′

1 does. In particular, in N ′
1, t3 can fire

only a finite number of times, because t1 will always create a finite (albeit unbounded)
number of tokens in p2. This an important difference between ωPN and plain PN: no
unbounded PNs terminates, while there are unbounded ωPN that terminate, e.g. N ′

1.

3 A Karp and Miller Procedure for ωPN

In this section, we present an extension of the classical Karp & Miller procedure [16],
adapted to ωPN. We show that the finite tree built by this algorithm (coined the KM
tree), allows, as in the case of PNs, to decide boundedness, place boundedness, cover-
ability and termination on ωPN.

Before describing the algorithm, we discuss intuitively the KM trees of the ωPN
N1 and N ′

1 given in Fig. 2. Their respective KM trees (for the initial marking m0 =
〈1, 0, 0〉) are T1 and T ′

1 , respectively the tree in Fig. 3 and its subtree made of the bold
nodes (i.e., excluding n7). As can be observed, the nodes and edges of a KM tree are
labeled by ω-markings and transitions respectively. The relationship between a KM tree
and the executions of the corresponding ωPN can be formalised using the notion of
stuttering path. Intuitively, a stuttering path is a sequence of nodes n1, n2, . . . , nk s.t.
for all i ≥ 2: either ni is a son of ni−1, or ni is an ancestor of ni−1 that has the
same label as ni−1. For instance, π = n1, n2, n4, n2, n3, n6, n3, n5, n3, n5 is a stutter-
ing path in T ′

1 . Then, we claim (i) that every execution of the ωPN is simulated by a
stuttering path in its KM tree, and that (ii) every stuttering path in the KM tree cor-
responds to a family of executions of the ωPN , where an arbitrary number of tokens
can be produced in the places marked by ω in the KM tree. For instance, the execution
m0, t1, 〈0, 42, 0〉, t3, 〈0, 41, 0〉, t2, 〈0, 40, 2〉, t3, 〈0, 39, 2〉, t2, 〈0, 38, 4〉, t2, 〈0, 37, 6〉, of
N ′

1 is witnessed in T ′
1 by the stuttering path π given above – observe that the se-

quence of edge labels in π’s equals the sequence of transitions of the execution, and
that all markings along the execution are covered by the labels of the corresponding
nodes in π: m0 ∈ γ(n1), 〈0, 42, 0〉 ∈ γ(n2), and so forth. On the other hand, the
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〈1, 0, 0〉
n1

〈0, ω, 0〉
n2

〈0, ω, ω〉
n3

〈0, ω, 0〉
n4

〈0, ω, ω〉
n5

〈0, ω, ω〉
n6

〈0, ω, ω〉
n7

t1

t2 t3

t2 t4
t3

Fig. 3. The KM trees T1 (whole tree) and T ′
1 (bold nodes, i.e. w/o n7) of resp. N1 and N ′

1

stuttering path n1, n2, n3 of N1 summarises all the (infinitely many) possible execu-
tions obtained by firing a sequence of the form t1t

n
2 . Indeed, for all k ≥ 1, � ≥ 0:

m0, t1, 〈0, k + �, 0〉, t2, 〈0, k + � − 1, 2〉, t2, . . . , t2, 〈0, k, 2 × �〉 is an execution of
N1, so, an arbitrary number of tokens can be obtained in both p2 and p3 by firing se-
quences of the form t1t

n
2 . Finally, observe that a self-covering execution of N1, such as

m0, t1, 〈0, 1, 0〉, t2, 〈0, 0, 2〉, t4, 〈0, 0, 2〉 can be detected in T1, by considering the path
n1, n2, n3, n7, and noting that the label of (n3, n7) is t4 with effect(t4) � 0.

The Build-KM Algorithm. Let us now show how to build algorithmically the KM
of an ωPN. Recall that, in the case of plain PNs, the Karp & Miller tree [16] can be
regarded as a finite over-approximation of the (potentially infinite) reachability tree of
the PN. Thus, the Karp & Miller algorithm works by unfolding the transition relation of
the PN, and adds two ingredients to guarantee that the tree is finite. First, a node n that
has an ancestor n′ with the same label is not developed (it has no children). Second,
when a node n with label m has an ancestor n′ with label m′ ≺ m, an acceleration
function is applied to produce a marking mω s.t. mω(p) = ω if m(p) > m′(p) and
mω(p) = m(p) otherwise. This acceleration is sound wrt to coverability since the
sequence of transition that has produced the branch (n, n′) can be iterated an arbitrary
number of times, thus producing arbitrary large numbers of tokens in the places marked
by ω in mω. Remark that these two constructions are not sufficient to ensure termination
of the algorithm in the case of ωPN, as ωPN are not finitely branching (firing an ω-
output-transition can produce infinitely many different successors). To cope with this
difficulty, our solution unfolds the ω-semantics →ω instead of the concrete semantics
→. This has an important consequence: whereas the presence of a node labeled by m
with m(p) = ω in the KM tree of a PN N implies that N does not terminate, this is
not true anymore in the case of ωPN. For instance, all nodes but n1 in T ′

1 (Fig. 3) are
marked by ω, yet the corresponding ωPN N ′

1 (Fig. 2) does terminate.
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Input an ωOPN N = 〈P, T 〉 and an ω-marking m0

Output the KM of N , starting from m0

Build-KM (N , m0):
1 T := 〈N,E, λ, μ, n0〉 where N = {n0} with λ(n0) = m0

2 U := {n0}
3 while U �= ∅:
4 select and remove n from U
5 if �n st (n, n) ∈ E+ and λ(n) = λ(n):
6 forall t in T s.t. ∀p ∈ P: I(t)(p) �= ω implies λ(n)(p) ≥ I(t)(p):
7 m′ := Post(N,λ(n), t)
8 if nbω (m′) > nbω (λ(n)):
9 T ′ := Build-KM(N,m′)
10 add all edge and nodes of T ′ to T
11 let n′ be the root of T ′

12 else
13 n′ := new node with λ(n′) = m′

14 U := U ∪ {n′}
15 E := E ∪ (n, n′) s.t. μ(n, n′) = t.
16 return T

Post(N ,n,t):
17 m′ := λ(n) − I(t) + O(t)

18 if ∃n :
(
n, n) ∈ E+ ∧ λ(n) ≺ λ(n)

)
:

19 mw(p) :=

{
m′(p) if effect(n� n · t)(p) ≤ 0

ω otherwise

20 return mw

21 else:
22 return m′

Fig. 4. The algorithm to build the KM of an ωPN

Our version of the Karp & Miller tree adapted to ωPN is given in Fig. 4. It builds a
tree T = 〈N,E, λ, μ, n0〉 where: N is a set of nodes; E ⊆ N × N is a set of edges;
λ : N �→ (N ∪ {ω})P is a function that labels nodes by ω-markings3; μ : E �→ T is
a labeling function that labels arcs by transitions; and n0 ∈ N is the root of the tree.
For each edge e, we let effect(e) = effect(μ(e)). Let E+ and E∗ be respectively the
transitive and the transitive reflexive closure of E. A stuttering path is a finite sequence
n0, n1, . . . , n� s.t. for all 1 ≤ i ≤ �: either (ni−1, ni) ∈ E or (ni, ni−1) ∈ E+ and
λ(ni) = λ(ni−1). A stuttering path n0, n1, . . . , n� is a (plain) path iff (ni−1, ni) ∈ E
for all 1 ≤ i ≤ �. Given two nodes n and n′ s.t. (n, n′) ∈ E∗, we denote by n� n′ the
(unique path) from n to n′. Given a stuttering path π = n0, n1, . . . , n�, we denote by
μ(π) the sequence μ(n0, n1)μ(n1, n2) · · ·μ(n�−1, n�) assuming μ(ni, ni+1) = ε when
(ni, ni+1) �∈ E; and by effect(π) =

∑�
i=1 effect(ni−1, ni), letting effect(ni−1, ni) =

0 when (ni, ni+1) �∈ E.
Build-KM follows the intuition given above. At all times, it maintains a frontier

U of tree nodes that are candidate for development (initially, U = {n0}, with λ(n0) =

3 We extend λ to set of nodes S in the usual way: λ(S) = {λ(n) | n ∈ S}.
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m0). Then, Build-KM iteratively picks up a node n from U (see line 4), and develops
it (line 6 onwards) if n has no ancestor n′ with the same label (line 5). Developing a
node n amounts to computing all the marking m s.t. λ(n)→ω m (line 17), performing
accelerations (line 19) if need be, and inserting the resulting children in the tree. Remark
that Build-KM is recursive (see line 9): every time a marking m with an extra ω is
created, it performs a recursive call to Build-KM(N ,m), using m as initial marking4.

The rest of the section is devoted to proving that this algorithm is correct. We start by
establishing termination, then soundness (every stuttering path in the tree corresponds
to an execution of the ωOPN) and finally completeness (every execution of the ωOPN
corresponds to a stuttering path in the tree). To this end, we rely on the following no-
tions. Symmetrically to self-covering executions we define the notion of self-covering
(stuttering) path in a tree: a (stuttering) path π is self-covering iff π = π1π2 with
effect(π2) ≥ 0. A self-covering stuttering path π = π1π2 is ω-maximal iff for all nodes
n, n′ along π2: nbω (n) = nbω (n′).

Termination. Let us show that Build-KM always terminates. First observe that the
depth of recursive calls is at most by |P | + 1, as the number of places marked by ω
along a branch does not decrease, and since we perform a recursive call only when
a place gets marked by ω and was not before. Moreover, the branching degree of the
tree is bounded by the number |T | of transitions. Thus, by König’s lemma, an infinite
tree would contain an infinite branch. We rule out this possibility by a classical wqo
argument: if there were an infinite branch in the tree computed by Build-KM(N ,m0),
then there would be two nodes n1 along the branch n2 (where n1 is an ancestor of n2)
s.t. λ(n1) 	 λ(n2) and effect(n1 � n2) � 0. Since the depth of recursive calls is
bounded, we can assume, wlog, that n1 and n2 have been built during the same recursive
call, hence λ(n1) ≺ λ(n2) is not possible, because this would trigger an acceleration,
create an extra ω and start a new recursive call. Thus, λ(n1) = λ(n2), but in this case
the algorithm stops developing the branch (line 5). See the appendix for a full proof.

Proposition 8. For all ωPN N and marking m0, Build-KM(N ,m0) terminates.

Then, following the intuition that we have sketched at the beginning of the section,
we show that KM is sound (Lemma 9) and complete (Lemma 11). Note that we first
establish these results assuming that the ωPN N given as parameter is an ωOPN, then
prove that the results extend to the general case of ωPN .

Soundness. To establish soundness of our algorithm, we show that, for every path
n0, . . . , nk in the tree returned by Build-KM(N ,m0), and for every target mark-
ing m ∈ γ(λ(nk)), we can find an execution ofN reaching a marking m′ ∈ γ(nk) that
covers m. This implies that, if λ(nk)(p) = ω for some p, then, we can find a family
of executions that reach a marking in γ(nk) with an arbitrary number of tokens in p.
For instance, consider the path n1, n2, n3 in T ′

1 (Fig. 3), and let m = 〈0, 2, 4〉. Then, a

corresponding execution is 〈1, 0, 0〉 t1−→ 〈0, 4, 0〉 t2−→ 〈0, 3, 2〉 t2−→ 〈0, 2, 4〉. Remark that
the execution is not necessarily the sequence of transitions labeling the path in the tree:

4 Although this differs from classical presentations of the Karp & Miller technique, we have
retained it because it simplifies the proofs of correctness.
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in this case, we need to iterate t2 to transfer tokens from p2 to p3, which is summarised
in one edge (n2, n3) in T1, by the acceleration.

Lemma 9. Let N be an ωOPN, let m0 be an ω-marking and let T be the tree returned
by Build-KM(N ,m0). Let π = n0, . . . , nk be a stuttering path in T , and let m be

a marking in γ(λ(nk)). Then, there exists an execution ρπ = m0
t1−→ m1 · · ·

t�−→ m�

of N s.t. m� ∈ γ(λ(nk)), m� � m and m0 ∈ γ(λ(n0)). Moreover, when for all
0 ≤ i ≤ j ≤ k: nbω (ni) = nbω (nj), we have: t1 · · · t� = μ(π).

Completeness. Proving completeness amounts to showing that every execution (starting
from m0) of an ωPN N is witnessed by a stuttering path in Build-KM(N ,m0). It
relies on the following property:

Lemma 10. LetN be an ωOPN, let m0 be an ω-marking, and let T be the tree returned
by Build-KM(N ,m0). Then, for all nodes n of Build-KM(N ,m0):

– either n has no successor in the tree and has an ancestor n s.t. λ(n) = λ(n).
– or the set of successors of n corresponds to all the →ω possible successors of

λ(n), i.e.: {μ(n, n′) | (n, n′) ∈ E} = {t | λ(n)
t−→ω}. Moreover, for each n′ s.t.

(n, n′) ∈ E and μ(n, n′) = t: λ(n′) � λ(n) + effect(t).

We can now state the completeness property:

Lemma 11. Let N be an ωOPN with set of transitions T , let m0 be an initial marking

and let m0
t1−→ m1

t2−→ · · · tn−→ mn be an execution of N . Then, there are a stuttering
path π = n0, n1, . . . , nk in Build-KM(N ,m0) and a monotonic increasing mapping
h : {1, . . . , n} �→ {0, . . . , k} s.t.: μ(π) = t1t2 · · · tn and mi 	 λ(nh(i)) for all 0 ≤
i ≤ n.

From ωOPN to ωPN. We have shown completeness and soundness of the Build-KM
algorithm for ωOPN. Let us show that each ωPN N can be turned into an ωOPN
remIω(N ) that (i) terminates iff N terminates and (ii) that has the same coverabil-
ity sets as N . The ωOPN remIω(N ) is obtained from N by replacing each transition
t ∈ T by a transition t′ ∈ T ′ s.t. O(t′) = O(t) and I(t′) = {I(t)(p)⊗p | I(t)(p) �= ω}.
Intuitively, t′ is obtained from t by deleting all ω input arcs. Since t′ always consumes
less tokens than t does, the following is easy to establish:

Lemma 12. LetN be an ωPN. For all executions m0, t
′
1,m1, . . . , t

′
n,mn of remIω(N ):

m0, t1,m1, . . . , tn,mn is an execution of N . For all finite (resp. infinite) executions
m0, t1,m1, . . . , tn,mn (m0, t1,m1, . . . , tj ,mj , . . .) ofN , there is an execution m0, t

′
1,

m′
1, . . . , t

′
n,m′

n (m0, t1,m
′
1, . . . , tj ,m

′
j , . . .) of remIω(N ), s.t. mi 	 m′

i for all i.

Intuitively, this means that, when solving coverability, (place) boundedness or termi-
nation on an ωPN N , we can analyse remIω(N ) instead, because N terminates iff
remIω(N ) terminates, and removing the ω-labeled input arcs from N does not allow
to reach higher markings. Finally, we observe that, for all ωPN N , and all initial mark-
ing m0: the trees returned by Build-KM(N ,m0) and Build-KM (remIω(N ,m0))
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respectively are isomorphic5. This is because we have defined c − ω to be equal to c:
applying this rule when computing the effect of a transition t (line 17), is equivalent to
computing the effect of the corresponding t′ in remIω(N ), i.e. letting I(t′)(p) = 0 for
all p s.t. I(t)(p) = ω. Thus, we can lift Lemma 9 and Lemma 11 to ωPN. This establish
correctness of the algorithm for the general ωPN case.

Applications of the Karp & Miller Tree. With these results we conclude that the Karp
& Miller tree can be used to compute a coverability set and to decide termination of
ωPN.

Theorem 13. LetN be an ωPN with initial marking m0, and let T be the tree returned
by 〈N,E, λ, μ, n0〉 = Build-KM(N ,m0). Then: (i) λ(N) is a coverability set of N
and (ii) N terminates iff T contains an ω-maximal self-covering stuttering path.

Proof. Point (i) follows from Lemma 9 (lifted to ωPN). Let us now prove both direc-
tions of point (ii).

First, we show that if Build-KM(N ,m0) contains an ω-maximal self-covering
stuttering path, then N admits a self-covering execution from m0. Let n0, . . . , nk,
nk+1, . . . , n� be an ω-maximal self-covering stuttering path, and assume
effect(nk+1, . . . , n�) ≥ 0. Let us apply Lemma 9 (lifted to ωPN), by letting m = 0

and π = π2, and let m1 and m2 be markings s.t. m1
μ(π2)−−−→ m2. The existence of

m1 and m2 is guaranteed by Lemma 9 (lifted to ωPN), because all the nodes along π2

have the same number of ω’s as we are considering an ω-maximal self-covering stut-
tering path. Since effect(π2) is positive, so is effect(μ(π2)). Thus, there exists6 m′

2 s.t.

m1
μ(π2)−−−→ m′

2 and m′
2 � m1. By invoking Lemma 9 (lifted to ωPN) again, letting

π = π1 and m = m1, we conclude to the existence of a sequence of transitions σ, a
marking m0 and a marking m′

1 � m1 s.t. m0
σ−→ m′

1. Since m′
1 � m1, μ(π2) is again

firable from m′
1. Let m2 = m2 + m′

1 − m1. Clearly, m′
1

μ(π2)−−−→ m2, with m2 � m′
1.

Hence, m0
σ−→ m′

1

μ(π2)−−−→ m2 is a self-covering execution of N .
Second, let us show that, if N admits a self-covering execution from m0, then

Build-KM(N ,m0) contains an ω-maximal self-covering stuttering path. Let ρ =

m0
t1−→ m1 · · ·

tn−→ mn be a self-covering execution and assume 0 ≤ k < n is a posi-
tion s.t. mk 	 mn. Let σ1 denote t1, . . . tk and σ2 denote tk+1, . . . tn. Let us consider
the execution ρ′, defined as follows

5 That is, if Build-KM(N ,m0) returns 〈N,E,λ, μ, n0〉 and Build-KM (remIω(N ,m0))
returns〈N ′, E′, λ′, μ′, n′

0〉, then, there is a bijection h : N �→ N ′ s.t. (i) h(n0) = n′
0, (ii) for

all n ∈ N : λ(n) = λ(h(n)), (iii) for all n1, n2 in N : (n1, n2) ∈ E iff (h(n1), h(n2)) ∈ E′,
(iv) for all (n1, n2) ∈ E: μ(n1, n2) = μ′(h(n1), h(n2)).

6 Remark that, although effect(μ(π2)) 	 0, we have no guarantee that m2 	 m1, as we
could have effect(μ(π2)) = ω for some p, and maybe the amount of tokens that has been
produced in p by μ(π2) to yield m2 does not allow to have m2(p) ≥ m1(p). However, in this
case, it is always possible to reach a marking with enough tokens in p to cover m1(p), since
effect(μ(π2)) = ω.
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ρ′ = m0
σ1−→ mk

tk+1−−−→ mk+1 · · ·
tn−→ mn︸ ︷︷ ︸

σ2

tk+1−−−→ mn+1 · · ·
tn−→ m2n−k︸ ︷︷ ︸

σ2

· · ·

· · · tk+1−−−→ m(|P |+1)n−|P |k+1 · · ·
tn−→ m(|P |+2)n−(|P |+1)k︸ ︷︷ ︸

σ2

where for all n + 1 ≤ j ≤ (|P |+ 2)n− (|P |+ 1)k: mj −mj−1 = mf(j) −mf(j−1)

with f the function defined as f(x) =
(
(x−k) mod (n−k)

)
+k for all x. Intuitively,

ρ′ amounts to firing σ1(σ2)
|P |+1 (where P is the set of places ofN ) from m0, by using,

each time we fire σ2, the same effect as the one that was used to obtain ρ (remember
that the effect of σ2 is non-deterministic when ω’s are produced). It is easy to check that
ρ′ is indeed an execution of N , because ρ is a self-covering execution.

Let n0, n1, . . . n� and h be the stuttering path in Build-KM(N ,m0) and the map-
ping corresponding to ρ′ (and whose existence is established by Lemma 11). Since,
mk 	 mn, effect(tk+1 · · · tn) ≥ 0 and by Lemma 11 (lifted to ωPN), all the following
stuttering paths are self-covering:

n0, . . . , nh(k), . . . , nh(n)

n0, . . . , nh(k), . . . , nh(n), . . . , nh(2n−k)

n0, . . . , nh(k), . . . , nh(n), . . . , nh(2n−k), . . . , nh(3n−2k)

...

n0, . . . , nh(k), . . . , nh(n), . . . , nh(2n−k), . . . , nh(3n−2k), . . . , nh((|P |+2)n−(|P |+1)k)

Let us show that one of them is ω-maximal, i.e. that there is 1 ≤ j ≤ |P | + 1 s.t.
nbω

(
nh(jn−(j−1)k)

)
= nbω

(
nh((j+1)n−jk)

)
. Assume it is not the case. Since the

number of ω’s can only increase along a stuttering path, this means that

0 ≤ nbω
(
nh(n)

)
< nbω

(
nh(2n−k)

)
< nbω

(
nh(3n−2k)

)
< nbω

(
nh((|P |+2)n−(|P |+1)k)

)
However, this implies that nbω

(
nh((|P |+2)n−(|P |+1)k)

)
> |P |, which is not possible

as P is the set of places of N . Hence, we conclude that there exists an ω-maximal self-
covering stuttering path in Build-KM(N ,m0). � 

4 From ωPN to Plain PN

Let us show that we can, from any ωPN N , build a plain PN N ′ whose set of reach-
able markings allows to recover the reachability set of N . This construction allows to
solve reachability, coverability and (place) boundednes. The idea of the construction is
depicted in Fig. 5, and can be outlined as follows. A transition t in the ωPN is simulated
in three steps in the PN. First, t′ fires, which (i) moves a token fom the global lock
lockg to the local lock lockt and (ii) consumes the same fixed amount of tokens as t,
i.e., if It(p) �= ω, then, t′ consumes It(p) tokens in p, for all p. Once t′ has fired, all
transitions are blocked but the tqi−ω and tpi

+ω transitions, that can be fired an arbitrary
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Fig. 5. Transforming an ωPN into a plain PN

number of times to simulate the ω-arcs of t. Finally, tend moves the lock back to lockg,
and produces Ot(p) tokens in all p s.t. Ot(p) �= ω.

Formally, we turn the ωPN N = 〈P, T,m0〉 into a plain PN N ′ = 〈P ′, T ′,m′
0〉

using the following procedure. Assume that T = Tplain ! Tω, where Tω is the set of
ω-transitions of N . Then:

1. We add to the net one place (called the global lock) lockg, and for each ω-transition t,
one place lockt. That is, P ′ = P ∪ {lockg} ∪ {lockt | t ∈ Tω}.

2. Each transition t in N is replaced by a set of transitions Tt in N ′. In the case where
t is a plain transition, Tt contains a single transition that has the same effect as t,
except that it also tests for the presence of a token in lockg. In the case where t is an
ω-transition, Tt is a set of plain transitions that simulate the effect of t, as in Fig. 5.
Formally, T ′ = ∪t∈TTt, where the Tt sets are defined as follows:

– If t is a plain transition, then Tt = {t′}, where, I(t′) = I(t) ∪ {lockg} and
O(t′) = O(t) ∪ {lockg}.

– If t is an ω-transition, then: Tt = {t′, tend} ∪ {tp−ω | I(t)(p) = ω} ∪
{tp+ω | O(t)(p) = ω} where I(t′) = I(t) + {lockg}; O(t′) = I(tend) =
{lockt}; O(tend) = {lockg} + O(t). Furthermore, for all p s.t. I(t)(p) = ω:
I(tp−ω) = {p, lockt} and O(tp−ω) = {lockt}. Finally, for all p s.t. O(t)(p) = ω:
I(tp+ω) = {lockt} and O(tp−ω) = {p, lockt}.

3. We let f be the function that associates each marking m ofN to the marking f(m)
ofN ′ s.t. m′(lockg) = 1; for all p ∈ P : m′(p) = m(p); and for all p �∈ P∪{lockg}:
m′(p) = 0. Then, the initial marking of N ′ is f(m0).

It is straightforward to check that:

Lemma 14. LetN be an ωPN and letN ′ be its corresponding PN. Then m ∈Reach(N )
iff f(m) ∈ Reach(N ′).

The above construction can be carried out in polynomial time. Thus, ωPN generalise
Petri nets, the known complexities for reachability [17,18], (place) boundedness and
coverability [20] carry on to ωPN:

Corollary 15. Reachability for ωPN is decidable and EXPSPACE-hard. Coverability,
boundedness and place boundedness for ωPN are EXPSPACE-c.
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This justifies the result given in Table 1 for reachability, coverability and (place) bound-
edness, for ωPN. However, the above construction fails for deciding termination. For
instance, assume that the leftmost part of Fig. 5 is an ωPN N = 〈P, T,m0〉 with
m0(q) = 1. Clearly, all executions of N are finite, while t′(tp1

+ω)
ω is an infinite tran-

sition sequence that is firable in N ′. Termination, however is decidable, by the KM
technique of Section 3, and EXPSPACE-hard, as ωPN generalise Petri nets. In the next
section, we show that the Rackoff technique [20] can be generalised to ωPN, and prove
that termination is EXPSPACE-c for ωPN.

5 Extending the Rackoff Technique for ωPN

In this section, we extend the Rackoff technique to ωPN to prove the existence of short
self-covering sequences. For applications of interest, such as the termination problem,
it is sufficient to consider ωOPN, as proved in Lemma 12. Hence, we only consider
ωOPN in this section. As in Rackoff’s work [20], the idea here is to use small solutions
of linear Diophantine equations to limit lengths of sequences. As in the work of Brazdil
et al. [3], we modify the effect of a sequence of transitions to ensure that ω-transitions
are fired at least once. But the results of [3], proved in the context of games, can not be
used here directly for the termination problem.

As observed in [20], beyond some large values, it is not necessary to track the
exact value of markings to solve some problems. We use threshold functions h :
{0, . . . , |P |} → N to specify such large values. Let nbω (m) = |{p ∈ P | m(p) ∈ N}|.

Definition 16. Let h : {0, . . . , |P |} → N be a threshold function. Given an ω-marking
m, the markings [m]h→ω and [m]ω→h are defined as follows:

([m]h→ω)(p) =

{
m(p) if m(p) < h(nbω (m)),

ω otherwise.

([m]ω→h)(p) =

{
m(p) if m(p) ∈ N,

h(nbω (m) + 1) otherwise.

In [m]h→ω , values that are too high are abstracted by ω. In [m]ω→h, ω is replaced by the
corresponding natural number. This kind of abstraction is formalized in the following
threshold semantics.

Definition 17. Given an ωPN N , a transition t, an ω-marking m that enables t and a

threshold function h, we define the transition relation
t−→h as m

t−→h [m+effect(t)]h→ω .

The transition relation
t−→h is extended to sequences of transitions in the usual way.

Note that if m
t−→h m′, then ω(m) ⊆ ω(m′). In words, a place marked ω will stay that

way along any transition in threshold semantics.
Let R = max{| effect(t)(p)| | t ∈ T, p ∈ P, effect(t)(p) < ω}. The following

proposition says that ω can be replaced by large enough numbers without disabling
sequences. The proof is by a routine induction on the length of sequences, using the
fact that in an ωOPN, any transition can reduce at most R tokens from a place.
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Proposition 18. For some ω-markings m1 and m2, suppose m1
σ−→h m2 and ω(m2) =

ω(m1). If m′
1 is a marking such that m′

1 	ω(m1) m1 and m′
1(p) ≥ R|σ| for all p ∈

ω(m1), then m′
1

σ−→ m′
2 such that m′

2 	ω(m2) m2 and m′
2(p) ≥ m′

1(p)−R|σ|.

Definition 19. Given an ω-marking m1 and a threshold function h, an ω-maximal
threshold pumping sequence (h-PS) enabled at m1 is a sequence σ of transitions such
that m1

σ−→h m2, effect(σ) ≥ 0 and ω(m2) = ω(m1).

In the above definition, note that we require effect(σ)(p) ≥ 0 for any place p, irrespec-
tive of whether m1(p) = ω or not.

Definition 20. Suppose σ is an ω-maximal h-PS enabled at m1 and σ = σ1σ2σ3 such
that m1

σ1−→h m3
σ2−→h m3

σ3−→h m2. We call σ2 a simple loop if all intermediate
ω-markings obtained while firing σ2 from m3 (except the last one, which is m3 again)
are distinct from one another.

In the above definition, since m3
σ2−→h m3 and m1

σ1σ3−−−→h m2, one might be tempted
to think that σ1σ3 is also an ω-maximal h-PS enabled at m1. This is however not true in
general, since there might be some p ∈ ω(m1) such that effect(σ1σ3)(p) < 0 (which
is compensated by σ2 with effect(σ2)(p) > 0). The presence of the simple loop σ2 is
required due to its compensating effect. The idea of the proof of the following lemma
is that if there are a large number of loops, it is enough to retain a few to get a shorter
ω-maximal h-PS.

Lemma 21. There is a constant d such that for any ωPN N , any threshold function
h and any ω-maximal h-PS σ enabled at some ω-marking m1, there is an ω-maximal
h-PS σ′ enabled at m1, whose length is at most (h(nbω (m1))2R)d|P |3 .

Proof (Sketch). This proof is similar to that of [20, Lemma 4.5], with some modifica-
tions to handle ω-transitions. It is organized into the following steps.

Step 1: We first associate a vector with a sequence of transitions to measure the
effect of the sequence. This is the step that differs most from that of [20, Lemma
4.5]. The idea in this step is similar to the one used in [3, Lemma 7].

Step 2: Next we remove some simple loops from σ to obtain σ′′ such that for ev-
ery intermediate ω-marking m in the run m1

σ−→h m2, m also occurs in the run

m1
σ′′
−−→h m2.

Step 3: The sequence σ′′ obtained above need not be a h-PS. With the help of the
vectors defined in step 1, we formulate a set of linear Diophantine equations that
encode the fact that the effects of σ′′ and the simple loops that were removed in
step 2 combine to give the effect of a h-PS.

Step 4: Then we use the result about existence of small solutions to linear Diophan-
tine equations to construct a sequence σ′ that meets the length constraint of the
lemma.

Step 5: Finally, we prove that σ′ is a h-PS enabled at m1.
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pi+1

≥ 2R�(i)→ ω

≤ �(i) ≤ �(i)

Fig. 6. Intuition for the threshold functions

Details of Step 1: Let Pω ⊆ ω(m1) be the set of places p such that some transition t
in σ has effect(t)(p) = ω. If we ensure that for each place p ∈ Pω , some transition t
with effect(t)(p) = ω is fired, we can ignore the effect of other transitions on p. This
is formalized in the following definition of the effect of any sequence of transitions
σ1 = t1 · · · tr. We define the function ΔPω [σ1] : ω(m1)→ Z as follows.

ΔPω [σ1](p) =

⎧⎪⎨⎪⎩
1 p ∈ Pω , ∃i ∈ {1, . . . , r} : effect(ti)(p) = ω

0 p ∈ Pω , ∀i ∈ {1, . . . , r} : effect(ti)(p) �= ω∑
1≤i≤r effect(ti)(p) otherwise

Applying the above definition to simple loops, it is possible to remove some of them to
get shorter pumping sequences. Details about how to do it are in the remaining steps of
the proof, which can be found in the technical report [13]. � 

Definition 22. Let c = 2d. The functions h1, h2, � : N→ N are as follows:

h1(0) = 1 �(0) = (2R)c|P |3 h2(0) = R

h1(i + 1) = 2R�(i) �(i + 1) = (h1(i + 1)2R)c|P |3 h2(i + 1) = R�(i)

All the above functions are non-decreasing. Due to the selection of the constant c above,
we have (2xR)c|P |3 ≥ x|P | + (2xR)d|P |3 for all x ∈ N.

The goal is to prove that if there is a self-covering execution, there is one whose
length is at most �(|P |). That proof uses the result of Lemma 21 and the definition of �
above reflects it. For the intuition behind the definition of h1 and h2, suppose that the
proof of the length upper bound of �(|P |) is by induction on |P | and we have proved
the result for |P | = i. For the case of i + 1, we want to decide the value beyond which
it is safe to abstract by replacing numbers by ω. As shown in Fig. 6, suppose the initial
prefix of a self-covering execution for i places is of length at most �(i). Also suppose
the pumping portion of the self-covering execution is of length at most �(i). The total
length is at most 2�(i). Since each transition can reduce at most R tokens from any
place, it is enough to have 2R�(i) tokens in pi+1 to safely replace numbers by ω.
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The following lemma shows that if some ω-marking can be reached in threshold
semantics, a corresponding marking can be reached in the natural semantics where ω is
replaced by a value large enough to solve the termination problem.

Lemma 23. For some ω-markings m3 and m4, suppose m3
σ−→h1 m4. Then there

is a sequence σ′ such that [m3]ω→h1

σ′
−→ m′

4, m′
4 �ω(m4) [m4]ω→h2 and |σ′| ≤

h1(nbω (m3))
|P |.

Lemma 24. If an ωPN N admits a self-covering execution, then it admits one whose
sequence of transitions is of length at most �(|P |).

Proof. Suppose σ = σ1σ2 is the sequence of transitions in the given self-covering
execution such that m0

σ1−→ m1
σ2−→ m2 and m2 � m1. A routine induction on the

length of any sequence of transitions σ shows that if m3
σ−→ m4, we have m3

σ−→h1 m′
4

with m′
4 −m3 � m4 −m3. Hence, we have m0

σ1−→h1 m′
1

σ2−→h1 m′
2 with m′

2 � m′
1.

By monotonicity, we infer that for any i ∈ N+, m′
i

σ2−→h1 m′
i+1 with m′

i+1 � m′
i.

Let j ∈ N+ be the first number such that ω(m′
j) = ω(m′

j+1). We have m0
σ1σ

j−1
2−−−−−→h1

m′
j

σ2−→h1 m′
j+1 and σ2 is an ω-maximal h1-PS enabled at m′

j .
By Lemma 21, there is a h1-PS σ′

2 enabled at m′
j whose length is at most

(h1(nbω
(
m′

j

)
)2R)d|P |3 . By Lemma 23, there is a sequence σ′

1 such that m0
σ′
1−→ m′′

j ,
m′′

j �ω(m′
j)

[m′
j ]ω→h2 and |σ′

1| ≤ (h1(|P |))|P |. By Definition 22 and Definition 16,

we infer that m′′
j (p) = R�(nbω

(
m′

j

)
) = R(h1(nbω

(
m′

j

)
)2R)c|P |3 ≥ R|σ′

2| for

all p ∈ ω(m′
j). Hence, we infer from Proposition 18 that m0

σ′
1−→ m′′

j

σ′
2−→ m′′

j+1.
Since σ′

2 is a h1-PS, effect(σ′
2) � 0, and so m′′

j+1 � m′′
j . Therefore, firing σ′

1σ
′
2 at

m0 results in a self-covering execution. The length of σ′
1σ

′
2 is at most (h1(|P |))|P | +

(h1(nbω
(
m′

j

)
)2R)d|P |3 ≤ �(|P |). � 

Lemma 25. Let k = 3c. Then �(i) ≤ (2R)k
i+1|P |3(i+1)

for all i ∈ N.

Theorem 26. The termination problem for ωPN is EXPSPACE-c.

The idea of the proof of the above theorem is to construct a non-deterministic Turing
machine that guesses and verifies a self-covering sequence. By Lemma 24, the length
of such a sequence can be limited and hence made to work in EXPSPACE.

6 Extensions with Transfer or Reset Arcs

In this section, we consider two extensions of ωPN, namely: ωPN with transfer arcs
(ωPN+T) and ωPN with reset arcs (ωPN+R). These extensions have been considered
in the case of plain Petri nets: Petri nets with transfer arcs (PN+T) and Petri nets with
reset arcs (PN+R) have been extensively studied in the literature [7,1,8,22]. Intuitively,
a transfer arc allows to transfer all the tokens from a designated place p to a given place
q, while a reset arc consumes all tokens from a designated place p.
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Formally, an extended ωPN is a tuple 〈P, T 〉, where P is a finite set of places and
T is finite set of transitions. Each transition is a pair t = (I, O) where I : P �→ N ∪
{ω,T,R}; O : P �→ N ∪ {ω,T}; |{p | I(p) ∈ {T,R}}| ≤ 1; |{p | O(p) ∈ {T}}| ≤ 1;
there is p s.t. I(p) = T iff there is q s.t. O(q) = T; and if there is p s.t. I(p) = R, then,
O(p) ∈ N ∪ {ω} for all p. A transition (I, O) s.t. I(p) = T (resp. I(p) = R) for some
p is called a transfer (reset). An ωPN with transfer arcs (resp. with reset arcs), ωPN+T
(ωPN+R) for short, is an extended ωPN that contains no reset (transfer). An ωPN+T
s.t. I(t)(p) �= ω for all transitions t and places p is an ωOPN+T. The class ωIPN+T
is defined symmetrically. An ωPN+T which is both an ωOPN+T and an ωIPN+T is a
(plain) PN+T. The classes ωOPN+R, ωIPN+R and PN+R are defined accordingly.

Let t = (I, O) be a transfer or a reset. t is enabled in a marking m iff for all p:
I(p) �∈ {ω,T,R} implies m(p) ≥ I(p). In this case firing t yields a marking m′ =

m −mI + mO (denoted m
t−→ m′) where for all p: mI(p) = m(p) if I(p) ∈ {T,R};

0 ≤ mI(p) ≤ m(p) if I(p) = ω; mI(p) = I(p) if I(p) �∈ {T,R, ω}; mO(p) = m(p′)
if O(p) = I(p′) = T ; mO(p) ≥ 0 if O(p) = ω; and mO(p) = O(p) if O(p) �∈ {T, ω}.
The semantics of transitions that are neither transfers nor resets is as defined for ωPN.

Let us now investigate the status of the problems listed in Section 2, in the case of
ωPN+T and ωPN+R. First, since ωPN+T (ωPN+R) extend PN+T (PN+R), the lower
bounds for the latters carry on: reachability and place-boundedness are undecidable [6]
for ωPN+T and ωPN+R; boundedness is undecidable for ωPN+R [8]; and coverability
is Ackerman-hard for ωPN+T and ωPN+R [22]. On the other hand, the construction
given in Section 4 can be adapted to turn an ωPN+T (resp. ωPN+R) N into a PN+T
(PN+R) N ′ satisfying Lemma 14 (i.e., projecting Reach(N ′,m0) on the set of places
of N yields Reach(N ,m0)). Hence, boundedness for ωPN+T [8], and coverability for
both ωPN+T and ωPN+R are decidable [1].

As far as termination is concerned, it is decidable [7] and Ackerman-hard [22] for
PN+R and PN+T. Unfortunately, the construction presented in Section 4 does not pre-
serve termination, so we cannot reduce termination of ωPN+T (resp. ωPN+R) to termi-
nation of PN+T (PN+R). Actually, termination becomes undecidable when considering
ωOPN+R or ωOPN+T:

Theorem 27. Termination is undecidable for ωOPN+T and ωOPN+R with one ω-
output-arc.

Proof. We first prove undecidability for ωOPN+T. The proof is by reduction from
the parameterised termination problem for Broadcast protocols (BP) [9]. It is well-
known that PN+T generalise broadcast protocols, hence the following parameterised
termination problem for PN+T is undecidable: ‘given a PN+T 〈P, T 〉 and an ω-
marking m0, does 〈P, T,m0〉 terminate for all m0 ∈↓ (m0) ?’ From a PN+T N =
〈P, T 〉 and an ω-marking m0, we build the ωOPN+T (with only one ω-output-arc)
N ′ = 〈P ′, T ′,m′

0〉 where P ′ = P ! {pinit}, T ′ = T ! {(I, O)}, I = {pinit},
O = {ω ⊗ p | m0(p) = ω}, and m′

0 = {m0 ⊗ p | m0(p) �= ω}. Clearly, N ′ termi-
nates iff 〈P, T,m0〉 terminates for all m0 ∈↓(m0). Hence, termination for ωOPN+T
is undecidable too. Finally, we can transform an ωOPN+R N = 〈P, T,m0〉 into an
ωOPN+TN ′ = 〈P !{ptrash}, T ′,m0〉, where t′ ∈ T ′ iff either (i) t′ ∈ T and t′ is not
a reset, or (ii) there is a reset t ∈ T and a place p ∈ P s.t. I(t)(p) = R, I(t′)(p) = T,
O(t′)(ptrash) = T, for all p′ �= p: I(t′)(p′) = I(t)(p′) and for all p′′ �= ptrash:
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O(t′)(p′′) = O(t)(p′′). Intuitively, the construction replaces each reset (resetting place
p) in N by a transfer from p to ptrash in N ′, where ptrash is a fresh place from which
no transition consume. Since N ′ terminates iff N terminates, termination is undecid-
able for ωPN+R too. � 

However, the construction of Section 4 can be applied to ωIPN+T and ωIPN+R to yield
a corresponding PN+T (resp. PN+R) that preserves termination. Hence, termination is
decidable and Ackerman-hard for those models. This justifies the results on ωPN+T
and ωPN+R given in Table 1.
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Abstract. Yen proposed a construction for a semilinear representation
of the reachability set of BPP-Petri nets which can be used to decide the
equivalence problem of two BPP-PNs in doubly exponential time. We
first address a gap in this construction which therefore does not always
represent the reachability set. We propose a solution which is formulated
in such a way that a large portion of Yen’s construction and proof can
be retained, preserving the size of the semilinear representation and the
double exponential time bound (except for possibly larger values of some
constants). In the second part of the paper, we propose very efficient al-
gorithms for several variations of the boundedness and liveness problems
of BPP-PNs. For several more complex notions of boundedness, as well
as for the covering problem, we show NP-completeness. To demonstrate
the contrast between BPP-PNs and a slight generalization regarding edge
multiplicities, we show that the complexity of the classical boundedness
problem increases from linear time to coNP-hardness. Our results also
imply corresponding complexity bounds for related problems for process
algebras and (commutative) context-free grammars.

1 Introduction

Basic Parallel Processes Petri nets (BPP-PNs, also known as communication-
free Petri nets) are characterized by the simple topological constraint that each
transition has exactly one input place (connected by an edge with multiplicity 1).
There are several reasons why it is insightful to investigate this class. Studying
nontrivial subclasses of Petri nets helps understanding the dynamics of Petri
nets in general, which could finally lead to a primitive recursive algorithm for the
reachability problem of general Petri nets (a non primitive recursive algorithm
was given by Mayr [11]). Furthermore, this Petri net class is closely related to
both Basic Parallel Processes, a subclass of Milner’s Calculus of Communicating
Systems (CCS, see, e.g., [1, 2]), as well as (commutative) context-free grammars
(see, e.g., [6, 3]).

The strong topological constraint on BPP-PNs limits the computational power
of these nets in the sense that they are unable to model synchronizing actions
since the fireability of a transition only depends on exactly one place. Esparza
[3] showed that the reachability problem of BPP-PNs is, nevertheless, NP-hard.

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 70–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Results on Equivalence, Boundedness, Liveness, and Covering Problems 71

Furthermore, he showed that the problem is in NP. Both results together yield
an alternative proof for the NP-completeness of the uniform word problem for
commutative context-free grammars (as shown earlier by Huynh [6]).

Another proof for NP-membership, based on canonical firing sequences, was
given by Yen [19]. In addition, he proposed an exponential time construction for
a semilinear representation of the reachability set of BPP-PNs. He then used this
semilinear representation to argue that the equivalence problem for BPP-PNs
has a doubly exponential time bound.

In section 3, we address a gap in this construction. We show that, in general,
the construction actually computes a proper superset of the reachability set. We
then show how to fix the construction in such a way that most parts of Yen’s
argumentation can be retained while maintaining the size and running time
bounds of the original construction (in the sense that all specified constants stay
the same).

For some notions of boundedness and liveness of BPPs/BPP-PNs ([9, 13, 14],
also see [15]), polynomial time algorithms are already known. In addition to
these, we also investigate a number of other variations of the boundedness, the
covering, and the liveness problem for BPP-PNs in sections 4 and 5. For two
variants of the boundedness problem, and for the covering problem, we show
NP-completeness. Using, among other things, results from section 3, we can
decide most of the remaining problems very efficiently in linear time. (Exten-
sions of) these algorithms are also applicable to related problems of BPPs and
(commutative) context-free grammars (e.g., finiteness of context-free grammars,
see [4]). These minor results can be found in the technical report [12].

Linear time algorithms not only make these problems tractable in practice
but also show that BPP-PNs are too restricted if we are searching for classes
of Petri nets where these problems are hard. Further variations and generaliza-
tions of BPP-PNs need to be investigated in order to mark the boundary where
these problems cease to be easy. As a first example, we show that the classical
boundedness problem becomes coNP-hard if we slightly weaken the restriction
on the multiplicities of edges from places to transitions in BPP-PNs.

2 Preliminaries

Z, N0, and N denote the sets of all integers, all nonnegative integers, and all
positive integers, respectively, while [a, b] = {a, a + 1, . . . , b} � Z, and [k] =
[1, k] � N. For two vectors u, v ∈ Zk, we write u ≥ v if u(i) ≥ v(i) for all i ∈ [k],
and u > v if u ≥ v and u(i) > v(i) for some i ∈ [k]. When k is understood, a
denotes, for a number a ∈ Z, the k-dimensional vector with ai = a for all i ∈ [k].

A Petri net N is a 3-tuple (P, T, F ) where P is a finite set of n places, T is
a finite set of m transitions with S ∩ T = ∅, and F : P × T ∪ T × P → N0

is a flow function. A marking μ (of N) is a function P → N0. A pair (N,μ0)
such that μ0 is a marking of N is called a marked Petri net, and μ0 is called
its initial marking. We will omit the term “marked” if the presence of a certain
initial marking is clear from the context.
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Throughout this paper, n and m will always refer to the number of places and
transitions of the Petri net under consideration. For a transition t ∈ T , •t (t•,
resp.) is the preset (postset, resp.) of t and denotes the set of all places p such
that F (p, t) > 0 (F (t, p) > 0, resp. ). Analogously, •p and p• are defined for the
places p ∈ P .

A Petri net naturally corresponds to a directed bipartite graph with edges
from P to T and vice versa such that there is an edge from p ∈ P to t ∈ T
(from t to p, resp.) labelled with w if 0 < F (p, t) = w (if 0 < F (t, p) = w, resp.).
The label of an edge is called multiplicity. If a Petri net is visualized, places are
usually drawn as circles and transitions as bars. If the Petri net is marked by μ,
then for each place p the circle corresponding to p contains μ(p) so called tokens.

For a Petri net N = (P, T, F ) and a marking μ of N , a transition t ∈ T can
be applied at μ producing a vector μ′ ∈ Zn with μ′(p) = μ(p)−F (p, t) +F (t, p)
for all p ∈ P . The transition t is enabled at μ or in (N,μ) if μ(p) ≥ F (p, t) for
all p ∈ P . We say that t is fired at marking μ if t is enabled and applied at μ. If
t is fired at μ, then the produced vector μ′ is a marking, and we write μ

t−→ μ′.
Intuitively, if a transition is fired, it first removes F (p, t) tokens from p

and then adds F (t, p) tokens to p. An element of T ∗ is called a transition se-
quence, an element of T∞ is called an ∞-transition sequence. For the empty
sequence σ = () of transitions, we define μ

σ−→ μ. For a nonempty transition
sequence σ = (t1, . . . , tk), we write μ0

σ−→ μk if there are markings μ1, . . . , μk−1

such that μ0
t1−→ μ1

t2−→ μ2 . . .
tk−→ μk.

The Parikh map Ψ : T ∗ → Nm
0 maps a transition sequence σ to its Parikh

image Ψ [σ] where Ψ [σ](t) = k for a transition t if t appears exactly k times in
σ. A Parikh vector is simply an element of Nm

0 (hence each Parikh vector is the
Parikh image of some transition sequence). For a Parikh vector Φ we write t ∈ Φ
if Φ(t) > 0, and t ∈ σ if t ∈ Ψ [σ].

If there is a marking μ′ such that μ
σ−→ μ′, then we say that σ (the Parikh

vector Ψ [σ], resp.) is enabled at μ and leads from μ to μ′. For a marked Petri
net (N,μ0), we call a transition sequence that is enabled at μ0 a firing sequence,
and we say that a marking μ is reachable if there is a firing sequence leading to
μ. Analogously, an ∞-transition sequence σ is enabled at μ if each finite prefix
of σ is enabled at μ. If σ is enabled at μ0, we call σ an ∞-firing sequence. The
reachability set R(N,μ0) of (N,μ0) consists of all markings μ of N for which
there is a firing sequence σ such that μ0

σ−→ μ. We say that a marking μ can be
covered or μ is coverable if there is a reachable marking μ′ ≥ μ.

The displacement Δ : Nm
0 → Zn

0 maps Parikh vectors Φ ∈ Nm
0 onto the change

of tokens at the places p1, . . . , pn when applying transition sequences with Parikh
image Φ. That is, we have Δ[Φ](p) =

∑
t∈T Φ(t) · (F (t, p)−F (p, t)) for all places

p. Accordingly, we define the displacement Δ[σ] of a transition sequence σ by
Δ[σ] := Δ[Ψ [σ]]. A Parikh vector or a transition sequence having nonnegative
displacement at all places is called a nonnegative loop since, immediately af-
ter being fired, the loop is enabled again. A nonnegative loop having positive
displacement at place p is a positive loop (for p).
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Sometimes it is convenient to only consider those places and transitions that
are relevant w.r.t. a given set of transitions or a Parikh vector. For a Petri net
P = (P, T, F, μ0), and a set D of transitions, the Petri net PD consists of all
transitions t ∈ D, all places p ∈

⋃
t∈D(•t ∪ t•), and the flow function F and

initial marking μ0 restricted to these subsets of transitions and places. For a
Parikh vector Φ we define PΦ := PD where D = {t | t ∈ Φ}.

In the case of BPP-PNs the strongly connected components (SCCs) are also
of major interest. The directed acyclic graph obtained by shrinking all SCCs to
super nodes while maintaining the edges between distinct SCC as edges between
the corresponding super nodes is called the condensation (of the graph). We call
an SCC C a top component (bottom component, resp.) if it has no incoming (no
outgoing, resp.) edges in the condensation. For two not necessarily distinct SCCs
C1, C2, we write C1 ≥ C2 if there is a path from C1 to C2 in the condensation.

An important concept in the analysis of Petri nets are traps. A subset T ⊆ P
of places is a trap if •t ∩ T �= ∅ implies t• ∩ T �= ∅, i.e., every transition that
removes a token from T also adds a token to T . Once a trap is marked, it cannot
be unmarked by firing a transition.

Some marked Petri nets have reachability sets that are semilinear. A set S ⊆
Nn

0 is semilinear if there is a finite number of linear sets L1, . . . , Lk ⊆ Nn
0 such

that S =
⋃

i∈[k] Li. A set L ⊆ Nn
0 is linear if there is a finite number of vectors

b, p1, . . . , p� ∈ Nn
0 such that L = L(b, {p1, . . . , p�}) where L(b, {p1, . . . , p�}) :=

{b+
∑

i∈[�] aipi | ai ∈ N0, i ∈ [�]}. The vector b is the constant vector of L while
the vectors pi are the periods of L. A semilinear representation of a semilinear
set S is a set consisting of k pairs (bi, {pi,1, . . . , pi,�i}), i ∈ [k], such that S =⋃

i∈[k] L(bi, {pi,1, . . . , pi,�i}).
If two Petri nets allow the construction of semilinear representations of the

respective reachability sets within a certain time bound, then not only many
problems that are in general undecidable are decidable for this class but time
bounds can be given as well. For example, the equivalence problem of (conve-
niently encoded representations of) semilinear sets is in ΠP

2 [5, 7]. This implies
that the equivalence problem for that class, i.e., the question if two Petri nets
of the class have the same set of reachable markings, is decidable in exponential
time w.r.t. the combined time to construct the semilinear sets.

When we talk about the input size, a “reasonable” encoding/description is
assumed. We specifically assume that every number is encoded in binary repre-
sentation. Furthermore, we assume for convenience that a Petri net is encoded
as an enumeration of places p1, . . . , pn and transitions t1 . . . , tm followed by an
enumeration of the edges with their respective edge multiplicities. A vector of Nk

0

is encoded as a k-tuple. If we regard a tuple as an input (e.g. a marked Petri net),
then it is encoded as a tuple of the encodings of the particular components. All
running times given in later sections assume the random-access machine (RAM)
as the model of computation.
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3 The Equivalence Problem of BPP-Petri Nets Revisited

In this section we consider the equivalence problem of BPP-PNs.

Definition 1 (Equivalence problem of BPP-PNs). Given two BPP-PNs
P and P ′, are R(P) and R(P ′) equal?

In [19], Yen proposed a construction for a semilinear representation of the reach-
ability set of BPP-PNs. The obtained representation has exponential size in the
size of the BPP-PN. The author used the fact that the equivalence problem of
semilinear sets is in ΠP

2 (see [5, 7]) to show a double exponential time bound for
this problem. The construction of the semilinear representation is contained in
the proposed proof of the following theorem.

Theorem 1 ([19], Theorem 5). Let P = (P, T, F, μ0) be a BPP-Petri net
of size s. For some fixed constants c1, c2, d1, d2, d3 independent of s, we can
construct in DTIME(2c2s

3

) a semilinear reachability set R(P) =
⋃

ν∈B L(ν, ρν)
whose size is bounded by O(2c1s

3

), where

1. B is the set of reachable markings with no component larger than 2d1s
2

, and
2. ρν is the set of all ϑ ∈ Nk such that

(a) ϑ has no component larger than 2d2s
2

, and
(b) ∃ σ, σ1, σ2 ∈ T ∗, ∃ marking μ1,

(i) μ0
σ1−→ μ1

σ2−→ ν,
(ii) μ1

σ−→ μ1 + ϑ,
(iii) |σ|, |σ1σ2| ≤ 2d3s

2

.

We show that there are BPP-PNs such that the constructed semilinear set con-
tains markings that are not reachable. Consider the BPP-PN P with initial
marking μ0 = (1, 0, 0, 0) of Figure 1. The marking ν = (0, 0, 0, 1) is reachable.

p1

p2 p3

p4

t1

t2

t3

t4

t5

2
t6

2

Fig. 1. A counter example for the construction
proposed in Theorem 1

In particular we have μ0
t1−→

μ1 = (0, 1, 0, 0)
t2−→ ν as well as

μ0
t3−→ μ′

1 = (0, 0, 1, 0)
t4−→ ν.

Notice that we can safely and
w.l.o.g. assume ν ∈ B since we
can blow up the size of the net by
adding unrelated places. Now ob-
serve that μ1

t5−→ μ1 + ϑ where
ϑ = (0, 1, 0, 0), as well as μ′

1
t6−→

μ′
1 + ϑ′ where ϑ′ = (0, 0, 1, 0).

As before, we can safely as-
sume |t1t2|, |t3t4|, |t5|, |t6| ≤ 2d3s

2

.
Therefore, we find ϑ, ϑ′ ∈ ρν .
But then, the unreachable mark-
ing (0, 1, 1, 1) is in L(ν, ρν). Hence,
the constructed semilinear set S :=⋃

ν∈B L(ν, ρν) cannot equal R(P).
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The inclusion R(P) ⊆ S is proven correctly in [19]. Our goal is to repair the
construction in such a way that we can more or less completely reuse the proof
given for this direction. Our first step is to show that there is a certain subclass
of BPP-PNs for which the other direction S ⊆ R(P) is also true. To this end,
observe that the crucial property of the net of Figure 1 that makes this net a
counter example is that ν is reachable by the two firing sequences t1t2 and t3t4
which have different Parikh images. We will later show that the restriction to
those BPP-PNs having the nice property that any two firing sequences leading to
the same marking have the same Parikh image yields a variation of this theorem
which is correct.

Before we can prove such a theorem, we first need some observations about
enabled Parikh vectors and nonnegative loops in BPP-PNs.

Lemma 1. Let P = (N,μ0) be a BPP-PN. A Parikh vector Φ is enabled in P
if and only if

(a) μ0 + Δ[Φ] ≥ 0, and
(b) each top component of PΦ has a marked place.

Proof. This Lemma is a variation of Theorem 3.1 of [3] which is better suited
for our purposes. The theorem states that Φ is enabled if and only if (a) holds
and if, within PΦ, each place can be reached from a marked place. � 

Lemma 2. Let P = (P, T, F, μ0) be a Petri net, σ = σ1 · · ·σk ∈ T k a firing
sequence in P, and let μi, i ∈ [k], be defined by μ0

σ1−→ μ1
σ2−→ . . .

σk−→ μk. Then,
for each place p of PΨ [σ], there is an i ∈ [0, k] such that p is marked in μi.

Proof. Each place p of PΨ [σ] is in the pre- or postset of some transition σi. If
p ∈ •σi, then p must be marked in μi−1. If p ∈ σi

•, then p is marked in μi. � 

Lemma 3. Let Φ be a nonnegative loop of a BPP-PN P = (P, T, F ), and let
C1, . . . , Ck, k ≥ 1, denote the top components of PΦ. Then Φ can be split into
nonnegative loops Φ1, . . . , Φk, k ≤ n, such that

(a) Φ =
∑k

i=1 Φi, and
(b) the only top component of PΦi is Ci.

Proof. For Φ = 0, the lemma is obviously true, hence we assume Φ > 0. We
show that we can extract Φ1 from Φ. By iteratively applying this procedure, we
obtain the nonnegative loops of interest. PΦ1 will contain C1 and all nodes that
are reachable from C1. Since it is possible that firing a transition t of an SCC C
with C ≤ C1, C2 and C �= C1, C2 exactly Φ(t) times requires tokens coming from
C1 and C2, PΦ1 and PΦ−Φ1 will in general not be disjoint.

We first note that a top component of PΦ always contains a transition since
otherwise there would be a transition of Φ that removes tokens from the com-
ponent but no transition that adds tokens to it, a contradiction to Φ being a
nonnegative loop. Let Φ′ = Φ and Φ1 = 0. By moving a transition t from Φ′ to
Φ1 we mean setting Φ′(t) := Φ′(t)− 1 and Φ1(t) := Φ1(t) + 1.

We start with a top component C1 of PΦ, and move each transition t ∈ C1

exactly Φ′(t) times from Φ′ to Φ1. Then we iterate the following process:
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(i) If Δ[Φ1](p) > 0 for a place p and p = •t for a transition t ∈ Φ′, then we
move t from Φ′ to Φ1.

(ii) Otherwise, if there is a top component of PΦ′ that is not a top component
of PΦ, we move each transition t of this component exactly Φ′(t) times
from Φ′ to Φ1.

The procedure ends when none of these two cases is applicable.
We first prove that at each step of the procedure the only top component of

PΦ1 is C1. After the first step this is obviously true since we completely move
C1. Assume this holds for �− 1 steps. If the �-th step is of case (i), then it holds
after � steps since the only nodes that are possibly added to the induced graph
PΦ1 by moving t are t and t• which can be reached by the place •t which is
already part of PΦ1 before moving t. If the �-th step is of case (ii), then the
moved component C was originally created by moving a transition t such that
t• and C share a place. This shows that PΦ1 has only one top component after
the last step of the procedure.

Observe that the top components of PΦ′ are exactly C2, . . . , Ck. The reason
is that C1 is moved, C2, . . . , Ck remain untouched, and (ii) ensures the moving
of all newly created top components.

Now, we show that Δ[Φ1] ≥ 0 holds at each step of the procedure. After the
first step, i.e., after moving the top component, this holds since otherwise Φ
wouldn’t be a nonnegative loop. Suppose this holds after �− 1 steps. If the �-th
step is of case (i), then it obviously still holds after that.

Suppose, the �-th step is of case (ii), where C is the new top component that
is moved during this step. Consider the situation immediately before the �-th
step. Let ΦC be defined by ΦC(t) = Φ′(t) if t ∈ C, and ΦC(t) = 0 otherwise.
Our goal is to show that Δ[ΦC ] ≥ 0 since this and the induction hypothesis
imply Δ[Φ1 + ΦC ] ≥ 0, i.e., after moving all transitions of C in the �-th step,
the resulting Parikh vector is a nonnegative loop.

First notice that for all places p /∈ C we have Δ[ΦC ](p) ≥ 0. (This follows
from the fact that C is a transition induced SCC, implying •t ∈ C for all t ∈ C.)

Consider a place p ∈ C. By the induction hypothesis, we have Δ[Φ1](p) ≥ 0.
Δ[Φ1](p) > 0 cannot occur since otherwise the �-th step would be of case (i)
(applied to a transition t ∈ C having p = •t). Thus, we have Δ[Φ1](p) = 0.

Now, observe that for all t ∈ Φ′ having t• ∈ C we have t ∈ ΦC since C is a top
component. This implies Δ[ΦC ](p) ≥ Δ[Φ′](p). Combining all these observations
we obtain

Δ[ΦC ](p) = Δ[Φ1 + ΦC ](p) ≥ Δ[Φ1 + Φ′](p) = Δ[Φ](p) ≥ 0.

Now, we show that Φ′ is a nonnegative loop at the end of the procedure. Let p be
a place, and consider the situation after the last step. If Δ[Φ1](p) > 0, then there
is no transition t ∈ Φ′ having •t = p since otherwise (i) would be applicable,
and the procedure wouldn’t have stopped, yet. This implies Δ[Φ′](p) ≥ 0. If
Δ[Φ1](p) = 0, then Δ[Φ′](p) ≥ 0 follows from Δ[Φ1 + Φ′] = Δ[Φ] ≥ 0. As shown
above, the case Δ[Φ1](p) < 0 cannot occur.
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Since •t �= ∅ for all transitions t, each top component of PΦ contains at least
one place. This implies k ≤ n, concluding the proof. � 

Lemma 4. Let P = (P, T, F, μ0) be a BPP-PN, and Φ, ϑ Parikh vectors such
that ϑ is a nonnegative loop, and Φ and Φ+ϑ are enabled. Then, for each firing
sequence α such that PΦ is a subnet of PΨ [α], there are transition sequences
α1, . . . , αk+1 and nonnegative loops τ1, . . . , τk, k ≤ n, such that

(a) α = α1 · · ·αk+1,
(b) ϑ = τ1 + . . . + τk,
(c) Pτi , i ∈ [k], has exactly one top component, and this top component is

the i-th top component of Pϑ using a properly chosen numbering of the top
components, and

(d) τi, i ∈ [k], is enabled at marking μi where μ0
α1···αi−−−−→ μi.

Proof. Consider the decomposition of ϑ by Lemma 3 into nonnegative loops
τ1, . . . , τk, k ≤ n, such that ϑ =

∑k
i=1 τi, and the i-th top component Ci of Pϑ

is the unique top component of Pτi .
Let i ∈ [k]. Assume that Ci and PΦ are disjoint. Then, Ci is a top component

of PΦ+ϑ, and Ci is marked at μ0 by Lemma 1 since Φ + ϑ is enabled at μ0.
Therefore, by the same lemma, τi is enabled at μ0.

Now, assume that Ci and PΦ are not disjoint, i.e., they share a place p. Since
PΦ is a subnet of PΨ [α], Lemma 2 implies that there are transition sequences

α′, α′′ such that α = α′ · α′′ and p is marked at μ′ where μ0
α′
−→ μ′. Therefore,

by Lemma 1, τi is enabled at μ′ .
We conclude that, by splitting the sequence α at appropriate positions, there

are transition sequences α1, . . . , αk+1 such that α = α1α2 · · ·αk+1, and μ0
α1−→

μ1 · · ·
αk−−→ μk

αk+1−−−→ μ, and τi is enabled at μi where we assume w.l.o.g. that the
top components of Pϑ are conveniently numbered. � 

Having collected and proven these observations, we can show the following re-
stricted variation of Theorem 1.

Theorem 2. Let P = (P, T, F, μ0) be a BPP-Petri net of size s such that
for all firing sequences τ, τ ′ leading to the same marking Ψ(τ) = Ψ(τ ′) holds.
For some fixed constants c1, c2, d1, d2, d3 independent of s, we can construct in
DTIME(2c2s

3

) a semilinear reachability set R(P) =
⋃

ν∈B L(ν, ρν) whose size is
bounded by O(2c1s

3

), where

1. B is the set of reachable markings with no component larger than 2d1s
2

, and
2. ρν is the set of all ϑ ∈ Nk such that

(a) ϑ has no component larger than 2d2s
2

, and
(b) ∃ σ, σ1, σ2 ∈ T ∗, ∃ marking μ1,

(i) μ0
σ1−→ μ1

σ2−→ ν,
(ii) μ1

σ−→ μ1 + ϑ,
(iii) |σ|, |σ1σ2| ≤ 2d3s

2

.
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Proof. Assume B �= ∅, and let ν ∈ B, and μ ∈ L(ν, ρν) be arbitrarily chosen. Our
goal is to show that μ is reachable. W.l.o.g. let ρν = {ϑ1, . . . , ϑ�}. By definition,
there are a1, . . . , a� ∈ N0 such that μ = ν +

∑�
i=1 aiϑi. For ϑi, i ∈ [�], let σi,1

denote the sequence σ1 as defined in the theorem. Since all firing sequences
leading to ν have the same Parikh image Φν , PΨ [σi,1] is a subnet of PΦν .

Let α be some firing sequence having Parikh image Φν , and let μj , j ∈ [|α|],
be defined by μ0

α1···αj−−−−→ μj . By applying Lemma 4 to Ψ [σi,1], θi, and α for all
i ∈ [�], we find that for any partial loop of any θi there is a j ∈ [0, |α|] such
that the partial loop under consideration is enabled at μj . Therefore, the Parikh
vector Ψ [α] +

∑�
i=1 aiϑi leading to μ is enabled at μ0. � 

We can use this theorem and corresponding construction in a mediate way to
construct a semilinear representation ofR(P) in exponential time for every BPP-
PN P . For that we need the following definition.

Definition 2 (Parikh extension). Let P = (P, T, F, μ0), P = {p1, . . . , pn},
T = {t1, . . . , tm} be a Petri net. The Parikh extension Pe = (P e, T, F e, μe

0) of
P is obtained by adding an unmarked place p∗i for each transition ti such that
F (ti, p

∗
i ) = 1.

Figure 2 illustrates the Parikh extension of the net of Figure 1. If we fire a firing
sequence σ, μ′

0
σ−→ μ1, in the Parikh extension Pe, then the new place p∗i , i ∈ [m],

counts how often the transition ti is fired. In other words, the projection of μ1

onto the new places equals Ψ [σ]. Hence, for each marking μ reachable in Pe all
firing sequences leading to μ have the same Parikh image. This allows us to prove
the next theorem. We remark that the concept of the Parikh extension is closely
related to the concept of extended Parikh maps used in [10] for persistent Petri
nets.

Theorem 3. Let P = (P, T, F, μ0) be a BPP-Petri net of size s. For some fixed
constants c1, c2, d1, d2 independent of s, we can construct in DTIME(2c2s

3

) a
semilinear representation of the reachability set R(P) whose size is bounded by

p1

p2 p3

p4

p∗1 p∗3

p∗2 p∗4

p∗5 p∗6t1

t2

t3

t4

t5

2
t6

2

Fig. 2. The Parikh extension of the net of Figure 1
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O(2c1s
3

) where no component of any constant vector is larger than 2d1s
2

and no
component of any period is larger than 2d2s

2

.

Proof. We compute the Parikh extension Pe of P . First notice that Pe is a BPP-
PN. Since all firing sequences of Pe leading to the same marking have the same
Parikh image, we can apply the construction given in [19], which is correct for
Pe by Theorem 2, in order to obtain the semilinear representation SL(Pe) of
R(Pe). Now notice that a marking μ is reachable in P if and only if there is a
marking μ′ that is reachable in Pe such that the projection of μ′ onto the places
of P equals μ (to see this, simply apply the same firing sequence). Therefore, the
projection of SL(Pe) onto the places of P yields the semilinear representation
SL(P) of R(P).

The running time of this projection is linear in the size of SL(Pe). In turn,
the size of Pe is linear in the size of P . Hence, the constants c1, c2, d1, d2 may
be larger for this theorem than for Theorem 2 but all specified constants (like
the cube of s3) are not increased. � 

In the next sections we investigate several variations of the boundedness, and the
liveness problem for BPP-PNs. In addition we show that the covering problem
is NP-complete for BPP-PNs.

4 Boundedness Problems for BPP-PNs

We first define the concepts of boundedness we are interested in.

Definition 3. Let P = (P, T, F, μ0) be a Petri net. A place p ∈ P is

(i) unbounded if, for all k ∈ N, there is a reachable marking μ ∈ R(P) such
that μ(p) ≥ k.

(ii) unbounded on an ∞-firing sequence σ if, for all k ∈ N, there is a finite
prefix of σ leading to a marking μ such that μ(p) ≥ k.

(iii) persistently unbounded if, for all reachable markings μ ∈ R(P), p is un-
bounded in the Petri net (P, T, F, μ).

A set S ⊆ P of places is

(iv) (placewise) unbounded if some place (all places, respectively) of S are un-
bounded.

(v) (∞-)unbounded if S contains a place that is unbounded (on an ∞-firing
sequence, respectively).

(vi) placewise (∞-)unbounded if all places of S are unbounded (on an ∞-firing
sequence, respectively).

(vii) simultaneously unbounded if, for all k ∈ N, there is a reachable marking
μ ∈ R(P) such that μ(p) ≥ k for all p ∈ S.

(viii) simultaneously ∞-unbounded if there is an ∞-firing sequence σ such that,
for all k ∈ N, there is a finite prefix of σ leading to a marking μ satisfying
μ(p) ≥ k for all p ∈ S.
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We remark that, for a place, “persistently unbounded” implies “unbounded on
an ∞-firing sequence” which implies “unbounded”. Furthermore, by Lemma 3.2
of [10] a set S ⊆ P of places is simultaneously unbounded on some ∞-firing
sequence if and only if there is an ∞-firing sequence σ such that all places
p ∈ S are unbounded on (the same sequence) σ. Hence, this on first sight weaker
characterization yields another definition for the same concept.

4.1 Concepts of Non-simultaneously Unboundedness

In this subsection we investigate concepts of unboundedness where the places
under consideration are not required to be simultaneously (∞-)unbounded, and
provide efficient algorithms for the corresponding decision problems.

Lemma 5. Let P = (P, T, F, μ0) be a BPP-PN, and p ∈ P a place. Then the
following are equivalent.

1. p is unbounded.
2. There is a firing sequence σ leading to a marking μ and a positive loop τ

enabled at μ such that Δ[τ ](p) > 0.
3. p is unbounded on some ∞-firing sequence.
4. There are strongly connected components C1, C2, C3, C4 of P such that

(a) p ∈ C4,
(b) C1 ≥ C2 ≥ C3 ≥ C4,
(c) C1 contains a marked place, and
(d) C2 contains a transition t with •t ∈ C2 and

∑
p′∈t•∩(C2∪C3)

F (t, p′) ≥ 2.

Proof. 1 ⇒ 2: By definition, there is an infinite sequence of enabled Parikh
vectors (Φ′

1, Φ
′
2, . . .) such that Δ[Φ′

i](p) < Δ[Φ′
i+1](p), i ∈ N. It is easy to see that

this sequence contains an infinite subsequence (Φ1, Φ2, . . .) such that Φi ≤ Φi+1,
i ∈ N (see, e.g., Lemma 4.1. of [8]). In particular, we have Δ[Φ1](p) < Δ[Φ2](p),
i.e., there is a positive loop ϑ such that Δ[ϑ](p) > 0 and Φ1 + ϑ = Φ2. Since
both Φ1 and Φ2 are enabled, we can apply Lemma 4 to Φ1, ϑ and some firing
sequence α having Parikh image Φ1. Let α1, . . . , αk+1 and τ1, . . . , τk be defined
as in the lemma. Then we have Δ[τi](p) > 0 for some i ∈ [k]. Let τ := τi. For
μ0

α1···αi−−−−→ μ, τ is enabled at μ, concluding the proof.
1 ⇒ 4: We continue where the proof for 1 ⇒ 2 ended. Let C′

2 be the unique
top component of PΨ [τ ], and C′

4 the SCC of PΨ [τ ] containing p. Since τ is enabled
at μ, by Lemma 1 there are places p1 and p2 such that p1 is marked at μ0, P
contains a path from p1 to p2, p2 is contained in C′

2, and μ(p2) > 0. Define C1

as the SCC of P containing p1.
Since τ is a nonnegative loop, C′

2 contains a transition. If there is a transition
t of C′

2 such that
∑

p′∈t•∩C′
2
F (t, p′) ≥ 2, then simply define C′

3 = C′
2. Now,

assume that such a transition doesn’t exist. Then, we have C′
4 �= C′

2 since the
total number of tokens in C′

2 cannot increase by firing τ . In particular, there
is a path (p2, t, p3, . . . , p) from C′

2 to C′
4 where p3 /∈ C′

2. Let C′
3 be the SCC of

PΨ [τ ] containing p3. If t• ∩C′
2 = ∅, then τ decreases the number of tokens at C′

2,
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a contradiction to τ being a nonnegative loop. Therefore, t• ∩ C′
2 �= ∅, and we

obtain
∑

p′∈t•∩(C′
2∪C′

3)
F (t, p′) ≥ 2. Now, let Ci for i ∈ [2, 4] be the SCC of P

containing C′
i, and observe that C1, . . . , C4 satisfy the properties (a)–(d).

2⇒ 3: p is unbounded on the ∞-firing sequence στ∞.
3⇒ 1: This follows immediately from the definitions.
4 ⇒ 1: To mark •t, we first fire along a path starting at a marked place of

C1 and ending at •t. Then we fire k ∈ N times along a cycle containing t. After
that, at least k tokens can be transferred to p. � 

p1

p2

Fig. 3. {p1, p2} is simul-
taneously unbounded
but not simultaneously-
∞-unbounded

We remark that a Petri net is unbounded if and only
if there is a firing sequence σ, a marking μ, and a pos-
itive loop ϑ such that μ0

σ−→ μ, and ϑ is enabled at μ
(see [8]). Lemma 5 states that the same principle holds
for single places of a BPP-PN. In general, however,
this is not true. We further note that (in contrast to,
e.g., persistent Petri nets, see [10]) this concept doesn’t
hold for sets of places of BPP-PNs, i.e., a set S ⊆ P of
places of a BPP-PN is not necessarily simultaneously
∞-unbounded if it is simultaneously unbounded. An
example is given in Figure 3. We can use the characteri-
zation provided by Lemma 5 to give efficient algorithms
for certain boundedness problems.

Theorem 4. Given a BPP-PN P = (P, T, F, μ0) and sets S1, . . . , Sk ⊆ P of
places, we can determine in linear time which sets are

(a) (∞-)unbounded in P.
(b) placewise (∞-)unbounded in P.

Proof. Using Tarjan’s modified depth-first search [18], we find the strongly con-
nected components of P . Then, we use four DFSs in the condensation to deter-
mine all C1, C2, C3, and finally C4-components. For (a), we simply check if each
Si, i ∈ [k], contains a place p that is in some C4-component. For (b), we check
for each Si, i ∈ [k], if each place of Si is in some C4-component. � 

Definition 4 (Boundedness problem for BPP-PNs). Given a BPP-PN P,
are all places of P bounded?

Corollary 1. The boundedness problem for BPP-PNs is decidable in linear time.

Proof. Apply Theorem 4 to the set of all places. � 

We remark that in [9] was shown that boundedness of Basic Parallel Processes
can be decided in polynomial time.

Interestingly, a slight relaxation of BPP-PNs leads to a class of nets for which
the boundedness problem is coNP-hard.

Theorem 5. Let multiplicity generalized BPP-PNs be the Petri net class con-
sisting of all Petri nets P = (P, T, F, μ0) which satisfy |•t| = 1 for all t ∈ T . The
boundedness problem for multiplicity generalized BPP-PNs is coNP-hard.
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Proof. We reduce 3-SAT in logspace to the unboundedness problem which is
the complement of the boundedness problem. The reduction is illustrated in
Figure 4. A similar reduction was used by Esparza [3] to show the NP-hardness
of the reachability problem for BPP-PNs. Let C1 ∧C2 ∧ . . .∧C� be a formula in
3-CNF with k variables x1, . . . , xk and � clauses C1, . . . , C�.

We create a BPP-PN P as follows. Each variable is represented by a place
containing one token, and each clause Cj is represented by a place cj containing
3 tokens. For each variable xi, there are two transitions xi and xi representing
the truth assignment of xi where xi (xi, resp.) puts a token to place cj if the
literal xi (xi, resp.) is contained in Cj .

Then, there is a counting place p which counts how many clauses are satisfied.
If clause Cj is satisfied by an assignment, cj contains at least 4 and at most
6 tokens which allows us to transfer exactly one token from cj to p. If Cj is
unsatisfied, cj contains 3 tokens, and we cannot transfer any token to p.

Therefore, P is unbounded if and only if p is unbounded if and only if all
� clauses can be satisfied. This shows the NP-hardness of the unboundedness
problem and therefore the coNP-hardness of the boundedness problem. � 

c1 c2p

x1 x1 x2 x2 x3 x3

4 4

� �+1

Fig. 4. The formula C1 ∧ C2 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) can be satisfied if and
only if this BPP-PN is unbounded

In order to decide the next variation of the boundedness problem in linear time,
we need some observations about traps in BPP-PNs.

Lemma 6. Let P = (P, T, F, μ0) be a BPP-PN and R ⊆ P be a set of places.
The trap Q ⊆ R of maximum cardinality w.r.t. R can be determined in linear
time.

Proof. Apply the following procedure. Let Q′ := R. While there is a transition
t ∈ T such that •t ∈ Q′ and t• ∩ Q′ = ∅, remove •t from Q′. Let Q denote
the resulting set. Q must be a trap since otherwise the procedure wouldn’t have
stopped. Furthermore, Q is maximal w.r.t. inclusion since the procedure can’t
remove a place from a maximal trap. There is exactly one maximal trap w.r.t.
inclusion which therefore is a maximum trap.
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We can implement the procedure in linear time as follows. We use two arrays
A and N , and a list L, as well as a collection Q. The collection Q is initialized
with the set R. The array A has length |T | and A[i] is initialized with |ti• ∩R|.
The array N has length |P | and N [i] is initialized with an empty list if pi /∈ R,
and otherwise with a list of all transitions tj such that tj ∈ •pi. The list L is
initialized with all transitions ti having •ti ∈ Q and A[i] = 0. It’s not hard to
see that these data structures can be initialized in linear time.

Now, as long as L is not empty, we do the following. First, we pop some
transition ti from the list, and let pj =

•ti. Then, if pj ∈ Q, we remove pj from
Q, and, for each tk contained in the list stored at N [j], we decrease A[k] by 1,
and add tk to L if A[k] = 0 after the decreasing step.

When L is empty, Q ⊆ R is the trap of maximum cardinality w.r.t. R. The
running time of this procedure is linear. � 

Lemma 7. Let P = (P, T, F, μ0) be a BPP-PN, and R ⊆ P be a subset of places
such that no set Q ⊆ R is a trap. Then, there is a firing sequence σ leading to a
marking where no place of R is marked such that Δ[σ](p) ≥ 0 for all p /∈ R.

Proof. By definition, if a set Q ⊆ P is not a trap, then there is a transition
t with •t ∈ Q and t• ∩ Q = ∅. Define the transitions t1, . . . , t|R| and the sets
R0, . . . , R|R|+1 recursively as follows. We start with R1 = R. Given Ri for i ∈
[|R|], then ti is a transition with •ti ∈ Ri and ti

• ∩Ri = ∅, and Ri+1 = Ri − •ti.
In other words, R|R| � . . . � R1, and we can successively empty R|R|, . . . , R1

by firing the transitions t|R|, . . . , t1 each an appropriate number of times. Since
these transitions don’t remove tokens from places outside of R, the displacement
of the firing sequence at these places is nonnegative. � 

Lemma 8. Let P = (P, T, F, μ0) be a BPP-PN, and Q ⊆ R ⊆ P be the trap
of maximum cardinality w.r.t. R. Then there is a firing sequence σ leading to μ
with μ(p) = 0 for all p ∈ R if and only if all places of Q are unmarked.

Proof. “⇒”: If Q is marked, then R will always be marked, regardless of the
transitions fired.

“⇐”: Notice that R′ := R \ Q doesn’t contain a trap by the maximality of
Q. Consider the BPP-PN P ′ which emerges from P by removing Q and all
transitions incident to Q. R′ also doesn’t contain a trap w.r.t. P ′. By Lemma 7,
R′ can be emptied in P ′. Therefore, R can be emptied in P . � 

These observations enable us to prove the following theorem.

Theorem 6. Given a BPP-PN P = (P, T, F, μ0) and a place p ∈ P , we can
decide in linear time if p is persistently unbounded.

Proof. We use the terminology of Lemma 5. Let C4 be the SCC containing p.
For the marking μ′

0 having exactly one token at each place, we determine the
set R ⊆ P of all places contained in SCCs C1 for which SCCs C2 and C3 exist
such that C1, C2, C3, and C4 satisfy the properties mentioned in Lemma 5. By
this lemma, p is unbounded at each marking μ such that there is a place r ∈ R
with μ(r) > 0.
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Therefore, p is not persistently unbounded if and only if there is a marking
reachable from μ0 where no place of R is marked. By Lemma 8, we only have
to determine if the maximum trap Q ⊆ R w.r.t. R is marked. By Lemma 6, this
can be done in linear time. � 

4.2 Simultaneously Unboundedness and the Covering Problem

In this subsection, we consider the covering problem as well as boundedness
problems where we ask if many places are simultaneously (∞-)unbounded.

Definition 5 (SU). Given a BPP-PN P = (P, T, F, μ0) and a subset S ⊆ P of
places, is S simultaneously unbounded?

Definition 6 (S-∞-U). Given a BPP-PN P = (P, T, F, μ0) and a subset S ⊆ P
of places, is S simultaneously ∞-unbounded?

Definition 7 (Covering problem for BPP-PNs (covering)). Given a BPP-
PN P, and a marking μ of P, is there a reachable marking μ′ ≥ μ?

In order to prove the next theorems, we need the following corollary which is an
immediate consequence of Lemma 2 of [19].

Corollary 2. Let P = (P, T, F, μ0) be a BPP-PN with m = |T | and largest edge
multiplicity W , and let μ be a reachable marking. Then there is a firing sequence
σ = π1α1π2α2 · · ·πmαm leading from μ0 to μ such that, for all i ∈ [m], πi is a
nonnegative loop, and αi satisfies −mW ≤ Δ[αi](p) ≤ mW for all p ∈ P .

Theorem 7. SU and S-∞-U are NP-complete even if we restrict the input to
BPP-PNs P = (P, T, F, μ0) with |t•| = 1 and F (t, t•) ≤ 2 for all t ∈ T .

Note that a further restriction to F (t, t•) = 1 leads to S-Systems, a subclass of
BPP-PNs, which are always bounded.

Theorem 8. The covering problem for BPP-PNs is NP-complete.

Proof. For two problems A and B let A ≺log B denote the existence of a logspace
many-one reduction from A to B.

We first show the NP-hardness of SU and S-∞-U by showing 3-SAT ≺log SU
and 3-SAT ≺log S-∞-U.

Given a formula F in 3-CNF over the variables x1, . . . , xk and clauses
C1, . . . , C�, we construct a BPP-PN such that a certain subset S = {ci | i ∈ [�]}
of places is simultaneously (∞)-unbounded if and only if F can be satisfied. An
example is illustrated in Figure 5 (cf. the reduction in the proof of Theorem 5).

Next, we show covering ∈ NP by reducing covering in logspace to the
reachability problem. We modify P by adding, for each p ∈ P , a transition tp
having F (p, tp) = 1. Call the resulting BPP-PN P ′. Notice that a marking μ can
be covered in P if and only if μ can be covered in P ′ if and only if μ is reachable
in P ′.
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x1 x1 x2 x2 x3 x3

2 2 2 2 2 2

c1 c2

Fig. 5. The formula C1 ∧ C2 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) can be satisfied if and
only if {c1, c2} is simultaneously (∞-)unbounded

Now, we show SU ∈ NP and that covering is NP-hard by showing SU ≺log

covering. Again consider the net P ′. Let W be the largest edge multiplicity of
P ′. Define the marking μ by μ(p) = μ0(p)+(n+m)2W +1 if p ∈ S, and μ(p) = 0
otherwise. Notice that μ has polynomial encoding size.

Assume that S is simultaneously unbounded in P . Then μ is coverable in P ′.
Now, assume that μ is coverable in P ′, i.e., μ is reachable in P ′. In accordance
with Corollary 2, let π1α1 · · ·πn+mαn+m be a firing sequence of P ′ leading from
μ0 to μ. Then −(n + m)2W ≤

∑
i∈[n+m] Δ[αi](p) ≤ (n + m)2W for all p ∈ P .

Hence, each place p ∈ S has some i such that Δ[πi](p) > 0. Therefore, for
each k ∈ N, the marking μ′

k reached in P ′ by the firing sequence π
(n+m)2W+k
1 ·

α1 · · ·π(n+m)2W+k
n+m · αn+m satisfies μ′

k(p) ≥ k for all p ∈ S. By removing all
transitions from this firing sequence that are not part of P , we obtain a firing
sequence of P leading to a marking μk of P with μk(p) ≥ k for all p ∈ S.
Therefore, S is simultaneously unbounded in P .

It remains to be shown that S-∞-U ∈ NP. To this end, we will describe
a nondeterministic procedure accepting if and only if the given set S ⊆ P is
simultaneously ∞-unbounded. Suppose, the latter is the case. Then there is an
∞-firing sequence on which S is simultaneously unbounded. A similar argument
as in the proof of Lemma 5 shows that there are transitions sequences σ, τ such
that στ∞ is an ∞-firing sequence and τ is a positive loop having Δ[τ ](p) ≥ 1
for all p ∈ S.

By Lemma 1, τ is enabled at exactly those markings μ where all top compo-
nents of Pτ are marked. Therefore, there is a marking μ∗ such that each place
has either zero or one tokens and such that τ is enabled at μ∗. We will use the
existence of μ∗ later.

Let D ∈ Zn×m be the displacement matrix of P , i.e., the i-th column of D
equals Δ[ti]. Consider the system DΦ ≥ 0 of linear diophantine inequalities.
Obviously, the set L of nontrivial nonnegative integral solutions of this system
equals the set of nonnegative loops having at least one transition. Now, consider
the system (D,−In)y = 0 having the set L′ of nontrivial solutions where In
is the n × n-identity matrix. The set of projections of the elements of L′ onto
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the first m components equals L. By Theorem 1 of [17], this system has a set
H(D,−In) of minimal solutions (called the Hilbert basis) having the following
properties:

(i) Each nontrivial solution can be expressed as a linear combination of the
elements of H(D,−In) with nonnegative integral coefficients.

(ii) Each element of H(D,−In) has a component sum of at most (1 + (m +
n)W )m+n.

W.l.o.g., we assume n,m,W ≥ 1. Let Lmin = {Φ1, . . . , Φr} ⊆ L denote the
projection of H(D,−In) onto the first m components. From (ii) we immediately
obtain r ≤ ((1 + (m + n)W )m+n + 1)

n ≤ (2nmW )c(m+n)n for some constant
c > 0.

Since τ is a nonnegative loop, we can write Ψ [τ ] =
∑

i∈[r] aiΦi for suitable
ai ∈ N0. Now, define a′

i := min{ai, 1} and Φ :=
∑

i∈[r] a
′
iΦi. For each p ∈ S, we

have Δ[τ ](p) > 0, implying the existence of an i with ai > 0 and Δ[Φi](p) > 0.
Therefore, Φ is a nonnegative loop with Δ[Φ](p) > 0 for all p ∈ S. Furthermore,
by Lemma 1, Φ is enabled at μ since PΦ = PΨ [τ ]. (ii) and r ≤ (2nmW )c(m+n)n

imply that the largest component of Φ is at most (2nmW )d(m+n)n for some
constant d > 0. Therefore, the encoding size of Φ is polynomial.

Now, we can describe the nondeterministic procedure which accepts if and
only if S is simultaneously unbounded on some ∞-firing sequence: We guess μ∗

and Φ in polynomial time and check nondeterministically and in polynomial time
if μ∗ can be covered and if Φ is enabled at μ∗.

This completes the proof. � 

We note that it can be decided in linear time if the set P of all places is simul-
taneously (∞-)unbounded. This is the case if and only if all top components C
contain a marked place and a transition t with

∑
p∈t•∩C F (t, p) ≥ 2. Hence, the

problems SU and S-∞-U are hard only if the input set S satisfies 1 < |S| < |P |.
Slight generalisations of the results and algorithms of this subsection also

imply several (minor) results for other problems for BPP-PNs, as well as for
(commutative) context-free grammars. These can be found in the technical re-
port [12].

5 Liveness Problems for BPP-PNs

Many different notions of liveness can be found in literature. We are mainly
interested in the following.

Definition 8. Let P = (P, T, F, μ0) be a Petri net. A transition t is

– L0-live or dead if there is no firing sequence containing t.
– L1-live or potentially fireable if it isn’t dead.
– L2-live or arbitrarily often fireable if for each k ∈ N there is a firing sequence

containing t at least k times.
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– L3-live or infinitely often fireable if there is an ∞-firing sequence containing
t infinitely often.

– L4-live or live if t is potentially fireable at each reachable marking.

A subset S ⊆ T of transitions is called Lx-live, x ∈ [0, 4], if all transitions of S
are Lx-live.

The concepts of L0, . . . , L4-liveness are referred to in [16]. Notice, that Li-liveness
implies Lj-liveness, where 4 ≥ i ≥ j ≥ 1. Using the results of Section 4, we can
efficiently solve many decision problems involving these notions of liveness.

Theorem 9. Given a BPP-PN P = (P, T, F, μ0) and sets S1, . . . , Sk ⊆ T of
transitions, we can determine in linear time which sets are

(a) L0-live. (b) L1-live. (c) L2-live. (d) L3-live.

Proof. Consider the Parikh extension Pe = (P e, T, F e, μe
0) of P (see Definition

2). A transition ti is not L0-live iff ti is L1-live iff for the SCC Ci containing
p∗i there is a marked SCC C such that Ci ≤ C (see Lemma 1). Hence, we can
answer (a) and (b) in linear time by computing Pe, collecting the SCCs of Pe

and investigating the found SCCs in a similar fashion as in Theorem 4.
For (c) and (d) notice that ti is L2-live iff p∗i is unbounded iff p∗i is unbounded

on some ∞-firing sequence (see Lemma 5) iff ti is L3-live. Hence, we simply
apply the algorithm of Theorem 4 to Pe and the sets S∗

1 , . . . , S
∗
k , where S∗

i =
{p∗j | tj ∈ Sj}. � 

Corollary 3. Given a BPP-PN P = (P, T, F, μ0), we can decide in linear time,
if (a transition t of) P is

(a) L0-live. (b) L1-live. (c) L2-live. (d) L3-live.

Theorem 10. Given a BPP-PN P = (P, T, F, μ0) and a transition t ∈ T , we
can decide in linear time if t is L4-live.

Proof. As before, consider the Parikh extension Pe = (P e, T, F e, μe
0) of P . It is

easy to see that a transition ti is L4-live iff p∗i is persistently unbounded. � 

In [13], Mayr showed that L4-liveness is decidable in polynomial time for Basic
Parallel Processes. Our results imply a quadratic time algorithm.

Corollary 4. Given a BPP-PN P = (P, T, F, μ0), we can decide in quadratic
time, if P is L4-live.

In the same paper, other interesting notions of liveness were investigated, namely
the partial deadlock reachability problem and the partial livelock reachability
problem. For both problems polynomial time algorithms were proposed for PA-
processes in general. Using our results, linear time algorithms can be given for
BPPs/BPP-PNs.

Theorem 11 (deadlock). Given a BPP-PN P = (P, T, F, μ0) and a set S of
transitions, we can decide in linear time if there is a reachable marking μ such
that μ(•t) = 0 for all t ∈ S.
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Proof. Let R =
⋃

t∈S
•t. By Lemma 6, we determine in linear time the maximum

trap Q ⊆ R w.r.t. R. By Lemma 8, R can be emptied if and only if Q is unmarked
which can be checked in linear time. � 

Theorem 12 (livelock). Given a BPP-PN P = (P, T, F, μ0) and a set S of
transitions, we can decide in linear time if there is a reachable marking μ such
that for all markings μ′ reachable from μ, we have μ′(•t) = 0 for all t ∈ S.

Proof. We introduce a counting place p and an edge from each transition t ∈ S to
p. A marking μ as defined in the lemma exists if and only if p is not persistently
unbounded. By Theorem 6, this can be decided in linear time. � 

6 Conclusion

We showed in conjunction with [19] that the equivalence problem is decidable in
doubly exponential time. Furthermore, we investigated several boundedness and
liveness problems for BPP-PNs. For some of them, as well as for the covering
problem, NP-completeness was shown. For most of the other problems, linear
time could be achieved implying linear time algorithms for many problems in
related areas. Open problems include:

– Is the equivalence problem complete for some known complexity class?
– Are the problems SU and S-∞-U decidable in polynomial time for sets S of

constant size?
– How do the complexities of the reachability and the covering problem, and

of variations of the boundedness and liveness problem behave if we consider
different generalizations of BPP-PNs?

Acknowledgements. We thank Javier Esparza for many helpful discussions.
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Abstract. Generalised Stochastic Petri Nets (GSPNs) are a popular modelling
formalism for performance and dependability analysis. Their semantics is tradi-
tionally associated to continuous-time Markov chains (CTMCs), enabling the use
of standard CTMC analysis algorithms and software tools. Due to ambiguities in
the semantic interpretation of confused GSPNs, this analysis strand is however
restricted to nets that do not exhibit non-determinism, the so-called well-defined
nets. This paper defines a simple semantics for every GSPN. No restrictions are
imposed on the presence of confusions. Immediate transitions may be weighted
but are not required to be. Cycles of immediate transitions are admitted too. The
semantics is defined using a non-deterministic variant of CTMCs, referred to as
Markov automata. We prove that for well-defined bounded nets, our semantics
is weak bisimulation equivalent to the existing CTMC semantics. Finally, we
briefly indicate how every bounded GSPN can be quantitatively assessed.

Keywords: timed and stochastic nets, semantics, confusion, (weak) bisimula-
tion, continuous-time Markov chains.

1 Introduction

Generalised Stochastic Petri Nets (GSPNs) [4,3,8] constitute a formalism to model con-
current computing systems involving stochastically governed timed behaviour. GSPNs
are based on Petri nets, and are in wide-spread use as a modelling formalism in different
engineering and scientific communities. From Petri nets they inherit the underlying bi-
partite graph structure, partitioned into places and transitions, but extend the formalism
by distinguishing between timed transitions and immediate transitions. The latter can
fire immediately and in zero time upon activation. The firing time of a timed transition is
governed by a rate, which serves as a parameter of a negative exponential distribution.
Timed transitions are usually depicted as non-solid bars, while immediate transitions
are depicted as solid bars.

The precise semantics of a GSPN may conceptionally be considered as consisting
of two stages. First, an abstract, high-level semantics describes when which transitions
may fire, and with what probability. Speaking figuratively in terms of a token game,
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this semantics determines how tokens can be moved from place to place by the firing
of transitions. Then second, a lower-level mathematical description of the underlying
stochastic process, typically a continuous time Markov chain (CTMC, for short), is
derived to represent the intended stochastic behaviour captured in the first stage. This
Markov chain is then subject to the analysis of steady-state or transient probabilities of
markings, or more advanced analysis such as stochastic model checking.

The modelling power of GSPNs is particularly owed to the presence of immedi-
ate transitions [12]. Unfortunately, this characteristic strength of the formalism may
lead to semantically intricate situations [9,12,13,14,15,25,32]. One of the most promi-
nent cases is confusion [3,8]. In confused nets, the firing order of two concurrently

p1 p3

p4

p5

p2

t1

t3

t2

λ1

λ2

p6

p7

Fig. 1. Confused GSPN, see [3, Fig. 21]

enabled, non-conflicting immediate tran-
sitions determines whether two subse-
quent transitions are in conflict or not.
The net in Fig. 1 is confused, since tran-
sitions t1 and t2 are not in direct con-
flict, but firing transition t1 first leads to
a direct conflict between t2 and t3, which
does not occur if t2 fires first instead.
Confusion is not a problem of the high-
level (token game) semantics of a net,
as it is entirely clear which transition may fire, and how tokens are moved in ei-
ther case. It is rather a problem of the underlying stochastic process that ought to
be defined by this net. Recall that the transitions t1 through t3 are all immediate,
and thus happen without elapse of time. Thus, their firing is basically transparent
to a continuous time evolution. Places p4 and p5 enable two distinct timed transi-
tions with rate λ1 and λ2 respectively, cf. Fig. 1. Now, depending on how the con-
fusion between the transitions (and potentially the direct conflict between t2 and
t3) is resolved, the underlying stochastic behaviour either corresponds to an expo-
nential delay with rate λ1, or to a delay with rate λ2. Which of the two delays
happens is not determined by the net structure, and as such is non-deterministic.
Figure 2 shows a graphical representation of this phenomenon as a marking graph.
States correspond to markings of the net in Fig. 1, and there is an obvious graphical
correspondence with respect to the representation of the firing of timed or immediate
transitions by similarly shaped edges. In state {p2, p3} the direct conflict between t2
and t3 in the net yields a non-deterministic choice.

t1

t2
t1

t3

t2

λ1

λ2

p1, p2

p2, p3

p1, p5 p3, p5

p4 p6

p3, p7

Fig. 2. Non-deterministic behaviour of the con-
fused GSPN of Fig. 1

As the resulting process is not a
CTMC, workarounds have been de-
veloped. To resolve (or: avoid) non-
determinism, priorities and weights have
been introduced [1]. Intuitively, weights
are assigned to immediate transitions at
the net level so as to induce a probabilis-
tic choice instead of a non-deterministic
choice between (equally-prioritised) immediate transitions. Ignoring priorities, when-
ever more than one immediate transition is enabled, the probability of selecting a
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W2
W2+W3
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p2, p3

p1, p5

p4

p3, p5

p6

p3, p7

(a)

s1

s2

s3

s4

λ1

λ2

c1

c2

(b)

Fig. 3. (a) Probabilistic behaviour of weighted confused GSPN in Fig. 1; (b) the resulting CTMC

certain enabled immediate transition is determined by its weight relative to the sum
of the weights of all –including those that are independent– enabled transitions.

For example, for the marking depicted in Fig. 1, transition t1 is selected with proba-
bility W1

W1+W2
where Wi is the weight of transition ti. In this way, we obtain an unam-

biguous stochastic process for this GSPN, cf. Fig. 3(a). Now, the unlabelled edges have
multiple endpoints and denote probability distributions over markings. We can consider
this as a semi-Markov process, which has both zero-time delay and exponentially dis-
tributed time delay edges, as worked out, for instance by Balbo [8]. In order to derive a
CTMC from this process, sequences of zero-time delay edges are fused into probability
distributions over states. For our example net, we obtain the CTMC in Fig. 3(b) with
initial distribution μ0 with μ0(s1) = c1 and μ0(s2) = c2 where

c1 =
W1

W1+W2
· W3

W2+W3
and c2 =

W2

W1+W2
+

W1

W1+W2
· W2

W2+W3
.

These quantities correspond to the reachability probability of marking{p4} and {p3, p5},
respectively from the initial marking. Unfortunately, this approach has a drawback, re-
lated to the dependence and independence of transitions, an important concept in Petri
net theory. In our example net of Fig. 1, the transitions t1 and t2 are independent. Their
firings happen independent from each other, as the two transitions share no places. Tran-
sitions t2 and t3, in contrast, are dependent, as the firing of one of them influences the
firing of the other (by disabling it) via the shared input place p2. However, the expected
independence between t1 and t2 is not reflected in our GSPN above after introducing
weights. Instead, the probability to reach marking p4 (and marking p5) under the condi-
tion that transition t2 has fired will differ from the corresponding probability under the
condition that t1 has fired. A further conceptual drawback from a modelling perspective,
is that when a new immediate transition is inserted between t1 and t3, then this changes
these probabilities. This is irritating, since we only refine one immediate transition into a
sequence of two immediate transitions. Since immediate transitions do not take time, this
procedure should not result in a change of the underlying stochastic model. However, it
does. We can also consider this phenomenon as a problem of locality. A local change of
the net has unexpected global consequences with respect to the probabilities.
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To remedy this defect, several approaches to define the stochastic process at the net
level have been proposed. At the core of these approaches, immediate transitions are
usually partitioned according to their conflict behaviour, based on a structural analysis
of the net. The standard approach is to partition them into extended conflict sets (shortly,
ECSs) [1], which is a generalisation of structural conflicts in the presence of priorities
(which are not treated here). Intuitively, two transitions are in structural conflict in a
marking, if both are enabled in this marking, and firing any of them will disable the
other. Inside an ECS, weights are used to decide immediate transition firings, while no
choice is resolved probabilistically across ECSs. For confusion-free nets, the ECS does
provide a way of resolving conflicts probabilistically with a localised interpretation of
weights. Unfortunately, for confused nets, this solution approach suffers from the same
problem as our initial approach: The ECSs for the net in Fig. 1 are given by the partition
{{t1} , {t2, t3}}. As transitions t2 and t3 are in the same ECS, the decision which to
fire will be resolved probabilistically according to their weights. Transitions t1 and
t2, in contrast, are in different ECS. Thus, the decision will still need to be resolved
non-deterministically, given that they may be enabled at the same moment. Inserting
immediate transition t4 between t1 and t3 as mentioned above will lead to the ECSs
{{t1} , {t4} , {t2, t3}}. Thus, still only the decision between transitions t2 and t3 is
resolved probabilistically and not influenced by t4. So, since some decisions are forced
to be non-deterministic, this approach does in general not yield a mathematically well-
defined stochastic process. Moreover, it is easy to see that in our example, any partition
of immediate transitions will suffer from one of the semantic problems discussed.

In summary, certain nets lead to undesirable semantic problems. Due to this fact,
several researchers have identified certain classes of nets as not well-defined (aka. ill-
defined) [3,14,15]. Such nets are excluded both semantically and from an analysis
point of view. Several different definitions have occurred in the literature. However,
ill-defined nets, with confused nets being a prominent example, are not bad nets per se.
As Balbo states [7]: “this underspecification [in confused nets] could be due either to
a precise modelling choice [. . . ] or to a modelling error”. We firmly believe that the
modeller should have full freedom of modelling choices, and that such choices should
not be treated as errors by definition.

Contribution of this paper. This paper presents a semantics for GSPNs that is complete
in the sense that it gives a meaning to every GSPN. Our semantics is conservative with
respect to the well-established existing semantics of well-defined nets. More precisely,
we show that for well-defined bounded GSPNs, our semantics is weak bisimulation
equivalent to the classical CTMC semantics. This entails that measures of interest, such
as steady-state and transient probabilities are identical. Finally, we sketch the available
analysis trajectory for our semantics, including confused bounded nets.

Outline. We first recall the definition of GSPNs in Section 2. In Section 3 we present
the MA semantics for GSPNs based on the marking graph. The bisimulation semantics
will be discussed in Section 4. In Section 5 we describe quantitative analysis approaches
for arbitrary (bounded) GSPNs, and Section 6 concludes the paper.
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2 Generalised Stochastic Petri Nets

This section introduces GSPNs, where, for the sake of simplicity, we do not consider
transition priorities. For a set X , we use Σ(X) to denote the set of all partitions of X .
For a set of places P , a marking m is a multi-set over P of the form m : P → N. We
let M denote the set of all markings over P , and use m,m0 etc to denote its elements.

Definition 1 (Generalized stochastic Petri net). A generalised stochastic Petri net G
(GSPN) is a tuple (P, T, I, O,H,m0,W,D) where:

– P is a finite set of places,
– T = Ti ∪ Tt is a finite set of transitions (P ∩ T = ∅) partitioned into the sets Tt

and Ti of timed and immediate transitions,
– I, O,H : T → M defines the transitions’ input places, output places, inhibition

places1,
– m0 ∈ M is the initial marking,
– W : T → R>0 defines the transitions’ weights, and
– D : M → Σ(T ) is a marking-dependent partition satisfying the condition that

Tt ∈ D(m) for all markings m ∈ M .

The above definition agrees, except for the last componentD, with the classical GSPN
definition in the literature [2,3,8]. We use the marking-dependent partition function D
as a generalisation of the extended conflict set mentioned before. It serves to express for
which immediate transitions choices are resolved probabilistically, and for which non-
deterministically. This information is usually not provided in the net definition. Instead
the (marking independent) ECS are derived based on a structural analysis of the net at
hand. The reason why we include this information in an explicit form in the definition is
mainly ought to formal reasons. However, it also enables (but does not enforce) a view
where the choices between immediate transitions are resolved as a consequence of a
conscious modelling decision, possibly decoupled from the net structure. The constraint
Tt ∈ D(m) is due to the fact that all enabled timed transitions are always weighted
against each other in a race. On the expense of slightly more complicated definitions in
the following, we could eliminate this technicality and let D : M → Σ(Ti).

The input, output and inhibition functions assign to each transition a mapping P →
N, specifying the corresponding cardinalities. A transition has concession if sufficiently
many tokens are available in all its input places, while the corresponding inhibition
places do not contain sufficiently many tokens for an inhibitor arc to become effective.
Firing a transition yields a (possibly) new marking, which is obtained by removing
one or more tokens from each input place and adding tokens to the transition’s output
places. Immediate transitions execute immediately upon becoming enabled, whereas
timed transitions are delayed by an exponentially distributed duration which is uniquely
specified by a transition rate (i.e., a positive real number defined by the weights).

For notational convenience, we write cascaded function application with indexed
notation of the first parameter. For example, we write It, Ot and Ht for I(t), O(t) and
H(t), respectively. The semantics of a GSPN is defined by its marking graph, which

1 If transition t has no inhibitor places, we let H(t) = ∞.
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is obtained by playing the “token game”. Immediate transitions are fired with priority
over timed transitions [2,12,3]. Accordingly, if both timed and immediate transitions
have concession in a marking, only the immediate transitions become enabled. Let G
be a GSPN with marking m ∈ M .

Definition 2 (Concession and enabled transitions).

1. The set of transitions with concession in marking m is defined by:

conc(m) =
{
t ∈ T | ∀p ∈ P. m(p) ≥ It(p) ∧m(p) < Ht(p)

}
.

2. The set of enabled transitions in marking m is defined by: enm = conc(m) ∩ Ti if
conc(m) ∩ Ti �= ∅, and enm = conc(m) otherwise.

A marking m is vanishing whenever an immediate transition is enabled in m, otherwise
it is tangible. Given the priority of immediate transitions over timed ones, the sojourn
time in vanishing markings is zero. In a vanishing marking, none of the timed transitions
which have concession is enabled. In a tangible marking m, only timed transitions can
be enabled. The residence time in tangible marking m is determined by a negative
exponential distribution with rate

∑
t∈enm

W (t). The effect of executing a transition is
formalised in the classical way:

Definition 3 (Transition execution). Let the transition execution relation [·〉 ⊆ M ×
T ×M be such that for all markings m,m′ ∈ M and transitions t ∈ T it holds:

m [t〉m′ ⇐⇒ t ∈ enm ∧ ∀p ∈ P. m′(p) = m(p)− It(p) + Ot(p).

We now recall the notion of marking graph, obtained from reachable markings:

Definition 4 (Reachable marking graph). The marking graph of the GSPN G is the
labelled digraph MG(G) = (RS , E), where

– RS is the smallest set of reachable markings satisfying: m0 ∈ RS , and m ∈
RS ∧m [t〉m′ implies m′ ∈ RS .

– The edge between m and m′ is labelled by the transition t such that m [t〉m′.

This graph describes how a net may evolve in terms of its markings. However, it fails to
faithfully represent the stochastic aspects of the net. This is made more precise below.

Recall the idea that we consider certain immediate transitions probabilistically
dependent from some other transitions (mainly when they are in conflict), while we
consider them independent from others. Traditionally, these relations are captured by
extended conflict sets (ECSs [1]). Here, we consider a generalisation of this concept in
the form of an arbitrary immediate transitions partition Dm. For each marking m, the
partition Dm determines a way of resolving conflicts between immediate transitions.
Each set C ∈ Dm consists of transitions whose conflicts are resolved probabilistically
in m. On the other hand, transitions of different sets are considered to behave in an
independent manner, i.e., we make a non-deterministic selection if several of them are
enabled in m. Our semantics will be general enough that we may allow the latter even
if there is a structural conflict between these transitions. Let us make this precise.
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Assume that some transitions in the set C ∈ Dm are enabled and C is chosen to
be fired. Under this condition, the probability that a specific transition fires is given as
the normalised weight of the enabled transitions in C. Precisely, PC{t | m} = 0 if
t �∈ C ∩ enm, and otherwise:

PC{t | m} =
W (t)

WC(m)
where WC(m) =

∑
t∈C∩enm

W (t). (1)

If m is a vanishing marking, WC(m) denotes the cumulative weight of all enabled
(i.e., immediate) transitions in C. In this case the probability PC{t | m} of taking
the immediate transition t in m is determined by the weight assignment W . Note that
PC{t | m} is 0 if t is neither enabled nor an element from C. The case that m is
tangible is similar. Then only timed transitions are enabled, and recall that the set of
timed transitions Tt is an element in Dm. Thus, C = Tt. Accordingly,

WC(m) =
∑

t∈enm

W (t)

is the exit rate from the tangible marking m. In this case, PC{t | m} is the probability
of taking the transition t if the tangible marking m is left.

In both cases, several distinct transition firings may lead from m to the same marking
m′. These need to be accumulated. With some overload of notation we define

PC(m,m′) =
∑

m[t〉m′

PC{t | m}.

3 Markov Automata Semantics for GSPNs

Our aim is to provide a semantics to every GSPN. In particular, this includes nets in
which multiple immediate transitions are enabled in a marking, nets with cycles of im-
mediate transitions, as well as confused nets. Obviously, stochastic processes such as
CTMCs do not suffice for this purpose, as they cannot express non-determinism. We
therefore resort to an extension of CTMCs with non-determinism, Markov automata
(MAs, for short) as introduced in [20]. This model permits to represent the concepts
above, including a formulation in terms of a semi-Markov process with zero-timed de-
lay and exponentially distributed time delays [8], while in addition supporting non-
determinism between transition firings in vanishing markings. Figure 2 and 3(a) are in
fact graphical representations of MA.

3.1 Markov Automata

We first introduce some preliminary notions that we shall use in the rest of the paper.
A subdistribution μ over a set S is a function μ : S �→ [0, 1] such that

∑
s∈S μ(s) ≤ 1.

Let Supp(μ) = {s ∈ S | μ(s) > 0} denote the support of μ and μ(S′) :=
∑

s∈S′ μ(s)
the probability of S′ ⊆ S with respect to μ. Let |μ| := μ(S) denote the size of the
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subdistribution μ. We say μ is a full distribution, or simply distribution, if |μ| = 1.
Let Dist(S) and Subdist(S) be the set of distributions and subdistributions over S,
respectively. For s ∈ S, let δs ∈ Dist(S) denote the Dirac distribution for s, i.e.,
δs(s) = 1. Let μ and μ′ be two subdistributions. We define the subdistribution μ′′ :=
μ⊕μ′ by μ′′(s) = μ(s)+μ′(s), if |μ′′| ≤ 1. Conversely, we say that μ′′ can be split into
μ and μ′, or that (μ, μ′) is a splitting of μ′′. Since⊕ is associative and commutative, we
use the notation

⊕
i∈I for arbitrary sums over a finite index set I . Moreover, if c·|μ| ≤ 1

and c > 0, we let cμ denote the subdistribution defined by: (cμ)(s) = c·μ(s). For s ∈ S
and μ ∈ Subdist(S) let μ$s denote the subdistribution μ′ with μ′(t) = μ(t) if t �= s
and μ′(s) = 0.

Definition 5 (Markov automaton). A Markov automaton A is a quadruple
(S, , , μ0), where

– S is a non-empty countable set of states,
– ⊂ S ×Dist(S) is a set of immediate edges,
– ⊂ S × R>0 ×Dist(S) is a set of timed edges, and
– μ0 ∈ Dist(S) is an initial distribution over the states S.

It is required that every state s ∈ S has at most one outgoing timed edge.2

We let s, u and their variants with indices range over S, and μ over Dist(S). An imme-
diate edge (s, μ) ∈ is denoted by s μ. The operational interpretation of edge
s μ is that from s a next state will be probabilistically determined according to
distribution μ and that in s no time elapses. Similarly, a timed edge (s, λ, μ) ∈ is

denoted by s
λ

μ. We use λ, r ∈ R>0 to denote the rate of a negative exponential
distribution. An edge (s, μ) ∈ is said to originate from state s.

A state s ∈ S is called tangible if no immediate edge originates from s. A probability
distribution over states is called tangible if all states in its support set are tangible. We
write s

α−−→ μ if either (i) α = ε (i.e. the edge is unlabelled) and s μ or (ii) α ∈ R>0,

s is tangible and s
α

μ, or (iii) α = 0, μ = δs, and s has no outgoing transition. This
notation combines immediate edges (i) with timed edges (ii), but timed edges are only
considered from tangible states. Clause (iii) generalizes the implicit tangibility check
of clause (ii) to states without outgoing edges. The inclusion of a tangibility check
inside the above clauses (ii) and (iii) of

α−−→ will have an interesting effect, discussed
in Section 4.2. We stipulate that non-determinism occurs in an MA whenever multiple
immediate edges originate from a state. In that case, it is deliberately left unspecified
with which probability a particular immediate edge is taken. This represents a non-
deterministic choice. Obviously, CTMCs can be considered as special cases of MAs:
A CTMC is a MA with = ∅.

3.2 Basic Semantics of GSPNs

We are now in the position to define the semantics of every GSPN—including the
non well-defined ones—by means of a MA. The intuition is rather simple. Basically

2 This is not a restriction since the effect of two timed edges s
r

μ and s
r′

μ′ can be

combined into a single timed edge s
r+r′

μ′′.
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the semantics of a GSPN corresponds to its reachable marking graph, cf. Def. 4. States
correspond to markings, taking an immediate edge in the MA is the counterpart to firing
an immediate transition in the net, and likewise for timed edges and timed transitions.
The marking graph can therefore directly be interpreted as a Markov automaton.

Definition 6 (Basic MA semantics for GSPNs). The MA semantics of the GSPN
G = (P, T, I, O,H,m0,W,D) is the MA AG = (S, , , μ0), where

– S = RS is the reachable set of markings in the marking graph,
– μ0 = δm0 ,
– for every m ∈ RS , and each equivalence C ∈ Dm,

1. there is an edge m
r

μ if and only if m is a tangible marking, r = WC(m)
and μ(m′) = PC(m,m′) for all m′ ∈ RS ,

2. there is an edge m μ if and only if m is a vanishing marking and μ(m′) =
PC(m,m′) for all m′ ∈ RS .

So, the basic MA semantics is the marking graph of a GSPN. Every marking of the
GSPN that is reachable by a sequence of (net) transitions from the initial marking cor-
responds to a state in the MA. As discussed before, in marking m of the net all enabled
timed transitions t induce an exponentially distributed stochastic delay with a rate r that
is the sum of all weights of enabled transitions. In this case, the probability to reach a
marking m′, say, by edge t is given as the edge’s relative weight. This is reflected in
clause 1 of the above MA semantics. If no timed transition is enabled in marking m,
then no timed edge originates from state m.

In contrast, the enabled immediate transitions in a marking need to be represented
by more than one immediate edge in the MA. Recall that each equivalence class C ∈
Dm corresponds to an ECS in GSPN terminology. For every such set C, the enabled
transitions in C fire with a probability that is equal to their weight in relation to the
sum of the weights of all enabled transitions in C. However, transitions that are in
different sets in Dm are entirely independent. More precisely, transitions from different
sets inDm compete in a non-deterministic way. This is reflected in clause 2 of the above
definition. The non-deterministic choice between transitions across different sets ofDm

is represented by introducing an immediate edge for every set in the partition Dm. The
probabilistic decision among transitions within a single set, in turn, is reflected by the
distribution over markings the corresponding immediate edge leads to.

3.3 Well-Defined GSPNs

The aim of this section is to formalise and generalise well-defined GSPNs in terms of
our new semantics. A central notion for this purpose is the concept of weak edges.

Labelled trees. The notion of weak edge is defined using labelled trees. For σ, σ′ ∈
N∗

>0, let σ ≤ σ′ if there exists a (possibly empty) φ ∈ N∗
>0 such that σφ = σ′. We

write σ < σ′ whenever σ ≤ σ′ and σ �= σ′. Let L be a set of labels. An (infinite)
L-labelled tree is a partial function T : N∗

>0 → L satisfying
– if σ ≤ σ′ and σ′ ∈ dom(T ), then σ ∈ dom(T ),



A Semantics for Every GSPN 99

– if σi ∈ dom(T ) for i ∈ N>1, then σ(i−1) ∈ dom(T ), and
– ε ∈ dom(T ).

The empty word ε is called the root of T and σ ∈ dom(T ) is a node of T . For node σ
of tree T , let Children(σ) = {σi | σi ∈ dom(T )}. Node σ is a leaf of tree T if there is
no σ′ ∈ dom(T ) with σ < σ′; then Children(σ) = ∅. We denote the set of all leaves of
T by LeafT and the set of all inner nodes of T by InnerT . If the tree only consists of
the root, then InnerT = LeafT = {ε}. In any other case the two sets are disjoint. We
consider L-labelled trees with finite branching, i.e., |Children(σ)| < ∞ for all nodes σ.

Weak edges. Weak edges for probabilistic systems have been defined in the literature
via probabilistic executions in [31], trees [17], or infinite sums [16]. We adopt the tree
notation here. The material presented below concerning weak edges provides no in-
novation over the classical treatment, it is included for the benefit of the reader. Let
L = S × R>0. A node in an L-labelled tree is labelled by a state and the (by definition
non-zero) probability of reaching this node from the root of the tree. For a node σ we
write StaT (σ) for the first component of T (σ) and ProbT (σ) for the second component
of T (σ). If T is clear from the context we omit the subscripts.

Definition 7 (Weak edge tree). Let (S, , , μ0) be an MA. A weak edge tree T is
a S × R>0-labelled tree satisfying the following conditions

1. Prob(ε) = 1,
2. ∀σ ∈ InnerT \LeafT : ∃μ : Sta(σ) −−→ μ and Prob(σ) ·μ = ξ where ξ(Sta(σ′)) =

Prob(σ′) for all σ′ ∈ Children(σ),
3.

∑
σ∈LeafT

Prob(σ) = 1.

A weak edge tree T corresponds to a probabilistic execution fragment: it starts from
the root’s state Sta(ε), and resolves non-deterministic choices at every inner node of the
tree, which represents the state in the MA it is labelled with. The second component
of σ, Prob(σ), is the probability of reaching the state Sta(σ) via immediate edges in
the MA, starting from the state Sta(ε). The distribution associated with edge tree T ,
denoted μT , is defined as μT

def
=

⊕
σ∈LeafT

ρσ , where ρσ ∈ Subdist(S) with ρσ(s) =
Prob(σ) if s = Sta(σ) and ρσ(s) = 0 otherwise. Subdistribution μT is said to be
induced by T . We are now in a position to define weak edges: For s ∈ S and μ ∈
Dist(S), let s ==⇒ μ if μ is induced by some internal edge tree T with Sta(ε) = s.

We now generalise edges to edges originating in subdistributions over states. Let
μ ∈ Dist(S). If for every state si ∈ Supp(μ), si ==⇒ μ′

i for some μ′
i, then we write

μ ==⇒
⊕

si∈Supp(μ) μ(si)μ
′
i. We apply a similar definition for

α−−→ instead of ==⇒.

Finally, for α ∈ R, we write s
α

==⇒ μ if there exist μ1 and μ2 such that s ==⇒ μ1,
μ1

α−−→ μ2 and μ2 ==⇒ μ.
Intuitively, the weak edges in Def. 7 (referred to as weak transitions in the automata

literature) are used to capture all possible evolutions along immediate edges starting
from s. Thus, any edge itself is a weak edge, and note that from state s, there is always
a weak edge s ==⇒ δs, even if s is tangible.

Well-defined GSPNs. We are now ready to define well-defined GSPNs.
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Definition 8 (Well-defined GSPN). Let G = (P, T, I, O,H,m0,W,D) be a GSPN
with MA semantics AG. We say G is well-defined, if for every state m ∈ RS , and
every pair (μ, μ′) of distributions over tangible states it holds: m ==⇒ μ and m ==⇒ μ′

implies μ = μ′.

Different to [32], we are only interested in the probability to reach a marking, and
whether it is uniquely specified, but not in the sequences of edges leading to tangible
markings. Phrased differently, we are only interested in tangible state to tangible state
probabilities [14,8].

It is not surprising that a well-defined GSPN induces a unique CTMC: states will

correspond to those tangible markings, edge
r

is obtained by extending the weak
edge until tangible states are reached. The uniqueness is guaranteed by the definition of
well-defined GSPNs. This is summarised in the following definition:

Definition 9 (CTMC induced by a well-defined GSPN). The well-defined GSPN G
induces the CTMC CG = (S, , , μ0), where

– S is the set of reachable tangible markings of G,

– m
r

μ iff μ is the unique distribution over tangible markings such that a dis-

tribution μ′ exists with m
r

μ′ and μ′ ==⇒ μ in the basic MA semantics of
G,

– μ0 is the unique distribution over tangible markings such that m0 ==⇒ μ0.

Lemma 1. The induced CTMC of a well-defined GSPN is unique (up to isomorphism).

4 Bisimulation Semantics

The basic MA semantics we have introduced already has several advantages. It is com-
plete, i.e. it provides semantics for every net, and it is amenable to several analysis
techniques that are being established (see Sec. 5 for further details). Nevertheless, we
want to address more desirable properties the current proposal does not have: (i) the
semantics should be conservative with respect to the existing standard semantics for
well-defined nets, (ii) immediate edges should be disregarded as much as possible, and
exponential delays should be only distinguished up to lumpability. This ensures that
the actual formal semantics agrees with the intuitive behaviour of a net and semantic
redundancies are avoided as much as possible. For instance, the introduction of a new
immediate transition between t1 and t3 in Fig. 1, which should be independent of every
other concurrently enabled transition, should not affect the underlying semantics.

We now will implement the above requirements by defining the semantics of a
bounded GSPN as its basic MA semantics modulo a behavioural equivalence, weak
bisimilarity [20]. The basic MA semantics modulo weak bisimilarity will exactly rep-
resent the behavioural kernel of the GSPN. (The setting of unbounded GSPNs is left
for further study.)

We first need the notion of a convex combination of weak edges. Let μ
α

==⇒C γ
if there exists a finite index set I , and weak edges μ

α
==⇒ γi and a factor ci ∈ (0, 1]

for every i ∈ I , with
∑

i∈I ci = 1 and γ =
⊕

i∈I ciγi. This notion is standard for
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probabilistic automata, and inherited here for MA; see [31] for more details. Let the set
of all splittings of immediate successor subdistributions be defined as

split(μ) = {(μ1, μ2) | ∃μ′ : μ ==⇒C μ′ ∧ μ′ = μ1 ⊕ μ2} .

Definition 10 (Weak bisimulation [20]). A symmetric relation R on subdistribu-
tions over S is called a weak bisimulation if and only if whenever μ1Rμ2 then for
all α ∈ R ∪ {ε}: |μ1| = |μ2| and for all s ∈ Supp(μ1) there exist μ2

→, μ2
Δ:

(μ2
→, μ2

Δ) ∈ split(μ2) and

(i) μ1(s)δs R μ2
→ and (μ1$s) R μ2

Δ

(ii) whenever s
α−−→ μ′

1 for some μ′
1 then μ2

→ α
==⇒C μ′′ and (μ1(s) · μ′

1) R μ′′

Two subdistributions μ and γ are weak bisimilar, denoted by μ ≈ γ, if the pair (μ, γ)
is contained in some weak bisimulation.

Note that weak bisimilarity is a relation over distributions, which is a natural choice
for stochastic processes. Its basic idea is that two distributions μ and γ are bisimilar,
if the edge of every state in the support of μ can by matched by a weak edge of a
subdistribution of γ (Condition (ii)) in the usual sense of (probabilistic) bisimulation,
however, enhanced by the idea that before γ is to be split into suitable subdistributions,
it may perform an arbitrary sequence of weak immediate edges (Condition (i)). As
it has been shown in [19], Condition (i) is the essential difference that distinguishes
weak bisimulation for MAs from weak bisimulation for Probabilistic Automata [31].
Furthermore, although not obvious from the definition, it is exactly this condition that
allows to fuse sequences of immediate edges into their unique final goal distribution, if
existing.

Bisimulation can be lifted to a relation between MAs with disjoint state space. Two
MAs A,A′ are bisimilar, denoted A ≈ A′, if their initial distributions are bisimilar in
the direct sum, which is the MAobtained by considering the disjoint union of states and
edges respectively. This shall be used in the next section to compare the semantics of
models.

4.1 Revisiting Well-Definition

To illustrate why we consider weak MA bisimilarity a semantic equivalence especially
well-suited for GSPN semantics, let us recall the standard procedure applied to derive
a CTMC from the basic MA semantics underlying a well-defined GSPN. We illustrate
this process with the MA from Fig. 3(a) as an example. For convenience, we repeat it
in Fig. 4(a) below. This figure shows the basic MA semantics of the GSPN in Fig. 1 in
the case that every immediate edge is weighted, and choices among immediate edges
are always resolved probabilistically. For a shorter notation, we now denote edge prob-
abilities by x1, x2 and so on. When we want to transform this MA into a CTMC, we
successively remove every immediate edge by replacing a state with an outgoing im-
mediate edge by the distribution that this immediate edge leads to. The result of this
replacement is shown in Figs. 4(b) and 4(c). Finally, when no such states remain, we
obtain the CTMC in Fig. 4(d), where c1 = x1x3 and c2 = x2+x1x4. The effect of this
iterative process of fusing transitions can also be formulated via matrix operations [3].
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p3, p5

p6
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s1
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s3

s4

λ1

λ2

c1

c2
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Fig. 4. From the MA semantics (a) a CTMC is obtained (d) by step-wise fusing immediate edges
in (b) and (c)

In this example, this leads to a unique result, as every state has at most one outgoing
immediate edge. In general, this leads to unique results whenever the net is well-defined.
For nets with non-determinism, however, this approach does not lead to mathematically
well-defined results.

p1 p3

p4

p5p2

t1

t3

t2

p8 t4

p6

p7

λ1

λ2

Fig. 5. Confused GSPN with additional transi-
tion

For this purpose consider now the net
in Fig. 5. Assume now that we do not re-
solve every choice of immediate transi-
tions probabilistically, but only the con-
flict between t2 and t3. Hence let Dm =
{{t2, t3} , {t1} , {t4}}. Note that these
are exactly the ECSs of the net. We then
obtain the non-deterministic basic MA
semantics in Fig. 6(a). Applying the fus-
ing procedure as before is clearly not
possible, since already in the initial state
of the MA, the marking {p1, p2}, we have two outgoing immediate edges, which will
finally lead to two different distributions over tangible markings.

Although it is thus not possible to fully remove immediate edges here – as they
are a necessary semantic component to express non-deterministic choice – we want to
remove immediate edges whenever they can be fused. In our example, this would lead
to the MA in Fig. 6(b). Only in the first state two immediate edges remain. They fully
capture the non-deterministic behaviour of this GSPN.

Weak MA bisimilarity has been designed to exactly perform the task of removing
immediate edges by fusion when the result is uniquely defined. In fact, the MA in
Fig. 6(b) is the (state- and transition-wise) minimal MA that is weakly bisimilar to the
MAin Fig. 6(a).

Speaking more generally, weak bisimilarity gives us a powerful means to conserva-
tively generalise the notion of tangible and vanishing markings. Formally, a tangible
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x3

x4

λ1
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s1 s3 s5

s4 s6
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Fig. 6. A basic MA (a) with non-determinism and the smallest MA weakly bisimilar to it (b).
In (b), state s1 subsumes markings {p1, p2} and {p8, p2} from (a). All other markings with
immediate behaviour are removed as a result of fusing them.

marking has been defined as a marking that has no outgoing immediate transitions.
Markings that are not tangible are called vanishing. More intuitively speaking, as the
words tangible and vanishing suggest, vanishing markings are semantically insignifi-
cant, while tangible markings constitute the semantic essence of a net’s behaviour. Now,
in the context of non-deterministic behaviour, besides of those states without immedi-
ate transitions, also those states with a non-deterministic choice between immediate
transitions are semantically tangible in the literal sense (as long as the choice makes a
behaviour difference in the end).

To make this precise, we will define the notion of significant markings as a conserva-
tive extension of tangible markings, and show that for well-defined nets, they coincide
with tangible markings and vice versa.

Definition 11 (Significant marking). Given a GSPN G and its basic MA semantics
AG, we call a marking m insignificant if it is vanishing and – in AG – m is a state that
has at least one outgoing immediate edge m −−→ μ such that μ ≈ δm. Otherwise we
call marking m significant.

Whereas every tangible marking is also significant, not every vanishing marking is in-
significant. Only those vanishing markings are also insignificant, which have an im-
mediate successor distribution that is semantically equivalent to the marking itself, and
could thus fully replace the marking without affecting the behaviour of the net. Only in
well-defined GSPNs significant and tangible, and vanishing and insignificant coincide
respectively, as stated in the following proposition.

Proposition 1 (Preservation). If G is a well-defined GSPN, then a marking m of G is
tangible if and only if it is significant.

Furthermore, the CTMC associated with a well defined GSPN enjoys a strong relation
to the original net in terms of the MA semantics:

Proposition 2. The basic MA semantics AG of a well-defined GSPN G is weakly
bisimilar to the CTMC CG induced by G.
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Before we present the proof of this proposition, an auxiliary notation and a claim is
needed. Throughout, it is worthwhile to recall that the states of AG and CG are mark-
ings of G. If G is well-defined, for every state m ∈ RS , and every pair (μ, μ′) of dis-
tributions over tangible states it holds: m ==⇒ μ and m ==⇒ μ′ implies μ = μ′. Thus,
for an arbitrary distribution γ, we may write γ �=⇒μ to express that μ is the unique
distribution over tangible states such that γ ==⇒ μ.

Claim. Let G be a well-defined GSPN. Then for every distribution γ and γ′ over states
of the basic MA semantics of G, it holds that γ ==⇒ γ′ implies γ �=⇒μ if and only if
γ′ �=⇒μ.

This follows immediately from the uniqueness of μ.

Proof (Proposition 2). In order to prove AG ≈ CG, we will provide a bisimulation R
and show that the pair of initial distributions of AG and CG is contained in R. Let St

be the state space of CG, the set of all reachable tangible markings of AG. Recall that
the state space of AG is the set RS of all reachable markings. Let R be the symmetric
closure of the relation {(γ, μ) ∈ Dist(RS)×Dist(St) | γ �=⇒μ}. The pair of initial
distributions of AG and CG is contained in R, which follows immediately from the
definition of the initial distribution of CG.

Recall that in CG we have an edge m
r

μ if and only if μ is the unique distribution

over tangible markings such that a distribution μ′ exists with m
r

μ′ and μ′ ==⇒ μ
in the basic MA semantics of G. We will refer to this fact by (�) whenever used in the
sequel.

We will now check that every pair of R satisfies the bisimulation conditions. Con-
sider an arbitrary pair (γ, μ) ∈ R∩Dist(RS)×Dist(St). Clearly |γ| = |μ|, as γ ==⇒ μ.
Now consider an arbitrary state (i.e. marking) s ∈ Supp(γ). By the definition of hyper-
edges and of �=⇒ it is easy to see that there exists a splitting μ→ ⊕ μΔ = μ, such that
δs �=⇒μ→ and μΔ �=⇒μΔ, which immediately implies γ(s)δs R μ→ and γ$s R μΔ.
This satisfies Clause (i) of Definition 10. Now assume s −−→ γ′. Then, by Claim 4.1,
we see that γ(s)γ′ �=⇒μ→ and thus immediately γ(s)γ′ R μ→. Now assume s

r−−→ γ′.
Note that this implies that s is tangible, and thus μ→ = γ(s)δs. But then by (�) the
result follows. This finishes Clause (ii).

Now, for the symmetric case, consider an arbitrary pair (μ, γ) ∈ R ∩ Dist(St) ×
Dist(RS ), and let t ∈ Supp(μ). From the definition of R it follows that γ �=⇒μ and
thus γ ==⇒ μ. Hence, (μ(t)δt, μ$t) ∈ split(γ). We then choose γ→ = μ(t)δt and
γΔ = μ$t. Then for Clause (i) it suffices to note that μ(t)δtRμ(t)δt and μ$tRμ$t,
as for arbitrary distributions ξ over tangible states we have ξ �=⇒ξ. For Clause (ii),
consider t

r−−→ μ′ in the CTMC CG. Note that this is the only possible transition of
t (if any), as t is tangible. But then by (�), also t ==⇒ μ′ in AG, and as before μ′Rμ′

follows.

Proposition 2 provides us with a kind of correctness criterion for the setup we pre-
sented. The MA weak bisimulation semantics indeed conservatively extends the clas-
sical semantics. Furthermore, many traditionally ill-defined and confused nets can still
be related to a CTMC modulo weakly bisimilarity. This is linked to the fact that weak
bisimilarity embodies the notion of lumpability, apart from immediate transition fusing.
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4.2 Timeless Traps

Cycles of immediate transitions are an intricate problem in classical GSPN theory, their
circular firing is often called a timeless trap [9], see Fig 7(a) for an example. GSPNs
with timeless traps are traditionally excluded from the analysis, basically because the
firing precedence of immediate over timed transitions makes the system diverge on the
cycle without letting time progress. This is an awkward phenomenon, related to Zeno
computations. In our MA reformulation, timeless traps are represented as cycles in the
MA, and as such do not pose specific semantic problems. Furthermore, weak bisimi-
larity is sensitive to cycles of immediate transitions, but only to those that cannot be
escaped by firing an alternative immediate transition. This is due to a built-in fairness
notion in the weak bisimulation semantics, (rooted in the inclusion of a tangibility check
inside the definition of the abbreviation

α−−→). As a consequence, if a timeless trap can
be left by firing a (finite sequence of) immediate transitions leading to a tangible mark-
ing, this is equivalent to a single immediate transition firing. This implies that the net

p2

p1
t1

t2

t3

p3 p5

p4 p6

λ

λ

(a)

2λ λ
s1 s2 s3

(b)

Fig. 7. A timeless trap that can be escaped by an immediate transition firing (a), and the smallest
MA weakly bisimilar to its semantics (b). In (b), state s1 subsumes markings {p1}, {p2, p4}, and
{p3, p4}. State s2 subsumes markings {p3, p6}, and {p4, p5}, while state s3 represents marking
{p5, p6}.

in Fig. 7(a) is in fact weak bisimilar to the small chain-structured 3-state CTMC in
Fig 7(b). And thus the net is analysable via the classical CTMC machinery. This ex-
ample shows that the combination of lumping and fusing of immediate transitions as
supported by weak bisimulation can have powerful effects. Variations to the definition
of

α−−→ can induce more liberal notions of weak bisimiliarity, including the option to
escape timeless traps unconditionally [27]. That option is not supported by the setup
presented here, which has originally been designed to support strong compositionality
properties [20]. Since compositionality is not a first-class concern in the Petri net world,
this avenue seems worthwhile to be investigated further.

5 Quantitative Analysis of Markov Automata

So far, we have provided the details of a semantics of every definable GSPN. Thanks
to Proposition 2, the steady-state and transient analysis of a well-defined GSPN un-
der our semantics yields the same results as the evaluation of the induced CTMC. The
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remaining question is whether a quantitative analysis of a non well-defined GSPN is
possible, and if so, how such analysis could be performed. Due to the possible presence
of non-determinism, we can no longer consider the probability of a certain event. We
stipulate that such probabilities depend on the resolution of non-determinism. Rather
than considering, e.g., the probability to reach a state (i.e., a marking), it is common
to determine the minimal and maximal reachability probabilities. These values corre-
spond to the worst and best resolution of the non-determinism, respectively. Objectives
that do not address the timing of net transitions, such as reachability, can be addressed
using standard techniques for Markov decision processes (MDPs) such as linear pro-
gramming, value, or policy iteration [5, Ch. 10]. Properties that involve the elapsed
time are more interesting. In the following we briefly consider two such objectives: ex-
pected time and long run averages. For details we refer to [21] where Markov automata
without probabilistic branching are considered. The inclusion of probabilistic branch-
ing however is rather straightforward. Long run average probabilities are the pendant
to steady-state probabilities in CTMCs. Expected time objectives correspond to the ex-
pected time to reach a state in CTMCs. The counterpart to transient probabilities is a bit
more involved and can be tackled using discretisation techniques advocated in [34,23].

In the following we let A = (S, , , μ0) be an MA, s ∈ S a state in A, and
G ⊆ S a set of (goal) states.

Expected Time Objectives. Starting from state s we are interested in the maximal,
or dually, minimal, expected time to reach some state in G. Computing expected time
objectives for CTMCs boils down to solving a linear equation system. The computation
of minimal (or maximal) expected time objectives in MA can be reduced to a non-
negative stochastic shortest path problem in MDPs [21]. Such problems can be casted
as a linear programming problem [10] for which efficient algorithms and tools (such as
SOPLEX) exist.

Long-run average objectives. Intuitively speaking, the long-run average of being in a
state in G while starting from state s is the fraction of time (on the long run) that the
MA A will spent in states in G. We assume w.l.o.g. that G only contains tangible states,
as the long-run average time spent in any vanishing state is zero. The general idea of
computing the minimal long-run time spent in G is the following three-step procedure:

1. Determine the maximal end components3 {A1, . . . , Ak} of the MA at hand.
2. Determine the minimal long-run time spent in G within each end component Aj .
3. Solve a stochastic shortest path problem [10].

The first step is performed by a graph-based algorithm, whereas the last two steps
boil down to solving linear programming problems. Determining the minimal expected
long-run time in an end component can be reduced to a long-run ratio objective in an
MDP equipped with two cost functions. Basically, it is the long-run ratio of the expected
time of being in a state in G relative to the total expected time elapsed so far.

3 A maximal end component is the analogue of a maximal strong component in the graph-
theoretic sense, and is a standard notion for MDPs.
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A prototypical implementation of our semantics is provided as part of the
SCOOP tool, see: http://wwwhome.cs.utwente.nl/timmer/scoop/
webbased.html. This is based on translating GSPNs to an intermediate process-
algebraic formalism [33] whose operational semantics yields Markov automata. The tool
also supports expected time, timed reachability, and long-run analysis as described just
above.

6 Conclusion

This paper has presented a semantics of GSPNs in terms of a non-deterministic variant
of CTMCs, called Markov automata [20]. We have shown that for well-defined bounded
GSPNs, our semantics is weak bisimulation equivalent to the CTMC semantics existing
in the literature [8,13,4,3]. This “backward compatibility” result intuitively means that
our semantics is the same as the classical GSPN semantics up to an equivalence that
preserves all quantitative measures of interest such as transient, steady-state probabili-
ties and CSL (without next) formulae [6]. Thus, any tool based on our MA-semantics
yields for well-defined bounded nets the same results as popular GSPN tools such as
GreatSPN, SMART, and MARCIE.

The main contribution of this paper is that our semantics applies to every GSPN. That
is to say, our semantic framework is not restricted to well-specified or confusion-free
nets. The key to treating confused nets is (not surprisingly) the use of non-determinism.
We claim that our approach can also be applied to other stochastic net formalisms such
as SANs [28,30].

The semantics closes a gap in the formal treatment of GSPNs, which is now no
longer restricted to well-defined nets. This abandons the need for any check, either
syntactically or semantically, for well-definedness. This gap was particularly disturb-
ing because several published semantics for higher-level modelling formalisms—e.g.,
UML, AADL, WSDL—map onto GSPNs without ensuring the mapping to be free of
confusion, thereby inducing ill-defined models. Our Markov automata semantics pro-
vides the basis to also cover the confused and ill-specified semantic fragments of these
formalisms. Indeed, we were able to relax both notions by considering the Markov au-
tomata semantics modulo weak bisimulation. To proceed this way seemed like a natural
way forward for quite some time to us, but to arrive there was an astonishingly difficult
notational and technical endeavour.

Possible Extensions. This paper does not consider the preservation (by the notion of
weak bisimulation) of more detailed marking information such as the exact token occu-
pancy of a place. Our notion of weak bisimulation is rather coarse and abstracts from
this information. It is however straightforward to include this information by a simple
extension of weak bisimulation that respects a certain state labelling, and this is fairly
routine [17,6]. The same is true for other reward structures—except rewards attached
to immediate transitions, which are more involved to handle. The proof for “backward
compatibility” of our semantics for unbounded (but e.g., finitely branching) GSPNs is
left for further study.

http://wwwhome.cs.utwente.nl/~timmer/scoop/webbased.html
http://wwwhome.cs.utwente.nl/~timmer/scoop/webbased.html
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Abstract. Passage time measures specification and computation for Generalized
Stochastic Petri Net models have been faced in the literature from different points
of view. In particular three aspects have been developed: (1) how to select a spe-
cific token (called the tagged token) and measure the distribution of the time em-
ployed from an entry to an exit point in a subnet; (2) how to specify in a flexible
way any condition on the paths of interest to be measured, (3) how to efficiently
compute the required distribution. In this paper we focus on the last two points:
the specification and computation of complex passage time measures in (Tagged)
GSPNs using the Hybrid Automata Stochastic Logic (HASL) and the statistical
model checker COSMOS. By considering GSPN models of two different systems
(a flexible manufacturing system and a workflow), we identify a number of rele-
vant performance measures (mainly passage-time distributions), formally express
them in HASL terms and assess them by means of simulation in the COSMOS
tool. The interest from the measures specification point of view is provided by
the possibility of setting one or more timers along the paths, and setting the con-
ditions for the paths selection, based on the measured values of such timers. With
respect to other specification languages allowing to use timers in the specifica-
tion of performance measures, HASL provides timers suspension, reactivation,
and rate change along a path.

1 Introduction

Performance analysis of systems through Generalized Stochastic Petri Net (GSPN)
models or similar formalisms has evolved significantly since their introduction, in par-
ticular an interesting research direction concerns how to express and compute relevant
performance measures. The languages that have been proposed to this purpose span
from classical reward based ones to logics like the Continuous Stochastic Logic (CSL)
and its extensions (action based, timed-automata based and reward based), to automata
based languages. In this paper the focus is on the automata based languages, allow-
ing to analyze a measure of interest on a selected set of paths through the model state
space. Such paths are executions of a stochastic process (quite often a Continuous Time
Markov Chain (CTMC) for which efficient analysis techniques exist) usually described
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by means of a high level formalism like GSPN or Stochastic Process Algebra (SPA) of
various sorts.

The passage time distribution is a specific type of performance index which is partic-
ularly useful when reasoning about properties related with Service Level Agreements
(SLA) or safety requirements. In these cases classical performance measures based on
mean values, like the average response time, are not sufficient and an estimate of the
probability distribution for the time to complete a specific model activity (for example a
recovery process) is needed instead. Moreover often only specific behaviors should be
accounted for in the computation of such probability distributions, which brings us back
to the need of estimating the passage time distribution on a subset of model evolution
paths.

A passage time measure specification for CTMC is usually based on the definition
of entry, goal and forbidden states: the distribution of the time required to reach a goal
state from any entry state without hitting any forbidden state can be computed with
different methods and tools [18,13]. This typically requires the (automatic) manipula-
tion of either the CTMC or of the high level model used to generate the CTMC. When
specific paths must be isolated however, the CTMC may undergo a transformation,
often obtained by synchronizing it with an automata describing the paths of interest.
Examples of languages proposed in the literature to express these type of measures are
the Extended Stochastic Probes (XSP [11], operating on PEPA models [17]), Path Au-
tomata (PA, operating on Stochastic Activity Networks [19]), Probe Automata (PrA [3],
operating on GSPN or on Tagged GSPN [7]). More recently the HASL (Hybrid Au-
tomata Stochastic Logic) [8] language has been introduced, operating on any Discrete
Event Stochastic Process (but up to now experimented only with an extended version
of GSPNs): we shall exploit its expressive power in the present paper, with reference
precisely to GSPN models.

Another issue when expressing passage time measures on high level models is the
possibility to identify entities in the model (customers), and measure the time required
for a selected entity to go through a number of steps (activities), corresponding to the
movement of the entity through a sequence of components in the high level model
(possibly conditioned on some state-based predicate being true). In GSPN terms this
often leads to the need to follow a specific token through the net. This issue is not
trivial if the token to be followed may go through places containing other tokens, since
they are indistinguishable: this aspect has been tackled in the literature by introducing
a formalism extension called Tagged GSPNs [11].

This paper introduces the use of the HASL logic for the specification of passage time
measures over GSPN models extended with general firing time distributions. The mea-
sure computation is performed using the statistical model checker COSMOS: stochastic
discrete event simulation of the GSPN stochastic process synchronized with a Linear
Hybrid Automaton (LHA) is performed. Cosmos generates a (statistically significant)
sample of GSPN paths conforming to the HASL specification, and estimates the mea-
sures of interest from such sample (a confidence interval is provided for each measure).

The conclusion is that the HASL expressive power is adequate to specify (passage
time) performance measure as can be specified with PrA and with the TGSPN passage
time measure specification language, and that the COSMOS statistical model checker
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is an appropriate and useful tool to estimate such measures, even in presence of non ex-
ponential transition firing times and on models with very large state spaces. In addition
more complex paths selection is possible, in particular those characterized by conditions
on the duration of specific phases along the path (requiring to set one or more timers
during the evolution, with the possibility of suspending, resuming and proceeding with
different rates).

The paper is organized as follows: Section 2 describes the stochastic logic HASL, the
associated LHA and the statistical model checker COSMOS. The use of LHA for the
specification of passage time of paths of a stochastic Petri net model is then illustrated
in Section 3, based on a simple workflow model taken from the literature; in this section
we also report results for the passage time computation using COSMOS. The literature
on the definition of passage time for tagged GSPN, based on entry, exit and forbid-
den condition for subnet identification or based on Probe Automata, is then recalled in
Section 4. The difference and similarities of HASL based specification with respect to
Probe Automata specification of passage times is discussed in Section 5, supported by
a classical FMS example. Finally some conclusive remarks are given in Section 6.

2 Background: HASL

The Hybrid Automata Stochastic Logic (HASL) [9] is a recently introduced, automata-
based, formalism for statistical model checking of discrete event stochastic processes
(DESP). It enjoys two main features: generality and expressiveness. HASL is general
with respect to modelling capabilities as it addresses a class of models (i.e. DESPs)
which includes, but (unlike most stochastic logics) is not limited to, CTMCs. With
respect to expressiveness HASL turns out to be a powerful language through which
temporal reasoning is naturally blended with elaborate reward-based analysis. In that
respect HASL unifies the expressiveness of CSL[4] and its action-based variant [5],
timed-automata [15,10] and reward-based [16] extensions, in a single powerful for-
malism. The HASL model checking method belongs to the family of statistical model
checking approaches (i.e. those that employ stochastic simulation as a means to estimate
a model’s property) and, more specifically, it employs confidence-interval methods to
estimate the expected value of the target measure (i.e. either a measure of probability
or a generic real-valued measure). Finally a prototype software tool for HASL model
checking, named COSMOS [8], gives the possibility to actually apply HASL to real case
studies (see [8] and [14] for a comparison of COSMOSwith other tools implementing sta-
tistical model checking). In the following we informally introduce the basic elements
of the HASL methodology referring the reader to the literature [9] for formal details.

2.1 HASL Models: DESPs as GSPNs

The HASL logic refers to DESP models. Informally a DESP is a stochastic process con-
sisting of a (possibly infinite) set S of states and whose dynamic is triggered by a (finite)
set E of (time-consuming) discrete events. For reasons of generality no restrictions are
considered on the nature of the delay distributions associated with events, thus any
distribution with non-negative support may be considered. In practice the HASL frame-
work [9] has been formalized referring to a high-level representation of DESP, namely:
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an HASL model consists of an (extended) GSPN whose timed-transitions may be as-
sociated with any delay distribution with non-negative support (e.g. Exponential, De-
terministic, Uniform, LogNormal, etc.). The choice of GSPNs as modeling formalisms
is due to two factors: (1) they allow a flexible modeling w.r.t. the policies defining the
process (choice, service and memory) and (2) they provide an efficient path generation
(due the simplicity of the firing rule which drives their dynamics). For the sake of space
in this paper we omit the formal definition of DESP but we rather introduce the ratio-
nale behind it through description of some examples. Also, in the remainder we will
simply use the notation term GSPN referring, in facts, to a DESP model in GSPN form.

2.2 HASL Formulas: A Linear Hybrid Automaton and a Target Expression

A HASL formula is a pair (A ,Z) where A is Linear Hybrid Automaton (i.e. a restric-
tion of hybrid automata [2]) and Z is an expression involving data variables of A . The
goal of HASL model checking is to estimate the value of Z by synchronization of a
GSPN N with the automaton A . This is achieved through stochastic simulation of the
synchronized process (N ×A ), a procedure by means of which infinite timed execu-
tions of process N are selected through automaton A until some final state is reached
or the synchronization fails. During such synchronization, data variables evolve and the
values they assume condition the successive evolution of the synchronization. The syn-
chronization stops as soon as either: a final location of A is reached (in which case the
values of the variables are considered in the estimate of Z), or the considered trace of
N is rejected by A (in which case variables’ values are discarded).

LHA: Again here we only provide an informal description of LHA referring the reader
to [9] for formal definitions. Simply speaking an LHA is an automaton consisting of
the following elements: a finite set of locations L (some of which are Final and some
other are Initial); a finite set of events E (corresponding to the GSPN transition labels);
a finite non-empty set X of n real variables; a location labeling function (Λ : L→ Prop)
which associates each location with a (boolean) property that refers to GSPN states (i.e.
markings); a flow function (flow : L �→ Indn) which associates with each location an n-
tuple of GSPN indicators (conditions referring to GSPN markings) expressing the rate
(i.e. the first derivative) at which each data variable in X changes in that location; vari-
able’s flow can be simple constants or functions of the current state of the GSPN (hence
they are expressed by means of GSPN state indicators, denote Ind). Finally a transi-

tion from a source location l to a target location l′ has the following form l
E ′,γ,U−−−→ l′,

where: I) E ′ ⊆ E ∪{�} is a set of labels of synchronizing events (including the extra
label � denoting autonomous edges); II) γ is a constraint (i.e. a boolean combination of
inequalities of the form ∑1≤i≤n αixi +c≺ 0 where αi,c∈Ind are GSPN state indicators
and ≺∈{=,<,>,≤,≥} and xi∈X). III) U is a set of updates (i.e. an n-tuple of func-
tions u1, ...,un where each uk is of the form xk = ∑1≤i≤n αixi + c where the αi,c∈ Ind
are GSPN indicators) by means of which new values are assigned to variables of X on
traversing of the edge.

Example of LHA: Figure 2 depicts two variants of a simple two locations LHA charac-
terizing path measures of the toy GSPN model of Figure 1 (such a GSPN may represent
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P1

T1T0

Fig. 1. A toy GSPN model

l0

ṫ : 1
ṅ1 : 0

l1

{T1}, t < T, {n1 ++}

ALL \ {T1}, t < T,∅

�, t = T,∅

(a) Time bounded measure. (b) Event bounded measure.

l1

{T1}, n1 < N, {n1 ++}

ALL \ {T1}, n1 < N, ∅

�, n1 = N,{
w ← w

N

}
l0

ṫ : 1
ẇ : P1

ṅ1 : 0

Fig. 2. Example of LHA for simple properties of the GSPN model in Fig. 1

a simple unbounded queue with service/arrival represented by T1 and T0 respectively,
while tokens in place P1 represent the customers in queue and in service). The loca-
tions named l0 and l1 are the initial and the final locations for the two automata. Both
automata employ two data-variables: an integer variable n1 (hence with flow ṅ1 = 0 in
every location), counting the occurrences of transition T1, and a real-valued variable t
which is used as a timer (hence with flow ṫ = 1) to record the simulation-time along the
path; moreover the LHA of Figure 2(b) has a variable w with flow equal to the mark-
ing of place P1 (hence it measures the integral of the number of waiting customers in
the queue) along the observed path. Both automata have two synchronizing edges (the
self-loops on l0) and one autonomous edge (from l0 to l1). The topmost synchronizing
edge synchronizes with occurrences of T1 and increments the value of n1 thus counting
the occurrences of T1. The bottommost synchronizing edge, on the other hand, synchro-
nizes with any transitions (denoted ALL) of the GSPN except T1, without performing
any update. The autonomous edge l0 → l1 instead leads to the final location as soon as
its constraint is fulfilled. Note that the the condition leading to the final location in the
LHA of Figure 2 (b) represents a time-bounded constraint on the simulation time t, i.e.:
as soon as t = T the processed path is accepted (and, by that time, n1 will be equal to
the number of firings of T1 up to time t = T ). On the other hand, the condition that leads
to the final location in the LHA of Figure 2 (b), is an event-bounded constraint, as it
accepts paths as soon as T1 has occurred n1 = N times. More specifically, variable n1 is
incremented every time T1 fires in location l0, until n1 becomes equal to N; in the same
location variable w grows with rate equal to the marking of P1. Just before taking the
transition from l0 to l1, w contains therefore a quantity that corresponds to the summa-
tion of the residence times of all tokens observed in P1 along the simulation; when the
transition is taken, it is updated to w = w/n1, hence, on acceptance, w will be equal to
the average residence time of customers in place P1 along the observed path, that is to
say after the first N occurrences of T1.
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HASL Expression: The second component of an HASL formula is an expression, de-
noted as Z and defined by the following grammar:

Z ::= E(Y ) | Z+Z | Z×Z | CDFI(Y ) | PDFI(Y ) | PROB()

Y ::= c | Y +Y | Y ×Y | Y/Y | last(y) | min(y) | max(y) | int(y) | avg(y)

y ::= c | x | y+ y | y× y | y/y

(1)

y is an arithmetic expression built on top of LHA data variables (x) and constants (c).
Y is a path dependent expression built on top of basic path random variables such as
last(y) (i.e. the last value of y along a synchronizing path), min(y)/max(y) (the mini-
mum/maximum value of y along a synchronizing path), int(y) (the integral over time
along a path) and avg(y) (the average value of y along a path). Finally Z, the target
measure of an HASL experiment, is an arithmetic expression built on top of the first
moment of Y (E[Y ]), and thus allowing to consider more complex measures including,
e.g. Var(Y )≡E[Y 2]−E[Y ]2, Covar(Y1,Y2)≡E[Y1·Y2]−E[Y1] ·E[Y2].

The expressions CDFI(Y ) and PDFI(Y ) compute a sequence of cumulative/
instantaneous values, subdivided in discrete samples of uniform size described by a
sampling interval I = 〈t0, tFinal,Δ t〉, where t0 and tFinal are the extremes of the sampling
and Δ t is the size of the uniform step at which the samples are taken. Usually, the target
data variable of CDF/PDF is a time counter, in order to compute a density or a dis-
tribution function. The target expression PROB() measures the mean number of paths
accepted by the LHA automaton over the total number of simulated paths. It is the only
operator that is influenced by rejected paths, since E(Y ), CDFI(Y ) and PDFI(Y ) takes
samples from accepted paths only.

l0
ṫ:1

ṅ1:0
l1

{T 1},(t<T),{n1++}

ALL\{T1},(t<T), /0

�,(t=T)∧n1≤N

Fig. 3. LHA to compute the probability of observing less than N firings of T 1 within time T

Measures of probability with HASL
With reference to the two LHAs of Figure 2, and considering the quantities accumulated
along the accepted paths in the variables t, n1 and w, we can define the expressions
E(last(n1)) for the LHA (a) to estimate the mean number of T 1 firing up to time T ,
while for the LHA ((b) we could define E(last(w)) to estimate the mean average waiting
time for behaviors up to the N-th firing of T1 and CDFI(t) for a given interval, to
estimate the (normalized) distribution of the time to complete.

Note that, in the definition provided by HASL, the CDF is actually normalized, so
as to asymptotically reach 1. This is motivated by the fact that the CDF of certain
quantities may be ”defective” in HASL, since it is computed only on accepted paths: if
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only a subset of the paths is accepted, the CDF may not tend to 1 but to an asymptotic
value which is the probability of accepted paths.

Figure 3 shows another simple example of LHA (a small variant of the LHA in
Figure 2(a)) for measuring φ1: the probability that the number of occurrences of tran-
sition T1 within time T does not exceed N. This is achieved by using the condition
(t = T )∧ (n1 < N) on the autonomous edge from l0 to l1 and t < T on the other two
edges departing from l0. If a path counts more than N occurrences of T1 within time
T , the edge l0 → l1 will not be triggered and the LHA will not be able to synchro-
nize with any successive GSPN transitions. Such a path is therefore rejected.The rate of
acceptance is measured by defining the target measure Z = PROB().

3 HASL and Passage Time of Selected Paths

Given a discrete-state stochastic process with state space S, and sets E,G,D ⊂ S the
passage-time Prob(E,G,D, t) is a CDF measure expressing the probability of reaching
any goal state in G starting from any enter state in E and avoiding forbidden states in
D and with a delay no greater than t [18,13]. The measure Prob(E,G,D, t) is defined in
function of the state-dependent random variable PG,D

x , denoting the probability to reach
a goal state in G starting from state x and avoiding states in D.

Here we discuss how to take advantage of an expressive property specification for-
malism, such as HASL, from the point of view of passage-time related measures. More
specifically we are going to show how the HASL formalism can be used to express
“standard” passage time measures as well as more complex ones. In other words we
consider the possibility of an extended characterisation of passage-time measure where
the constraining factor does not necessarily consist of state-conditions (i.e. the forbid-
den states D) but it may involve performance characteristics of the model (i.e. mea-
sured during the passage from an entry state to the reaching of a goal state). Such
performance-constrained extensions of passage time can be formally expressed and
measured through the HASL logic.

In this section we consider passage times as the time to traverse a set of selected
paths, while we shall consider the use of HASL for representing the passage time of
tagged customers in subnets of GSPN models, as defined in [3], in Section 4. The
presentation in this section is supported by a specific GSPN model taken from the liter-
ature [1], which represents a business workflow. This will allow us to illustrate the rich-
ness of HASL in characterizing paths based on the actions performed and on the states
visited along the path, as in any stochastic logic, but also based on accumulated discrete
and continuous measures, including accumulated performance indices. The generality
of the model considered will also allow us to bring evidence of the usefulness of such a
rich specification language.

3.1 Business Workflow Model

The model considered is a case of an order-handling business process model, taken from
[1]. Fig. 4 shows the GSPN that models the processing of a single order. The workflow
involves two separate tasks of preparing and sending the bill to the client, and to ship
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start start_F register_F

start_L register_L

start_E register_E

checking

billing

billing_F send_bill_F

reminder

billed

receive_payment

payed

checking_L

check_availability

checked

in_stock

reorder

do_not_order
replenish

updating

update

shipping shipping_L

ship_goods

shipped

replenish_L

replenishing

archiving_F

archive_Farchiving_L

archive_L

archiving_E

archive_E archived

NE

employees
NF

finance
NL

logistics

new_order

Fig. 4. The workflow model for an order-handling process

the requested goods. The company reckons on three types of employees: those who
manage accounting (F), logistics (L) and generic employees (E). Different tasks are
carried out by different employees. The Petri net is made of some subnets consisting
of an immediate transition, a place and a timed transition. Such subnets first allocate
one of these staff resources, execute the specified task and then release the resource.
The staff is represented by three places finance, logistics and employees. Arrows from
and to these three places are drawn only for the case of the activity represented by the
register E transition, done by a generic employee, which is reserved just before the
register E transition becomes enabled, and released upon firing. All the other subnets
whose timed transitions have labels with suffixes “ E”, “ F” and “ L” use a similar
schema, acquiring and releasing the appropriate employee resources.

The Petri net represents the lifetime of an order from the start place, when it is
received, to the archived place, when it has been served. Upon receiving of an order,
one employee prepares the request to the warehouse and to the accounting department.
A logistic personnel checks if the requested item is available: if it is not, a reorder is
issued (replenish), and the shipping is delayed until the items are available (update). In
the meanwhile, the bill is sent to the client. If after some time the payment has not been
received (receive payment), the billing is resent (reminder). When the item has been
shipped and payed, the request is archived. The actual model contains several replicas
of the model in Figure 4, all sharing the three resource places. Since replicas are kept
separate, we can easily follow the possible paths followed by each single order.

3.2 HASL Based Passage-Time Measures

Referring to the GSPN model of the business workflow we illustrate a number of
passage-time measures expressed in HASL terms. For each measure we provide first
an informal specification then the corresponding formal characterization as an HASL
formula (i.e. an LHA paired with an HASL expression as by grammar (1)). Finally for
each such measures we provide numerical results obtained by running experiments with
the COSMOS tool.
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Measure w1: The CDF of the passage-time for an ordered good to be delivered.

l0

ṫ : 1

ALL,True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {new order},True,∅

{new order},
True, {t = 0}

l2

ṫ : 1

l3

ṫ : 0

archived = 0 archived = 1

ALL, t ≤ T,∅

ALL, t < T,∅

Skipping the initial transient, 
until initT seconds have passed.

HASL expression: Z1 =CDFI(last(t))

Fig. 5. The LHA automaton for the workflow passage-time w1

The probability measure w1 can be encoded by the HASL formula φw1 = (A1,Z1)
where A1 is the LHA depicted in Figure 5 and Z1 is the HASL expression Z1 =
CDFI(last(t)). The automaton A1 employs one data variable: a timer t that records the
simulation time of the synchronizing paths. A1 works as follows: the initial location l0
is used only to emulate a transient window, letting a random trajectory of duration initT
being simulated before the actual analysis starts in location l1. The automaton then re-
mains in l1 for as long as the first occurrence of (the GSPN) transition new order, whose
firing takes A1 into location l2: note that on traversing the l1 → l2 edge the timer t is
reset, corresponding to the beginning of the passage-time measuring. From l2 a path is
accepted (i.e. by reaching final location l3) as soon as the GSPN place archived is filled
in with a token (representing the delivering of previous incoming order). The edge from
l2 to the final locations l3 is taken only when the condition archived=1 is met. If at the
instant when place archived is filled in with one token the passage-time is t < T then
the path is accepted. On the contrary, if t > T the LHA becomes unable to synchronize
with further transitions of the GSPN, and the path is rejected.

Measure w2: The CDF of the passage-time for an ordered good to be delivered given
that it was out-of-stock.

ALL, t ≤ T,∅

ALL, t < T,∅

l0

ṫ : 1

ALL,True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {new order},True,∅

{new order},
True, {t = 0}

l2

ṫ : 1

archived = 0

ALL \ {reorder}, t < T,∅

archived = 1archived = 0

{reorder},
t < T,∅

l3

ṫ : 1

l4

ṫ : 0

HASL expression: Z2 =CDFI(last(t))

Fig. 6. The LHA automaton for the workflow property w2

The probability measure w2 can be encoded by the HASL formula φw2 = (A2,Z2)
where A2 is the LHA depicted in Figure 6 and Z2 = CDFI(Last(t)). Automaton A2 is
a variant of A1 and employs the same data variable t for the elapsed time. As in A1
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the initial location l0 is used only to let the transient window pass before entering in l1
where the actual analysis of the synchronized path begins. From l1 the LHA moves to
l2 on firing of a new order transition (which also trigger the timer t reset). From l2, l3
is reached only on occurrence of a reorder transition (i.e. the ordered good was out-of-
stock). From l3 the final location l4 is then reached under exactly the same conditions as
of A1. As a result the GSPN paths leading to the final location are those which contain
an occurrence of new order followed by an occurrence of reorder and that finally lead
to a marking M(archived) = 1.

Measure w3: The CDF of the passage-time for an ordered good to be delivered given
that it is not out-of-stock and that the total delay for checking its availability and ship-
ping it does not exceed K .

l0

ṫ : 1

ALL,True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {new order},True,∅

{new order},
True, {t = 0}

l3

ṫ : 0

archived = 0 archived = 1

ALL \ {reorder, replenish}, t < T,∅

l2

ṫ : 1, ṫ′ : (∗)
ALL \ {reorder, replenish},

t ≤ T ∧ t′ < K, ∅

(*) = checking L + shippingHASL expression: Z3 =CDFI(last(t))

Fig. 7. The LHA automaton for the workflow property w3

The probability measure w3 can be encoded by the HASL formula φw3 = (A3,Z3)
where A3 is the LHA depicted in Figure 7 and Z3 =CDFI(last(t)). Automaton A3 em-
ploys two data variables: a timer t, (as A1 and A2) plus an extra real-valued variable t ′

which is used to further conditioning the accepted paths. More specifically t ′ is used to
measure the total time that the system spends in either checking the availability of the
ordered good or in shipping it while assuming that the ordered good does not require
a reorder (i.e. it is present in stock). For this the rate of variation of t ′ (i.e. its flow)
corresponds to the sum of the marking of places checking L and shipping (location l2).
Furthermore note that the exclusion of paths containing an occurrence of either reorder
or replenish is obtained by using ALL\{reorder,replenish} in the on all arcs departing
from l2 as synchronization (constraint) set: i.e. if the currently simulated GSPN path
has lead to l2 then the occurrence of either reorder or replenish causes the path to be
rejected (no LHA transition is enabled). Finally, from l2 a path is accepted as soon as
place archived is filled in with one token (delivery of the ordered good) and the condi-
tion on t ′ is satisfied (i.e. if t ′ < K, where K is a constant parameter of the A3).

Measure w4: The CDF of the passage-time for an ordered good to be delivered given
that the total delay for reordering and updating the stock does not exceed K .

The probability measure w4 can be encoded by the HASL formula φw4 = (A4,Z4)
where A4 is the LHA depicted in Figure 8 and Z4 =CDFI(Last(t)). Automaton A4 is a
variant of A3 and uses the same two data variables only that now t ′ is used to measure
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l0

ṫ : 1

ALL,True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {new order},True,∅

{new order},
True, {t = 0}

l3

ṫ : 0

archived = 0 archived = 1

ALL, t < T,∅

l2

ṫ : 1, ṫ′ : (∗)

(*) = replenish L + updating

ALL, t ≤ T ∧ t′ < K,∅

HASL expression: Z4 =CDFI(last(t))

Fig. 8. The LHA automaton for the workflow property w4

the total time that the system spends in either replenishing after a re-order or updat-
ing the stock. Thus the rate of variation of t ′ corresponds to the sum of the marking of
places replenish L and updating (location l2).

Experiments: To assess the value of w1, w2, w3 and w4 we have performed a number
of experiments using the COSMOS tool: i..e. we encoded the GSPN model of the busi-
ness workflow and the LHA formulae φw1,φw2,φw3,φw4 into COSMOS and executed
a set of experiments. Figure 9 shows the plots of the results for the passage-time CDF
corresponding to HASL formulae φw1,φw2,φw3,φw4, including the confidence intervals
for each time sample.

The plot of φw1 represents the CDF of the average passage time in the workflow
net, from the arrival of a new order to its archiving. The workflow has three replicas
of the model, and has 1 generic employee, 1 accounting employee and 2 persons at the
logistics. The transition names appearing on LHA edges refer to the first of the three
replicas (due to the system symmetry the result is independent on the replica chosen
for the measure). The other three curves represent the passage time distributions of a
selected set of paths, where only paths that respect the additional constraints described
in the LHAs are considered. For instance, φw3 selects only paths that avoid reorders and
also perform checking and shipping within a given time bound, so the average passage
time of φw3-accepted paths will be less that that of φw1. On the contrary, φw2 consider
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Fig. 9. Passage times for the workflow properties w1 to w4, with sampling interval I = 〈0,100,1〉
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only paths that do at least one reorder, so their average passage time will be greater than
that of φw1. Finally φw4 lays in between φw1 and φw3 because it admits paths that require
a reorder, but impose a limit on the total delay for reordering and updating the stock.

The workflow model keeps the status of each ordered good separated, by using a
distinct replication of the subnet where the order is circulating. In general, keeping
tracks of specific tokens in a net can be derived by a proper tagging of a selected token
through the subnets where the tagged token flows. This can be done automatically by
using tagged GSPNs. In the next sections we shall consider the use of HASL for the
specification and computation of passage times, as defined for queueing networks and
tagged GSPN.

Table 1. COSMOS runtime in function of confidence-level, interval-width and number of cores

COSMOS performances
measure conf-level width num-cores build-time runtime gen-paths

w1

99%

0.01
1 2.91 56.07 6.7 e03

w1 2 2.91 32.86 6.7 e03
w1 4 2.91 25.66 6.7 e03
w1

0.001
1 2.91 5569.42 6.635 e06

w1 2 2.91 3307.99 6.635 e06
w1 4 3.50 2521.05 6.635 e06
w1

95%

0.01
1 2.87 33.37 3.9 e03

w1 2 2.85 20.15 3.9 e03
w1 4 2.84 13.07 3.9 e03
w1

0.001
1 3.21 3262.36 3.842 e06

w1 2 2.82 1917.90 3.842 e06
w1 4 3.33 1365.10 3.842 e06

COSMOS performances. Table 1 reports the performances of the COSMOS tool on
an Apple MacBook Pro, processor Intel dual Core i7 2.8GHz, 8GB 1333 MHZ DDR3
RAM, 256KB L2 cache, and 4MB L3 cache. when assessing measure w1 of the work-
flow model. The table shows how the simulation-time (i.e. the runtime for sampling
trajectories in a quantity sufficient to match the required accuracy of estimation) varies
in function of the chosen accuracy (i.e. the confidence level and width of the estimated
interval) of an experiment. Since Cosmos also allows for the parallelization of trajectory
simulation, we have considered different levels of parallelization (number of cores over
which an experiment is distributed). Observe that, quite sensibly, the runtime gain is less
than linear with respect to the level of parallelization and in particular the gain drasti-
cally decreases when the chosen number of cores chosen for the computation is bigger
than the actual CPU cores (in our machine this value is two). Results for more than 4
cores are not shown since they remains practically equal to the case of 4 cores. Finally
observe that Cosmos adopts a model-driven code-generation scheme, i.e. a customized
C++ instance of the HASL simulator is generated for each input pair (GSPN, HASL-
formula) and compiled before the actual computation starts. The associated computa-
tion time is reported in the “build-time” column of Table 1, whereas the “gen-paths”
column indicates the number of trajectories(paths) generated by each experiment.
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4 Background: Tagged GSPN and Probe Automata

GSPN have been widely used in research and applications to compute classical perfor-
mance measures, as the mean number of tokens in places or the throughput of transi-
tions. One type of performance index which is not straightforward to define on GSPN
models is the distribution of the time required for a (specific) token to pass through a
given sub-net , since it requires “token-centric” [6,12] view of the system where the to-
kens represent system entities/customers moving through the net. However, in general,
tokens in GSPNs cannot be interpreted as entities which travel throughout the models,
but they are indistinguishable quantities consumed and generated by transition firing.
Hence, the idea of selecting one token to make it “tagged” and of following it through-
out the net is not a trivial task, unless exploiting certain structural properties of the net.

The work in [6] proposes to exploit invariant properties (i.e. p-invariant) to identify
places where tokens with indistinguishable behavior are preserved so that such tokens
can be treated similarly to the customers of Queuing Network models and can thus be
tagged by the modeler to compute the distribution of the time required by one specific
token to travel between points of the net. This has led to the introduction of the Tagged
Generalized Stochastic Petri Net (TGSPN) formalism which extends classical GSPN
with primitives to specify the subnet on which the passage time should be computed.
In particular the counterpart of the observed (tagged) customer is the identification of
a p-semiflow that leads to a partial unfolding of the subnet identified by the semiflow:
transitions and places of the subnet are replicated: each place Pi has a replica Ptag

i (same
for transitions), and the token in the tagged subnet represents the tagged customer. The
condition upon which to start, finish or stop the computation of the passage time are
specified by the Entry, Exit and Forbid conditions, identifying respectively the tran-
sitions corresponding to the start and stop of passage time count, and those causing
the abort of the measurement (i.e. allowing to discard the paths where any forbidden
transition fires). Actually the conditions are specified as triplets {〈t,Cin,Cout〉}, where
Cin is the marking condition that has to be satisfied in the tangible marking where t
is fired, and Cout is the marking condition which has to be satisfied in the tangible
marking reached after firing it. Any of the three elements may be omitted. The TGSPN
computation of passage time is based on the tangible reachability graph. Therefore, the
semantics is slightly more complicated, since arcs in a TRG are labeled with extended
firing sequences: a timed transition followed by zero or more immediate, leading to a
tangible marking. So Entry = {〈t,Cin,Cout〉} means that the computation of the passage
time starts when we reach a tangible marking satisfying Cout from a tangible marking
satisfying Cin with an extended firing sequence containing t.

To make this more concrete we introduce another example taken from the literature.
This is the model of a Flexible Manufacturing System (FMS), a model that was already
used in [6] to explain tagged GSPN, and that we report in Fig. 10 for ease of reference.
This FMS comprises four manufacturing stations, from M1 through M4, where two of
them, M2 and M3, can fail. Raw parts are loaded on suitable pallets at the Load/Unload
(L/U) station represented by the pair – place Pallets and single server transition load –
and are then manufactured, being sequentially brought to the four machines. The model
then cycle back (pallet reused on a new raw part). Machine M2 and M3 can fail, but
while machine M3 has no spares, so when it breaks down it has to undergo a reparation
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Fig. 10. A FMS with machines breakdown and repair

by a repairman (initially located in place REPMANidle), machine M2 has a set of spares
available in place Spares. When all spares have been used, a repairman will intervene to
repair all spares, and make them available again. Repairmen are not always available:
they cycle between vacation and repair periods. Upon return from a vacation (goready)
a repairman checks if a machine has failed (repSPAREs, repM3s) and in such case starts
a repair activity (repSPAREe, repM3e), otherwise goes back to vacation (goidle). After
the repairman ends working on a failed machine, he takes a rest (goready2) before
starting a new cycle. If both M2 and M3 require the intervention of a repairman, priority
is given to machine M3.

The modeler could be interested in several passage time measures on such model,
for instance the distribution of the waiting time in place M2ko, that is the time spent
by a part in machine M2 awaiting for the spare parts to be replaced by a repairman.
This could be simply expressed as: (P1) the first passage time from a state where
M2ko becomes marked (due to the firing of transition failM2 when there are no tokens
representing spare tools in place Spares) to a state where the same place becomes empty
(due to the firing of transition repM2). This passage time is specified in TGSPN as
Entry = {〈failM2,Spares= 0,−〉} and Exit = {〈repM2,−,−〉} . Note that the transition
repM2 in the triplet means ”an extended firing sequence that contains repM2“, which
could match, for instance, the firing of the timed transition repSPAREe followed by the
two immediates repM2 and repSPAREs.

However, it has been recognized that the “triplet-based” specification language of
TGSPN is not flexible enough to express passage time measures in presence of more
elaborate customer behaviour. For example we cannot express the requirement of a pas-
sage time distribution of the full cycle in the system (time between two successive fir-
ings of transition loadtag), taking into account only those paths which have experienced
at least one “real” breakdown of machine M2 (a breakdown when no spare is available,
which is equivalent to reaching a tangible marking satisfying the condition M2ko > 0),
before starting the computation of the passage time. To cope with this limitation Probe
Automata (PrA) have been introduced in [3]. PrA uses a path automaton [19], which
recognizes paths based on the transitions that fire along the path, enriched with the pre
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P := l0
−

l1 lok
−/loadtag/− −/loadtag/−

l2
Spares=0/failM2/M2ko>0

Fig. 11. PrA measuring the tagged token cycle time after a stop for breakdown of machine M2

and post conditions on the arcs: an arc labelled t can be taken in marking m only if m
satisfies the precondition of the arc, and the state reached through the firing of t satisfies
the post condition. A formal definition of PrA can be found in [3], and we only recall
them informally on the example of Fig. 11, that models the complex passage time mea-
sure described earlier in words. The PrA in the figure has four locations, and locations
can be of two different types: passage locations, where passage time is accumulated, and
non-passage location, where time is not accumulated. Non-passage locations (l0 and l1)
are drawn as rhombuses and passage (l2) locations are drawn as circles. As usual, initial
locations (only l0) are identified by an entering edge, while final locations (lok) have a
double border. Finally, edges are labeled with constraints written as Cin/t/Cout .

5 HASL and Probe Automata

When using HASL for the specification of passage time properties of PrA type, there
are some peculiarities of PrA that require specific attention. A very general difference
is that PrA have been explicitly designed to specify passage time over GSPN subnets,
so we cannot expect LHA to be as compact as PrA in representing the same property.

There are indeed two peculiar features of PrA that make them more compact than
LHA for passage time specification. The first one is that PrA have implicit loops over
locations, accepting all transition firings different from the one present on outgoing
arcs. In LHA instead, all events have to be specified, otherwise a path is rejected. The
second one is that pre and post conditions over arcs in PrA have no direct counterpart in
LHA. An equivalent LHA automaton will have a multiplication of locations to model
the same behavior of the PrA, to distinguish locations that do and do not satisfy the
conditions. This may lead to a significant increase in the number of locations of the
LHA. These differences are not really limitations in the expressiveness, it is only an
issue of how easy it is to model a property.

On the other side LHA allow for multiple data variables with flow that can depend
on the location. PrA instead has a single, implicit, clock variable, which is equivalent
of having a single data variable t with flow of 1 in the counting locations, and 0 other-
wise. LHA variables allow to store state informations, that in the PrA would require a
multiplication of locations.

Another fundamental difference between PrA and LHA is that PrA are defined over
the TRG of the GSPN, while LHA observe the full RG, which includes also vanishing
states, so what can be observed with PrA differs in nature from what can be observed by
an LHA on the same GSPN. An automatic translation from PrA to LHA would require,
for each arc of the PrA labeled with a transition t, the expansion into a subnet that accept
all sub-paths from tangible to a tangible marking, passing only through vanishing states
and having at least a firing of t along the path.
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A difference that requires some caution is that measuring of passage-time through
Probe-Automata [3] is based on the idea that a probe may be plugged in (hence be-
coming operative) at any moment in time of the process described by the considered
GSPN, which basically amounts to saying that probes compute passage time assuming
that the initial state(s) for the probe have a distribution that is equivalent to the steady
state probability. Since HASL does not (inherently) support steady-state measures, then,
in order to cope with the probe plugging in approach, it is necessary that an LHA for
passage-time measures is equipped with a so-called transient emulator, i.e. a (unique)
initial location whose goal is simply to simulate the GSPN model for a given delay initT
(assuming that at initT the GSPN has reached steady state).

Finally, PrA have been carefully designed to allow a numerical solution, while LHA
have instead been designed with simulation in mind. This last difference involves two
main aspects: the PrA assumes that the underlying state model is finite and known (this
is necessary if we want to allow for an initial distribution, but especially if we want to
use the steady state distribution as the initial distribution, as discussed above) and a PrA
has a single timer, so as to allow for a reuse of classical Markov renewal theory results
in the computation of the passage time.

Using again the FMS model, we consider three PrA passage time specifications P1

to P3 (taken from [3]), provide the corresponding LHA (F1 to F3) and add a new FMS
property expressed through LHA F4, which cannot be expressed by PrA.

The first example (Figure 12) shows a simple passage time CDF specification that
leads to the computation of the distribution of a piece of the cycle (time to load the pallet
plus the work time of M1 and M2) for the tagged customer. P1 shows the PrA, while
F1 is the LHA. As expected there are some more arcs, and more annotations over arcs.
Note the use of the initial additional location l0 to skip the initial transient. The passage
location l1 states that time should be accumulated starting in l2, which is rendered in
the LHA by a reset of the clock t while entering location l2.

P1 :=
−/ew4tag/− −/ew2tag/−

l0 l1 lok
−

F1 :=
l0

ṫ : 1

ALL,True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {ew4tag},True,∅

l2

ṫ : 1

ALL \ {ew2tag}, t < T,∅

{ew2tag}, t ≤ T,∅{ew4tag},
True, {t = 0}

l3

ṫ : 0

HASL expression: Z1 =CDFI(last(t))

Fig. 12. The Probe Automaton P1 and the LHA automaton F1 for the FMS model

Figure 13 is the cycle time for a tagged token conditioned on at most one breakdown
occurring during the cycle (to either the tagged customer itself, or to any other, un-
tagged, customer). The specification of “at most one breakdown” cycle in PrA requires
to keep memory of the failures occurred in the past, which leads to the introduction
of location l2 The corresponding LHA appears to be more complex, at least in terms
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P2 := l0
−

l1
−/loadtag/−

lok

lkol2−/failMtag
3 /−

−/failM2/M2ko>0

−/failMtag
3 /−

−/failM2/M2ko>0

−/loadtag/−−/loadtag/−

l0

ṫ : 1

l1

ṫ : 1

ALL,
t < initT, �

F2 := {loadtag},
t ≥ initT, {t = 0}

ALL \ {loadtag},
t ≥ initT, �

l2

ṫ : 1

l3

ṫ : 0

{failM3}, t < T ∧ n < N, {n ++}
{repM2}, t < T ∧ n < N,∅

{failM2}, t < T ∧ n < N,∅

ALL \ {repM2},
t < T ∧ n < N, {n ++}

{loadtag}, t ≤ T ∧ n < N,∅

ALL \ {loadtag, failM3, failM2},
t < T ∧ n < N,∅

HASL expression: Z2 =CDFI(last(t))

Fig. 13. The Probe Automaton P2 and the LHA automaton F2 for the FMS model

of arc annotations, but it is actually more general: the number of breakdowns is accu-
mulated in the discrete variable n, and paths are accepted if there have been at most N
breakdowns.

Property P3 of Figure 14 shows an example of PrA arcs with pre and post condi-
tions. By requiring that failM2 is pre conditioned on place Spares being equal to zero
and post conditioned on M2ko being greater than zero, we are catching the first break-
down of M2 that finds no spare parts available. In the LHA this is translated expanding
the arc from l0 to l1 of the PrA into the three locations l1, l2, l3 of the LHA.

Finally, Figure 15 shows an FMS property that is not present in [3]. It is an example
in which the acceptance of a passage time (in this case the time to go through machines
M1, M3, and M3) is conditioned on having a mean number of spare parts under repair
(modeled by the sum of tokens in places SPARESbroken and SPARESrepairing), all
along the path, less than a constant parameter WBS. This is an interesting case in which
the acceptance of a path is conditioned on a performance measure relative to the path
itself.

Figure 16 shows the CDF of passage time for F4 (Figure 15), comparing the un-
conditioned passage-time versus the WBS conditioned passage-time (considering two
different values of the conditioning bound WBS), i.e. the accepted paths conditioned by
the fact that the average number of spare parts that are broken or under reparation is less
than the specified value (i.e. WBS). Note that, for this plot, we have instructed Cosmos
to report ”unnormalized”, defective, passage time CDF.

All the measures shown in this section refer to the initial marking of 9 pallets in
the load/unload station, that can be compared with the results of [3]. Note that the state
space of the FMS model may be quite large as the number of pallets grows (for instance,
with 20 pallets it has more than 3 million states, or for 300 pallets reaches 150 billion
states). With such large state spaces, the simulation approach becomes virtually the only
applicable method.
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l0 l1 lok
−P3 :=

M2ko=0/failM2/M2ko>0 −/repM2/−

F3 :=
l0

ṫ : 1

ALL,True,∅

l1

ṫ : 1

�, t = initT,∅
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{failM2},True,∅

{repM2},True,∅

l4

ṫ : 1

l5

ṫ : 0

ALL \ {repM2},
t < T,∅

{repM2}, t ≤ T,∅

ALL \ {repM2},
True, {t = 0}

M2ko = 0

ALL \ {failM2},True,∅

HASL expression: Z3 =CDFI(last(t))

Fig. 14. The Probe Automaton P3 and the LHA automaton F3 for the FMS model

l0

ṫ : 1

ALL,True,∅

�, t = initT,∅ l1

ṫ : 1

ALL \ {loadtag},True,∅

l3

ṫ : 0

{loadtag},
True, {t = 0}

ALL \ {ew3tag},True,∅

l2

ṫ : 1
İN : (∗)

(*) = SPARESbroken + SPARESrepairing

{ew3tag}, t ≤ T ∧
∧ (IN/t ≤ WBS),∅

HASL expression: Z4 =CDFI(last(t))

Fig. 15. The LHA automaton for the FMS property F4
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6 Conclusion and Future Work

In this paper we have considered the problem of defining and computing complex pas-
sage time distributions on (tagged) GSPN models, extended with general firing delays,
by means of the HASL language. In particular the measure of interest has to be com-
puted on a subset of paths satisfying some requirement on the fired transitions and on
the properties of the traversed states. In addition it may be useful to put constraints on
the duration of some activity carried on along the path, or on quantitative properties
of the path as a whole. Work is ongoing on an extension of Cosmos for Symmetric
Stochastic Nets (also known as colored Petri nets).

Comparing the HASL expressive power with that of PrA and of TGSPN passage time
measure definitions it has been shown on an example from the literature that HASL
allows one to define more complex performance measures. In some cases the LHA
structure is more complex with respect to the corresponding PrA, since the latter has
been specifically designed with passage time specifications in mind.

Finally, the experimental results performed on two different models (i.e. FMS and
Business workflow) have shown that the COSMOS statistical model checker is an ad-
equate tool to estimate such measures, even in presence of non exponential transition
firing times and on models with very large state spaces.
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hanifa.boucheneb@polymtl.ca
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Abstract. We consider time Petri nets with multiple-server semantics.
We first prove that this setting is strictly more expressive, in terms of
timed bisimulation, than its single-server counterpart. We then focus on
two choices for the firing of multiple instances of the same transition:
the more conservative safety-wise non deterministic choice, where all
firable instances may fire in any order, and a simpler alternative, First
Enabled First Fired (FEFF), where only the oldest instance may fire,
obviously leading to a much more compact state-space. We prove that
both semantics are not bisimilar but actually simulate each other with
strong timed simulations, which in particular implies that they generate
the same timed traces. FEFF is then very appropriate to deal with linear
timed properties of time Petri nets.

Keywords: Time Petri nets, multiple/single-server semantics, firing
choice policies, strong/weak timed simulations.

1 Introduction

The theory of Petri Nets provides a general framework to specify the behav-
ior of real-time reactive systems, including their time constraints. Time con-
straints may be expressed in terms of stochastic delays of transitions (stochastic
Petri nets), fixed values associated with places or transitions [13], or intervals
labelling places, transitions or arcs [7, 10–12, 15]. Among these time extensions
of Petri nets, we consider here time Petri nets [11] “à la Merlin” (threshold
semantics) in both single-server and multiple-server semantics. This model asso-
ciates with each transition a static firing interval constraining their firing dates.
The multi-enabledness appears as soon as we consider non-safe Petri nets and is
consequently both a theoretical and a practical problems. As an example, in a
production line, a multi-enabled transition can either model a queue for a ma-
chine able to process one peace at a time or a conveyer belt able to move more
than one object. The multiple-server semantics allows to handle, at the same
time, several enabling instances of the same transition, whereas it is not allowed
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in the single-server semantics. In [6], the authors discussed and showed the bene-
fits of multiple-server semantics over single-server semantics such as scaling and
conciseness power. Multi-enabledness allows very compact representations for
some systems [6], where system resources are represented by tokens. In such a
case, adding new resources to a system consists in simply adding new tokens in
the marking, without changing the structure of the Petri net [6].

Timing information is either associated with tokens (age semantics) [8] or en-
abled transitions (threshold semantics) [4, 6]. For the multiple-server threshold
semantics, each enabling instance of the same transition has its own timing in-
formation characterized by means of a clock (used to measure the time elapsing
since its enabling) or a firing interval (indicating its firing delays). In [4], two
firing choice policies have been proposed to manage the different enabling in-
stances of the same transition: non deterministic (NDF) and First Enabled First
Fired (FEFF) firing policies. For the NDF firing choice, all possible firing orders
of these instances are considered, whereas, for the FEFF firing choice, only one
firing order, corresponding to firing the oldest one first, is considered. The NDF
firing choice includes the FEFF firing choice. Consequently, it strongly simu-
lates the FEFF firing choice. However, as it considers all possible firing orders
of instances of the same transitions, it may cause a blow-up of the state space,
compared to the FEFF firing choice.

In this paper, we first give an overview of the different semantics of multi-
enabledness for time Petri nets. Then, we show that the multiple-server semantics
adds expressiveness relatively to the single-server semantics. We also prove that
the FEFF firing choice strongly simulates the NDF firing choice. As, the NDF
firing choice strongly timed simulates the FEFF firing choice, it follows that both
firing choice policies (NDF and FEFF) strongly simulate each other and then
generate the same timed language.

This paper is organized as follows. Section 2 defines formalisms and notions
used in the paper such as timed transition systems, strong (weak) timed simu-
lation relations and time Petri nets. Then, it discusses the different semantics
of multi-enabledness of time Petri nets, proposed in the literature. Section 3 is
devoted to the threshold semantics of time Petri nets, in the context of multiple-
server policy and the comparison of the expressiveness relatively to the single-
server semantics. Section 4 compares two firing choice policies: NDF and FEFF.
The conclusion is presented in Section 5.

2 Preliminaries

Let N, Q+ and R+ be the sets of natural, non-negative rational and non-negative
real numbers, respectively.

2.1 Timed Transition Systems and Timed (bi)Simulation

As usual, we shall define the operational semantics of our time Petri nets by
means of timed transition systems (TTS) combining both discrete (actions) and
continuous (time elpasing) transitions [6]:
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Definition 1 (Timed Transition System). A TTS is a 4-tuple S =<
Q, q0, Σ,→> where Q is a set of states, q0 ∈ Q is the initial state, Σ is the
set of discrete actions (disjoint from the time domain R+ of the continuous ac-
tions), and →∈ Q× (Σ ∪ R+)×Q is the transition relation.

A tuple (q, a, q′) ∈→, also denoted q
a−→ q′, represents the transition from state

q to state q′ by the discrete or continuous action a.
In the sequel, we assume that all TTSs satisfy the classical time-related con-

ditions where d, d′ ∈ R+:

– time determinism: if q
d−−→ q′ and q

d−−→ q′′ then q′ = q′′;

– time additivity: if q
d−−→ q′ and q′

d′
−−→ q′′ then q

d+d′
−−−−→ q′′;

– null delay: ∀q : q
0−−→ q;

– time continuity: if q
d−−→ q′ then ∀d′ ≤ d, ∃q′′, q d′

−−→ q′′ and q′′
d−d′
−−−−→ q′.

Definition 2 (Run in a TTS). A run ρ in a TTS S =< Q, q0, Σ,→> is a
(possibly infinite) sequence q0a0q1a1 . . . an−1qn . . . such that ∀i, (qi, ai, qi+1) ∈→.

We assume w.l.o.g. that in a run, discrete and continuous transitions are strictly
alternating. The case of a run ending in infinite delay raises no theoretical issue
but we omit it for the sake of readability. Any run ρ can therefore be written as:

ρ = q0
d1−→ q1

t1−→ q2
d2−→ q3

t2−→ · · · , where di and ti for i > 0 are continuous and
discrete actions, respectively.

Definition 3 (Timed and Untimed Traces). For any run ρ = q0
d1−→ q1

t1−→
q2

d2−→ q3
t2−→ · · · , the timed trace (timed word) of ρ is the sequence d1t1d2t2 . . ..

The untimed trace (also called firing sequence) of ρ is the sequence t1t2 . . ..

Definition 4 (Timed Language). The timed language of S, denoted L(S),
is the set of its timed traces.

In order to compare the different semantic choices we shall introduce the notion
of simulation:

Definition 5 (Strong timed (bi)simulation). Let S1 =< Q1, q10, Σ,→1>
and S2 =< Q2, q20, Σ,→2> be two timed transition systems.

A binary relation ≺S⊆ Q1×Q2 is a (strong) timed simulation iff ∀(q1, q2) ∈≺S

, ∀a ∈ Σ ∪ R+, (∃q′1 ∈ Q1, q1
a→1 q′1)⇒ (∃q′2 ∈ Q2, q2

a→2 q′2 and (q′1, q
′
2) ∈≺S).

A strong timed simulation 
S⊆ Q1 × Q2 is a (strong) timed bisimulation if

−1

S ⊆ Q2 ×Q1 is also a strong timed simulation.

We say that transition system S1 is strongly simulated by S2 (i.e., S2 strongly
simulates S1), if there exists a strong timed simulation relation ≺S⊆ Q1 × Q2

s.t. (q10, q20) ∈≺S . Note that such a simulation implies that L(S1) ⊆ L(S2).
Similarly, transition systems S1 and S2 are strongly timed bisimilar if there

exists a strong timed bisimulation 
S⊆ Q1 ×Q2 and (q10, q20) ∈
S .
An invisible action is any action which does not belong to Σ∪R+. We denote

all invisible actions by ε �∈ Σ ∪ R+.
Let σ ∈ (Σ∪{ε}∪R+)+ be a timed trace and vis(σ) the timed trace obtained

by eliminating invisible actions (ε) of σ and grouping continuous actions.
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Definition 6 (Weak timed simulation). Let S1 =< Q1, q10, Σ ∪ {ε},→1>
and S2 =< Q2, q20, Σ ∪ {ε},→2> be two timed transition systems and
	W⊆ Q1 ×Q2 a binary relation. Relation 	W is a weak timed simulation iff
∀(q1, q2) ∈	W , ∀a ∈ Σ ∪ R+, (∃q′1 ∈ Q1, q1

a→1 q′1) ⇒ (∃q′2 ∈ Q2, ∃σ s.t.

vis(σ) = a, q2
σ→2 q′2 and (q′1, q

′
2) ∈	W ).

We derive the notions of weak timed bisimulation and weak timed (bi)similarity
of transitions systems in exactly the same way as for strong simulations.

2.2 Time Petri Nets

We now introduce the formalisms considered in this article:

Definition 7 (Petri net). A Petri net is defined by a 4-tuple:
< P, T,Pre,Post,M0 >, where:

– P and T are finite sets of places and transitions, respectively (s.t. P ∩T = ∅);
– Pre,Post ∈ [P × T −→ N] are the backward incidence and the forward inci-

dence functions, respectively. They indicate, for each transition, the tokens
needed for its firing and those produced;

– M0 ∈ [P −→ N] is the initial distribution of tokens in places, called the
initial marking.

A marking M of a Petri net is a function from P to N. Let M ∈ [P −→ N] be a
marking and t a transition. Transition t is k-enabled for k > 0 iff M ≥ k×Pre(., t)
and M �≥ (k + 1) × Pre(., t). In this case, k is the enabling degree of t in M .
If t is k-enabled for some k > 0, we simply say it is enabled. When we say t is
multi-enabled we emphasize the fact that k > 1. By convention, t is said to be
0-enabled in M if it is not enabled in M . Note that in case, a transition has at
least an input place, the set of its enabling instances in M is finite. We suppose
here that each transition has at least an input place.

If t is enabled in M , it may fire, leading to the marking M ′ s.t.
∀p ∈ P,M ′(p) = M(p)− Pre(p, t) + Post(p, t).

Let INT be the set of intervals of R+ of the form [a, b] or [a,∞[, where
a, b ∈ Q+. For any interval I ∈ INT , the lower and the upper bounds of I are
denoted ↓ I and ↑ I, respectively.

Definition 8 (Time Petri Net). A time Petri net (TPN) is defined by a
7-tuple: < P, T,Pre,Post, Is,M0 > where:

– < P, T,Pre,Post,M0 > is a Petri net;
– Is ∈ [T → INT ] is a function which associates with each transition t a static

firing interval Is(t).

Intuitively, a transition t is firable if it is maintained enabled during a time
inside its static firing interval. It must be fired without any additional delay,
if it is maintained enabled ↑ Is(t) time units, unless it is immediately disabled
by a conflicting transition. Firing a transition takes no time but leads to a new
marking.
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2.3 TPN Semantics

Several semantics are proposed in the literature for TPN that can be classified
according to four policies (service, granularity, memory and choice) [1–3, 9] and
the characterization of timing information (clock state vs interval state).

Server Policy. For time Petri Nets, time is used to model a non instantaneous
service represented by a timed transition. In this context, the service policy spec-
ifies whether several enabling instances of the same transition may be considered
simultaneously (multiple-server semantics) or not (single-server semantics). The
multiple-server semantics allows to handle, at the same time, several services per
transition whereas it is not allowed in the single-server semantics. For single-
server semantics, the multi-enabledness is not ambiguous since a transition can
do only one thing at the same time (only one enabling instance of each transition
is considered at each state), whereas different interpretations can be defined for
multiple-server semantics.

Granularity Policy. This policy indicates which objects timing information
is associated with. Timing information is either associated with tokens (age se-
mantics) [8] or enabled transitions (threshold semantics) [6]. In [5], the authors
considered the age semantics where tokens are managed FIFO based on their
ages. As tokens are handled FIFO, an enabled transition will always use the old-
est tokens from each place. The difference between age and threshold semantics
is highlighted in [9] by the difference between the individual token interpretation
and the collective token interpretation. It is particularly significant when two or
more tokens are needed, in a given place, to fire a transition. Let us consider
the example of [6] depicted in Fig. 1 showing the difference between age and
threshold semantics. In this example, a server answers to requests, in a delay
between 2 and 3 time units for each request and we want to detect a too heavy
load of the system. More precisely, we want to detect the presence of more than
40 requests during a period of 30 time units. The modeling of such a system
is given in Fig. 1. Using the age semantics, the transition Loaded will never be
fired. Indeed, each token will stay at most 3 time units in place Running: no
multi-set of 40 tokens will exist with a token older than 3 time units. Using the
threshold semantics, the transition Loaded will be enabled once 40 tokens will
be in place Running, and it will fire 30 time units after, as long as at least 40
tokens are in the place, independently of their ages.

In this paper, we focus on the threshold semantics.

Memory Policy. This policy specifies when the timing information is set or
reinitialized. For the age semantics, the timing information of tokens is set at
their creation. In the context of threshold semantics, the memory policy re-
lies on the notion of newly enabled transitions. In the classical semantics (also
called intermediate semantics), this notion is defined using intermediate mark-
ings (markings resulting from the consumption of tokens): when a transition is
fired, all transitions not enabled in the intermediate marking but enabled in the
successor marking are considered as newly enabled. The firing of a transition
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Request Running
Server

Loaded

[30, 30]

[2, 3][0,∞[

4040

Fig. 1. A TPN illustrating the difference between age and threshold semantics [6]

is then not atomic w.r.t. markings. In [1, 2], the authors have discussed other
semantics where the firing of transitions is considered atomic: atomic and persis-
tent atomic semantics. In such semantics, all transitions not enabled before firing
a transition t but enabled after its firing are newly enabled. Another difference
between the intermediate, atomic and persistent atomic semantics lies in the
particular case of the fired transition. If the fired transition enables again itself,
it is considered as newly enabled in the intermediate and atomic semantics but
not newly enabled in the persistent atomic semantics. For the single-server and
threshold semantics, the intermediate, atomic and persistent atomic semantics
are equivalent w.r.t. weak timed bisimulation if the intervals are all right-closed
and persistent atomic is more expressive otherwise [2, 3, 14].

Firing Choice Policy. This policy specifies the enabled transitions to fire first
and those to disable first, in case of conflicts. In the context of TPNs, the choice
of transition to fire first is non deterministic for different transitions. For the
age semantics, in [5], tokens are managed First in First Out (FIFO semantics).
When a transition is fired, it consumes the oldest tokens first. In the case of the
threshold and multiple-server semantics, the multi-enabledness of a transition t
can be considered as different transitions, which we call enabling instances, and
which are either totally independent (non deterministic firing choice (NDF)) or
managed so as to fire the oldest one first (First Enabled First Fired (FEFF)
policy).

Disabling Choice Policy. This policy specifies which enabling instances of
transitions to disable first: the most recent ones first (Last Enabled First Disabled
(LEFD)) or the oldest ones first (First Enabled First Disabled (FEFD)) are
possible policies. As for the firing choice policy we can also take into account all
possible choices non-deterministically (NDD).

Clock vs Interval States. Besides these policies, there are, in the setting of
threshold semantics, two known characterizations of timing information. The
first one is based on clocks. A clock is either associated with each enabled tran-
sition to measure its enabling time (time elapsed since it became enabled most
recently) or associated with each token to measure its age (time elapsed since
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its creation). The second characterization of timing information is based on dy-
namically decreasing intervals associated with enabled transitions indicating the
time remaining until they can fire.

TPN “ à la Merlin”. The classical semantics of TPN is single-server, threshold
and intermediate semantics with non deterministic choice of transitions to fire
first. The timing information is either characterized by means of clocks (clock
states) or time intervals (interval states).

The clock state is defined as a marking and a function which associates with
each enabled transition the value of its clock. The clock of a transition t is set to
0, when it is newly enabled. Afterwards, its value increases synchronously with
time until it is fired or disabled by firing a conflicting transition. It is firable
if its clock value reaches its static firing interval. It must be fired without any
additional delay transition when its clock reaches ↑ Is(t), unless it is disabled.

The interval state is defined as a marking and a function which associates with
each enabled transition the time interval in which the transition can be fired.
When a transition t is newly enabled, its firing interval is set to its static firing
interval. The bounds of this interval decrease synchronously with time, until t
is fired or disabled by another firing. t is firable, if the lower bound of its firing
interval reaches 0. It must be fired, without any additional delay, if the upper
bound of its firing interval reaches 0, unless it is disabled.

p1

t

p2

[3, 3]

Fig. 2. A simple TPN with multiple enabledness

Illustrative Example. Let us point out, by means of the simple example of
Fig. 2, some subtle differences between the semantics discussed above. Assume

that initially, the marking is
(
p1

p2

)
=

(
1
1

)
. At date 1, a token arrives in p1 leading

to the marking
(
2
1

)
. Then, another token arrives in p2 at date 2 leading to the

marking
(
p1

p2

)
=

(
2
2

)
. The transition t is 2-enabled in the marking

(
2
2

)
.

For all semantics, the transition t will be fired twice. However, the firing dates
of the transitions vary according to the service, granularity and memory policies.

For the single-server and threshold semantics, only one enabling instance of
transition t is considered from each state. This instance is enabled since date 0.
When this instance is fired, transition t is again enabled. The timing information
of this enabling instance of t may be either reinitialized or not, according to the
memory policy (intermediate, atomic or persistent atomic semantics). For both
intermediate and atomic semantics, the transition t will be fired at dates 3 and
6. Indeed, t is enabled since date 0 and then is fired at date 3. When t is fired, it
is again enabled in the resulting marking, its timing information is reinitialized.
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Therefore, it will be fired again 3 time units later (i.e., at date 6). For persistent
atomic semantics, the transition t will be fired at dates 3 and 3, since, in this
case, when t is fired for the first time, its timing information is not reinitialized.

For the age semantics, there are 2 tokens in place P1 created at dates 0 and
1, respectively. There are also 2 tokens in place P2 created at dates 0 and 2,
respectively. In case, the tokens are managed FIFO, the dates of the first and
the second firing of t are 3 and 5. The first firing of t uses the tokens of p1 and
p2 with age 0. The second firing of t uses the remaining tokens.

For the multiple-server (multi-enabledness) semantics, the two enabling in-
stances of transition t can be fired at dates:

– 3 and 5 for the threshold semantics, since the first and the second instances
of t are enabled since dates 0 and 2, respectively.

– 3 and 5 for the age semantics with FEFF discipline. t is considered to be

mutli-enabled as soon as the marking is
(
2
1

)
.

– 3 and 5 or 4 and 5 for the age semantics with non deterministic choice of
tokens to be used. Indeed, the dates of the first and the second firing of
t depend on the ages of tokens used. There are two possibilities. The first
firing of t may use either the tokens of p1 and p2 with age 0 or the token
of p1 with age 1 and the token of p2 with age 0. The second firing of t uses
the remaining tokens. So, the dates of the first and the second firing of t are
either 3 and 5 or 4 and 5.

In [6], the authors discussed and showed the benefits of multiple-server semantics
over single-server semantics such as scaling and conciseness power. However, does
the multiple-server semantics increase the expressive power of time Petri nets or
not? So, the first aim of this paper is to investigate this question for the threshold
semantics. The other aim is the comparison of two firing choice policies: NDF
and FEFF.

3 Threshold Semantics in the Context of Multiple-Server
Policy

In the threshold and multiple-server semantics, a clock or a firing interval is
associated with each enabling instance of a transition. The choice of transition
to fire first is non deterministic for different transitions. The enabling instances of
the same transition are either considered totally independent (non deterministic
choice) or managed so as to fire the oldest one first (First Enabled First Fired
(FEFF) policy). In the sequel, we consider the case of non deterministic choice
of the transition to fire first.

Let M be a marking. For economy of notations, we suppose that the set of
transitions is strictly ordered (t < t′ or t′ < t, for any pair of transitions of
T ) and the enabling instances of transitions of M are managed in an ordered
list, denoted en. In en, the enabling instances of the same transition are ordered
from the oldest to the newest one and transitions appear in increasing order. An
enabling instance of this list is referred to as ti where t ∈ T is its transition and
i is its position in the list en.
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3.1 Clock Based Timing Information

For the clock based timing information, the TPN state is defined by the triplet
q = (M, en, ν), where M ∈ [P −→ N] is a marking, en is the list of enabling
instances of transitions in M , where the enabling instances of the same transition
are ordered from the oldest to the newest one and transitions appear in increasing
order, and ν ∈ [en −→ R+] is a clock valuation over en. For each ti ∈ en, ν(ti) is
the clock value of the ith enabling instance. The initial state is q0 = (M0, en0, ν0),
where M0 is the initial marking, en0 is the appropriately ordered list of enabling
instances of transitions in M0 and ∀ti ∈ en, ν0(t

i) = 0.
All clocks of transitions evolve uniformly with time. Let q = (M, en, ν) be a

state, d ∈ R+. We denote ν + d the function ν′ defined by ∀ti ∈ en, ν′(ti) =

ν(ti) + d. It specifies the evolution of time by d units. (M, en, ν)
d−→ (M, en, ν′)

iff

ν′ = ν + d and ∀ti ∈ en, ν(ti) + d ≤↑ Is(t)

Let q = (M, en, ν) be a state and t ∈ T . Transition t is firable at state q =
(M, en, ν) iff there is at least an enabling instance ti of t in en s.t. its clock has
reached its firing interval (i.e., ν(ti) ≥↓ Is(t)). In case transition ti is firable
at state q = (M, en, ν), its firing will consume Pre(p, t) tokens from each place
p and produce Post(p, t) tokens in each place p. Consequently, it will disable
transitions that are in conflict and enable new instances of transitions. We denote
CF(M, en, ti) the set of enabling instances of transitions of en in conflict in M
with ti. The set of newly enabled instances in the marking reached from M by
firing ti is denoted Nw(M, en, ti).

If ti is firable at q = (M, en, ν), its firing leads to the state q′ = (M ′, en′, ν′)
s.t.

– M ′ = M − Pre(., t) + Post(., t),
– en′ is computed from en by eliminating enabling instances of CF(M, en, ti)

and then inserting the enabling instances of Nw(M, en, ti) and
– ν′ is computed from ν by eliminating clock values of enabling instances

of CF(M, en, ti) and inserting value 0 for each enabling instance of
Nw(M, en, ti).

We write (M, en, ν)
ti−→ (M ′, en′, ν′), for ti ∈ en iff ti is firable at (M, en, ν), i.e.,

ti ∈ en and its firing leads to the state (M ′, en′, ν′).

Example 1. As an example, consider the time Petri net at Fig. 3. and the state
q = (M, en, ν), where M(P1) = 3, en = {S1, S2, S3, L1, L2, L3}, ν(S1) = ν(L1) =
2.5, ν(S2) = ν(L2) = 2.1 and ν(S3) = ν(L3) = 1.3.

Let us consider the firing of the instance S1 in the context of FEFF seman-
tics, atomic memory policy and FEFD disabling choice policy, meaning that
CF(M, en, S1) = {S1, L1}. Thus, the firing of the transition S1 denoted by

(M, en, ν)
S1

−−→ (M ′, en′, ν′) leads to the deletion of S1 and L1 and thus the other
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P1 S

L

P2 T

[30, 30]

[2, 3] [3, 7]

Fig. 3. A TPN illustrating CF and Nw

instances are left shifted in the list en′. Then, since Nw(M, en, S1) = {T 1}, we
have en′ = {S1, S2, L1, L2, T 1} with ν′(S1) = ν′(L1) = 2.1, ν′(S2) = ν′(L2) =
1.3 and ν′(T 1) = 0. � 

Using clock based timing information, the behavior of a time Petri net is defined
by means of the timed transition system < Q, q0, Σ,−→>, where Q is the set
of clock states of the time Petri net, q0 = (M0, en0, ν0) is its initial clock state,
Σ = T , and −→ is composed of continuous and discrete transitions defined as
follows:
Let q = (M, en, ν) and q′ = (M ′, en′, ν′) be two clock states, d ∈ R+ and t ∈ T .

(M, en, ν)
d−→ (M, en, ν + d) iff (M, en, ν)

d−→ (M, en, ν + d)

(M, en, ν)
t−→ (M ′, en′, ν′) iff ∃ti ∈ en, (M, en, ν)

ti−→ (M ′, en′, ν′).

3.2 Interval Based Timing Information

For the interval based timing information, the interval TPN state is defined by
the triplet (M, en, I), where M and en are defined as for the clock state and I ∈
[en −→ INT ] is an interval function over en. For each ti ∈ en, I(ti) is the firing
interval of the ith enabling instance of t. The initial state is q0 = (M0, en0, I0),
where ∀ti ∈ en0, I0(t

i) = Is(t).
In this case, the behavior of TPN is defined by means of the timed transition

system < QI , (M0, en0, I0), Σ,−→I>, where QI is the set of interval states of
the TPN, (M0, en0, I0) is its initial interval state, Σ = T , and −→I is composed
of continuous and discrete transitions defined as follows:

Let (M, en, I) and (M ′, en′, I ′) be two interval states, d ∈ R+ and t ∈ T .

(M, en, I)
d−→I (M, en, I ′) iff

∀ti ∈ en, d ≤↑ I(ti) and I ′(ti) = [max(0, ↓ I(ti)− d), ↑ I(ti)− d].

(M, en, I)
t−→I (M ′, en′, I ′) iff ∃ti ∈ en s.t.

– ↓ I(ti) = 0,
– M ′ = M − Pre(., t) + Post(., t),
– en′ is computed from en by eliminating enabling instances of CF(M, en, ti)

and then inserting the enabling instances of Nw(M, en, ti) and
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– I ′ is computed from I by eliminating firing intervals of enabling instances of
CF(M, en, ti) and inserting the interval Is(t′) for each enabling instance t′j

of Nw(M, en, ti).

Theorem 1 proves that the two formulations of the semantics, clocks or intervals,
are actually equivalent wrt. strong timed bisimulation.

Theorem 1 (Equivalence of clock and interval semantics). All other se-
mantic choices being the same, the transition systems, obtained for both clock
and interval timing information, are strongly timed bisimilar.

Proof. Let 
 be the binary relation over Q defined by:
∀(M, en, ν) ∈ Q, ∀(M ′, en′, I) ∈ QI , (M, en, ν) 
S (M ′, en′, I) iff
M = M ′, en = en′, and ∀ti ∈ en, I(ti) = [max(0, ↓ Is(t)− ν(ti)), ↑ Is(t)− ν(ti)].
It is easy to verify that 
 is a strong timed bisimulation. � 

3.3 Conflicting and Newly Enabled Transitions

The notions of conflicting and newly enabled transitions are not dependent of the
characterization of timing information. They mainly depend on the marking M ,
the list en and the memory (intermediate, atomic or persistent atomic semantics)
and disabling choice (FEFD or LEFD) policies.

Conflicting Transitions. Let M be a marking, en its list of enabling instances
ordered appropriately as explained previously, t and t′ two enabled transitions
in M , k > 0 and k′ > 0 their enabling degrees in M .

For the intermediate semantics, an enabling instance of t is in conflict with
some enabling instances of t′ in M iff the enabling degree of t′ is decreased in
the intermediate marking M − Pre(., t) (i.e., M − Pre(., t) �≥ k′ × Pre(., t′)). Let
k′′ be the enabling degree of t′ in the intermediate marking M − Pre(., t). The
firing of an enabling instance of t will disable the k′ − k′′ oldest or youngest
enabling instances of t′, dependently of the discipline LEFD or FEFD used to
manage conflicting transitions. Moreover, the fired instance ti is supposed to be
in conflict with itself (i.e., ti ∈ CF(M, en, ti)).

For the persistent atomic semantics, an enabling instance of t is in conflict
with some enabling instances t′ in M iff the enabling degree of t′ is decreased in
the successor marking of M by t (i.e., M − Pre(., t) +Post(., t) �≥ k′ ×Pre(., t′)).
Let k′′ be the enabling degree of t′ in the successor marking of M by t. The firing
of an enabling instance of t will disable the k′ − k′′ oldest or youngest enabling
instances of t′, dependently of the discipline LEFD or FEFD used to manage
conflicting transitions.

For the atomic semantics, the set CF(M, en, ti) is computed in the same man-
ner as for the persistent atomic semantics, except that ti is supposed to be in
conflict with itself (i.e., ti ∈ CF(M, en, ti)).

Newly Enabled Transitions. Let M be a marking, en its list of enabling
instances ordered appropriately as explained previously, ti an enabling instance
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of transition t in M and M ′ = M − Pre(., t) + Post(., t) the successor marking
of M by any enabling instance of t. The set Nw(M, en, ti) relies to the memory
policy (intermediate, atomic or persistent atomic semantics) used.

For the intermediate semantics, there are new enabling instances of a transi-
tion t′ ∈ T in M ′, if its enabling degree in M ′ is greater than its enabling degree
in the intermediate marking M − Pre(., t). In other words, if a transition t′ is
k-enabled (for some k ≥ 0) in M − Pre(., t) but k′-enabled in M ′ with k′ > k,
then there are k′ − k new enabling instances of t′ in M ′.

For the atomic semantics, the firing of a transition is atomic. So, there are
new enabling instances of a transition t′ ∈ T in M ′, if its enabling degree in
M ′ is greater than its enabling degree in M . In other words, if a transition t′ is
k-enabled (for some k ≥ 0) in M but k′-enabled in M ′ with k′ > k, then there
are k′ − k new enabling instances of t′ in M ′.

For the persistent atomic semantics, the set Nw(M, en, ti) is computed in the
same manner as for the atomic semantics, except that if there are new enabling
instances of the fired transition t in M ′, one of these enabling instances inherits
the timing information of the fired transition.

For the rest of the paper, we fix a TPN N with multiple-server and threshold
semantics. Moreover, we focus on the clock based timing information. Theorem 1
implies that the results shown here are also valid for the interval based timing
information.

Property 1 follows from the definitions of CF and Nw: Note that according to
these definitions, it holds that:

Property 1. Let q = (M, en, ν) be a clock state of N . For any pair (ti, tj) of
enabling instances of the same transition t in en:

1. CF(M, en, ti)− {ti} = CF(M, en, tj)− {tj}
2. Nw(M, en, ti) = Nw(M, en, tj)
3. ti ∈ CF(M, en, ti) iff tj ∈ CF(M, en, tj)

3.4 Multiple-Server Semantics Adds Expressiveness

In the context of threshold semantics, we establish in theorems 2 and 3 that
the multiple-server semantics adds expressiveness relatively to the single-server
policy.

Theorem 2. Every TPN N can be translated into a TPN N ′ s.t. N in the
single-server and threshold semantics is strongly or weakly timed bisimilar to N ′

in the multiple-server and threshold semantics.

Proof. (sketch of the proof) In the single-server and threshold semantics, there
is one clock (one firing interval) per transition, even if it is multi-enabled.

For the intermediate semantics, to achieve the translation, it suffices to add
a place pt for each transition t of N with Pre(pt, t) = Post(pt, t) = 1 and
M0(pt) = 1. Doing so, we eliminate the multi-enabledness of t. Moreover, if t is
again enabled after its firing, it is newly enabled in N ′, because t is not enabled
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in the intermediate marking (pt is empty). Therefore, N ′ under the multiple-
server, threshold and intermediate semantics is strongly timed bisimilar to N
under the single-server, threshold and intermediate semantics.

This translation works also for the persistent atomic semantics, since the
tokens of the added places are present before and after any firing. Therefore, if
a transition t is again enabled after its firing in N , it is also enabled again in N ′

after its firing. Under multiple-server, threshold and persistent atomic semantics,
N ′ is strongly timed bisimilar to N under single-server, threshold and persistent
atomic semantics.

For the atomic semantics, if a transition t is again enabled after its firing,
it is considered as newly enabled. To deal with this case, the translation needs
to add two places ptin and ptout , and a transition tt for each transition t of
N with Pre(ptin , t) = 1,Post(ptout , t) = 1, Pre(ptout , tt) = 1,Post(ptin , tt) = 1,
M0(ptin) = 1, M0(ptout) = 0 and Is(tt) = [0, 0]. If a transition t is again enabled
after its firing in N , its firing in N ′ will empty place ptin , enable transition tt
and then disable t. As there is no delay between firings of t and tt and the unique
role of tt is to allow the enabling of t (i.e., invisible transition), it follows that N
under single-server, threshold and atomic semantics is weakly timed bisimilar to
N ′ under multiple-server, threshold and atomic semantics. � 

p1

a

p2

b

[0, 1] [1, 2]

Fig. 4. Multiple-server threshold semantics with no equivalent single-server semantics

Theorem 3. There is no TPN under single-server and threshold semantics
equivalent to the TPN at Fig. 4 under multiple-server and threshold semantics
(neither w.r.t. timed bisimulation nor w.r.t. timed language acceptance).

Proof. Let na(d) and nb(d) be the numbers of firings of transitions a and b
at date d, respectively. Necessarily, na(d) ≥ nb(d) and at date d, it remains
na(d)−nb(d) occurrences of b in less than 2 time units. For each of these occur-
rences of b, we need a clock to ensure that it occurs in the interval [1, 2], relatively
to the corresponding occurrence of a. Under single-server and threshold seman-
tics, the number of clocks is finite, since we have one clock per transition. Since
na(d)− nb(d) can grow to infinity, the translation into an equivalent TPN under
single-server and threshold semantics should have an infinite number of transi-
tions. This translation is then impossible. � 

4 NDF vs FEFF Firing Choice Policies

Consider a TPN N under multiple-server and threshold semantics. There are
two main firing choice policies: non deterministic (NDF) and FEFF. We com-
pare these two possibilities by supposing that the memory and disabling choice
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policies are the same in both cases. The results are however valid whatever these
choices for memory and disabling policies are, thanks to the parametrization
using CF.

For NDF firing choice, if several enabling instances of the same transition t
are firable from a state q = (M, ν), then all these instances will be fired from q
and the firing of one of them will not disable the others. Since NDF firing choice
includes the FEFF one, we have the following obvious lemma.

Lemma 1. The NDF firing choice strongly timed simulates the FEFF firing
choice.

Proof. Let S1 =< Q1, q0, Σ,→1> and S2 =< Q2, q0, Σ,→2> be the transition
systems of N under multiple-server and threshold semantics for NDF and FEFF
firing choice policies, respectively. Since NDF firing choice includes the FEFF
one, it follows that Q2 ⊆ Q1 and →2⊆→1. Therefore, the NDF firing choice
strongly simulates the FEFF firing choice. � 

However, for the NDF firing choice policy, all enabling instances of the same
transition will be fired in different orders, which may cause a blow-up of the state
space. It would be interesting if we can consider only one firing order without
loosing properties of the model. In this sense, we show in the following that
under FEFF or NDF firing choice semantics, N has the same timed language.
The proof of this claim is based on the strong timed simulation relation over
states Q of N defined in subsection 4.1.

4.1 FEFF Simulates NDF Firing Choice Policy

We first consider a TPN N under multiple-server and threshold semantics with
NDF firing choice policy.

Let 	 be the relation over states Q of the TPN N defined by:
∀(M, en, ν), (M ′, en′, ν′) ∈ Q, (M, en, ν) 	 (M ′, en′, ν′) iff M = M ′, en = en′ and

∀ti ∈ en, ν(ti) = ν′(ti) or ↓ Is(t) ≤ ν′(ti) < ν(ti).

Lemma 2. The relation 	 is a strong timed simulation.

Proof. It suffices to show that:
∀(M, en, ν) ∈ Q, ∀(M ′, en′, ν′) ∈ Q s.t. (M, en, ν) 	 (M ′, en′, ν′),
∀d ∈ R+, ∀tf ∈ en,

(i) (M, en, ν)
d−→ (M, en, ν + d)⇒

((M ′, en′, ν′)
d−→ (M ′, en′, ν′ + d) and (M, en, ν + d) 	 (M ′, en′, ν′ + d))

(ii) ∃(M1, en1, ν1) ∈ Q, (M, en, ν)
tf−→ (M1, en1, ν1)⇒

(∃(M ′
1, en

′
1, ν

′
1) ∈ Q, (M ′, en′, ν′)

tf−→ (M ′
1, en

′
1, ν

′
1) and

(M1, en1, ν1) 	 (M ′
1, en

′
1, ν

′
1))
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Proof of (i): (M, en, ν)
d−→ (M, en, ν + d) iff ∀ti ∈ en, ν(ti) + d ≤↑ Is(t). By

assumption, (M, en, ν) 	 (M ′, en′, ν′), which means that:
(1) M = M ′, en = en′ and

∀ti ∈ en, ν′(ti) = ν(ti) or ↓ Is(t) ≤ ν′(ti) < ν(ti).

Therefore, ∀ti ∈ en, ν′(ti) ≤ ν(ti). It follows that M = M ′, en = en′ and
∀ti ∈ en, ν′(ti) + d ≤ ν(ti) + d ≤↑ Is(t) and then

(M ′, en′, ν′)
d−→ (M ′, en′, ν′ + d).

Moreover, (1) implies that M = M ′, en = en′,

∀ti ∈ en, ν′(ti) + d = ν(ti) + d or ↓ Is(t) ≤↓ Is(t) + d ≤ ν′(ti) + d < ν(ti) + d.

and then (M, en, ν + d) 	 (M ′, en′, ν′ + d).

Proof of (ii): (M, en, ν)
tf−→ (M1, en1, ν1) and (M, en, ν) 	 (M ′, en′, ν′) im-

ply that M = M ′, en = en′ and tf ∈ en, ν(tf ) ≥ ↓ Is(t) and (ν′(tf ) =
ν(tf ) or ↓ Is(t) ≤ ν′(tf ) < ν(tf )). Therefore, tf ∈ en′, ν′(tf ) ≥ ↓ Is(t) and

then ∃(M ′
1, en

′
1, ν

′
1) ∈ Q, (M ′, en′, ν′)

tf−→ (M ′
1, en

′
1, ν

′
1).

Moreover, it holds that M1 = M ′
1, en1 = en′1 and ∀t′i ∈ en1,

if t′i ∈ Nw(M, en, tf ), ν1(t
′i) = 0, ν′

1(t
′i) = 0.

Otherwise, ν1(t
′i) = ν(t′io ), ν′

1(t
′i) = ν′(t′io), t′io being the reference in en to t′i.

Therefore, ∀t′i ∈ en1,

ν1(t
′i) = ν′

1(t
′i) = 0 or ↓ Is(t) ≤ ν′

1(t
′i) = ν′(t′io) < ν(t′io ) = ν1(t

′i).

The relation 	 is then a strong timed simulation over states of the model, what-
ever the intermediate/atomic/persistent atomic semantics. � 

Let us now show that from the same state (M, en, ν), the states reached by firing
two enabling instances of the same transition are s.t. the one reached by the older
enabling instance strongly simulates the other one. It means that applying FEFF
firing choice will preserve the timed traces of (M, en, ν) obtained by NDF firing
choice, whatever the intermediate/atomic/persistent atomic semantics.

Lemma 3. Let (M, en, ν), (Mf , enf , νf ) and (Mg, eng, νg) be three states, t
f and

tg two distinct enabling instances of the same transition t in M s.t.

(M, en, ν)
tf−→ (Mf , enf , νf ), (M, en, ν)

tg−→ (Mg, eng, νg) and ν(tf ) ≥ ν(tg).

Then (Mf , enf , νf ) 	 (Mg, eng, νg).

Proof. Since tf and tg are two enabling instances of the same transition t, it fol-
lows that (see Property 1): Mf = Mg, CF(M, en, tf )−{tf} = CF(M, en, tg)−{tg},
Nw(M, en, tf) = Nw(M, en, tg), and tf ∈ CF(M, en, tf )⇔ tg ∈ CF(M, en, tg).
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The list enf is obtained from en by eliminating enabling instances of
CF(M, en, tf ) and adding enabling instances of Nw(M, en, tf ). Similarly, the list
eng is obtained from en by eliminating instances of CF(M, en, tg) and adding
instances of Nw(M, en, tg). Let us consider two cases: tf /∈ CF(M, en, tf ) (which
may hold for the persistent atomic semantics) and tf ∈ CF(M, en, tf ) (which
always holds for the intermediate and atomic semantics).
1) If tf /∈ CF(M, en, tf ) (i.e., tg /∈ CF(M, en, tg)) then CF(M, en, tf ) =
CF(M, en, tg) and Nw(M, en, tf ) = Nw(M, en, tg). It follows that enf = eng

and νf = νg.
2) If tf ∈ CF(M, en, tf ) (i.e., tg ∈ CF(M, en, tg)) then CF(M, en, tf ) − {tf} =
CF(M, en, tg)− {tg} and Nw(M, en, tf ) = Nw(M, en, tg). It follows that the lists
enf and eng are equal. In addition, both νf and νg are obtained by eliminating
the same set of clocks values, except those of the fired instances. In νf , the clock
value of the fired instance tf is eliminated but the one of tg is kept. Similarly, in
νg, the clock value of the fired instance tg is eliminated but the one of tf is kept.
In lists enf and eng, transitions appears in increasing order and the enabling
instances of the same transition are ordered from the oldest to the newest one.
Let g′ and f ′, with f ′ < g′, be the positions in enf and eng of the enabling
instances tg and tf of en, respectively. The enabling instances between positions
f ′ and g′ are all firable instances of t. Then:

∀t′i ∈ enf , νf (t
′i) =

⎧⎪⎨⎪⎩
νg(t

′i) if i < f ′

νg(t
′i+1) ≤ νg(t

′i) if f ′ ≤ i < g′

νg(t
′i) otherwise

.

As tf and tg are firable from (M, en, ν), it follows that:
∀i ∈ [f ′, g′[, ↓ Is(t) ≤ νf (t

i) ≤ νg(t
i).

Consequently, ∀t′i ∈ enf , νf (t
′i) = νg(t

′i)∨ ↓ Is(t′) ≤ νf (t
′i) ≤ νg(t

′i).
Then: (Mf , enf , νf ) 	 (Mg, eng, νg). � 

We can now state the main result of this section:

Theorem 4. Let N be a TPN under multiple-server and threshold semantics.
The FEFF firing choice policy of N strongly timed simulates the NDF firing
choice policy.

Proof. Let S1 =< Q1, q0, Σ,→1> and S2 =< Q2, q0, Σ,→2> be the transition
systems of N under multiple-server and threshold semantics for NDF and FEFF
firing choice policies, respectively. S1 and S2 have the same initial state q0 =
(M0, en0, , ν0). The FEFF firing choice means that the oldest enabling instance
of the same transition is fired first. From the initial state q0 = (M0, en0, ν0), we
have the following relationships between S1 and S2:
1) ∀d ≥ 0, (M0, en0, ν0)

d→1 (M0, en0, ν0+d)⇔ (M0, en0, ν0)
d→2 (M0, en0, ν0+d).

2) ∀tg ∈ en0, (M0, en0, ν0)
tg→1 (Mg, eng, νg) ⇒

∃tf ∈ en0 s.t. ν(tf ) ≥ ν(tg), (M0, en0, ν0)
tf→2 (Mf , enf , νf ).

Using Lemma 3, we can state that (Mf , enf , νf ) 	 (Mg, eng, νg).
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Inductively and thanks to Lemma 2 and Lemma 3, from any states
(M, en, ν1) ∈ Q1 and (M, en, ν2) ∈ Q2 such that (M, en, ν1) 	 (M, en, ν2), we
have:
1) ∀d ≥ 0, (M, en, ν1)

d→1 (M, en, ν1 + d) ⇒ (M, en, ν2)
d→2 (M, en, ν2 + d).

2) ∀tg ∈ en, (M, en, ν1)
tg→1 (Mg, en, νg) ⇒ ∃tf ∈ en s.t.

ν(tf ) ≥ ν(tg), (M, en, ν2)
tf→2 (Mf , enf , νf ) and (Mf , eng, νf ) 	 (Mg, eng, νg).

Therefore, S2 strongly timed simulates S1. � 

4.2 FEFF vs NDF wrt Timed Language

We can now extend the previous results to timed language acceptance consider-
ation.

Theorem 5. Let N be a TPN under multiple-server and threshold semantics.
The timed language of N is the same for both NDF and FEFF firing choice
policies.

Proof. Let S1 =< Q1, q0, Σ,→1> and S2 =< Q2, q0, Σ,→2> be the transition
systems of N under multiple-server and threshold semantics for NDF and FEFF
choice policies, respectively. Lemma 1 states that S1 strongly timed simulates
S2. Theorem 4 states that S2 strongly timed simulates S1. Therefore, S1 and S2
have the same timed language. � 

4.3 FEFF vs NDF wrt Timed Bisimulation

The previous subsections prove that for the multiple-server and threshold seman-
tics, there is a strong timed co-simulation between the NDF and FEFF firing
choice policies. We will now show that this strong timed co-simulation is not a
timed bisimulation.

P1

a

P2

b

[1, 1] [1, 2]

Fig. 5. A TPN N

Let us consider the TPN N of Fig. 5. Let S1 =< Q1, q0, Σ,→1> and
S2 =< Q2, q0, Σ,→2> be the transition systems of N under multiple-server
and threshold semantics for NDF and FEFF choice policies, respectively.

We consider the following run. At date 1, we fire the transition a and then we
let 1 more time unit elapse. For both firing choice policies, this run is possible and
leads to the same state q3, where there are two tokens in place P2 with different

ages 1 and 2: q0
1→ q1

a→ q2
1→ q3 with →∈ {→1,→2}. From this state, with the

NDF firing choice policy, both enabling instances of b are fired. The firing of the
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instance of b with the youngest token of P2 leads to the state q4 (q3
b→1 q4). To

mime this behavior, from q3, the FEFF choice policy has to fire the transition b

with the oldest token of P2 leading to the state q5 (q3
b→2 q5). Now from state

q5, the FEFF firing choice policy allows to wait 1 time unit (q5
1→2 q6), whereas

the transition b must fire immediately with the NDF firing choice policy from

q4 (q4
b→1 q7). Then, q4 and q5 are not strongly timed bisimilar.

4.4 Discussion

The NDF firing choice policy is the more conservative safety-wise choice and
corresponds in general to the semantics we want to use for model checking or
control purposes. However, since all firable instances may fire in any order, the
number of runs may lead to a state space explosion. To avoid to compute all
runs, the simpler alternative, First Enabled First Fired (FEFF), where only the
oldest instance may fire, leads to a much more compact state-space. We show
with the following example of Fig. 6 how FEFF generates fewer runs than NDF
but preserves all the timed traces of NDF.

a

P2

P1n tokens

b

P3

c

[1, 1] [0, 0]

[0, n− 1]

Fig. 6. A TPN illustrating the interest of the FEFF choice policy

We consider only the runs producing the trace (ab)nω of duration n. Since
the prefix (ab)n takes also n time units, the duration of ω is 0. In all runs, the
only state reachable after this prefix is q1 with a marking with one token in
P1, n tokens in P3 and no token in other places. As a shorthand and since the
markings will now change only in place P3, we can denote the state by the age of
each n tokens enabling c. For q1, the oldest token is c1 = n− 1 and the newest is
cn = 0 and q1 = {c1 = n−1, c2 = n−2, c3 = n−3 . . . , cn = 0}. All the instances
of c are firable from q1 since the timed interval of c is [0, n− 1]. For FEFF, we
obtain one only run by firing c1 then c2 then c3 . . . then cn whereas for NDF
we obtain all the n! combinations of all the instances leading to the same state
qf . We illustrate these runs with n = 3 in Figure 7. All these n! runs of NDF
produce the same trace (ab)n(c)n where ω = (c)n is in null time, which is also
the trace produced by the only run of FEFF.
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q1q0 qf
1 ab 1 ab 1 ab

c1

c2

c3

c2
c1

c3c3

c2

c1

c1

c3

c2

Fig. 7. Runs with NDF

5 Conclusion

In this paper, we first presented and discussed different semantics of multi-
enabledness for time Petri nets. Then, we considered the threshold semantics in
both contexts single-server and multiple-server semantics and investigated some
questions relative to the expressiveness. We showed that multiple-server seman-
tics adds expressiveness, in terms of timed bisimulation, relatively to single-server
semantics.

For the multiple-server semantics, different firing choice policies may be
used to manage the multiple instances of the same transition such as Non-
Deterministic (NDF) choice and First Enabled First Fired (FEFF) choice. In
the NDF firing choice, the firable instances of the same transition are fired in
all possible orders, which may cause a blow-up of the state space. In the FEFF
choice, these instances are fired in only one order: from the oldest ones to the
more recent ones. We proved that both semantics are not bisimilar but actually
simulate each other with strong timed simulations, which in particular implies
that they generate the same timed traces. Consequently, a TPN under NDF or
FEFF policies has the same linear (timed) properties but FEFF leads to more
compact state space. FEFF is then very appropriate to deal with linear timed
properties of time Petri nets.

As immediate perspective, we will investigate the extension of the results
established in this paper, to the case of age-semantics.
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Abstract. In this paper we study the complexity of Hornets, an alge-
braic extension of object nets. We define a restricted class: safe, elemen-
tary Hornets, to guarantee finite state spaces.

We have shown previously that the reachability problem for this class
requires at least exponential space, which is a major increase when com-
pared to safe, elementary object nets, which require polynomial space.

Here, we show how a safe, elementary Hornets can be simulated by a
safe Eos, which establishes an upper bound for the complexity, since we
know that that the reachability problem for safe Eos is PSpace-complete.

Keywords: Hornets, nets-within-nets, object nets, reachability,
safeness.

1 Hornets: Higher-Order Object Nets

In this paper we study the algebraic extension of object nets, called Hornets.
Hornets are a generalisation of object nets [1,2,3], which follow the nets-within-
nets paradigm as proposed by Valk [4,5]. With object nets we study Petri nets
where the tokens are nets again, i.e. we have a nested marking. Events are also
nested. We have three different kinds of events – as illustrated by the following
example:

1. System-autonomous: The system net transition t̂ fires autonomously, which
moves the net-token from p̂1 to p̂2 without changing its marking.

2. Object-autonomous: The object net fires transition t1 “moving” the black
token from q1 to q2. The object net remains at its location p̂1.

3. Synchronisation: Whenever we add matching synchronisation inscriptions at
the system net transition t̂ and the object net transition t1, then both must
fire synchronously: The object net is moved to p̂2 and the black token moves
from q1 to q2 inside. Whenever synchronisation is specified, autonomous
actions are forbidden.

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 150–169, 2013.
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For Hornets we extend object-nets with algebraic concepts that allow to mod-
ify the structure of the net-tokens as a result of a firing transition. This is a
generalisation of the approach of algebraic nets [6], where algebraic data types
replace the anonymous black tokens.

Example 1. We consider a Hornet with two workflow nets N1 and N2 as tokens
– cf. Figure 1. To model a run-time adaption, we combine N1 and N2 resulting
in the net N3 = (N1‖N2). This modification is modelled by transition t of the
Hornets in Fig. 1. In a binding α with x �→ N1 and y �→ N2 the transition
t is enabled. Assume that (x‖y) evaluates to N3 for α. If t fires it removes the
two net-tokens from p and q and generates one new net-token on place r. The
net-token on r has the structure of N3 and its marking is obtained as a transfer
from the token on v in N1 and the token on s in N2 into N3. This transfer is
possible since all the places of N1 and N2 are also places in N3 and tokens can
be transferred in the obvious way.

��
p
���
x

��
q
���
y

t �(x‖y) �r
�

���

	
		


N1 �i1� a � �u� b � �� v� c � �f1

N2 �i2� d � �� s� e � �f2

N3

net-token produced on r by t

�i3� ���

�

�

���
� �f3

�i1� a� �u� b� �� v� c� �f1

�i2 � d � �s� � e � �f2

Fig. 1. Modification of the net-token’s structure

The use of algebraic operations in Hornets relates them to algebraic higher-
order (AHO) systems [7], which are restricted to two-levelled systems but have a
greater flexibility for the operations on net-tokens, since each net transformation
is allowed. There is also a relationship to Nested Nets [8], which are used for
adaptive systems.

It is not hard to prove that the general Hornet formalism is Turing-complete.
In [9] we have proven that there are several possibilities to simulate counter
programs: One could use the nesting to encode counters. Another possibility is
to encode counters in the algebraic structure of the net operators.

In this paper we like to study the complexity that arises due the algebraic
structure. Here, we restrict Hornets to guarantee that the system has a finite
state space. First, we allow at most one token on each place, which results in the
class of safe Hornets. However this restriction does not guarantee finite state
spaces, since we have the nesting depth as a second source of undecidability [3].
Second, we restrict the universe of object nets to finite sets. Finally, we restrict
the nesting depth and introduce the class of elementary Hornets, which have
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a two-levelled nesting structure. This is done in analogy to the class of elemtary
object net systems (Eos) [2], which are the two-level specialisation of general
object nets [2,3].

If we rule out these sources of complexity the main origin of complexity is
the use of algebraic transformations, which are still allowed for safe, elementary
Hornets. As a result we obtain the class of safe, elementary Hornets – in
analogy to the class of safe Eos [10].

We have shown in [10,11] that most problems for safe Eos are PSpace-
complete. More precisely: All problems that are expressible in LTL or CTL,
which includes reachability and liveness, are PSpace-complete. This means that
with respect to these problems safe Eos are no more complex than p/t nets.

In a previous publication [12] we have shown that safe, elementary Hornets
are beyond PSpace. We have shown a lower bound, i.e. that “the reachability
problem requires exponential space” for safe, elementary Hornets – similarily
to well known result of for bounded p/t nets [13]. Here we establish an upper
bound for the reachability problem giving a reduction from the problem for safe,
elementary Hornets to the reachability problem for safe Eos. It turns out that
reachability can be solved with double-exponential space.

The paper has the following structure: Section 2 defines Elementary Hor-
nets. Section 3 investigates a special sub-class of elementary Hornets, namely
Eos-like elementary Hornets which are shown to be equivalent to the well-
known Elementary Object Systems, Eos. Section 4 presents the simulation of
Elementary Hornets by an Eos. Since the reachability problem is known to be
undecidable even for Eos, we restrict elementary Hornets to safe ones. In Sec-
tion 5 we show that safe, elementary Hornets have finite state spaces and that
the Eos that simulates an safe, elementary Hornets is safe, too. Since we know
the complexity for safe Eos we can analyse the complexity of the reachability
problem for safe, elementary Hornets by studying the size of the simulating
Eos. The work ends with a conclusion.

2 Definition of Elementary Hornets

A multiset m on the set D is a mapping m : D → N. Multisets can also be
represented as a formal sum in the form m =

∑n
i=1 xi, where xi ∈ D.

Multiset addition is defined component-wise: (m1+m2)(d) := m1(d)+m2(d).
The empty multiset 0 is defined as 0(d) = 0 for all d ∈ D. Multiset-difference
m1 −m2 is defined by (m1 −m2)(d) := max(m1(d)−m2(d), 0).

The cardinality of a multiset is |m| :=
∑

d∈D m(d). A multiset m is finite if
|m| < ∞. The set of all finite multisets over the set D is denoted MS (D).

Multiset notations are used for sets as well. The meaning will be apparent
from its use.

Any mapping f : D → D′ extends to a multiset-homomorphism f � : MS (D)→
MS (D′) by f � (

∑n
i=1 xi) =

∑n
i=1 f(xi).

A p/t net N is a tuple N = (P, T,pre,post), such that P is a set of places,
T is a set of transitions, with P ∩ T = ∅, and pre,post : T → MS (P ) are
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the pre- and post-condition functions. A marking of N is a multiset of places:
m ∈ MS (P ). We denote the enabling of t in marking m by m

t−→. Firing of t is
denoted by m

t−→m′.

2.1 Elementary Hornets

Net-Algebras. We define the algebraic structure of object nets. For a general
introduction of algebraic specifications cf. [14].

Let K be a set of net-types (kinds). A (many-sorted) specification (Σ,X,E)
consists of a signature Σ, a family of variables X = (Xk)k∈K , and a family of
axioms E = (Ek)k∈K .

A signature is a disjoint family Σ = (Σk1···kn,k)k1,··· ,kn,k∈K of operators. The
set of terms of type k over a signature Σ and variables X is denoted Tk

Σ(X).
We use (many-sorted) predicate logic, where the terms are generated by a

signature Σ and formulae are defined by a family of predicates Ψ = (Ψn)n∈N.
The set of formulae is denoted PLΓ , where Γ = (Σ,X,E, Ψ) is the logic structure.

Let Σ be a signature over K. A net-algebra assigns to each type k ∈ K
a set Uk of object nets. Each object N ∈ Uk, k ∈ K net is a p/t net N =
(PN , TN ,preN ,postN ). We identify U with

⋃
k∈K Uk in the following. We as-

sume the family U = (Uk)k∈K to be disjoint.
The nodes of the object nets in Uk are not disjoint, since the firing rule allows

to transfer tokens between net tokens within the same set Uk. Such a transfer
is possible, if we assume that all nets N ∈ Uk have the same set of places Pk.
Pk is the place universe for all object nets of kind k. In the example of Fig. 1
the object nets N1, N2, and N3 must belong to the same type since otherwise
it would be impossible to transfer the markings in N1 and N2 to the generated
N3.

In general, Pk is not finite. Since we like each object net to be finite in some
sense, we require that the transitions TN of each N ∈ Uk use only a finite subset
of Pk, i.e. ∀N ∈ U : |•TN ∪ TN

•| < ∞.
The family of object nets U is the universe of the algebra. A net-algebra (U , I)

assigns to each constant σ ∈ Σλ,k an object net σI ∈ Uk and to each operator
σ ∈ Σk1···kn,k with n > 0 a mapping σI : (Uk1 × · · · × Ukn)→ Uk.

A net-algebra is called finite if Pk is a finite set for each k ∈ K.
A variable assignment α = (αk : Xk → Uk)k∈K maps each variable onto an

element of the algebra. For a variable assignment α the evaluation of a term
t ∈ Tk

Σ(X) is uniquely defined and will be denoted as α(t).
A net-algebra, such that all axioms of (Σ,X,E) are valid, is called net-theory.

Nested Markings. A marking of an elementary Hornet assigns to each system
net place one or many net-tokens. The places of the system net are typed by the
function k : P̂ → K, meaning that a place p̂ contains net-tokens of kind k(p̂).
Since the net-tokens are instances of object nets, a marking is a nested multiset
of the form:
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μ =

n∑
i=1

p̂i[Ni,Mi] where p̂i ∈ P̂ , Ni ∈ Uk(p̂i),Mi ∈ MS (PNi), n ∈ N

Each addend p̂i[Ni,Mi] denotes a net-token on the place p̂i that has the structure
of the object net Ni and the marking Mi ∈ MS (PNi). The set of all nested
multisets is denoted as MH . We define the partial order � on nested multisets
by setting μ1 � μ2 iff ∃μ : μ2 = μ1 + μ.

The projection Π1,H
N (μ) is the multiset of all system-net places that contain

the object-net N :1

Π1,H
N

(∑n

i=1
p̂i[Ni,Mi]

)
:=

∑n

i=1
1N (Ni) · p̂i (1)

where the indicator function 1N is defined as: 1N (Ni) = 1 iff Ni = N .
The projection Π2,H

U (μ) is the multiset of all object nets in the marking:

Π2,H
U

(∑n

i=1
p̂i[Ni,Mi]

)
:=

∑n

i=1
Ni (2)

Analogously, the projection Π2,H
N (μ) is the multiset of all net-tokens’ markings

(that belong to the object-net N):

Π2,H
N

(∑n

i=1
p̂i[Ni,Mi]

)
:=

∑n

i=1
1k(Ni) ·Mi (3)

The projection Π2,H
k (μ) is the sum of all net-tokens’ markings belonging to the

same type k ∈ K:
Π2,H

k (μ) :=
∑

N∈Uk

Π2,H
N (μ) (4)

Synchronisation. The transitions in an Hornet are labelled with synchronisa-
tion inscriptions. We assume a fixed set of channels C = (Ck)k∈K .

– The function family l̂α = (l̂kα)k∈K defines the synchronisation constraints.
Each transition of the system net is labelled with a multiset l̂k(t̂) = (e1, c1)+
· · · + (en, cn), where the expression ei ∈ Tk

Σ(X) describes the called object
net and ci ∈ Ck is a channel. The intention is that t̂ fires synchronously with
a multiset of object net transitions with the same multiset of labels. Each
variable assignment α generates the function l̂kα(t̂) defined as:

l̂kα(t̂)(N) :=
∑

1≤i≤n
α(ei)=N

ci for l̂k(t̂) =
∑

1≤i≤n
(ei, ci) (5)

Each function l̂kα(t̂) assigns to each object net N a multiset of channels.
– For each N ∈ Uk the function lN assigns to each transition t ∈ TN either

a channel c ∈ Ck or ⊥k, whenever t fires without synchronisation, i.e. au-
tonously.

1 The superscript H indicates that the function is used for Hornets.
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System Net. Assume we have a fixed logic Γ = (Σ,X,E, Ψ) and a net-theory
(U , I). An elementary higher-order object net (Hornet) is composed of a system
net N̂ and the set of object nets U . W.l.o.g. we assume N̂ �∈ U . To guarantee
finite algebras for elementary Hornets, we require that the net-theory (U , I)
is finite, i.e. each place universe Pk is finite.

The system net is a net N̂ = (P̂ , T̂ ,pre,post, Ĝ), where each arc is labelled
with a multiset of terms: pre,post : T̂ → (P̂ → MS (TΣ(X))). Each transition
is labelled by a guard predicate Ĝ : T̂ → PLΓ . The places of the system net are
typed by the function k : P̂ → K. As a typing constraint we have that each arc
inscription has to be a multiset of terms that are all of the kind that is assigned
to the arc’s place:

pre(t̂)(p̂), post(t̂)(p̂) ∈ MS (Tk(p̂)
Σ (X)) (6)

For each variable binding α we obtain the evaluated functions preα,postα :

T̂ → (P̂ → MS (U)) in the obvious way.

Definition 1 (Elementary Hornet). Assume a fixed many-sorted predi-
cate logic Γ = (Σ,X,E, Ψ). An elementary Hornet is a tuple EH =

(N̂ ,U , I, k , l, μ0) such that:

1. N̂ is an algebraic net, called the system net.
2. (U , I) is a finite net-theory for the logic Γ .
3. k : P̂ → K is the typing of the system net places.
4. l = (l̂, lN)N∈U is the labelling.
5. μ0 ∈ MH is the initial marking.

2.2 Events and Firing Rule

The synchronisation labelling generates the set of system events Θ:
The labelling introduces three cases of events:

1. Synchronised firing: There is at least one object net that has to be synchro-
nised, i.e. there is a N such that l̂(t̂)(N) is not empty.

Such an event is a pair θ = t̂α[ϑ], where t̂ is a system net transition, α
is a variable binding, and ϑ is a function that maps each object net to a
multiset of its transitions, i.e. ϑ ∈ MS (TN ). It is required that t̂ and ϑ(N)

have matching multisets of labels, i.e. l̂(t̂)(N) = l�N (ϑ(N)) for all N ∈ U .
(Remeber that l�N denotes the multiset extension of lN .)

The intended meaning is that t̂ fires synchronously with all the object
net transitions ϑ(N), N ∈ U .

2. System-autonomous firing: The transition t̂ of the system net fires
autonomously, whenever l̂(t̂) is the empty multiset 0.

We consider system-autonomous firing as a special case of synchronised
firing generated by the function ϑid , defined as ϑid (N) = 0 for all N ∈ U .
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3. Object-autonomous firing: An object net transition t in N fires autonomously,
whenever lN(t) = ⊥k.

Object-autonomous events are denoted as id p̂,N [ϑt], where ϑt(N
′) = {t}

if N = N ′ and 0 otherwise. The meaning is that in object net N fires t
autonomously within the place p̂.

For the sake of uniformity we define for an arbitrary binding α:

preα(id p̂,N )(p̂′)(N ′) = postα(id p̂,N)(p̂′)(N ′) =

{
1 if p̂′ = p̂ ∧N ′ = N

0 otherwise.

The set of all events generated by the labelling l is Θl := Θ1 ∪ Θ2, where Θ1

contains synchronous events (including system-autonomous events as a special
case) and Θ2 contains the object-autonomous events:

Θ1 :=
{
τ̂α[ϑ] | ∀N ∈ U : l̂α(t̂)(N) = l�N (ϑ(N))

}
Θ2 :=

{
id p̂,N [ϑt] | p̂ ∈ P̂ , N ∈ Uk(p̂), t ∈ TN

} (7)

Firing Rule. A system event θ = τ̂α[ϑ] removes net-tokens together with their
individual internal markings. Firing the event replaces a nested multiset λ ∈MH

that is part of the current marking μ, i.e. λ � μ, by the nested multiset ρ. The
enabling condition is expressed by the enabling predicate φEH (or just φ whenever
EH is clear from the context):

φEH (τ̂α[ϑ], λ, ρ) ⇐⇒ ∀k ∈ K :

∀p̂ ∈ k−1(k) : ∀N ∈ Uk : Π1,H
N (λ)(p̂) = preα(τ̂ )(p̂)(N) ∧

∀p̂ ∈ k−1(k) : ∀N ∈ Uk : Π1,H
N (ρ)(p̂) = postα(τ̂ )(p̂)(N) ∧

Π2,H
k (λ) ≥

∑
N∈Uk

pre�N (ϑ(N)) ∧
Π2,H

k (ρ) = Π2,H
k (λ) +

∑
N∈Uk

post�N (ϑ(N))− pre�N (ϑ(N))

(8)

The predicate φEH has the following meaning: Conjunct (1) states that the
removed sub-marking λ contains on p̂ the right number of net-tokens, that are
removed by τ̂ . Conjunct (2) states that generated sub-marking ρ contains on p̂
the right number of net-tokens, that are generated by τ̂ . Conjunct (3) states that
the sub-marking λ enables all synchronised transitions ϑ(N) in the object N .
Conjunct (4) states that the marking of each object net N is changed according
to the firing of the synchronised transitions ϑ(N).

Note, that conjunct (1) and (2) assures that only net-tokens relevant for the
firing are included in λ and ρ. Conditions (3) and (4) allow for additonal tokens
in the net-tokens.

For system-autonomous events t̂α[ϑid ] the enabling predicate φEH can be
simplified further: Conjunct (3) is always true since preN (ϑid (N)) = 0. Conjunct
(4) simplifies to Π2,H

k (ρ) = Π2,H
k (λ), which means that no token of the object

nets get lost when a system-autonomous events fires.
Analogously, for an object-autonomous event τ̂ [ϑt] we have an idle-transition

τ̂ = id p̂,N and ϑ = ϑt for some t. Conjunct (1) and (2) simplify to Π1,H
N ′ (λ) =
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p̂ = Π1,H
N ′ (ρ) for N ′ = N and to Π1,H

N ′ (λ) = 0 = Π1,H
N ′ (ρ) otherwise. This means

that λ = p̂[M ], M enables t, and ρ = p̂[M − preN (t̂) + postN (t̂)].

Definition 2 (Firing Rule). Let EH be an elementary Hornet and μ, μ′ ∈
MH markings.

– The event τ̂α[ϑ] is enabled in μ for the mode (λ, ρ) ∈ M2
H iff λ � μ ∧

φEH (τ̂ [ϑ], λ, ρ) holds and the guard Ĝ(t̂) holds, i.e. E |=α
I Ĝ(τ̂ ).

– An event τ̂α[ϑ] that is enabled in μ can fire – denoted μ
τ̂α[ϑ](λ,ρ)−−−−−−→

EH
μ′.

– The resulting successor marking is defined as μ′ = μ− λ+ ρ.

Note, that the firing rule has no a-priori decision how to distribute the marking
on the generated net-tokens. Therefore we need the mode (λ, ρ) to formulate the
firing of τ̂α[ϑ] in a functional way.

2.3 Unfolding of Elementary Hornets

Since all nets N ∈ Uk have the same set of places Pk, which is finite for elementary
Hornets, there is an upper bound for the cardinality of Uk.

Lemma 1. For each k ∈ K we have |Uk| ≤ 2(2
4|Pk|).

Proof. Note, that each common set of places Pk is finite for elementary Hor-
nets. Each possible transition t chooses a subset of Pk for the preset •t and
another subset for the postset t•. We identify t with the pair (•t, t•). A tran-
sition is an element from Tk := P(Pk) × P(Pk). We have |Tk| = 2|Pk| · 2|Pk| =
(2|Pk|)2 = 22|Pk| different transitions.

To each transition t ∈ TN , N ∈ Uk the partial function lN assigns either a
channel c ∈ Ck or ⊥k.

The set of labelled transitions is LTk := Tk × (Ck ∪ {⊥k})) and we have
|LTk| = |Tk × (Ck ∪ {⊥k})| = 22|Pk| · (|Ck|+ 1) different labelled transitions.

We cannot use more channels than we have transitions in the object net, i.e.
we could use at most |Tk| ≤ 22|Pk| different channels from Ck ∪ {⊥k}. Thus, we
have:

|LTk| = 22|Pk| · (|Ck|+ 1) ≤ 22|Pk| · 22|Pk| ≤ 24|Pk|

Since each object net N in Uk is characterised by its set of labelled transitions and
there are |P(LTk)| = 2|LTk| subsets of LTk, we have at most 2(2

4|Pk|) different
object nets. qed.

In the following we identify an object net with a subset of LTk.
An elementary Hornet is called grounded whenever all arc inscriptions

pre(t̂)(p̂) and post(t̂)(p̂) as well as the synchronisation family l̂α = (l̂kα)k∈K

are grounded terms, i.e. they do not contain variables.
For an elementary Hornet EH we can replace each system net transition t̂

by a family of transitions which is obtained by pairing t̂ with a variable binding
α. The constructing is very similar to the well known construction for coloured
Petri nets. Note, that the set of variable bindings is finite, since due to Lemma 1
there are only finitely many assignments for each variable.
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Proposition 1. Each elementary Hornet EH can be bisimulated by a grounded
Hornet G(EH ).

Proof. We first observe, that each system net transition t̂ has only a finite set
of different variable bindings, since there are only finitely many values in Uk for
each variable.

For each variable binding α we generate one copy of the system net transition
t̂α. We replace each arc inscription and each channel label by the evaluation of
the original inscription.

Obviously, the resulting Hornet G(EH ) is grounded and has the same be-
haviour as the original one. qed.

3 Sub-classes of Elementary Hornets

In the following we will show that the formalism of elementary object systems
(Eos) of [2] is a special sub-class of Elementary Hornets.

We first recall the definition (Eos) and then characterise the sub-class of
Eos-like Hornets.

3.1 Elementary Object Systems, Eos

An elementary object system (Eos) is composed of a system net, which is a p/t
net N̂ = (P̂ , T̂ ,pre,post) and a set of object nets N = {N1, . . . , Nn}, which
are p/t nets given as N = (PN , TN ,preN ,postN), where N ∈ N . In extension
we assume that all sets of nodes (places and transitions) are pairwise disjoint.
Moreover we assume N̂ �∈ N and the existence of the object net • ∈ N , which
has no places and no transitions and is used to model anonymous, so called black
tokens.

The system net places are typed by the mapping d : P̂ → N with the meaning,
that a place p̂ ∈ P̂ of the system net with d(p̂) = N may contain only net-tokens
of the object net type N .

Nested Markings. Since the tokens of an Eos are instances of object nets, a
marking of an Eos is a nested multiset. A marking of an Eos OS is denoted
μ =

∑|μ|
k=1(p̂k,Mk), where p̂k is a place of the system net and Mk is the marking

of a net-token with type d(p̂k). To emphasise the nesting, markings are also
denoted as μ =

∑|μ|
k=1 p̂k[Mk]. Markings of the form p̂[0] with d(p̂) = • are

abbreviated as p̂[].2
The set of all markings which are syntactically consistent with the typing d

is denoted M, where d−1(N) ⊆ P̂ is the set of system net places of the type N :

M := MS
(⋃

N∈N

(
d−1(N)×MS (PN )

))
(9)

2 For Eos the net structure of a net-token is uniquely determined by the place. So,
we do not include the object net Ni in μ for Eos.
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We define the partial order � on nested multisets by setting μ1 � μ2 iff ∃μ :
μ2 = μ1 + μ.

Analogously to Hornets, the events of an Eos are also nested and we have
three different kinds of events system-autonomous, object-autonomous, and syn-
chronisation events.

Each system net transition t̂ is labelled with a multiset of channels: l̂(t̂)(N) =
ch1+ · · ·+ chn ∈ MS (

⋃
N∈N CN ), depicted as 〈N :ch1, N :ch2, . . .〉. Similarily, an

object net transition t may be labelled with a channel lN (t) ∈ CN or with ⊥,
whenever t fires autonomously.

Definition 3 (EOS). An elementary object system (Eos) is a tuple OS =

(N̂ ,N , d, Θ, μ0), where:

1. N̂ is a p/t net, called the system net.
2. N is a finite set of disjoint p/t nets, called object nets.
3. d : P̂ → N is the typing of the system net places.
4. l = (l̂, lN)N∈N is the synchronisation labelling.
5. μ0 ∈ M is the initial marking.

The set of all events generated as in (7) as Θl := Θ1 ∪ Θ2, where Θ1 contains
the synchronisation events and – as a special sub-case – the system-autonomous
events, while Θ2 contains the object-autonomous events. The only difference is
that evcent do not have variable bindings α, since there are no variables in the
inscriptions, i.e. we have events in the form t̂[ϑ] instead of t̂α[ϑ].

3.2 Firing Rule

The projection Π1 on the first component abstracts from the substructure of all
net-tokens for a marking of an Eos:

Π1
(∑n

k=1
p̂k[Mk]

)
:=

∑n

k=1
p̂k (10)

The projection Π2
N on the second component is the sum of all net-tokens’ mark-

ings Mk of the type N ∈ N , ignoring their local distribution within the system
net:

Π2
N

(∑n

k=1
p̂k[Mk]

)
:=

∑n

k=1
1N (p̂k) ·Mk (11)

where the indicator function 1N : P̂ → {0, 1} is 1N(p̂) = 1 iff d(p̂) = N . Note
that Π2

N (μ) results in a marking of the object net N .
A system event τ̂ [ϑ] removes net-tokens together with their individual internal

markings. Firing the event replaces a nested multiset λ ∈M that is part of the
current marking μ, i.e. λ � μ, by the nested multiset ρ. Therefore the successor
marking is μ′ := (μ−λ)+ρ. The enabling condition is expressed by the enabling
predicate φOS (or just φ whenever OS is clear from the context):

φOS (τ̂ [ϑ], λ, ρ) ⇐⇒ Π1(λ) = pre(τ̂ ) ∧Π1(ρ) = post(τ̂ ) ∧
∀N ∈ N : Π2

N (λ) ≥ preN (ϑ(N)) ∧
∀N ∈ N : Π2

N (ρ) = Π2
N (λ)− pre�N (ϑ(N)) + post�N (ϑ(N))

(12)
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With M̂ := Π1(λ) and M̂ ′ := Π1(ρ) as well as MN := Π2
N (λ) and M ′

N := Π2
N (ρ)

for all N ∈ N the predicate φOS has the following meaning:

1. The first conjunct expresses that the system net multiset M̂ corresponds to
the pre-condition of the system net transition τ̂ , i.e. M̂ = pre(τ̂ ).

2. In turn, a multiset M̂ ′ is produced, that corresponds to the post-set of τ̂ .
3. A multi-set ϑ(N) of object net transitions is enabled if the sum MN of the

net-tokens’ markings (of type N) enable it, i.e. MN ≥ preN (ϑ(N)).
4. The firing of τ̂ [ϑ] must also obey the object marking distribution condi-

tion: M ′
N = MN − preN (ϑ(N)) + postN (ϑ(N)), where postN (ϑ(N)) −

preN (ϑ(N)) is the effect of the object net’s transitions on the net-tokens.

Note that conditions 1. and 2. assure that only net-tokens relevant for the firing
are included in λ and ρ. Conditions 3. and 4. allow for additional tokens in the
net-tokens.

Definition 4 (Firing Rule). Let OS be an Eos and μ, μ′ ∈ M markings. The
event τ̂ [ϑ] is enabled in μ for the mode (λ, ρ) ∈ M2 iff λ � μ ∧ φOS (τ̂ [ϑ], λ, ρ)
holds.

An event τ̂ [ϑ] that is enabled in μ for the mode (λ, ρ) can fire: μ
τ̂ [ϑ](λ,ρ)−−−−−→

OS
μ′.

The resulting successor marking is defined as μ′ = μ− λ + ρ.

3.3 Eos-Like Elementary Hornets

A special case arises whenever |Uk| = 1 for all k ∈ K, i.e. we have exactly one
object net Nk for each kind k. We can drop all arc insciptions, since they are
completely determined by the incident place. In this case no real transformation
is possible since all expression evaluate to this special object net Nk.

Since this is exactly the behaviour that is defined by an Eos, we call an
elementary Hornet with this property Eos-like.

For Eos-like Hornets we have that the object net Ni in a net-token p̂i[Ni,Mi]
is uniquely determined by the type k = d(p̂i) of the system net place p̂i as
Ni = Nk. This object-net is denoted N(k).

To translate the notation from Hornets to Eos, we drop the object net
in the notation of net-tokens (which can be done without loss of information
for Eos-like Hornets) and write p̂i[Mi] instead of p̂i[Ni,Mi]. Formally: π is the
opration that “forgets” the object net Ni:

π ([Ni,Mi]) := [Mi] (13)

This notation extends to marked places p̂i[Mi] and multisets of marked places.
Analously, π forgets the variable assignment for events, i.e. we have:

π
(
t̂α[ϑ]

)
:= t̂[ϑ] (14)

Note, that for Eos-like Hornets the mapping π has a unique inverse π−1.
Each Eos is a special Eos-like Hornet.
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Proposition 2. For a given Eos OS we construct an Eos-like elementary
Hornet EH (OS) with the property:

π(μ)
π(w)−−−→
OS

π(μ′) ⇐⇒ μ
w−−−−−→

EH (OS)
μ′

Proof. Assume a given Eos: OS = (N̂ ,N , d, Θ, μ0). We construct the corre-
sponding elementary Hornet tuple EH (OS ) = (N̂EH ,U , I, kEH , lEH , μEH) as
follows.

– We use the set of object nets as kinds: K := {kN | N ∈ N} and define
UkN := {N}.

– We set the typing of the Hornet to kEH(p̂) := kd(p̂).
– Each arc from and to a system-net place p̂ is inscibed with the variable xk

of kind k = kEH(p̂). with the multiplicity as given in the Eos:
preEH(t̂)(p̂) := (pre(t̂)(p̂) · xkEH(p̂))

– The the guard predicate Ĝ(t̂) is true.
– Assume that the system net transition t̂) is labelled l̂(t̂) =

∑n
i=1 chi.

We define the Hornet labelling as l̂kEH(t̂) =
∑n

i=1(xk(ci), ci) where k(c) =
k ⇐⇒ c ∈ Ck.

– The EOS marking μ0 =
∑n

i=1 p̂i[Mi] translates to: μEH =
∑n

i=1 p̂i[Ni,Mi]
for Ni := d(p̂i).

Obviously, the resulting Hornet is Eos-like.
Next, we show the equivalences for the enabling predicates φEH and φOS in

(8) and (12):

– Note, that for a Eos-like Hornet we have |Uk| = 1 and therefore we have
for the first conjunct:

∀k ∈ K : ∀p̂ ∈ k−1(k) : ∀N ∈ Uk : Π1,H
N (λ)(p̂) = preα(τ̂)(p̂)(N)

⇐⇒ ∀k ∈ K : ∀p̂ ∈ k−1(k) : Π1,H
N (λ)(p̂) = preα(τ̂)(p̂)(N(k))

⇐⇒ ∀k ∈ K : ∀p̂ ∈ k−1(k) : Π1
N(k)(π(λ))(p̂) = preOS(τ̂ )(p̂)

⇐⇒ ∀k ∈ K : Π1
N(k)(π(λ)) = preOS(τ̂ )|k−1(k)

⇐⇒
∑

k∈K Π1
N(π(λ)) =

∑
k∈K preOS(τ̂ )|k−1(k)

⇐⇒ Π1(π(λ)) = preOS(τ̂ )

Analogously for the postset (second conjunct).
– Additionally, we have at the level of object-nets:

Π2,H
k (μ) =

∑
N∈Uk

Π2,H
N (μ) = Π2,H

N(k)(μ) = Π2
N(k)(π(μ))

This implies the equivalence for the third and fourth conjunct:

Π2,H
k (λ) ≥

∑
N∈Uk

pre�N (ϑ(N)) ⇐⇒ Π2
N(k)(π(λ)) ≥ preOS(ϑ(N(k)))
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– For the fourth conjunct we obtain:

Π2,H
k (ρ) = Π2,H

k (λ) +
∑

N∈Uk
post�N (ϑ(N)) − pre�N (ϑ(N))

⇐⇒ Π2,H
k (ρ) = Π2,H

k (λ) + post�N(k)(ϑ(N(k))) − pre�N(k)(ϑ(N(k)))

⇐⇒ Π2
N (π(ρ)) = Π2

N (π(λ)) − pre�OS(ϑ(N(k))) + post�OS(ϑ(N(k)))

This established the equivalence for the enabling predicates:

φEH (τ̂α[ϑ], λ, ρ) ⇐⇒ φOS (π(τ̂ [ϑ]), π(λ), π(ρ))

Since the mapping π has a unique inverse π−1 for Eos-like Hornets we obtain:

φOS (τ̂ [ϑ]), λ, ρ) ⇐⇒ φEH (π−1(τ̂ [ϑ]), π−1(λ), π−1(ρ))

Since λ � μ ⇐⇒ π−1(λ) � π−1(μ) and G(t̂) holds, we have shown that the
behaviour is isomorphic. qed.

Conversely, Eos-like Hornets create that sub-class that mimics Eos. Each
Eos-like Hornet is a special Eos.

Proposition 3. For a given Eos-like Hornet EH we construct an Eos
OS(EH ) with the property:

μ
w−−→
EH

μ′ ⇐⇒ π(μ)
π(w)−−−−−→

OS(EH)
π(μ′)

Proof. Assume that the Eos-like Hornet EH = (N̂ ,U , I, k , l, μ0) is given. We
know that Uk = {N(k)} for each k ∈ K.

The Eos OS(EH ) = (N̂OS ,NOS , dOS , lOS , μOS) that simulates EH is con-
structed the following way:

– The set of object nets NOS := {N(k) | k ∈ K}.
– We set the typing of the Eos to dOS(p̂) := N(k(p̂)).
– In the system net we adapt the arc inscriptions. Whenever the Hornet’s

system net transition t̂ removes preα(t̂)(p̂)(N) net-tokens of shape N , the
Eos removes the same number of net-tokens.
For a fixed variable assignment α we define:

preOS(t̂)(p̂) := preα(t̂)(p̂)(N(k))

Analogously for the postset.
This notion is well-defined, since there is only “one” variable binding, i.e.

the one that maps all variables in Xk to the unique object net Nk.
– Analogously for the synchronisation labels. For l̂k(t̂) =

∑n
i=1(ei, ci) in the

Hornet we define l̂OS(t̂)(N) =
∑n

i=1 ci in the Eos.
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– We can assume that the the guard predicate Ĝ(t̂) is true for all bindings, since
Ĝ(t̂) is false for some binding it is false for all bindings and the transition
could be deleted.

– The Eos marking is μOS = π(μ0).

Analogously to the previous proposition, we obtain for the enabling predicates:
φEH (τ̂α[ϑ], λ, ρ) ⇐⇒ φOS (π(τ̂ [ϑ]), π(λ), π(ρ)).

Since λ � μ ⇐⇒ π(λ) � π(μ) and G(t̂) always holds, we have shown that
the behaviour is isomorphic. qed.

4 Eos-Simulation of Elementary Hornets

In the following we show that each elementary Hornet can be simulated by
an Eos-like Hornet (or as we have seen before: by an Eos), i.e. elementary
Hornet are a conservative extension of Eos:

Theorem 1. For each elementary Hornet EH there exists an Eos OS (EH )
with the property:

μ
∗−−→

EH
μ′ ⇐⇒ μ

∗−−−−−→
OS(EH)

μ′

Proof. W.l.o.g. we can assume that the Hornet EH is grounded. The Eos

OS(EH ) = (N̂OS ,NOS , dOS , lOS , μOS )

that simulates EH is defined as follows:

– We simulate all the object nets in Uk by one single object net NOS,k

(cf. Fig. 2). This single object net NOS,k contains all the object net places
Pk and the disjoint union of all transitions TOS,k :=

⊎
N∈Uk

TN , which is a
finite set.

Additionally, we have one place runN for each object net N ∈ Uk. We add
the place runN as the side condition to a transition t iff t ∈ TN and t fires
object-autonomous, i.e. lN (t) = ⊥k. The intuitive meaning is that NOS,k

represents N iff runN is marked. The simulation will guaratee that no two
run places are marked simultaneously.

For each place runN we have a transition with the label enableN to add a
token on it and another transition with the label disableN to remove a token
from it. The set of all object nets is then NOS = {NOS,k | k ∈ K}.

For each net-token [N,M ] the corresponding Eos-marking is defined as:

[N,M ] := [M + runN ] (15)

– Each system net transition t̂ is replaced by a subnet (cf. Figure 3). Each
subnet has the places {q̂p̂,Ni , beginp̂,Ni , r̂p̂,Nj , endp̂,Nj | k ∈ K, p̂ ∈ P̂k, N ∈
Uk, 1 ≤ i ≤ |preα(t̂)(p̂)(N)|, 1 ≤ j ≤ |postα(t̂)(p̂′)(N)|}.

We have the transitions {start, finish} ∪ {t̂N | k ∈ K,N ∈ Uk} ∪
{offp̂,N

i , onp̂,Nj | k ∈ K, p̂ ∈ P̂kN ∈ Uk, 1 ≤ i ≤ |preα(t̂)(p̂)(N)|, 1 ≤ j ≤
|postα(t̂)(p̂′)(N)|}. The flow relation is sketched in Figure 3.
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Fig. 2. Eos simulation of Hornets: The Object Net NOS,k

Fig. 3. Eos simulation of Hornets: The Translation of t̂ in the System Net N̂OS

– The type is dOS(p̂) = NOS,k(p̂).
– The labelling is given as described above.
– A Hornet marking μ =

∑n
i=1 p̂i[Ni,Mi] translates to μ:

μ := r̂un +

n∑
i=1

p̂[Ni,Mi] (16)

The initial marking is μOS = μ0
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We now show the simulation μ
∗−−→

EH
μ′ ⇐⇒ μ

∗−−−−−→
OS(EH )

μ′.

This holds initially, since the initial marking is μOS = μ0.
It also holds for each firing step: (1) Assume that an event θ is enabled in the

Hornet. If θ is an object-autonomous event for the object-net N , then this is
enabled in OS(EH ), too, since runN is marked.

Assume that θ is a synchronisation, which includes system-autonomous events
as a special case. Then, θ is simulated by the Eos in the following way:

– First, the global run-place is cleared by start, which disables all other system-
net transitions outside the subnet.

– Assume that t̂ removes n := |preα(t̂)(p̂)(N)| net-tokens N from p̂. Then we
have n transition offp̂,N

i for 1 ≤ i ≤ n (labelled with disableN ) for each N
and p̂ in the simulating subnet and each moves exactly one net-token from
p̂ to one of the places q̂p̂,Ni . Note, that after firing each q̂p̂,Ni is marked with
exactly one net-token.

– As a result of the synchronisation via the channel disableN all the runN places
in the transported net-tokens on q̂p̂,Ni are now unmarked and no object-
autonomous firing is possible anymore.

– For each N we join all the net-tokens of this type and synchronise with the
combination with the transitions t̂N . The synchronisation is possible since
it is in the Hornet. Whenever t̂ generates m := |postα(t̂)(p̂′)(N)| tokens
of the net N on p̂′, then we have the places r̂p̂

′,N
i for 1 ≤ i ≤ m and each

transition onp̂
′,N

i generates exactly one net-token on each r̂p̂
′,N

i .
– In each generated net-token on r̂p̂

′,N
i we activate the runN place via the

channel enableN . Here, we make use of the fact, that each r̂i
p̂′,N contains

exactly one net-token, so each net-token is enabled exactly once.
– The now “activated” net-tokens are then moved to the places p̂′ in the postset.
– Finally, we mark the global run place again (by finish) and other events can

be simulated.

(2) Conversely, assume that an event θ is enabled in the simulating Eos. If θ is
an object-autonomous event, then runN is marked. Clearly, θ is enabled in the
Hornet EH , too.

Assume that θ is a synchronisation. Once the subnet for t̂ is entered all other
original events are disabled. If the global run-place ever gets marked again, than
the generated marking corresponds to the marking that t̂ would have generated
in the Hornet. However, it is possible that we enter the subnet and try to
simulate an event that is not enabled in the Hornet. In this case the simulation
blocks somewhere inside and the the global run-place never gets marked again.
Therefore, we never get marking of the form μ again. qed.

Note that the construction above results in a quite drastic increase in the size
of the Eos: Since we add new elements for each object net in the Hornet, by
Lemma 1 the size of the Eos grows double exponentially in Pk.

But, the simulation is good for showing undecidability by giving a reduction
from elementary Hornets to Eos.
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Corollary 1. The reachability problem is undecidable for elementary Hornets.

Proof. Since we know that the reachability problem for Eos is undecidable [15],
we obtain another undecidability proof for Hornets by Theorem 1. qed.

5 Boundedness for Safe, Elementary Hornets

A Hornet is safe iff each place p̂ in the system net carries at most one token
and each net-token carries at most one token on each place p in all reachable
markings μ. Since we are interested in safe Hornets in the following, we do not
use arc weights greater than 1.

Lemma 2. A safe, elementary Hornet has a finite reachability set.

Proof. Each reachable marking is of the form μ =
∑n

i=1 p̂i[Ni,Mi]. Since each
each object net N ∈ Uk is safe, we know that each net-token has at most 2|Pk|

different markings Mi. Furthermore, we know |Uk| ≤ 2(2
4|Pk|). Assume that m is

the maximum of all |Pk|. Then we have at most 2(2
4m) · 2m different net-tokens

[N,M ].
Each system net place p̂ is either unmarked or marked with one of these net-

tokens. Therefore, we have at most
(
1 + 2(2

4m) · 2m
)|P̂ |

different markings in
the safe Hornet. qed.

In the following we study the complexity of the reachability problem for safe,
elementary Hornets.

Theorem 2 ([12]). The reachability problem for safe, elementary Hornets
requires exponential space.

The proof we have given in [12] is similar to the heart of Lipton’s famous result.
Lipton has proven that acceptance of a counter program C translates into a
reachability question for a p/t net N(C). Lipton gives a construction for N(C),
which is of size O(|C|2). This proves that the reachability problem requires at
least 2

√
|C| space, i.e. exponential space.

In [12] we simulate a counter program C by a safe, elementary Hornet EH
of size O(poly(|C|)). Thus we know that a question about a counter program C
translates into a question about EH . When C needs 2|A| space for the counters,
we have that EH needs 2

n
√

|A| space for the corresponding question, where n is
the order of the polynom poly(|C|).

5.1 Simulation of Safe, Elementary Hornets

Since we have shown that the reachability problem ReachseH for the safe elemen-
tary Hornets requires exponential space we have established a lower bound.

In the following we give a reduction of the reachability problem for safe,
elementary Hornets to that of safe Eos.
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Lemma 3. For each safe, elementary Hornet EH the simulating Eos
OS(EH) given in Theorem 1 is safe.

Proof. In the simulating Eos OS(EH) we have arranged the places p̂N,i, where
i = 1..m on a circle. But since we consider a safe Hornet EH , we can assume
m = 1, i.e. no net-tokens move along the circle.

The subnet of Figure 3, which replaces the system net transition t̂, uses a
global run place (which is safe). The original system net places p̂ are still safe
with these subnets. The same is true for the inner places that internal to the
subnets.

The object net of Fig. 2 has only safe places, since the original places are still
safe and the run places are never enabled more than once. qed.

The reduction technique constructs the Eos OS(G(EH )) for the elemntary Hor-
net EH . We know that the reachability problem requires polynomial space for
Eos calculated in the size of the Eos, where the size of an Eos is the sum of
the sizes of the system-net and all object-nets. The natural question that arises
now is: How big is the simulation gap? Or, equivalently: What is the size of
OS(G(EH )) when compared to EH ?

Theorem 3. The reachability problem ReachseH for safe, elementary Hornets
can be solved with double-exponential space: ReachseH ∈ 2O(2

4m), where m is the
maximum of all |Pk|, i.e. m := max{|Pk| : k ∈ K}.

Proof. By Prop. 1 we can unfold each elementary Hornet into an equivalent
grounded Hornet G(EH ). We obtain G(EH ) by replacing each system-net
transition t̂ by a copy for each possible variable assignment. By Lemma 1 we have
|Uk| ≤ 2(2

4m). Whenever the inscriptions of a system-net transition t̂ contains
|var(t)| variables, then we obtain

(
2(2

4m))|var(t)| = 2(|var(t)|·2
4m) different copies

in the grounded unfolding. We obtain that the size of the system net increases
by the factor 2O(2

4m), i.e. when compared to EH the grounded Hornet G(EH )
has a system-net with an double-exponential blow-up.

We then construct the Eos OS(G(EH )) for the grounded Hornet G(EH ).
The construction of Theorem 1 modifies the system net, i.e. each system

net transition t̂ is replaced by the subnet of Figure 3. However, the size of the
subnet contains the object nets from the arc inscriptions preα(t̂)(p̂)(N) and
postα(t̂)(p̂)(N). Therefore, the increase is bounded.

This is different for the object nets. All the object nets N in Uk are simulated
by a single object net NOS,k in the Eos. The object net NOS,k contains all the
subsets of the set of labelled transitions as transitions in TOS,k Since we have
24|Pk| labelled transitions, we have |TOS,k| ≥ 22

4|Pk|
. Additionally, each object net

in Uk has one run-place, i.e. 2(2
4|Pk|) many, and two transitions for en-/disabling

this run-place. Thus, the increase of the object-net is of size 2(c·2
4|Pk|) for some

constant c.
Compared to EH the simulating Eos OS(G(EH )) has an double-exponential

blow-up for the system- and the object net.
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Since we know that the reachability problem for safe Eos is PSpace-complete
[10], we can decide the reachability problem for EH with a space complexity of
2(c·2

4|Pk|) 
 2(Pol ·24|Pk|) 
 2O(2
4|Pk|). qed.

6 Conclusion

In this paper we studied the subclass of safe, elementary Hornets. While all
properties expressible in temporal logic are PSpace-complete for safe Eos, we
obtain that the reachability problem for safe, elementary Hornets needs at
least exponential space, which is also a lower bound for LTL model checking
since the reachability problem can be expressed as a LTL property.

We like to emphasise that the power of safe, elementary Hornets is only due
to the transformations of the net-algebra, since all other sources of complexity
(nesting, multiple tokens on a place, etc.) have been ruled out by the restriction
of safeness and elementariness.

In this paper we have also given a reduction of the reachability problem for
safe, elementary Hornets to safe Eos. This reduction leads to the two following
simulation-chains:

Eos → eHornet → grounded eHornet

and

safe eHornet → safe, grounded eHornet → safe, Eos-like Hornet → Eos

However, we have seen that the lower and upper bounds are far from optimal,
since we know that the reachability problem requires a least exponential space
for safe, elemntary Hornets, while the reduction technique leads to a double
exponential space complexity.

Therefore, our current research focusses on the analysis of the exact complex-
ity of the reachability problem without relying on a reduction to Eos.
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Abstract. At the end of the eighties, continuous Petri nets were intro-
duced for: (1) alleviating the combinatory explosion triggered by discrete
Petri nets and, (2) modelling the behaviour of physical systems whose
state is composed of continuous variables. Since then several works have
established that the computational complexity of deciding some standard
behavioural properties of Petri nets is reduced in this framework. Here we
first establish the decidability of additional properties like boundedness
and reachability set inclusion. We also design new decision procedures
for the reachability and lim-reachability problems with a better compu-
tational complexity. Finally we provide lower bounds characterising the
exact complexity class of the boundedness, the reachability, the deadlock
freeness and the liveness problems.

1 Introduction

From Petri Nets to Continuous Petri Nets. Continuous Petri nets (CPN)
were introduced in [5] by considering continuous states (specified by a non neg-
ative real number of tokens in places) where the dynamics of the system is
triggered either by discrete events or by a continuous evolution ruled by speed
of firings. In the former case such nets are called autonomous CPNs while in
the latter they are called timed CPNs. In both cases, the evolution is due to a
fractional transition firing (infinitesimal and simultaneous in the case of timed
CPNs).

Modelling with CPNs. CPNs have been used in several significant applica-
tion fields. In [3], a method based on CPNs is proposed for the fault diagnosis
of manufacturing systems that manage systems intractable with discrete Petri
nets (for modelling of manufacturing systems see also [17]). In [15], the authors
introduce a bottom-up modelling methodology based on CPNs to represent cell
metabolism and solve in this framework the regulation control problem. Combin-
ing discrete and continuous Petri nets yields hybrid Petri nets with applications
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to modelling and simulation of water distribution systems [9] and to the analysis
of traffic in urban networks [16].

Analysis of CPNs. While several analysis methods have been developed for
timed CPNs there is no hope for fully automatic techniques in the general case
since standard problems of dynamic systems are known to be undecidable even
for bounded nets [13].

Due to the semantics of autonomous CPNs, a marking can be the limit of
the markings visited along an infinite firing sequence. Thus most of the usual
properties are duplicated depending on whether these markings are considered
or not. When considering these markings, reachability (resp. liveness, deadlock-
freeness) becomes lim-reachability (resp. lim-liveness, lim-deadlock-freeness).

Contrary to the timed case, the analysis of autonomous CPNs (that we sim-
ply call CPNs in the sequel) appears to be less complex than the one of discrete
Petri nets. In [10], exponential time decision procedures are proposed for the
reachability and lim-reachability problems for general CPNs. In [14] assuming
additional hypotheses on the net, the authors design polynomial time deci-
sion procedures for (lim-)reachability and boundedness. In [13], (lim-)deadlock-
freeness and (lim-)liveness are shown to belong in coNP. These procedures are
based on “simple” characterisations of the properties.

Our Contributions. First we revisit characterisations of properties in CPN
establishing an alternative characterisation for reachability and the first charac-
terisation for boundedness. Then based on these characterisations, we show that
(lim-)reachability and boundedness are decidable in polynomial time. We also
establish that the (lim-)reachability set inclusion problem is decidable in ex-
ponential time. Finally we prove that (lim-)reachability and boundedness are
PTIME-hard and that (lim-)deadlock-freeness, (lim-)liveness and (lim-)
reachability set inclusion problems are coNP-hard. We establish these lower
bounds even when considering restricted cases of these problems.

Organisation. In Section 2, we introduce CPNs and the properties that we
are analysing. In Section 3, we develop the characterisations of reachability and
boundedness. Afterwards in Section 4, we design the decision procedures. Then,
we provide complexity lower bounds in Section 5. Finally in Section 6, we sum-
marise our results and give perspectives to this work. All missing proofs can be
found in [8].

2 Continuous Petri Nets: Definitions and Properties

2.1 Continuous Petri Nets

Notations. N (resp. Q, R) is the set of non negative integers (resp. rational, real
numbers). Given a set of numbers E, E≥0 (resp. E>0) denotes the subset of non
negative (resp. positive) numbers of E. Given an E×F matrix M with E and F
sets of indices, E′ ⊆ E and F ′ ⊆ F , the E′ ×F ′ submatrix ME′×F ′ denotes the
restriction of M to rows indexed by E′ and columns indexed by F ′. The support

of a vector v ∈ RE , denoted �v�, is defined by �v�
def
= {e ∈ E | v[e] �= 0}. 0
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denotes the null vector. One writes v ≥ w when v is componentwise greater or
equal than w and v 	 w when v ≥ w and v �= w. One writes v > w when
v is componentwise strictly greater than w. ‖v‖1 is the 1-norm of v defined by

‖v‖1
def
=

∑
e∈E |v[e]|. Let E′ ⊆ E, then v[E′] denotes the restriction of v to

components of E′.

Here, we adopt the following terminology: a net denotes the structure without
initial marking while a net system denotes a net with an initial marking. The
structure of CPNs and discrete nets are identical.

Definition 1. A Petri net (PN) is a tuple N = 〈P, T,Pre,Post〉 where:

– P is a finite set of places;
– T is a finite set of transitions, with P ∩ T = ∅;
– Pre (resp. Post), is the backward (resp. forward) P × T incidence matrix,

whose items belong to N.

The incidence matrix C is defined by C
def
= Post− Pre.

Given a place (resp. transition) v in P (resp. in T ), its preset, •v, is defined

as the set of its input transitions (resp. places): •v
def
= {t ∈ T | Post[v, t] > 0}

(resp. •v
def
= {p ∈ P | Pre[p, v] > 0}). Its postset v• is defined as the set

of its output transitions (resp. places): v•
def
= {t ∈ T | Pre[v, t] > 0} (resp.

v•
def
= {p ∈ P | Post[p, v] > 0}). This notion generalizes to a subset V of

places (resp. transitions) by: •V
def
=

⋃
v∈V

•v and V • def
=

⋃
v∈V v•. In addition,

•V • def
= •V ∪ V •.

Given T ′ ⊆ T , NT ′ is the subnet of N such that its set of transitions is T ′

and its set of places is •T ′•, and its backward and forward incidence matrices
are respectively Pre•T ′•×T ′ and Post•T ′•×T ′ .

We define N−1 as the “reverse” net of N , in which the places and transitions
coincide, and its arcs are inverted.

Definition 2. Given a PN N = 〈P, T,Pre,Post〉, its reverse net N−1 is de-

fined by N−1 def
= 〈P, T,Post,Pre〉.

A continuous PN system consists of a net and a non negative real marking.

Definition 3. A CPN system is a tuple 〈N ,m0〉 where N is a PN and m0 ∈
RP

≥0 is the initial marking.

When a CPN system is an input of a decision problem, the items of m0 are
rational numbers in order to characterise the complexity of the problem.

In discrete PNs the firing rule of a transition requires tokens specified by Pre
to be present in the corresponding places. In continuous PNs a non negative real
amount of transition firing is allowed and this amount scales the requirement
expressed by Pre and Post.

Definition 4. Let N be a CPN, t be a transition and m ∈ RP
≥0 be a marking.
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– The enabling degree of t w.r.t. m, enab(t,m) ∈ R≥0 ∪ ∞, is defined by:

enab(t,m)
def
= min{ m[p]

Pre[p,t] | p ∈ •t} (enab(t,m) =∞ iff •t = ∅).
– t is enabled in m if enab(t,m) > 0.

– t can be fired by any amount α ∈ R such that1 0 ≤ α ≤ enab(t,m), and its
firing leads to marking m′ defined by: for all p ∈ P , m′[p] = m[p]+αC[p, t].

The firing of t from m by an amount α leading to m′ is denoted as m αt−→ m′.
We illustrate the firing rule of a CPN with the system in Fig. 1(a) (example
taken from [10]). In the initial marking m0 = (1, 0, 1, 0), only transition t1 is
enabled and its enabling degree is 1. Hence, it can be fired by any real amount
α s.t. 0 ≤ α ≤ 1. If t1 is fired by an amount of 0.5, marking m1 = (0.5, 0.5, 1, 0)
is reached. In m1, transitions t1 and t2 are enabled, with enabling degree both
equal to 0.5.

Let σ = α1t1 . . . αntn be a finite sequence with for all i, ti ∈ T and αi ∈ R≥0.

σ is firable from m0 if for all 1 ≤ i ≤ n there exist mi such that mi−1
αiti−→ mi.

This firing is denoted bym0
σ−→ mn. When the destination marking is irrelevant

we omit it and simply write m0
σ−→ . Let σ = α1t1 . . . αntn . . . be an infinite

sequence then σ is firable from m0 if for all n, α1t1 . . . αntn is firable from m0.
This firing is denoted as m0

σ−→∞ .
Given a finite or infinite sequence σ = α1t1 . . . αiti . . . and α ∈ R≥0, the

sequence ασ is defined by σ
def
= αα1t1 . . . ααiti . . .. Given two infinite sequences

σ = α1t1 . . . αiti . . . and σ′ = α′
1t

′
1 . . . α′

it
′
i . . ., the (non commutative) sum σ +

σ′ is defined by: σ + σ′ def
= α1t1α

′
1t

′
1 . . . αitiα

′
it
′
i . . .. This notion generalises to

arbitrary sequences by extending them to infinite sequences with null amounts
of firings (the selected transitions are irrelevant).

Let σ = α1t1 . . . αntn be a finite sequence and denote σ−1 = αntn . . . α1t1. By

definition of the reverse net, m σ−→ m′ in N iff m′ σ−1

−→ m in N−1.
The Parikh image (also called firing count vector) of a (finite or infinite)

firing sequence σ = α1t1 . . . αntn . . . denoted −→σ ∈ (R≥0 ∪ {∞})T is defined by:
−→σ [t]

def
=

∑
i|ti=t αi. As in discrete PNs, when m σ−→ m′, m′ = m + C−→σ and

this equation is called the state equation.
A set of places P ′ is a siphon if •P ′ ⊆ P ′•. When a siphon does not contain

tokens in some marking, it will never contain tokens after any firing sequence
starting from this marking. One call it an empty siphon.

An interesting difference between discrete and continuous PN systems is that
the sequence of markings visited by an infinite firing sequence may converge
to a given marking. For example, let us consider again the CPN of Fig. 1(a),
and the marking m1 = (0.5, 0.5, 1, 0). From m1, 0.5t2 can be fired, reaching
m2 = (0.5, 0.5, 0, 0.5). From m2 transition t3 can be fired by an amount of 0.5,
leading to m3 = (0.5, 0.5, 0.5, 0). Iterating this process leads to the infinite fir-
ing sequence σ = 2−1t22

−1t3 . . . 2−nt22
−nt3 . . . whose visited markings converge

1 So from every marking, any (even disabled) transition can fire by a null amount
without modifying the marking.
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Fig. 1. (a) A CPN system (b) its lim-reachability set [10]
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Fig. 2. A simple CPN system

toward (0.5, 0.5, 0, 0). Observe that the Parikh image −→σ =
−→
t2 +

−→
t3 does not

correspond to any finite firing sequence starting from m1.
Consider now the PN in Fig. 2 with initial marking m0 = (1, 0). Let σ =

1t1
1
2 t2

1
3 t1

1
4 t2 . . . 1

2i−1 t1
1
2i t2 . . . The sequence σ is infinite and its sequence of vis-

ited markings converges toward markingm defined by: m
def
= (1− log(2), log(2)).

Here −→σ =∞−→
t1 +∞−→

t2 .
Let σ be an infinite firing sequence starting from m whose sequence of visited

markings converges towardm′, one says that m′ is limit reachable from m which
is denoted by: m σ−→∞ m′. Thus in CPNs, two sets of reachable markings are
defined.

Definition 5. Given a CPN system 〈N ,m0〉,

– Its reachability set RS(N ,m0) is defined by:

RS(N ,m0)
def
= {m | there exists a finite sequence m0

σ−→ m}.
– Its lim-reachability set, lim−RS(N ,m0), is defined by:

lim−RS(N ,m0)
def
= {m | there exists an infinite sequence m0

σ−→∞ m}.
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RS or lim−RS are convex sets (see Section 3) but not necessarily topologically
closed. In Fig. 1, markingm = (1, 0, 0, 0) belongs to the closure of RS or lim−RS,
but it does not belong to these sets. Since an infinite sequence can include null
amounts of firings, RS(N ,m0) ⊆ lim−RS(N ,m0). More interestingly, for all
m ∈ lim−RS(N ,m0), lim−RS(N ,m) ⊆ lim−RS(N ,m0) (see the proof in
appendix of [8]). So there is no need to consider iterations of lim-reachability.

2.2 CPN Properties

Here we introduce the standard properties that a modeller wants to check on a
net. In the framework of CPNs, every property its defined either w.r.t. to the
reachability set or w.r.t. to the lim-reachability set.

Reachability is the main property as it is the core of safeness properties.

Definition 6 (reachability). Given a system 〈N ,m0〉 and a marking m, m
is (lim-)reachable in 〈N ,m0〉 if m ∈ (lim−)RS(N ,m0).

Boundedness is often related to the resources needed by the system. For CPN,
boundedness and lim-boundedness coincide [14].

Definition 7 (boundedness). A system 〈N ,m0〉 is (lim-)bounded if there ex-
ists b ∈ R≥0 such that for all m ∈ (lim−)RS(N ,m0) and all p ∈ P , m[p] ≤ b.

Deadlock-freeness ensures that a system will never reach a marking where no
transition is enabled, i.e a dead marking.

Definition 8 (deadlock-freeness). A system 〈N ,m0〉 is (lim-)deadlock-free
if for all m ∈ (lim−)RS(N ,m0), there exists t ∈ T such that t is enabled at m.

The net of Fig. 1 is deadlock-free but not lim-deadlock-free: m
def
= (0, 1, 0, 0)

is a dead marking which is limit-reachable but not reachable and no reachable
marking is dead.

Liveness ensures that whatever the reachable state, any transition will be
fireable in some future. So the system never “looses its capacities”.

Definition 9 (liveness). A system 〈N ,m0〉 is (lim-)live if for all transition t
and for all marking m ∈ (lim−)RS(N ,m0) there exists m′ ∈ (lim−)RS(N ,m)
such that t is enabled at m′.

The net of Fig. 1 is neither live nor lim-live: once t1 becomes disabled, it will
remain so whatever the finite or infinite firing sequence considered.

A home state is a marking that can be reached whatever the current state. This
property can express for instance that recovering from faults is always possible.
A net is reversible if its initial marking is an home state. Both properties are
particular cases of the reachability set inclusion problem.

Definition 10 (reachability set inclusion).
Given systems 〈N ,m0〉 and 〈N ′,m′

0〉 with P = P ′, 〈N ,m0〉 is (lim-)reachable
included in 〈N ′,m′

0〉 if (lim−)RS(N ,m0) ⊆ (lim−)RS(N ′,m′
0).

A marking m is a home state if RS(N ,m0) ⊆ RS(N−1,m).
When m = m0, one says that 〈N ,m0〉 is reversible.
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The following table summarises the results already known about the complex-
ity of the associated decision problems. A net is consistent if there exists a vector
v ∈ R≥0 with �v� = T and Cv = 0. No lower bounds have been established.

Table 1. Complexity bounds: previous results

Problems Upper bounds

(lim-)reachability in EXPTIME [10]
in PTIME for lim-reachability
when all transitions are fireable at least once
and the net is consistent [14]

(lim-)boundedness in PTIME
when all transitions are fireable at least once [14]

(lim-)deadlock-freeness in coNP [13]

(lim-)liveness in coNP [13]

(lim-)reachability no result
set inclusion

3 Properties Characterisations

3.1 Preliminary Results about Reachability and Firing Sequences

Most of the results of this subsection are generalisations of results given in [14,10].

The following lemma is an almost immediate consequence of firing definition
and has for corollary the convexity of the (lim-)reachability set. In this lemma
depending on the sequences −→(∞) denotes either −→ or −→∞ .

Lemma 11. Given a CPN system 〈N ,m0〉, (finite or infinite) sequences σ, σ1, σ2

markings m,m′,m1,m2,m
′
1,m

′
2 and α, α1, α2 ∈ R>0:

(0) m1
σ−→m′

1 andm1 ≤m2 implies m2
σ−→m′

2 withm′
1 ≤m′

2

(1) m σ−→(∞) m iff αm ασ−→(∞) αm′

(2) m σ−→∞ iff αm ασ−→∞
(3) m1

σ1−→(∞) m
′
1 andm2

σ2−→(∞) m
′
2 implies m1 +m2

σ1+σ2−→ (∞) m
′
1 +m′

2

(4) m1
σ1−→∞ andm2

σ2−→∞ implies m1 +m2
σ1+σ2−→ ∞

(5) m1
α1σ−→(∞) m

′
1 andm2

α2σ−→(∞) m
′
2 implies m1 +m2

(α1+α2)σ−→ (∞) m
′
1 +m′

2

(6) m1
α1σ−→∞ andm2

α2σ−→∞ implies m1 +m2
(α1+α2)σ−→ ∞

The two next lemmas constitute a first step for the characterisation of reachabil-
ity since they provide sufficient conditions for reachability and lim-reachability
in particular cases.

Lemma 12. Let 〈N ,m0〉 be a continuous system, m be a marking and v ∈ RT
≥0

that fulfill:
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– m = m0 +Cv;

– ∀p ∈ •�v� m0[p] > 0;

– ∀p ∈ �v�
•
m[p] > 0.

Then there exists a finite sequence σ such that m0
σ−→ m and −→σ = v.

Proof. Define α1
def
= min( m0[p]∑

t∈�v� Pre[p,t]v[t] | p ∈ •�v�)

and α2
def
= min( m[p]∑

t∈�v� Post[p,t]v[t] | p ∈ �v�
•
) with the convention that α1

def
= 1

(resp. α2
def
= 1) if •�v� (resp. �v�•) is empty.

Due to the second and the third hypotheses α1 and α2 are positive.

Let n
def
= max(/ 1

min(α1,α2)
0, 2).

Denote �v�
def
= {t1, . . . , tk} and define σ′ def

= v[t1]
n t1 . . . v[tk]

n tk and σ
def
= σ′n.

We claim that σ is the required firing sequence.

Let us denote mi
def
= m0 +

i
nCv. Thus m = mn.

By definition of α1 and n, in N m0
σ′
−→ m1 and by definition of α2, mn

σ′−1

−→
mn−1 in N−1. So in N mn−1

σ′
−→ mn.

Let 1 < i < n− 1.

Using lemma 11, n−1−i
n−1 m0

n−1−i
n−1 σ′

−→ n−1−i
n−1 m1 and i

n−1mn−1

i
n−1σ

′

−→ i
n−1mn.

Using lemma 11 again and summing, one gets: m = mi
σ′
−→ mi+1.

Lemma 13. Let 〈N ,m0〉 be a continuous system, m be a marking and v ∈ RT
≥0

that fulfill:

– m = m0 +Cv;

– ∀p ∈ •�v�
•
m0[p] > 0.

Then there exists an infinite sequence σ such that m0
σ−→∞ m and −→σ = v.

Proof. Let mi be inductively defined by mi+1 = 1
2mi +

1
2m. and for i ≥ 1, let

vi =
1
2iv (thus �vi� = �v�). Observe that mi =

1
2im0 + (1− 1

2i )m. So:

– mi+1 = mi +Cvi;

– ∀p ∈ •�vi�
•
mi[p] > 0 and mi+1[p] > 0.

Applying lemma 12, for all i ≥ 1 there exists σi such that mi
σi−→ mi+1. Since

limi→∞ mi = m, the sequence σ = σ1σ2 . . . is the required sequence.

The key concept in order to get characterisation of properties, is the notion of
firing set of a CPN system [10].

Definition 14. Let 〈N ,m0〉 be a CPN system. Then its firing set FS(N ,m0) ⊆
2T is defined by:

FS(N ,m0) = {�−→σ � |m0
σ−→ }
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Fig. 3. A CPN system with an exponentially sized firing set

Due to the empty sequence, ∅ ∈ FS(N ,m0). The size of a firing set may be
exponential w.r.t. the number of transitions of the net. For example, consider
the CPN system of Fig. 3. Its firing set is:

{T ′ | ∀1 ≤ j < i ≤ n {ti, t′i} ∩ T ′ �= ∅ ⇒ {tj , t′j} �= ∅}

Thus its size is at least 2
|T |
2 .

The next two lemmas establish elementary properties of the firing set and
leads to new notions.

Lemma 15. Let N be a CPN and m,m′ be two markings such that �m� =
�m′�. Then FS(N ,m) = FS(N ,m′).

Proof. Since �m� = �m′�, there exists α > 0 such that αm ≤m′.
Let m σ−→ . Using lemma 11 αm ασ−→ . Since αm ≤m′, m′ ασ−→ .
Thus FS(N ,m) ⊆ FS(N ,m′). By symmetry, FS(N ,m) = FS(N ,m′).

So given P ′ ⊆ P , without ambiguity we define FS(N , P ′) by:

FS(N , P ′)
def
= FS(N ,m) for any m such that P ′ = �m�

Lemma 16. Let 〈N ,m0〉 be a CPN system. Then FS(N ,m0) is closed by
union.

Proof. Let m0
σ−→ and m0

σ′
−→ .

Then using three times lemma 11, 0.5m0
0.5σ−→ , 0.5m0

0.5σ′
−→ and m0

0.5σ+0.5σ′
−→ .

Since �
−−−−−−−−→
0.5σ + 0.5σ′� = �−→σ � ∪ �

−→
σ′�, the conclusion follows.

Notation. We denote maxFS(N ,m0) the maximal set of FS(N ,m0) that is the
union of all members of FS(N ,m0).

The next proposition is a structural characterisation for a subset of transitions
to belong to the firing set. In addition, it shows that in the positive case, a
“useful” corresponding sequence always exists and furthermore one may build
this sequence in polynomial time.
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Proposition 17. Let 〈N ,m0〉 be a CPN system and T ′ be a subset of transi-
tions. Then:

T ′ ∈ FS(N ,m0) iff NT ′ has no empty siphon in m0.
Furthermore if T ′ ∈ FS(N ,m0) then there exists σ = α1t1 . . . αktk with αi > 0
for all i, T ′ = {t1, . . . , tk} and a marking m such that:

– m0
σ−→ m;

– for all place p, m(p) > 0 iff m0(p) > 0 or p ∈ •T ′•.

Proof.
Necessity. Suppose NT ′ contains an empty siphon Σ in m0. Then none of the
transitions belonging Σ• can be fired in the future. Since NT ′ does not contain
isolated places Σ•(= •Σ•) �= ∅ and so T ′ �∈ FS(N ,m0).

Sufficiency. Suppose that NT ′ has no empty siphon in m0. We build by induc-
tion the sequence σ of the proposition. More precisely, we inductively prove for
increasing values of i that:

– for every j < i there exists a non empty set of transitions Tj ⊆ T ′ that fulfill
for all j �= j′, Tj ∩ Tj′ = ∅;

– for every j ≤ i there exists a marking mj with mj(p) > 0 iff
m0(p) > 0 or p ∈ •Tk

• for some k < j;
– for every j < i there exists a sequence σj = αj,1tj,1 . . . αj,kj tj,kj with

Tj = {tj,1 . . . tj,kj} and mj
σ−→ mj+1.

There is nothing to prove for the basis case i = 0.
Suppose that the assertion holds until i. If T ′ = T1 ∪ . . . ∪ Ti−1 then we are

done.
Otherwise define T ′′ = T ′ \ (T1 ∪ . . . ∪ Ti−1) and Ti = {t enabled in mi |

t ∈ T ′′}. We claim that Ti is not empty. Otherwise for all t ∈ T ′′, there exists
an empty place pt in mi. Due to the inductive hypothesis, m0(pt) = 0 and
•pt ∩ (T1 ∪ . . . ∪ Ti−1) = ∅. So the union of places pt is an empty siphon of
〈NT ′ ,m0〉 which contradicts our hypothesis.

Let us denote Ti = {ti,1 . . . ti,ki}. Define α = min(mi(p)
2ki

| p ∈ •Ti) with the
convention that α = 1 if •Ti = ∅. The sequence σi = αti,1 . . . αti,ki is fireable
from mi and leads to a marking mi+1 fulfilling the inductive hypothesis.

Since T ′′ is finite the procedure terminates.

We include the complexity result below since its proof relies in a straightforward
manner on the sufficiency proof of the previous proposition.

Corollary 18. Let 〈N ,m0〉 be a CPN system and T ′ be a subset of transitions.
Then algorithm 1 checks in polynomial time whether T ′ ∈ FS(N ,m0) and in
the negative case returns the maximal firing set included in T ′ (when called with
T = T ′, it returns maxFS(N ,m0)).

3.2 Characterisation of Reachability and Boundedness

In [10] a characterisation of reachability was presented. The theorem below is
an alternative characterisation that only relies on the state equation and firing
sets.
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Algorithm 1. Decision algorithm for membership of FS(N ,m0)

Fireable(〈N ,m0〉, T ′): status
Input: a CPN system 〈N ,m0〉, a subset of transitions T ′

Output: the membership status of T ′ w.r.t. FS(N ,m0)
Output: in the negative case the maximal firing set included in T ′

Data: new: boolean; P ′: subset of places; T ′′: subset of transitions
1 T ′′ ← ∅; P ′ ← �m0�
2 while T ′′ �= T ′ do
3 new ← false
4 for t ∈ T ′ \ T ′′ do
5 if •t ⊆ P ′ then T ′′ ← T ′′ ∪ {t}; P ′ ← P ′ ∪ t•; new ← true
6 end
7 if not new then return (false, T ′′)

8 end
9 return true

Theorem 19. Let 〈N ,m0〉 be a CPN system and m be a marking.

Then m ∈ RS(N ,m0) iff there exists v ∈ R|T |
≥0 such that:

1. m = m0 +Cv
2. �v� ∈ FS(N ,m0)
3. �v� ∈ FS(N−1,m)

Proof.
Necessity. Let m ∈ RS(N ,m0). So there exists a finite firing sequence σ such
that m0

σ−→ m. Let v = −→σ , then m = m0 +Cv.

Since σ is fireable from mo in N , �v� ∈ FS(N ,m0). In N−1, m σ−1

−→ m0.

Since v =
−−→
σ−1, �v� ∈ FS(N−1,m).

Sufficiency. Since �v� ∈ FS(N ,m0), using Proposition 17 and Lemma 11 there
exists a sequence σ1 such that �v� = �−→σ1�, for all 0 < α1 ≤ 1, m0

α1σ1−→ m1 with
m1(p) > 0 for p ∈ •�v�•.

Since �v� ∈ FS(N−1,m), using Proposition 17 and Lemma 11 there exists a
sequence σ2 such that �v� = �−→σ2�, for all 0 < α2 ≤ 1, m α2σ2−→ m2 in N−1 with
m2(p) > 0 for p ∈ •�v�

•
.

Choose α1 and α2 enough small such that the vector v′ = v−α1
−→σ1 −α2

−→σ2 is
non negative and �v′� = �v�. This is possible since �v� = �−→σ1� = �−→σ2�.

Since m2 = m1 +Cv′ and m1,m2 fulfill the hypotheses of Lemma 12, there
exists a sequence σ3 such that v′ = −→σ3 and m1

σ3−→ m2.
Let σ = (α1σ1)σ3(α2σ2)

−1 then m0
σ−→ m.

The following characterisation has been stated in [10]. We include the proof here
since in that paper, the proof of necessity was not developed.

Theorem 20. Let 〈N ,m0〉 be a CPN system and m be a marking.

Then m ∈ lim−RS(N ,m0) iff there exists v ∈ R|T |
≥0 such that:
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1. m = m0 +Cv
2. �v� ∈ FS(N ,m0)

Proof.
Necessity. Let m ∈ lim−RS(N ,m0). So there exists a firing sequence σ =

α1t1 . . . αntn . . . such that m = limn→∞ mn, where mn
αn+1tn+1−→ mn+1.

Thus there exists B ∈ N such that for all p ∈ P and all n ∈ N, mn[p] ≤ B.

Let T ′ def
= {t | ∃i ∈ N t = ti}. There exists n0 such that T ′ = {t | ∃i ≤ n0 t = ti}

and so T ′ ∈ FS(N ,m0).
Let α ∈ Q>0 such that α ≤ min(

∑
i≤n0,ti=t αi | t ∈ T ′).

Let us define LPn an existential linear program where v ∈ RT is the vector of
variables by:

1. mn −m0 = Cv
2. ∀t ∈ T ′ v[t] ≥ α
3. ∀t ∈ T \ T ′ v[t] = 0

Due to the existence of the firing sequence σ, for all n ≥ n0 LPn admits a
solution. Using linear programming theory (see [12]), since mn[p] ≤ B for all n
and all p, there exists B′ such that for all n ≥ n0, LPn admits a solution vn

whose items are bounded by B′.
So the sequence {vn}n≥n0 admits a subsequence that converges to some v.

By continuity, v fulfills m−m0 = Cv, ∀t ∈ T ′ v[t] ≥ α and ∀t ∈ T \T ′ v[t] = 0.
So �v� = T ′ and v is the desired vector.

Sufficiency. Since �v� ∈ FS(N ,m0), using Proposition 17 and Lemma 11 there
exists a sequence σ1 such that �v� = �−→σ1�, for all 0 < α1 ≤ 1, m0

α1σ1−→ m1 with
m1(p) > 0 for p ∈ •�v�•.

Choose α1 enough small such that the vector v′ = v − α1
−→σ1 is non negative

and �v′� = �v�. This is possible since �v� = �−→σ1�.
Since m = m1+Cv′ and m1 fulfills the hypotheses of lemma 13, there exists

an infinite sequence σ2 such that v′ = −→σ2 and m1
σ2−→∞ m.

Let σ = (α1σ1)σ2 then m0
σ−→∞ m.

We present below the first characterisation of boundedness for CPN systems.

Theorem 21. Given a CPN system 〈N ,m0〉. Then 〈N ,m0〉 is unbounded iff:
There exists v ∈ RT

≥0 such that Cv 	 0 and �v� ⊆ maxFS(N ,m0).

Proof.
Sufficiency. Assume there exists v ∈ RT

≥0 such that Cv 	 0 and �v� ⊆
maxFS(N ,m0). Denote T ′ def

= maxFS(N ,m0). Using proposition 17, there exists

m1 ∈ RS(N ,m0) such that for all p ∈ •T ′•, m1(p) > 0. Define m2
def
= m1+Cv,

thus m2 	 m1. Since �v� ⊆ T ′, m1 and m2 fulfill the hypotheses of lemma 12.
Applying it, yields a firing sequence m1

σ−→ m2. Iterating this sequence estab-
lishes the unboundedness of 〈N ,m0〉.
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Necessity. Assume 〈N ,m0〉 is unbounded. Then there exists p ∈ P and a
family of firing sequences {σn}n∈N such that m0

σn−→ mn and mn(p) ≥ n. Since
{�−→σ n�}n∈N is finite by extracting a subsequence w.l.o.g. we can assume that all
these sequences have the same support, say T ′ ⊆ maxFS(N ,m0).

Let vn
def
= C−→σ n. Define wn = vn

‖vn‖1
. Since {wn}n∈N belongs to a compact

set, there exists a convergent subsequence {wα(n)}n∈N. Denote w its limit. Since
‖w‖1 = 1, w is non null. We claim that w is a non negative vector. Since
mn(p) ≥ n, ‖vn‖1 ≥ vn[p] ≥ n −m0[p]. On the other hand, for all p′ ∈ P ,

wn[p
′] ≥ −m0[p

′]
‖vn‖1

. Combining the two inequalities, for n > m0[p], wn[p
′] ≥

−m0[p
′]

n−m0[p]
. Applying this inequality to α(n) and letting n go to infinity yields

w[p′] ≥ 0.
Due to standard results of polyhedra theory (see [1] for instance), the set

{CP×T ′u | u ∈ RT ′

≥0} is closed. So there exists u ∈ RT ′

≥0 such that w = Cu.

Considering u as a vector of RT
≥0 by adding null components for T \ T ′ yields

the required vector.

4 Decision Procedures

Naively implementing the characterisation of reachability would lead to an expo-
nential procedure since it would require to enumerate the items of FS(N ,m0)
(whose size is possibly exponential). For each item, say T ′, the algorithm would
check in polynomial time (1) whether T ′ belongs to FS(N−1,m) and (2) whether
the associated linear program v > 0 ∧ CP×T ′v = m −m0 admits a solution.
Guessing T ′ shows that the reachability problem belongs to NP.

In fact, we improve this upper bound with the help of Algorithm 2. When
m �= m0, this algorithm maintains a subset of transitions T ′ which fulfills
�−→σ � ⊆ T ′ for any m0

σ−→ m (as will be proven in proposition 22). Initially
T ′ is set to T . Then lines 4-9 build a solution to the state equation restricted
to transitions of T ′ with a maximal support (if there is at least one). If there
is no solution then the algorithm returns false. Otherwise T ′ is successively re-
stricted to (1) the support of this maximal solution (line 10), (2) the maximal
firing set in maxFS(NT ′ ,m0[

•T ′•]) (line 11) and, (3) the maximal firing set in
maxFS(N−1

T ′ ,m[•T ′•]) (line 12). If the two last restrictions do not modify T ′ then
the algorithm returns true. If T ′ becomes empty then the algorithm returns false.

Omitting line 12, Algorithm 2 decides the lim-reachability problem.

Proposition 22. Algorithm 2 returns true iff m is reachable in 〈N ,m0〉.
Algorithm 2 without line 12 returns true iff m is lim-reachable in 〈N ,m0〉.

Proof. We only consider the non trivial case m �= m0.

Soundness. Assume that the algorithm returns true at line 13.
By definition, vector sol which is a barycenter of solutions is also a solution

with maximal support and so fulfils the first statement of Theorem 19. Since
T ′ = �sol� at line 13, �sol� ∈ FS(N ,m0) due to line 11 and �sol� ∈ FS(N−1,m)
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Algorithm 2. Decision algorithm for reachability

Reachable(〈N ,m0〉,m): status
Input: a CPN system 〈N ,m0〉, a marking m
Output: the reachability status of m
Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T ′: subset of transitions

1 if m = m0 then return (true,0)
2 T ′ ← T
3 while T ′ �= ∅ do
4 nbsol ← 0; sol ← 0
5 for t ∈ T ′ do
6 solve ∃?v v ≥ 0 ∧ v[t] > 0 ∧CP×T ′v = m−m0

7 if ∃v then nbsol ← nbsol + 1; sol ← sol+ v

8 end
9 if nbsol = 0 then return false else sol ← 1

nbsol
sol

10 T ′ ← �sol�
11 T ′ ← T ′ ∩ maxFS(NT ′ ,m0[

•T ′•])

12 T ′ ← T ′ ∩ maxFS(N−1
T ′ ,m[•T ′•]) /* deleted for lim-reachability */

13 if T ′ = �sol� then return (true,sol)

14 end
15 return false

due to line 12. Thus m is reachable in 〈N ,m0〉 since it fulfills the assertions of
Theorem 19. In case of lim-reachability, line 12 is omitted. So the assertions of
Theorem 20 are fulfilled and m is lim-reachable in 〈N ,m0〉.
Completeness. Assume the algorithm returns false.

We claim that at any time the algorithm fulfils the following invariant: for
any m0

σ−→ m, �−→σ � ⊆ T ′.
This invariant initially holds since T ′ = T . At line 10 due to the first as-

sertion of Theorem 19, for any such σ, �−→σ � ⊆ �sol� since sol is a solution
with maximal support. So the assignment of line 10 lets true the invariant.
Due to the second assertion of Theorem 19 and the invariant, any σ fulfils
�−→σ � ⊆ maxFS(NT ′ ,m0[

•T ′•]). So the assignment of line 11 lets true the in-
variant. Due to the third assertion of Theorem 19 and the invariant, any σ fulfils
�−→σ � ⊆ maxFS(N−1

T ′ ,m[•T ′•]). So the assignment of line 12 lets true the invariant.

If the algorithm returns false at line 9 due to the invariant the first assertion of
Theorem 19 cannot be satisfied. If the algorithm returns false at line 15 then
T ′ = ∅. So due to the invariant and since m �= m0, m is not reachable from m0.

The case of lim-reachability is similarly handled with the following invariant: for
any m0

σ−→∞ m, �−→σ � ⊆ T ′.

Proposition 23. The reachability and the lim-reachability problems for CPN
systems are decidable in polynomial time.

Proof. Let us analyse the time complexity of Algorithm 2. Since T ′ must be
modified in lines 11 or 12 in order to start a new iteration of the main loop, there
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are at most |T | iterations of this loop. The number of iterations of the inner loop
is also bounded by |T |. Finally solving a linear program can be performed in
polynomial time [12] as well as computing the maximal item of a firing set (see
corollary 18).

In [10], it is proven that the lim-reachability problem for consistent CPN systems
with no empty siphons in the initial marking is decidable in polynomial time.
We improve this result by showing that this problem and a similar one belong
to NC ⊆ PTIME (a complexity class of problems that can take advantage of
parallel computations, see [11]).

Proposition 24. The reachability problem for consistent CPN systems with no
empty siphons in the initial marking and no empty siphons in the final marking
for the reverse net belongs to NC.
The lim-reachability problem for consistent CPN systems with no empty siphons
in the initial marking belongs to NC.

Proof. Due to the assumptions on siphons and proposition 17 only the first
assertion of Theorems 19 and 20 needs to be checked. Due to consistency, there
exists w > 0 such that Cw = 0. Assume there is some v ∈ RT such that
m −m0 = Cv. For some n ∈ N large enough, v′ def

= v + nw ∈ RT
≥0 and still

fulfils m−m0 = Cv′.

Now the decision problem ∃?v ∈ RT m−m0 = Cv belongs to NC [4].

Proposition 25. The boundedness problem for CPN systems is decidable in
polynomial time.

Proof. Using the characterisation of Theorem 21, one first computes in polyno-
mial time T ′ = maxFS(N ,m0) (see corollary 18). Then for all p ∈ P , one solves
the existential linear program ∃?v ≥ 0 CP×T ′v ≥ 0 ∧ (CP×T ′v)[p] > 0. The
CPN system is unbounded if some of these linear programs admits a solution.

In discrete Petri nets, the reachability set inclusion problem is undecidable, while
the restricted problem of home state is decidable (see [7] for a detailed survey
about decidability results in PNs). In CPN systems, this problem is decidable
thanks to the special structure of the (lim-)reachability sets.

Proposition 26. The reachability set inclusion and the lim-reachability set in-
clusion problems for CPN systems are decidable in exponential time.

Proof. Let us define TP
def
= {(T ′, P ′) | T ′ ∈ FS(N ,m0) ∧ P ′ ⊆ P ∧ T ′ ∈

FS(N−1, P ′)}. For every pair (T ′, P ′) ∈ TP , define the polyhedron ET ′,P ′ over

RP × RT ′
by:

ET ′,P ′
def
= {(m,v) |m[P ′] > 0 ∧m[P \ P ′] = 0 ∧ v > 0 ∧m = CP×T ′v}

and RT ′,P ′ by: RT ′,P ′
def
= {m | ∃v (m,v) ∈ ET ′,P ′}



Complexity Analysis of Continuous Petri Nets 185

Using the characterisation of Theorem 19 and Lemma 15,
RS(N ,m0) =

⋃
(T ′,P ′)∈TP RT ′,P ′ .

Due to Lemma 11, the reachability set of a CPN system is convex. So RS(N ,m0)
can be rewritten as:

RS(N ,m0) = {
∑

(T ′,P ′)∈TP

λT ′,P ′mT ′,P ′ |

∑
(T ′,P ′)∈TP

λT ′,P ′ = 1 ∧ ∀(T ′, P ′) ∈ TP λT ′,P ′ ≥ 0 ∧mT ′,P ′ ∈ RT ′,P ′}

Observe that this representation is exponential w.r.t. the size of the CPN system.

Let 〈N ,m0〉 and 〈N ′,m′
0〉 be two CPN systems for which one wants to check

whether RS(N ,m0) ⊆ RS(N ′,m′
0). One builds the representation above for

RS(N ,m0) and RS(N ′,m′
0). Then one transforms the representation of the set

RS(N ′,m′
0) as a system of linear constraints. This can be done in polynomial

time w.r.t. the original representation [2]. So the number of constraints is still
exponential w.r.t. the size of 〈N ′,m′

0〉.
Afterwards for every constraint of this new representation, one adds its nega-

tion to the representation of RS(N ,m0) and check for a solution of such a
system. RS(N ,m0) �⊆ RS(N ′,m′

0) iff at least one of these linear programs
admits a solution. The overall complexity of this procedure is still exponential
w.r.t. the size of the problem. The procedure for lim-reachability set inclusion is
similar.

5 Hardness Results

We now provide matching lower bounds for almost all problems analysed in the
previous sections.

Proposition 27. The reachability, lim-reachability and boundedness problems
for CPN systems are PTIME-complete.

We want to prove that the lower bounds are robust. To this aim, we recall
free-choice CPNs.

Definition 28. A CPN N is free-choice if:

– ∀p ∈ P ∀t ∈ T {Pre[p, t],Post[p, t]} ⊆ {0, 1};
– ∀t, t′ ∈ T •t ∩ •t′ �= ∅ ⇒ •t = •t′.

Proposition 29. The (lim-)deadlock-freeness and (lim-)liveness problems in
free-choice CPN systems are coNP-hard.

Proof. We use almost the same reduction from the 3SAT problem as the one
proposed for free-choice Petri nets in [6]. However the proof of correctness is
specific to continuous nets.
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Fig. 4. The CPN corresponding to formula (¬x1 ∨¬x3)∧ (x1 ∨¬x2 ∨ x3)∧ (x2 ∨¬x3)

Let {x1, x2, . . . , xn} denote the set of propositions and {c1, c2, . . . , cm} denote
the set of clauses. Every clause cj is defined by cj

def
= litj1 ∨ litj2 ∨ litj3 where

for all j, k, litjk ∈ {x1, . . . , xn,¬x1, . . . ,¬xn}. The satisfiability problem consists
in the existence of an interpretation ν : {x1, x2, . . . , xn} −→ {false, true}, such
that for all clause cj , ν(cj) = true.

Every proposition xi yields a place bi initially marked with a token (all other
places are unmarked) and input of two transitions ti, fi corresponding to the
assignment associated with an interpretation. Every of literal litjk yields a place
ljk which is the output of transition ti if litjk = xi or transition fi if litjk = ¬xi

Every clause cj yields a transition ncj with three input “literal” places corre-
sponding to literals ¬litj1,¬litj2,¬litj3. An additional place suc is the output
of every transition ncj . Finally, transition back has suc as a loop place and bi
for all i as output places. The reduction is illustrated in Fig. 4.

Assume that there exists ν such that for all clause cj , ν(cj) = true. Then fire
the following sequence σ = 1t∗1 . . . 1t∗n where t∗i = ti when ν(xi) = true and t∗i =
fi when ν(xi) = false. Consider m the reached marking. Since ν(cj) = true, at
least one input place of ncj is empty in m. Moreover m(suc) = m(bi) = 0 for
all i. So m is dead.

Assume that there does not exist ν such that for all clause cj , ν(cj) = true.
Observe that given a marking m such that m(suc) > 0 all transitions will be
fireable in the future and suc will never decrease (thus m(suc) > 0 for a lim-
reachable marking m as well).
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Table 2. Complexity bounds

Problems Upper and lower bounds

(lim-)reachability PTIME-complete
in NC for lim-reachability (resp. reachability)
when all transitions are fireable at least once
(resp. and also in the reverse CPN)
and the net is consistent

(lim-)boundedness PTIME-complete

(lim-)deadlock-freeness coNP-complete
and (lim-)liveness coNP-hard even for free-choice CPNs

or for CPNs when all transitions are fireable at least once
and the net is consistent

(lim-)reachability in EXPTIME
set inclusion coNP-hard even for reversibility in CPNs

when all transitions are fireable at least once
and the net is consistent

So we only consider reachable marking m such that m(suc) = 0, i.e. when
no transitions ncj have been fired. Our goal is to prove that from such marking
there is a sequence that produces tokens in suc. Examining the remaining transi-
tions, the following invariants hold. For all atomic proposition xi, and reachable
marking m, one has

∀i m[bi] +
∑

ljk∈{xi,¬xi}
m[ljk] ≥ 1

∀j, k, j′, k′ litjk = litj′k′ ⇒m[ljk] = m[lj′k′ ]

If for some i, m[bi] > 0, we fire ti in order to empty bi. Thus the invariants
become:

∀i
∑

ljk∈{xi,¬xi}
m[ljk] ≥ 1

∀j, k, j′, k′ litjk = litj′k′ ⇒m[ljk] = m[lj′k′ ]

Now define ν by ν(xi) = true if for some litjk = xi, m(ljk) > 0. Due to the
hypothesis, there is a clause cj such that ν(cj) = false. Due to our choice of ν
and the invariants, all inputs of ncj are marked. So firing ncj marks suc.

We show that even the hypotheses that allow the lim-reachability to belong in
NC do not reduce the complexity of other problems.

Proposition 30. The (lim-)deadlock-freeness, (lim-)liveness and reversibility
problems in consistent CPN systems with no initially empty siphons are coNP-
hard.
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6 Conclusions

In this work we have analysed the complexity of the most standard problems
for continuous Petri nets. For almost all these problems, we have characterised
their complexity class by designing new decision procedures and/or providing
reductions to complete problems. We have also shown that the reachability set
inclusion, undecidable for Petri nets, becomes decidable in the continuous frame-
work. These results are summarised in Table 2.

There are three fruitful possible extensions of this work. Other properties like
coverability could be studied. A temporal logic provides a specification language
for expressing properties. In Petri nets, the model checking problem lies on the
boundary of decidability depending on the type of logics (branching versus lin-
ear, propositional versus evenemential). We want to investigate this problem for
continuous Petri nets. Hybrid Petri nets encompass both discrete and continuous
Petri nets. So it would be interesting to examine the complexity and decidability
of standard problems for the whole class or some appropriate subclasses of this
formalism.

Acknowledgments. The authors would like to thank Jorge Júlvez and Manuel
Silva for fruitful discussions on CPNs.
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Abstract. In this paper we investigate the behaviour of GALS (Glob-
ally Asynchronous Locally Synchronous) systems in the context of VLSI
circuits. The specification of a system is given in the form of a Petri net.
Our aim is to re-design the system to optimise signal management, by
grouping together concurrent events. Looking at the concurrent reacha-
bility graph of the given Petri net, we are interested in discovering events
that appear in ‘bundles’, so that they all can be executed in one clock
tick. The best candidates for bundles are sets of events that appear and
re-appear over and over again in the same configurations, forming ‘persis-
tent’ sets of events. Persistence was considered so far only in the context
of sequential semantics. Here we introduce a notion of persistent steps
and discuss their basic properties. We then introduce a formal definition
of a bundle and propose an algorithm to prune the behaviour of a sys-
tem, so that only bundle steps remain. The pruned reachability graph
represents the behaviour of a re-engineered system, which in turn can
be implemented in a new Petri net using the standard techniques of net
synthesis. The proposed algorithm prunes reachability graphs of persis-
tent and safe nets leaving bundles that represent maximally concurrent
steps.

Keywords: asynchronous and synchronous circuit, GALS system, per-
sistence, step transition system, Petri net.

1 Introduction

Traditional circuit design styles have been following one of the two main strands,
namely synchronous and asynchronous. In a nutshell, these two approaches dif-
fer in their techniques of synchronising interaction between circuit elements.
Asynchronous designs adopt ‘on request’ synchronisation where interaction is
regulated by means of handshake control signals. They are designed to be adap-
tive to delays of signal propagation. Synchronous designs, on the other hand,
assume worst case delay between circuit elements and determine a global peri-
odic control signal for synchronisation called the clock. The clock signal limits the
many sequencing options considered in asynchronous control. Thus synchronous
circuits are considered to be a proper subset of asynchronous circuits [6].

Asynchronous logic was the dominant design style with most early comput-
ers. In particular, David Muller’s speed-independent circuits, dating back to the
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late 1950s, have served many interesting applications such as the ILLIAC I and
ILLIAC II computers [15]. However, since 1960, an era when fabrication of in-
tegrated circuits (ICs) became a feasible business, synchronous design became
the mainstream technique as it met the market needs with its shorter design
cycle. Today, majority of designs are synchronous, well etched in the heart of
semiconductor industry together with superior CAD tools and EDA flows.

non−monotonic

Volts

time

pulse

a

b

c

a

b
c

Fig. 1. Hazardous switching of an AND gate

One of the main issues with the complexity of asynchronous circuits was
the handling of hazards. Hazards are manifestations of undesirable switching
activity called glitches. In the asynchronous style of synchronisation, the output
of each circuit element is potentially sensitive to its inputs. This can give rise
to non-monotonic pulses (or glitches) when transitioning between output states,
as illustrated in the waveform of Figure 1 taking the case of an AND gate. Due
to tight timing between the rising edge of input a and falling edge of input b,
the output c produces a non-monotonic pulse before stabilising to a low. This
behaviour is hazardous as it is uncertain how the fanout of the AND gate will
interpret the glitch; the output c temporary switching to logical 1 or staying at
logical 0 all the time.

As shown, for instance, in paper [19], the phenomenon described in the
above example can be conveniently interpreted in terms of formal models such
as Keller’s named transition systems [11] or Petri nets [6]. In particular, what
we see in this circuit is the effect where a signal that is enabled (rising edge of
c) in a certain state of the circuit may become disabled without firing after the
occurrence of another signal (falling edge of b). Such an effect corresponds to
the violation of persistence 1 property at the level of signal transitions if the lat-
ter are used to label the corresponding named transition system. Furthermore,
when such a circuit is modelled by a labelled Petri net following the technique of
[19], the Petri net would also be classified as a non-persistent one. Thus, it was
shown in [19] that the modelling and analysis of an asynchronous circuit with
respect to hazard-freedom is effectively reduced to the analysis of persistence of
its corresponding Petri net model.

1 Informally, persistence means that an action of a system that is enabled at some
point of system’s execution cannot be disabled by another enabled action. It can
only be delayed.
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Synchronous circuits, on the other hand, do not require persistence satisfac-
tion as they are intrinsically immune to hazardous behaviour. The principle rea-
son being that the clock, set at worst-case latency period, filters out undesirable
circuit switching. This greatly simplifies circuit design compared to asynchronous
methods wherein the same circuit had to be analysed for persistence and re-
designed to ensure glitch-free operation. Clocked circuits are thus preferred over
asynchronous circuits for designing functionally correct (hazard-immune) ICs ef-
ficiently. However with chip sizes scaling to deep sub-micron level, semiconduc-
tors are experiencing severe variability and it is becoming extremely complicated
to design chips in the synchronous fashion. This is because designing for vari-
ability requires longer safety margins which in turn reduces the clock frequency
and degrades circuit performance. To cope with these challenges, asynchronous
design methodologies have re-emerged owing to their inherent adaptiveness.
However, they still suffer significant challenges such as complicated design flow,
high overhead costs from control and, lack of CAD support tools and legacy
design reuse. Therefore attempts are being made to find a compromise.

An on-trend intermediate solution is mixed synchronous-asynchronous de-
sign, chiefly acting in the form of Globally Asynchronous Locally Synchronous
(GALS) methodology; its benefits well known in literature [10,9,17]. GALS sys-
tem design, introduced in [5], can exploit the advantages of asynchrony and at
the same time maximally reuse the products of synchronous design flow. This
design technique divides a digital system into synchronous islands which commu-
nicate asynchronously by handshake mechanism. Each island has its own local
clock which can be activated on demand by means of a handshake control signal.
Such systems comprise a mixed temporal behaviour. Asynchronous handshakes
handle switching between components where adaptability can significantly im-
prove performance, while clocking is applied to components where worst case
performance is tolerable. However, it is worthy of note that modelling GALS
systems would involve detection of potential hazardous states due to presence
of asynchronous components, making their design and verification a significant
research challenge.

(a)

A

Y

X Y

Y X

A B

B AX

B

(b)

{A,B}

{X,Y }

(c)

A B

B A

{X, Y }

Fig. 2. Temporal representations of systems having concurrent, parallel and mixed
concurrent-parallel behaviours: (a) interleaving model for asynchronous behaviour; (b)
step model for synchronous behaviour; and (c) mixed model for GALS behaviour
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Being a recent trend, there is a lack of formal models that describe correctness
of GALS designs. The complexity in modelling them begins with the investiga-
tion of persistence. It should be noted that the standard notion of persistence
has been defined at the level of single actions, which is also known as interleav-
ing semantics of concurrency. This notion has been adequate for representing
the correctness of the behaviour of circuits that are fully asynchronous. In asyn-
chronous circuits, there is concurrency between independent actions and sequen-
tial order between causally related actions. This notion is well represented by
Keller’s named transition systems [11]. Figure 2(a) depicts such a model captur-
ing the asynchronous behaviour of a system with four events: A, B, X and Y .
Now, in synchronous circuits, the clock signal would trigger a single action or
several actions. These circuits exhibit parallelism between actions in the same
clock cycle and sequential order between groups of actions in adjacent clock cy-
cles. To represent this group execution of actions, we will use steps, and therefore
we need step transition systems to represent such a behaviour. A step represents
a single action or a group of actions that are triggered simultaneously from a
particular state by the clock signal. Figure 2(b) shows such a transition system
model capturing the temporal behaviour of a synchronous system with the help
of steps. For the case of GALS, there is a mixture of synchrony and asynchrony
and hence both concurrent and parallel behaviour have to be represented. Fig-
ure 2(c) illustrates the mixed temporal behaviour seen in such systems. In all
three cases, step transition systems provide a suitable behavioral model, as a
single transition can be treated as a singleton step.

Synchronous and asynchronous systems have distinct techniques to guarantee
functionally correct behaviour. However, for GALS systems, it is not so straight-
forward as correctness should be accounted from both angles. We would like to
find an adequate representation of the correct behaviour of GALS systems. Here,
it would be natural to define such a behaviour in analogous way as it was done for
asynchronous circuits, i.e., with the use of the notion of persistence. However,
when modelling GALS systems we have to consider complex actions, namely
steps, and corresponding transition systems. This paper is hence centred around
extending the notion of persistence to steps.

The main motivation for studying persistent steps in this paper is as fol-
lows. Digital system design based on formal models is normally associated with
two main tasks: one is the verification of a system’s behavioural specification or
checking the model of the system implementation, while the other is the synthesis
of the circuit implementation from its specification. In the context of verification
we would like, for example, to check if the Petri net model of a GALS system
satisfies the requirement of hazard-freedom under a particular form of synchro-
nisation of actions (in steps). In the context of synthesis, we would like to find
the optimal partitioning of actions into synchronous steps so that the complex-
ity of control of these steps is minimised. For example, the intuitive complexity
of handling synchronisations safely in the three scenarios of Figure 2 varies be-
tween them, from the most intricate in the fully asynchronous one (case (a)) to
the simplest in fully synchronous case of (case (b)), placing the GALS version
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in the middle (case (c)). With this varying complexity, one can design systems
that may exhibit hazards if they are treated as fully asynchronous, but when
actions are synchronised into steps the system would behave safely. Amongst
the methods for synchronising actions into steps, we can consider those that
are based on the insertion of additional control circuits to physically ‘bundle’
actions together, or based on ensuring the appropriate ‘bundling’ constraints
based on timing, or delays. Traditional globally clocked systems, self-timed sys-
tems working under fundamental mode assumptions, and asynchronous systems
with relative timing [6] are all of the latter category.

It is this idea of bundling those steps of actions that are ‘hazard-free’ or
persistent that motivated our notion of bundles, introduced in this paper. In
terms of nets and corresponding transition systems, bundles are informally sets of
transitions that can be executed synchronously and therefore be treated as some
kind of ‘atomic actions’, giving rise to new ‘bigger’ transitions. Section 4 provides
a more formal treatment for bundles and shows a constructive procedure for
deriving them by pruning reachability graphs or transitions systems, depending
on whether we are solving the verification or synthesis problem. For example, in
the process of synthesis of the control policy for a GALS system, such a ‘pruned’
transition system would represent the desired behaviour, which then we would
like to implement in a form of a Petri net.

We hope that the reader will find the theory presented in this paper as a
necessary first step in paving the way towards automating the design of GALS
systems. Right now, we are not trying to answer how this theory can be applied
in the above-sketched scenarios of verification and synthesis. This will be done
in our subsequent papers, which will have to answer many new questions arising
on the way, including, for example, what a rigorous metric for the complexity
of bundle control is, how the notions of maximal steps (global and local) affect
such a complexity, or what the different forms of step persistence (A, B and C)
imply in terms of hazard-avoidance in the system.

The paper is organised as follows. Section 2 recalls the basic definitions and
notations concerning step transition systems and PT-nets. Section 3 introduces
the notion of persistent steps and discusses their basic properties. Section 4
presents the main result of the paper, an algorithm that prunes the concurrent
reachability graph of a net, which serves as an initial system specification, to
obtain a representation of a desired ‘GALS’ behavior. Finally, section 5 contains
conclusions and presents directions for future work.

2 Preliminaries

In this section we recall definitions and notations concerned with step transition
systems and Petri nets used in the rest of this paper.

2.1 Step Transition Systems

Let T be a finite set of net transitions representing actions of a concurrent system.
A set of transitions will be called a step, and we will use α, β, γ, . . . to range
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over all steps P(T ). Sometimes we will identify a step α with its characteristic
function α : T → {0, 1}. We will also write α =

∑
t∈T α(t) · t. The size of α will

be defined by the number of its elements and denoted by |α|.

Definition 1 (st-system). A step transition system (or st-system) over T is
a triple

STS = (Q,A, q0)

consisting of a set of states Q including the initial state q0 ∈ Q, and a set of
labelled arcs A ⊆ Q× P(T )×Q. It is assumed that:

– the transition relation is deterministic, i.e., if (q, α, q′) ∈ A and (q, α, q′′) ∈ A
then q′ = q′′

– each state is reachable, i.e., if q ∈ Q then there are steps α1, . . . , αn (n ≥ 0)
and states q1, . . . , qn = q such that (qi−1, αi, qi) ∈ A for 1 ≤ i ≤ n.

We introduce the following notations:

– q
α−→ q′ and q

α−→ whenever (q, α, q′) ∈ A.

– EnSTS (q) = {α | q α−→} is the set of all steps enabled at a state q.

– activeSTS (q) =
⋃
{α | q

α−→} is the set of all transitions active at a state q
(the transitions that feature in the steps enabled at q).

– EnSTS = {α | ∃q ∈ Q : q
α−→} is the set of all the enabled steps of STS .

– max(q) = {α ∈ EnSTS (q) | ∀β ∈ EnSTS (q) : α �⊂ β} is the set of all
maximal steps enabled at a state q.

2.2 PT-nets

A PT-net is a tuple N = (P, T,W,M0), where P and T are disjoint sets of
respectively places and transitions, W : (P × T ) ∪ (T × P ) → N is an arc
weight function, and M0 : P → N is an initial marking (in general, any mapping
M : P → N is a marking). We will use the standard conventions concerning the
graphical representation of PT-nets, as illustrated in Figure 3(a).

For every element x ∈ P ∪ T , we denote

•x = {y | W (y, x) > 0} (pre-set of x),

x• = {y | W (x, y) > 0} (post-set of x).

If x ∈ T , we will call p ∈ •x a pre-place of x and p ∈ x• a post-place of x.
The dot-notation extends in the usual way to sets of elements, for example,
•X =

⋃
x∈X

•x.
Moreover, for every place p ∈ P and step α ∈ P(T ), we denote:

W (p, α) =
∑
t∈T

α(t) ·W (p, t) and W (α, p) =
∑
t∈T

α(t) ·W (t, p) .

In other words, W (p, α) gives the number of tokens that the firing of α removes
from p, and W (α, p) is the total number of tokens inserted into p after the
execution of α.
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(a)

I1 I2

O1 O2

(b)
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{I2}
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Fig. 3. Net N (a), and its concurrent reachability graph CRG(N) (b)

Given a PT-net N = (P, T,W,M0), a step α ∈ P(T ) is enabled and may be
fired at a marking M if, for every place p ∈ P :

M(p) ≥ W (p, α) . (1)

We denote this by M [α〉. (For a singleton step α = {t}, we will write M [t〉 rather
than M [{t}〉.) Firing such a step leads to the marking M ′, for every place p ∈ P
defined by:

M ′(p) = M(p)−W (p, α) + W (α, p) . (2)

We denote this by M [α〉M ′.
The concurrent reachability graph CRG(N ) of N is the st-system CRG(N ) =

([M0〉, A,M0) over T where:

[M0〉 = {Mn | ∃α1, . . . , αn ∃M1, . . . ,Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi} (3)

is the set of reachable markings and (M,α,M ′) ∈ A iff M [α〉M ′. Figure 3(b)
shows the concurrent reachability graph of the PT-net in Figure 3(a). Further-
more, we will call α1 . . . αn, as in the formula (3), a step sequence and write
M0[α1 . . . αn〉Mn.

Definition 2 (sequential conflict). Two distinct transitions, t, t′ ∈ T , are in
sequential conflict at a marking M if M [t〉 and M [t′〉, but M [tt′〉 does not hold.

Definition 3 (concurrent conflict). Two distinct transitions, t, t′ ∈ T , are
in concurrent conflict at a marking M if M [t〉 and M [t′〉, but M [{t, t′}〉 does
not hold.

Note that sequential conflict implies concurrent conflict, but not necessarily vice
versa.

Definition 4 (safe net). A PT-net N = (P, T,W,M0) is safe if

∀p ∈ P ∀M ∈ [M0〉 : M(p) ≤ 1.

In view of the above definition, the markings of safe nets can be treated as subsets
of the set of places P , where a marking is a set of places for which M(p) = 1.
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3 Step Persistence in Nets

Muller’s speed independent theory provided a unique method for guaranteeing
hazard-freeness of asynchronous circuits [14]. The semimodularity condition in
this work required that an excitation of a circuit element must not be removed
until absorbed by the system [18]. This condition was identified by Keller in [11]
2 to be the same as the property of persistence in his named transition sys-
tem model for asynchronous parallel computation. Thus satisfying the property
of persistence became one of the key requirements when designing hazard-free
asynchronous circuits.

Later, the idea of persistence was investigated in many papers, for example,
in [1,2,3,4,7,13,19]. However, with the exception of [7], it was only considered
in the context of sequential executions of systems, and defined for transitions
(rather than steps) as follows:

Definition 5 (persistent net, [13]). A PT-net N = (P, T,W,M0) is persis-
tent if, for all distinct transitions t, t′ ∈ T and any reachable marking M , M [t〉
and M [t′〉 imply M [tt′〉.

We can re-write this definition from the point of view of single transition as
follows:

Definition 6 (persistent transition). A transition t ∈ T is persistent in a
PT-net N = (P, T,W,M0) if

∀M ∈ [M0〉 ∀t′ ∈ T \ {t} : M [t〉 ∧M [t′〉 =⇒ M [t′t〉.

The following definition gives three versions (a, b and c) of a definition of a per-
sistent step. In each case, we try to capture the fact that a persistent step, which
is enabled at some reachable marking M , cannot be disabled by another enabled
step. The difference in the versions lies either in the different understanding of
what ‘not to be disabled’ means or what we mean by a ‘different’ step. Notice
that the introduced notions of a persistent step are defined globally and the
required conditions must be satisfied at all the markings, where a candidate for
a persistent step is enabled. A more detailed analysis of persistent steps, which
considers also steps that are locally persistent, is presented in [12].

Definition 7 (persistent step in a net). A step α ∈ P(T ) is a-persistent,
b-persistent and c-persistent in a PT-net N = (P, T,W,M0) if respectively the
following hold:

(a) ∀M ∈ [M0〉 ∀β ∈ P(T ) : M [α〉 ∧ M [β〉 ∧ β �= α =⇒ M [β(α \ β)〉
(b) ∀M ∈ [M0〉 ∀β ∈ P(T ) : M [α〉 ∧ M [β〉 ∧ β ∩ α = ∅ =⇒ M [βα〉
(c) ∀M ∈ [M0〉 ∀β ∈ P(T ) : M [α〉 ∧ M [β〉 ∧ β �= α =⇒ M [βα〉 .

As can be easily seen, each of the three versions is a conservative extension of
the standard definition of a persistent transition (see Definition 6). a-persistence

2 Keller ([11]) was the first to consider persistence in the context of Petri nets.
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requires that only unexecuted part of a step α should not be disabled, while b-
persistence and c-persistence insist on continued enabledness of the persistent
step α. In b-persistence, two steps are considered different if their intersection
is empty, while for a-persistence and c-persistence it is enough if different steps
do not coincide (but they can have non-empty intersection). It turns out that a-
persistence and b-persistence are equivalent, as is shown in the following propo-
sition.

Proposition 1. Let α ∈ P(T ) be a step of a PT-net N = (P, T,W,M0). Then
α is a-persistent in N iff α is b-persistent in N .

Proof. Suppose that α and β ∈ P(T ) are two different non-empty steps enabled
at a marking M of N (notice that empty step is trivially persistent according
to A, B or c-persistence defined in Definition 7).
=⇒ Let α be a-persistent in N , and so M [β(α \ β)〉. Suppose β ∩ α = ∅. Then
we have α \ β = α, implying M [βα〉. Hence, α is b-persistent in N .
⇐= Let α be b-persistent in N , and so M [(β \ α)α〉 as (β \ α) ∩ α = ∅. Hence,
for every place p ∈ P :

M(p)−W (p, β \ α) + W (β \ α, p) ≥ W (p, α)

which implies:

M(p)−W (p, β) + W (p, β ∩ α) + W (β, p)−W (β ∩ α, p) ≥ W (p, α) .

Hence we have

M(p)−W (p, β) + W (β, p) ≥ W (p, α)−W (p, β ∩ α) + W (β ∩ α, p)
= W (p, α \ β) + W (β ∩ α, p)
≥ W (p, α \ β)

implying M [β(α \ β)〉. Hence α is a-persistent. � 

It is easy to see that c-persistence is stronger than the other two notions. Figure 4
(taken from [12]) shows an example of a step, {t, t}, which is a-persistent, but
not c-persistent. The step {t, t} there is only enabled at marking M3, where
also {t} and {t} steps are enabled. After executing step {t}, step {t, t} is still
enabled, but after executing step {t}, only unexecuted part of {t, t} (that means
{t}) is enabled.

For a safe PT-net N , c-persistent non-singleton steps are built out of transi-
tions lying on self-loops. To show this, we first prove an auxiliary result.

Proposition 2. Let α be a c-persistent step of a safe PT-net N = (P, T,W,M0)
enabled at a reachable marking M of N . Then •(α∩β) = (α∩β)• for every step
β �= α enabled at M in N .

Proof. Let α∩β �= ∅ (for α∩β = ∅ the proposition holds). Suppose p ∈ •(α∩β)
for some step β �= α enabled at M in N . This and M [α〉 (as α is enabled at
M) imply M(p) = 1. Since α is c-persistent, there exists a marking M ′ such



Step Persistence in the Design of GALS Systems 199

(a)

p1 p2 p3

p4

t ′ t t

t̃

(b)

M0

M1

M3

M2

M4

{t ′}

{̃t}

{t}

{t}, {t , t}

{t}

{t}

Fig. 4. A safe net N (a), and its concurrent reachability graph CRG(N ) (b). Step
{t, t} is a-persistent, but not c-persistent

that M [β〉M ′[α〉. Again, as M ′[α〉 and p ∈ •(α ∩ β), we have M ′(p) = 1. From
M [β〉M ′, we have M ′(p) = M(p) − W (p, β) + W (β, p), and so

∑
t∈T β(t) ·

W (t, p) =
∑

t∈T β(t) · W (p, t). Let β = {t1, . . . , tn}. Then, W (t1, p) + . . . +
W (tn, p) = W (p, t1) + . . . + W (p, tn) and, by N being safe, all the arc weights
in this formula are 0 or 1. We now consider two cases:

1. There is i ≤ n such that W (ti, p) = 1 and W (p, ti) = 0. Since M [ti〉 (as
M [β〉), M(p) = 1 and N is safe, we have a contradiction, because ti, when
fired, would deposit another token in p.

2. There is j ≤ n such that W (tj , p) = 0 and W (p, tj) = 1. This means that
there is i ≤ n, W (ti, p) = 1 and W (p, ti) = 0. But this was already ruled out
by the first case. So, contradiction again.

As a result, for each transition ti ∈ β, W (p, ti) = W (ti, p). Hence p ∈ (α ∩ β)•.
Consequently, •(α ∩ β) ⊆ (α ∩ β)•.

Suppose now that p ∈ (α ∩ β)• \ •(α ∩ β). Then, by M [α ∩ β〉 and the safe-
ness of N , M(p) = 0. Hence, by M [α〉 and M [β〉, we must have p /∈ •α ∪ •β.
Consequently, since there is M ′′ such that M [βα〉M ′′, we obtain M ′′(p) ≥ 2, a
contradiction with N being safe. Hence •(α ∩ β) = (α ∩ β)•. � 

Theorem 1. Let α be a non-singleton c-persistent step of a safe PT-net N =
(P, T,W,M0) which is enabled in at least one reachable marking. Then all the
transitions of α lie on self-loops, i.e., •t = t• for t ∈ α.

Proof. If α = ∅ the theorem holds. Let |α| ≥ 2. Suppose that t ∈ α and M be
a reachable marking enabling α. Since {t} �= α and M [t〉 for any marking M
such that M [α〉, we have, from Proposition 2, •(α ∩ {t}) = (α ∩ {t})•. Hence
•t = t•. � 

We now want to relate the persistence of a step with the persistence of its
constituent transitions in safe nets. We first consider a-persistent steps, but as
we already know the results will also hold for b-persistent steps.
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First, we prove a simple, but important, fact concerning pre-sets and post-sets
of transitions in steps of safe nets.

Fact 1. If α is a step enabled in a reachable marking of a safe PT-net N , then
(•t ∪ t•) ∩ (•u ∪ u•) = ∅, for all distinct transitions t, u ∈ α.

Proof. Let t, u ∈ α and M be a reachable marking such that M [α〉.
Suppose that p ∈ •t ∩ •u. Since M [α〉, we obtain M [{t, u}〉. That means

M(p) ≥ W (p, t) + W (p, u) = 2, a contradiction with N being safe. As a result,
•t ∩ •u = ∅.

Suppose now that p ∈ t• ∩ u•. Since M [α〉, we obtain M [{t, u}〉M ′. Hence
M ′(p) = M(p) − W (p, t) − W (p, u) + W (t, p) + W (u, p). As t and u cannot
share a pre-place, W (p, t) and W (p, u) cannot both be 1. If one of them has p
as its pre-place, then M(p) = 1, as otherwise one of the transitions would not
be enabled at M , and both are enabled at M . So, the right hand side of the
equation yields 2, but the left hand side cannot as the net is safe. We have a
contradiction. As a result, t• ∩ u• = ∅.

Suppose now that p ∈ t• ∩ •u. By M [u〉, M(p) = 1. On the other hand, we
know that p /∈ •t ∩ •u and so p ∈ t• \ •t. Since M [t〉M ′′, for some marking M ′′,
we obtain M ′′(p) = 2, a contradiction with N being safe. Hence, t•∩•u = ∅. � 
Theorem 2. Let α be a step in a safe PT-net N = (P, T,W,M0) which is
enabled in at least one reachable marking. If all the transitions in α are persistent
in N , then α is a-persistent in N .

Proof. Let M be a reachable marking and β �= α be a step in N such that M [α〉
and M [β〉. We need to show that M [β(α \ β)〉.

Assume that α ∩ β = {t1, . . . , tm}, α \ β = {w1, . . . , wn} and β \ α =
{u1, . . . , uk}. Note that all the transitions in these three sets are different. From
M [β〉 we have M [t1 . . . tmu1 . . . uk〉. Now, since each wi is persistent and enabled
at M , we have that M [t1 . . . tmu1 . . . ukw1 . . . wn〉. Since α and β are steps in a
safe net N enabled at some marking (M), we have, from Fact 1, that transitions
in α and β have disjoint pre-sets and post-sets. Hence we have M [β(α \ β)〉. � 
We now consider c-persistent steps. In this case the antecedent in the implication
is stronger.

Theorem 3. Let α be a step in a safe PT-net N = (P, T,W,M0) which is
enabled in at least one reachable marking. If all the transitions in α are persistent
and lie on self-loops in N , then α is c-persistent in N .

Proof. Let M be a reachable marking and β �= α be a step in N such that M [α〉
and M [β〉. We need to show that M [βα〉.

Proceeding similarly as in the previous proof we can show that

M [t1 . . . tmu1 . . . ukw1 . . . wn〉 .

Now, since all transitions in α lie on self-loops we further obtain

M [t1 . . . tmu1 . . . ukt1 . . . tmw1 . . . wn〉 .

Hence we have M [βα〉. � 
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In both Theorem 2 and Theorem 3, the implications in the opposite direction
do not hold. A counterexample is shown in the Figure 5.

(a)

p1 p2 p3

p4

t ′ t t

t̃

(b)

M0

M1

M2

{t ′}

{̃t}

{t}

{t}

{t}
{t, t}

Fig. 5. A safe net N (a), and its concurrent reachability graph CRG(N ) (b). A per-
sistent step α = {t, t} of N contains a non-persistent transition t.

Observe that step α = {t, t} in Figure 5 is both a-persistent and c-persistent,
but t ∈ α is not persistent at M0 = {p1, p2}, because there exists t′ �= t such
that M0[t〉 and M0[t

′〉, but M0[t
′t〉 does not hold.

4 Pruning Reachability Graphs

The main motivation for studying persistent steps in this paper is to discover
which sets of transitions can be executed synchronously and therefore be treated
as some kind of ‘atomic actions’, giving rise to new ‘bigger’ transitions, which
would execute in a ‘hazard-free’ way. We will call them bundles. Looking at our
application area of asynchronous circuits, bundling actions would reduce signal
management by merging concurrent signals into one event. This merging must be
done in a consistent fashion. The best candidates for bundles are persistent steps,
but if we want to form ‘bigger’ transitions from them, we must make sure that one
enabled persistent step does not include another enabled persistent step. All the
transitions in a bundle must always appear together, in the same configurations.
In the ideal situation (we say ideal, because it might be difficult to achieve), we
do not want to allow, for example, three persistent steps {a, b}, {a} and {b} to be
enabled in a given transition system. We need to choose: either to opt for {a, b}
and delete {a} and {b}, or the other way round. Therefore, we need to develop
an algorithm which, for a given net N = (P, T,W,M0), would allow us to prune
its reachability graph CRG(N ) in such a way that all persistent steps would
satisfy an additional ‘non-inclusion’ condition. The ‘pruned’ transition system
would represent the desired behaviour, which then we would like to implement
in a form of a Petri net in a process of synthesis.

First we define a sub-st-system, which will be obtained as a result of pruning
a given reachability graph.
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Definition 8 (sub-st-system). An st-system STS = (Q,A, q0) is a sub-st-
system of an st-system STS ′ = (Q′, A′, q0) if Q ⊆ Q′, A ⊆ A′ and, for every
q ∈ Q, activeSTS (q) = activeSTS ′(q). We denote this by STS � STS ′.

In the above definition, EnSTS of a ‘properly pruned’ reachability graph STS ′

will be a set of bundles . What we mean by ‘properly pruned’ will be described
by conditions stated in Problem 1.

First, we need to re-define the three notions of step persistence, that were
used for nets, in the context of transition systems. Once we start pruning an
st-system, we need to decide whether the remaining steps that were previously
persistent remain persistent. Checks for persistence will be done in a transition
system (that might not be a reachability graph of any net).

Definition 9 (persistent step in a transition system). A step α ∈ EnSTS

is a-persistent, b-persistent and c-persistent in an st-system STS = (Q,A, q0) if

respectively the following hold for all states q ∈ Q and steps β such that
α←− q

β−→:

(a) β �= α =⇒ q
β(α\β)−−−−→

(b) β ∩ α = ∅ =⇒ q
βα−−→

(c) β �= α =⇒ q
βα−−→ .

Remark 1. A step α is a-persistent in a net N iff α is a-persistent in a transition
system CRG(N ). The same can be said in the case of b- and c-persistence.

We have the following relationships between the three step persistence notions
defined for transition systems.

Proposition 3. Let STS = (Q,A, q0) be a st-system.

1. If α ∈ EnSTS is a-persistent, then it is also b-persistent.

2. If α ∈ EnSTS is c-persistent, then it is also b-persistent.

Proof. (1) Let q ∈ Q and
α←− q

β−→ be such that β ∩ α = ∅. Since α ∈ EnSTS is

a-persistent, we have q
β(α\β)−−−−→. Hence q

βα−−→ which means that α ∈ EnSTS is
b-persistent.

(2) Follows directly from Definition 9. � 

Note that in the class of general step transition systems, b-persistence does not
imply a-persistence of steps, as it was proved for nets. Indeed, let α ∈ EnSTS be

b-persistent step in STS , and β �= α and q ∈ Q be such that
α←− q

β−→. We know
that β ∩ (α \ β) = ∅. However, with such assumptions, we cannot in general

guarantee that q
α\β−−→. Though latter is true for concurrent reachability graphs

of PT-nets, we must also consider step transition systems resulting from the
pruning of such reachability graphs.
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Problem 1. Let N be a PT-net and CRG(N ) be its concurrent reachability
graph. Find an st-system STS such that STS � CRG(N ) and additionally sat-
isfying (D)&(E) or (D)&(F ), where the three conditions are defined as follows:

(D) All steps in EnSTS are b-persistent in STS.3

(E) α �⊂ β for all nonempty different steps α, β ∈ EnSTS .
(F ) α �⊂ β for all states q and all nonempty different steps α, β ∈ EnSTS (q).

We denote this respectively by

STS �global
pers CRG(N ) and STS �local

pers CRG(N ) .

We also refer to the condition described in (E) as global non-inclusion, and to
the condition described in (F ) as local non-inclusion.

The difference between �global
pers and �local

pers is that the latter only requires non-
inclusion of bundles locally for each state, whereas the former insists that non-
inclusion holds globally. We therefore have

Proposition 4. STS �global
pers CRG(N ) implies STS �local

pers CRG(N ).

In our first attempt to solve Problem 1, we will concentrate on PT-nets that are
persistent according to Definition 5. We then have the following result.

Theorem 4. If N is persistent (according to Definition 5), then there is at least
one STS satisfying STS �global

pers CRG(N ).

Proof. It suffices to take CRG(N ) and delete all non-singleton (nonempty) steps.
� 

As the above proof produces completely sequential solution, we will now search
for a more concurrent one. We will also require that the original PT-net is not
only persistent, but as well safe.

Proposition 5. If N is persistent (according to Definition 5) and safe, then
every step α ∈ EnCRG(N ) is b-persistent in CRG(N ).

Proof. Let α ∈ EnCRG(N ). If N is persistent (according to Definition 5), all
transitions in α are persistent (according to Definition 6). Hence, from Theorem 2
and the fact that N is safe, we have that α is a-persistent in N , and also b-
persistent in N (see Proposition 1). Following Remark 1, we conclude that α is
b-persistent in CRG(N ). � 

The above proposition guarantees b-persistence of steps in CRG(N ) of a per-
sistent and safe net N , but the non-inclusion conditions ((E) or (F )) are, in

general, not satisfied in CRG(N ), as for all its states q, q
α−→ implies q

β−→
for any step β ⊂ α. To satisfy the non-inclusion conditions, we need to prune
CRG(N ) in such a way that b-persistence of steps is maintained. We will now

3 Alternatively, we could require a-persistence or c-persistence. We opted here for
B-persistence, because it is the weakest of the three notions.
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explore what happens if we decide to prune all but the maximal steps at every
reachable marking.

In what follows the st-system CRGmax (N ) is obtained from CRG(N ), the
concurrent reachability graph of a PT-net N , by deleting at every reachable
marking M , all the arcs labelled by non-maximal non-empty4 steps, and then
removing the nodes that became unreachable from the initial marking by the
removal of such steps.

Proposition 6. CRGmax (N ) � CRG(N ).

Proof. Follows from definitions and the fact that for each enabled step there is
a maximal step enabled at the same marking. � 

Proposition 7. CRGmax (N ) satisfies condition (F ) from Problem 1.

Proof. Follows from the fact that maximal steps are in-comparable (see definition
of maximal steps in Section 2.1). � 

(a)

a b

(b)

M0

{a, b}
{a} {b}

{b} {a}
(c)

M0

{a, b}

Fig. 6. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRGmax (N ) �local

pers CRG(N ) obtained in the pruning procedure (c)

(a)

a t1 t2

(b)

M0

{a}{t2, a}{t1, a}

{t1} {t2}

{t1} {t2}

(c)

M0

{t2, a}{t1, a}

{t1} {t2}

Fig. 7. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRGmax (N ) �local

pers CRG(N ) obtained in the pruning procedure (c)

Figures 6, 7, 8 and 9 show the examples of persistent and safe nets for which
the described pruning procedure works as their CRGmax (N ) graphs contain only
b-persistent steps. In all the mentioned examples the pruned reachability graph
satisfies CRGmax (N ) �local

pers CRG(N ), and in case of the example in Figure 6, we

even have CRGmax (N ) �global
pers CRG(N ). So, the pruning procedure helped to

4 For technical reasons we do not want to delete empty steps, as they might be im-
portant in future algorithms.
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achieve local non-inclusion without jeopardising b-persistence of the remaining
steps. Notice, however, that in Figures 7(c) and 9(c) this b-persistence in initial
markings is achieved only, because the steps enabled there are not disjoint and
therefore satisfy b-persistence condition trivially.

(a)

a b c

(b)

M0

{a, b}{a}

{b}

{b}

(c)

M0

{a, b}

{b}

Fig. 8. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRGmax (N ) �local

pers CRG(N ) obtained in the pruning procedure (c)

In general, pruning non-maximal steps may make some of the remaining steps
non-b-persistent. Figure 10 shows that the initially enabled step {b} is not b-
persistent after the pruning procedure. After executing step {a} it is not longer
enabled. Instead step {b, c} is enabled, because it was the maximal step in the
marking M . Having said that, we propose a weaker version of condition (B)
which holds for safe and persistent PT-nets.

Proposition 8. If N is persistent (according to Definition 5) and safe, then,

for every marking M in CRGmax (N ),
α←− M

β−→ implies:

(B′) β ∩ α = ∅ =⇒ ∃γ : α ⊆ γ ∧M
βγ−−→ .

Proof. From Proposition 5 we know that M
βα−−→ in CRG(N ). Moreover, there

is a maximal step γ available (as it remained after pruning) after executing β

from M such that α ⊆ γ. Hence M
βγ−−→ in CRGmax (N ). � 

Hence, pruning non-maximal steps may result in the loss of persistence when
α ⊂ γ in (B′). In such a case we may, however, ‘repair’ N by making the step γ
non-enabled. The mechanism for achieving this is simple, namely we select one
transition from α, one transition from γ \α, and make sure that they cannot be
executed simultaneously.

Let N be a PT-net and t �= u be two transitions. Then Nt↔u is a PT-net
obtained from N by adding a new place p marked initially with one token,
and such that W (p, t) = W (t, p) = W (p, u) = W (u, p) = 1. This construction is
illustrated in Figure 11, where we try to fix the problem of the netN in Figure 10.
We added a new place p and chose b and c as our t and u (the only choice in this
example) creating a new net N ′ = Nb↔c. The new place disables the concurrent
step {b, c} at M leaving only the singleton steps {b} and {c} enabled at M .
They are now maximal steps at this marking. In fact, in this simple example,
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(a)

da b

c

(c)

M0

{c}

{b, c}

{b, d}{a, d}

{a}

(b)

M0{c}

{c}

{d} {c, d}

{b}

{b, d}

{b, c, d}

{c}

{c}

{b} {b, c}

{d} {c, d}

{d}

{b}

{b, d}

{b}

{d}

{a}

{a, d}

{a}

{d}

{b} {a}

{d}

{b}

{a}{a, d}

Fig. 9. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRGmax (N ) �local

pers CRG(N ) obtained in the pruning procedure (c)

we have only singleton steps in the concurrent reachability graph, which makes
it maximal without pruning.

In the following propositions we show that after the proposed modification the
net generates a reachability graph, which is the sub-st-system of the reachability
graph of the initial net. Also, the modified net is still persistent (according to
Definition 5) and safe.

Proposition 9. Let N be persistent (according to Definition 5) and safe net.
The reachable markings of CRG(Nt↔u) and CRG(N ) are the same, if we
identify each reachable marking M of N with the reachable marking M ∪ {p}
of Nt↔u. Furthermore, CRG(Nt↔u) � CRG(N ).

Proof. Follows from definitions. � 

Proposition 10. If N is persistent (according to Definition 5) and safe, then
CRG(Nt↔u) is also persistent (according to Definition 5) and safe.

Proof. Follows from definitions. � 
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(a)

a b

c

(b)

M0

M{c}

{b}

{c}

{b, c}

{b}{a}

{a}{b}

(c)

M0

M

{c}

{b, c}

{b}{a}

{a}

Fig. 10. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRGmax (N ) obtained in the pruning procedure, which does not satisfy
CRGmax (N ) �local

pers CRG(N ) (c)

(a)

p

a b

c (b)

M0

M{c}

{b}

{c}

{b}{a}

{a}{b}

Fig. 11. Fixing the problem in the example in Figure 10: persistent and safe net N ′ =
Nb↔c (a), its concurrent reachability graph CRG(N ′) = CRGmax (N ′), which trivially
satisfies CRGmax (N ′) �local

pers CRG(N ′) (and also CRGmax (N ′) �global
pers CRG(N ′)) (b)

We can now propose a dynamic way of pruning embodied by the following
algorithm:

while ¬(CRGmax (N ) �local
pers CRG(N )) do

choose M,α, β, γ in CRGmax (N ) satisfying (B′) with α ⊂ γ

choose t ∈ α, u ∈ γ \ α

N := Nt↔u
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It follows from what we already demonstrated that the above algorithm always
terminates and for the final PT-net N we have:

CRGmax (N ) �local
pers CRG(N ) .

Since the algorithm is non-deterministic, we may try various strategies for choos-
ing t and u.

5 Conclusions

In GALS, bundling is envisaged to reduce signal management, and could re-
duce the cost of scheduling and control, and improve system performance. The
ideal way to model mixed synchronous-asynchronous systems is to start with a
concurrent model that is persistent and fully asynchronous in behaviour. Then
run several iterations that derive a combination of bundles that represents the
temporal nature the designer requires. Careful selection of bundles is essential
so that the pruned behaviour of the fully asynchronous model still exhibits some
characteristics of its parent and is persistent. Step persistence is hence an im-
portant characteristic that will guarantee true persistent behaviour for mixed
synchronous-asynchronous models.

In this paper we developed a pruning procedure for reachability graphs of
persistent and safe nets. This procedure constructs a step transition system that
contains only bundles. The bundles in our algorithm represent maximally concur-
rent steps of the initial system. In future we intend to investigate other possible
pruning algorithms, weakening our constraints and allowing the initial system’s
behaviour to be given by a net that is not necessarily persistent. Furthermore,
we plan to allow in the algorithms the choice of non-maximal bundles in certain
cases. For example, input signals are usually behaving in fully asynchronous way
and should not be bundled.
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Abstract. A concurrent system is persistent if throughout its operation
no activity which became enabled can subsequently be prevented from
being executed by any other activity. This is often a highly desirable
(or even necessary) property; in particular, if the system is to be imple-
mented in hardware. Over the past 40 years, persistence has been in-
vestigated and applied in practical implementations assuming that each
activity is a single atomic action which can be represented, for exam-
ple, by a single transition of a Petri net. Recently, it turned out that
to deal with the synthesis of GALS systems one also needs to consider
activities represented by steps, each step being a set of simultaneously
executed transitions. Moving into the realm of step based execution, se-
mantics creates a wealth of new fundamental problems and questions.
In particular, there are different ways in which the standard notion of
persistence could be lifted from the level of sequential semantics to the
level of step semantics. Moreover, one may consider steps which are per-
sistent and cannot be disabled by other steps, as well as steps which
are nonviolent and cannot disable other steps. In this paper, we provide
a classification of different types of persistence and nonviolence, both
for steps and markings of pt-nets. We also investigate behavioural and
structural properties of such notions.

Keywords: persistence, nonviolence, step semantics, Petri net, taxon-
omy, behaviour, structure.

1 Introduction

A concurrent system is persistent [2–4, 7] if throughout its operation no activity
which became enabled can subsequently be prevented from being executed by
any other activity. This is often a highly desirable (or even necessary) property; in
particular, if the system is to be implemented in hardware [5, 8]. Over the past 40
years, persistence has been investigated and applied in practical implementations
assuming that each activity is a single atomic action which can be represented,
for example, by a single transition of a Petri net (used as a formal representation
of a concurrent system). In other words, persistence was considered assuming the
sequential execution semantics of concurrent systems.
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Recently, in the paper [6] we argued that the notion of persistence is re-
stricted and in dealing with the synthesis of GALS systems one also needs to
consider activities represented by steps (sets of simultaneously executed transi-
tions). Moving into the realm of step based execution semantics creates a wealth
of new fundamental problems and intriguing questions, some of which have been
addressed in [6]. In particular, there are different ways in which the standard
notion of persistence could be lifted from the level of sequential semantics to the
level of step semantics. For example, if part of an enabled has been executed by
another step, should we insist on the whole delayed step to be still enabled, or
just its remaining part? Moreover, one may consider steps which are persistent
and cannot be disabled by other steps, as well as steps which are nonviolent [1, 2]
and cannot disable other steps. In this paper, we aim at providing a classifica-
tion of different types of persistent and nonviolent steps taking pt-nets to be
the system model in which the discussion is carried out. Moreover, we introduce
and investigate persistence and nonviolence at the level of markings of pt-nets.
We then investigate behavioural and structural properties of notions pertaining
to persistence and nonviolence both for the general pt-nets and safe pt-nets.

The paper is organised as follows. In the next section, we present basic notions
and notations used throughout. Section 3 introduces various types of persistent
and nonviolent steps of transitions in pt-nets, and Section 4 provides their taxon-
omy. The following section extends the discussion of persistence and nonviolence
to markings of pt-nets. In Section 6, we investigate the basic properties of per-
sistent and nonviolent steps of transitions in pt-nets, and then, in Section 7, we
focus specifically on the class of safe pt-nets.

2 Preliminaries

A pt-net is a tuple N = (P, T,W,M0), where P and T are finite disjoint sets of
respectively places and transitions, W : (P × T )∪ (T ×P )→ N is an arc weight
function, and M0 : P → N is the initial marking. In general, any mapping
M : P → N is a marking of N , and if M ′ is a marking such that M(p) ≥ M ′(p),
for all p ∈ P , then we denote M ≥ M ′. We also use the standard conventions
concerning the graphical representation of nets.

A step α of N is a set of its transitions, α ⊆ T . We will use α, β, γ, . . . to
range over the set of steps. For every place p ∈ P , W (p, α) =

∑
t∈α W (p, t) and

W (α, p) =
∑

t∈α W (t, p). Intuitively, W (p, α) gives the number of tokens that the
firing of α removes from p, and W (α, p) is the total number of tokens inserted
into p. The pre-places and post-places of a step α are respectively defined as
•α = {p ∈ P | W (p, α) > 0} and α• = {p ∈ P | W (α, p) > 0}. For technical
reasons, we consider the empty step which has no pre-places nor post-places. A
singleton step α = {t} is often denoted by t, and by a non-singleton step we
mean any step that is not a singleton, including the empty step.

A step α is enabled and may be fired at a marking M if M(p) ≥ W (p, α), for
every place p ∈ P . We denote this by M [α〉. Firing such an enabled step leads to
the marking M ′ defined by M ′(p) = M(p)−W (p, α) +W (α, p), for every place
p ∈ P . We denote this by M [α〉M ′.
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A step sequence from a marking M is a (possibly empty) sequence of steps
σ = α1 . . . αn such that there are markings M1, . . . ,Mn+1 satisfying M = M1

and Mi[αi〉Mi+1, for every i ≤ n. We denote this by M [σ〉 and M [σ〉Mn+1. If
M = M0 then Mn+1 belongs to the set [M0〉 of reachable markings of N .

The concurrent reachability graph CRG(N ) of N is defined as a labelled di-
rected graph CRG(N ) = ([M0〉, A,M0), where the reachable markings of N are
vertices, the initial marking is the initial vertex, and the set of arcs is given by
A = {(M,α,M ′) | M ∈ [M0〉∧M [α〉M ′}. In the diagrams, we omit arcs labelled
by the empty step.

A pt-net N is ordinary if W ((P ×T )∪ (T ×P )) ⊆ {0, 1}, and safe if M(P ) ⊆
{0, 1}, for every M ∈ [M0〉 . It can be seen that a safe pt-net without non-active
transitions (i.e., transitions that are not enabled at any reachable marking) is
ordinary.

Note that being a safe pt-net does not depend on the chosen semantics, i.e.,
the sequential semantics where only singleton steps are executed, or the full step
semantics. In what follows, a step α of a pt-net:

– is active if there is a reachable marking which enables it.
– is positive if W (α, p) ≥ W (p, α), for every p ∈ P .
– is disconnected if (•t∪t•)∩(•t′∪t′•) = ∅, for all distinct transitions t, t′ ∈ α.
– lies on self-loops if W (p, t) = W (t, p), for all t ∈ α and p ∈ P .

Clearly, the empty step lies on self-loops, and if α lies on self-loops then it is
also positive. We also have:

Fact 1. If M [α〉 and M ′ ≥ M , then M ′[α〉.

Fact 2. If M [α〉 and β ⊆ α, then M [β(α \ β)〉.

Fact 3. A step α is enabled at a reachable marking M of a safe pt-net iff α is
disconnected and consists of transitions enabled at M .

3 Persistence and Nonviolence

In its standard form, persistence is stated as a property of nets executed accord-
ing to the sequential semantics.

Definition 1 (persistent net, [7]). A pt-net N is persistent if, for all tran-
sitions t �= t′ and any reachable marking M of N , M [t〉 and M [t′〉 imply M [tt′〉.

The above definition captures a property of the entire system represented by
the pt-net (see Figure 1). If one is interested in a fine-grained preservation
of executability of actions, it is natural to re-phrase it in terms of individual
transitions.

Definition 2 (nonviolent/persistent transition). Let t be a transition en-
abled at a marking M of a pt-net N . Then:



A Taxonomy of Persistent and Nonviolent Steps 213

p1

p2

p3

p4

p5

p6

p7

p8

t

t ′

t ′′

t ′′′

M2

M3

M4

M5

M0 M1

{t ′}{t}

{t}{t ′}

{t ′′}{t ′′′}

{t ′′′}{t ′′}

{t , t ′}
{t ′′, t ′′′}

Fig. 1. A persistent safe pt-net and its concurrent reachability graph (arcs labelled
by the empty step are omitted)

– t is locally nonviolent at M if, for every transition t′ enabled at M ,

t′ �= t =⇒ M [tt′〉 .

– t is locally persistent at M if, for every transition t′ enabled at M ,

t′ �= t =⇒ M [t′t〉 .

Moreover, an active transition t is globally nonviolent (or globally persistent) in
N if it is locally nonviolent (resp. locally persistent) at every reachable marking
of N at which it is enabled.

The net-oriented and transition-oriented definitions are closely related as, due
to the symmetric roles played by t and t′ in Definition 1, we immediately obtain
the following.

Proposition 1. Let N be a pt-net. Then the following are equivalent:

– N is persistent.
– N contains only globally nonviolent transitions.
– N contains only globally persistent transitions.

We will now introduce the central definitions of this paper, in which we lift the
notions of persistence and nonviolence from the level of individual transitions to
the level of steps.

Definition 3 (nonviolent step). Let α be a step enabled at a marking M of
a pt-net N . Then:

– α is locally a-nonviolent at marking M (or la-nonviolent) if, for every step
β enabled at M ,

β �= α =⇒ M [α(β \ α)〉.
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– α is locally b-nonviolent at marking M (or lb-nonviolent) if, for every step
β enabled at M ,

β ∩ α = ∅ =⇒ M [αβ〉.

– α is locally c-nonviolent at marking M (or lc-nonviolent) if, for every step
β enabled at M ,

β �= α =⇒ M [αβ〉.

Moreover, an active step α is globally a/b/c-nonviolent (or ga/gb/gc-non-
violent) in N if it is respectively la/lb/lc-nonviolent at every reachable mark-
ing of N at which it is enabled.

Each of the three types of step nonviolence is a conservative extension of tran-
sition nonviolence introduced in Definition 2. Intuitively, type-a nonviolence re-
quires that only the unexecuted part of a delayed step is kept enabled, and so it is
‘protected’ by α. Type-b and type-c nonviolence, however, insist on maintaining
the enabledness of the whole delayed step.

Definition 4 (persistent step). Let α be a step enabled at a marking M of a
pt-net N . Then:

– α is locally a-persistent at marking M (or la-persistent) if, for every step
β enabled at M ,

β �= α =⇒ M [β(α \ β)〉.

– α is locally b-persistent at marking M (or lb-persistent) if, for every step
β enabled at M ,

β ∩ α = ∅ =⇒ M [βα〉.

– α is locally c-persistent at marking M (or lc-persistent) if, for every step
β enabled at M ,

β �= α =⇒ M [βα〉.

Moreover, an active step α is globally a/b/c-persistent (or ga/gb/gc-persis-
tent) in N if it is respectively la/lb/lc-persistent at every reachable marking
of N at which it is enabled.

Again, each of the three types of step persistence is a conservative extension
of transition persistence introduced in Definition 2. Type-a persistence requires
that only unexecuted part of a delayed step is kept enabled, and in this case a
persistent step can fail to fully ‘survive’. Type-b and type-c persistence, how-
ever, insist on preserving the enabledness of a whole step. Note that in type-b
of nonviolence and persistence, two steps are considered distinct if they are dis-
joint, whereas in the other two cases it is enough that they are different, and
so they can have a nonempty intersection. Note that the empty step is trivially
nonviolent and persistent in any possible sense.

Note: Since, as we prove later, type-a and type-b nonviolence (as well as per-
sistence) are equivalent, in the examples we discuss only the type-a and type-c
variants.
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Moving from sequential to step semantics changes the way we perceive the
persistence of pt-nets introduced by the standard Definition 1. In particular,
in the sequential semantics, by Proposition 1, all transitions in a persistent net
are both globally nonviolent and globally persistent. In the step semantics the
situation is different. Consider, for example, the pt-net in Figure 1. It is per-
sistent, and all of its active steps are both ga-persistent and ga-nonviolent.
However, its nonempty steps fail to be lc-persistent or lc-nonviolent at some of
the markings that enable them. More precisely, {t}, {t′} and {t, t′} are neither
lc-persistent nor lc-nonviolent at M0, while {t′′}, {t′′′} and {t′′, t′′′} are nei-
ther lc-persistent nor lc-nonviolent at M1. This should not come as a surprise,
as the type-c of persistence (or nonviolence) is a demanding property. Type-a
of persistence and nonviolence, on the other hand, are close in spirit to their
sequential counterparts.

A duality of the nonviolent and persistent steps is illustrated in Figure 2,
where:

– {t} is both a ga-nonviolent and gc-nonviolent step, but neither la-persis-
tent nor lc-persistent at M0.

– {t′} is both a ga-persistent and gc-persistent step, but neither la-nonvio-
lent nor lc-nonviolent at M0.

p1 p2

t t ′

M0

M1

{t ′}

{t}

Fig. 2. A safe pt-net illustrating the duality of persistence and nonviolence

A step can be both nonviolent and persistent. For example, if we merge p1
and p2 in Figure 2, making both t and t′ lie on self-loops, then {t} and {t′}
become ga/gc-nonviolent/persistent.

4 Relating Persistent and Nonviolent Steps

In this section we investigate the expressiveness of different notions of persistence
and nonviolence. Directly from Definitions 3 and 4 we have the following.

Proposition 2. Let α be a step enabled at a reachable marking M of a pt-
net N . Then, respectively:

1. If α is ga/gb/gc-nonviolent in N , then α is la/lb/lc-nonviolent at M .
2. If α is ga/gb/gc-persistent in N , then α is la/lb/lc-persistent at M .
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We then obtain a number of inclusions between different types of persistent and
nonviolent steps which all hold for general pt-nets.

Proposition 3. Let α be a step and M be a marking of a pt-net N . Then:

1. α is la-nonviolent at M iff α is lb-nonviolent at M .
2. α is la-persistent at M iff α is lb-persistent at M (cf. [6]).

Proof. Assume that α is enabled at M , and β is another step enabled at M .

(1) Suppose that α is la-nonviolent at M and β ∩ α = ∅. Then M [α(β \ α)〉
and β \ α = β. Hence M [αβ〉, and so α is lb-nonviolent at M .
Conversely, suppose α is lb-nonviolent at M and β �= α. Then M [α(β \ α)〉 as
(β \ α) ∩ α = ∅ and M [β \ α〉 (cf. Fact 2). Hence, α is la-nonviolent at M .

(2) Suppose that α is la-persistent at M and β ∩α = ∅. Then M [β(α \ β)〉 and
α \ β = α. Hence M [βα〉, and so α is lb-persistent at M .
Conversely, suppose that α is lb-persistent at M and β �= α. Then M [(β \ α)α〉
as (β \ α) ∩ α = ∅ and M [β \ α〉 (cf. Fact 2). Hence M [(β \ α)(α ∩ β)(α \ β)〉
(cf. Fact 2). Thus, by M [β〉, M [β(α \ β)〉. Hence α is la-persistent at M . � 

Corollary 1. Let α be a step of a pt-net N . Then:

1. α is ga-nonviolent in N iff α is gb-nonviolent in N .
2. α is ga-persistent in N iff α is gb-persistent in N (cf. [6]).

Proposition 4. Let α be a step and M a marking of a pt-net N . Then:

1. If α is lc-nonviolent at M , then α is la-nonviolent at M .
2. If α is lc-persistent at M , then α is la-persistent at M .

Proof. Since enabledness of steps is monotonic in pt-nets (see Fact 2), the two
implications follow directly from Definitions 3 and 4, where the statements for
lc-persistence and lc-nonviolence have stronger consequents. � 

Corollary 2. Let α be a step of a pt-net N . Then:

1. If α is gc-nonviolent in N , then α is ga-nonviolent in N .
2. If α is gc-persistent in N , then α is ga-persistent in N .

The implications in Propositions 2 and 4 (for type-a) cannot be reversed. A
counterexample is provided in Figure 3, where {t} is both la-nonviolent and
la-persistent at M3. However, it is neither lc-nonviolent nor lc-persistent at
M3 as well as it is neither ga-nonviolent nor ga-persistent (because of M0).

The implications in Corollary 2 cannot be reversed. A counterexample is pro-
vided in Figure 3, where {t, t′′} is both ga-nonviolent and ga-persistent, but
it is neither gc-nonviolent nor gc-persistent. As this step is only enabled at
marking M3, it fails to be lc-nonviolent or lc-persistent as well. Moreover, in
Figure 3, {t′′′} is a step that is type-a and type-c globally nonviolent and per-
sistent, because it is only enabled at one marking M1, and no other nonempty
step is enabled at M1.
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p1 p2 p3

p4

t ′ t t ′′

t ′′′

M0

M1

M3

M2

M4

{t ′}

{t ′′′}

{t}

{t}, {t , t ′′}

{t′′}

{t′′}

Fig. 3. A safe pt-net for (ii,v,vi) in Figure 7 and (i,ii) in Figure 9

p1 p2

p3 p4 p5

t ′ tt ′′

M0

M1

M2

M3 M4

M5

{t ′}

{t ′′}

{t} {t ′}

{t}{t ′}
{t , t ′}

Fig. 4. A safe pt-net for (iv) in Figure 7

p1

p2 p3 p4

t t ′ t ′′

M1

M3 M4

M0

M2

{t}

{t ′}

{t ′′}{t}

Fig. 5. A safe pt-net for (iii) in Figure 7

Figure 4 shows that a step {t} may be ga-persistent, but only lc-persistent
(at M4). Step {t} is not gc-persistent, because it is not lc-persistent at M2.
The same example can be used when considering nonviolence.

Figure 5 shows an example of a step, {t}, that is lc-nonviolent, la-nonvio-
lent, lc-persistent and la-persistent at M0, but it is neither gc-nonviolent nor
ga-nonviolent nor gc-persistent nor ga-persistent.
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There may be steps in pt-nets that fail to satisfy all the types of persistency
and nonviolence; for example, {t, t′′} and {t′} in Figure 6.

p1 p2

p3 p4 p5

t t ′ t ′′
M0

M1 M2

M3

M4

{t ′}

{t} {t ′′}
{t , t ′′}

{t ′′} {t}

Fig. 6. A safe pt-net for (i) in Figure 7

Finally, there are pt-nets where all steps are neither persistent nor nonviolent
whatever type (a or c) we choose. For example, take the net in Figure 6 and
delete p2, p5 and t′′ with all adjacent arcs. Then, the only non-empty steps in
the concurrent reachability graph are {t} and {t′}, and they prevent each other
from being persistent. As a result, they also fail to be nonviolent.

active steps
la=lb

lc
ga=gb

gc

(v)(iv)(iii)(ii)(i) (vi)

Fig. 7. A taxonomy of persistent and nonviolent steps. Examples of steps exhibiting
the nonemptiness of the specific kinds of steps in the diagram are as follows: {t, t′′}
and {t′} in Figure 6 for (i); {t} in Figure 3 for (ii); {t} in Figure 5 for (iii); {t} in
Figure 4 for (iv); {t′′′} in Figure 3 for (v); and {t, t′′} in Figure 3 for (vi).

The relationships between different types of persistent and nonviolent steps
are summarised in the diagram of Figure 7. As the relationships are the same
for persistence or nonviolence, the diagram simply refers to different types of
persistence or nonviolence.

5 Persistent and Nonviolent Markings

In this section, we focus on steps enabled at individual markings. A marking
will be persistent (or nonviolent) according to a given type of persistence (or
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nonviolence) if all steps that it enables satisfy the corresponding definition of
persistence (or nonviolence). Interestingly, in such markings, if all enabled steps
are a (b or c) persistent they all are a (b or c) nonviolent, and vice versa. In
a way, such markings create an environment where steps do not interfere with
each other.

Definition 5 (nonviolent/persistent marking). Let M be a reachable mark-
ing of a pt-net N . Then:

– M is a/b/c-nonviolent in N if every step enabled at M is respectively
la/lb/lc-nonviolent at M .

– M is a/b/c-persistent in N if every step enabled at M is respectively
la/lb/lc-persistent at M .

Proposition 5. A reachable marking of a pt-net is a/b/c-persistent iff it is
a/b/c-nonviolent, respectively.

Proof. By Definition 5, a reachable M is a-persistent in a pt-net N iff each step
α enabled at M is la-persistent at M . The latter in turn is equivalent to:

∀α : M [α〉 =⇒ (∀β : α �= β ∧M [β〉 =⇒ M [β(α \ β)〉)
⇔ ∀α, β : α �= β ∧M [α〉 ∧M [β〉 =⇒ M [β(α \ β)〉
⇔ ∀α, β : α �= β ∧M [α〉 ∧M [β〉 =⇒ M [α(β \ α)〉
⇔ ∀α : M [α〉 =⇒ (∀β : α �= β ∧M [β〉 =⇒ M [α(β \ α)〉) .

The last line is equivalent to stating that each step α enabled at M is la-non-
violent at M . Hence, by Definition 5, M is a-nonviolent in N .

The equivalences for types b and c can be shown in a similar way. � 

Proposition 6. A reachable marking of a pt-net N is a-persistent (or a-non-
violent) in N iff it is b-persistent (resp. b-nonviolent) in N .

Proof. Follows directly from Definitions 4 and 5, and Propositions 3 and 5. � 

Proposition 7. If a reachable marking of a pt-net N is c-persistent (or c-
nonviolent) in N , then it is a-persistent (resp. a-nonviolent) in N .

Proof. Follows directly from Definitions 4 and 5, and Propositions 4 and 5. � 

The implications in Proposition 7 cannot be reversed, and a suitable counterex-
ample is provided in Figure 3, where M3 is both a-persistent and a-nonvio-
lent marking but it is neither c-persistent nor c-nonviolent. Notice that all the
nonempty steps enabled at M3 (i.e., {t}, {t′′} and {t, t′′}) are la-persistent at
this marking, making it a-persistent (and a-nonviolent, see Proposition 5). How-
ever, {t} and {t, t′′} are neither lc-persistent nor lc-nonviolent at M3.

The relationships between different types of persistent and nonviolent mark-
ings are summarised in the diagram of Figure 9. As the relationships are the
same for persistence or nonviolence, the diagram simply refers to different types
of persistence or nonviolence.
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𝑝1 𝑝2 𝑝3

𝑝4

t ′ t t ′′

t ′′′

𝑀0

𝑀1

𝑀2

{t ′}

{t ′′′}

{𝑡}

{𝑡}

{𝑡′′}
{𝑡, 𝑡′′}

Fig. 8. A safe pt-net for (iii) in Figure 9

reachable markings
a=b

c

(iii)(ii)(i)

Fig. 9. A taxonomy of persistent and nonviolent markings. Examples of markings ex-
hibiting the nonemptiness of the specific kinds of markings in the diagram are as
follows: M0 in Figure 3 for (i); M3 in Figure 3 for (ii); and M2 in Figure 8 for (iii).

6 Persistent and Nonviolent Steps in PT-nets

In this section, we investigate general properties of persistent and nonviolent
steps. The first question we address is whether persistence and nonviolence of
steps can be ‘inherited’ by their substeps. For general pt-nets, the answer turns
out to be positive only for local persistence.

Proposition 8. Let γ ⊆ α be two steps and M be a reachable marking of a
pt-net. Then:

1. If α is la-persistent at M , then γ is la-persistent at M .
2. If α is lc-persistent at M , then γ is lc-persistent at M .

Proof. From γ ⊆ α, M [α〉 and Fact 2, we have M [γ〉. Hence γ is active. Moreover,
we assume ∅ �= γ �= α as otherwise the results are obvious.

(1) Let β �= γ be a step enabled at M . If β �= α then, as α is la-persistent at
M , we have M [β(α \ β)〉. Hence, by γ \ β ⊆ α \ β and Fact 2, M [β(γ \ β)〉. If
β = α then M [β(γ \ β)〉 as M [α∅〉 and γ \ β = ∅.

(2) Let β �= γ be a step enabled at M . If β �= α then, as α is lc-persistent at
M , we have M [βα〉. Hence, by γ ⊆ α and Fact 2, M [βγ〉. If β = α and ¬M [αγ〉,
then we proceed as follows. By M [α〉, there is p ∈ P such that M(p)−W (p, α)+
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W (α, p) < W (p, γ). On the other hand, since α is lc-persistent at M and γ �= α
is enabled at M , we have M [γα〉. Thus M(p) −W (p, γ) + W (γ, p) ≥ W (p, α).
As a result, W (p, α) + W (p, γ) −W (γ, p) < W (p, γ) + W (p, α) −W (α, p), and
so W (γ, p) > W (α, p), yielding a contradiction. � 

Proposition 8 does not hold for globally persistent steps and their substeps,
whether we consider a-persistence or c-persistence. Figure 8 shows an example of
a step, {t, t′′}, which is both ga-persistent and gc-persistent, but its substep {t}
is neither ga-persistent nor gc-persistent, because of marking M0. Furthermore,
Proposition 8 extended to nonviolent steps does not hold, even for ordinary pt-
nets. Figure 10 provides a counterexample, where {t, t′′} is both la-nonviolent
and lc-nonviolent at M0 (in fact it is both ga-nonviolent and gc-nonviolent,
as it is enabled nowhere else), but its substep {t} is neither la-nonviolent nor
lc-nonviolent at M0.

Type-c persistence and nonviolence are very demanding properties, and can
only be satisfied by steps of a very particular kind. The presence of type-c
persistent or nonviolent steps has therefore some structural implications for nets
and their reachability graphs. The next result gives sufficient conditions for being
a globally nonviolent step.

Theorem 1. Each active positive step of a pt-net is both gc-nonviolent and
ga-nonviolent.

Proof. Let M [α〉M ′ and β �= α be a step enabled at M . From M ′ ≥ M (as α is
positive) and Fact 1 it follows that M ′[β〉. Hence M [αβ〉, and so α is gc-non-
violent. Moreover, by Corollary 2, α is also ga-nonviolent. � 

The next result gives necessary conditions for being a gc-persistent step. Intu-
itively, the intersection of a gc-persistent step with any other step enabled at
the same marking consumes at most the same resources (tokens) as it produces.
This should not come as a surprise, because in c-persistence the intersection of
two enabled steps at a given marking must be able to fire twice in a row.

Proposition 9. Let α be a gc-persistent non-singleton step enabled at a reach-
able marking M of a pt-net. Then, for every step β �= α enabled at M , α∩ β is
a positive step.

Proof. Suppose that the step γ = α ∩ β is not positive (which implies that
neither α nor β is empty), and so there is p ∈ P such that W (p, γ) > W (γ, p).
We consider two cases.

Case 1: α �⊂ β. Since M [α〉 and γ ⊆ α, we have M [γ〉. Also, since α �⊂ β,
γ �= α. As α is gc-persistent, there exists a marking M1 such that M [γ〉M1[α〉.
We can repeat this construction, replacing M with M1, as α is globally c-per-
sistent. In fact, we can repeat this construction k = M(p) + 1 times, obtaining
M [γ〉M1[γ〉M2[γ〉M3 . . .Mk[α〉.

We then observe that M(p) − M1(p) = W (p, γ) − W (γ, p) ≥ 1. Similarly,
Mi(p)−Mi+1(p) ≥ 1, for i = 1, . . . , k− 1. Hence M(p)−Mk(p) ≥ k = M(p)+ 1
and so Mk(p) < 0 which is obviously impossible, yielding a contradiction.
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{t ′}

{t , t ′}

Fig. 10. An ordinary pt-net for the discussion of Proposition 8

Case 2: α ⊂ β. Then γ = α ∩ β = α. As α is a non-empty and non-singleton
step, we can split it into two disjoint nonempty subsets: α = γ = γ′ ! γ′′. Since
M [α〉 and γ′, γ′′ ⊆ α, we have M [γ′〉 and M [γ′′〉. Also, γ′ �= α and γ′′ �= α. As
α is gc-persistent, there exists a marking M ′ such that M [γ′〉M ′[α〉. Now, we
can repeat this construction, for M ′ and step γ′′, obtaining: M [γ′〉M ′[γ′′〉M1[α〉
or M [γ′γ′′〉M1[α〉. We can repeat this construction, now starting at M1, as α
is globally c-persistent. In fact, we can repeat this construction k = M(p) + 1
times, obtaining M [γ′γ′′〉M1[γ

′γ′′〉M2[γ
′γ′′〉M3 . . .Mk[α〉.

We now observe that, by γ = γ′ ! γ′′, we have W (p, γ) = W (p, γ′)+W (p, γ′′)
and W (γ, p) = W (γ′, p) + W (γ′′, p). The rest of the proof is then similar as in
Case 1. � 

In Proposition 9, one cannot drop the assumption that α is a non-singleton step.
Consider, for example, Figure 11 and take α = {t′} and β = {t, t′}, which are
two different steps enabled at M0. Although α is gc-persistent, the intersection
α∩β = {t′} is not a positive step, as W (p1, t

′) > W (t′, p1). Similarly, one cannot
drop the assumption that α is gc-persistent. Consider, for example, Figure 12
and take α = {t, t′}, and β = {t}, which are two different steps jointly enabled at
several markings, such as M0. Although α is a non-singleton step, the intersection
α ∩ β = {t} is not a positive step as W (p1, α ∩ β) > W (α ∩ β, p1).

The implication in Proposition 9 cannot be reversed, and a counterexample
is provided in Figure 13, where α = {t, t′} is a non-singleton step enabled (only)
at M0. There are three other nonempty steps enabled at M0, viz. {t}, {t′} and
{t′′}. Clearly, all α∩{t} = {t} and α∩{t′} = {t′} and α∩{t′′} = ∅ are positive
steps. However, α is not gc-persistent as it is not enabled after the execution
of {t′′}.

Finally, Proposition 9 cannot be re-stated for nonviolence, and a counterexam-
ple is provided in Figure 10, where α = {t, t′′} is a gc-nonviolent non-singleton
step, and β = {t} is another step enabled together with α at M0. However, α∩β
is not a positive step as W (p2, α ∩ β) > W (α ∩ β, p2).
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Fig. 11. A pt-net for the discussion of Proposition 9
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Fig. 12. A pt-net for the discussion of Proposition 9
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Fig. 13. A pt-net for the discussion of Proposition 9

Theorem 2. Let α be a gc-persistent non-singleton step of a pt-net N , and γ
be a subset of α. Then:

1. For every reachable marking M enabling α, γ is lc-persistent at M .
2. γ is gc-nonviolent in N .
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Proof. (1) Follows directly from Proposition 8.

(2) As α is an active step, there is a reachable marking M enabling α. If α = ∅
the result is obvious. We now assume that α �= ∅ and consider two cases.

Case 1: γ ⊂ α. Then γ �= α is a step enabled at M . As α is gc-persistent, we
can use Proposition 9 to conclude that γ is positive. Hence, by Theorem 1, γ is
gc-nonviolent in N .

Case 2: γ = α. As α is a non-empty and non-singleton step, we can represent
it as a disjoint union of two nonempty subsets: α = γ′ ! γ′′. From M [α〉 and
Fact 2, we have M [γ′〉 and M [γ′′〉. Moreover, as α is gc-persistent, we can use
Proposition 9 to conclude that both γ′ and γ′′ are positive steps. Therefore, γ
is also positive, and so it is gc-nonviolent in N . � 

In Proposition 9, the intersection α ∩ β of two different steps enabled at some
reachable marking will be able to fire twice in a row (as α is gc-persistent).
As a result, α ∩ β can be seen as a persistent step as well as a nonviolent step
at markings that enable α (cf. Theorem 2(2)). As α can be covered by such
intersections, gc-persistence of a non-singleton α implies its gc-nonviolence. In
a way, in type-c case, the boundary between persistence and nonviolence blurs
to some extent.

Type-a persistence and nonviolence are different in nature. They follow closely
the ideas of persistence and nonviolence in the sequential case and, intuitively,
complement each other. The next result shows the complementarity of a-non-
violent and a-persistent steps at reachable markings.

Theorem 3. Let M be a reachable marking of a pt-net N . If there are two
disjoint steps α and β enabled at M such that every enabled step at M is a
subset of their union, then the following holds:

α is la-persistent at M =⇒ β is la-nonviolent at M.

Proof. Let γ be a step enabled at M such that γ ∩ β = ∅. This and γ ⊆ α ∪ β
implies γ ⊆ α. By Propositions 8 and 3(2), the step γ is lb-persistent, and so
M [βγ〉. Since γ is a step disjoint from β and enabled at M , we obtain that β is
lb-nonviolent at M . Finally, by Proposition 3(1), β is la-nonviolent at M . � 

The implication in the opposite direction does not hold, even in the case of
ordinary nets. A counterexample is presented in Figure 10. Taking α = {t′} and
β = {t, t′′}, we see that β is a la-nonviolent step at M0, but α is not la-per-
sistent at M0. We can, for example execute step {t} at M0 which leads us to
marking M1, where α is not enabled.

We end this section with a result that gives sufficient conditions for a step of an
ordinary pt-net to be gc-nonviolent. It is a counterpart of Theorem 1 formulated
for the general pt-nets. Although the conditions here are more restrictive than
those in Theorem 1, they are linked to the structure of a net rather than its
behaviour.



A Taxonomy of Persistent and Nonviolent Steps 225

Theorem 4. Let α be an active step of an ordinary pt-net N . If α lies on
self-loops, then α is gc-nonviolent in N .

Proof. Since all the transitions in α lie on self-loops, α is positive. Hence, by
Theorem 1, α is gc-nonviolent in N . � 

7 Persistent and Nonviolent Steps in Safe PT-nets

In the case of safe pt-nets, we can identify more interesting properties of per-
sistent or nonviolent steps and, in particular, link them to the structure of the
nets. We start with results which are concerned with the structural properties
related to c-persistence and c-nonviolence.

Proposition 10 (c.f. [6]). Let α be a step which is lc-persistent or lc-non-
violent at a reachable marking M of a safe pt-net N . Then •(α∩β) = (α∩β)•,
for every step β �= α enabled at M .

Proof. The result for lc-persistent α was proven in [6]. We therefore assume
that α = {t1, . . . , tn} is lc-nonviolent.

Suppose that p ∈ •(α ∩ β), for some step β �= α enabled at M . Clearly,
M(p) = 1. Moreover, by Fact 3, α is disconnected.

Since α is lc-nonviolent, there is a marking M ′ such that M [α〉M ′[β〉. As
M ′[β〉 and p ∈ •(α ∩ β), we have M ′(p) = 1. Hence M ′(p) = M(p)−W (p, α) +
W (α, p), and so W (t1, p)+ · · ·+W (tn, p) = W (p, t1)+ · · ·+W (p, tn). By N being
safe, all the arc weights in this formula are 0 or 1. Moreover, α is disconnected.
It therefore follows that W (p, ti) = W (ti, p), for each ti. Hence p ∈ (α∩β)•, and
so •(α ∩ β) ⊆ (α ∩ β)•.

Suppose now that p ∈ (α ∩ β)• \ •(α ∩ β). Then, by M [α ∩ β〉 and the safe-
ness of N , M(p) = 0. Hence, by M [α〉 and M [β〉, we must have p /∈ •α ∪ •β.
Consequently, since there is M ′′ such that M [αβ〉M ′′, we obtain M ′′(p) ≥ 2, a
contradiction with N being safe. Hence •(α ∩ β) ⊇ (α ∩ β)•, and so the result
holds. � 

As a result, we can link lc-persistence and lc-nonviolence with the structural
property of lying on self-loops.

Theorem 5 (c.f. [6]). Let α be a non-singleton step which is lc-persistent
or lc-nonviolent at a reachable marking M of a safe pt-net N . Then α lies on
self-loops.

Proof. Suppose that t ∈ α. Since {t} �= α is a step enabled at M , by Proposi-
tion 10, •(α ∩ {t}) = (α ∩ {t})•. Hence •t = t•. � 

Corollary 3. Let α be a non-singleton active step of a safe pt-net N . Then α
is gc-nonviolent iff α lies on self-loops.

Proof. Follows from Theorems 4 and 5. � 
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Theorem 6 ([6]). Let α be an active step of a safe pt-net N . If all the tran-
sitions in α are globally persistent and lie on self-loops, then α is gc-persistent
in N .

Theorem 6 can be seen as a counterpart of Theorem 4 which was proven for
ordinary nets. The latter is in fact stronger as we only need to assume that α
lies on self-loops. We note that the implication in Theorem 6 cannot be reversed,
and a suitable counterexample is provided in Figure 8, where {t′} is a gc-per-
sistent step, but it does not lie on self-loops. Moreover, Theorem 6 cannot be
lifted to the level of ordinary nets. Figure 14 provides a counterexample, where
α = {t, t′} is neither locally nor globally c-persistent step even though both t
and t′ are globally persistent transitions lying on self-loops.

p1

p2 p3

t t ′

t ′′
M1

M0

{t ′′}

{t}

{t′}
{t, t′}

{t}

{t′}

Fig. 14. An ordinary pt-net for the discussion of Theorem 6

It is interesting to see whether persistence or nonviolence are preserved by
taking substeps. For general pt-nets, we only had results concerning the la, lc
and gc persistent steps. Here we can obtain similar results about nonviolence.
Moreover, for the type-c of nonviolence the result holds globally.

Proposition 11. Let γ ⊆ α be two steps and M be a reachable marking of a
safe pt-net N . Then:

1. If α is la-nonviolent at M then γ is la-nonviolent at M .
2. If α is lc-nonviolent at M then γ is lc-nonviolent at M .
3. If α is gc-nonviolent in N then γ is gc-nonviolent in N .

Proof. As the case α = γ is obvious, below we assume that γ ⊂ α. Also, we
assume that γ is nonempty, as the empty step trivially satisfies Definition 3.

(1) From M [α〉 and γ ⊂ α, we have M [γ〉. Let β �= γ be a step enabled at M .
We need to prove that M [γ〉M ′′[β \ γ〉, for some marking M ′′. We consider two
cases.

Case 1: β �= α. Since α is la-nonviolent at M , we have M [α(β \ α)〉. Hence,
for every place p ∈ •(β \ α), p ∈ •α implies p ∈ α•. Furthermore, since α
is disconnected (by Fact 3), we have that, for every place p ∈ •(β \ α) and
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transition t ∈ α, p ∈ •t implies p ∈ t•. As a result, for every place p ∈ •(β \ α),
p ∈ •γ implies p ∈ γ•. Hence, by M [β〉, we obtain that M ′′[β \ α〉. We further
observe that, by Fact 2, we get M ′′[(α \ γ) ∩ β〉. It therefore follows that all the
transitions in (β \ α) ∪ (α \ γ) ∩ β = β \ γ are enabled at M ′′. Moreover, as
β \ γ ⊆ β and M [β〉, we obtain from Fact 3 that the step β \ γ is disconnected.
Hence, again by Fact 3, M ′′[β \ γ〉.
Case 2: β = α. Since M [α〉 and γ ⊂ α, by Fact 2, M [γ〉M ′′[α \ γ〉.
(2) Since ∅ �= γ ⊂ α, α is a non-singleton step. Thus, by Theorem 5, α lies on
self-loops. Hence γ also lies on self-loops, and so we have M [γ〉M [β〉 as required.
(3) Since α is gc-nonviolent, it is lc-nonviolent at some reachable marking M .
Proceeding similarly as in (2), we get that α lies on self-loops and, consequently,
that γ lies on self-loops. Then, from Theorem 1, proved for general pt-nets, we
obtain that γ is gc-nonviolent. � 

Proposition 11 does not hold for ordinary pt-nets, and Figure 10 shows a coun-
terexample. The step {t, t′′} there is both ga and gc-nonviolent as well as la
and lc-nonviolent at M0 (the only marking which enables it), but its substep
{t} is neither la-nonviolent nor lc-nonviolent at M0 (as once it is executed, the
previously enabled step {t′} becomes disabled). Also, Proposition 11(1) cannot
be generalised to ga-nonviolent steps, and a suitable counterexample is pro-
vided in Figure 3, where {t, t′′} is a ga-nonviolent step, but its substep {t} is
not ga-nonviolent (as after executing {t} at M0, an enabled step {t′} becomes
disabled).

Theorem 7. Let α be a gc-nonviolent step of a safe pt-net N . Then all the
transitions in α are globally nonviolent in N .

Proof. Let t ∈ α. Consider a marking M enabling α, and so M [t〉. Then, from
{t} ⊆ α, the fact that α is gc-nonviolent and Proposition 11(3), we obtain
that {t} is gc-nonviolent in N . This means in particular that, for any reachable
marking M of N enabling {t}, if {t′} �= {t} is a step enabled at M , we have
M [{t}{t′}〉. We can therefore conclude that t, as a transition (rather than a
step), is globally nonviolent (see Definition 2). � 

The above result does not hold for ordinary pt-nets, and a suitable counterex-
ample is provided in Figure 10 which we used to demonstrate that Proposition 11
does not hold for ordinary pt-nets. In the latter case, we took a singleton sub-
step of a gc-nonviolent step of an ordinary pt-net and showed that it disables
another singleton step. The two singleton steps can be treated as transitions
here.

The next two results give sufficient conditions for a step to be ga-persistent
or ga-nonviolent in terms of the transitions it contains.

Theorem 8 (c.f. [6]). Let α be an active step of a safe pt-net N . If all the
transitions in α are globally persistent (nonviolent) in N , then α is ga-persistent
(resp. ga-nonviolent) in N .
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Proof. In the case of persistence, the result was proven in [6]. We therefore
assume that all the transitions in α are globally nonviolent. Let M be a reachable
marking and β �= α be a step in N such that M [α〉 and M [β〉. Note that, by
Fact 3, β is disconnected. We need to show that M [α(β \ α)〉.

Assume that α = {t1, . . . , tm} and β \ α = {u1, . . . , uk}. From M [α〉 and
Fact 2, we have M [t1 . . . tm〉M ′. Now, for each transition ui, since M [ui〉 and
every ti is globally nonviolent, we have that M ′[ui〉. Thus, by Fact 3, M ′[β \ α〉,
and so M [α(β \ α)〉. � 
The two implications in Theorem 8 cannot be reversed, and a suitable coun-
terexample is provided in Figure 3, where a ga-nonviolent and ga-persistent
step {t, t′′} contains a transition t that is neither globally nonviolent nor glob-
ally persistent (because of the marking M0).

The last result concerning persistence and nonviolence in safe pt-nets shows
that they can complement each other. It is a counterpart of Theorem 3, but
here the result holds in both directions due to Proposition 11, which was not
available for the general nor ordinary pt-nets.

Theorem 9. Let M be a reachable marking of a safe pt-net N . If there are
two disjoint steps α and β enabled at M such that every enabled step at M is a
subset of their union, then the following holds:

α is la-persistent at M ⇐⇒ β is la-nonviolent at M.

Proof. The (=⇒) implication follows from Theorem 3. To show the (⇐=) impli-
cation, let γ be a step enabled at M such that γ ∩ α = ∅. Since γ ⊆ α ∪ β, we
have γ ⊆ β. As β is la-nonviolent at M we have, from Proposition 11(1), that
γ is la-nonviolent at M . By Proposition 3(1), we have that γ is also lb-nonvio-
lent at M , and so M [γα〉. Since γ is a step, disjoint from from α and enabled
at M , we get that α is lb-persistent at M . Using Proposition 3(2), we can then
conclude that α is la-persistent at M . � 

8 Conclusions

In this paper, we initiated a detailed investigation of different notions of persis-
tence and nonviolence in the step based semantics of concurrent systems. Among
the problems and issues we plan to investigate in future are the phenomenon of
confusion formulated for steps rather than transitions, and less restrictive no-
tions of persistence and nonviolence, such as that of k-persistence. As the theory
developed so far does not allow auto-concurrency, we plan to consider what is
the impact of allowing steps to be multisets rather than sets of transitions.
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Abstract. In this paper we introduce a technique to encode spatial at-
tributes of dynamic systems using coloured Petri nets and show how it
can be applied to biological systems within the spirit of BioModel Engi-
neering. Our approach can be equally applied to qualitative, stochastic,
continuous or hybrid models of the same physical system, and can be used
as the basis for multiscale modelling. We illustrate our approach with
two case studies, one from the continuous and one from the stochastic
paradigm. In this paper we only discuss the case of finite colours, and by
unfolding our method can take advantage of all the analytical machinery
and simulation techniques that have been developed for the uncoloured
family of Petri net classes.

Keywords: Coloured Petri nets, qualitative, stochastic, continuous, hy-
brid Petri nets, spatial modelling, biomolecular networks, Systems
Biology, BioModel Engineering.

1 The Coloured Framework

In this paper we build on [16,20], where we have introduced our methodology for
the use of a structured family of Petri net classes which enables the investiga-
tion of biological systems using various complementary modelling abstractions
comprising the qualitative and quantitative paradigms. In the following we focus
on the use of the coloured subset of the previously introduced framework [20] –
coloured qualitative Petri nets (QPN C), coloured stochastic Petri nets (SPN C),
coloured continuous Petri nets (CPN C), and coloured hybrid Petri nets (HPN C);
Fig. 1 recalls our coloured framework.

We extend our approach by considering biochemical processes evolving in
space, which we illustrate with two case studies. In our spatial modelling ap-
proach we discretise space using coloured Petri nets, and in this paper we in-
vestigate the use of finite discrete colour sets. This ensures the following three
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CTMC coupled by Markov jumps
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Fig. 1. The coloured unifying framework integrating four degrees of abstraction

features which are crucial for our BioModel Engineering principles (uniformity,
reuse and conciseness) [17].

First and most importantly, the spatial modelling principle can be equally
applied to all paradigms (qualitative, stochastic, continuous, and hybrid), i.e.,
once a Petri net model has been enriched with colour-encoded space, it can be
easily transformed into any other net class while preserving all spatial attributes.

Second, all space-related information is encoded in colour and correspond-
ing net annotations, such as colour sets, functions, and guards, which can be
effortlessly reused in many models. Moreover, changing the notion of space or
just some spatial attributes only requires the adaptation of those colour-related
definitions, and the net structure itself needs not to be touched.

Third, the use of a priori finitely discretised space preserves the analysibility of
the models, in particular we retain the discrete state space in both the qualitative
and stochastic settings. All analysis and simulation techniques, which have been
developed for uncoloured Petri nets over the last two decades, can be immediately
reused by automatic unfolding.

The main contributions of our paper are

– a framework to encode space by coloured Petri nets, which can be equally
applied in a qualitative, stochastic, continuous, or hybrid setting,

– a set of basic colour-related definitions which can be easily applied to a wide
range of spatial scenarios,

– two substantial biological case studies illustrating the framework.

This paper is organised as follows. In the next section we recall some related
work to set the background of our contribution. Afterwards we introduce our
modelling approach of colour-encoded space by means of a popular case study
in the continuous paradigm (Section 3), before applying it to a second case
study in the stochastic paradigm (Section 4). We conclude our paper with a
brief overview of the tools used and the summary.
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2 Related Work

In the following we assume basic knowledge of the Petri net terminology; see [19]
for an introduction and formal definitions in the biochemical context.

Existing Uses of Petri Nets in Systems Biology. Petri nets are a natu-
ral and established notation for describing reaction networks – both share the
bipartite property. Petri nets enjoy a formal semantics and are particularly at-
tractive to biologists, because they can ‘buy in’ to the executable representation.
The intuitive visualisation is complemented by a rich set of sophisticated anal-
ysis techniques, supported by reliable tools. Petri nets can serve as an umbrella
formalism comprising a family of related (qualitative, stochastic, continuous,
hybrid) models, sharing structure, but differing in their kinetics [16].

A recent survey [2] has shown how Petri nets can be applied to various types of
biological processes at different abstraction levels, illustrating this with a rich set
of case studies. Most of these focus on the molecular level; however examples at
the multi-cellular level include the signal-response behaviour of an organism [28],
and developmental processes in multi-cellular pattern formation [7, 9, 23].

Current Challenges to Systems Biology Due to Complexity and Mul-
tiscale Issues. A drawback of current modelling approaches, including Petri
nets, are their limitation to relatively small networks. Biological systems can be
represented as networks which themselves typically contain regular (network)
structures, and/or repeated occurrences of network patterns. This organisation
occurs in a hierarchical manner, reflecting the physical and spatial organisation
of the organism. Thus a further challenge is to represent the structure inherent
in biological systems.

Coloured Petri Nets are high-level nets and a well-established modelling
formalism. They have been used for over 20 years for the specification and analy-
sis of communication protocols, distributed systems, automated production sys-
tems, work flows, and VLSI chip design [22]. They allow the description of similar
network structures in a concise and well-founded way, providing a flexible tem-
plate mechanism for network designers, and their combination with hierarchical
structuring mechanisms is extremely powerful [21].

In coloured Petri nets, tokens can be distinguished via their colours. This
allows for the discrimination of species (molecules, metabolites, proteins, sec-
ondary substances, genes, etc.). In addition, colours can be used to distinguish
between sub-populations of a species in different locations (cytosol, nucleus, etc.).

Each place is assigned a colour set, specifying the kind of tokens which can
reside on the place. A guard is associated with each transition, specifying which
coloured tokens are required for firing, and each arc is allocated an inscription
specifying the kind of tokens flowing through it. Coloured Petri nets with finite
colour sets can be automatically unfolded into uncoloured Petri nets, which
then permits the application of all of the existing powerful Petri net analysis
and simulation techniques. Vice versa, uncoloured Petri nets can be folded into
coloured Petri nets, if partitions of the place and transition sets are given. These
partitions of the uncoloured net define the colour sets of the coloured net. As



Colouring Space – Application Paper 233

with hierarchical Petri nets, the conversion between uncoloured and coloured
Petri nets changes the style of representation, but does not change the actual
net structure of the underlying reaction network.

An attractive advantage of coloured Petri nets is their possibility to easily
increase the size of a model consisting of many similar subnets by just adding
colours, compare Fig. 2. This permits, e.g., concise representations of the un-
coloured multi-cellular models of C. Elegans discussed in [7, 9]. These models
consist of six (almost) identical network patterns, one for each cell. In a coloured
version, the network pattern can be represented only once and the different cells
are reflected in the coloured annotations of the net [23]. Another scenario for
deploying colour to simulate a bacterial infection can be found in [8].

Colouring Space. In this paper we deploy colour to specify (biochemical) pro-
cesses evolving in space. We develop a spatial specification style which can be
equally applied in all modelling paradigms. This facilitates smooth movement
between the modelling paradigms and the qualitative, stochastic, continuous or
hybrid interpretation of the same Petri net. See [23] for more details and formal
definitions of the structured family of coloured Petri net classes used in this
paper, and [26] for all tool-related features.

In the continuous paradigm, our approach using discretised space corresponds
to discretising partial differential equations. An alternative approach to model
and solve partial differential equations using (discrete) Petri nets, based on the
probably simplest time concept possible for this purpose (maximal steps, maxi-
mal auto-concurrency) is discussed in [3,4]. A more elaborated comparison with
other approaches to treat spatial properties is beyond the scope of this paper.
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Fig. 2. The repressilator - a genes regulatory cycle [6]. (a) Schematic diagram for
three genes. (b) Uncoloured Petri net model for three genes using logical transitions.
(c) Folding of similar subnets into a coloured Petri net. (d) Schematic diagram for the
generalised repressilator with nine genes. Modelling is accomplished by adjusting the
colour set.(e) Stochastic simulation plot of the underlying uncoloured stochastic Petri
net. See [20] for the explanation of annotations.
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3 Continuous Paradigm

In this section we focus on the continuous part of the framework, illustrating it
by means of a case study elaborated over two spatial dimensions.

3.1 Case Study 1: Diffusion

Background. We focus here on diffusion, which is a basic process occurring in
biochemical systems with parameters over time and space. It can be regarded as
the simplest form of passive mobility. Diffusion goes from regions of higher con-
centration to regions of lower concentration (Ficks laws) [10] where the diffusion
flux is proportional to the minus gradient of concentrations.

Example 1. One molecular species (here cyclic adenosine monophosphate –
cAMP) diffuses continuously in space; i.e., it evolves simultaneously over time
and space. The state-dependent diffusion rate follows mass/action kinetics, i.e.,
the rate is defined by the product of the species involved times some constant,
summing up all dependencies on pressure, temperature, etc. The observation
shall start with a high concentration (e.g., 100) in the middle of the space, with
all other space positions initially set to 0.

We are going to discuss this example in different scenarios, specifically 1- and
2-dimensional space (1D, 2D), using coloured Petri nets. We use the concept
of colour to efficiently represent repeated structures in a continuous Petri net
- i.e. to encode repeated elements of a set of ODEs. Each repeated element is
associated with a colour, represented by a positive integer; sets of colours are
thus discrete and finite. More specifically, we apply colour to represent spatial
location; thus in a 1D scenario locations (their addresses) are 1-tuples, in a 2D
scenario locations are 2-tuples, and in 3D they are triples.

3.2 Diffusion in One Dimension

We discretise the space and assume an 1-dimensional grid dividing the space
into grid positions; see Fig. 3.

Fig. 3. General scheme of discrete one-dimensional space (1D grid)

A corresponding continuous Petri net is given in Fig. 4 modelling a discrete,
1-dimensional space comprising five grid positions - the five Petri net places
cAMPi, while the Petri net transitions model diffusion between neighbouring
grid positions. The two outer places stand for the equivalence classes of the
boundary space positions and beyond.
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cAMP_1 cAMP_2 cAMP_3
100

cAMP_4 cAMP_5

t1_1_2

t1_2_1

t1_2_3

t1_3_2

t1_3_4

t1_4_3 t1_4_5

t1_5_4

Fig. 4. Continuous Petri net for diffusion in one dimension. The space is discretised
into five positions. The value of the middle position is initially set to 100, all other
positions to zero, which is the default value, usually not given in graphics.

A continuous Petri net uniquely defines a system of Ordinary Differential
Equations (ODEs) [14,31], with one equation for each place (variable). The rates
of pre-transitions increase its value, thus defining plus terms, while the rates of
post-transitions decrease its value, thus defining minus terms. Denoting the rate
of a transition tj by v(tj), and the set of pre-transitions (post-transitions) of a
place c by •c (c •), we get the generating Equation (1).

dci
dt

=
∑

tj∈•ci

v(tj)−
∑

tj∈ci •

v(tj) (1)

Assuming the diffusion rates v(tj) to follow mass/action kinetics with the com-
mon rate parameter k, we get the Equations (2)–(6) for the continuous Petri net
in Fig. 4; for sake of readability we abbreviate cAMPi by ci.

dc1
dt

= k · c2 − k · c1 (2)

dc2
dt

= k · c1 + k · c3 − 2 · k · c2 (3)

dc3
dt

= k · c2 + k · c4 − 2 · k · c3 (4)

dc4
dt

= k · c3 + k · c5 − 2 · k · c4 (5)

dc5
dt

= k · c4 − k · c5 (6)

We obtain a general pattern for an arbitrary, but static size of the discrete, 1-
dimensional space by folding the (continuous) Petri net in Fig. 4 into a coloured
(continuous) Petri net. For this purpose we introduce the following definitions.

const D1 = int with 5 ; // g r i d s i z e
const MIDDLE = int with D1/2+1;
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colorset Grid1D = int with 1−D1 ; // g r i d p o s i t i o n s
var x , y : Grid1D ;

fun bool neighbour1D (Grid1D x , Grid1D xn) {
// xn i s neighbour o f x
( xn=x−1 | xn=x+1) & (1<=xn) & (xn<=D1) } ;

In this paper we consider finite space. Thus grid positions at the border have
fewer neighbours than inner grid positions. We obtain the coloured continuous
Petri net given in Fig. 5, where colours serve as addresses in the spatial grid.
Changing the grid position of a token now just means recolouring the token.

cAMP
100`MIDDLE

Grid1D100
t1

[neighbour1D(x,y)]

x

y

Fig. 5. Coloured continuous Petri net for diffusion in one dimension. The initial mark-
ing assigns the value 100 to the MIDDLE grid position, v(t1) = MassAction(k).

Unfolding the coloured Petri net in Fig. 5 with D1 = 5 yields exactly the
continuous Petri net given in Fig. 4, and thus in turn the ODEs (2)–(6). Changing
the constant D1 adapts the model pattern to a specific grid size, which permits
convenient model scaling, e.g., to increase the spatial resolution.

3.3 Diffusion in Two Dimensions

The generalisation to the 2-dimensional case using a Cartesian grid, see Fig. 6,
is rather straightforward. We basically need to extend the definitions required
for annotating the coloured Petri net while keeping the Petri net structure as it
is.

We start off with a neighbourhood relation where inner grid positions have
four neighbours, see Fig. 6(a), which is encoded in the function neighbour2D4.
The corresponding coloured Petri net is given in Fig. 7(a), and its unfolding for
D1 = D2 = 5 in Fig. 8. All transitions follow the same kinetic rate pattern.

const D1 = int with 5 ; // g r i d s i z e f i r s t dimension
const D2 = D1 ; // g r i d s i z e second dimension
const MIDDLE = int with D1/2+1;

colorset CD1 = int with 1−D1 ; // row index
colorset CD2 = int with 1−D2 ; // column index
colorset Grid2D = product with CD1 x CD2; // 2D gr i d
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var x , a : CD1;
var y , b : CD2;

fun bool neighbour2D4 (CD1 x , CD2 y , CD1 xn , CD2 yn) {
// ( xn , yn ) i s one o f the up to f our ne i ghbours o f ( x , y )

( xn=x & yn=y−1) | ( xn=x & yn=y+1)
| ( yn=y & xn=x−1) | ( yn=y & xn=x+1)
& (1<=xn & xn<=D1) & (1<=yn & yn<=D2) } ;

Next we consider a variation of the neighbourhood relation where each inner
grid position has eight neighbours; see Fig. 6(b). We introduce three functions.

fun bool neighbour2D8 (CD1 x ,CD2 y ,CD1 xn ,CD2 yn ) {
// ( xn , yn ) i s one o f the up to e i g h t ne i ghbours o f ( x , y )

( xn=x−1 | xn=x | xn=x+1 ) & (yn=y−1 | yn=y | yn=y+1)
& ( ! ( xn=x & yn=y) )
& (1<=xn & xn<=D1) & (1<=yn & yn<=D2) } ;

fun bool l a t e r a l (CD1 x ,CD2 y ,CD1 xn ,CD2 yn) {
( xn=x & yn=y−1) | ( xn=x & yn=y+1)

| ( yn=y & xn=x−1) | ( yn=y & xn=x+1) } ;

fun bool d iagona l (CD1 x ,CD2 y ,CD1 xn ,CD2 yn) {
( xn=x−1 & yn=y−1) | ( xn=x+1 & yn=y−1)

| ( xn=x−1 & yn=y+1) | ( xn=x+1 & yn=y+1) } ;

The latter two functions are used to appropriately set the rate functions, assum-
ing that it takes longer to reach a diagonal neighbour than a lateral one:

v(t1) =

{
lateral(x, y, a, b) : MassAction(k)

diagonal(x, y, a, b) : MassAction(k/DIAGONAL) ,
(7)

with DIAGONAL =
√
2. The corresponding coloured Petri net is given in

Fig. 7(b), and its unfolding for D1=D2=5 in Fig. 8.

(a) four neighbours (2D4 grid) (b) eight neighbours (2D8 grid)

Fig. 6. General scheme of discrete two-dimensional space with two different neighbour-
hood relations
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cAMP

100`(x=MIDDLE & y=MIDDLE)

Grid2D
100

t1
[neighbour2D4(x,y,a,b)]

(x,y)

(a,b)

(a) four neighbours

cAMP

100`(x=MIDDLE & y=MIDDLE)

Grid2D
100

t1
[neighbour2D8(x,y,a,b)]

(x,y)

(a,b)
(b) eight neighbours

Fig. 7. CPN C for diffusion in two dimensions with two different neighbourhood rela-
tions. The difference consists of the neighbour function used as transition guard and
the rate functions; (a) v(t1) = MassAction(k), (b) see Equation (7).

Remarks: The coloured Petri nets in Fig. 5 and 7 all share the same structure,
they differ in their colour-related annotations. It is obvious how to adjust the
definitions to other neighbourhood relations.

cAMP__1_1_ cAMP__1_5_

100

cAMP__5_1_ cAMP__5_5_

Fig. 8. Continuous Petri nets for diffusion in two dimensions with four neighbours
(white transitions only), and eight neighbours (including grey transitions). These Petri
nets have been generated by unfolding the two CPN C in Fig. 7 with D1 = D2 = 5.
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3.4 Computational Experiments

For the time being, all computational experiments are undertaken by unfolding
coloured Petri nets which is automatically performed in the background, and nu-
merically solving the underlying ODEs which again are generated automatically.
Both transformation steps and the continuous simulation itself are features of
Snoopy, the tool used in this paper, see also Section 5. In other words, the CPN C

serve as a kind of very high-level description of ODEs. Note that the mapping
from CPN C to ODEs is unique but not vice-versa [31].

The key challenge when unfolding coloured Petri nets is to compute all tran-
sition instances, which suffers from combinatorial explosion. However, when the
number of transition instances is only determined by guards (logical expres-
sions), which is the case in our scenario, a constraint satisfaction approach [32]
can be employed. As each coloured transition can be considered separately, the
unfolding can be easily parallelised by multiple threads to take advantage of
state-of-the-art multi-core computer architectures. We have used the efficient
search strategies of Gecode [12] to substantially improve the unfolding efficiency
of coloured Petri nets; for more details see [23, 27].

The unfolding of any CPN C version of our gradient example yields extremely
large continuous Petri nets. It is easy to see that in the 2-dimensional case the
number of places always equals D1D2, while the number of transitions amounts
to 4D1D2 − 2(D1 + D2) for a 2D4 grid, and 8D1D2 − 6(D1 + D2) + 4 for a
2D8 grid, respectively. To give an example, the unfolding of an 120×120 2D4
grid (used in Fig. 10, last row) generates 14,400 places and 57,120 transitions,
with an unfolding time of about 25 seconds (on a standard laptop computer).
The generated continuous Petri net in turn is transformed into ODEs according
to formula (1), i.e., the number of places determines the number of ordinary
differential equations, and the number of transitions the total number of terms
in these equations to be simulated.

The actual simulation, i.e., the numerical integration of the generated ODEs
takes a couple of seconds and yields time traces for each unfolded place, see
Fig. 9. These traces are converted into heat maps, one for each time step, i.e., a
sequence of heat maps eventually visualises the evolution in time and space, see
Fig. 10.

We performed a couple of experiments to test the scalability of our model.
Model scaling also usually requires adjustments of the initial marking and rate
parameters. To maximise the flexibility of our model we slightly changed the
specification style of the initial marking. We introduced a couple of constants
(including LB – lower bound, UB – upper bound to specify a rectangle) which
eventually permit the specification of the range of grid positions set to 100 in
the initial marking in a better adjustable manner:

100 ‘ ( (LB <=x & x <= UB) & (LB <=y & y <= UB) ) .

To reach equivalent states in the same simulation time, we need to scale the
parameters by the square of the resolution factor; see Fig. 10 for some results.
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Fig. 9. Simulation plot of the ODEs generated from a CPN C, illustrating approaching
to the future steady state where all concentrations will be equal
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Fig. 10. Continuous simulation results for diffusion in two dimensions with four neigh-
bours in space resolutions 15×15, 60×60, and 120×120. The three snapshots given
for each resolution are taken at simulation time 25 (left), 50 (middle), and 100 (right
column).
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4 Stochastic Paradigm

In this section we focus on the stochastic part of the framework, reusing the
colour definitions which we introduced in the previous section. Diffusion can be
treated stochastically using the laws of Brownian motion, for example embodied
in the Gilllespie algorithm [15]. However, the mapping is straightforward and
instead we present a more sophisticated and challenging biological example.

4.1 Case Study 2: Bacterial Colony Growth – Phase Variation

We study phase variation in bacterial cell colonies which grow in space. We de-
veloped a Coloured Stochastic Petri Net which allows us to substantially extend
the method applied in [30] to computationally predict the sector-like patterning
characteristic of such colonies, see e.g., Figure 1 in [1].

Background. A common microbial stochastic mechanism is phase variation,
in which gene expression is controlled by a reversible genetic mutation, re-
arrangement, or modification. Phase variation has traditionally been consid-
ered in the context of ‘contingency genes’ in which a sub-population is contin-
uously generated which is pre-adapted to repeated environmental transitions,
often to immune selective changes. However recent re-consideration, in the light
of stochastic processes in genes under other forms of regulation, suggests an
important potential role in bacterial specialization and differentiation, and the
generation of structured bacterial populations.

Example 2. We consider a colony of bacteria with two phenotypes A and B,
which develop over time by cell division. Cell division may involve cell mutation,
and back-mutation alternates phenotypes; see Fig. 11. The observation should
start with one bacterium of phenotype A. We are interested in the proportion
of phenotypes in the cell generations, and how their spatial distribution evolves
over time.

� �

�

�

Fig. 11. Phase variation within bacterial colonies - basic scheme. Mutation from A to
B happens at rate α, and backward mutation at rate β.

4.2 Step-Wise Modelling

In the following we describe the step-wise approach which we have employed to
construct our SPN C model. We start off with a basic model of phase variation
between two states in bacterial colonies as discussed in [30] which did not model
spatial aspects, and encode this as a stochastic Petri net. Next we enrich the
basic model with a 2D8 grid, where the parent remains in-situ, and the child is
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displaced by one grid position. Finally, we refine our model by controlling colony
spreading and thickness. Our stochastic spatial model permits us to describe
the development of sector-like pattering typical of phase variation in bacterial
colonies.

Step 1 – Basic Model of Phase Variation.We start with the equations taken
from the previous deterministic model of phase variation [30], which describe
synchronous growth in cell colonies with two phenotypes A and B, modelled
here by two corresponding variables indexed by the discrete time steps. These
equations include the assumption that “if phase variation occurs, the progeny
consists of one A and one B.”

An+1 = 2dA(1− α)An + dAαAn + dBβBn (8)

Bn+1 = 2dB(1− β)Bn + dBβBn + dAαAn (9)

Here, dA and dB specify the fitness, i.e., the proportions of A or B, respectively,
that survive to division.

Previously [30], behaviour was explored by iterating the equations on a spread-
sheet. We develop a Petri net model that is directly executable by playing the
token game which facilitates its comprehension, and permits the exploration
of the behaviour by standard analysis and simulation techniques. Our initial
stochastic Petri net, see Fig. 12, corresponds to Equations (8)–(9), but adopts
an asynchronous modelling approach so that cells divide individually.

A B

A2B

B2A

A2A B2B

2

2

v(A2B) = dAαA, v(A2A) = dA(1− α)A
v(B2A) = dBβB, v(B2B) = dB(1− β)B

Fig. 12. Stochastic Petri net (SPN ) corresponding to Equations (8)–(9)

Model parameters (taken from [30])

– mutation rates α (forward), and β (backward): in the range of 10−2 − 10−5;
e.g. high: α = β = 0.0025, medium: α = β = 0.0005, low: α = β = 0.00005;
α and β could also take different values;

– relative fitness f – ratio of phenotype survival probability:
f = dA/dB; typical values: f = 1.0 (no fitness difference), 0.99, 0.9, 0.5.
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Derived Measures of Interest

– Total number of bacteria. The n-th generation in a synchronous model yields
2n bacteria. Vice versa, if we know the total number total of bacteria gen-
erated by asynchronous cell division, then we can obtain the corresponding
synchronous generation counter n by

n = log2 total (10)

For example, 26 synchronous generations (which may develop in about 24
hours) end up with a total population size of approximately 67 · 106.

– Proportion of A and B.

propA =
A

A+ B
; propB =

B

A + B
(11)

Simulating the stochastic model allows us to observe asynchronous population
growth such that cells divide individually. Each event (firing of a transition)
corresponds to the division of one cell. Consequently, the size of the population
will grow in steps by 1, see Fig. 13, in contrast with the synchronous model.
Depending on the setting for the output steps of the simulator we may not be
able to observe all events in the simulation trace.
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Fig. 13. Two single stochastic simulation runs, and one continuous run; α = β =
0.0025, dA = dB = 1, i.e., no fitness advantage

Observations

– Keeping a relative fitness of 1 while extending the simulation time allows
us to observe that the variables A and B will finally be almost identical,
meaning their proportions will finally approach 50%.

– Likewise, keeping the mutation rates equal and giving one mutant a fitness
advantage over the other, e.g. using a fitness ratio of 0.9, then the mutants
with the greater fitness will finally outnumber the mutants with lower fitness
and the proportion of the latter ones in the total population approaches zero
over time.

Starting from simulation traces like the ones given in Fig. 13, all diagrams pre-
sented and discussed in [30] can be derived by some post-processing.
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To prepare for the modelling of cell colonies in space we fold our first (un-
coloured) Petri net. For this purpose we introduce two colour sets, Phenotype =
{a, b}, and DivisionType = {replicate,mutate}. These definitions allow us to
fold the two places A and B into one coloured place cell with the colour set
Phenotype, and to fold the four transitions into the coloured transition division.
We obtain the basic model given in Fig. 14.

cell1
1`A

Phenotype

division [div=replicate](2`c)++
[div=mutate](c++
(+c))

c

Fig. 14. SPN C as SPN short-hand notation; unfolding this SPN C generates the
SPN in Fig. 12. See listing in Fig 15 for the related definitions.

The derivation of our final model, see Fig. 15, from the basic model, see
Fig. 14, requires three further steps: adding space, controlling colony spreading,
and controlling thickness. We deliberately ignore some complexities, e.g. nutri-
tion and oxygen which are responsible for the vertical structure of the bacterial
colony, to design a simple, but powerful model.

Step 2 – Adding Space. We assume that the 3D colony is represented by a 2D
grid with a finite capacity on each grid position, and there is an equal maximal
height over all of the cell colony, i.e., all grid positions have the same capacity.
We derive a colour set from the cross product of the Grid2D and Phenotype
colour sets. Adding space requires making a decision regarding the destination
of the offspring. Initially, we assume that the offspring always goes to one of the
neighbouring positions which is chosen stochastically.

In this case study we are concerned with mutation rates and their influence on
the system behaviour. So their total values have to be kept constant. Introducing
space means technically to multiply transitions (basically one for each direction
per grid position). To counterbalance this effect, we scale the transition rates by
dividing them by the number of grid positions and by N, with N being the number
of neighbours. With other words, all transitions (which we get by unfolding)
make four equivalence classes, and the sum of all rates in one equivalence class
is kept constant, independent of the grid size and the neighbourhood relation.
Thus, the total rates in the phase variation model with space are the same as in
the phase variation model without space.

Step 3 – Controlling Colony Spreading. Cells do not actively move; as a
result of cell division they can either pile up on the parent’s grid position or
be displaced to a neighbouring position. To model this phenomenon, we add an
alternative transition which allows an offspring to stay with its parent. Thus,
the rate functions need now to be scaled by N+1.
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To control the tendency between staying with the parent (division1) or going
to a neighbouring position (division2), we introduce a preference factor γ, which
may vary between 0 and γmax without changing the total division rate (sum of
rates of division1 and division2). For this purpose, we define γH = γ/γmax,
and γN = (γmax− γ)/γmax to further scale the rate functions correspondingly.

Increasing γ increases the preference to stay with the parent, while decreasing
γ increases the preference to displace. Setting γ to γmax precludes the ability
to go to a neighbour, thus the size of the colony is restricted by the capacity
of one grid position. Setting γ to zero precludes staying with the parent. Cells
then have the tendency to first occupy all grid positions, before the thickness
increases simultaneously over the whole colony patch.

Step 4 – Controlling Thickness. The bacteria generated by cell division can
pile up on top of each other and thus increase the colony thickness at that grid
position. This thickness is limited because of the cells’ requirements for access to
oxygen and nutrients. In order to control the thickness we introduce a constant
POOLSIZE, which limits the maximum number of cells at a certain grid position.
We set POOLSIZE to give room for 26 generations. See the listing in Fig. 15 for
a summary of all required colour-related definitions.

4.3 Computational Experiments

All computational experiments are done on the automatically unfolded Petri
nets. Unfolding our coloured Petri net for a 101×101 grid yields an uncoloured
Petri net with 30,603 places and 362,404 transitions with an unfolding time
of 630 seconds. The unfolded Petri net is simulated using the Gillespie algo-
rithm [15]. One stochastic simulation run takes about 40 minutes. The output
comprises a pair of simulation traces for each grid position, corresponding to the
two phenotypes A and B, similar to Fig. 9, with each run behaving differently.

The analysis considers the development over time of the proportion of the
given genotype in the total population, and the patterning into characteristic
segments. This requires converting the stochastic simulations into 2D represen-
tations, see Fig. 16, and analysing the development of the 2D sector-like patterns
over time. We expect that the model will finally permit the prediction of mu-
tation rates and fitness by counting and measuring pattern segments, which in
the future could give new insights into the population dynamics of mutation.
Currently, our model predicts behavior which has not been measured so far in
the wet lab — the model generates a time series description of the evolution of
the patterns in cell colony (indicated in Fig. 16), while wet lab data just give a
snapshot of the final state.

5 Tools

All Petri nets in this paper were constructed with Snoopy [29], recently extended
to support coloured Petri nets [20, 23]. Simulations were done with Snoopy’s
built-in stochastic simulator and Marcie [18]. Simulation traces have been further
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const D1 = int with 101 ;
const D2 = D1 ;
const MIDDLE = int with D1/2+1;
const POOLSIZE = int with 7000;
const POOLSIZE 1 = int with POOLSIZE−1;

colorset Phenotype = enum with A, B;
colorset DivisionType = enum with r e p l i c a t e , mutate ;
colorset CD1 = int with 1−D1 ;
colorset CD2 = int with 1−D2 ;

colorset Grid2D = product with CD1 x CD2;
colorset Grid = product with Grid2D x Phenotype ;

var c : Phenotype ;
var div : Divis ionType ;
var x , xn : CD1;
var y , yn : CD2;

fun bool neighbour2D8 (CD1 x ,CD2 y ,CD1 xn ,CD2 yn ) { . . . } ;
fun bool l a t e r a l (CD1 x ,CD2 y ,CD1 xn ,CD2 yn) { . . . } ;
fun bool d iagona l (CD1 x ,CD2 y ,CD1 xn ,CD2 yn) { . . . } ;

cell

1

1`(x=MIDDLE)&(y=MIDDLE)&(c=A)Grid

pool

71406999

POOLSIZE`(1<=x&x<=D1) & (1<=y&y<=D2) & (x<>MIDDLE|y<>MIDDLE)++
POOLSIZE_1`(x=MIDDLE & y=MIDDLE)

Grid2D

division2
[neighbour2D8(x,y,xn,yn)]

division1

[div=replicate]((xn,yn),c)++
[div=mutate]((xn,yn),(+c))

(xn,yn)

[div=replicate]((x,y),c)++
[div=mutate]((x,y),(+c))

(x,y)

((x,y),c) ((x,y),c)

Fig. 15. SPN C for the final spatial model of phase variation. The integers on the
places give the total number of tokens of any colour.
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Fig. 16. 2D representation of a single stochastic run showing the development of binary
phase variation in a cell colony over time and space, and illustrating the development
of sector-like patterns. Density of the two phenotypes is represented by yellow and dark
blue, respectively. Each run looks differently due to the built-in stochasticity.

processed by customised Java (Python) programs, and finally visualised with
Gnuplot (matplotlib). Snoopy and the models in Snoopy format can be obtained
from http://www-dssz.informatik.tu-cottbus.de. Thus, all our results can
be easily reproduced by the interested reader.

6 Summary

In this paper we have deployed colour to specify biochemical processes evolving
in time and space. The spatial modelling style presented can be applied to a wide
range of biological and also technical application scenarios. The framework we
have introduced covers qualitative, stochastic, continuous and hybrid modelling
paradigms It exploits existing simulation techniques and analytical machinery
by unfolding to uncoloured nets.

Due to page restrictions we have only presented continuous and stochastic
case studies, but it is obvious how to apply our spatial modelling approach to
qualitative and hybrid examples. It is also straightforward how to extend the
colouring principle to a 3-dimensional space, or how to adapt it to different
notions of space; e.g., using polar coordinates.

The coloured Petri nets which we have presented might give an impression
of simplicity, which just underlines the power of abstraction by folding into
coloured models. Crucially, this technique enables a new approach to multiscale
modelling, and we have elsewhere illustrated this by using coloured stochastic
and continuous Petri nets to model planar cell polarity in Drosophila fly wing [11,
13,17]. A 2-dimensional space is organised as a regular honeycomb lattice of cells
which is interpreted over a regular grid by tuning the neighbourhood functions.
Each position in the grid contains a subgrid describing the intracellular level.
Further case studies deploying coloured Petri nets for spatial modelling problems
can be found in [5, 13, 24, 25].

Our modelling style supports BioModel engineering by the established sep-
aration of concerns principle. Changing the notion of space just requires the
appropriate adaptation of the definition of the colour sets, the functions spec-
ifying the neighbourhood relation, and the transition rate functions. The net

http://www-dssz.informatik.tu-cottbus.de
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structure itself needs not to be altered. All colour-related definitions can be
reused via Snoopy’s export/import functionality.

Our current ongoing work includes the development of visualisation and model
checking over spatial patterns in multiple dimensions and scales, as well as non-
rectangular geometries. Future work will address computational challenges due
to the fact that currently simulations must be performed at the unfolded level
rather than at the coloured level.
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Abstract. The paper proposes an user-based solution for the vehicle relocation 
problem in car sharing systems. In particular, the impact of a mechanism of 
economic incentives based on a real time monitoring of vehicles distribution 
among the parking areas is assessed. We consider three different operative con-
ditions that are described by the Unified Modeling Language and modeled in a 
Timed Petri Net (TPN) framework. In order to show and compare the effective-
ness of the adopted management strategies, the real case study of an electric-car 
sharing system is evaluated and simulated in the TPN environment. The results 
underline how the proposed solution leads to an improvement of the overall 
system performances, by highlighting at the same time the limits of such a 
strategy. 

Keywords: Car Sharing, Timed Petri Net, Simulation, Sustainable Mobility. 

1 Introduction 

Over the past few decades the environmental and socio-economic problems linked to 
the mobility in urban areas have underlined the need of reducing the massive use of 
private vehicles. In this context, systems in which a common fleet of vehicles is 
shared among multiple users (the so-called shared-use vehicle systems) have reached 
great popularity [1], mainly in the forms of car sharing. 

Specifically, in a car sharing system every user can autonomously rent a car ac-
cording to her/his needs and for a period that can be very short, unlike the traditional 
car rental. The benefits of such an offer are clear and can be summarized as follows:  

1. general improvement of transport efficiency, thanks to the decrease of the total 
number of vehicles required to meet the travel demand and to a more rational use 
of  mobility opportunities; 

2. sharing among multiple users of fixed costs usually related to the possession of a 
private vehicle (purchase, insurance, maintenance); 

3. reduction of carbon emissions; 
4. increased use of public transport. 
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Simultaneously, the energy dependence of the mobility on fossil fuels, characterized 
by great instability both in prices and in supplies, has increased the interest in Electric 
Vehicles (EVs). However, high prices and limited range are big obstacles to their 
complete diffusion: fleets of shared-use vehicle systems can represent a concrete op-
portunity to overcome these initial drawbacks and to support the achievement of elec-
tric mobility. 

In order to obtain an efficient implementation of such systems and thus limit the 
undeniable competitive advantage of private traditional vehicles, a detailed planning 
is required. In particular, there are many issues that affect the performances and the 
success of an electric-car sharing organization. 

First, the determination of the optimal fleet size, based on the actual mobility de-
mand, is fundamental and different approaches can be found in the related literature: 
e.g., George and Xia [2] propose a closed queuing network model for solving the 
fleet-sizing problem in a general vehicle rental system, while Nakayama et al. [3] 
attempt to optimize the design and the operation of an EV-sharing system using ge-
netic algorithms. 

At the same time, depot location is a parameter which greatly influences the ser-
vice utilization rate [4], as well as pricing policies [5], [6] and vehicle reservation 
systems [7]. Another important feature that determines the popularity of a generic car 
sharing system is its flexibility: conventionally users are required to pick-up and re-
turn vehicles at the same station, but this strictly binds the conformation of users’ 
travels; on the other hand, in the so-called one-way rental systems an user can return 
the rented vehicle at any station, making the service more useful, but at the same time 
introducing some management complexities and thus increasing management costs. 
In particular, in this type of service the balance in the distribution of vehicles among 
stations during the day must be guaranteed through a relocation mechanism, and two 
main categories of vehicle redistribution strategies can be found in literature: opera-
tor-based strategies and user-based strategies [8]. In order to support the management 
in dealing with these key issues and make the service more user-friendly, the applica-
tion of the modern Information and Communication Technology (ICT) seems to be 
essential [9], [10]. 

This paper is part of this framework and addresses the application of ICT for the 
management of a one-way rental-electric-car sharing service. In particular, the effec-
tiveness of a system of economic incentives settled to ensure a user-based  rebalanc-
ing of the number of vehicles parked in each station throughout the day is assessed. 
Incentives are intended to influence the travel behavior of the users according to the 
system conditions, monitored in real time. To show the impact of the proposed solu-
tion, a model of an electric-car sharing system has been developed in a Timed Petri 
Net (TPN) framework. Indeed, TPN allows concisely representing in an unified struc-
ture both static and dynamic aspects of the considered system, thanks to its twofold 
representation, graphical and mathematical. In particular, the graphical aspect enables 
a concise way to design and verify the model, while the mathematical description 
allows simulating the considered system in software environments, by considering 
different dynamic conditions. Three different operative conditions are evaluated and 
modeled: the first one describes an easy management of the considered service; in the 
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second one users are always encouraged to return the vehicle as soon as possible; in 
the third operative condition incentives to the users, which depend on the real time 
monitoring of the system balance conditions, are introduced. In order to show and 
compare the effectiveness of the adopted management strategies, the proposed vehicle 
relocation strategies are applied to the real case of the electric-car sharing system of 
Pordenone, a town of the North of Italy. The simulation studies and results in the TPN 
environment show how the proposed solution leads to an improvement of the overall 
system performances, by highlighting at the same time the limits of such a strategy.  

The remainder of the paper is structured as follows. Section 2 presents a brief 
overview on the TPN used in this paper, while Section 3 describes the considered 
problem and the proposed solution. In Section 4 a case study is described and then the 
related TPN model is detailed; Section 5 presents system behavior simulations under 
the three different operative conditions and discusses the results. Finally, in Section 6 
the conclusions are summarized. 

2 Basics of Timed Petri Nets 

This section recalls some basic definitions on the TPN formalism used in the paper. 

2.1 Net Structure 

A Petri net (PN) [11] is a bipartite graph described by the four-tuple PN=(P, T, Pre, 
Post), where P is a set of places with cardinality m, T is a set of transitions with cardi-
nality n, Pre: P×T→  and Post: P×T→  are the pre- and the post-incidence 
matrices, respectively, which specify the arcs connecting places and transitions. More 
precisely, for each p P and t T element Pre(p,t) (Post(p,t)) is a natural number indi-
cating the arc multiplicity if an arc going from p to t (from t to p) exists, and it equals 
0 otherwise. Note that  is the set of non-negative integers. Matrix C=Post–Pre is 
the m×n incidence matrix of the PN. 

The state of a PN is given by its current marking, which is a mapping M: P→ , 
assigning to each place of the net a non-negative number of tokens. A PN system 
<PN, > is a net PN with an initial marking . 

Classical PN do not convey any notion of time, but in order to represent systems 
with temporal constraints TPN have been introduced: TPN are obtained from PN by 
associating a firing time to each transition of the net [12]. In particular, there are three 
types of timed transitions: immediate transitions (represented with bars), stochastic 
transitions (represented with boxes) and deterministic transitions (represented with 
black boxes). More formally, a TPN is a six-tuple TPN=(P, T, Pre, Post, F, RS), 
where P, T, Pre, Post have the same meaning as described above. Moreover, function 
F:  specifies the timing associated to each transition, where  is the set of 
non-negative real numbers. In particular, F( )=  specifies the timing associated to 
the timed deterministic transitions, and F( )= 1/  is the average firing delay each 
stochastic transition, where  is the average transition firing rate. Finally, RS: 

 is a function that associates a probability value called random switch to con-
flicting transitions.  
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2.2 Net Dynamics 

A transition  is enabled at M if and only if (iff) it holds: M≥Pre ·,  and we 
write  to denote that  is enabled at marking M. When fired, tj produces a 
new marking , denoted by , that is computed by the PN state equation 

, where  is the n-dimensional firing vector corresponding to the j-th 
canonical basis vector. Moreover, the enabling degree of transition  at M is 
equal to enab(M, )=  | · ·, . 

If  is infinite-server semantics, we associate to it a number of clocks that is equal 
to enab(M; ) [12]. Each clock is initialized to a value that is equal to the time delay 
of t, if  is deterministic, or to a random value depending on the distribution function 
of , if  is stochastic. On the contrary, if a discrete transition is k-server semantics, 
then the number of clocks that are associated to  is equal to , ; . 
The values of clocks associated to  decrease linearly with time, and  fires when 
the value of one of its clocks is null (if  clocks reach simultaneously a null value, 
then  fires  times). Note that in the paper we consider transitions using infinite 
server semantics and enabling memory policy. This means that if a transition enabling 
degree is reduced by the firing of a different transition, then the disabled clocks have 
no memory of this in future enabling [12]- [13]. 

3 The Vehicle Relocation Problem 

In traditional car sharing organizations, users are required to return the rented vehicle 
to the same parking area where it has been picked-up and, so, only round trips are 
possible: this configuration of the system, usually called two-way rental, simplifies 
certainly the management of the service, but at the same time it seems to be suitable 
only for leisure or sporadic trips, limiting the number of potential users [14].  

In the so called one-way rental systems, instead, customers can rent a vehicle in 
one station and return it to a different one. However, since demand for vehicles is not 
evenly distributed among the parking areas and not all destinations have the same 
popularity, this strategy of management can lead quickly to an imbalance in the num-
ber of cars available in each station. For this reason, an accurate planning of the ser-
vice which prevents or minimizes vehicle imbalance is necessary, as well as vehicle 
relocation activities. This issue becomes more critical when the system fleet is com-
posed by electric vehicles, since customers have the pressing need to find an available 
parking stall at the destination station in order to recharge, when necessary, the rented 
vehicle. 

In literature, two main relocation strategies are identified: the operator-based strat-
egy and the user-based strategy [7], [8], [15]. In the operator-based relocation tech-
nique system staff relocates vehicles among the parking areas [16], [17]. On the other 
hand, when an user-based strategy is adopted, users themselves ensure the rebalancing 
of the system with their travel behavior, influenced through different types of incen-
tives and a strategic planning of the service rules [7]. This technique is particularly 
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advantageous both from an economic and an environmental point of view, since no 
additional trips without customers are conducted. An example of this approach is 
described by Uesugi et al. in [18], where a method for assigning the optimum number 
of vehicles to users, according to distribution of parked vehicles, is presented. 

3.1 The Proposed User-Based Strategies 

This paper presents and assesses two particular user-based relocation techniques. The 
proposed solutions consist of an incentive mechanism that provides to the users, in 
real time, suggestions of behavior based on the actual vehicles allocation: more pre-
cisely, through ICT tools installed on board of each vehicle, the system suggests to 
the users in which infrastructure or within what time to give back the rented vehicle. 
If a customer follows the provided directions, he has a right to a discount on the total 
cost of the rental. 

In order to study the outcomes derived from the introduction of such a mechanism, 
we compare three different operative conditions. In the first one, no incentive system 
is taken into account and vehicles are relocated only at the end of the working day. In 
the second case, users are always encouraged to return the rented vehicle as soon as 
possible, regardless of the system balance conditions. In the third operative condition 
the vehicles distribution among the parking areas is monitored at regular time inter-
vals and, whenever the system is unbalanced, suitable travel conformations are sug-
gested in real time to the users. 

3.2 The UML Description 

With the aim of obtaining a clear and synthetic representation of the three different 
service management strategies just described, the Unified Modeling Language (UML) 
[19] has been used: in particular, activity diagrams have been developed. This kind of 
diagrams is useful in fact to model dynamic aspects of a system through the descrip-
tion of the actions that, chained together, represent a process occurring in the system 
itself. Every activity can involve different actors: in activity diagrams the so-called 
swim lanes are used to show which actors are responsible for which actions and so 
diagrams are divided into columns. The main elements of this type of diagrams are: 
the initial activity (represented with a solid circle); the final activity (represented with 
a bull’s eye symbol); general activities (represented with a rectangle with rounded 
edges); arcs connecting activities and representing flows; forks and joins, depicted by 
horizontal split and modeling concurrent activities and actions respectively beginning 
and ending at the same time; decisions, represented with diamonds and modeling 
alternative flows; signals representing activities sending or receiving a message. In 
particular, there are two types of messages: input signals, shown by a concave poly-
gon, and output signals, shown by a convex polygon.  
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Fig. 1. First operative condition: relocations at the end of the working day 

 

Fig. 2. Second operative condition: users encouraged to return the vehicle as soon as possible 
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Fig. 3. Third operative condition: real time monitoring of the system and incentive mechanism 

The activity diagrams of Figs. 1-3 describe the three operative conditions previously 
introduced. There are three actors involved: user, that represents the generic service 
user; vehicle, that represents the generic electric vehicle; and management system, 
which represents the centralized control system of the service. Note that “Travel time 
determination” and “Destination parking determination” are not to be intended as pre-
ventive statements made by the users to the management system, but rather as a simple 
schematization of their decision process, useful to simulate the system behavior.  

Six main phases characterize the first operative condition, detailed in activity dia-
gram of Fig. 1: 

1. vehicle request phase: an user arrives at the parking area and makes a request for 
an available vehicle; 

2. checking vehicle availability phase: the management system checks the vehicles 
availability and, if there is a car not yet rented, it grants the hire; 

3. rental and use of the vehicle phase: the user refines the rental of the vehicle and 
makes his trip; 

4. vehicle restitution phase: when he has finished his trip, the user brings back the 
vehicle in a service parking area and the management system checks the vehicle 
conditions; 

5. maintenance phase: when necessary, the rented vehicle is carried to a car park for 
maintenance operations and, only after this, it is again available in a parking area; 

6. payment phase: the management system calculates the total cost of the rental, then 
the user pays and leaves the system. 
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It is clear that the described one-way rental system requires a relocating mechanism 
that ensures the balance of the number of vehicles available in each station throughout 
the day, according to the mobility demand. In particular, since in the current man-
agement policy relocations of vehicle are carried out only at the end of the working 
day, hereafter we refer to the first operative condition depicted in Fig. 1 as case as is. 
Management strategy of Fig. 2 is named case to be-offline instead, since there is not a 
real time monitoring of the system, while the introduction of the economic incentives 
based on the actual balance conditions of the service characterizes the so-called case 
to be-online. More in detail, the following strategy has been defined, with four types 
of incentives depending on the system conditions: 

7. both in P3 and in P5 there are more than 2 available vehicles: the system is still 
balanced and no suggestion has to be provided to the customers (incentive type: 0); 

8. both in P3 and in P5 there are2 or less available vehicles: customers are encour-
aged to give back the vehicle as soon as possible (incentive type: 1); 

9. in P3 there are 2 or less available vehicles: users are encouraged to give back the 
vehicle in P3 (incentive type: 2); 

10. in P5 there are 2 or less available vehicles: users are encouraged to give back the 
vehicle in P5 (incentive type: 3). 

When a customer follows the received suggestions, he obtains a discount of 20% on 
the total rental cost. 

4.2 The Timed Petri Net Model 

This section describes the TPN modeling technique used to represent an electric-car 
sharing service. In particular, the model developed in this paper is referred to the car 
sharing service of Pordenone, but it can be easily applied, with few modifications, to 
any generic car sharing system. 

To model the system behavior, the following assumptions have been made: 

• Maximum waiting time: it is reasonable to assume that each user is willing to wait 
up to 10 minutes for an available vehicle, then he leaves the parking without hav-
ing been served. 

• Maintenance: it is assumed that only one car park is available for the vehicles 
maintenance, with the capability to operate on a single vehicle at a time. Further-
more, the probability that a vehicle needs service after the rental period is consi-
dered not negligible (10 %) and, among the vehicles in maintenance, 99%  is 
available again in one of the two parking areas after one hour, while 1% requires 
an eight-hours service. Note that maintenance time also includes recharging opera-
tions needed by EVs. 

• Number of available vehicles: 10 vehicles are assumed to be available in the ser-
vice, initially equally distributed between parking P3 and parking P5. 
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In particular, these assumptions are based on the real operative conditions of the ser-
vice of Pordenone, collected through interviews with the system operators. 

The TPN represented in Fig. 5 models the two cases as is and to be-offline de-
scribed by the UML diagrams of Fig. 1 and Fig. 2, respectively. On the other hand, 
the TPN shown in Fig. 6 models the case to be-online described by the UML diagram 
of Fig. 3. Tables 1-5 show the meaning of places and transitions of the two TPNs. 
Moreover, activity diagrams have been translated into TPN models by a resource 
oriented approach, using the same guidelines described in [20]. 

In this context we consider the transitions using infinite server semantics and 
enabling memory policy to model the waiting time of each actor (user or vehicle) 
modeled by the TPN. Indeed, a number of clocks, initialized to the waiting time, is 
associated by the transitions to the actor operations. 

In particular, in Fig. 5 the case as is is modeled: the firing probability (called ran-
dom switch, RS) of conflicting transitions is represented with red color, while the 
firing delay  [h] of deterministic transitions and the exponential distribution para-
meter  [1/h] of stochastic transitions are labeled in blue.  

As mentioned above, a modular TPN model has been developed: each parking area 
is represented by the same structure (a submodel that represents users’ arrival and 
waiting for a vehicle, one for the travel time determination, one that models the desti-
nation determination and, finally, a submodel that represents the evaluation of the 
need of maintenance), while the maintenance operations are modeled by a structure 
that can be identically repeated on the basis of the available number of car parks in 
the service (Fig. 5). 

More in detail, the users arrive to the parking P3 (transition t1) or to the parking P5 
(transition t2). They wait for an available vehicle (places p1 and p2). If the waiting 
time is greater than 10 minutes, the user decides not to use the car sharing service 
(transition t25 or t26). Hence, the conflict between transition t3 (t4) and transition t25 
(t26) is resolved only by the timing. On the contrary, the user rents the vehicle in park-
ing P3 (transition t3) or in parking P5 (transition t4). Now, the user communicates the 
travel time: it may be of 20 minutes (transition t5 if the user is in parking P3 or transi-
tion t7 if the user is in parking P5) or superior and about 1 hour (transition t6 if the 
user is in parking P3 or transition t8 if the user is in parking P5). Note that the conflict 
between the transition t5 (t7) and t6 (t8) is now solved by the random switch RS. The 
return of the vehicle can be in parking P3 or parking P5, though the user rents  
the vehicle in a different parking. Transitions t9, t10, t11 and t12 model the behavior of 
the rented vehicle. For example, transition t9 (t11) represents the utilization for 20 
minutes of a vehicle that will be returned in parking P3 (P5), while transition t10 (t12) 
represents the utilization for about 1 hour of a vehicle that will be returned in parking 
P3 (P5). The conflicts between transition t9 and t11, and between t10 and t12 are solved 
by the function RS. 
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When the user returns the vehicle, two cases are possible. If the vehicle is in good 
condition, it is deposited in the parking P3 or P5 (transitions t14 and t15, respectively); 
then the user pays and leaves the parking (transitions t17 for parking P3 and transition 
t18 for parking P5). If the vehicle is not in good condition, then maintenance is  
required (transitions t13 and t16). Maintenance can be short (transition t19) or long 
(transition t20). After the maintenance, the vehicle is reported to the parking P3 or P5 
(transitions t21, t22, t23 and t24). All the conflicts are solved by function RS, as illu-
strated in Fig. 5. 

Moreover, note in Fig. 5 the different modeling approach for the two possible 
travel times: while travels that last 20 minutes are represented by deterministic tran-
sitions, longer trips are modeled by an exponential distribution, since users pay less 
attention to respect the limit of an hour and more delays or accidents may occur 
during the rental period. At the same time, note that TPN of Fig. 5 represents also 
the case to be-offline, since no real time monitoring of the system is considered: the 
effects of the incentive to return the rented vehicle as soon as possible are modeled 
with the variation of RS of transitions  and  from 0.60 to 0.70, which means 
that the probability that a customer returns the vehicle after 20 minutes varies from 
0.60 to 0.70 (and, so, a customer gives back the car after almost an hour with a 
probability of 0.30). Fig. 3 shows the case to be-online: real time monitoring of the 
system is modeled by the introduction of the places Alarm 1 and Alarm 2. 

 

Fig. 5. The TPN system modeling the case as is 
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Table 1. Meaning and initial marking of places in the TPN of Fig. 5 

Name Meaning  

p1 user waiting for an available vehicle in P3 0 
p2 user waiting for an available vehicle in P5 0 
p3 parking P3 capacity 5 
p4 rented vehicle in P3 0 
p5 parking P5 capacity 5 
p6 rented vehicle in P5 0 
p7 selected travel time is 20 min 0 
p8 selected travel time is 60 min 0 
p9 selected destination parking is P3 0 
p10 selected destination parking is P5 0 
p11 vehicle again available in P3 0 
p12 vehicle again available in P5 0 
p13 vehicle maintenance required  0 
p14 short maintenance (1 hour) 0 
p15 long maintenance (8 hours) 0 

Table 2. Meaning and average transition firing rates   of the stochastic transitions in the 
TPN of Fig. 5 

Name Meaning  

t1 user arrival at parking P3 2.5 
t2 user arrival at parking P5 2 
t3 vehicle rental at parking P3 20 
t4 vehicle rental at parking P5 20 
t5 user decision to travel 20 min 40 
t6 user decision to travel 60 min 40 
t7 user decision to travel 20 min 40 
t8 user decision to travel 60 min 40 
t10 destination parking determination (P3) during a travel of 60 min 1 
t12 destination parking determination (P5) during a travel of 60 min 1 
t13 vehicle picked up for maintenance 0.003 
t14 vehicle restitution at parking P3 15 
t15 vehicle restitution at parking P5 15 
t16 vehicle picked up for maintenance 0.003 
t17 user departure from parking P3 15 
t18 user departure from parking P5 15 
t19 short maintenance operations 1 
t20 long maintenance operations 0.125 
t21 vehicle return to P3 after maintenance 3 
t22 vehicle return to P5 after maintenance 3 
t23 vehicle return to P3 after maintenance 3 
t24 vehicle return to P5 after maintenance 3 
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Table 3. Meaning and firing delays   of deterministic transitions in the TPN of Fig. 5 

Name Meaning  

t9 destination parking determination (P3) during a travel of 20 min 0.333 
t11 destination parking determination (P5) during a travel of 20 min 0.333 
t25 user departure from parking P3 without being served 0.167 
t26 user departure from parking P5 without being served 0.167 

 

Fig. 6. The TPN system modeling case to be-online 

Table 4. Meaning and initial marking of new places in the TPN of Fig. 6 

Name Meaning  
p16 monitored number of available vehicles in P3 5 
p17 monitored number of available vehicles in P5 5 

Alarm 1 incentive mechanism active (P3) 0 
Alarm 2 incentive mechanism active (P5) 0 

p18 Alarm 1 capacity 1 
p19 Alarm 2 capacity 1 
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Table 5. Meaning and firing delays   of new deterministic transitions in the TPN of Fig. 6 

Name Meaning  
t27 incentive mechanism activation (P3) 0 
t28 incentive communication to users 0.5 
t29 incentive mechanism activation (P5) 0 
t30 incentive communication to users 0.5 

Table 6. Effects of the different types of incentive on the random switches of conflicting 
transitions 

Type of incentive Condition Effect 

0 M(p16) <8 and M(p17) < 8 

RS(t5)=RS(t7)=0.60 
RS(t6)=RS(t8)=0.40 
RS(t9)=RS(t10)=0.60 
RS(t11)=RS(t12)=0.40 

1 M(p16) >= 8 and M(p17) >= 8 
RS(t5)=RS(t7)=0.70 
RS(t6)=RS(t8)=0.30 

2 M(p16) >= 8 
RS(t9)=RS(t10)=0.70 
RS(t11)=RS(t12)=0.30 

3 M(p17) >= 8 
RS(t9)=RS(t10)=0.45 
RS(t11)=RS(t12)=0.55 

 
If Alarm 1 (Alarm 2) is marked, then the vehicle availability in parking area P3 

(P5) is low and so the apt incentive is communicated to users: the incentive lasts for 
half an hour and then the system is monitored again. In Tables 4-5 the meaning of 
new places and transitions is shown. 

In particular, the impact of the real time suggestions on the customers’ behavior 
has been modeled with the variation of the RS of conflicting transitions, as reported in 
Table 6. Note that the effects of incentives on the determination of the destination 
parking are not the same for P3 and P5: the second one is, in fact, less attractive for 
users and so customers are more unwilling to choose it as travel destination even with 
the promise of a discount. 

5 The Case Study Simulation and Results 

5.1 Simulation Specification 

In order to analyze the performances of the electric-car sharing service and to evaluate 
the impact of the incentive mechanism previously described, numerical simulations 
have been performed. In particular, three scenarios (A, B and C), characterized by 
different levels of system congestion, are considered: users’ inter-arrival times in 
Scenario A, in Scenario B and in Scenario C are reported in Table 7. (Note that the 
exponential distribution parameters  of transitions  and  depicted in Figs. 5-6 
and in Table 2 are referred to Scenario A). 
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Table 7. Users’ inter-arrival times [min] in Scenarios A, B, C in both parking areas 

 P3 P5 
Scenario A 24 30 
Scenario B 
Scenario C 

12 
10 

20 
15 

 
In all the considered scenarios, the three different operative conditions introduced 

in Section 4 are taken into account (case as is, case to be-offline, case to be-online). 
The following three performance indices are defined: 

• Level of Service (LOS): this performance index is expressed in terms of average 
fraction of served users and can be determined as follows: 

 LOS=
| | | || | | | , (1) 

 where the operator | |  indicates the number of firing of transition t during a  
simulation. We recall that transition t3 (t4) fires if an user utilizes the electric car of 
the parking P3 (P5). On the other hand, the firing number of transitions t1  
and t2 represents the total number of users arriving to the parking P3 and P5,  
respectively. 

• Company revenue R: such an index is defined as the sum of the total travel cost 
supported by each user, considering the possibility of monetary incentives. 

In a car sharing service, each user has to pay both a distance charge (0.20 €/km) 

and an hourly charge (5 €/hour). In the presented context only the hourly charge is 

taken into account, since it is the cost that is influenced by the incentive mechan-
ism. The value of R (in euros) can be determined as follows: 

 R=[hourly charge]· 1 · ·  | | 1 · ·  | | · | | · | | . (2) 

The transitions t9, t10, t11 and t12 represent the decision of the user to utilize the elec-

tric car for 20 minutes or for about 1 hour. Hence, ·  | | , ·  | | ,  ·| | and · | | represent the total time of utilization of an electric car. Moreo-

ver, in case an incentive strategy is applied, the term (1-discount) has to be neces-
sarily added to (2). In the case study we assume discount=0.2. 

• The average car sharing company gain G: it is calculated as the difference be-
tween the company revenue R and the monetary penalty P defined in Section 4: 

 
P=[monetary penalty] · | | | |  €.    (3); 

 
G=R-P €    (4). 
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In the case study we assume monetary penalty=5€ and it has been introduced in order 
to quantify the damage that each user that leaves the system without having been 
served represents for the company; the inability to satisfy the demand, in fact, does 
not represent only a loss of earning for the company, but it has also repercussions on 
the image and the attractiveness of the service itself. In particular, the firing of t25 or 
t26 represents the disappointed user who goes away without using the car sharing ser-
vice, because he waited more than 10 minutes. 

The TPN model of Figs. 5 and 6 are simulated in the MATLAB software envi-
ronment [21]. Such a matrix-based engineering software appears particularly ap-
propriate for simulating the dynamics of TPN based on the matrix formulation of 
the marking update, as well as to describe and simulate PN systems with a large 
number of places and transitions. The performance indices have been evaluated by 
long simulation run of 21600 minutes (car sharing service is operative for 12 hours 
per day, 30 days per month), with a transient period of 30 minutes. In particular, 
the estimates of the performance indices are deduced by 50 independent replica-
tions, with a 95% confidence interval. Besides, the half width of the confidence 
interval is about 2.2% in the worst case, confirming the sufficient accuracy of the 
performance indices estimation. Finally, considering that the average CPU time for 
a simulation run is about 408 seconds on a PC equipped with a 1.73 GHz processor 
and 1 GB RAM, the presented modeling and simulation approach can be applied to 
large and complex systems. 

5.2 Simulation Results 

Simulation results are depicted in Figs. 7-9. In Fig. 7 the average fraction of served 
users is reported by comparing case as is and case to be-offline. It is interesting to 
note that an incentive mechanism that does not consider the instantaneous vehicle 
balance conditions of the service does not improve significantly the LOS. 

 

Fig. 7. The average fraction of served users for each case in all the considered scenarios 
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Fig. 8. Average company gain comparison between case as is and case to be-offline in all the 
considered scenarios 

 

Fig. 9. Average company gain comparison between case as is and case to be-online in all the 
considered scenarios 

On the contrary, it results to be even counterproductive or irrelevant in Scenario B 
and in Scenario C, that is, as the congestion level of the system increases. At the same 
time, in the case to be-online in Scenario A the number of served users increases of 
6% with respect to case as is, but the entity of this increase is reduced (only 3% and 
2%, respectively) in Scenario B and in Scenario C: this means that the effectiveness 
of the proposed incentive mechanism decreases as the congestion of the system grows 
and such a solution is not able to guarantee evident benefits when the number of 
available vehicles is undersized compared to the mobility demand. 

It is possible to observe the same behavior also in the analysis of the impact of the 
proposed solution on the average car sharing company gain G, as shown in Figs. 8-9. 
In particular, Fig. 8 is referred to the case to be-offline: as can be easily seen, the in-
troduction of the incentive mechanism leads to a reduction of the company gain (with 
a peak of - 49% in Scenario B) and to a real economic loss in Scenario C.  On the 
other hand, when the typology of information suggested to the users is based on  
the current system conditions (Fig. 9), the company gain is higher in the first two 
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scenarios, but the effect in Scenario B is less pronounced (19% vs. 7%); in Scenario 
C, on the contrary, there is a decrease of the company gain, so not even a real time 
monitoring of the number of vehicles is sufficient to ensure an enhancement of the 
system performances when it turns out to be too congested. 

Summing up, the introduction of an incentive mechanism based on a continuous 
monitoring of the vehicles distribution among the parking areas improves the LOS of 
a car sharing system with positive economical outcomes for the company itself, but it 
cannot disregard a prior and coherent sizing of the system; on the other hand, a me-
chanism which does not consider the actual balance conditions of the system does not 
turn out to be a concrete solution for the user-based vehicle relocation problem. 

Compared to the techniques described in other works, the considered approach 
does not take into account the possibility of ridesharing (users share a ride in a single 
vehicle) or trip splitting (multiple users that have to travel between the same origin 
and destination drive separate vehicles), and this represents an advantage for custom-
ers who can be unwilling to share the same vehicle with strangers or to travel sepa-
rately from their acquaintances. However, the effectiveness of the proposed solution 
highly depends on users’ participation and so the percentage of discount on the total 
travel cost has to be strategically determined. 

6 Conclusion 

The possibility for a car sharing customer to pick-up a vehicle in a parking area and 
return it to a different one after the rental period is a feature that deeply influences the 
popularity of a car sharing organization, since it guarantees flexibility in users’ trip 
conformation. However, since the vehicle demand is not uniformly distributed, such a 
system can lead quickly to an imbalance in the number of available cars in each sta-
tion. For this reason, a vehicle relocation system is fundamental in order to ensure an 
acceptable level of service.  

This paper presents two particular user-based vehicle relocation techniques. In par-
ticular, according to the instantaneous number of cars in each parking area, a real time 
strategy suggests to the customers, through ICT tools installed on board each vehicle, 
the best travel behavior useful to support the rebalancing of the system. In particular, 
in order to assess the impact of the proposed solution, the electric-car sharing system 
of Pordenone (Italy) has been considered and three operative conditions have been 
taken into account. The considered case study and the management strategies are 
modeled in a Timed Petri Net (TPN) framework and a simulation study compares and 
assesses the system performances in different scenarios.  

The obtained results underline that a system which does not consider the instanta-
neous balance conditions of the service and which suggests always to customers to 
return the rented vehicle as soon as possible is not a solution for the imbalance prob-
lem and it leads to economic losses for the car sharing organization. On the other 
hand, a simple ICT application and the real time monitoring of the system can in-
crease the number of served users and, therefore, improve the overall service perfor-
mance with economic benefits for the company. However, the effectiveness of this 
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solution decreases as the congestion level of the system grows and this fact underlines 
that such an action is not able to overcome problems linked to an undersizing of the 
service in terms of number of vehicles initially made available in each station. 

Future research will address a more in-depth behavioral analysis of the users’ level 
of acceptance of real time suggestions and, on the basis of this, the optimization of the 
percentage of discount on the total travel cost that has to be applied when a customer 
follows the received suggestions. 
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Abstract. Event processing networks emerged as a paradigm to imple-
ment applications that interact with distributed, loosely coupled compo-
nents. Such a network consists of event producers, event consumers, and
event processing agents that implement the application logic. Event pro-
cessing networks are typically intended to process an extensive amount of
events. Hence, there is a need for performance and scalability evaluation
at design time. In this paper, we take up the challenge of modelling event
processing networks using coloured Petri nets. We outline how this type
of system is modelled and illustrate the formalisation with the widely
used showcase of the Fast Flower Delivery Application (FFDA). Further,
we report on the validation of the obtained coloured Petri net with an im-
plementation of the FFDA in the ETALIS framework. Finally, we show
how the net of the FFDA is employed for analysis with CPN-Tools.

1 Introduction

Complex event processing is a paradigm that builds on concepts from database
technology enhanced with dynamic processing capabilities. So-called event pro-
cessing networks (EPNs) [1] are at the centre of complex event processing sys-
tems. The overall system behaviour of such a network is decomposed into a set
of event producers that generate events. Those are processed by event processing
agents who create further events that are relevant to event consumers. Often,
event producers can also be event consumers, such that EPNs are not simply a
complex kind of event-condition-action pipeline, but rather a cybernetic system
that observes events in the real-world and, based thereon, coordinates action.

There exists a plethora of approaches for implementing event processing net-
works and dealing with its intrinsic challenges [2]. A general problem in this
context, though, is to analyse the overall behaviour of an EPN. Yet, there is
currently no generally accepted formal model for complex event processing. The
potential of utilising coloured Petri nets to this end stems from their capability
of specifying concurrency in an explicit manner with support for typing of events.
Indeed, this merit has been recognized already for active database systems [3],
which promote rule-based processing in a non-distributed environment.

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 270–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Schematic representation of an event processing network

In this paper, we investigate the application of coloured Petri nets for spec-
ifying and analysing EPNs. We turn to the case of the Fast Flower Delivery
Application (FFDA) [1]. This real-world case is promoted by the Event Process-
ing Technical Society1 and has become a de-facto benchmark for demonstrating
the capabilities of event processing systems. Our contribution is the mapping of
concepts from EPNs to coloured Petri nets with a discussion of design choices.
Further, we report on the validation of the coloured Petri net obtained for the
FFDA with its implementation in ETALIS, an open-source event processing en-
gine. Finally, we demonstrate the merits of analysis and simulation capabilities
for this domain, thereby contributing to the formal foundations of EPNs and
opening this emerging field for Petri net analysis.

The paper is structured as follows. Section 2 introduces the main concepts of
event processing networks. Section 3 sketches the Fast Flower Delivery Appli-
cation. Section 4 defines the coloured Petri net model for this application case.
Section 5 is devoted to the validation of this model with the implementation of
the application in ETALIS. Section 6 summarises findings from analysing the
Petri net. Section 7 discusses related work and Section 8 concludes the paper.

2 Background: Complex Event Processing

Following [1], Section 2.1 presents the essentials of event processing networks
(EPNs) and Section 2.2 outlines event pattern detection.

2.1 Event Processing Networks

Event types and events. An event is a happening of interest, an ‘occurrence within
a particular system or domain’ [1]. Events are typed and an event type is a
specification for a set of events with related semantics and structure. A common
model for events is attribute-based, i.e., each event has a set of (required or
optional) attributes organised as key-value pairs. For instance, an event of type
‘delivery request’ may be characterised by a number of attributes and values,
such as ‘pickup = 24.09.12’ and ‘time = 3 days’.

Event producers and consumers. An EPN, as illustrated in Fig. 1, consists of
event producers and event consumers. Event producers emit events, eventually

1 http://www.ep-ts.com

http://www.ep-ts.com
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event consumers react upon the occurrence of events. Event processing agents
act as both event producers and consumers.

Event channels. Event channels link the components of an EPN and forward
events without applying any changes to them. They may incorporate routing
mechanisms that limit the set of potential input events for event consumers.

Event processing agents. Components that work on streams of events are called
event processing agents (EPA). We distinguish EPAs that (1) filter events, (2)
transform events, and (3) detect event patterns. A filter EPA performs a selection
of events, typically based on the event attributes. A transformation EPA takes
events as input, processes them, and produces a set of derived events as output
using a stateful or stateless data transformation operation. A pattern detection
EPA defines a complex detection logic and outputs derived events.

Event contexts. Event processing agents work on events that are considered
to be relevant. This relevance is determined by the event context, which is de-
fined along different dimensions [1]. Most prominently, the temporal dimension
partitions events based on their occurrence time, e.g., using a sliding window.
Then, event detection concerns only events that occurred within the same win-
dow. Events may also be partitioned based on space, external state, or segments
of attribute values. For the aforementioned example, one may require joint pro-
cessing of events of type ‘delivery request’ and ‘delivery bid’. Still, only relevant
events of both types shall be considered, e.g., events that occur within a win-
dow of two hours and match in their attribute values (e.g., the bid refers to a
request).

2.2 Detecting Event Patterns

Pattern detection EPAs use a set of standard patterns to compose complex event
patterns (aka complex events). Based on [1,4], we first discuss these patterns
and then elaborate on event processing policies, which disambiguate semantics
of event patterns. For illustration, circles, stars, and squares in Fig. 2 depict
events of types A, B, and C, arranged by their time of occurrence.

a1t a2 a3 a4

t1 t2

b1 b2 b3c1

Fig. 2. An event stream example

Common Event Patterns. The all
pattern defines a conjunction of event
types. In Fig. 2, for instance, the pat-
tern all(A,B,C) is detected for the
events {a1, b1, c1}. The any requires
one event of one of the given event types to occur (precise semantics depend
on the event processing policies, see below). In Fig. 2, any(A,B,C) detects the
event a1. The absence pattern refers to the absence of events of a certain type,
e.g., we detect absence(D) for the example.

Besides these basic patterns, there are threshold and dimensional pat-
terns. A threshold pattern defines an aggregation operation and a threshold.
An example is the count pattern. Instantiated as count(A, 3) it detects the
events a1, a2, and a3. Threshold patterns also refer to an assertion over the
min/max/average/n-highest/n-lowest values of event attributes. For instance,
the pattern max(A, att, >, 0.5) is detected if the average of the attributes att
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Fig. 3. The event processing network of the Fast Flower Delivery Application. For each
system, the number of contained EPAs is given in brackets.

of events of type A is larger than 0.5. Dimensional patterns refer to time and
space. The sequence pattern defines a list of event types and detects events that
occur in the respective order. Pattern sequence(A,A,B), for instance, detects
the events a1, a2, and b1.

Event Processing Policies. The evaluation policy determines when the pattern
is evaluated, either ‘immediate’ for each event, or ‘deferred’ until the temporal
event partition closes. For Fig. 2, pattern and(A,B) may be detected at time t1
upon the occurrence of b1, or postponed (time t2) until the time window closes.
The cardinality policy defines whether a pattern is detected a ‘single’ time, a
‘bounded’ number of times, or ‘unrestrictedly’ often. With ‘unrestricted’, the
pattern and(A,B) is detected multiple times for Fig. 2, e.g., for {a1, b1} and
{a4, b3}. The repeated type policy considers events of the same type with the
values ‘first’, ‘last’, ‘override’, and ‘every’. For the example, pattern and(A,B)
detects events a1 and b1 (value ‘first’) or a3 and b1 (value ‘last’). The consump-
tion policy defines whether events that are detected by a pattern are ‘consumed’
or available for ‘reuse’. This policy controls whether a pattern with event a3 is
detected with both, event b1 and b2, or whether b2 is detected together with a2.

3 The Fast Flower Delivery Application

This section introduces the Fast Flower Delivery Application (FFDA), which
is specified in detail in [1]. It has been utilized by vendors of event processing
systems to demonstrate their capabilities.2

The FFDA allows a consortium of flower stores to rely on a network of in-
dependent van drivers to process their flower deliveries. The event processing

2 Implementations of the FFDA are listed at
http://www.ep-ts.com/content/view/79/112/

http://www.ep-ts.com/content/view/79/112/
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Table 1. Excerpt of the definition of the event Delivery Request

Attribute Name Data Type Occurrence Semantic Role

requestId Integer required Common attribute
· · · · · · · · · · · ·
neighbourhood Location optional Reference to neighbourhood entity

Table 2. Definition of the Manual assignment preparation EPA

Pattern Type Context Relevant Types Parameters Policies

n-highest Bid interval Delivery Bid Attribute = ranking cardinality = single
Count = 5 evaluation = deferred

repeated type = every

network of the FFDA is illustrated in Fig. 3. Here, flower stores, van drivers,
and GPS sensors in their vehicles act as event producers. Flower stores and van
drivers also consume events. The FFDA functionality is provided by five systems,
each consisting of a set of event processing agents. These are connected by event
channels and may access global state elements that capture the information on
neighbourhoods, the flower stores, and the current status of a driver.

The functionality of the application is best described in five phases. First,
in the bid phase, a flower store places a Delivery Request in the FFDA. The Bid

Request System enriches the request with the minimal ranking required for drivers
to process the delivery. The same system then sends Bid Request events to drivers
in nearby neighbourhoods. The position of drivers is tracked in the global state
element Driver Status. It is regularly updated by GPS Location events processing
by the Location Service using the Neighbourhoods global state element.

In the assignment phase, drivers respond to the requests with a Delivery Bid.
The Assignment System correlates requests with bids and conducts an automatic
or manual assignment. The former is implemented by taking the first matching
bid and emitting an Assignment event. It fixes the pickup time and delivery time
and is consumed by a driver. A manual assignment starts two minutes after
recording a request. The Assignment System sends the five highest-ranked bids to
the flower store using an Assignment Request event. The store chooses one, leading
to an Assignment event. If there are no bids for a delivery, an event of type No

Bidders Alert is emitted by the Assignment System. If an Assignment Request is not
handled within one minute, the Control System creates an Assignment Not Done

alert.
Once a driver picks up a delivery from a flower store, the store emits a Pickup

Confirmation. The successful delivery is acknowledged by a Delivery Confirmation

event, created by the driver’s mobile device upon signature of the recipient.
The Control System monitors the process and creates a Pickup Alert, if a Pickup

Confirmation is not recorded within five minutes after the committed time. A
Delivery Alert is created if a Delivery Confirmation is late by more than 10 minutes.
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Table 3. Overview of the formalisation of EPN concepts with CPN concepts

EPN Concept CPN Concept

Event Type Product colour set or list colour set with singleton tokens

Event Token of colour of event type colour set or
entry of list of singleton token of list colour set

Global State Element Place of product colour set or
place of list colour set with singleton token

Type of Event Producer Transition per type of created event

Type of Event Consumer Transition per type of consumed event

Event Channel Places and arcs

Event Context Timestamp of token, colour of a token, or distinguished place

Event Processing Agent Transition or subnets

Each time a driver processed 20 deliveries, the Ranking System evaluates the
performance. It creates a Ranking Increase event, if no Delivery Alert events have
been recorded within that period. It creates a Ranking Decrease event, if a driver
caused more than five Delivery Alert events. Both events trigger changes of the
Driver Status global state element, which captures the rankings of drivers.

The complete specification of the FFDA can be found in [1]. Table 1 and 2
show excerpts to illustrate the definition of an event and an EPA.

4 A CPN Model of an EPN

This section describes how an EPN in general and the FFDA in particular are
modelled as a Coloured Petri Net (CPN). We introduce the formalisation of
EPN elements following the structure used in Section 2 to introduce EPNs. An
overview of the formalisation is given in Table 3. The mapping of all EPN ele-
ments is illustrated with the FFDA. Our CPN model of the FFDA comprises all
systems that directly influence its execution (i.e., report generation is neglected).
The resulting CPN comprises 40 transitions and 76 unique places. Due to space
limitations, we show only excerpts of the model.3 We close this section with a
reflection on limitations and lessons learnt from modelling the FFDA.

We assume the reader to be familiar with basic CPN notions and notations,
see also [5,6]. Further, we rely on the CPN-Tools framework [7] and, thus, assume
a basic understanding of the notations used by this tool.

4.1 Event Types, Events, and Global State Elements

We consider two alternatives to represent an event type, using a product colour
set or list colour set with a singleton token. In the first case, the type of the
colour set is defined as the product of colour sets needed to represent the event

3 The model is available at http://matthiasweidlich.com/projects/ffda.cpn

http://matthiasweidlich.com/projects/ffda.cpn
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attributes. To enable performance analysis of an EPN, colour sets representing
event types have to be timed. Following this line, an event is then represented
as a coloured token of a place with the according colour set.

An example in the FFDA is the event type Delivery Request, which has six
attributes of type integer or string, requestID, store, addresseeLocation, required-
PickupTime, requiredDeliveryTime, neighborhood. Neglecting the addressee location
which is not used during processing, the colour set is defined as:

colset DelReq = product ID * STR * PICK * DEL * NBH timed;

An alternative representation of event types utilises a list colour set for which
the base type is derived as discussed above. Places of this colour set are marked
with a single token in all markings (henceforth referred to as a singleton token).
Then, an event is represented as an entry of the list carried by such a token.

For instance, the FFDA defines an event type Pickup Confirmation with two
attributes, requestID and store. We defined the respective colour sets as follows:

colset PickupConf = product ID*STR; colset lPickupConf = list PickupConf;

The choice of which formalisation to apply for event types (and, thus events)
depends on how the events are processed by the components of the EPN. If
processing is concerned mainly with the existence or absence of an event, instead
of its separate processing, a formalisation based on a singleton token carrying a
list of event entries is more appropriate. For instance, colour set PickupConf is
not timed since only the existence or absence of events of that type influences the
FFDA. The modelled list, in turn, can easily be checked for an element satisfying
a certain criterion, which allows for implementing inhibitor arcs.

Finally, global state elements are presented by a single place for which the
colour set is defined as discussed for event types. Again, one may either chose a
place of a product colour set or rely on an according list colour set.

4.2 Event Producers and Consumers

Creation and consumption of events is realised by transitions accessing places
representing the event type to be produced or consumed, respectively. An event
processing component may produce or consume events of different types. A flower
store in the FFDA, for instance, creates events of type Delivery Request and Pickup

Confirmation. Events of different types are often created (or consumed) indepen-
dent of each other. Hence, we decided to model creation (consumption) of events
of different types by separate transitions, even if the events are emitted by the
same instance or type of event producer (consumer). The concrete instance of
an event producer (consumer) is captured as part of the event payload, such
that creation (consumption) of events of a certain type is modelled with a single
transition for all event producers (consumers) of the same type.

Events may be created based on assumptions on the EPN environment, such
that the trigger mechanisms are part of the model configuration. Further, cre-
ation of an event may be done in reference to other events consumed or created
earlier. Then, the event producer relies on the state of the EPN besides the
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Fig. 4. Excerpt for the creation of Delivery Request and Pickup Confirmation events

configuration of the model. Both trigger mechanisms are illustrated in the CPN
excerpt of the FFDA in Fig. 4. Here, the creation of Delivery Request events is
modelled by transition Store Delivery Request, which is enabled only at cer-
tain times. The depicted configuration allows for firing of the transition every 30
time units (say minutes) on average, following an exponential distribution. Upon
firing, the transition creates a Delivery Request event with according payload.

Creation of Pickup Confirmation events is done in reference to Delivery Request

and Assignment events. Transition Init Pickup Confirmation schedules the occur-
rence of a Pickup Confirmation event. To ensure that at most one Pickup Confirmation

event is created per Delivery Request, the guard condition of the transition accesses
a place that keeps a list of all processed request identifiers. Upon firing, tran-
sition Init Pickup Confirmation further creates a token carrying the id of the
original request with a normally distributed deviation from the scheduled pickup
time. At that time, transition Store Pickup Confirmation may fire to create an
actual Pickup Confirmation event.

4.3 Event Channels

Events are routed between event processing components through event channels.
In a CPN, we model them with places of a colour set representing an event type
and arcs that connect these places with transitions representing event processing
components. Depending on whether such a component produces or consumes
events to or from a channel, the respective transition has the respective place in
its postset or preset. Thus, routing decisions made by event channels are directly
reflected in the structure of the CPN model.

Modelling event consumption is intricate though. In an EPN, events are like
signals that are broadcasted. Hence, only if an event is consumed by a single
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component, the respective token (or list entry) may be consumed. Otherwise,
the respective transitions may access the token (or list entry) solely with a read
arc. Such an implementation comes with a downside. First, for each component
the history of processed events needs to be kept. Second, analysis is compromised
by unbounded places and a large number of tokens (or list entries) negatively
affects the simulation performance. To countervail this effect, we later discuss
the derivation of a single-case configuration of a CPN model for verification.
Note that the issue of multiple event consumption is not addressed by the event
consumption policy (cf., Section 2.2), since this policy relates only to consump-
tion of events within a single EPA instead of the interplay of event processing
components.

4.4 Event Context Definitions

Processing of events is selective and refers only to events that are relevant accord-
ing to a event context definition. The different dimensions of an event context
are represented in the CPN model as follows.

Temporal. The temporal dimension is reflected by timestamps of tokens in the
CPN. The correlation of events within a certain time window is realized as
follows: at the start of the window, a token is created in a distinguished place
with its timestamp set to the end of the window.

Segmentation-Oriented. Segmentation defined over attributes of event types
is realised by matching attribute values of token colours, either as part of
arc inscriptions or transitions inscriptions.

Spatial. The spatial dimension is encoded using coordinates of the underlying
spatial model in the payload of events. As such, the realisation resembles the
one for segmentation, just using operations over spatial coordinates.

State-Oriented. A global state is represented by a distinguished place, as in-
troduced for global state elements. A transition of an EPA that relies on this
state, thus, has a read arc to this place to access the current state value.

As an example in the FFDA, consider the event context Pickup Interval. It is a
composite context, defined by a segmentation context Request and a temporal
context Temporal Pickup Interval. The former is induced by the identifier of a
delivery request and used, for instance, in the aforementioned definition of colour
set DelReq (Section 4.1 ). The context Temporal Pickup Interval is initiated by an
event of type Assignment and terminated by the occurrence of a Pickup Confirmation.
Further, it defines an expiration offset as five time units later than the pickup
time taken from the Assignment event. Combining the formalisations for temporal
and segmentation-oriented event contexts, the composite context Pickup Interval

is modelled as a distinguished place. The colour set of this place is based on
the type of event attributes used for segmentation. It is also timed, so that
tokens carry the pickup time plus five time units as a timestamp. We depict
the respective excerpt of the CPN, when discussing the EPA that relies on this
context.
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if (pref = true) 
then 1`(id,oid,rid,dri,str,pickCom,rad) else empty
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then 1`(id,oid,rid,dri,str,pickCom,rad) else emptyBid 

Routing

Automatic

EnrichDelBid

Manual

EnrichDelBid

p38

EnrichDelBidWithPref

Fig. 5. Excerpt for the Bid Routing EPA (type ‘filter’)
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Fig. 6. Excerpt for the Bid Request Creator EPA (type ‘enrich’)

4.5 Event Processing Agents

EPAs either filter or transform events, or they detect event patterns.
Filter EPA. A pure filter EPA is stateless. Depending on a filter expression,

events are classified as satisfying or not satisfying the filter. A filter EPA is
modelled as a transition that consumes (or reads as discussed above) a token (or
list entry) and creates a token (or list entry) on one of two places of equal colour
set, depending on the applied filter expression. This way, filtering is explicitly
represented and details on the filter EPA can be collected during simulation.

The FFDA contains a filter EPA in the Bid Request System. The Bid Routing

EPA, which filters delivery bids, is shown in Fig. 5. The transition creates tokens
based on the value of the token colour (value of pref) that represents the pref-
erence of the flower store requesting delivery for doing a manual (pref = ‘false’)
or automatic assignment (pref = ‘true’) of drivers.

Transformation EPA. A transformation EPA changes events by translation,
composition, aggregation, enrichment, splitting, or projection. It is represented
by a transition that applies the respective operation on tokens or the colour
values of tokens, or list entries of singleton tokens or values of these list entries.
As an example, consider the Bid Request Creator EPA that takes a Delivery Re-

quest event and creates a Bid Request event. As part of that, the Driver Status

element is accessed to select those drivers that meet the requirements in terms
of a minimal ranking and have last been seen in the same neighbourhood. In
the respective CPN excerpt, shown in Fig. 6, the latter is ensured by the arc
inscription filtering the list of drivers carried by the singleton token in Driver

Status (function filter). From the resulting list, only the identifiers of drivers
are selected (function map).
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pickupConfLi

if (not (List.exists (fn (i,s) => i = oid) pickupConfLi))
then 1`("No Pick Up",oid,dri)
else empty
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Fig. 7. Excerpt for the pattern detect EPA Pickup Alert

Pattern Detect EPA. Basic event patterns as introduced in Section 2.2 are
modelled using formalisations of Boolean expressions, see [8]. For instance, the all
pattern corresponds to a transition connected to places of colour sets representing
the event types of the pattern. Also, absence of events is traced back to inhibitor
arcs, implemented using list colour sets and transition guard conditions, cf., [9].
The challenges in the formalisation of pattern detect EPAs, however, stem from
the interplay of the event patterns with event contexts and evaluation policies.

We first illustrate the interplay of event detection and event contexts with the
Pickup Alert EPA of the FFDA. It uses the Pickup Interval event context (see above)
to detect the absence of Pick Confirmation events. The excerpt for the EPA is
shown in Fig. 7. As discussed above, the Pickup Interval event context is modelled
by a token with an according value and timestamp that is created in the place
with colour set TimAl. The timestamp represents the closing of the event context,
which enables transition Pickup Alert. Upon firing, this transition accesses a list
of a singleton token, in which each entry represents a Pickup Confirmation. The
actual alert, an event of type Pickup Alert, is emitted by the creation of a token
in the place of which the colour set represents all types of alerts. This token is
created only if the list of delivery confirmations does not contain an according
entry. Since Delivery Confirmation events are consumed only by the Pickup Alert

EPA and only one alert may be raised in the event context of a delivery, the
entry representing the processed Delivery Confirmation event is removed from the
list of the singleton token of place Pickup Confirmations.

To illustrate the influence of evaluation policies on the formalisation, Fig. 8 de-
picts the CPN for the Evaluation System comprising the Ranking Increase and Rank-

ing Decrease EPAs. Both EPAs refer to the Driver Evaluation event context. This
composite context relates to segmentation per driver and non-overlapping groups
of 20 Delivery Confirmation events, represented as follows: transition Init Context

accesses the list carried by a singleton token in place Delivery Confirmations.
The transition can fire, if there is an entry in the list that has not been processed,
which is implemented by the transition guard and a separate place to keep track
of processed entries. Upon firing, the transition selects one entry of this list that
has not been processed before (see the action of the code segment of the transi-
tion). For this entry, tokens of colour set INT are created in three places. Here,
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Fig. 8. CPN for the pattern detect EPAs Ranking Increase and Ranking Decrease

the token value represents the identifier of a driver. 20 tokens of the same value
in these places, therefore, represent 20 confirmed deliveries for the respective
driver. Independent thereof, transition Count Delivery Alerts consumes tokens
that represent Deliver Alert events and updates the list of the token of the place
with colour set lDriverAlert. An entry of the list associates a driver identifier
with a list of type UNIT to count the delivery alerts per driver.

Once 20 delivery confirmations have materialised as tokens, transition Ranking

Increase is enabled. It represents the EPA of the same name and upon firing,
may change the list of the token in place Driver Status. If no delivery alerts have
been recorded (no entry in driverAlertLi for the driver or the entry contains
zero alerts), the ranking of the driver is increased by one by changing the list
carried by the token in place Driver Status.

Further, transition Ranking Decrease is enabled once 20 delivery confirmations
have been observed for a driver. The transition accesses a token with the list of
the number of alerts per driver (variable driverAlertLi). If at least five alerts
have been recorded, the driver’s ranking is decreased. The EPA relies on a count
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pattern with the evaluation policy set to ‘deferred’ and the repeated type policy
set to ‘every’. Those are implemented in the CPN as follows. Since transition
Ranking Decrease requires 20 tokens that hint at the delivery confirmations of a
specific driver, the event pattern is not detected as soon as five delivery alerts
have been observed. Instead, it is deferred until the event context Driver Evaluation
closes. The repeated type policy leads to potential multiple pattern detections
within this context. For every group of five delivery alerts the ranking is decreased
by one. In the CPN, this policy is modelled in the inscription of the arc from
transition Ranking Decrease to place Driver Status. The ranking is reduced by
the value derived by taking the quotient of the division of the number of alerts
by five: filter (fn (i,l) => (i = j)) driverAlertLi filters the list of alerts for
the processed driver, hd selects the entry, #2 selects the unit list representing the
number of alerts, length returns the list length, which is divided by five. Finally,
transition Reset Context ensures that the list containing the number of alerts
per driver is reset upon closing of the event context Driver Evaluation. Explicit
priorities for transition Count Delivery Alerts (priority P HIGH) and transition
Reset Context (priority P LOW) ensure that the transitions representing the EPAs
work with the tokens containing the correct details.

4.6 Limitations

The outlined formalisation captures many of the core aspects of an EPN. How-
ever, it provides only an abstraction that is subject to several limitations.

Life-cycle of event producers and consumers. According to the formalisation,
during creation and consumption of events, the relation between events and
concrete instances of producers and consumers is established in a randomised
manner. Consequently, the life-cycle of these instances is not captured. In the
model obtained for the FFDA, a van driver, for instance, may be assigned to
deliveries with equal pickup times at different stores. We argue, however, that
a realistic model of the life-cycle of event producer or consumer instances may
even allow for such cases. It may well be that a driver commits to equal pickup
times at different stores and plans to pick up one delivery shortly before the
committed time, and a second one with a small delay.

Model of space. An EPN is typically distributed. The outlined formalisation
considers the spatial dimension as part of event attributes. This requires an ap-
proximation of location changes of event producers and event consumers, which
is a limitation. For the FFDA, the representation of the spatial dimension is lim-
ited to a finite set of GPS coordinates emitted by the GPS Sensor event producer.
The impact of different locations on the creation or consumption of events is
not taken into account though. For instance, Delivery Confirmation events may be
created for a driver at different locations within a time frame that would not
allow to change location accordingly.

Model of time. Our approach assumes that event creation and consumption
is homogeneous. The configuration of the model allows for defining probability
distributions, upon which the event creation or consumption is based. Still, this
limits the expressiveness of the model. More fine-grained control, e.g., different
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distributions at different days or hours of a day, is not part of the model. Al-
though one may imagine to include those aspects in the model (e.g., a calendar
may be modelled as a CPN), the time approximation will be an inherent limi-
tation of the model. An example for the FFDA are Delivery Request events, for
which creation is independent of days or hours of a day.

4.7 Lessons Learnt from the FFDA

Finally, we highlight the lessons learnt from modelling the FFDA.
Usage of hierarchies. The complexity of an EPN such as the FFDA calls for

hierarchical modelling. In particular, it turned out to be reasonable to refine tran-
sitions representing a specific system of the FFDA with a subnet that includes
the mapping of the according event processing agents. Also, the utilisation of fu-
sion sets, i.e., multiple representations of a single place, for places that represent
global state elements proved valuable for reducing model complexity.

Representation of event consumption. We discussed earlier that consumption
of events in an EPN does not necessarily correspond to consumption of a token
(or deleting an entry from a list), since the respective event representation may
be relevant for multiple transitions that model event processing components. We
outlined workarounds that rely on non-modifying access. However, this requires
to keep a state (the knowledge on events processed already) even for EPAs that
are actually stateless. As such, these workarounds complicate the model and may
lead to an increased state space considered during simulation.

Modelling event processing policies. Even though the basic event patterns
are easy to capture using CPN concepts, the interplay with the event context
definitions and event processing policies imposes serious challenges for any EPN
formalisation. For complex cases, it proved useful to separate the event pattern
detection step into several steps in the CPN model. That is, the activation of an
EPA as imposed by the event context definitions is decoupled from the detection
logic using separate transitions. An example for this approach is the presented
formalisation of the Evaluation System.

Overlapping event contexts. Different EPAs may represent alternative pro-
cessing options (e.g., manual or automatic assignment in the FFDA). Their for-
malisation is particularly challenging once the event context definitions overlap
partially in terms of considered events (e.g., automatic assignment relates only
to the Request context; manual assignment relates to the composite Bid Interval

context, which includes the Request context). Then, the activation of alterna-
tive EPAs may not be separated from the actual pattern detection. Events that
are not part of the overlap of event contexts (e.g., delivery bids under man-
ual processing that arrive after the bid interval has passed) have to be treated
separately.

5 Model Validation for the Implementation in ETALIS

We illustrated our approach to formalising event processing networks with the
FFDA as it is specified in [1]. In order to validate the model, we considered the
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concrete implementation of the FFDA in the Event-driven Transaction Logic
Inference System (ETALIS).4 Below, we first describe the FFDA implementation
in ETALIS before turning to the model configuration and validation.

Implementation. ETALIS is an open-source system for Complex Event Pro-
cessing published under the GNU GPL. It is implemented in Prolog and provides
a declarative, rule-based language for the description of complex events. The sys-
tem provides means for event pattern filtering, enrichment, and detection, and
supports reasoning over events. ETALIS is shipped with an implementation of
the FFDA that comprises 36 Prolog clauses, which are grounded in the ETALIS
Language for Events (ELE). Events are expressed as ground atoms, i.e., predi-
cates that contain only constants as arguments (the event’s payload). The actual
application logic of the FFDA is implemented in ELE using event patterns and
event rules. Event patterns are defined based on predicates, conditions, and their
temporal relations; event rules define implications between event patterns and
predicates representing complex events.

Following this model, events produced outside of the FFDA are given as a
sequence of facts. The ETALIS implementation of the FFDA provides an in-
terface that accepts such a stream of facts. Here, the delay between the event
occurrences is explicitly modelled using sleep statements that suspend execution.

Model Configuration and Setup. Configuration of the CPN model of the
FFDA requires selecting the number and types of instances of event producers
and event consumers. Further, global state elements have to be initialised and
the creation of events by event producers needs to be controlled by defining prob-
ability distributions for their occurrence. To this end, we selected configuration
values that seem to be reasonable against the setting in which the FFDA shall be
operating. In most use cases, these values are either predefined (e.g., the number
of participating drivers) or need to be estimated based on expectation and past
experience (e.g., the frequency of delivery requests). We also introduced latency
for event processing and consumption.

As for the validation, we used CPN-Tools to simulate the FFDA and collected
all processed events. Then, we extracted all events created by event producers
that are not part of the implementation, i.e., the events that are the input to
the FFDA, such as Delivery Request events. These events were converted into an
ELE event stream, which was fed into ETALIS. Again, we collected all produced
events during processing, which allowed us to compare the events produced by
the FFDA as implemented in ETALIS with those obtained by simulation of the
CPN model. Based on this comparison, we refined the configuration of the model
to resolve minor deviations observed.

Validation Results. For the final validation, we consider the presence and
the time of alert events produced by the FFDA. The FFDA implementation in
ETALIS produced 56 of such events, whereas the simulation created 58 events.
Investigation of the respective event streams reveals that in two cases, alerts
have been created only in the simulation since the time window for raising the

4 http://code.google.com/p/etalis/

http://code.google.com/p/etalis/
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Fig. 9. Delay of correlated events in the CPN based simulation and ETALIS

alert was met by less than one time unit. Since the CPN simulation relies on
timestamps defined as real numbers as opposed to the integer based timestamps
in ETALIS, the alert events were present only in the simulation. Turning to
the occurrence time, Fig. 9 illustrates the observed delay for correlated alert
events. For Delivery Alert and Pickup Alert events, we observe no difference in both
event streams. For No Assignment alerts, there is a delay of up to 0.93 time units.
This delay also stems from the different time resolution in the simulation (real
numbers) and ETALIS (integers). Since the first two types of alerts are raised
at predefined timestamps, the delay is visible only for No Assignment alerts that
are raised based on the internal event context definition. However, the observed
delay stays below one time unit, meaning that the simulation is kept in sync
with the ETALIS implementation when processing advances. Hence, the CPN
model is indeed suited for evaluating the performance of the FFDA.

6 Analysis of the EPN

Once the CPN model for an event processing network has been created and
validated, it may be used for analysis. Below, we first discuss the verification of
basic properties before we turn the focus on the simulation of the EPN.

6.1 Properties

To investigate basic properties, it is reasonable to obtain a single-case configu-
ration of the CPN model. Since the creation of some events is time based, the
execution of the EPN may be non-terminating. Also, modelling of event chan-
nels as discussed in Section 4.3 leads to unbounded places if the number of
events created by event producers is not limited. Therefore, we create a single-
case configuration of the CPN model by restricting the enabling of transitions
representing event producers, so that they may fire only a certain number of
times.

For the FFDA, a reasonable notion of a case is the processing of one Delivery

Request, created by a single firing of transition Store Delivery Request represent-
ing the event producer. Also, the second event producer that creates events only
based on time, i.e., the GPS Sensor of a vehicle, also needs to be restricted.

Given a single-case configuration of a CPN, we investigate several properties.
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Boundedness. Once event producers have been restricted accordingly, the CPN
shall be bounded, i.e., the size of the state space should be finite.

Place Bounds. If the CPN is bounded, the concrete maximal bounds for all
places are investigated. In most cases, there is a clear dependency between
events of different types (e.g., an event of one type leads to at most three
events of another type), which shall be reflected in the place bounds.

Deadlocks. Deadlocking markings shall reflect valid end states of the EPN.
That is, the marking shall represent a state in which the processing of the
single case is (successfully or not) finished.

Dead Transitions. Dead transitions represent event processing components
that are never executed for the respective single case. These components
shall indeed be not involved according to the chosen configuration.

We derived different single-case configurations for the CPN representing the
FFDA and used the state space tool of the CPN-Tools framework to analyse
the aforementioned properties. We obtained the following results. For all single-
case configurations, the state space of the system was bounded, with the size
varying between 80 - 350 states. An analysis of the place bounds revealed that
only a few places have a bound larger than one. Since we merged the event
types for alert events in the course of formalisation, a single colour set and a
single place represent alerts of different types. A single delivery request may
cause multiple alerts of different types, which leads to a bound above one for the
respective place. All other places with a bound above one represent global state
elements, for which each token models one data entry. The number of tokens
for these places is constant in all markings. Further, all deadlocking markings
for all single-case configurations turned out to be valid final states of the EPN.
Finally, for each configuration, we observed several dead transitions. However,
those transitions had to be dead according to the configuration. For example,
the transition modelling automatic assignment of delivery bids is dead, if the
configuration includes a delivery request of a store preferring manual assignment.

6.2 Simulation

Simulation of a configured model of the EPN allows for conclusions on its perfor-
mance. Bottlenecks can be investigated and the influence of different assumptions
on the environment is made explicit.

To demonstrate the merits of simulation of EPNs, we conducted a simula-
tion experiment. Here, the configuration of the FFDA comprises a consortium
of six flower stores in a city with 10 neighbourhoods. There are 20 van drivers
working for the consortium (initial rankings and current locations for them are
randomised). Delivery requests are created every 30 time units (we assume min-
utes) on average, following an exponential distribution. Further configuration of
event creation includes the GPS sensor (normal distribution with mean 5 and
variance 2), the placement of bids for the delivery (exponential with intensity
5), the creation of manual assignments (exponential, 1.5), and the creation of
pickup and delivery confirmations (offset to the committed time by a normal
distribution with mean 1 (4) and variance 3 (6)).
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Fig. 10. Events observed during a run of 50,000 transition firings (20 drivers)
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Fig. 11. Events observed during a run (40 drivers) corresponding to the same simula-
tion time as in Fig. 10

We used CPN-Tools to run a simulation of 50,000 transition firings. The run
covers a simulation time of 48,516 time units. Interpreting a time unit as a
minute, we simulated more than 800 hours of execution. The events observed
during execution are listed for the most important types in Fig. 10. More than
1,400 delivery requests have been created, which led to nearly 2,300 delivery
bids and around 1,100 deliveries. We also observe only a few alerts that relate to
manual assignments that have not been completed in time (once the assignment
system has forwarded delivery bids to a flower store) or delayed pickups and
deliveries. In contrast, there is a rather high number of assignment alerts. Those
relate to bid requests that are not answered by any driver. The observed alert
events hint at an insufficient number of drivers that participate in the network.

To investigate this issue, we conducted a second simulation with 40 van drivers
(other configuration values remain unchanged). To achieve the same simulated
time, we executed 62,650 transition firings. The results are visualised in Fig. 11.
In comparison, we observe significant differences between both experiments. The
second run shows more delivery bids from drivers per request, i.e., more than
three bids per delivery, whereas the ratio was less than 1:2 in the first run. As a
consequence, the number of assignment alerts drops and only every 19th delivery
request does not lead to an assignment, whereas this was the case for every 4th
to 5th request in the first run.

7 Related Work

Event languages are at the very core event processing networks. Different formal-
isations of event languages have been presented. The TESLA language [10] is
grounded in first order logic and translates rules for complex events into logical
expressions. Other work formulates algebraic expressions over temporal streams
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of events to define semantics [11]. A comprehensive definition of semantics of
event languages can be found [1,4]. The application of formal methods to anal-
yse EPNs has been largely neglected in the literature so far. Ericsson et al. [12]
present REX, a tool that allows for specifying event processing applications,
which are transformed into timed automated. Based on this formalisation, REX
supports CTL model checking, but does not provide means for performance
evaluation.

Event processing networks capture complex behaviour, which results from
the interaction of various autonomous actors. In this regard, they share some
characteristics with multi-agent systems [13]. Similar to multi-agent systems,
event producers, consumers and processing agents show autonomy in working
on a local view of the real-world in a decentralised manner. A difference is though
that the notions of mobility and context dependence is more emphasized with
multi-agent systems [14]. As a consequence, agents are represented as tokens in
CPN formalisations [15]. In this context, object-oriented Petri nets have been
extensively used for modelling [16] and analysis [17]. While agent coordination
and knowledge representation is an issue for multi-agent systems [18], event
processing networks are more concerned with an explicit representation of the
decision rules. In practice, these decision rules are encoded with an event query
language [2]. As we aimed to demonstrate, the usage of CPN bears the potential
of fine-tuning these decision rules to best fit the environmental factors.

Petri nets have further been used for simulation and analysis in diverse fields
of application, such as IT-service processes [19], network protocols [20], and
embedded systems [21]. For workflow modelling, the peculiarities of modelling
reactive systems – EPNs are reactive by definition – with Petri nets have been
worked out in [22]. The reactive semantics proposed in this work may allow for
modelling a subset of EPN concepts even without relying on the CPN formalism.

8 Conclusion

In this paper, we took up the challenge of modelling event processing networks
with coloured Petri nets for analysis and simulation. We show how essential
parts of EPNs are represented in a CPN and turned to the case of the Fast
Flower Delivery Application in particular. Since the FFDA is a de-facto bench-
mark for demonstrating the capabilities of event processing systems, our work
covers a broad range of concepts and aspects of EPNs. We reported on the ex-
periences on modelling the FFDA and presented a validation of our model with
an implementation in ETALIS. Finally, the potential of a CPN formalisation of
event processing networks for analysis of system properties and simulation was
outlined.

Applications realised as EPNs process large amounts of events, which calls for
appropriate tools to analyse the behaviour and performance of an EPN. Our work
addresses this demand by leveraging CPNs as a well-established formalism. Still,
automation of a net-based formalisation of EPNs is hindered by several factors.
First, despite the advancements on the formal definition of event languages,
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there is a lack of a generally accepted specification language for EPNs. Second,
expressiveness of the languages used to define event contexts, evaluation policies,
and the event detection logic is varying. We showed that these aspects have
a large influence on the formalisation. Further work is needed to consolidate
the different approaches to EPN modelling, so that boundaries of net-based
formalisations can be made explicit.

Another direction for future work is the derivation of model configurations for
simulation once a CPN model has been created and validated for an EPN. That
relates in particular to the application of data mining techniques to infer event
distributions and dependencies between event producing components.

Acknowledgements. We thank Guy Hareuveni for his support on the model
validation and the CPN-Tools team for creating this magnificent piece of soft-
ware.
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Abstract. Process mining techniques aim to extract knowledge from
event logs. Conformance checking is one of the hard problems in pro-
cess mining: it aims to diagnose and quantify the mismatch between
observed and modeled behavior. Precise conformance checking implies
solving complex optimization problems and is therefore computationally
challenging for real-life event logs. In this paper a technique to apply hi-
erarchical conformance checking is presented, based on a state-of-the-art
algorithm for deriving the subprocesses structure underlying a process
model. Hierarchical conformance checking allows us to decompose prob-
lems that would otherwise be intractable. Moreover, users can navigate
through conformance results and zoom into parts of the model that have
a poor conformance. The technique has been implemented as a ProM
plugin and an experimental evaluation showing the significance of the
approach is provided.

Keywords: Process Mining, Conformance Checking, Process Diagnosis.

1 Introduction

Process mining emerged as a crucial discipline for addressing challenges related
to Business Process Management (BPM) and “Big Data”[1]. Information sys-
tems record an overwhelming amount of data representing the footprints left by
process executions. For example, Boeing jet engines can produce 10 terabytes
of operational information every 30 minutes, and Walmart logs may store one
million customer transactions per hour [2].

Process mining tackles three challenges relating event data (i.e., log files) and
process models: discovery of a process model from an event log, conformance
checking given a process model and a log, and enhancement of a process model
with the information obtained from a log. Process mining research has produced
a multitude of algorithms that demonstrated to be of great value for undertaking
small or medium-sized problem instances. However, it is well-accepted that most
of the existing algorithms are unable to handle problems of industrial size. In our
opinion, as has happened in other areas (VLSI, manufacturing, among others)
where the size of the input prevents from solving the problem straight away,
the next generation of algorithms for process mining must incorporate high-level
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techniques that enable the problem decomposition in a divide-and-conquer style.
This paper proposes decomposition techniques for conformance checking.

In spite of its significance, few conformance checking algorithms exist in
the literature. The seminal work by Rozinat et al. [3] was the first in formalizing
the problem and enumerating the four dimensions to consider for determining
the adequacy of a model in describing a log: fitness, precision, generalization
and simplicity. In this paper we focus on the first two: fitness, that quantifies
the capability of the model in reproducing the traces of the log, and precision,
that quantifies how precise is the model in representing the log. In this paper,
we will decompose state-of-the-art approaches for conformance checking. On
the one hand, we will use alignment techniques. These provide a crucial step
into relating model and log traces for unfitting models or models with dupli-
cate/invisible transitions [4,5]. On the other hand, a novel precision technique
based on superposing log and model behavior and detecting accordingly model’s
escaping points will allow us to quantify precision [6]. Both approaches have been
combined in order to derive a robust estimation of precision [5]. The high-level
technique presented in this paper is grounded on the aforementioned work.

To decompose process models, we use a technique to create the so-called
Refined Process Structure Tree (RPST) originally proposed in [7]. This decom-
position computes fragments of the net that have a single-entry and a single-exit
node, thus intuitively resembling isolated subprocesses within the general model.
Remarkably, it is a structural decomposition that can be computed in linear
time on the underlying graph structure. Additionally, a tree-like structure may
be derived representing the hierarchy between the computed components. This
tree will be used in the strategy presented in this paper for hierarchical con-
formance checking: each component in the tree is processed in order to satisfy
the requirements for conformance checking of [5] (e.g., find an initial and final
marking, determine whereas it belongs to a cyclic part of the net), and finally a
conformance checking problem instance is solved on the component and the log
projected into the participating activities. Unlike the decomposition approaches
proposed in [8,9], our approach uses a hierarchy of semantically meaningful pro-
cess fragments. The RPST structure recursively splits the process into smaller
fragments that are understandable for the analyst. Moreover, the hierarchy can
be used to navigate to problematic parts of the process.

The approach has been implemented as a ProM plugin, and experiments have
been performed on different dimensions, ranging from a comparison between the
manual decomposition made by a human and the one presented in this paper,
to the application of the technique to a set of benchmarks. Also, experiments
illustrating the differences with the passage-based approach [8] are reported.

The paper is organized as follows: Sect. 2 presents the theoretical background
of the paper. Sect. 3 presents the main stages of the methodology for hierar-
chical conformance checking, while Sect. 4 describes how to apply the approach
to sound and safe workflow nets (a important class of Petri nets tailored to-
wards business processes). Sect. 5 describes related work. Sect. 6 shows several
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experiments illustrating the usefulness of the suggested approach. Finally,
conclusions and future work are reported in Sect. 7.

2 Preliminaries

The starting point for conformance checking are an event log and a model. An
event log records the execution of all cases (i.e. process instances). Each case is
described by a trace, i.e., an activity sequence. Different cases may have exactly
the same trace, i.e., an event log is a multiset of traces. A model represents
the possible flows of the process. In this approach we use Petri net as a formal
model of processes. A Petri Net PN is a tuple (P, T,A,mi,mo) where P and
T represent finite sets of places and transitions, respectively, with P ∩ T = ∅.
Function A : (P × T ) ∪ (T × P )→ N represents the weighted flow relation. The
markings over a Petri net are defined as multisets and we use multiset notation
accordingly, e.g., m = [p2, q] or m = [p, p, q] for a marking m with m(p) = 2,
m(q) = 1, and m(x) = 0 for all x �∈ {p, q}. The initial and final markings of PN
are denoted as mi and mo respectively.1 Given a marking m and a set n, m↓n
denotes the projection of m on n, e.g., [a, a, b, c]↓[a,c] = [a, a, c].

3 Methodology for Hierarchical Conformance Checking

In this section we introduce the approach for decomposing a model in a hierar-
chical manner in order to perform conformance checking. Algorithm 1 presents
the approach, which has three stages: the Decomposition Stage (Sec. 3.1) where
the model is decomposed into components, the Post-processing Stage (Sec. 3.2)
where the components are processed to enable the analysis, and finally the Con-
formance Stage (Sec. 3.3) where conformance is analyzed for every component.

3.1 Decomposition Stage

The first stage corresponds with the decomposition phase: the model is decom-
posed into hierarchical components, i.e., the decomposition is not a partitioning
(which is the case in [8]) but instead for each component different of the net itself
there is always another component containing it. This enables the analysis at
different degrees of granularity and independence, similar to zooming in and out
using online maps, to get a better understanding of the underlying process. In
order to be able to navigate through different layers of the model properly, three
ingredients are needed: 1) a subprocesses decomposition, 2) a hierarchy relating
these subprocesses, and 3) a mechanism to enhance and propagate additional
information about the components within the hierarchy.

1 In some approaches such as [3,6] only an initial marking is considered. However, in
[5] (cornerstone of the conformance checking of this paper) the authors introduce
analogously the need of the final marking.
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Algorithm 1. Decomposed Conformance algorithm

procedure Deconf(net, log,mi,mo)
{c1 . . . cn} ← decompose(net) � Decomposition Stage
h ← build hierarchy({c1 . . . cn})
h∗ ← enrich hierarchy(h, net)

for all subprocess c ∈ h∗ do
pnc ← compute petri net(c, net) � Post-processing Stage
mic ← compute initial marking(c, net,mi)
moc ← compute final marking(c, net,mo)
logc ← compute log(log, pnc)

compute conformance(logc, pnc,mic,moc) � Conformance Stage
end for

end procedure
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Fig. 1. Illustrative example of process modeled as a Petri net

Subprocesses Decomposition. Given that the final goal of this approach is
the conformance analysis and the diagnosis of potential deviations, we propose
a decomposition based on the identification of subprocesses within the main
process. In particular, these subprocesses that match the Single-Entry-Single-
Exit pattern, also known as SESEs [10], are detected. SESE represents a well-
defined part of a general process. Note that, this decomposition refers to the
structure of the model (not its behavior). Therefore, the SESE detection is not
performed directly over the model, but over the underlying graph of the model,
called workflow graph.

In our case, given a Petri net PN = (P, T,A) we define its workflow graph
simply as graph G = (V,E) with no distinction between places and transitions,
i.e., V = P ∪T and E = {(x, y) ∈ V ×V |A(x, y) > 0}. For example, considering
the example process of Fig. 1 modeled as a Petri net, its corresponding workflow
graph is shown in Fig. 2. Similar representations can be obtained for other mod-
eling notations such as BPMN, EPCs, or UML, and therefore, the hierarchical
conformance approach presented in this paper is fully generic and can be applied
to other notations. However, in this work, we focus on Petri nets.
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In the remaining definitions, the following context is assumed: Let G be the
workflow graph of a given Petri net, and let GF = (VF , F ) be a connected
subgraph of G formed by a set of edges F and the vertexes VF induced by F .

Definition 1 (Interior and Boundary nodes [7]). A node x ∈ VF is interior
with respect to GF iff it is connected only to nodes in VF ; otherwise x is a
boundary node of GF .

For instance, in the graph of Fig. 2, given the subgraph composed by the edges in
D and its induced vertexes, t2 and t8 are boundary nodes, while the rest are inte-
rior nodes. A boundary node is an entry or exit node if additional requirements
are satisfied.

Definition 2 (Entry and Exit nodes [7]). A boundary node x of GF is an
entry of GF iff no incoming edge of x belongs to F or if all outgoing edges of x
belong to F . A boundary node x of GF is an exit of GF iff no outgoing edge of
x belongs to F or if all incoming edges of x belong to F .

Following with the example above, t2 would be an entry, and t8 an exit. Now
we can define a SESE as follows:

Definition 3 (SESE, Trivial SESE and Canonical SESE [7]). F ⊆ E is
a SESE (Single-Exit-Single-Entry) of graph G = (V,E) iff GF has exactly two
boundary nodes: one entry and one exit. A SESE is trivial if it is composed
by a single edge. F is a canonical SESE of G if it does not overlap with any
other SESE of G, i.e., given any other SESE F ′ of G, they are nested (F ⊆ F ′

or F ′ ⊆ F ), or they are disjoint (F ∩ F ′ = ∅). By definition, the source of a
workflow graph is an entry to every fragment it belongs to and the sink of the
net is an exit from every fragment it belongs to.

For the sake of clarity and unless otherwise is stated, in the rest of the paper
we will refer to canonical SESEs simply as SESEs. Note also that the SESEs are
defined as a set of edges (not as subgraphs). However, for simplicity we will refer
also to the subgraph as SESE when the context is clear. Given that a single edge
is a SESE, in the remainder of the paper we will only consider SESEs above
a given threshold size2. Figure 2 shows the canonical SESEs of the example in
Fig. 1 having size greater than 4 nodes (i.e., A,. . . R).

Component Hierarchical Structure. Next we construct the Refined Process
Structure Tree (RPST) between canonical SESEs. This tree-like structure will
group all non-overlapping siblings at the same level that give rise, in an upper
level, to the canonical SESE that includes all of them. This will allow us to
navigate through the different levels of the tree thus providing views at different
level of granularity.

2 On Sect. 6.1 we provide an experiment to estimate this threshold size based on
manual decompositions.
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Fig. 2. Workflow graph of the example in Fig. 1, and its canonical SESEs with size
greater than 4 nodes. On the bottom-right corner we show the corresponding RPST.

Definition 4 (Refined Process Structure Tree (RPST) [7]). The Refined
Process Structure Tree (RPST) of G is the tree composed by the set of all its
canonical SESEs, such that, the parent of a canonical SESE F is the smallest
canonical SESE that strictly contains F. The root of the tree is the entire graph,
the leaves are the trivial SESEs.

Figure 2 shows the RPST for the SESEs found in example of the same figure.
Note that, due to the definition of canonical SESE, all siblings of a tree node
will never have overlapping edges. However, it is not required that the union of
all the siblings results in the entire parent canonical fragment (i.e., the parent
of a SESE may have arcs not included in any of its children). For example, the
edge (t8,p10) belonging to C is neither included on D nor H . The computation
of the canonical SESEs and it’s corresponding RPST of a workflow graph is a
well studied problem in the literature, and can be computed in linear time. In
[11], the authors proposed the original algorithm for constructing an RPST. In
[7,10], the computation of the RPST is considerably simplified by introducing
a pre-processing step that reduces the implementation effort considerably. The
existence of RPST is guaranteed, i.e., the trivial RPST with the net as root and
the trivial SESEs as leaves is always possible. Besides providing an explicit hi-
erarchy among SESEs, the RPST structure satisfies additional properties useful
for our approach: the RPST is unique (i.e., same graph will always result in the
same RPST) and modular (i.e., a local change in the workflow graph only results
in a local change of the tree).

Structure Enhancement. Next, we enrich the hierarchical structure obtained
(the RPST) with additional information that may be used to improve the confor-
mance checking result. In this step we detect when a subprocess can be repeated
more than once in a process execution. The idea behind this is that in order
to perform the conformance checking analysis correctly, one must determine
whether the subprocess reflected in a component can appear more than once
within the same trace, i.e., within the same instance of the whole process, this
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subprocess can be executed several times. Such knowledge is highly relevant for
the conformance evaluation.

In order to incorporate this information, first we must determine the cyclic
behavior of the model. We will use this information to determine if a compo-
nent may be iterated to reproduce a trace. Finally, this information is going to
be transmitted to the RPST, and propagated through the tree. We will use the
structural theory of Petri nets to determine potential iterative behaviors. In par-
ticular, we will use T-invariants [12] to determine potential repetitive behavior
(see Sect. 4 for further details).

3.2 Component Post-processing Stage

To perform a multilayer fine-grained conformance checking as the one presented
in this paper, we must first derive the log and the net for each one of the sub-
processes considered. For the log, the complete log refers to actions of the whole
model. Therefore, we must project it only over the actions involved in the com-
ponent we are analyzing, i.e., to analyze a component x that models only the set
of tasks Tx, we must remove from the log all events not in Tx. Besides the net
itself, we must determine also the initial and final markings of the Petri net for
analyzing conformance. This step, and how it is performed, depends on the type
of Petri net considered. In Sect. 4 we will show how to perform this processing
for a well-known class of Petri nets used to model business processes.

3.3 Conformance Stage

Finally, the last stage is the actual conformance checking, i.e., ultimate goal of the
approach presented in this paper. In process mining, checking the conformance
refers to the procedure of analyzing if the model considered is an appropriate
and faithful representation of the reality reflected in the log. Literature clearly
shows that conformance of a model with respect to a log is a multidimensional
property. There is consensus on four orthogonal dimensions: fitness, precision,
generalization and simplicity [1,3,13]. In this paper, we will focus on the first two:
fitness and precision. However, we would like to stress that the whole approach
presented in this paper is not restricted to any particular conformance algorithm,
i.e., it can be used in combination with any other conformance technique for the
four dimensions.

Fitness measures if the model is able to represent all the behavior in the log.
For example, consider the models and event log shown in Fig 3. Model a) fits
perfectly the log d) because it is able to reproduce both traces. However, model
b) fails to reproduce the second trace. Precision, on the other hand, measures if
the model is precise modeling the log. For instance, a) models the log precisely
(i.e., no more behavior is allowed than the one reflected), while c) is completely
imprecise (it allows much more behavior than the one in the log, and therefore,
it underfits the process it is meant to describe).

The difference between the hierarchical conformance checking (as presented in
this paper) and existing approaches is that the conformance analysis is
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Fig. 3. Illustrative examples of fitness and precision with respect to a log d). Model a)
fits better than b), and is more precise than c).

computed at different levels (not only in the complete model and log). By com-
bining the conformance results of the different layers, we will be able to navigate
and perform a complete diagnosis analysis of our system in both a top-down
and bottom-up way. The fitness and precision checking proposed in this paper
is based on cost-optimal alignment between traces in the log and possible runs
of the model. Such alignments are then used as reference to compute fitness and
precision (cf. Fig 4). The technique presented in [5] only requires a log and a
Petri Net with an initial and final marking.
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Fig. 4. Conformance checking based on Cost-Optimal Alignment

Cost-Optimal Alignment. In order to check conformance, given a trace in
the log, we need to find the model execution (trace) that best represents such
log trace. This is done by aligning the trace with all possible executions of the
model, assigning a cost to each alignment, and choosing the optimal one. An
alignment is defined as sequence of pairs (called moves), where each pair can
be: a) a ’move’ in the model b) a ’move’ in the log, and c) a ’move’ both in the
model and the log. For example, here are two possible alignments between the
only two traces of the model in Fig.3a (ABCDE and ABDCE) and the log trace
ABCDE:

γ1 =
A B C D E

A B C D E
γ2 =

A B C D ⊥ E

A B ⊥ D C E

For each alignment γ1 and γ2, the upper row represents moves in the log, and
the lower row represents moves in the model. The alignment between the trace
and the execution ABCDE (shown as γ1) is composed of synchronized moves
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(i.e., moves in both model and log), whereas the other alignment (γ2) contains
both a move on the log (C,⊥) and a move on the model (⊥, C) to be able to
align the model execution and the trace. To measure the cost of an alignment,
we define a cost function. For instance, we define a function that, for each pair,
assigns a cost of ’0’ when it is a synchronized pair, and ’1’ otherwise (model and
log disagree). The total cost of the alignment is the sum of the costs of individual
moves3. Given such function, the costs of the alignments in the example above
are 0 for γ1 and 2 for γ2. In [4,14], the authors propose various approaches to
efficiently compute an optimal alignment for a given log trace.

Precision. In order to compute precision from the optimal alignments, the
bottom rows of all optimal alignments are used to build a prefix automaton
describing the modeled behavior observed in reality. Note that the alignments
help to squeeze observed behavior into the model even in case of deviations.
Then, this prefix automaton describing the actual observed behavior is compared
with the modeled behavior, leading to the detection of the so called imprecisions,
i.e., points in the process where the model allows for more behavior that actually
observed in the event log. Due to space constraints, we refer to [5] for further
details. The main difference between the approach in the literature, and the one
proposed here, is that precision checking is performed for every subprocess (i.e.,
SESE), not only for the complete system.

The differences are illustrated using the following example: imagine the initial
model of Fig.1, and consider a log composed of two traces: t1t2t4t5t3t6t8[. . . ] and
t1t2t5t4t3t7t8[. . . ] and the model of Fig.1 (for sake of simplicity in this example
we focus only on the part of the model between t2 and t8). The correspond-
ing prefix automaton shown Fig. 5 reflects two main imprecisions: those nodes
marked in dark gray represent the possibility in the model of executing concur-
rently the three branches (the branch starting at t4, the one at t5 and the one
at t3). The other imprecision (in light gray) is derived from the choice between
t6 and t7. The process has three concurrent branches (notice that the log only
reflects the concurrency among the t4 and t5 ones), and all the behavior modeled
in each individual branch is reflected in the log (including the the choice between
t6 and t7 where both options appear in the log). And this is precisely what we
can see in a precision analysis using the hierarchical approach: the conformance
analysis of SESE D (cf. Fig. 2) is similar to the previous approach, i.e., will derive
a similar prefix automaton. However, in the hierarchical approach the analysis
will also be done for the interior SESEs E, F and G, which will reflect a perfect
precision, e.g., E precisely represents the projected log for (traces t2t3t6t8[. . . ]
and t2t3t7t8[. . . ]). A process-analyst can see that the conformance problems in
D are not within any of its interior subprocesses but instead is a problem related
to the sequencing of the subprocesses.

Fitness. Once the optimal alignment for each trace is found, the non-sync moves
are used to detect the fitness anomalies, i.e., points where the model does not

3 For the sake of simplicity, we use the default unit cost function. However, arbitrary
complex user-defined cost functions can be used [4].
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Fig. 5. Imprecisions for the example: a) Prefix automaton for the model of Fig. 1, b)
Prefix automata for SESEs F , E and G

reflect the log, or points where the log does not reflect the model. Various fitness
metrics have been proposed, penalizing such anomalies. Due to space constraints,
we refer to [4] for further details. Similar to the precision case, our hierarchical
helps to diagnose of the process: one can navigate through the hierarchy, dis-
carding subprocesses that are perfectly fitting, and focusing the analysis only on
those that have fitness problems. For example, given long and repetitive traces
such as t1t2t3t4t5t6t7t8 [. . . ] t28t2t3t4t5t6t7t8 [. . . ] t28t2t3t4t5t6t7t8 [. . . ] t29,
note that t6 and t7 are sequential in this trace. Looking at component E, one
may clearly diagnose the fitness problem i.e., t6 and t7 are in conflict in the
model.

4 The Case of Business Processes

In this section we apply the approach on a particular subclass of Petri nets
tailored towards business processes: sound and safe workflow nets [15].

Workflow nets are a well studied model in the Business Process Management
literature, and therefore, they are the target of various conformance approaches,
(e.g., [3]). This section instantiates the methodology presented in the previous
section to this class of nets. In the remainder we consider Petri nets satisfying the
following seven conditions. The process models used for conformance checking
must be a workflow net: 1) there is a single source place in, i.e., {p ∈ P |•p =
∅} = {in}, 2) there is a single sink place out , i.e, {p ∈ P |p• = ∅} = {out}, 3)
every node is on a path from in to out. The workflow net must be sound : 4)have
the option to complete, i.e., starting from the initial marking (just a token in
place in), it is always possible to reach the marking with one token in place out



Hierarchical Conformance Checking of Process Models Based on Event Logs 301

(marking [out]), 5) have proper completion, i.e., at the moment a token is put in
place out, all the other places should be empty, 6) there are no dead transitions
starting from the initial state [in]. And finally, the sound workflow net must be
safe: 7) the number of tokens of any place at any time must be at most one.

We now present the details of the post-processing stage for safe and sound
workflow nets. In particular, given GF = (VF , F ), a SESE obtained during the
decomposition phase, we describe how to build a SESE-Net SN ′ from it, and
how to determine its initial and final markings. In other words, we aim to build
a Petri net SN ′ = (P ′, T ′, A′, i′, o′, p′i, p

′
o,m

′
i,m

′
o), where P ′, T ′, A′ define the

net, p′i, p
′
o are the source and sink places of the net, m′

i,m
′
o are its initial and

final markings, and o′, i′ define the nodes of the Petri net (transition or place)
representing the single-entry and the single-exit of the SESE.

In the remainder of this section the following context is assumed: Let WF =
(P, T,A, pi, po,mi,mo) be the workflow net to be analyzed, and G = (V,E) its
corresponding workflow graph. Let GF = (VF , F ) define a canonical SESE of G,
and let i, o ∈ VF be the entry and exit nodes of GF , respectively.

Given that the SESE decomposition is performed over the workflow graph,
the first step is to determine which nodes of the original net WF are included in
SN ′. In other words, for all x ∈ VF : x ∈ P =⇒ x ∈ P ′ and x ∈ T =⇒ x ∈ T ′.
Similar, the projection over the arcs is done, i.e., if x ∈ F then x ∈ A′. For
example, given the SESE D of the running example, shown in Fig. 6a, t2 . . . t8
and p3 . . . p9 are the transitions and places of the original net included in this
SESE-net, respectively.
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Fig. 6. a) SESE and b) its corresponding SESE-Net

Note that, by definition, GF contains a single start and end node: i and o.
Therefore, we define i′, o′ as i′ = i and o′ = o. The existence of such single-entry
and single-exit is an appropriate property in order to determine the source and
sink places of the SN ′. Since the SESE decomposition is performed over the
workflow graph (where there is no distinction between places and transitions),
it is not guaranteed that i′ and o′ are places (they may be transitions). This
is the case of the component D of Fig. 6. In such cases where the entry (or
the exit) node is a transition, a pre-processing of the SN ′ is required, i.e., an
artificial place is created and linked with an artificial arc to such transition. The
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Fig. 7. Pre-processing of the SESE-net to guarantee a place-bordered net

transformation is informally illustrated in Fig. 7. An example is shown in Fig. 6a,
where both the entry and the exit nodes are transitions. Therefore, two artificial
places are created (and its corresponding arcs) to represent the p′i and p′o of the
SESE-net, as it is shown in Fig. 6b.

As discussed in the previous section, a net can contain cyclic behavior, i.e.,
subprocesses that are repeated several times within the main process execution.
In the decomposition phase, the cyclic behavior is detected by determining those
SESEs that are covered by T-invariants (i.e., if all transitions in a SESE belong
to some T-invariant, we assume that the component can be repeated) and the
hierarchical structure is enhanced with this information. Formally, a T-invariant
is a vector x : T → Z such that C ·x = 0, where C is the incidence matrix of the
net [12]. Intuitively, a T-invariant is a set of transitions such that the marking
reached after executing them is the same as the one before its execution. Clearly,
T-invariants provide only an approximation of the real repetitive behavior, but
we have seen in practice that this heuristic approximation works fine. Moreover,
if repetition is possible, a corresponding T-invariant exists.

Potential cyclic behavior has to be transferred to the subprocess level, i.e.,
SN ′ has to reflect the possibility of being executed more than once. In order
to do that, the SN ′ is short-circuited using a silent transition ε, i.e., when the
execution of the subprocess reaches the end, there is the possibility to re-start,
though the firing of a transition that leaves no track on the log (i.e., it is silent).
Formally, if GF is detected as cyclic, then ε ∈ T ′ and (p′o, ε), (ε, p

′
i) ∈ A′,

where ε �∈ T . This is the case for the subprocess in Fig. 6a: the two mini-
mal T-invariants {{t2, t3, t4, t5, t6, t8, t9, t10, t11, t12, t13, t15, t16, t17, t18, t20,
t22, t23, t25, t26, t27, t28},{t2,t3,t4,t5,t7,t8,t9,t10,t11,t12,t13,t15,t16,t17,t18,t20,
t22,t23,t25,t26,t27,t28}} of the initial net (Fig.1) include the transitions of the
SESE and therefore it is tagged as cyclic. Hence, a silent transition short-circuit is
created as it is shown in Fig. 6b.

Next, we need to determine the initial and final markings (m′
i and m′

o) of the
subprocess. Given the workflow net nature of the subprocess and the original
workflow net, we define the initial and final markings as [p′i] and [p′i] respectively
(cf. Fig. 6b).

After post-processing we obtain a new Petri net SN ′ modeling the subprocess
behavior. When iteration is detected, due to the type of nets we are restricting
in this section (safe and sound workflow nets), the modification done to the
original SESE-net enables the iterative behavior in the modified SESE-net. The
final SESE-net (with or without iteration), is used to do conformance analysis.
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Fig. 8. The hierarchical approach is non-monotonic with respect to subprocess inclu-
sion. Each node in the hierarchy c) of the SESEs detected in b) is annotated with a pair
of real numbers, representing the fitness and precision of the corresponding SESE-net
for the log obtained after projecting the event log of a) for the participating activities.
For instance, the fitness (first number in the nodes) for nodes A (0.95), B (0.92) and
C (0.97) is neither increasing nor decreasing.

Likewise it is done in [9] for fitness, it should be possible to establish formal
guarantees relating both fitness and precision metrics evaluated in the subpro-
cesses with respect to the ones of the original net. However, since neither fitness
nor precision are monotonic with respect to subprocess inclusion, the weakest
conditions under which a formal guarantee relating model and subprocesses fit-
ness/precision can be given will be investigated in the future. The example in
Fig. 8 illustrates the non-monotonic nature of the hierarchical approach.

5 Related Work

As it was mentioned in Sec.1, few conformance checking algorithms exists in
the literature, e.g., [16,3,4,6,5,17]. However, given the complexity of the confor-
mance analysis, recently a technique for decomposed conformance checking has
appeared: in [8] the authors propose a non-hierarchical decomposition based on
passages, also meant to be applied to the same class of Petri nets as the one
considered in this paper. A passage is a pair of two non-empty sets of transitions
(X,Y ) such that the set of direct successors of X is Y , whilst the set of direct
predecessors of Y is X . Any graph can be decomposed into minimal passages rep-
resenting a partitioning of its transition set, and in [8] authors demonstrate how
both discovery and conformance problems can be decomposed using passages.

There are significant differences between the passage decomposition approach
and the one presented in this paper. We enumerate here the most important
ones:

1. The passages approach computes a 1-level partitioning, whereas our ap-
proach derives a hierarchy of components. Note that once 1-level passages are
obtained, they may be united to form higher-level passages, since the union
of passages is a passage. However, algorithms for this high-level post-process
to form a hierarchy have not been proposed nor implemented.

2. The components in the passages approach represent causality fragments be-
tween two sets of transitions, whilst components in our approach denote
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parts of the model which interface with the rest of the system only through
two boundary nodes. In other words, components derived by each one of
the approaches are incomparable, i.e., a typical passage cannot be obtained
through our approach whilst a typical SESE (like the one shown in Fig. 6a)
is not a passage.

In the next section an empirical comparison for a set of benchmarks is provided
that witness the previous claims.

6 Experimental Results

In this section we present the experimental results supporting the claims made in
earlier sections. Most of the models have been generated with the PLG tool [18].
Two main type of experiments are provided in two subsections: Sect. 6.1 is
structured in two parts: in part I we compare the hierarchical approach presented
in this paper with manual decompositions performed by some persons, and in
part II we test the approach through a set of experiments, comparing it with
the approaches in the literature and especially with the one presented in [8].
Sect. 6.2 describes an experiment illustrating how the approach can be applied
for a large example, where it is not possible to handle large subprocesses and
therefore only nodes of the RPST that have a size less than a certain value can
be analyzed in practice. An implementation of the approach presented in this
paper can be found as a plugin within the ProM Framework4.

6.1 Empirical Evaluation

Part I: Similarities with Human-Made Model Decomposition
The first set of experiments is designed to study one of the strong points of
the approach proposed: the process-like decomposition (based on Single Entry
Single Exit components) and its intuitive relation with the mental schema of
process analyst. A set of process models (man01 to man06 ) has been prepared
in order to be manually decomposed by possible actors of the approach, and
the resulting components have been compared with the ones obtained by the
approach of this paper. The set of benchmarks is composed by six Petri nets
modeling plausible processes. Each model contains the most common patterns
found on process modeling: choice, concurrency, sequencing, invisible tasks, and
loops. The manual decomposition has been performed by 7 persons, all them
with complete liberty to decide their own decomposition. The results of the
experiments are shown in Table 15. The table shows, the number of transitions
and places of the initial Petri net, whether all persons used hierarchy in the
decomposition (hierarchy ?), the (average of the 7 persons) maximum number
of levels in the hierarchy (h- max ), and the corresponding maximum number of

4 Under the package JorgeMunozGama.
5 In the link http://www.lsi.upc.edu/~jmunoz/files/PN2013benchmarks.zip the
reader can inspect the manual decompositions.

http://www.lsi.upc.edu/~jmunoz/files/PN2013benchmarks.zip
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Table 1. Manual decomposition compared with the hierarchical approach

|T | |P | hierarchy ? h-max h-SESE |C| |Size(C) < 5| % SESE-like

man01 44 45 Yes 3.4 8 63 14% 91%
man02 16 16 Yes 2.4 5 28 7% 97%
man03 31 34 Yes 3.3 6 50 16% 89%
man04 31 31 Yes 3.3 7 51 16% 96%
man05 48 50 Yes 3.7 7 79 14% 92%
man06 45 51 Yes 3.6 8 71 3% 94%

levels in the hierarchy computed by our approach (with a 4-nodes threshold).
Also, the number of components computed by all the persons is shown (|C|), and
the percentage of components having less than 5 nodes reported (|Size(C) < 5|).
Finally, we provide the percentage of the components that satisfy the SESE
property (column % SESE-like).

The first conclusion raised from the experiment is related with the intuitive
use of hierarchy for decomposition. This is one of the main differences of the
approach proposed in this paper compared with other approaches such as [8].
The results show that in all benchmarks, all persons use hierarchy. Second, the
average number of levels in the hierarchy used by the 7 persons is smaller than
the one computed by our approach. The main reasons for that is that the persons
have not considered components that differ from each other of very few nodes
which is the case for a parent and sibling having a high degree of overlapping.
For instance, in Fig. 2, the only difference between SESE A and SESE B is the
four edges in A not in B. This suggests to refine the SESE detection algorithm
to collapse in the RPST nodes that differ on very few edges, in order to remove
this type of redundancy, e.g., collapse nodes A and B as one single SESE in the
example.

Note that persons prefer larger and process-like components instead of small
and oversimple ones. For example, from column |C|, the percentage of small
components ranges from 3% to 16% (and in most of the cases they correspond
with components of size four: a choice of two transitions). This motivates the
use of a threshold in the approach proposed in this paper. And finally, there
is a direct relation between the components suggested manually and the ones
provided by the approach, i.e., the vast majority of the components correspond
with SESEs, as it is shown in % SESE-like column.

Part II: Evaluation through a Set of Benchmarks
This second set of experiments focuses on the actual hierarchical conformance
checking. The experiment is composed by six models of different sizes, and their
corresponding logs. For each of the benchmark model and log combinations, the
decomposition is obtained and the conformance analysis is performed per com-
ponent. The results are shown in Table 2 (comparison with respect to the passage
approach), and Table 3, where the results for approaches in the literature [4,5,6]
are provided. Notice that the conformance checking performed in this paper
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Table 2. Conformance Results: passages vs. hierarchical

Passages Hierarchical
Fitness Fitness Precision

|T | |P | |C| comp node max min |C| comp node max min comp node max min

lu01 81 74 50 1 1 1 1 48 1 1 1 1 .958 .761 1 .293
lu02 45 51 29 .897 .898 .942 .84 34 .926 .912 1 .883 .978 .899 1 .649
lu03 86 80 50 1 1 1 1 55 1 1 1 1 .918 .719 1 .327
lu04 43 38 23 1 1 1 1 27 1 1 1 1 .837 .710 1 .343
lu05 91 82 50 .976 .977 1 .939 59 .914 .915 1 .480 .955 .789 1 .362
lu06 59 54 36 .988 .988 1 .955 28 .992 .989 1 .98 .92 .689 1 .272

Table 3. Conformance Results: results for non-decomposition approaches in the liter-
ature

Fitness Precision
[4] [5] [6]

lu01 1 .301 .301
lu02 .884 .65 .72
lu03 1 .335 .335
lu04 1 .35 .35
lu05 .965 .22 .22
lu06 .988 .283 .295

provides metrics for SESE components. Therefore in Table 2 we present some
intuitive metrics that combine the individual metrics into one single metric, to
have an intuitive estimation of the conformance of the whole model. In Table 2
the number of places and transitions per benchmark are reported, and for each
one of the decomposition approaches (passages or hierarchical), the number of
components obtained (column |C|) is reported. The table also provides the av-
erage fitness/precision with respect to the number of components (comp), and
with respect to the size of the components (node), i.e., in node larger compo-
nents have larger weight on the average fitness/precision computation. The table
provides the maximum and minimum fitness/precision value obtained for each
benchmark (max and min)6. Finally, Table 3 reports the conformance analysis
(fitness and precision) by other approaches in the literature.

Regarding the comparison between the passages approach and the hierarchi-
cal, it should be noted that there is a tendency for the passages approach to
derive less components, which in fact are considerably small. On the fitness re-
ported, both approaches report perfect fitness for the fitting models lu01, lu03
and lu04, and some differences for the rest. Interestingly, in lu05 a component
with a fitness value of 0.480 is detected, representing the diagnosis of a fitness
problem in a particular subprocess of the model.

6 Only the fitness calculation is implemented in the approach [8].
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By comparing the values in Table 3 of the non-decomposition approaches in
the literature with the ones in Table 2, a clear tendency of the decomposition
techniques to provide higher average values (both in the comp and the node
columns) is detected. This is especially manifested in the precision dimension,
where although the precision problems are still detected and equally evaluated
as in the non-decomposition approaches (see column min for the hierarchical
precision), they are reported at the level of the subprocess, thus identifying the
real portion of the model that represents the conformance problem.

Hence, the results for the hierarchical approach, divided into components,
provide an useful tool for diagnosis. This is complemented by the tree visual-
ization provided by the implementation, where the conformance results of each
component are displayed over its corresponding node in the hierarchy using a
intuitive code of colors, aiming at localizing problems within the process (see
Fig. 9). As an example, in some processes such as lu03 (shown in Fig. 9), the
differences in precision between comp and node is considerable, reflecting that
while the vast majority of components have a high precision, the larger compo-
nents have a low one. This is confirmed in the conformance results obtained for
each particular component: while the two largest components have a precision
of 0.33 and 0.32 respectively (shown in the figure as nodes in red in the RPST),
the rest of components (of significant smaller size) have precisions close to or
exactly 1.0. An introspective view of this conformance problem shows that a
big component allows the concurrent execution of three subprocesses, each one
having no conformance problems. However, in the log there is a real sequencing
on these three components, and therefore a precision problem has been identified
between these three subprocesses.

6.2 Handling a Large Conformance Problem

The hierarchical approach presented in this paper can be used to limit the com-
plexity of the conformance analysis by bounding the size of the conformance
instances to solve. This may be done by selecting a partitioning in the RPST
selecting those SESEs whose size do not exceed a given threshold size. This sec-
tion illustrates how this strategy can be used to perform conformance analysis
for problems of industrial size.

With the PLG tool, we have created a model of 693 nodes, depicted in Fig. 10,
and its corresponding log7. Then we have used the approach in [4] to estimate
the fitness of the model with respect to the log, establishing a time limit of 1
hour. Within this limit, the aforementioned approach did not completed the fit-
ness computation. If instead the hierarchical approach is applied together with
a restriction on the size of subprocesses to consider (we have set 200 nodes
as maximum SESE size), we have been able to analyze conformance for the
subprocesses forming the partitioning shown in Fig. 10 in less than 2 minutes.

7 To ease subprocess identification, we have used colors in Fig. 10 which will only be
visible in the electronic version or in a colored printed version of the paper.
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Fig. 10. Partitioning based on SESEs for conformance analysis: we have highlighted
in colors the SESEs for which a conformance analysis has been done

This conformance analysis revealed, for instance, that the subprocess in green
(lefmost) has a poor precision (0.318) and therefore it may be inspected in iso-
lation to determine the causes of the conformance problem, while the process in
pink has a perfect precision of 1.0.

7 Conclusions and Future Work

In this paper we presented a hierarchical approach for conformance checking that
enables process analysts to investigate deviations between modeled and observed
behavior. The technique combines previous work on conformance checking and
model decomposition techniques in order to identify subprocesses within a given
model for which an isolated conformance checking can be done, offering a hier-
archical structure that can be used to navigate through the conformance results.
The experiments show both the usefulness of the approach and the difference
with related techniques.

The future work aims to extend the result in various directions. We plan to in-
vestigate the theoretical guarantees and extend the proposed technique to a larger
class of Petri nets. Regarding algorithms, we plan to study new algorithms to im-
prove both the quality and the performance of the proposed methodology, e.g.,
proposing a reduction of the RPST to avoid too much overlapping between SESEs
and finding ways to propagate in a bottom-up manner the conformance results.
The latter is very important to be able for real-life conformance checking where
performance is an issue. Finally, although the approach as been proved to handle
models of industrial size, further experiments considering real-life models and logs
will reveal the real diagnosis value of the contribution presented in this paper.

Acknowledgements. This work has been partially supported by the Spanish
Ministerio de Educación (AP2009-4959) and by the projects TIN-2011-22484
and TIN-2007-66523.
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Abstract. Process discovery is the problem of, given a log of observed beha-
viour, finding a process model that ‘best’ describes this behaviour. A large vari-
ety of process discovery algorithms has been proposed. However, no existing
algorithm guarantees to return a fitting model (i.e., able to reproduce all observed
behaviour) that is sound (free of deadlocks and other anomalies) in finite time.
We present an extensible framework to discover from any given log a set of
block-structured process models that are sound and fit the observed behaviour.
In addition we characterise the minimal information required in the log to redis-
cover a particular process model. We then provide a polynomial-time algorithm
for discovering a sound, fitting, block-structured model from any given log; we
give sufficient conditions on the log for which our algorithm returns a model that
is language-equivalent to the process model underlying the log, including unseen
behaviour. The technique is implemented in a prototypical tool.

Keywords: process discovery, block-structured process models, soundness,
fitness.

1 Introduction

Process mining techniques aim to extract information from event logs. For example,
the audit trails of a workflow management system or the transaction logs of an enter-
prise resource planning system can be used to discover models describing processes,
organisations and products. The most challenging process mining problem is to learn a
process model (e.g., a Petri net) from example traces in some event log. Many process
discovery techniques have been proposed. For an overview of process discovery al-
gorithms, we refer to [13]. Unfortunately, existing techniques may produce models that
are unable to replay the log, may produce erroneous models and may have excessive
run times.

Which process model is ‘best’ is typically defined with respect to several quality cri-
teria. An important quality criterion is soundness. A process model is sound if and only
if all process steps can be executed and some satisfactory end state is always reachable.
In most use cases, an unsound process model can be discarded without considering the
log that it should represent. Another model quality criterion is fitness. A model has per-
fect fitness with respect to a log if it can reproduce all traces in the log. The quality
criterion precision expresses whether the model does not allow for too much behaviour,
generalisation expresses that the model will allow future behaviour that is currently

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 311–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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absent in the log.[10] Other model quality criteria exist, for which we refer to [23]. In
this paper, we focus on soundness and fitness, as so far no existing discovery algorithm
guarantees to return a sound fitting model in finite time.

In addition to finite run time, there are other desirable properties of process discovery
algorithms. In reality, the log was produced by some real-life process. The original
process is rediscoverable by a process discovery algorithm if, given a log that contains
enough information, the algorithm returns a model that is equivalent to the original
process using some equivalence notion. For instance, language-rediscoverability holds
for an algorithm that returns a model that is language-equivalent to the original model
- even if the log obtained from the original model contains less behaviour. Isomorphic-
rediscoverability holds for an algorithm that returns a model that is isomorphic to (a
representation of) the original model. The amount of information that is required to be
in the log is referred to as log completeness, of which the most extreme case is total
log completeness, meaning that all possible behaviour of the original process must be
present in the log. A process discovery technique is only useful if it assumes a much
weaker notion of completeness. In reality one will rarely see all possible behaviour.

Many process discovery algorithms [5,25,26,24,7,11,27,17,4,19,9,3] using differ-
ent approaches have been proposed in the past. Some techniques guarantee fitness,
e.g., [27], some guarantee soundness, e.g. [9], and others guarantee rediscoverability
under some conditions, e.g., [5]. Yet, there is essentially no discovery algorithm guar-
anteeing to find a sound, fitting model in finite time for all given logs.

In this paper, we use the block-structured process models of [9,3] to introduce a
framework that guarantees to return sound and fitting process models. This framework
enables us to reason about a variety of quality criteria. The framework uses any flavour
of block-structured process models: new blocks/operators can be added without chan-
ging the framework and with few proof obligations. The framework uses a divide and
conquer approach to decompose the problem of discovering a process model for a log
L into discovering n subprocesses of n sublogs obtained by splitting L. We explore the
quality standards and hard theoretically founded limits of the framework by character-
ising the requirements on the log under which the original model can be rediscovered.

For illustrative purposes, we give an algorithm that uses the framework and runs in
polynomial time for any log and any number of activities. The framework guarantees
that the algorithm returns a sound fitting model. The algorithm works by dividing the
activities of the log over a number of branches, such that the log can be split accord-
ing to this division. We characterise the conditions under which the algorithm returns
a model that is language-equivalent to the original process. The algorithm has been
prototypically implemented using the ProM framework [12].

In the following, we first discuss related work. Section 3 explains logs, languages,
Petri nets, workflow nets and process trees. In Section 4 the framework is described.
The class of models that this framework can rediscover is described in Section 5. In
Section 6 we give an algorithm that uses the framework and we report on experimental
results. We conclude the paper in Section 7.
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2 Related Work

A multitude of process discovery algorithms has been proposed in the past. We review
typical representatives with respect to guarantees such as soundness, fitness, rediscov-
erability and termination. Techniques that discover process models from ordering re-
lations of activities, such as the α algorithm [5] and its derivatives [25,26], guarantee
isomorphic-rediscoverability for rather small classes of models [6] and do not guaran-
tee fitness or soundness. Semantics-based techniques such as the language-based re-
gion miner [7,8], the state-based region miner [11], or the ILP miner [27] guarantee
fitness but neither soundness nor rediscoverability. Frequency-based techniques such
as the heuristics miner [24] guarantee neither soundness nor fitness. Abstraction-based
techniques such as the Fuzzy miner [17] produce models that do not have executable
semantics and hence guarantee neither soundness nor fitness nor any kind of rediscov-
erability.

Genetic process discovery algorithms [4,19] may reach certain quality criteria if they
are allowed to run forever, but usually cannot guarantee any quality criterion given finite
run time. A notable exception is a recent approach [9,3] that guarantees soundness. This
approach restricts the search space to block-structured process models, which are sound
by construction; however, finding a fitting model cannot be guaranteed in finite run time.

The Refined Process Structure Tree [21] is a parsing technique to find block struc-
tures in process models by which soundness can be checked [15], or an arbitrary model
can be turned into a block-structured one (if possible) [20]. However, these techniques
only analyse or transform a given model, but do not allow to construct a sound or fitting
model. The language-based mining technique of [8] uses regular expressions to pre-
structure the input language (the log) into smaller blocks; this block-structuring of the
log is then used during discovery for constructing a fitting, though possibly unsound,
process model.

Unsound models can be repaired to become sound by simulated annealing [16],
though fitness to a given log is not preserved. Non-fitting models can be repaired to be-
come fitting by adding subprocesses [14], though soundness is not guaranteed. Hence,
a more integrated approach is needed to ensure soundness and fitness. In the following
we will propose such an integrated approach building on the ideas of a restriction to
block-structured models[3,9], and of decomposing the given log into block-structured
parts prior to model construction.

3 Preliminaries

Logs. We assume the set of all process activities Σ to be given. An event e is the
occurrence of an activity: e ∈ Σ. A trace t is a possibly empty sequence of events:
t ∈ Σ∗. We denote the empty trace with ε. A log L is a finite non-empty set of traces:
L ⊆ Σ∗. For example, {〈a, b, c〉, 〈a, c, b〉} denotes a log consisting of two traces abc
and acb, where for instance abc denotes that first a occurred, then b and finally c. The
size of a log is the number of events in it: ||L|| =

∑
t∈L |t|.

Petri Nets, Workflow Nets and Block-structured Workflow Nets. A Petri net is a bipartite
graph containing places and transitions, interconnected by directed arcs. A transition
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models a process activity, places and arcs model the ordering of process activities. We
assume the standard semantics of Petri nets here, see [22]. A workflow net is a Petri net
having a single start place and a single end place, modeling the start and end state of
a process. Moreover, all nodes are on a path from start to end[5]. A block-structured
workflow net is a hierarchical workflow net that can be divided recursively into parts
having single entry and exit points. Figure 1 shows a block-structured workflow net.

Process Trees. A process tree is a compact abstract representation of a block-structured
workflow net: a rooted tree in which leaves are labeled with activities and all other nodes
are labeled with operators. A process tree describes a language, an operator describes
how the languages of its subtrees are to be combined.

We formally define process trees recursively. We assume a finite alphabet Σ of activ-
ities and a set

⊕
of operators to be given. Symbol τ /∈ Σ denotes the silent activity.

– a with a ∈ Σ ∪ {τ} is a process tree;
– Let M1, . . . ,Mn with n > 0 be process trees and let ⊕ be a process tree operator,

then ⊕(M1, . . . ,Mn) is a process tree.

There are a few standard operators that we consider in the following: operator× means
the exclusive choice between one of the subtrees, → means the sequential execution of
all subtrees, � means the structured loop of loop body M1 and alternative loop back
paths M2, . . . ,Mn, and ∧ means a parallel (interleaved) execution as defined below.
Please note that for�, n must be ≥ 2.

To describe the semantics of process trees, we define the language of a process tree
M as a recursive monotonic function L(M), using for each operator⊕ a language join
function⊕l:

L(a) = {〈a〉} for a ∈ Σ

L(τ) = {ε}
L(⊕(M1, . . . ,Mn)) = ⊕l(L(M1), . . . ,L(Mn))

Each operator⊕ has its own language join function⊕l. Each function takes several logs
and produces a new log: ⊕l : 2

Σ∗ × . . .× 2Σ
∗ → 2Σ

∗
.

×l(L1, . . . , Ln) =
⋃

1≤i≤n

Li

→l(L1, . . . , Ln) = {t1 · t2 · · · tn|∀i ∈ 1 . . . n : ti ∈ Li}

�l(L1, . . . , Ln) = {t1 · t′1 · t2 · t′2 · · · tm|∀i : ti ∈ L1 ∧ t′i ∈
⋃

2≤j≤n

Lj}

To characterise ∧, we introduce a set notation {t1, . . . , tn}� that interleaves the traces
t1 . . . tn. We need a more complex notion than a standard projection function due to
overlap of activities over traces.

t ∈ {t1, . . . , tn}� ⇔ ∃(f : {1 . . . |t|]} → {(j, k)|j ≤ n ∧ k ≤ |tj |}) :
∀i1 < i2 ∧ f(i1) = (j, k1) ∧ f(i2) = (j, k2) : k1 < k2 ∧
∀i ≤ n ∧ f(i) = (j, k) : t(i) = tj(k)
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where f is a bijective function mapping each event of t to an event in one of the ti
and t(i) is the ith element of t. For instance, 〈a, c, d, b〉 ∈ {〈a, b〉, 〈c, d〉}�. Using this
notation, we define ∧l:

∧l(L1, . . . , Ln) = {t|t ∈ {t1, . . . , tn}� ∧ ∀i : ti ∈ Li}

τ

b

c

d

e

f

g

h

a τ

Fig. 1. A Petri net, modified from [2, page 196]. The rectangle regions denote the process tree
nodes in →(a,�(→(∧(×(b, c), d), e), f),×(g, h)).

Each of the process tree operators has a straightforward formal translation to a sound,
block-structured workflow Petri net [9,3]. For instance, the Petri net shown in Figure 1
corresponds to the process tree→(a,�(→(∧(×(b, c), d), e), f),×(g, h)). If one would
come up with another process tree operator, soundness of the translation follows if the
translation of the new process tree operator is sound in isolation. The four operators
presented here translate to well-structured, free-choice Petri nets [1]; other operators
might not.

The size of a model M is the number of nodes in M and is denoted as |M |: |τ | = 1,
|a| = 1 and | ⊕(M1, . . . ,Mn)| = 1+

∑
i |Mi|. Two process treesM = ⊕(M1, . . . ,Mn)

and M ′ = ⊕′(M ′
1, . . . ,M

′
n) are isomorphic if and only if they are syntactically equival-

ent up to reordering of children in the case of ×, ∧ and the non-first children of�.
If M is a process tree and L is a log, then L fits M if and only if every trace in L is

in the language of M : L ⊆ L(M). A flower model is a process tree that can produce
any sequence of Σ. An example of a flower model is the model�(τ, a1, . . . , am) where
a1, . . . , am = Σ.

As additional notation, we write Σ(L) and Σ(M) for the activities occurring in log
L or model M respectively, not including τ . Furthermore, Start(L), Start(M) and
End(L), End(M) denote the sets of activities with which log L and model M start or
end.

4 Framework

In this section, we introduce a highly generic process discovery framework. This frame-
work allows for the derivation of various process discovery algorithms with predefined
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guarantees. Then we prove that each model returned by the framework fits the log and
that the framework describes a finite computation, both for any set of process tree op-
erators having a corresponding monotonic language join function.

Requirement on the Process Tree Operators. The framework works independently of
the chosen process tree operators. The only requirement is that each operator ⊕ must
have a sensible language join function ⊕l, such that the language of ⊕ reflects the
language join of its ⊕l.

Framework. Given a set
⊕

of process tree operators, we define a framework B to
discover a set of process models using a divide and conquer approach. Given a log L, B
searches for possible splits of L into smaller L1 . . . Ln, such that these logs combined
with an operator ⊕ can produce L again. It then recurses on the found divisions and
returns a cartesian product of the found models. The recursion ends when L cannot be
divided any further. We have to give this algorithmic idea a little twist as splitting L
into strictly smaller L1 . . . Ln could prevent some models from being rediscovered, for
instance in presence of unobservable activities. As a more general approach, we allow
L to be split into sublogs having the same size as L. However, such splits that do not
decrease the size of L may only happen finitely often. For this, we introduce a counter
parameter φ, which has to decrease if a non-decreasing log split is made. Parameter φ
essentially bounds the number of invisible branches that the discovered model can have.

The actual split is left to a function select(L) that takes a log and returns a set of
tuples (⊕, ((L1, φ1), . . . , (Ln, φn))), where ⊕ is the operator identified to split L, and
L1 . . . Ln are the logs obtained by splitting L w.r.t.⊕. Each log Li has a corresponding
counter parameter φ which bounds recursion on Li. Various select(L) functions can be
defined, so we parameterise the framework B with this select function.

function Bselect(L, φ)
if L = {ε} then

base ← {τ}
else if ∃a ∈ Σ : L = {〈a〉} then

base ← {a}
else

base ← ∅
end if
P ← select(L)
if |P | = 0 then

if base = ∅ then
return {�(τ, a1, . . . , am) where {a1, . . . , am} = Σ(L)}

else
return base

end if
end if
return {⊕(M1, . . . ,Mn)|(⊕, ((L1, φ1), . . . , (Ln, φn))) ∈ P ∧ ∀i : Mi ∈ B(Li, φi)} ∪

base
end function

Any select function can be used, as long as the tuples it returns adhere to the follow-
ing definition:
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Definition 1. For each tuple (⊕, ((L1, φ1), . . . , (Ln, φn))) that select(L) returns, it
must hold that

L ⊆ ⊕l(L1, . . . , Ln) ∧
∀i : ||Li||+ φi < ||L||+ φ ∧
∀i : ||Li|| ≤ ||L|| ∧
∀i : φi ≤ φ ∧
∀i : Σ(Li) ⊆ Σ(L) ∧

⊕ ∈
⊕

∧

n ≤ ||L||+ φ

In the remainder of this section, we will prove some properties that do not depend on a
specific preference function select.

Theorem 2. Assuming select terminates, B terminates.

Proof. Termination follows from the fact that in each recursion, ||L|| + φ gets strictly
smaller and that there are finitely many recursions from a recursion step. By con-
struction of select, Σ(Li) ⊆ Σ(L), and therefore Σ is finite. By construction of P ,
n ≤ ||L|| + φ, so there are finitely many sublogs Li. Hence, select creates finitely
many log divisions. Therefore, the number of recursions is finite and hence B termin-
ates. � 
Theorem 3. Let

⊕
be a set of operators and let L be a log. Then B(L) returns at least

one process tree and all process trees returned by B(L) fit L.

Proof. Proof by induction on value of ||L||+φ. Base cases: ||L||+φ = 1 or ||L||+φ =
2. Then, L is either {ε} or {〈a〉}. By code inspection, for these L B returns at least one
process tree and all process trees fit L.
Induction hypothesis: for all logs ||L′||+ φ′ smaller than ||L||+ φ, B(L′, φ′) returns at
least one process tree and all process trees that B returns fit L′ : ∀||L′||+φ′ < ||L||+φ :
|B(L′)| ≥ 1 ∧ ∀M ′ ∈ B(L′) : L′ ⊆ L(M ′).
Induction step: assume ||L||+ φ > 2 and the induction hypothesis. Four cases apply:

– Case L = {ε}, see base case;
– Case L = {〈a〉}, see base case;
– Case P is empty, L �= {ε} and L �= {a}. Then B returns the flower model
{�(τ, a1, . . . , am) where a1, . . . , am = Σ(L)} and that fits any log.

– Case P is nonempty, L �= {ε} and L �= {a}. Let M1, . . . ,Mn be models re-
turned by B(L1, φ1), . . . , B(Ln, φn) for some logs L1, . . . , Ln and some counters
φ1, . . . , φn. By construction of the P -selection step, ∀i : ||Li|| + φi < ||L|| + φ.
By the induction hypothesis, these models exist. As B combines these models
in a cartesian product, |B(L)| ≥ 1. By the induction hypothesis, ∀i : Li ⊆
L(Mi). Using the fact that ⊕l is monotonic and the construction of M , we ob-
tain ⊕l(L1, . . . , Ln) ⊆ L(⊕(M1, . . . ,Mn)) = L(M). By construction of P , L ⊆
⊕l(L1, . . . , Ln), and by ⊕l(L1, . . . , Ln) ⊆ L(M), we conclude that L ⊆ L(M).
We did not pose any restrictions on M1, . . . ,Mn, so this holds for all combinations
of M1, . . . ,Mn from the sets returned by B. � 
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5 Rediscoverability of Process Trees

An interesting property of a discovery algorithm is whether and under which assump-
tions an original process can be rediscovered by the algorithm. Assume the original
process is expressible as a model M , which is unknown to us. Given is a log L of
M : L ⊆ L(M). M is isomorphic-rediscoverable from L by algorithm B if and only
if M ∈ B(L). It is desirable that L can be as small as possible to rediscover M . In
this section, we explore the boundaries of the framework B of Section 4 in terms of
rediscoverability.

We first informally give the class of original processes that can be rediscovered by
B, and assumptions on the log under which this is guaranteed. After that, we give an
idea why these suffice to rediscover the model. In this section, the preference function
select as used in B is assumed to be the function returning all log divisions satisfying
Definition 1. Otherwise, the original model might be removed from the result set.

Class of Rediscoverable Models. Any algorithm has a representational bias; B can
only rediscover processes that can be described by process trees. There are no further
limitations: B can rediscover every process tree. An intuitive argument for this claim
is that as long as the log can be split into the parts of which the log was constructed,
the algorithm will also make this split and recurse. A necessity for this is that the log
contains ‘enough’ behaviour.

Log Requirements. All process trees can be rediscovered given ‘enough’ traces in the
log, where enough means that the given log can be split according to the respective
process tree operator. Intuitively, it suffices to execute each occurrence of each activity
in M at least once in L. Given a large enough φ, B can then always split the log
correctly.

This yields the notion of activity-completeness. Log L is activity-complete w.r.t.
model M , denote L 4a M , if and only if each leaf of M appears in L at least once.
Formally, we have to distinguish two cases. For a model M ′ where each activity occurs
at most once and a log L′,

L′ 4a M ′ ⇔ Σ(M ′) ⊆ Σ(L′)

In the general case, where some activity a ∈ Σ occurs more than once in M , we
have to distinguish the different occurrences. For a given alphabet Σ consider a refined
alphabet Σ′ and a surjective function f : Σ′ → Σ, e.g., Σ′ = {a1, a2, . . . , b1, b2, . . .}
and a = f(a1) = f(a2) = · · · , b = f(b1) = f(b2) = · · · , etc. For a log L′ and model
M ′ over Σ′, let f(L′) and f(M ′) denote the log and the model obtained by replacing
each a ∈ Σ′ by f(a) ∈ Σ. Using this notation, we define for arbitrary log L and model
M ,

L 4a M ⇔ ∃Σ′, (f ′ : Σ′ → Σ),M ′, L′ : f(L′) = L ∧ f(M ′) = M ∧ L′ 4a M ′,

where each activity a ∈ Σ′ occurs at most once in M ′.



Discovering Process Models Constructively 319

Rediscoverability of Models. In order to prove isomorphic rediscoverability, we need
to show that any log L 4a M can be split by B such that M can be constructed, given a
large enough φ.

Theorem 4. Given a large enough φ, for each log L and model M such that L ⊆
L(M) and L 4a M it holds that M ∈ B(L).

Proof. Proof by induction on model sizes. Base case: |M | = 1. A model of size 1
consists of a single leaf l. By L ⊆ L(M) ∧ L 4a M , L is {l}. These are handled by the
L = {ε} or L = {〈a〉} clauses and hence can be rediscovered.
Induction hypothesis: all models smaller than M can be rediscovered: ∀|M ′| < |M | ∧
L′ ⊆ L(M) ∧ L′ 4a M ′ : M ′ ∈ B(L′, φ′), for some number φ′.
Induction step: assume |M | > 1 and the induction hypothesis. As |M | > 1, M =
⊕(M1, . . . ,Mn) for certain ⊕, n and M1 . . .Mn. By L ⊆ L(M) and definition of
L(M), there exist L1 . . . Ln such that ∀i : Li ⊆ L(Mi), ∀i : Li 4a Mi and L ⊆
⊕l(L1, . . . , Ln). By the induction hypothesis there exist φ1 . . . φn such that ∀i : Mi ∈
B(Li, φi). We choose φ to be large enough by taking φ = max{n, φ1+1, . . . , φn+1}.
By this choice of φ,

∀i : ||Li||+ φi < ||L||+ φ ∧ φi ≤ φ

and
n ≤ ||L||+ φ

hold. By construction of ⊕l,
∀i : ||Li|| ≤ ||L||

By |M | > 1 and our definitions of ×l, →l, ∧l and �l, L does not introduce new
activities:

∀i : Σ(Li) ⊆ Σ(L)

Hence, (⊕, ((L1, φ1), . . . , (Ln, φn))) ∈ P . By the induction hypothesis, ∀Mi : Mi ∈
B(Li). The models returned by B(Li) will be combined using a cartesian product, and
as M = ⊕(M1, . . . ,Mn), it holds that M ∈ B(L). � 

This proof shows that it suffices to pick φ to be the sum of the width and depth of the
original model M in order to rediscover M from an activity-complete log L.

6 Discovering Process Trees Efficiently

The framework of Section 4 has a practical limitation: for most real-life logs, it is in-
feasible to construct the full set P . In this section, we introduce an algorithm B′ that is a
refinement of the framework B. B′ avoids constructing the complete set P . The central
idea of B′ is to compute a log split directly based on the ordering of activities in the log.
We first introduce the algorithmic idea and provide formal definitions afterwards. We
conclude this section with a description of the classes of process trees that B′ is able to
language-rediscover and a description of our prototype implementation.
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Fig. 2. Several directly-follows graphs. Dashed lines denote cuts.

6.1 Algorithmic Idea

The directly-follows relation, also used by the α-algorithm [5], describes when two
activities directly follow each other in a process. This relation can be expressed in
the directly-follows graph of a log L, written G(L). It is a directed graph containing
as nodes the activities of L. An edge (a, b) is present in G(L) if and only if some
trace 〈· · · , a, b, · · · 〉 exists in L. A node of G(L) is a start node if its activity is in
Start(L). We define Start(G(L)) = Start(L). Similarly for end nodes in End(L),
and End(G(L)). The definition for G(M) is similar. For instance, Figure 2a shows the
directly-follows graph of log L = {〈a, b, c〉, 〈a, c, b〉, 〈a, d, e〉, 〈a, d, e, f, d, e〉}.

The idea for our algorithm is to find in G(L) structures that indicate the ‘domin-
ant’ operator that orders the behaviour. For example, G(L) of Fig 2a can be partitioned
into two sets of activities as indicated by the dashed line such that edges cross the line
only from left to right. This pattern corresponds to a sequence where the activities left
of the line precede the activities right of the line. This is the decisive hint on how to split
a given log when using the framework of Section 4. Each of the four operators ×, →,
�, ∧ has a characteristic pattern in G(L) that can be identified by finding a partitioning
of the nodes of G(L) into n sets of nodes with characteristic edges in between. The log
L can then be split according to the identified operator, and the framework recurses on
each of the split logs. The formal definitions are provided next.

6.2 Cuts and Components

Let G(L) be the directly-follows graph of a log L. An n-ary cut c of G(L) is a partition
of the nodes of the graph into disjoint sets Σ1 . . . Σn. We characterise a different cut
for each operator ×, →, �, ∧ based on edges between the nodes.

In a exclusive choice cut, each Σi has a start node and an end node, and there is no
edge between two different Σi �= Σj , as illustrated by Figure 3(left). In a sequence cut,
the sets Σ1 . . . Σn are ordered such that for any two nodes a ∈ Σi, b ∈ Σj , i < j, there
is a path from a to b along the edges of G(L), but not vice versa; see Figure 3(top). In a
parallel cut, each Σi has a start node and an end node, and any two nodes a ∈ Σi, b ∈
Σj , i �= j are connected by edges (a, b) and (b, a); see Figure 3(bottom). In a loop cut,
Σ1 has all start and all end nodes of G(L), there is no edge between nodes of different
Σi �= Σj , i, j > 1, and any edge between Σ1 and Σi, i > 1 either leaves an end node of
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...

sequence:

...

exclusive choice:

...

parallel:

...

loop:

Fig. 3. Cuts of the directly-follows graph for operators ×, →, ∧ and �

Σ1 or reaches a start node of Σ1; see Figure 3(right). An n-ary cut is maximal if there
exists no cut of G of which n is bigger. A cut c is nontrivial if n > 1.

Let a � b ∈ G denote that there exists a directed edge chain (path) from a to b in
G. Definitions 5, 6, 7 and 8 show the formal cut definitions.

Definition 5. An exclusive choice cut is a cut Σ1, . . . , Σn of a directly-follows graph
G, such that

1. ∀i �= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) /∈ G

Definition 6. A sequence cut is an ordered cut Σ1, . . . , Σn of a directly-follows graph
G such that

1. ∀1 ≤ i < j ≤ n ∧ ai ∈ Σi ∧ aj ∈ Σj : aj � ai /∈ G
2. ∀1 ≤ i < j ≤ n ∧ ai ∈ Σi ∧ aj ∈ Σj : ai � aj ∈ G

Definition 7. A parallel cut is a cut Σ1, . . . , Σn of a directly-follows graph G such that

1. ∀i : Σi ∩ Start(G) �= ∅ ∧Σi ∩ End(G) �= ∅
2. ∀i �= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) ∈ G ∧ (aj , ai) ∈ G

Definition 8. A loop cut is a partially ordered cut Σ1, . . . , Σn of a directly-follows
graph G such that

1. Start(G) ∪End(G) ⊆ Σ1

2. ∀i �= 1 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (a1, ai) ∈ G ⇒ a1 ∈ End(G)
3. ∀i �= 1 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (ai, a1) ∈ G ⇒ a1 ∈ Start(G)
4. ∀1 �= i �= j �= 1 ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) /∈ G
5. ∀i �= 1 ∧ ai ∈ Σi ∧ a1 ∈ Start(G) : (∃a′

1 ∈ Σ1 : (ai, a
′
1) ∈ G)⇔ (ai, a1) ∈ G

6. ∀i �= 1 ∧ ai ∈ Σi ∧ a1 ∈ End(G) : (∃a′
1 ∈ Σ1 : (a′

1, ai) ∈ G)⇔ (a1, ai) ∈ G
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6.3 Algorithm B′

B′ uses the framework B of Section 4 by providing a select function selectB′ . selectB′

takes a log and produces a single log division. Recursion and base cases are still handled
by the framework B. For φ, we will use the fixed value 0.

The function selectB′ works by constructing the directly follows graph G(L) of
the input log L. After that, the function tries to find one of the four cuts characterised
above. If selectB′ finds such a cut, it splits the log according to the cut and returns a
log division corresponding to the cut. If selectB′ cannot find a cut, it returns no log
division, and B will produce the flower model for L.

We first define selectB′ followed by the functions to split the log which we illustrate
by a running example. We conclude by posing a lemma stating that selectB′ is a valid
select function for the framework B.

function selectB′(L)
if ε ∈ L ∨ ∃a ∈ Σ(L) : L = {〈a〉} then

return ∅
else if c ← a nontrivial maximal exclusive choice cut c of G(L) then

Σ1, . . . , Σn ← c
L1, . . . , Ln ← EXCLUSIVECHOICESPLIT(L, (Σ1, . . . , Σn))
return {(×, ((L1, 0), . . . , (Ln, 0)))}

else if c ← a nontrivial maximal sequence cut c of G(L) then
Σ1, . . . , Σn ← c
L1, . . . , Ln ← SEQUENCESPLIT(L, (Σ1, . . . , Σn))
return {(→, ((L1, 0), . . . , (Ln, 0)))}

else if c ← a nontrivial maximal parallel cut c of G(L) then
Σ1, . . . , Σn ← c
L1, . . . , Ln ← PARALLELSPLIT(L, (Σ1, . . . , Σn))
return {(∧, ((L1, 0), . . . , (Ln, 0)))}

else if c ← a nontrivial maximal loop cut c of G(L) then
Σ1, . . . , Σn ← c
L1, . . . , Ln ← LOOPSPLIT(L, (Σ1, . . . , Σn))
return {(�, ((L1, 0), . . . , (Ln, 0)))}

end if
return ∅

end function
Using the cut definitions, selectB′ divides the activities into sets Σ1 . . .Σn. After

that, selectB′ splits the log.
The cuts can be computed efficiently using graph techniques. We will give an intu-

ition: the exclusive choice cut corresponds to the notion of connected components. If
we collapse both strongly connected components and pairwise unreachable nodes into
single nodes, the collapsed nodes that are left are the Σs of the sequence cut. If both of
these cuts are not present, then we ”invert” the graph by removing every double edge,
and adding double edges where there was no or a single edge present. In the result-
ing graph each connected component is a Σi of the parallel cut. If these cuts are not
present, temporarily removing the start and end activities and computing the connected
components in the resulting graph roughly gives us the loop cut. As shown in Lemma 16
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in [18], the order in which the cuts are searched for is arbitrary, but for ease of proof
and computation we assume it to be fixed as described in selectB′ .

We define the log split functions together with a running example.
Consider the log L = {〈a, b, c〉, 〈a, c, b〉, 〈a, d, e〉, 〈a, d, e, f, d, e〉}. G(L) is shown

in Figure 2a which has the sequence cut {a}, {b, c, d, e, f}. The log is then split by
projecting each trace of L onto the different activity sets of the cut.

function SEQUENCESPLIT(L, (Σ1, . . . , Σn))
∀j : Lj ← {tj |t1 · t2 · · · tn ∈ L ∧ ∀i ≤ n ∧ e ∈ ti : e ∈ Σi}
return L1, . . . , Ln

end function
In the example, SEQUENCESPLIT(L, ({a}, {b, c, d, e, f})) =
{〈a〉}, {〈b, c〉, 〈c, b〉, 〈d, e〉, 〈d, e, f, d, e〉}. Call the second log L2. G(L2) is shown in
Figure 2b and has the exclusive choice cut {b, c}, {d, e, f}. The log is then split by
moving each trace of L into the log of the corresponding activity set.

function EXCLUSIVECHOICESPLIT(L, (Σ1, . . . , Σn))
∀i : Li ← {t|t ∈ L ∧ ∀e ∈ t : e ∈ Σi}
return L1, . . . , Ln

end function
In the example, EXCLUSIVECHOICESPLIT(L2, ({b, c}, {d, e, f})) = {〈b, c〉, 〈c, b〉},
{〈d, e〉, 〈d, e, f, d, e〉}. Call the first log L3 and the second log L4. G(L3) is shown in
Figure 2c and has the the parallel cut {b}, {c}. The log is split by projecting each trace
for each activity set in the cut.

function PARALLELSPLIT(L, (Σ1, . . . , Σn))
∀i : Li ← {t|Σj |t ∈ L}
return L1, . . . , Ln

end function
where t|X is a function that projects trace t onto set of activities X , such that all
events remaining in t|X are in X . In our example, PARALLELSPLIT(L3, ({b}, {c})) =
{〈b〉}, {〈c〉}. The directly-follows graph of the log L4 = {〈d, e〉, 〈d, e, f, d, e〉} is shown
in Figure 2d and has the loop cut {d, e}, {f}. The log is split by splitting each trace into
subtraces of the loop body and of the loopback condition which are then added to the
respective sublogs.

function LOOPSPLIT(L, (Σ1, . . . , Σn))
∀i : Li ← {t2|t1 · t2 · t3 ∈ L ∧

Σ({t2}) ⊆ Σi ∧
(t1 = ε ∨ (t1 = 〈· · · , a1〉 ∧ a1 /∈ Σi)) ∧
(t3 = ε ∨ (t3 = 〈a3, · · · 〉 ∧ a3 /∈ Σi))}

return L1, . . . , Ln

end function
In our example, LOOPSPLIT(L4, ({d, e}, {f})) = {〈d, e〉}, {〈f〉}.

Framework B and selectB′ together discover a process model from the log L =
{〈a, b, c〉, 〈a, c, b〉, 〈a, d, e〉, 〈a, d, e, f, d, e〉} as follows. The only exclusive choice cut
for G(L) is {a, b, c, d, e, f}, which is a trivial cut. As we have shown before, a sequence
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cut for G(L) is {a}, {b, c, d, e, f}. Then, selectB′ calls SEQUENCESPLIT, which re-
turns two sublogs: L1 = {〈a〉} and L2 = {〈b, c〉, 〈c, b〉, 〈d, e〉, 〈d, e, f, d, e〉}. Then,
selectB′ returns {→, (L1, L2)}. After that, B constructs the partial model M =
→(B(L1), B(L2)) and recurses.

Let us first process the log L1. B(L1) sets base to {a}, and selectB′(L1) returns ∅.
Then, B returns the process tree a, with which the partially discovered model becomes
M =→(a,B(L2)).

For B(L2), EXCLUSIVECHOICESPLIT splits the log in L3 = {〈b, c〉, 〈c, b〉} and
L4 = {〈d, e〉, 〈d, e, f, d, e〉}. The partially discovered model then becomes M =→(a,
×(B(L3), B(L4))).

For B(L3), there is no nontrivial exclusive choice cut and neither a nontrivial se-
quence cut. As we have shown before, PARALLELSPLIT splits L3 into L5 = {〈b〉} and
L6 = {〈c〉}. M becomes→(a,×(∧(B(L5), B(L6)), B(L4))).

For B(L4), LOOPSPLIT splits L4 into L7 = {〈d, e〉} and L8 = {〈f〉}, such that M
becomes→(a,×(∧(B(L5), B(L6)),�(L7, L8))).

After one more sequence cut (B(L7)) and a few base cases (B(L5), B(L6), B(L7)),
B′ discovers the model→(a,×(∧(b, c),�(→(d, e), f))).

As B′ uses a select function to use the framework, we need to prove that selectB′

only produces log divisions that satisfy Definition 1.

Lemma 9. The log divisions of L that selectB′ returns adhere to Definition 1.

The proof idea of this lemma is to show that each of the clauses of Definition 1 holds
for the log division L1 . . . Ln that selectB′ chooses, using a fixed φ of 0: L ⊆ ⊕l(L1,
. . . , Ln), ∀i : ||Li|| < ||L||, ∀i : Σ(Li) ⊆ Σ(L), ⊕ ∈

⊕
and n ≤ ||L||. For the

detailed proof of this lemma, please refer to [18].

6.4 Language-Rediscoverability

An interesting property of a discovery algorithm is whether and under which assump-
tions a model can be discovered that is language-equivalent to the original process.
It can easily be inductively proven that B′ returns a single process tree for any log
L. B′ language-rediscovers a process model if and only if the mined process model
is language-equivalent to the original process model that produced the log: L(M) =
L(B′(L)) (we abuse notation a bit here), under the assumption that L is complete w.r.t.
M for some completeness notion. Our proof strategy for language-rediscoverability will
be to reduce each process tree to a normal form and then prove that B′ isomorphically
rediscovers this normal form. We first define the log completeness notion, after which
we describe the class of models that B′ can language-rediscover. We conclude with a
definition of the normal form and the proof.

Log Completeness. Earlier, we introduced the notion of a directly-follows graph. This
yields the notion of directly-follows completeness of a log L with respect to a model
M , written as L 4df M : L 4df M ≡ 〈· · · , a, b, · · · 〉 ∈ L(M) ⇒ 〈· · · , a, b, · · · 〉 ∈
L ∧ Start(M) ⊆ Start(L) ∧ End(M) ⊆ End(L) ∧ Σ(M) ⊆ Σ(L). Intuitively, the
directly-follows graphs M must be mappable on the directly-follows graph of L.
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Please note that the framework does not require the log to be directly-follows com-
plete in order to guarantee soundness and fitness.

Class of Language-Rediscoverable Models. Given a model M and a generated com-
plete log L, we prove language-rediscoverability assuming the following model restric-
tions, where ⊕(M1, . . . ,Mn) is a node at any position in M :

1. Duplicate activities are not allowed: ∀i �= j : Σ(Mi) ∩Σ(Mj) = ∅.
2. If ⊕ = �, the sets of start and end activities of the first branch must be disjoint:
⊕ = �⇒ Start(M1) ∩ End(M1) = ∅.

3. No τ ’s are allowed: ∀i ≤ n : Mi �= τ .

A reader familiar with the matter will have recognised the restrictions as similar to the
rediscoverability restrictions of the α algorithm [5].

Normal Form. We first introduce reduction rules on process trees that transform an
arbitrary process tree into a normal form. The intuitive idea of these rules is to combine
multiple nested subtrees with the same operator into one node with that operator.

Property 10.

⊕(M) = M

×(· · ·1 ,×(· · ·2), · · ·3) = ×(· · ·1 , · · ·2 , · · ·3)
→(· · ·1 ,→(· · ·2), · · ·3) = →(· · ·1 , · · ·2 , · · ·3)
∧(· · ·1 ,∧(· · ·2), · · ·3) = ∧(· · ·1 , · · ·2 , · · ·3)
�(�(M, · · ·1), · · ·2) = �(M, · · ·1 , · · ·2)

�(M, · · ·1 ,×(· · ·2), · · ·3) = �(M, · · ·1 , · · ·2 , · · ·3)

It is not hard to reason that these rules preserve language. A process tree on which these
rules have been applied exhaustively is a reduced process tree. For a reduced process
tree it holds that a) for all nodes ⊕(M1, . . . ,Mn), n > 1; b) ×, → and ∧ do not have a
direct child of the same operator; and c) the first child of a� is not a� and any non-first
child is not an ×.

Language-Rediscoverability. Our proof strategy is to first exhaustively reduce the
given model M to some language-equivalent model M ′. After that, we prove that B′

discovers M ′ isomorphically. We use two lemmas to prove that a directly-follows com-
plete log in each step always only allows to 1) pick one specific process tree operator,
and 2) split the log in one particular way so that M ′ is inevitably rediscovered.

Lemma 11. Let M = ⊕(M1, . . . ,Mn) be a reduced model that adheres to the model
restrictions and let L be a log such that L 4df M . Then selectB′ selects ⊕.
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The proof strategy is to prove for all operators that given a directly-follows complete log
L of some process tree ⊕(. . .), ⊕ will be the first operator for which G(L) satisfies all
cut criteria according to the order×,→, ∧,�, which is the order in which the operators
are checked in selectB′ . For instance, for ×, G(L) cannot be connected and therefore
will B will select ×. For more details, see [18].

Lemma 12. For each reduced process tree M = a (with a in Σ) or M = τ , and a log
L that fits and is directly-follows complete to M , it holds that M = B′(L).

This lemma is proven by a case distinction on M being either τ or a ∈ Σ, and code
inspection of selectB′ . For more details, see [18].

Lemma 13. Let M = ⊕(M1, . . . ,Mn) be a reduced process tree adhering to the
model restrictions, and let L be a log such that L ⊆ L(M)∧L 4df M . Let {(⊕, ((L1, 0),
. . . , (Ln, 0)))} be the result of selectB′ . Then ∀i : Li ⊆ L(Mi) ∧ Li 4df Mi.

The proof strategy is to show for each operator ⊕, that the cut Σ1 . . . Σn that selectB′

chooses is the correct activity division (∀i : Σi = Σ(Mi) = Σ(Li)). Using that
division, we prove that the SPLIT function returns sublogs L1 . . . Ln that are valid for
their submodels (∀i : Li ⊆ L(Mi)). We then show that each sublog produced by SPLIT

produces a log that is directly-follows complete w.r.t. its submodel (∀i : Li 4df Mi). See
[18] for details.

Using these lemmas, we prove language-rediscoverability.

Theorem 14. If the model restrictions hold for a process tree M , then B′ language-
rediscovers M : L(M) = L(B′(L)) for any log L such that L ⊆ L(M) ∧ L 4df M .

We prove this theorem by showing that a reduced version M ′ of M is isomorphic to the
model returned by B′, which we prove by induction on model sizes. Lemma 12 proves
isomorphism of the base cases. In the induction step, Lemma 11 ensures that B′(L)
has the same root operator as M , and Lemma 13 ensures that the subtrees of M ′ are
isomorphically rediscovered as subtrees of B′(L). For a detailed proof see [18].

Corollary 15. The process tree reduction rules given in Property 10 yield a language-
unique normal form.

Take a model M that adheres to the model restrictions. Let L ⊆ L(M) ∧ L 4df M
and M ′ = B′(L). Let M ′′ be another model adhering to the model restrictions and
fitting L. As proven in Lemma 16 in [18], the cuts the algorithm took are mutually
exclusive. That means that at each position in the tree, only two options exist that lead
to fitness: either the operator ⊕ ∈ {×,→,∧,�} chosen by B′, or a flower model.
By Theorem 14, B′(L) never chose the flower model. Therefore, B′(L) returns the
most-precise fitting process tree adhering to the model restrictions. According to the
definitions in [10], M ′ is a model of perfect simplicity and generalisation: M ′ contains
no duplicate activities (simplicity) and any trace that can be produced by M in the
future can also be produced by M ′ (generalisation). By Corollary 15 and construction
of Property 10, it is the smallest process tree model having the same language as well.
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6.5 Tool Support

We implemented a prototype of the B′ algorithm as the InductiveMiner plugin of
the ProM framework [12], see http://www.promtools.org/prom6/. Here, we
sketch its run time complexity and illustrate it with a mined log.

Run Time Complexity. We sketch how we implemented B′ as a polynomial algorithm.
Given a log L, B′ returns a tree in which each activity occurs once, each call of B′

returns one tree, and B′ recurses on each node once, so the number of recursions is
O(|Σ(L)|). In each recursion, B′ traverses the log and searches for a graph cut. In
Section 6.2, we sketched how directly-follows graph cuts can be found using stand-
ard (strongly) connected components computations. The exclusive choice, parallel and
loop cuts were translated to finding connected components, the sequence cut to find-
ing strongly connected components. For these common graph problems, polynomial
algorithms exist. B′ is implemented as a polynomial algorithm.

Illustrative Result. To illustrate our prototype, we fed it a log, obtained from [2, page
195]: L = {〈a, c, d, e, h〉, 〈a, b, d, e, g〉, 〈a, d, c, e, h〉, 〈a, b, d, e, h〉, 〈a, c, d, e, g〉,
〈a, d, c, e, g〉, 〈a, b, d, e, h〉, 〈a, c, d, e, f, d, b, e, h〉, 〈a, d, b, e, g〉, 〈a, c, d, e, f, b, d, e, h〉,
〈a, c, d, e, f, b, d, e, g〉, 〈a, c, d, e, f, d, b, e, g〉, 〈a, d, c, e, f, c, d, e, h〉,
〈a, d, c, e, f, d, b, e, h〉, 〈a, d, c, e, f, b, d, e, g〉, 〈a, c, d, e, f, b, d, e, f, d, b, e, g〉,
〈a, d, c, e, f, d, b, e, g〉, 〈a, d, c, e, f, b, d, e, f, b, d, e, g〉, 〈a, d, c, e, f, d, b, e, f, b, d, e, h〉,
〈a, d, b, e, f, b, d, e, f, d, b, e, g〉, 〈a, d, c, e, f, d, b, e, f, c, d, e, f, d, b, e, g〉}. The result
of our implementation is M ′ = →(a,�(→(∧(×(b, c), d), e), f),×(h, g)). A manual
inspection reveals that this model indeed fits the log.

Take an arbitrary model M that could have produced L such that L is directly-follows
complete w.r.t. M . Then by Theorem 14, L(M) = L(M ′).

7 Conclusion

Existing process discovery techniques cannot guarantee soundness, fitness, rediscover-
ability and finite run time at the same time. We presented a process discovery framework
B and proved that B produces a set of sound, fitting models in finite time. We described
the conditions on the process tree operators under which the framework achieves this.
The process tree operators×,→, ∧ and� satisfy these conditions. However, the frame-
work is extensible and could be applied to other operators, provided these satisfy the
conditions. Another way of positioning our work is that our approach is able to discover
some τ transitions in models for which the α-algorithm fails.

To make the framework even more extensible, it uses a to-be-given preference func-
tion select that selects preferred log divisions. Soundness, fitness and framework ter-
mination are guaranteed for any select adhering to B. We showed that if the model
underlying the log is a process tree, then B can isomorphically-rediscover the model.

To illustrate B, we introduced an algorithm B′ that uses B and returns a single
process tree. B′ works by dividing the activities in the log into sets, after which it
splits the log over those sets. We proved that selectB′ adheres to B, which guarantees
us soundness, fitness and framework termination for any input log. We proved that if

http://www.promtools.org/prom6/
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the model underlying the log is representable as a process tree that has no duplicate
activities, contains no silent activities and where all loop bodies contain no activity that
is both a start and end activity of that loop body, then B′ language-rediscovers this
model. The only requirement on the log is that it is directly-follows complete w.r.t. the
model underlying it. We argued that B′ returns the smallest, most-precise, most-general
model adhering to the model restrictions, and runs in a time polynomial to the number
of activities and the size of the log.

Future Work. It might be possible to drop the model restriction 2 of Section 6.4, which
requires that the the sets of start and end activities of the leftmost branch of a loop
operator must be disjoint, when length-two-loops are taken into account and a stronger
completeness requirement is put on the log. Moreover, using another strengthened com-
pleteness assumption on the log, the no-τ restriction might be unnecessary. We plan on
performing an empirical study to compare our B′ algorithm to existing techniques.
Noise, behaviour in the log that is not in the underlying model, could be handled by
filtering the directly-follows relation, in a way comparable to the Heuristics miner [24],
before constructing the directly-follows graph.
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Abstract. In this paper we tackle the problem of verifying whether a labeled
partial order (LPO) is executable in a Petri net. In contrast to sequentially ordered
runs an LPO includes both, information about dependencies and independencies
of events. Consequently an LPO allows a precise and intuitive specification of the
behavior of a concurrent or distributed system. In this paper we consider Petri nets
with arc weights, namely marked place/transition-nets (p/t-nets). Accordingly the
question is whether a given LPO is an execution of a given p/t-net.

Different approaches exist to define the partial language (i.e. the set of execu-
tions) of a p/t-net. Each definition yields a different verification algorithm, but in
terms of runtime all these algorithms perform quite poorly for most examples. In
this paper a new compact characterization of the partial language of a p/t-net will
be introduced, optimized with respect to the verification problem. The goal is to
develop an algorithm to efficiently decide the verification problem.

1 Introduction

Specifications of concurrent or distributed systems are often formulated in terms of sce-
narios [31, 10, 35, 20]. A scenario can be represented by a labeled partial order (LPO),
i.e. a partially ordered set of events. In many cases it is part of a system’s specification
that given LPOs should or should not be executable by the system. P/t-nets [30, 32],
i.e. Petri nets with arc weights, are well suited for modelling concurrent or distributed
systems and have a huge range of theoretical and practical applications [29, 2, 13, 11].
Thus, it is a natural question whether an LPO is an executions of a p/t-net. We refer
to this question as the verification problem. Deciding the verification problem can help
to check conformance of a system, uncover system faults or requirements, validate the
system and evaluate design alternatives.

The set of all executable LPOs of a p/t-net is called its partial language. To de-
fine this language there exist several equivalent characterisations [18, 17, 19, 21, 28].
Each characterisation yields a different algorithm deciding the verification problem.
The characterisations of the partial language are as follows:

– The set of runs. A run is an LPO which includes the transitive order relation be-
tween events of an occurrence net of the given p/t-net [18, 17].

– The set of executions. An LPO is an execution if each cut (i.e. a maximal set of
unordered events) of the LPO is enabled after the occurrence of its prefix in the
given p/t-net [19].

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 330–348, 2013.
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– The set of LPOs for which valid tokenflows describing the flow of tokens between
events exist [21].

– The set of LPOs for which valid interlaced tokenflows describing a quadruple of
flows of tokens between events on the skeleton arcs of the LPO exist [28].

The set of runs coincides with the set of executions of a p/t-net [23, 34]. The set of runs
can be described using the definition of valid tokenflows [21]. A tokenflow is a function
assigning non-negative integers to the set of arcs of an LPO. Each tokenflow describes
a distribution of tokens with respect to a place of the p/t-net. Given two events a and
b and a fixed place p, the value of a tokenflow function x on the arc (a, b) describes
that the occurrence of a produces x(a, b) tokens in place p that will be consumed by
the occurrence of b. A tokenflow is valid if it respects the firing rule of the p/t-net in
a sense that each event receives enough tokens to occur and no event has to pass more
tokens then its occurrence produces. An LPO is an execution if there is a valid tokenflow
for each place of a p/t-net. The notion of interlaced tokenflows and its equivalence to
normal tokenflows is presented in [28].

The different characterisations of the partial language of the p/t-net lead to different
algorithms solving the verification problem. Unfortunately, each known verification al-
gorithm has big drawbacks dependent on the structure of the given LPO or the given
p/t-net. The main ideas of the corresponding verification algorithms are as follows:

Algorithms using the notion of runs decide the verification problem by considering
the set of occurrence nets of the given p/t-net. They check if the given LPO includes the
partial order of events for one of the occurrence nets. The set of all occurrence nets can
be calculated using so called unfolding algorithms [27, 15, 8]. Even if the number of
occurrence nets is infinite these algorithms are able to calculate a set of occurrence nets
such that the number of events of each net is equal to the number of events of the given
LPO. The main problem is that the number of occurrence nets may be exponential
in the number of events such that the runtime complexity of such an algorithm is in
exponential time.

Algorithms using the notion of executions decide the verification problem by check-
ing if each cut of the given LPO is enabled after the occurrence of its prefix. This time
the number of cuts can be exponential in the number of events such that the runtime
complexity of such an algorithm is in exponential time. However, the number of cuts is
small if the given LPO is dense. In such a case the LPO describes a lot of dependen-
cies between events and the verification algorithm is applicable. Given a thin LPO or
an LPO describing reasonable concurrency between events this verification algorithm
is insufficient.

Algorithms using the notion of valid tokenflows are by now the most elegant way
to decide the verification problem. As stated above a tokenflow is a function describ-
ing the distribution of tokens between events with respect to a place. This distribution
respects the transitive ordering of event in the LPO, such that a valid tokenflow can be
constructed if and only if the LPO is a run of the p/t-net. The first implementation of
a verification algorithm using the notion of valid tokenflows is given in [3, 4]. Each
construction of a valid tokenflow is done by constructing maximal flows [16, 1] in so
called associated flow networks. The runtime of this algorithm is in polynomial time.
The main disadvantage of this algorithms is that its runtime highly depends on the size
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of the order relation of the LPO. If the LPO describes a lot of dependencies the verifica-
tion algorithm is hardly applicable. A second approach to solve the verification problem
using valid tokenflows is given in [24]. This approach is able to reduce the runtime by
reducing the number of maximal flow problems to be solved. Still, its runtime is poor
if the LPO is dense.

The most recent characterisation of the partial language of a given p/t-net, so called
valid interlaced tokenflows, was given in [28]. An interlaced tokenflow is a quadruple
of special tokenflows defined on every skeleton arc of the given LPO. The interplay
between the components of a valid interlaced tokenflow ensures that they correspond
to a valid tokenflow defined on every arc of the given LPO. The main advantage is
that the number of skeleton arcs is the smallest representation of the number of all
dependencies specified by the LPO. By now it is not known if the resulting verification
algorithm is faster than the algorithm described in [24] since both algorithms are not
yet implemented.

In this paper we introduce compact tokenflows as a new characterisation of the par-
tial language of a p/t-net. Compact tokenflows are optimized to efficiently solve the
verification problem. The main ideas leading to the concept of compact tokenflows are
as follows:

– Compact tokenflows are based on normal tokenflows. A Tokenflow is defined on
the arcs of an LPO and the number of arcs does not increase exponentially with
the number of events. This is a necessary condition to receive an algorithm having
polynomial worst case runtime complexity.

– LPOs include the complete transitive relation between events. In contrast to token-
flows a compact tokenflow is defined on the skeleton of an LPO. The skeleton is
the smallest representation of the transitive relation.

– In contrast to tokenflows a compact tokenflow abstracts from the history of tokens.
Since in a compact tokenflow events are able to pass received tokens to later events,
a compact tokenflow describes the sum of tokens produced by sets of events and
not the number of tokens produced by each event.

– An interlaced tokenflow respects the history of each tokens by considering a four
component flow of tokens. Using compact tokenflows only a single tokenflow is
needed.

We will show that compact tokenflows can be constructed adopting the ideas presented
in [24]. We will be able to introduce a new verification algorithm having an efficient
runtime independent from the structure of the given LPO and p/t-net. This algorithm
will be much faster than any known verification algorithm.

The paper is organized as follows. In Section 2 we describe LPOs, p/t-nets and their
partial languages. In Section 3 we recapitulate the concepts of tokenflows and intro-
duce the new concept of compact tokenflows. We prove that compact tokenflows are
equivalent to normal tokenflows. In section 4 we describe the resulting verification al-
gorithm. In Section 5 we present runtime experiments of the new verification algorithm
comparing it to all alternative verification algorithms. Finally, Section 6 concludes the
paper.
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2 Labeled Partial Orders, p/t-Nets and Partial Languages

In this paper the following notations will be used. N denotes the non-negative integers.
Given a finite set A, 2A denotes the power set of A. NA denotes the set of multisets
over A. For m ∈ NA we write m =

∑
a∈A m(a) · a.

Definition 1. A labeled partial order (LPO) is a triple lpo = (V,<, l), where V is a
finite number of events, < ⊆ V × V is a transitive and irreflexive relation over V and
l : V → T is a labeling function assigning a label t ∈ T to each event.

Given an LPO lpo = (V,<, l) and an event e ∈ V , the preset of e is denoted by •e =
{v ∈ V |v < e}. Given a set of events E, the preset of E is denote by •E =

⋃
v∈E •v.

A prefix is a set of events E such that E = (E ∪ •E) holds. The maximal set of events
having an empty preset is denoted by min(V ). A set of events C is called a co-set if
(v, v′ ∈ C ⇒ v �< v′) holds. A cut is a co-set which is not included in any other co-set.

The transitive closure of a relation → is denoted by →∗, the transitive reduction of
a relation → is denoted by →�. Given a finite relation the transitive reduction is the
smallest relation such that its transitive closure equals the primary LPO. Given an LPO
lpo = (V,<, l) the transitive reduction <� is called the skeleton of lpo. The graph
(V,<�) forms a Hasse diagram and we call the labeled Hasse diagram (V,<�, l) the
compact LPO of lpo.

In this paper concurrent or distributed system will be given by p/t-nets, i.e. Petri nets
with arc weights.

Definition 2. A marked place/transition-net (p/t-net) is a tuple N = (P, T,W,m0),
where P and T are finite sets of places and transitions fulfilling P ∩ T = ∅, W :
(P × T )∪ (T × P )→ N is a multiset of edges and m0 : P → N is an initial marking.

Given a p/t-net N = (P, T,W,m0), a transition t ∈ T is enabled in N iff ∀ p ∈
P : W (p, t) ≤ m0(p) holds. If a transition is enabled it may fire and change the
given marking m0 to a new marking m which is for each p ∈ P given by m(p) =
m0(p) + W (t, p) − W (p, t). A multiset of transitions τ ∈ NT (called a step of N ) is
enable in N iff ∀ p ∈ P :

∑
t∈τ τ(t) · W (p, t) ≤ m0(p) holds. If a step is enabled

it may fire and change the given marking m0 to a new marking m which is for each
p ∈ P given by m(p) = m0(p) +

∑
t∈τ τ(t) · (W (t, p)−W (p, t)).

Given a p/t-net a sequential run is a sequence of consecutively enabled and fired
transitions or transition steps. Instead of the set of sequential runs we consider the partial
language of a p/t-net. In contrast to sequentially ordered runs an LPO includes arbitrary
dependencies and independencies between events.

Definition 3. Given a p/t-net N = (P, T,W,m0) and an LPO lpo = (V,<, l) with
l(V ) ⊆ T . The lpo is an execution of N iff for each p ∈ P and each cut C of lpo :
m0(p) +

∑
e∈•C(W (l(e), p)−W (p, l(e))) ≥

∑
e∈C W (p, l(e)) holds. We denote the

set of all executions of N by L(N), the so called partial language of N .

Following Definition 3, we say that an LPO is executable with respect to a place p, if
m0(p) +

∑
e∈•C(W (l(e), p)−W (p, l(e))) ≥

∑
e∈C W (p, l(e)) holds.
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Fig. 1. A p/t-net, an executable LPO and its compact LPO

As stated in the introduction there are other equivalent characterizations of the par-
tial language of a p/t-net. Any characterization leads to the same verification problem:
Given a p/t-net N and an LPO lpo, decide if lpo ∈ L(N) holds.

Figure 1 shows a p/t-net having only one place which is marked by two tokens in the
initial marking, three transitions A,B,C as well as several weighted arcs. Arcs without
attached numbers have the arc weight one. The LPO in the middle consists of eight
events labeled with the transitions of the p/t-net. This LPO is an execution of the p/t-net
according to Definition 3. The right side of Figure 1 depicts the corresponding compact
LPO.

3 Tokenflows

The definition of valid tokenflows (see [21]) was originally invented to more easily
prove the equivalence between runs and executions of a p/t-net. The original proof is
quite complex and was introduced in [23, 34]. In [21] additionally an algorithm deciding
the verification problem in polynomial time was obtained which was first implemented
in [4] yielding a fast verification algorithm in case of a thin LPOs. [24] describes a
second algorithm having |V |-times faster runtime (V denotes the number of events
of the given LPO). This was the first step in the direction of an efficient verification
algorithm, but still this algorithm performs poorly in case of a dense LPOs. After this
tokenflows have been used for the synthesis of p/t-nets from LPOs [5, 6], synthesis
from infinite sets of LPOs [7, 33, 28], for the definition of the partial language of more
general classes of Petri nets [25], as well as for the unfolding of the partial language
of p/t-nets [9, 8]. All in all the verification problem took a back seat. The idea of this
paper is to find a characterisation of the partial language based on tokenflows which is
optimized for the verification problem.

First, we will recall the concept of tokenflows invented in [21]. Given an LPO lpo =
(V,<, l) and a p/t-net N = (P, T,W,m0) such that T ⊆ l(V ) holds, a tokenflow x
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is a function assigning a non-negative integer to each event and each arc of the LPO.
Given an arc (v, v′) of lpo the value x(v, v′) describes the number of tokens produced
by the occurrence of v which are consumed by the occurrence of v′. Given an event v,
the value x(v) describes the number of tokens consumed by v from the initial marking.
A tokenflow is valid with respect to a place p ∈ P , if it respects the occurrence rule for
each event v of lpo in a sense that: the sum of ingoing tokens of v equals W (p, l(v)),
the sum of outgoing tokens of v is less than W (l(v), p) and the sum of tokens consumed
from the initial marking by all events does not exceed the initial marking m0(p). Since
such a valid distribution of tokens along the arcs of an LPO respects the described
dependencies, a valid tokenflow coincides with a run of a p/t-nets considering p. If
there exists a valid tokenflow for each place p of N a corresponding occurrence net of
N can be found and vice versa.

Definition 4. Given a p/t-net N = (P, T,W,m0) and an LPO lpo = (V,<, l), such
that l(V ) ⊆ T holds. A tokenflow is a function x : (< ∪ V ) → N. Given an event
v ∈ V , by in(v) = x(v) +

∑
v′<v x(v′, v) we denote the inflow of v and by out(v) =∑

v<v′ x(v, v′) we denote the outflow of v.

Given a place p ∈ P a tokenflow is valid with respect to p iff the following conditions
hold.

(I) ∀v ∈ V : in(v) = W (p, l(v)),
(II) ∀v ∈ V : out(v) ≤ W (l(v), p),
(III)

∑
v∈E x(v) ≤ m0(p).

lpo is called a valid LPO of N iff for every p ∈ P there is a valid tokenflow.

The main result of [21] is that the partial language of a p/t-net can be characterised
using valid tokenflows.

Theorem 1. ([21]) Given a p/t-net N . The partial language L(N) coincides with the
set of valid LPOs of N .

Theorem 1 leads to the verification algorithms given in [4] and [24]. Given a fixed
place both algorithms construct a valid tokenflow by constructing maximal flows in
associated flow networks derived from the LPO and the p/t-net. The big disadvantage
of both algorithms is that the size of the corresponding flow networks is directly related
to the number of arcs of the LPO. Although the runtime complexity of both algorithms
is in polynomial time, both algorithms perform worse than an algorithm checking if
each cut of an LPO is enabled after the occurrence of its prefix if the given LPO is
dense.

In the following we want to introduce a new characterisation of the partial language
of a p/t-net yielding an efficient verification algorithm. A compact tokenflow is defined
on the skeleton of an LPO, i.e. its corresponding compact LPO. A (normal) tokenflow
describes the complete distribution of tokens between events using the given transitive
order relation of the LPO. In a compact tokenflow each event v can receive more tokens
than its transition l(v) consumes and v is allowed to pass those additional tokens on
to later events. The main idea is that losing the set of transitive arcs is fine since every
transitive arc can be represented by a path of skeleton arcs.
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Definition 5. Given a p/t-net N = (P, T,W,m0), an LPO lpo = (V,<, l) such that
l(V ) ⊆ T holds and the skeleton " of lpo. A compact tokenflow is a function x :
(" ∪ V ) → N. Given an event v ∈ V , by in�(v) = x(v) +

∑
v′�v x(v′, v) we denote

the inflow of v and by out�(v) =
∑

v�v′ x(v, v′) we denote the outflow of v.

Given a place p ∈ P a compact tokenflow is valid with respect to p iff the following
conditions hold.

(i) ∀v ∈ V : in�(v) ≥ W (p, l(v)),
(ii) ∀v ∈ V : out�(v) ≤ in�(v) −W (p, l(v)) + W (l(v), p),
(iii)

∑
v∈E x(v) ≤ m0(p).

lpo is called a valid compact LPO of N iff for every p ∈ P there is a valid compact
tokenflow.

Please note that the definition of a compact tokenflow can be generalised to using not
only the skeleton arcs of an LPO, but using any subset of the partial order relation
including the skeleton. Only the skeleton arcs are needed, but if an LPO is given by
some acyclic graph all definitions and algorithms shown in this paper may be directly
applied to this graph instead of its transitive reduction.

The left side of Figure 2 shows a valid tokenflow for the place and the p/t-net shown
in Figure 1. Transitive arcs are not depicted if their value is equal to zero. The right side
shows a valid compact tokenflow with respect to the same place.

Fig. 2. A valid tokenflow and a valid compact tokenflow of the p/t-net shown in Figure 1

In the next step we will prove that the set of valid compact LPOs of a p/t-net N coin-
cides with its partial language L(N). Since the compact representation abstracts from
the concrete distribution of tokens, in the sense that the history of a token is lost while
it is passed on by events, this proof cannot be done similarly to the proof concerning
valid LPOs given in [21]. We will show that for every valid tokenflow in an LPO there
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is a valid compact tokenflow. Given a place p and a valid tokenflow we will fold this
tokenflow into a compact tokenflow. We will show that every possible folding yields a
valid compact tokenflow. After that, given an LPO and a valid compact tokenflow for
every place of N , we will proof that this LPO is an execution of N (in the sense of
Definition 3).

Definition 6. Given an LPO lpo = (V,<, l), the skeleton " of lpo and x : (< ∪ V )→
N a tokenflow. For each arc (v, v′) ∈ < there exists a path of skeleton arcs from v to
v′. Consequently a function ρ : < → 2� can be found which maps every arc (v, v′) of
lpo to a path from v to v′ in ". Given a fixed function ρ for every skeleton arc (e, e′) we
define (e, e′)∗ = {(v, v′) ∈ < |(e, e′) ∈ ρ(v, v′)}. Depending on ρ we are now able to
define the associated compact tokenflow x� : (" ∪ V )→ N.

x�(a) =

{∑
(v,v′)∈(e,e′)∗ x(v, v′), if a = (e, e′) ∈ ",

x(e), if a = e ∈ V.

The middle part of Figure 2 depicts a possible function ρ mapping every transitive arcs
to a path of skeleton arcs. There may be different choices for ρ since often for some
transitive arcs it is possible to choose between different paths of skeleton arcs using
concurrent parts of the LPO. Given a skeleton arc, its compact tokenflow is the sum of
tokenflow of all attached transitive arcs.

Theorem 2. Given a p/t-net N = (P, T,W,m0), an LPO lpo = (V,<, l), such that
l(V ) ⊆ T holds, a place p ∈ P and a tokenflow x which is valid with respect to p.
Every possible associated compact tokenflow x� is valid with respect to p.

Proof. Given a fixed event v ∈ V , the image set ρ(<) contains four different kinds of
paths. Paths leading to v, paths beginning at v, paths including v and paths not including
v. The inflow of v with respect to x� is given by the sum of values of paths leading to v,
paths including v and the value x(v). By δ(v) we denote the sum of tokenflow reaching
v via paths including v whereby in�(v) = in(v) + δ(v) holds. The outflow of v with
respect to x� is given by the sum of values of paths starting at v and paths including v
whereby out�(v) = out(v) + δ(v) holds. The conditions (i), (ii) and (iii) of Definition
5 hold as follows:

in�(v) = in(v) + δ(v)

≥ in(v)

(I)
= W (p, l(v)),

out�(v) = out(v) + δ(v)

(I)
= out(v) + δ(v) + in(v)−W (p, l(v))

= out(v) + in�(v)−W (p, l(v))

(II)

≤ W (l(v), p) + in�(v)−W (p, l(v)),
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∑
v∈V x�(v) =

∑
v∈V x(v)

(III)

≤ m0(p).

Theorem 2 states that each valid tokenflow can be folded into a valid compact tokenflow.
In a next step we need to prove the opposite direction. Since it is not clear in which way
a compact tokenflow needs to be unfolded to get a valid tokenflow, we prove that if
there exists a compact tokenflow which is valid with respect to a place p the LPO is an
execution with respect to p.

Definition 7. Given an LPO lpo = (V,<, l), the skeleton " of lpo and a compact
tokenflow x�. Given a set of events E ⊆ V , by E� = " ∩ ((V \E)× E) we denote the
set of skeleton arcs leading to E and by E� = " ∩ (E × (V \E)) we denote the set of
skeleton arcs leaving E. By IN(E) =

∑
(e,e′)∈E� x�(e, e′) +

∑
e∈E x�(e) we denote

the inflow of E and by OUT (E) =
∑

(e,e′)∈E� x�(e, e′) +
∑

e∈V \E x�(e) we denote
the outflow of E.

Lemma 1. Given a p/t-net N = (P, T,W,m0), an LPO lpo = (V,<, l) with l(V ) ⊆
T , a place p ∈ P , a compact tokenflow x� which is valid with respect to p and a prefix
E ⊆ V of lpo. The following inequation holds:

OUT (E) ≤ m0(p) +
∑

v∈E(W (l(v), p)−W (p, l(v))).

Proof. We will prove this by induction. Let E = ∅ be the empty prefix.

OUT (∅) =
∑

v∈V x�(v)

(iii)

≤ m0(p)

= m0(p) +
∑

v∈∅(W (l(v), p)−W (p, l(v))).

Let E′ be a prefix of lpo and let OUT (E′) ≤ m0(p)+
∑

v∈E′(W (l(v), p)−W (p, l(v)))
hold. Given a event e ∈ V \E′ which is minimal in V \E′. We define a new prefix
E = (E′ ∪ e).

OUT (E) = OUT (E′)− in�(e) + out�(e)

(ii)

≤ OUT (E′)− in�(e) + in�(e)−W (p, l(e)) + W (l(e), p)

≤ m0(p)+
∑

v∈E′(W (l(v), p)−W (p, l(v)))−W (p, l(e))+W (l(e), p)

= m0(p)+
∑

v∈E(W (l(v), p)−W (p, l(v)))

Every prefix E of lpo can be constructed by consecutively appending events to the
empty prefix (each event minimal in the set of not added events).

The next lemma states a relation between the number of tokens flowing into a cut C of
events of an LPO and the number of tokens leaving the prefix given by •C.
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Lemma 2. Given an LPO lpo = (V,<, l), the skeleton " of lpo and a compact token-
flow x�. For each cut C of lpo the following inequation holds: IN(C) ≤ OUT (•C).

Proof. Every skeleton arc of lpo leading to C starts at an event in •C. Since C is a
cut every skeleton arc leaving •C leads to C. Thereby intuitively both values should be
equal. We get an inequation, because of the values of the tokenflow defined on events.

IN(C) =
∑

(v,v′)∈C� x�(v, v′) +
∑

v∈C x�(v)

=
∑

(v,v′)∈•C� x�(v, v′) +
∑

v∈C x�(v)

≤
∑

(v,v′)∈•C� x�(v, v′) +
∑

v∈{V \•C} x�(v)

= OUT (•C).

At this point, with the help of Lemma 1 and 2, we are able to prove the opposite direc-
tion to Theorem 2.

Theorem 3. Given a p/t-net N = (P, T,W,m0), an LPO lpo = (V,<, l), such that
l(V ) ⊆ T holds, a place p ∈ P and a compact tokenflow x� valid with respect to p. lpo
is executable with respect to p.

Proof. For each cut C of lpo the following inequation hold:∑
v∈C W (p, l(v))

(i)

≤
∑

v∈C in�(v)

(Lemma 1)
≤ OUT (•C)

(Lemma 2)
≤ m0(p) +

∑
v∈•C(W (l(v), p)−W (p, l(v))).

We conclude this section with its main theorem. It states that the set of valid compact
LPOs coincide with the partial language of a p/t-net. This theorem follows directly from
Theorem 2 and Theorem 3.

Theorem 4. Given a p/t-net N , the partial language L(N) coincides with the set of
valid compact LPOs of N .

We have shown that compact tokenflows are equivalent to all other characterisations
of the partial language of a p/t-net. In the next section we will present an efficient
way to solve the verification problem using compact tokenflows. This algorithm will
construct a valid compact tokenflow for each place of the p/t-net if such a tokenflow
exists. This algorithm will only need to regard skeleton arcs, hence it is much faster
then the algorithms presented in [4] and [24]. In contrast to normal tokenflows the new
definition abstracts from the concrete distribution of tokens between events. Compared
to interlaced tokenflows [28] only a single tokenflow is needed for every arc of the LPO.
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4 Verification Algorithm

In this section we provide an algorithm solving the verification problem using compact
tokenflows. Given a p/t-net N = (P, T,W,m0) and an LPO lpo = (V,<, l) we will
construct a flow network for every place of N such that constructing a maximal flow in
each network will decide the verification problem.

A flow network (see for example [1]) is a directed graph with two special nodes. A
source, the only node having no ingoing arcs, and a sink, the only node having no outgo-
ing arcs. Each arc has a capacity. A flow is a function from the arcs to the non-negative
integers assigning a value of flow to each arc. This flow function needs to respect the
capacity of each arc and the so called flow conservation. The flow conservation says
that the sum of flow reaching a node is equal to the sum of flow leaving a node for
every inner node of the flow network. Thus, flow is only generated at the source and
flows along different paths till it reaches the sink. The value of a flow function in a flow
network is the sum of flow reaching the sink. The maximal flow problem is to find a
flow function having a maximal value.

For a given place p ∈ P we construct the associated flow network. Just like a to-
kenflow in an LPO a flow in the associated flow network describes the propagation of
tokens between events. Each flow in the associated flow network coincides with a com-
pact tokenflow. For each event in lpo we insert two nodes into the flow network. The
first node is called the top-node, the second is called the bottom-node. A pair of such
nodes represent an event v ∈ V . The flow at the top-node of v describes the value of
tokenflow received by v and this value has to be greater than W (p, l(v)). Therefore, if
flow arrives at the top-node of v a value of W (p, l(v)) is routed to the sink representing
tokens consumed by the occurrence of l(v). Additional flow can be distributed further
flowing from the top-node of v to its bottom-node. The bottom-node of v distributes
flow. The maximal number of flow this node can pass on is the number of flow received
from its top-node plus W (l(v), p). Therefore, flow in a value of W (l(v), p) is routed
from the source to the bottom-node of v representing tokens produced by the occur-
rence of l(v). Additionally, nodes are connected according to the skeleton arcs of the
lpo. For each skeleton arc (v, v′) we add a corresponding arc in the associated flow net-
work leading from the bottom-node of v to the top-node of v′. The value of a compact
tokenflow on each event is considered by an additional node of the flow network. It
can be seen as the bottom-node related to the initial marking. First, we add an arc from
the source to this bottom-node having the capacity m0(p). Second, we add arcs from
this bottom-node to all top-nodes associated to minimal events of lpo. Flow leaving this
bottom-node is able to reach any top-node of the flow network via paths of skeleton
arcs. This flow represents tokens consumed from the initial marking.

Figure 3 depicts the associated flow network of the LPO and the p/t-net show in
Figure 1. Pairs of top- and bottom-nodes are drawn in rounded boxes labeled by the
corresponding events. Inner arcs have no number attached, their capacity is equal to an
upper bound for the maximal value of a possible flow functions. Such an upper bound
will be defined in the following definition.



Faster Verification of Partially Ordered Runs in Petri Nets Using Compact Tokenflows 341

Fig. 3. The associated flow network of the p/t-net and the LPO shown in Figure 1

Definition 8. Given a p/t-net N = (P, T,W,m0), an LPO lpo = (V,<, l) with l(V ) ⊆
T , the skeleton " of lpo and p ∈ P a place. Let Mp(lpo,N) =

∑
v∈V W (p, l(v))

denote the sum of tokens consumed by all events of lpo. The associated flow network
G = (K,F, c, q, s) is defined by:

K = {k0} ∪ {tv, bv|v ∈ V },

F = Fm ∪ Fv ∪ F� ∪ Fq ∪ F0 ∪ Fs with

Fm = {(k0, tv)| v ∈ min(V )} ,

Fv = {(tv, bv)| v ∈ V } ,

F� = {(bv, tv′)|(v, v′) ∈ "} ,

Fq = {(q, bv)|v ∈ V } ,

F0 = {(q, k0)},

Fs = {(tv, s)| v ∈ V }.
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c(k, k′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W (l(v), p), if k = q, k′ = bv,

m0(p), if (k, k′) = (q, k0),

W (p, l(v)), if k′ = s, k = tv

Mp(lpo,N), otherwise.

By construction flow on the set of arcs F� ∪ Fm directly corresponds to a valid token-
flow if the value of the flow function is Mp(lpo,N). In this case arcs leading to s are
saturated and each event satisfies condition (i). Since the outflow of events is given by
Fv∪Fq each event satisfied condition (ii). The outflow of k0 is restricted by the capacity
of F0 such that condition (iii) holds. On the other hand, if a valid compact tokenflow
exists it can be translated into a maximal flow function of the associated flow network.
This flow function is maximal, because it saturates all arcs leading to s and will have
the value Mp(lpo,N).

Constructing a maximal flow function in a flow network is the well known maximal
flow problem (see for example [1]). There exist various algorithms solving the maximal
flow problem in polynomial time. For the application of calculating the value of a ma-
ximal flow in an associated flow network we consider two of them, each having a good
average case complexity: the algorithm of Dinic [14] and a preflow push algorithm
[22, 26] using a so called gap heuristic. Given an LPO lpo = (V,<, l) and a associ-
ated flow network constructed from lpo the worst case complexity of the algorithm of
Dinic is in O(|V |2 |<|), the worst case complexity of the preflow push algorithm is in
O(|V |3). Both algorithms perform much better in most cases. All in all this leads to the
following verification algorithm using compact tokenflows.

Data: LPO lpo = (V,<, l), p/t-net N = (P, T,W,m0).
Result: Decides if lpo ∈ L(N) holds.

for each p ∈ P do
G ← associated compact flow network(p);
w ← value of maximal Flow(G);
if (w < Mp(lpo,N)) then

RETURN false;
end

end
RETURN true;

Algorithm 1. Verification algorithm using compact tokenflows

Remark, that using a preflow push algorithm the runtime of this verification algo-
rithm is in O(|P | · |V |3) .

5 Experimental Results

In this section we will discuss some experimental results. To do so we implemented sev-
eral existing and new verification algorithms into the tool VipTool [12]. We did exten-
sive runtime tests and for this paper we show the most interesting results considering a
selection of the implemented verification algorithms. For the new tokenflow algorithms
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we show results using both mentioned maximal flow algorithms, the algorithm of Dinic
and the preflow push algorithm. We selected the algorithms as follows:

– Algorithm I checks if the LPO is an execution by considering all cuts,
– Algorithm II constructs a tokenflow as implemented in [4],
– Algorithm III constructs a tokenflow as described in [24] using the algorithm of

Dinic,
– Algorithm IV constructs a tokenflow as described in [24] using the preflow push

algorithm,
– Algorithm V constructs a compact tokenflow using the algorithm of Dinic,
– Algorithm VI constructs a compact tokenflow using the preflow push algorithm.

The following two experiments were performed using a Dual Core Prozessor, 1.7 GHz
and 4GB RAM. In both experiments we consider the p/t-net shown in figure 4. It models
a simple workflow performed by a group of students working within a collaborative
learning environment. The p/t-nets structure is exemplary for simple workflows and we
omit a description of this special workflow in this paper.

Figure 5 depicts an LPO of the partial language of the p/t-net shown in Figure 4.
The LPO describes a cycle in the p/t-net by executing all the transitions once. In both
experiments we will repeat and compose copies of this cycle of events to bigger and
more complex LPOs. In the first experiment we will consider thin LPOs while in the
second we will consider dense LPOs.

Fig. 4. A p/t-net describing a workflow

Fig. 5. Skeleton of an LPO of the partial language of the p/t-net shown in Figure 4
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Experiment 1. We consider 5 LPOs lpo1, . . . ,lpo5 of the partial language of the p/t-
net of Figure 4. Each LPO is a composition of copies of the LPO shown in Figure 5.
The number of copies varies from 6 to 120. The resulting LPOs are connected as shown
in Figure 6, resulting in three parallel threads of events. We decide the verification
problems using the algorithms I to VI.

lpo1 lpo2 lpo3 lpo4 lpo5

number of copies 6 15 30 60 120

number of events 252 630 420 1260 5040

runtime in ms

Alg I (cuts) 480 15091 - - -

Alg II (tokenflows, [4]) 170 3002 25364 269862 -

Alg III (tokenflows, [24], Dinic) 3 15 55 250 1336

Alg IV (tokenflows, [24], preflow-push) 3 11 47 216 1130

Alg V (compact tokenflows, Dinic) 4 11 43 173 871

Alg VI (compact tokenflows, preflow-push) 3 12 36 148 699

Fig. 6. A composition of copies of the LPO shown in Figure 5 leading to a thin LPO

In Experiment 1 algorithm I performs quite poorly. Within 10 minutes this algorithm
only decides the first two of the given verification problems. The main reason for this
is the huge number of cuts existing in the specified LPOs. Algorithm II performs better
than algorithm I. As stated in [4] using tokenflows is reasonable if the LPO describes
some concurrent behaviour. Algorithm III, as described in [24], is |V |-times faster then
algorithm II. Algorithm II needs to construct a maximal flow for each place of the p/t-
net and each event of the LPO. Algorithm III and IV only construct one maximal flow
for each place. Algorithms V and VI use the new compact definition of tokenflows. As
shown in the previous sections compact tokenflows regard only skeleton arcs instead of
the transitive relation of the specified LPO. Experiment 1 contains a lot of concurrency,
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but even in this case the difference between the skeleton and the transitive relation
matters. Both algorithms V and VI perform much better than the algorithms III and IV.

To further investigate the difference between all considered algorithms we provide a
second experiment and increase the number of described dependencies between events
of the tested LPOs.

Fig. 7. A composition of copies of the LPO shown in Figure 5 leading to a dense LPO

Experiment 2. We consider 5 LPOs lpo1, . . . ,lpo5 of the partial language of the p/t-net
of Figure 4. Each LPO is a composition of copies of the LPO shown in Figure 5. The
number of copies varies from 6 to 120. The resulting LPOs are connected as shown in
Figure 7. We again decide the verification-problem using the algorithms I to VI.

lpo1 lpo2 lpo3 lpo4 lpo5

number of copies 6 15 30 60 120

number of events 252 630 420 1260 5040

runtime in ms

Alg I (cuts) 126 558 2424 12175 84605

Alg II (tokenflows, [4]) 194 3602 32806 334647 -

Alg III (tokenflows, [24], Dinic) 3 16 70 334 1955

Alg IV (tokenflows, [24], preflow-push) 3 14 65 342 1936

Alg V (compact tokenflows, Dinic) 4 11 42 170 881

Alg VI (compact tokenflows, preflow-push) 4 9 35 146 648

In Experiment 2 algorithm I preforms better then in Experiment 1. The number of
cuts is reduced and the algorithm is able to solve the first four tests within 10 minutes.
Nevertheless, its runtime is poor. This time algorithm II performs worse then algo-
rithm I. The number of transitive arcs to be considered is much higher than in Exper-
iment 1. The notion of tokenflows highly depend on the number of arcs of a given
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LPO. By the same reason Algorithm III and IV perform worse than in Experiment 1.
Again, the runtime of algorithm II is |V |-times the runtime of algorithm III. Algorithm
V and VI use the new compact definition of tokenflows. Their runtime almost equals
the runtime given in Experiment 1. The LPOs shown in Figure 6 and 7 have almost
an identical set of skeleton arcs. The runtime of algorithm V and VI is by this means
independent of the number of described transitive dependencies between events. Again,
both algorithms are by far the fastest algorithms in this experiment.

A comparison of algorithm III and IV shows that the choice of a the maximal flow al-
gorithm does not matter that much while using normal tokenflows. For both algorithms
the associated flow networks contain a big number of arcs, but only short paths form
source to sink. The maximal length of each path is 3 (see [24]). In that case choosing a
simple straightforward maximal flow algorithm like the algorithm of Dinic is sufficient.
The comparison of algorithm V and VI, both using the new compact tokenflows, shows
that the choice of the maximal flow algorithm matters. The structure of the associated
flow network matches the structure of the skeleton of the LPO. Dealing with such flow
networks using a preflow push algorithms with a gap-heuristic leads to the best runtime
results. Notice, that the gap heuristic leads to an algorithm that only calculates the value
of a maximal-flow and not the flow function itself. If a compact tokenflow should be
constructed the algorithm of Dinic is the best choice.

6 Conclusion

We have shown a new compact definition of the partial language of a p/t-net. The new
definition is based on the idea of tokenflows, since the number of arcs does not grow
exponentially in the number of given events of an LPO. This new definition is only
defined on the skeleton arcs of a given LPO such that it is not prone to the number of
described dependencies. Compact tokenflows abstracts from the distribution of token as
far as possible. In contrast to interlaced tokenflows only a single tokenflow is needed.
All this leads to a definition which is optimized for deciding the verification problem.
We have presented a corresponding verification algorithm and experimental results of
its implementation in VipTool. We compared these results to all existing reasonable
alternative algorithms.

An important topic of future research is to investigate if the new definition is appli-
cable in the field of synthesis of p/t-net or unfolding a given p/t-net to its set of runs.
In both fields algorithms using tokenflow lead to fast algorithms if the number of de-
pendencies of the occurring LPOs are small. We hope that the new compact definition
of tokenflows leads to similar results as for the verification problem, i.e. fast algorithms
not prone to the structure of the given LPO or p/t-net.
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Abstract. Modularity is a mandatory principle to apply Petri nets to
real world-sized systems. Modular extensions of Petri nets allow to cre-
ate complex models by combining smaller entities. They facilitate the
modeling and verification of large systems by applying a divide and con-
quer approach and promoting reuse. Modularity includes a wide range
of notions such as encapsulation, hierarchy and instantiation. Over the
years, Petri nets have been extended to include these mechanisms in
many different ways. The heterogeneity of such extensions and their
definitions makes it difficult to reason about their common features at a
general level. We propose in this article an approach to standardize the
semantics of modular Petri nets formalisms, with the objective of gather-
ing even the most complex modular features from the literature. This is
achieved with a new Petri nets formalism, called the LLAMAS Language
for Advanced Modular Algebraic Nets (LLAMAS). We focus principally
on the composition mechanism of LLAMAS, while introducing the rest of
the language with an example. Our approach has two positive outcomes.
First, the definition of new formalisms is facilitated, by providing com-
mon ground for the definition of their semantics. Second, it is possible
to reason at a general level on the most advanced verification techniques,
such as the recent advances in the domain of decision diagrams.

1 Introduction

Through the years the original version of Petri nets has been extended to inte-
grate a wide range of notions such as token colors, time and probabilities. In the
last decade an initiative has risen to tackle the diversity of the many Petri nets
variants, to improve the common understanding of the paradigm and to facilitate
the integration of Petri net tools. This initiative took the form of the interna-
tional ISO-IEC 15909 standard [12], which includes Petri Net Markup Language
(PNML) [8], a markup language meant to allow the communication between
Petri net tools. Currently, the development of the ISO-IEC 15909 standard is
focusing on extensions of the original Petri nets [7].

One of these extensions is modularity, that is, the ability to define complex
systems by assembling smaller entities. There are many Petri nets formalisms
that include the notion of modularity. This article proposes an approach to stan-
dardize the formal definitions of these formalisms. We describe this approach in
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Section 2, where we propose to define a new modular formalism called LLAMAS.
In Section 3 we study the state of the art of modular Petri nets formalisms. We
then get to the core of the article by introducing the principles of the LLAMAS
language. We describe first its composition mechanism in Section 4 and then the
rest of the language by means of an example in Section 5. Section 6 shows an
example of translation from Modular PNML to LLAMAS. We briefly mention
in Section 7 how to perform verification in LLAMAS using Decision Diagrams.
We conclude and mention ongoing and future work in Section 8.

2 Preliminaries

2.1 Motivation and Approach

There is a wide variety of mechanisms that have been defined to implement the
notion of modularity in Petri nets. Two main approaches have been followed
by their authors to define the semantics (i.e., the possible executions) of these
mechanisms. Many authors define a translation from their modular formalisms
to "flat" (non-modular) Petri nets. In some cases (e.g., [6]) this translation is
quite complex and difficult to understand. In some other cases (e.g., [1,16]),
such translation is simply not attempted as it would be too complex or yield
Petri nets with infinitely many places or transitions. The semantics of these
formalisms is usually defined as compositions of the transition relations of the
leaf (non-hierarchical) modules. This low-level operation is usually very complex.

The solution we propose follows the path of the ISO-IEC 15909 standard and
PNML. The approach of PNML consists in creating a language to serve as a
syntactic platform (i.e., a metamodel) for the definition of Petri nets variants.
To extend this syntactic standard to semantic considerations, we propose an
approach comprised of two artifacts. First, a metamodel to grasp the syntactic
concepts of modular formalisms (similarly to what is done in PNML). Second, a
modular formalism to serve as a semantic platform for existing and new modular
formalisms. We described a first proposition for the metamodel in [17]. Here,
we focus on the most complex part of the approach: the semantic platform.

2.2 Formal View of the Approach

Modular formalisms allow to create complex models by composing smaller enti-
ties. Let F be a modular formalism, and let MF be the set of modules that can
be expressed with this formalism and, for each module m ∈ MF , let SemF (m)
be its Labeled Transition System (LTS). We can define a composite module as
an expression m = ◦i(m1, . . . ,mn) where m1, . . . ,mn ∈ MF are modules and ◦i
is a composition function ◦i : ℘(MF )→ MF . Thus, a module is the composition
of modules, that in turn may be compositions of smaller modules, and so on, un-
til reaching the level of leaf modules, i.e., modules that cannot be decomposed
anymore. Let us note LMF ⊆ MF the set of all the leaf modules in F and
CompF = {o1, . . . , om} ⊆ (℘(MF )→ MF ) its set of composition operators.
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Let us go back to the two approaches we mentioned at the beginning of this
section. A syntactic definition of the semantics of F consists in defining the
semantics of the leaf modules and a function Flatten : CompF × ℘(MF ) →
LMF . This function takes a composite module and returns an equivalent leaf
module. With it, we can define the semantics of composite modules by defining
SemF (◦i(m1, . . . ,mn)) = SemF (flatten(◦i,m1, . . . ,mn)). While this approach
is commonly applied to usual fusions of places and transitions, it is not always
well suited to more complex cases. Indeed, as we mentioned previously, the
Flatten function can be extremely complex or sometimes give unwanted results
(e.g., infinite nets). Moreover, because the result of this function is a non-
modular model, the identity of the different modules is lost at runtime.

On the other hand, a semantic definition is based on an existing formalism
SP (Semantic Platform), that has its own composition mechanisms CompSP

and semantics SemSP . To create a semantic definition of a formalism F , one
must provide two functions, a function Trmod : LMF → MSP to translate the
leaf modules and a function Trcomp : CompF → CompSP for the composition
operators. Then Trmod is extended to composite modules by defining inductively
Trmod(◦i(m1, . . . ,mn)) = Trcomp(◦i)(Trmod(m1), . . . , T rmod(mn)). Finally, the
semantics of F is defined as ∀m ∈ MF , SemF (m) = SemSP (Trmod(m)). A
semantic definition has the advantage of preserving the modules identity at run-
time. Most formalisms that have semantic definitions use traditional LTS as a
semantic platform SP , but they define their own LTS compositions CompSP .
Moreover, working at the level of the LTS is a low-level operation, far from the
modeling expressivity of Petri nets. This paradigm shift can have negative con-
sequences. For instance, LTS are not suited for handling concurrency, and often
the LTS resulting from the transformation of Petri nets are extremely large.

To avoid this paradigm shift while keeping the benefits of a semantic defi-
nition, we propose to use a single Petri nets formalism as a common semantic
platform for Petri nets variants. This would facilitate the understanding of their
definitions, and would allow reasoning at a general level on computational tech-
niques. This approach is akin to virtual machines in the domain of programming
languages. Of course, the semantic platform must be expressive enough to han-
dle at least the existing formalisms. By this we mean that it should be possible
to create a translation from each modular formalism to the semantic platform
that would preserve its semantics. For any existing modular formalism F with
a previously defined semantics OldSemF , we should have:

∃ Tr : MF → MSP s.t. ∀m ∈ MF , OldSemF (m) ∼= SemSP (Tr(m))
where ∼= is an isomorphism between LTS.

2.3 Boundaries of This Article

While an ideal solution would have been to use an existing formalism as a seman-
tic platform, we did not find any expressive enough candidate in the literature.
Because of this, we propose a new formalism specifically tailored to serve as a
semantic platform for modular Petri nets formalisms. We named this formal-
ism the LLAMAS Language for Advanced Modular Algebraic Nets (LLAMAS).



352 A. Marechal and D. Buchs

A formal definition of the language is out of the scope of this article, but it is
given as a technical report in [19].

Our proposition is strictly limited to the definitions of modularity in the
Petri nets formalisms. We rely on the notion of orthogonality as in [7] to limit
ourselves to the notion of modularity. By this we mean that we expect other
extensions of Petri nets (like time and probabilities) to be compatible with our
approach. For instance, we consider that a modular temporal formalism can be
defined by combining our modular mechanisms with temporal considerations.
In particular, we do not consider the problem of the kind of data types used in
the formalism. In the formal definition of LLAMAS we used Algebraic Abstract
Data Types (AADTs) to define the data types, a general specification language
that is already used in the ISO-IEC 15909 standard. To simplify, in the examples
of this article we will only use trivial data types (black tokens, natural numbers).

2.4 State of the Art

Modular PNML [13] is an important candidate for a semantic platform. As
a matter of fact, Modular PNML was the initial inspiration for the work pre-
sented in this article. Nevertheless, the composition mechanism used by Mod-
ular PNML is limited to the syntactical fusion of places and transitions. We
consider that this is not enough to express the semantics of some important
composition mechanisms defined in the literature, such as the non-deterministic
compositions from [4], the parametric compositions from [6] or the complex com-
positions from [1]. It must be noted that Modular PNML defines a mechanism to
compose the definitions of the data types used in the modules. This is an impor-
tant feature that is not included in LLAMAS because, as mentioned previously,
the definition of data types is out of our scope. We consider that our formalism
could be easily extended to include Modular PNML’s data types definitions, and
thus both works can be seen as complementary.

By far, the most widely used modular formalism is the Hierarchical CP-
nets [11]. It is a very general formalism, supported by a well established tool,
and as such it is an interesting candidate to serve as a standard semantic plat-
form. Nevertheless, similarly to the case of Modular PNML, some composition
mechanisms from the literature cannot be represented by this formalism.

Our work can be compared to the process algebras such as CSP [9]. These
languages aim to be universal languages that allow to define the behavior of
complex formalisms. Similarly to the LTS, the modeling paradigm of process
algebras is quite different from the one of Petri nets. By comparison, LLAMAS
is itself a Petri nets formalism, and thus we avoid this paradigm shift.

3 Common Features of Modular Petri Nets Formalisms

To create a standard for modular Petri nets, it is obviously necessary to study
the characteristics of the existing formalisms, which we did in [18]. Here we focus
on some prominent ones about the nature of modules and the compositions.
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3.1 The Nature of Modules

Encapsulation. Most modular formalisms include the notion of encapsulation.
This means that each module defines a set of public elements that can be accessed
by other modules, and a set of internal elements that are hidden and can only
be accessed from within the module itself. The set of public elements of a
module constitutes its interface. In some formalisms, the interface is a set of
places and/or transitions of the Petri net itself (sometimes defined by labels on
these places and transitions). This is the case of most formalisms that use the
classical fusion of places and/or transitions, e.g., [13,11]. Formalisms that have
more complex composition mechanisms usually define interfaces with additional
elements that do not belong to the Petri net of the module, e.g., [1,16].

Hierarchy. The notion of encapsulation is usually linked to the notion of hier-
archy. In hierarchical formalisms, a module (called container) can encapsulate
other modules (called submodules). The submodules of a container can in turn
be containers of their own submodules, and so on.

Instantiation. The instantiation of modules is a mechanism to define many
identical or at least similar modules (instances) based on a blueprint (class).
Many formalisms ([13,11,6,1,16]) define a static instantiation mechanism, which
allows to instantiate modules during the definition of the model, prior to any
computation. On the other hand, some formalisms define dynamic instantiation,
that is, the ability to create instances during the computation of the model.
Most of them (e.g., [1,16,15]) use Nets Within Nets (NWN) paradigm [21]. One
exception is [11] which uses invocation transitions.

3.2 Compositions

The mechanisms that define the interactions between modules are called com-
position mechanisms. The Petri nets literature defines a wide variety of such
mechanisms. To describe them, we could make very complex classifications but,
for simplicity reasons, we will only mention one classification criterion: state-
based vs. event-based mechanisms. Many formalisms define the compositions
between modules by relating the places in one module with the places in another
module. By far, the most common mechanism for this is the fusion of places.
There are some mechanisms that define more complex compositions of places,
e.g., the hierarchical transitions in the M-nets family [6]. Other formalisms com-
pose the modules by connecting their transitions. In this case, the composition
of a set of transitions produces a new event whose behavior depends on the
transitions that were composed. Again, while fusion of transitions is the most
common mechanism in this category, there exists more complex mechanisms,
like the non-deterministic synchronizations from the CP-nets with channels [4].
Note that many formalisms define both kinds of compositions.



354 A. Marechal and D. Buchs

3.3 Summary

In short, the general structure of a hierarchical module may be represented by
a tuple HModule = 〈Spec,Net, I, Subs〉, where Spec is a definition of the data
types used, Net is a Petri net that defines the internal behavior of the module,
I is the interface of the module and Subs is a set of submodules. A complete
model may be represented as a tuple HModel = 〈HModules, Comps, Inst〉,
where HModules is a set of modules, Comps is a set of compositions that define
the interactions between these modules and Inst is an instantiation mechanism.

The elements Spec and Net are out of the scope of this article. A standard
definition of the Petri nets (Net) is the main focus of the first part of the ISO-
IEC 15909 standard, and [13] gives significant contributions to a standard for
a modular data types specification Spec. Instead, LLAMAS focuses on the
other elements, the interface I (see Section 5.3), the hierarchical mechanism
Subs (Section 5.4), the instantiation mechanism Inst (Section 5.4 again) and
the composition mechanism Comps, which is the subject of the next section.

4 The LLAMAS Composition Mechanism

In this section we will explore the composition mechanism of LLAMAS. A
complete formal description of this mechanism is out of the scope of this article.
Instead, we will explore its main features by means of simple examples. At the
end of the section, we will give a partial semantics of our composition mechanism
by defining a transformation to traditional Petri nets. The interested reader can
find the complete formalization in [19].

The goal of this section is to define a single composition mechanism expressive
enough to encompass most if not all the mechanisms that have been defined in
the literature. We named it the LLAMAS Composition Mechanism (LCM). We
mentionned in Section 3 that the composition mechanisms can be classified as
state-based or event-based. One possibility was to define the LCM as a mixture
of both categories, but we consider that this would be unnecessarily complex.
Instead, we defined the LCM as an event-based mechanism, and we ensured
that it is expressive enough to simulate state-based mechanisms (as explained in
Section 2.2). A major advantage of defining the LCM solely as an event-based
mechanism lies in the verification activity as it will be mentioned in Section 7.

In general terms, a composition in the LCM is a finite set of events that,
combined, form another event. The result of a composition is a new event that
may itself participate inside other compositions, forming a hierarchical struc-
ture. Let us start by the most simple example of composition, the fusion of two
transitions t1 and t2. This fusion creates a new event c1 that behaves as both
transitions fired simultaneously (we note this c1 = merge(t1,t2)). c1 may be in turn
be fused with a third transition t3, forming a new event called c2 that behaves as
the three transitions fired simultaneously (c2 = merge(c1,t2)= merge(merge(t1,t2),t3)).
At this point, one may wonder if it is possible for a transition to participate in
more than one composition. In our example, the question is if it would be pos-
sible to define two compositions c1 = merge(t1, t2) and c3 = merge(t1, t3), both using
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independently the transition t1. The answer to this question gives place to the
first novel feature of the LCM: bindings.

4.1 Bindings

There are three possible approaches when considering if the events can partici-
pate independently in more than one composition:

– Each event can participate in at most one composition. This is the case of
the usual fusion sets, and also of Modular PNML [13].

– Each event may participate in any number of compositions. This is the case
of the CP-nets with channels [4] and the family of the M-nets [6].

– Finally, we have a hybrid approach, exemplified by CO-OPN [1] and the
reference nets [15]. The events are synchronized by means of calls. If an event
m1 calls another event m2, it means that m1 cannot be executed independently
of this call, but m2 could be called by other events without involving m1.

In the latter case, we say that m1 was bound by the composition, and m2 was called
by the composition (i.e., m1 cannot participate in other compositions but m2 is free
to do so). In the LCM, we note this composition merge(bind(m1), call(m2)). Thus, as
seen previously, the fusions of transitions in Modular PNML use only bindings,
and the compositions in CP-nets with channels and the M-nets use only calls.
Bindings are a purely syntactical feature that can be checked statically. We
may refine now our previous definition of composition to include the notion of
bindings. For now, we will say that a composition in the LCM is defined by two
finite sets of events, a collection of bound events and a collection of called events.
For instance, if we define a composition c4 = merge(bind(t1), bind(t2), call(t3)), t1 and
t2 cannot participate in any other composition, while t3 can. Binding multiple
times the same event (e.g., merge(bind(t1), bind(t1)) is also forbidden. Note that the
notion of bindings is more general than the mechanisms found in the literature.
Indeed, to the best of our knowledge, no composition mechanism allows to define
a behavior like the one of c4, where two transitions are bound and one is called.
Usually, all the transitions are bound, or all of them are called, or only one of

•
p1

•
p2

t1

t2

c4

t3

••
p3

c5

∧

∧

Fig. 1. Two compositions

them is bound and all the others are called.
Graphically, we represent the compositions by
diamonds, bindings by double arrows, and calls
by dashed arrows. We gave a graphical repre-
sentation of c4 in Fig. 1. This figure also shows
a composition noted c5 = merge(bind(c4), call(t3)).
Executing c5 is the same as executing simulta-
neously t1 and t2 once, and t3 twice.

The shades of the transitions and compositions in Fig. 1 represent their ac-
tivity, which is the subject of the next paragraph. The symbol ∧ inside the
compositions will be explained afterwards. In the following, to simplify the no-
tation, we may omit the keyword call. For instance, c1 = merge(t1, t2) is the same
as c1 = merge(call(t1), call(t2)).
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4.2 Active vs Passive Events

We have seen that some events in the LCM are defined as aggregates of other
events. In this context, it would make sense to define some basic events solely for
the purpose of being part of a composition, and not with the intent of being ex-
ecuted independently. For instance, the port transitions in the Hierarchical CP-
nets [11] are only executed if they are called by some external event. We call such
transitions passive. While in most formalisms passive events are only allowed in
the interface of the modules, we generalize this to allow any event (transition or
composition) to be active or passive. An event is active if it can be executed

(0,0,0)

(1,1,2)

(1,1,1)

(1,1,0)

c5 t3

t3

Fig. 2. LTS of Fig. 1

by itself, and passive if it must be triggered by some
composition to be activated. The LTS of a model is
labelled only with active events. Graphically, active
transitions are represented by black rectangles and ac-
tive compositions by white diamonds, while their pas-
sive counterparts are grey. In Fig. 1, transition t3 and
composition c5 are active, and all the other events are
passive. The LTS of the net in Fig. 1 is shown in Fig. 2.

4.3 Composition Operators

Up to now we have explored two features of the LCM: the bindings and the
active/passive events. We will now explore a more complex feature, the compo-
sition operators. We said previously that a composition is a set of called events
and a set of bound events, and we gave the example c1 = merge(t1, t2). Composi-
tion c1 behaves as a classical fusion of two transitions. This is indicated by the
use of the composition operator merge. As we mentioned previously, the fusion
is not the only way of combining the behavior of a set of events. There are
other possible combinations, and each one will be indicated with a composition
operator. Let us refine once again our definition of a composition in the LCM.
A composition is now defined as a finite set of bound events and a finite set of
called events, all linked by a composition operator. The composition operator
determines how the behaviors of the individual events will be combined in order
to define a new atomic event. Notice that this is consistent with the mindset of
the usual Petri nets, where the atomicity of complex events is already a funda-
mental principle. In the LCM, we define five composition operators. Three of
them are called behavioral operators and two of them are called observers.

Behavioral Operators. The first behavioral operator is the merge operator,
mentioned previously. The other two are the any and the sequence operators.
These three operators are taken from CO-OPN [1], a formalism with a powerful
compositional mechanism. Let us start with the operator any. A composition
c6 = any(t1, t2) corresponds to a non-deterministic choice between t1 and t2. This
means that, whenever c6 is executed, one between t1 and t2 is executed, but not
both. The merge and any operators are close to the operators from the ITS [20].

The last behavioral operator is the sequence. A composition c7 = sequence(t1, t2)

is an event that first executes t1 and then t2. Thus, t2 can use the resources
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produced by t1. Let us stress out that c7 combines the behavior of t1 and t2

to form a single transactional event. If t2 cannot be fired the whole event is
cancelled, and no other event can occur between the executions of t1 and t2.
Note that, unlike the merge and any, the sequence operator is not commutative.

•
p1

t1

•
p2

t2

•
p3

t3

t4
p4

t5

p5

t6

p6px

tx

∨c8 ∨ c9

>

c10

Fig. 3. any and sequence example

Consider for instance Fig. 3. It shows three
compositions, c8 = any(t1,t2,t3), c9 = any(t4,t5,t6),
and c10 = sequence(c8,c9). The any operator in c8

and c9 is represented with a logical disjunction
∨, and the sequence operator in c10 with the sym-
bol >. Because the sequence operator is not com-
mutative, we must show graphically the order
of the elements that are composed. We do this
by representing one diamond per composed el-
ement, to be read from left to right. There are
only two active events in Fig. 3, the transition
tx and the composition c10. Whenever c10 is
executed, one of the three leftmost places loses
its token, and one of the three rightmost places

receives one token, all in one action. Both choices are non-deterministic, and
thus the P/T Petri net equivalent of c10 would have 9 transitions (not counting
tx). Because every execution of c10 is an atomic event, the transition tx will in
fact never be executable.

The three behavioral operators are associative, the merge and any are also com-
mutative and they are both distributive with respect to each other. A distinction
between our work and the compositions in CSP [9] is our commitment to trans-
actionality. In the LCM, atomic events are composed to build other atomic
events. For instance, composition c10 in Figure 3 defined a single atomic event.
While the parallel composition ‖ from CSP has a similar behavior, it is not the
case for the sequential composition 5. Moreover, our compositions are always
defined at the level of single events, whereas in CSP, as in most process algebras,
they are defined at the level of the whole CSP processes.

Observers. The behavioral operators allow to create new events by combining
the behaviors of other events. While this allows to represent a great number
of composition mechanisms, it is not enough for the most complex ones. To
cover the most extreme cases, we defined two operators called observers. They
are the not and the read operators, which are respectively generalizations of
the well known inhibitor arcs and read arcs. These operators allow to define
special events that do not modify the state of the model, they only observe if
some events can be fired or not. For instance, a composition not(t1) is enabled
if and only if t1 is not. While the not operator checks that an event cannot be
executed, the read checks if a given event can be executed. Please note that the
observers are a central feature of the LCM. Without them, we could not handle
many composition mechanisms such as the stabilization from CO-OPN [1],
the complex hierarchy of the M-nets [6], or the special arcs from both the Object
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Petri nets [16] and the reference nets [15]. Graphically, we represent the not

operator with an exclamation mark ! and the read with the symbol 6.

4.4 Parametric Events

∧c11($a)

t2($y) p2

$y
t2($a+1)

t1($x)

p1

{2}
$x

t1($a)

Fig. 4. Parametric events

Many High Level Petri Net (HLPN) formalisms
that define event-based compositions allow the
events to be parametric. Usually, parametric
events allow to transmit information between the
composed events (e.g. [4]). In some cases, the pa-
rameters are used to choose the recipient of a syn-
chronization (e.g., the communication transitions
in [6]). In the LCM, we allow the transitions and

the compositions to define a list of parameters and a guard. This allows to create
compositions like the the one in Fig. 4. We use a dollar sign $ next to the vari-
ables to distinguish them from values. In this figure, there are two parametric
transitions, t1($x) which removes a token $x from place p1 and t2($y) which adds a
token $y to p2. $x and $y are the respective formal parameters of the transitions.
There is also a composition c11($a)= merge(t1($a), t2($a+1)). In c11, $a and $a+1 are
the respective effective parameters of t1 and t2. When c11 is executed, the token
with value 2 is removed from p1 and a token with value 3 is added to p2.

4.5 Recursion

p1

•••
t1

!

> c12

∨

Fig. 5. Recursion example

We saw in the example of Fig. 1 that an event can
participate multiple times in the same composi-
tion (transition t3 was called twice by composi-
tion c5). Similarly, a composition can participate
inside itself, i.e., it can be recursive. As is usual in
recursive frameworks, there is a danger of defining
infinite computations that must be taken care of
by the modeler. Fig. 5 is an example of recursion. It shows a transition t1 that
removes a token from place p1 and a composition c12 = sequence(t1, any(not(t1), c12)).

(3) (0)
c12

sequence(t1,c12)

sequence(t1,c12)

sequence(t1,not(t1))

Fig. 6. Behavior of c12

This composition first calls t1, and then either t1

cannot be executed again (i.e., p1 is empty), or c12

is called again. Thus, the place p1 is emptied in a
single action. This behavior is represented in Fig. 6.
It shows the LTS of the example, labeled by c12, and
the detail of the execution. With this pattern, we
obtain the behavior of the well know reset arcs.

4.6 Graphical and Textual Notation - The Case against Labels

Through this section we have introduced the compositions with both a textual
and a graphical notation. The graphical version of our compositions explic-
itly connects the elements that are composed by means of arrows. Some for-
malisms note their compositions by means of labels in the composed elements
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(e.g., [6,21,15]). Usually, this notation is difficult to read, as it defeats the
intuition behind the graphical notation. On the other hand, an explicit repre-
sentation of complex compositions may produce bloated graphics that can also
be difficult to read. This is the reason for having both a graphical and a tex-
tual notation. Note that our current implementation (see section 7) only uses a
textual notation, but we plan to implement a graphical version in the future.

4.7 Partial Semantics of the LCM

In Section 2.2 we mentioned that the modular mechanisms can have syntactic or
semantic definitions. When they are applicable, syntactic definitions are usually
more simple than semantic ones. The LCM is a complex mechanism that in
practice cannot be fully defined with a syntactic definition. Nevertheless, the
complete definition of the semantics of the LCM is too complex to be included
in this article. Instead, we will give a syntactic definition of a reduced subset of
the LCM, by translating some compositions to traditional Petri nets. For this
translation to exist, the following conditions must be met:

a) Only the behavioral operators are allowed. The observers are generalizations
of the inhibitor and read arcs. Thus, the compositions that use these op-
erators cannot be represented with traditional Petri nets. Note that even
if we used traditional inhibitor and read arcs it would be difficult (but not
impossible) to represent the behavior of the observers in flat Petri nets.

b) No recursion is allowed, i.e., each composition must define a directed acyclic
graph. Recursion leads to potentially infinite executions, which would be
represented with infinitely many transitions.

The translation of the compositions that meet these conditions to flat Petri nets
is done in two steps. First, the non-deterministic operator any is eliminated.
This operation is similar to the search of the well known Disjunctive Normal
Forms of propositional logics formulas. To illustrate this, we will for a moment
represent our compositional operators with their graphical symbols. The merge,
any and sequence are noted respectively as a conjunction ∧, a disjunction ∨ and
the symbol >. The operator ∨ follows the following distributivity rules for any
events ev1, ev2 and ev3 and for any operator op ∈ {∧, >}:

– (ev1 ∨ ev2) op ev3 = (ev1 op ev3) ∨ (ev2 op ev3)
– ev1 op (ev2 ∨ ev3) = (ev1 op ev2) ∨ (ev1 op ev3)

With these distributivity rules, it is easy to represent any composition as a
composition ev1 ∨ ev2 ∨ ... ∨ evn with n ∈ N and no symbol ∨ inside any event evi.
By using the inherent non-determinism of traditional Petri nets, we can replace
that composition with the set of n events written separately. This set may be
quite big, but it is always finite in the case of non-recursive compositions.

The second step is to translate the compositions with the operators ∧ and >
to traditional transitions. For this, we extend the usual notions of Pre and Post
conditions. A Petri net transition is defined by two sets Pret and Postt, and the
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result of the firing of a transition t from a marking M is a marking M ′ defined
by M ′ = M − σ(Pret) + σ(Postt), where σ is a substitution of the variables in
t and σ(Pret) ⊆ M . To translate our compositions to flat Petri nets, we will
inductively define pairs of Pre and Post conditions for each one of them. Let
+m (resp. −m) be the usual addition (resp. subtraction) of multisets.

– For any composition c = merge(ev1, ev2), we define
Prec = Preev1 +m Preev2 and
Postc = Postev1 +m Postev2

– For any composition c = sequence(ev1, ev2), we define
Prec = Preev1 +m (Preev2 −m Postev1) and
Postc = Postev2 +m (Postev1 −m Preev2)

If the events ev1 and ev2 are transitions, we use their usual Pre and Post
conditions. If they are compositions, we apply our definition recursively.
The process is guaranteed to be finite in the absence of recursive events. At
the very end of the process the passive transitions are removed. Consider the
composition c13 = merge(sequence(t1,t2),any(t3,t4)) in Fig. 7. The distributivity of
any gives c13 = any(merge(sequence(t1,t2),t3),merge(sequence(t1,t2),t4)). Thus, the behav-
ior of c13 will be represented by two transitions. With the equations given
above, we obtain the two transitions in the right hand side of Fig. 7, where

t1

•
p1 t2 p2

2

t3

p3

t4

p4

>

∨
∧

c13

≡

•
p1

p2

p3

p4

E1

E2

Fig. 7. From the LCM to flat Petri nets

E1 is merge(sequence(t1,t2), t3) and E2

is merge(sequence(t1,t2), t4). To ap-
ply this technique to HLPN, the
only restriction is that the variables
must be renamed so that local vari-
ables in different events have dif-
ferent names. Note that this triv-
ial example does not illustrate the
methodological advantages of hav-
ing a compositional mechanism.

5 The LLAMAS Language - An Example

In the previous section we explained in detail (even though informally) the com-
position mechanism of LLAMAS. In this section, we will introduce the rest of
the language. For simplicity and space issues, we will only present the language
by means of an example. A complete formalization is given in [19].

5.1 Internal Behavior of a Module - Petri Net

We will begin the description of our example with the Petri net from Fig. 8.
Together with the compositions we will give in the next section, this Petri net
will represent a bounded counter. It has two places named Bound and Counter. The
initial value of the token in place Bound is a variable, and thus its actual value will
be determined at instantiation (see Section 5.4). There are also three transitions
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Reset($c)

{0}

Counter
$c

0

Inc($c)
$c

$c + 1

GetBound($b)

{$i}

Bound

$b

Fig. 8. Petri net example

named GetBound, Reset, and Inc. All these tran-
sitions are passive (see Section 4.2). Notice
that, if it was an active transition, an execu-
tion of GetBound would remove the token from
place Bound. We will see in the next section that
this behavior will be restrained by the compo-
sitions. All three transitions have one param-
eter that unifies itself with the value taken
from the respective place.

5.2 Compositions

Fig. 9 shows four compositions that have been added to the example in Fig. 8.
The composition in the center is called ReadBound. It uses the observer read, whose
symbol is 6, and it binds the transition GetBound. The read operator indicates
that when the composition ReadBound is executed, it checks if transition GetBound

can be executed and it unifies the variable $b with the value taken from place
Bound, without any modification to the marking of the net (see Section 4.3).

Reset($c)

{0}

Counter
$c

0

Inc($c)
$c

$c + 1

GetBound($b)

{$i}

Bound

$b

∧

Reset
$c = $b

	
ReadBound($b)

∧

Inc
$c < $b

∨
Tick

Fig. 9. Compositions example

Composition ReadBound binds GetBound (see Sec-
tion 4.1), which means that GetBound cannot
participate in any other composition. Thus,
even though an execution of ReadBound removes
the token from place Bound, we ensured by
means of the composition ReadBound that this to-
ken will never actually be removed. The sec-
ond composition, called Reset, binds the tran-
sition Reset, and calls the composition ReadBound,
and uses the merge operator. When it is exe-
cuted, both composition ReadBound and transi-
tion Reset will be executed simultaneously, as
long as the guard of the composition ($c = $b)
is evaluated to true. Thus, the composition

Reset checks if the counter has reached its bound and resets it to 0. Composi-
tion Inc works in a similar way. It increases the value of the counter if it has
not reached the value of the bound. The final composition, Tick, binds both
compositions Reset and Inc with the operator any. Whenever Tick is executed, one
composition between Reset and Inc is also executed, but not both. If neither Reset

nor Inc are enabled, neither is Tick. All these compositions are passive and thus,
for now, we still did not define a single executable event in our example.

5.3 Interface - Basic LLAMAS Module

The notion of encapsulation is central in most modular formalisms. It implies
the existence of some elements in a module that are available to other mod-
ules (the interface), and some elements that are internal to the module. Some
modular Petri nets formalisms define some places and/or transitions as the
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t4

t3

c1

∧

c2
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t2

t1

r2

r1
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Fig. 10. Interface

interface of modules. Other formalisms define entirely
new elements to define the interface. The composition
mechanism we defined in Section 4 requires that we
adopt the latter case. Indeed, following the definition
of the compositions in the LCM, we need interface ele-
ments that allow us to carry calls and bindings across
modules. Moreover, as the compositions are directed,
we need to distinguish between input elements and
output elements (we respectively call them services
and requests). Thus, we have four kinds of elements
in our module interfaces: binding and non-binding ser-
vices and binding and non-binding requests. Fig. 10
illustrates the four possible combinations. It shows two transitions and one
composition (resp. t1, t2 and c2) inside a module and two transitions and one
composition (resp. t3, t4 and c1) outside the module. The interface of the module
contains a binding and a non-binding service (resp. s1 and s2), represented by
triangles directed towards the interior of the module. It also contains a binding
and a non-binding request (resp. r2 and r1), represented by triangles directed
towards the environment. c1 binds t1 by means of s1, and thus t1 is not available
to other compositions, including compositions inside the module. c1 also calls t2

(by means of s2) and t3. Similarly, c2 binds t4 and calls t3 and t2. The distinction
between input and output interface elements can be found in many formalisms,
see for instance the import/export interfaces from [13], or the distinction be-
tween sockets and ports in [11]. Services and requests in a LLAMAS interface
are parametric, similarly to the transitions and compositions.

Reset($c)

{0}

Counter
$c

0

Inc($c)
$c

$c + 1

GetBound($b)

{$i}

Bound

$b

∧

Reset
$c = $b

	
ReadBound($b)

∧

Inc
$c < $b

∨
Tick

TickOverflow BCounter($i)

Fig. 11. A LLAMAS module

Fig. 11 shows an interface added to
the example from Fig. 9. Together, a
Petri net, a set of compositions, and an
interface form a non-hierarchical LLA-
MAS module. The module from Fig. 11
is called BCounter, and it takes one
parameter $i to set the initial value of
place Bound. The interface of BCounter
is composed of a non-binding service
called Tick and a non-binding request
called Overflow. Service Tick calls compo-
sition Tick, thus making this composi-
tion available to the environment. The
composition Reset now calls the request
Overflow, apart from calling ReadBound and
binding transition Reset. Thus, when-
ever there is an overflow, not only the

counter will be reseted, but a notification will be sent to the container of
BCounter. If the container is not able to respond to this request, the com-
position Reset will fail. The next section shows an example of such container.
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5.4 Hierarchy and Static Instantiation

Another important feature of modular formalisms is hierarchy. In hierarchical
Petri nets a module (called the container) may encapsulate other modules (called
submodules), which in turn may encapsulate their own submodules. The hierar-
chy is a partial order relation between the modules in a system. Each container
defines how its submodules communicate, both between themselves and with the
container. A hierarchical LLAMAS module is thus composed of a Petri net, an
interface, a set of submodules and a set of compositions (notice the similarity
with our general definition in Section 3.3). The hierarchical mechanism we use
in LLAMAS was inspired by Modular PNML [13]. In Modular PNML, each
module defines a set of submodule sockets, and each submodule socket is de-
noted only by an interface, which defines the synchronization contract between
the container and the submodule.

Before showing an example, let us mention one last important feature of
LLAMAS: instantiation. An instantiation mechanism facilitates the definition of
various identical (or similar) modules. It means that the modules in a system are
copies of an initial definition, a blueprint. These copies may be fine tuned when
they are created. Following the vocabulary of object-oriented languages, we call
this blueprint a class, and its copies instances of the class. The instantiation
may be static, i.e., performed once during the initial definition of the system, or
dynamic, i.e., instances may be created during the execution of the system.

Fig. 12 shows a hierarchical module that uses three static instances of the
module BCounter from Fig. 11 to model a clock. The module Clock contains
three submodules sockets, all of them with the same interface as BCounter.
The first submodule on the left (the hours) has a bound of 23, and the two
others (minutes and second respectively) have a bound of 59. The module Clock
defines a composition called Second, which is active. It is the first and only active
event we encounter in the whole example (remember that all the transitions and
compositions in BCounter were passive). Each time Second is executed, it calls
the service Tick from the rightmost submodule (the seconds). Whenever this
submodoule has an overflow (i.e., 60 seconds have passed), it calls the service
Tick from the module in the center, by means of its Overflow request. Similary,
whenever there is an overflow on the center module (60 minutes), the service Tick

from the leftmost submodule is called. Finally, whenever this submodule calls its
own request Overflow (24 hours), the transition IncDays is called, which is increases

Clock

BCounter(59)

Seconds

Tick
Overflow

BCounter(59)

Minutes

Tick
Overflow

BCounter(23)

Hours

Tick
Overflow

∧Second
IncDays

Days 0

$c+ 1 $c

Fig. 12. A hierarchical LLAMAS module representing a clock



364 A. Marechal and D. Buchs

the counter in place Days. The module Clock has clearly an infinite number of
reachable states. If we remove the place Days but keep the transition IncDays, the
module will have 24 × 60 × 60 = 86400 reachable states, without any deadlock
(executing Second from the last state would reset the whole system). If we also
remove the transition IncDays, the request Overflow from the leftmost submodule
will not be executable, and this submodule would be blocked when its counter
would reach the value 23. The whole system would then have the same 86400
states, but the last one, with marking 〈23, 59, 59〉, would be a deadlock.

5.5 Dynamic Instantiation

In this section we have seen a basic introduction to LLAMAS by means of an
example. Some features of the language could not be described here for space
reasons. The most important one is a reference-based implementation of the
NWN paradigm [21], which adds dynamic instantiation to LLAMAS. This and
other secondary features are included in the formal definition of the language.

6 Case Study: Modular PNML

LLAMAS was created with the intent of being able to handle most if not all the
modular mechanisms from the Petri nets literature. We will show in this section
one example of formalism whose composition mechanism can be translated to
LLAMAS, Modular PNML [13]. We chose this example because Modular PNML,
as mentioned previously, is an important candidate to serve as semantic platform
in the approach we presented in Section 2. Moreover, Modular PNML handles
modularity of the data types, which is out of the scope of LLAMAS. Thus, it is
interesting to see the relation between the two formalisms.

Let us first briefly describe our exampe of Modular PNML. Details and a
formal definition of the language are to be found in [13]. The composition mech-
anism of Modular PNML is a particular example of fusions of places and transi-
tions. The module interfaces are composed of places and transitions of the Petri
nets, which are either imported or exported by the modules. Modular PNML is
a hierarchical formalism, and thus the modules can embed other modules. For
instance consider the module on the left side of Fig. 13. The top layer of this
module represents its interface. There is one exported transition called t1, and
one exported place called p2. This Modular PNML module contains a submod-
ule. The interface of this submodule is represented in the bottom section of the
module. This interface shows that the submodule exports one transition called
t1s and one place called p1s, and it imports the transition t2s. To distinguish
between exported and imported elements, the latter are graphically represented
by dashed figures. In our example, the container "uses" the elements t1s and p1s

that are exported by the submodule, and the submodule "uses" the transition
t2 from the container. The elements t1s, p1s and t2s in the submodule are re-
spectively merged to t1, p1 and t2 in the container. These merges are graphically
represented by dashed lines. Note that the container re-exports the transition
t1 which was originally exported by the submodule. Please note also that, even
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t1s p1s t2s

t1 p1 t2 p2

t1 p2

2 2

t1s

addP1 remP1 t2s

∧
t1

∧
t2

t2

p2

addP2 remP2

t1 addP2 remP2

2

Fig. 13. A Modular PNML example and its LLAMAS translation

though our example does not show it, Modular PNML defines a static instan-
tiation mechanism. This is not seen in the example because we only show the
interface of the submodule but not its implementation.

We show the equivalent LLAMAS module in the right hand side of Fig. 13.
There is a different representation for the sharing of transitions and the sharing
of places. The LCM of LLAMAS is an event-based mechanism, which makes
the representation of the sharing of transitions rather straightforward. Consider
the case of the transition t1s which is exported by the submodule. Whenever
the submodule executes this transition, it must inform the container of this
execution. This is done by means of a binding request called t1s. Similarly, the
imported transition t2s is represented by service t2s, and the export of t1 in the
interface of the container is represented by request t1.

Sharing places is a different problem. In Section 4, we claimed that even
though the LCM is an event-based formalism, it is able to simulate state-based
mechanisms. In our example, the submodule exports the place p1s. This means
that the submodule is the owner of p1s, and it is offering its container the pos-
sibility to add and remove tokens from this place. We represent this with two
services called addP1 and remP1. Thus, the submodule is the only one who has
a real access to his place p1s. When the container wants to interact with this
place, it must request access to the submodule. Similarly, the container also
exports one place called p2. This means that it is giving access to this place to
its own container. This is represented again by two services, addP2 and remP2, that
call transitions to add and remove tokens from p2. Notice that our example is a
simple P/T Petri net. The translation of HLPN places can be achieved in the
LCM by means of parametric services and requests. Note that Modular PNML
does not allow to share values with interface transitions, and the authors of [13]
mentioned this as a possible improvement. This is already defined in LLAMAS,
again by using parametric services and requests.

Up until now we described the translation of the module interfaces, let us now
mention the translation of the internal Petri nets. First, only the local places
are represented in the LLAMAS module, the foreign places will be accessed by
means of the corresponding services and requests. In our example, p1 belongs
to the submodule, and thus it does not appear in the container. On the other
hand, p2 is a local place, and it remains in the result of the translation.
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Each transition from Modular PNML is represented by two different artifacts
in LLAMAS. First, all the interactions of the transitions with other modules
(imports, exports, and access to foreign places) are represented as a composition.
Second, the local behavior of the transition is implemented as a transition in
LLAMAS. In our example, transition t1 in Modular PNML adds two tokens to
p2, which is a foreign place. In fact, t1 does not have any local behavior in the
container. This is why there is no transition called t1 in the resulting LLAMAS
module, only a composition. Transition t1 adds two tokens to the foreign place
p1, this is represented in LLAMAS by two simultaneous calls to the service addP1.

On the other hand, t2 has a local behavior, as it adds two tokens to the local
place p2. In the LLAMAS module, this is represented by the transition called t2.
Moreover, t2 is shared with the submodule. This is represented in LLAMAS by
a binding from the composition t2 to the binding service t2s. Note that all the
compositions in Modular PNML are fusions of places and transitions, which is
translated by the use of the operator merge in every LLAMAS composition.

Because of readability and space reasons, we cannot include other use cases
in this paper. Nevertheless, we considered complete translations of many for-
malisms, including the Hierarchical CP-nets [11], CO-OPN [1], the reference
nets [15], the Object Petri nets [16], the Petri Box and M-nets families [6,14]
and others. Stepping out of LLAMAS central objective, we also considered
composition mechanisms from formalisms such as the ITS [20] and CSP [9].

7 Verification of LLAMAS Models

The objective of LLAMAS is to provide a common ground to define the seman-
tics of modular Petri nets formalisms. This would improve the understanding
and communication of formalisms and computational techniques in the scientific
community. For this to be effective, LLAMAS must not only be an expressive
enough semantic platform, it must be a complete modeling formalism on its own.
To show that this is the case, we have developed a small prototype implementa-
tion of LLAMAS, available as an Eclipse plugin at http://goo.gl/BgONM. This
prototype allows to create LLAMAS models and, for small models, to compute
their state space. We plan to extend this tool to implement efficient verifica-
tion of modular models by using the recent advances in model checking with
hierarchical Decision Diagrams (DDs). DDs are data type structures specially
designed to encode big sets of states. Recent years have seen the development
of hierarchical variants of DDs such as the Σ Decision Diagrams (ΣDDs) [3],
which were inspired by [5]. Our model checking tool AlPiNA [10,2] uses these
structures to check properties on nets with sometimes over 10230 states.

In ΣDDs, the states of a Petri net are encoded as data structures designed
to save memory. The behavior of the events is encoded by means of operations
on these structures called homomorphisms. To encode a Petri net transition as
a ΣDD homomorphism, we define a set of small operations that are combined
with three operators that are built-in in the ΣDD framework: the union, the
composition and the intersection (details are to be found in [3]). Let us con-
sider an example. Let t1 be a transition that takes one token from a place p1

http://goo.gl/BgONM
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and adds two tokens to a place p2. A simplified version of the homomorphism
that encodes the behavior of t1 can be noted Ht1 = H+(p2, 2) ◦ H−(p1, 1),
where the H+ operation represents a post-condition, the H− a pre-condition
and the ◦ is the ΣDD composition operation. Consider a transition t2 encoded
as Ht2 = H+(p3, 1)◦H−(p4, 2). The LLAMAS merge of these transitions would
be encoded as Hmerge(t1,t2) = H+(p2, 2) ◦H+(p3, 1) ◦H−(p1, 1) ◦H−(p4, 2).

In short, in the ΣDD framework, the structure of the models and their be-
havior are defined by separate artifacts. Because of this, this framework is well
adapted to represent event-based formalisms such as LLAMAS. Moreover, the
execution of complex events is encoded as the combination of small operations
by means of operators. This matches the mindset of the LCM, where complex
events are defined as smaller events combined with five operators. Finally, the
ΣDD support recursive and parametric executions. Because of these similarities,
an implementation of LLAMAS in the ΣDD framework is a promising endeavor.

8 Conclusion and Perspectives

In this article we proposed an approach to create a unified definition process of
modular extensions of Petri nets. With this approach new formalisms can have
their syntax and semantics defined in the context of a common framework. For
the definition of the semantics we propose a new formalism, called LLAMAS,
specifically designed to include the characteristics of most if not all the existing
modular Petri nets formalisms. To this day, we have not encountered a compo-
sition mechanism in the Petri nets literature that could not be translated to the
LCM, even if sometimes the translation is not trivial. We believe that our ap-
proach would improve the understanding and communication of novel modeling
and verification techniques in the scientific community.

This article only partially showed the work we developed in LLAMAS. Among
the elements that had to be left out, let us cite the metamodel to standardize
syntactic elements that we mentioned in Section 2, a complete formalization of
the language that includes the NWN mechanism for dynamic instantiation, and
other case studies than the one presented in Section 6.

We think that LLAMAS has promising perspectives. In Section 7 we briefly
sketched some ideas about the verification of LLAMAS models using Decision
Diagrams, an important research field. The language itself can be extended to
include even more modular considerations, such as inheritance and subtyping
relations between modules. Finally, while the current implementation of LLA-
MAS is a textual prototype, we plan to implement a graphical version of the
language and integrate it with our tool AlPiNA.

References

1. Biberstein, O., Buchs, D., Guelfi, N.: Object-Oriented Nets with Algebraic Speci-
fications: The CO-OPN/2 Formalism. In: Agha, G., De Cindio, F., Rozenberg, G.
(eds.) APN 2001. LNCS, vol. 2001, pp. 73–127. Springer, Heidelberg (2001)



368 A. Marechal and D. Buchs

2. Buchs, D., Hostettler, S., Marechal, A., Risoldi, M.: AlPiNA: An Algebraic Petri
Net Analyzer. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 349–352. Springer, Heidelberg (2010)

3. Buchs, D., Hostettler, S.: Sigma Decision Diagrams. In: Corradini, A. (ed.) TER-
MGRAPH 2009: Preliminary Proceedings of the 5th International Workshop on
Computing with Terms and Graphs, No. TR-09-05 in TERMGRAPH Workshops,
pp. 18–32. Università di Pisa (2009)

4. Christensen, S., Hansen, D.: Coloured Petri Nets Extended with Channels for
Synchronous Communication. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815,
pp. 159–178. Springer, Heidelberg (1994)

5. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit
Model Structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457.
Springer, Heidelberg (2005)

6. Devillers, R., Klaudel, H., Riemann, R.C.: General parameterised refinement and
recursion for the M-net calculus. Theoretical Computer Sc. 300, 259–300 (2003)

7. Hillah, L.-M., Kordon, F., Lakos, C., Petrucci, L.: Extending pnml Scope: A
Framework to Combine Petri Nets Types. In: Jensen, K., van der Aalst, W.M.,
Ajmone Marsan, M., Franceschinis, G., Kleijn, J., Kristensen, L.M. (eds.) ToPNoC
VI, LNCS, vol. 7400, pp. 46–70. Springer, Heidelberg (2012)

8. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML Framework: An Extend-
able Reference Implementation of the Petri Net Markup Language. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer,
Heidelberg (2010)

9. Hoare, C.A.R.: Communicating sequential processes. CACM 21(8), 666–677 (1978)
10. Hostettler, S., Marechal, A., Linard, A., Risoldi, M., Buchs, D.: High-Level Petri

Net Model Checking with AlPiNA. Fund. Informaticae 113(3-4), 229–264 (2011)
11. Huber, P., Jensen, K., Shapiro, R.M.: Hierarchies in coloured petri nets. In: Rozen-

berg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 313–341. Springer, Heidelberg (1991)
12. ISO/IEC: Software and Systems Engineering – High-level Petri Nets. International

Standard ISO/IEC 15909 (2004)
13. Kindler, E., Petrucci, L.: Towards a Standard for Modular Petri Nets: A Formali-

sation. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606,
pp. 43–62. Springer, Heidelberg (2009)

14. Klaudel, H., Pommereau, F.: M-nets: a survey. Acta Informatica 45(7-8), 537–564
(2009)

15. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
16. Lakos, C.: Object Oriented Modelling with Object Petri Nets. In: Agha, G., De

Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 1–37. Springer,
Heidelberg (2001)

17. Marechal, A., Buchs, D.: Modular extensions of Petri Nets: a generic template
metamodel. Tech. Rep. 220, University of Geneva (2012), http://goo.gl/oZxYZ

18. Marechal, A., Buchs, D.: Modular extensions of Petri nets: a survey. Tech. Rep.
218, University of Geneva (2012), http://goo.gl/hnHhR

19. Marechal, A., Buchs, D.: The LLAMAS language, syntax and semantics. Tech.
Rep. 221, University of Geneva (2013), http://goo.gl/PXCNf

20. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical set decision
diagrams and regular models. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 1–15. Springer, Heidelberg (2009)

21. Valk, R.: Object Petri Nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN
2003, LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2004)

http://goo.gl/oZxYZ
http://goo.gl/hnHhR
http://goo.gl/PXCNf


Channel Properties

of Asynchronously Composed Petri Nets�

Serge Haddad1, Rolf Hennicker2, and Mikael H. Møller3

1 LSV, ENS Cachan & CNRS & INRIA, France
2 Ludwig-Maximilians-Universität München, Germany

3 Aalborg University, Denmark

Abstract. We consider asynchronously composed I/O-Petri nets
(AIOPNs) with built-in communication channels. They are equipped
with a compositional semantics in terms of asynchronous I/O-transition
systems (AIOTSs) admitting infinite state spaces. We study various
channel properties that deal with the production and consumption of
messages exchanged via the communication channels and establish use-
ful relationships between them. In order to support incremental design
we show that the channel properties considered in this work are preserved
by asynchronous composition, i.e. they are compositional. As a crucial
result we prove that the channel properties are decidable for AIOPNs.

1 Introduction

(A)synchronous composition. The design of hardware and software systems
is often component-based which has well-known advantages: management of
complexity, reusability, separation of concerns, collaborative design, etc. One
critical feature of such systems is the protocol supporting the communication
between components and, in particular, the way they synchronise. Synchronous
composition ensures that both parts are aware that communication has taken
place and then simplifies the validation of the system. However in a large scale
distributed environment synchronous composition may lead to redhibitory ineffi-
ciency during execution and thus asynchronous composition should be adopted.
The FIFO requirement of communication channels is often not appropriate in
this context. This is illustrated by the concept of a software bus where appli-
cations push and pop messages in mailboxes. Also on the modelling level FIFO
ordering is often not assumed, like for the composition of UML state machines
which relies on event pools without specific requirements.

Compositions of Petri Nets. In the context of Petri nets, composition has
been studied both from theoretical and practical points of view. The process
algebra approach has been investigated by several works leading to the Petri
net algebra [4]. Such an approach is closely related to synchronous composition.
In [22] and [23] asynchronous composition of nets are performed via a set of

� This work has been partially sponsored by the EU project ASCENS, 257414.

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 369–389, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



370 S. Haddad, R. Hennicker, and M.H. Møller

places or, more generally, via a subnet modelling some medium. Then structural
restrictions on the subnets are proposed in order to preserve global properties like
liveness or deadlock-freeness. In [21] a general composition operator is proposed
and its associativity is established. A closely related concept to composition is
the one of open Petri nets which has been used in different contexts like the
analysis of web services [25]. Numerous compositional approaches have been
proposed for the modelling of complex applications but most of them are based
on high-level Petri nets; see [11] for a detailed survey.

Channel Properties. With the development of component-based applications,
one is interested in verifying behavioural properties of the communication and,
in the asynchronous case, in verifying the properties related to communication
channels. Channel properties naturally occur when reasonning about distributed
mechanisms, algorithms and applications (e.g. management of sockets in UNIX,
maintaining unicity of a token in a ring based algorithm, recovery points with
empty channels for fault management, guarantee of email reading, etc.).

Our Contributions. In this work we are interested in general channel proper-
ties and not in specific system properties related to particular applications. The
FIFO requirement for channels potentially can decrease the performance of large
scale distributed systems. Thus we restrict ourselves to unordered channels which
can be naturally modelled by places of Petri nets. We propose asynchronously
composed Petri nets (AIOPNs) by (1) explicitely representing channels for inter-
nal communication inside the net and (2) defining communication capabilities
to the outside in terms of (open) input and output labels with appropriate tran-
sitions. Then we define an asynchronous composition operator which introduces
new channels for the communication between the composed nets. AIOPNs are
equipped with a semantics in terms of asynchronously composed I/O- transition
systems (AIOTS). We show that this semantics is fully compositional, i.e. it
commutes with asynchronous composition.

In our study two kinds of channel properties are considered which are re-
lated to consumption requirements and to the termination of communication.
Consumption properties deal with requirements that messages sent to a com-
munication channel should also be consumed. They can be classified w.r.t. two
criteria. The first criterion is the nature of the requirement: consuming mes-
sages, decreasing the number of messages on a channel, and emptying channels.
The second criterion expresses the way the requirement is achieved: possibly
immediately, possibly after some delay, or necessarily in each weakly fair run.
Communication termination deals with (immediate or delayed) closing of com-
munication channels when the receiver is not ready to consume any more. We
establish useful relations between the channel properties and prove that all chan-
nel properties considered here are compositional, i.e. preserved by asynchronous
composition, which is an important prerequisite for incremental design.

From a verification point of view, we study the decidability of properties in the
framework of AIOPN. Thanks to several complementary works on decidability
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for Petri net problems, we show that all channel properties considered in this
work are decidable, though with a high computational complexity.

Related Work. To the best of our knowledge, no work has considered channels
explicitely defined for communication inside composite components. However
there have been several works where channels are associated with asynchronous
composition. They can be roughly classified depending whether their main fea-
ture is an algorithmic or a semantic one.

From an algorithmic point of view, in the seminal work of [5], the authors
discus several properties like channel boundedness and specified receptions and
propose methods to analyse them. In [7], a two-component based system is stud-
ied using a particular (decidable) channel property, the half-duplex property: at
any time at most one channel is not empty.

From a semantic point view, in [13] “connection-safe” component assemblies
have been studied incorporating both synchronous and asynchronous communi-
cation. More recently in [2] synchronisability, a property of asynchronous sys-
tems, is introduced such that when it holds the system can be safely abstracted
by a synchronous one. In the framework of Petri nets, E. Kindler has defined
Petri net components where the interface is composed by places and composition
consists in merging places with same identities [16]. He proposed a partial order
semantics for such components and proved that the semantic is fully compo-
sitional. Furthermore, for a restricted linear temporal logic he established that
properties of this logic are preserved by composition; however such a logic cannot
express some of the channel properties we introduce here due to their branching
kind. The Petri net based formalism of open nets is the closest formalism to ours.
Several works [17],[25], and [24] address both the semantic point of view and the
algorithmic one but only when the nets are assumed to be bounded which is not
required here. We postpone to Section 2.2 a more detailed comparison with our
formalism.

Organisation. In Section 2, we introduce AIOPNs and their asynchronous com-
position. Then, we provide a compositional semantic for AIOPNs in Section 3
in terms of AIOTSs. In Section 4, we define the channel properties and study
their relationships and their preservation under asynchronous composition. In
Section 5, we establish that all channel properties are decidable for AIOPNs.
Finally, in Section 6, we conclude and give some perspectives for future work.

2 Asynchronous I/O-Petri Nets

2.1 Basic Notions

We recall some basic notions of labelled Petri nets and define their transition
system semantics. A labelled Petri net is a tuple N = (P, T,Σ,W−,W+, λ,m0),
such that

– P is a finite set of places,
– T is a finite set of transitions with P ∩ T = ∅,
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– Σ is a finite alphabet,
– W− (resp. W+) is a matrix indexed by P × T with values in N;

it is called the backward (resp. forward) incidence matrix,
– λ : T → Σ is a transition labelling function, and
– m0 is a vector indexed by P and called the initial marking.

The labelling function λ is extended as usual to sequences of transitions. The
input (output resp.) vector W−(t) (W+(t) resp.) of a transition t is the column
vector of matrix W− (W+ resp.) with index t. Given two vectors −→v and −→v ′, one
writes −→v ≥ −→v ′ if −→v is componentwise greater or equal than −→v ′. A marking is
a vector indexed by P . A transition t ∈ T is firable from a marking m, denoted

by m
t−→, if m ≥ W−(t). The firing of t from m leads to the marking m′,

denoted by m
t−→ m′, and defined by m′ = m−W−(t) +W+(t). If λ(t) = a we

write m
a−→ m′. The firing of a transition is extended as usual to firing sequences

m
σ−→ m′ with σ ∈ T ∗. A marking m is reachable if there exists a firing sequence

σ ∈ T ∗ such that m0 σ−→ m.
Our approach is based on a state transition system semantics for Petri nets.

A labelled transition system (LTS) is a tuple S = (Σ,Q, q0,−→), such that

– Σ is a finite set of labels,
– Q is a (possibly infinite) set of states,
– q0 ∈ Q is the initial state, and
– −→ ⊆ Q ×Σ ×Q is a labelled transition relation.

We will write q
a−→ q′ for (q, a, q′) ∈ −→, and we write q

a−→ if there exists

q′ ∈ Q such that q
a−→ q′. Let q1 ∈ Q. A trace of S starting in q1 is a finite or

infinite sequence ρ = q1
a1−→ q2

a2−→ q3
a3−→ · · · . For a ∈ Σ we write a ∈ ρ, if

there exists ai in the sequence ρ such that ai = a, and �ρ(a) denotes the (possibly
infinite) number of occurrences of a in ρ. For q ∈ Q we write q ∈ ρ, if there exists
qi in the sequence ρ such that qi = q. For σ = a1a2 · · · an ∈ Σ∗ and q, q′ ∈ Q we
write q

σ−→ q′ if there exists a (finite) trace q
a1−→ q2

a2−→ · · · an−→ q′. Often we
need to reason about the successor states reachable from a given state q ∈ Q with
a subset of labels Σ̄ ⊆ Σ. We define Post(q, Σ̄) = {q′ ∈ Q | ∃a ∈ Σ̄ . q

a−→ q′}
and we write Post(q) for Post(q,Σ). Further we define Post∗(q, Σ̄) = {q′ ∈ Q |
∃σ ∈ Σ̄∗ . q

σ−→ q′} and we write Post∗(q) for Post∗(q,Σ).
The semantics of a labelled Petri net N = (P, T,Σ,W−,W+, λ,m0) is given

by its associated labelled transition system lts(N ) = (Σ,Q, q0,−→) which rep-
resents the reachability graph of the net and is defined by

– Q ⊆ NP is the set of reachable markings of N ,
– −→ = {(m, a,m′) | a ∈ Σ and m

a−→ m′}, and
– q0 = m0.

2.2 Asynchronous I/O-Petri Nets and Their Composition

In this paper we consider systems which may be open for communication with
other systems and may be composed to larger systems. Both the behaviour of
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primitive components and of larger systems obtained by composition can be
described by asynchronous I/O-Petri nets introduced in the following. We as-
sume that communication is asynchronous and takes place via unbounded and
unordered channels such that for each message type to be exchanged within a
system there is exactly one communication channel. The open actions are mod-
elled by distinguished input and output labels while communication inside the
system via the channels is modelled by communication labels. Given a finite set
C of channels, an I/O-alphabet over C is the disjoint union Σ = in ! out ! com
of pairwise disjoint sets in of input labels, out of output labels and com of com-
munication labels, such that Σ ∩ C = ∅, com = {�a, a� | a ∈ C} and in and
out do not contain labels of the form �x or x�. For each channel a ∈ C, the
communication label �a represents consumption of a message from the channel
a and a� represents putting a message on a . Each channel is modelled as a
place and the transitions for communication actions are modelled by putting or
removing tokens from the channel places. Three examples of AIOPNs are shown
in Fig. 1. The nets N1 and N2 model primitive components (without channels)
which repeatedly input and output messages. The net N3 in Fig. 1c models a
simple producer/consumer system with one channel msg obtained by compo-
sition of the two primitive components; see below. Here and in the following
drawings input labels are indicated by “?” and output labels by “!”.

Definition 1 (Asynchronous I/O-Petri net). An asynchronous I/O-Petri
net (AIOPN) is a tuple N = (C,P, T,Σ,W−,W+, λ,m0), such that

– (P, T,Σ,W−,W+, λ,m0) is a labelled Petri net,
– C is a finite set of channels,
– C ⊆ P , i.e. each channel is a place,
– Σ = in ! out ! com is an I/O-alphabet over C,
– for all a ∈ C and t ∈ T ,

W−(a, t) =

{
1 if λ(t) = �a,
0 otherwise

W+(a, t) =

{
1 if λ(t) = a�,

0 otherwise

– for all a ∈ C, m0(a) = 0. ♦

p0

msg!

p1

in?

(a) N1

p2

msg?

p3

out!

(b) N2

p0

msg�

p1

in?

p2

�msg

p3

out!

msg

(c) N3

Fig. 1. Asynchronous I/O-Petri nets
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Two I/O-alphabets are composable if there are no name conflicts between
labels and channels and, following [1], if shared labels are either input labels of
one alphabet and output labels of the other or conversely. For the composition
each shared label a gives rise to a new communication channel, also called a,
and hence to new communication labels a� for putting and �a for removing
messages. The input and output labels of the alphabet composition are the non-
shared input and output labels of the underlying alphabets.

Definition 2 (Alphabet composition). Let ΣS = inS ! outS ! comS and
ΣT = inT ! outT ! comT be two I/O-alphabets over channels CS and CT resp.
ΣS and ΣT are composable if (ΣS ∪ ΣT ) ∩ (CS ∪ CT ) = ∅ and ΣS ∩ ΣT =
(inS ∩ outT ) ∪ (inT ∩ outS).The composition of ΣS and ΣT is the I/O-alphabet
Σ = in ! out ! com over the composed set of channels C = CS !CT !CST , with
new channels CST = ΣS ∩ΣT , such that

– in = (inS \ outT ) ! (inT \ outS),
– out = (outS \ inT ) ! (outT \ inS), and
– com = {a�, �a | a ∈ C}1 ♦

Two AIOPNs can be (asynchronously) composed, if their underlying I/O-
alphabets are composable. The composition is constructed by taking the disjoint
union of the underlying nets and adding a new channel place for each shared
label. Every transition with shared output label a becomes a transition with
the communication label a� that produces a token on the (new) channel place
a and, similarly, any transition with shared input label a becomes a transition
with the communication label �a that consumes a token from the (new) channel
place a. For instance, the AIOPN N3 in Fig. 1c is the result of the asynchronous
composition of the two AIOPNs N1 and N2 in Fig. 1a and Fig. 1b resp. The
newly introduced channel place is the place msg.

Our approach looks very similar to open Petri nets, see e.g. [17], which use in-
terface places for communication. But there are two important differences: First,
we explicitely distinguish channel places thus being able to reason on the com-
munication behaviour between composed components; see Sect. 4. The second
difference is quite important from the software engineer’s point of view. We do
not use interface places to indicate communication abilities of a component but
we use distinguished input and output labels instead. We believe that this has an
important advantage to achieve separation of concerns: The designer of a compo-
nent has not to take care whether the component will be used in a synchronous
or in an asynchronous environment later on; this should be the decision of the
system architect. Indeed open Petri nets already rely on asynchronous composi-
tion while our formalism would also support synchronous composition, see [19],
and mixed architectures. Since synchronous composition relies on matching of
transitions rather than communication channels we have not elaborated this case

1 Σ = in�out�com is indeed a disjoint union, since for all a ∈ CST the communication
labels a�, �a are new names due to the general assumption that input and output
labels are not of the form x�, �x.
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here. The difference between AIOPNs and modal I/O-Petri nets introduced in [8]
is that AIOPNs comprise distinguished channel places but they do not support
modalities for refinement (yet).

Definition 3 (Asynchronous composition of AIOPNs). Let N = (CN ,
PN , TN , ΣN ,W−

N ,W+
N , λN ,m0

N ) and M = (CM, PM, TM, ΣM,W−
M,W+

M, λM,
m0

M) be two AIOPNs. N and M are composable if ΣN and ΣM are composable
and if PN ∩ PM = ∅, (PN ∪ PM) ∩ (ΣN ∩ ΣM) = ∅, and TN ∩ TM = ∅. In
this case their asynchronous composition is the AIOPN N ⊗pn M = (C,P, T,
Σ,W−,W+, λ,m0) defined as follows:

– C = CN ! CM ! CNM, with CNM = ΣN ∩ΣM,
– P = PN ! PM ! CNM,
– T = TN ! TM,
– Σ is the alphabet composition of ΣS and ΣT ,
– W− (resp. W+) is the backward (forward) incidence matrix defined by:

for all p ∈ PN ∪ PM and t ∈ T for all a ∈ CNM and t ∈ T

W−(p, t) =

⎧⎨⎩W−
N (p, t) if p ∈ PN , t ∈ TN

W−
M(p, t) if p ∈ PM, t ∈ TM

0 otherwise
W−(a, t) =

{
1 if λ(t) = �a
0 otherwise

W+(p, t) =

⎧⎨⎩W+
N (p, t) if p ∈ PN , t ∈ TN

W+
M(p, t) if p ∈ PM, t ∈ TM

0 otherwise
W+(a, t) =

{
1 if λ(t) = a�

0 otherwise

– λ : T → Σ is defined, for all t ∈ T , by

λ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λN (t) if t ∈ TN , λN (t) /∈ ΣN ∩ΣM
λM(t) if t ∈ TM, λM(t) /∈ ΣN ∩ΣM
�λN (t) if t ∈ TN , λN (t) ∈ inN ∩ outM
�λM(t) if t ∈ TM, λM(t) ∈ inM ∩ outN
λN (t)� if t ∈ TN , λN (t) ∈ inM ∩ outN
λM(t)� if t ∈ TM, λM(t) ∈ inN ∩ outM

– m0 is defined, for all p ∈ P , such that m0(p) = m0
N (p) if p ∈ PN ,

m0(p) = m0
M(p) if p ∈ PM, and m0(p) = 0 otherwise. ♦

3 Compositional Semantics

We extend the transition system semantics of labelled Petri nets defined in
Sect. 2.1 to AIOPNs. For this purpose we introduce asynchronous I/O-transition
systems which are labelled transition systems extended by channels and a chan-
nel valuation function val : Q −→ NC . The channel valuation function deter-
mines for each state q ∈ Q how many messages are actually pending on each
channel a ∈ C. For q ∈ Q and a ∈ C we use the notation val(q)[a++] to denote
the updated map
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val(q)[a++](x) =

{
val(q)(a) + 1 if x = a,

val(q)(x) otherwise.

The updated map val(q)[a−−] is defined similarly. Instead of val(q)(a) we will
often write val(q, a).

Definition 4 (Asynchronous I/O-transition system). An asynchronous
I/O-transition system (AIOTS) is a tuple S = (C,Σ,Q, q0,−→, val), such that

– (Σ,Q, q0,−→) is a labelled transition system,

– C is a finite set of channels,

– Σ = in ! out ! com is an I/O-alphabet over C,

– val : Q −→ NC is a function, such that for all a ∈ C, q, q′ ∈ Q:

• val(q0, a) = 0,

• q
a�
−→ q′ =⇒ val(q′) = val(q)[a++],

• q
�a−→ q′ =⇒ val(q, a) > 0 and val(q′) = val(q)[a−−], and

• for all x ∈ (in ∪ out), q
x−→ q′ =⇒ val(q′) = val(q). ♦

The first condition for val assumes that initially all communication channels
are empty. The second condition states that transitions with labels a� and �a
have the desired effect of putting one message on a channel (consuming one
message from a channel resp.). The last condition requires that the input and
output actions of an open system do not change the valuation of any channel.
Sometimes we need to reason about the number of messages on a subset B ⊆ C
of the channels in a state q ∈ Q. We define val(q, B) =

∑
a∈B val(q, a).

The semantics of an asynchronous I/O-Petri net N is given by its associated
asynchronous I/O-transition system aiots(N ). It is based on the transition sys-
tem semantics of a labelled Petri net (see Sect. 2.1) such that markings become
states, but additionally we define the valuation of a channel in a current state
m by the number of tokens on the channel under the marking m.

Definition 5 (Associated asynchronous I/O-transition system).
Let N = (C,P, T,Σ,W−,W+, λ,m0) be an AIOPN. The AIOTS associated
with N is given by aiots(N ) = (C,Σ,Q, q0,−→, val), such that

– (Σ,Q, q0,−→) = lts(P, T,Σ,W−,W+, λ,m0),

– for all a ∈ C and m ∈ Q, val(m, a) = m(a). ♦

Example 6. The transition systems associated with the AIOPNs N1 and N2 in
Fig. 1a and 1b have two reachable states and the transitions between them
correspond directly to their Petri net representations. The situation is different
for the AIOPN N3 in Fig. 1c. It has infinitly many reachable markings and
hence its associated AIOTS has infinitely many reachable states. Fig. 2 shows
an excerpt of it. The states indicate the number of tokens in each place in the
order p0, p1,msg, p2, p3. The initial state is underlined.
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01010 10010 01110 10110 01210 10210 01310

01001 10001 01101 10101 01201 10201 01301

in? msg� in? msg� in? msg�

in? msg� in? msg� in? msg�

out! out! out! out! out! out! out!

�msg �msg �msg �msg �msg

Fig. 2. Part of the associated AIOTS for N3 in Fig. 1c

Like AIOPNs also two AIOTSs can be asynchronously composed, if their
underlying I/O-alphabets are composable. The composition is constructed by
introducing a new communication channel for each shared input/output action
and by appropriate transitions for the corresponding communication actions that
modify the valuation of the new channels (see items 3 and 4 in Def. 7). Since
the states of the composition must record the number of messages on the new
channels CST , the state space of the composition adds to the Cartesian product
of the underlying state spaces the set NCST of valuations of the new channels.
For a valuation v : CST �→ N and channel a ∈ CST we use the notation v[a++]
(v[a−−] resp.) to denote the updated map which increments (decrements) the
value of a by 1 and leaves the values of all other channels unchanged.

Definition 7 (Asynchronous composition of AIOTS)
Let S = (CS , ΣS , QS , q0S ,−→S , valS) and T = (CT , ΣT , QT , q0T ,−→T , valT ) be
two AIOTSs. S and T are composable if ΣS and ΣT are composable. In this
case their asynchronous composition is the AIOTS S ⊗ T = (C,Σ,Q, q0,−→,
val) defined as follows:

– C = CS ! CT !CST , with CST = ΣS ∩ΣT ,
– Σ is the alphabet composition of ΣS and ΣT ,
– Q ⊆ QS ×QT × NCST ,
– q0 = (q0S , q0T ,0) ∈ Q, with 0 being the zero-map,
– Q and −→ are inductively defined as follows whenever (qS , qT ,v) ∈ Q:

1: For all a ∈ (ΣS \ CST ), if qS
a−→S q′S then (qS , qT ,v)

a−→ (q′S , qT ,v)
and (q′S , qT ,v) ∈ Q.

2: For all a ∈ (ΣT \ CST ), if qT
a−→T q′T then (qS , qT ,v)

a−→ (qS , q′T ,v)
and (qS , q′T ,v) ∈ Q.

3: For all a ∈ inS ∩ outT ,

3.1: if qS
a−→S q′S and v(a) > 0 then (qS , qT ,v)

�a−→ (q′S , qT ,v[a−−])
and (q′S , qT ,v[a−−]) ∈ Q,

3.2: if qT
a−→T q′T then (qS , qT ,v)

a�
−→ (qS , q′T ,v[a++])

and (qS , q′T ,v[a++]) ∈ Q.



378 S. Haddad, R. Hennicker, and M.H. Møller

4: For all a ∈ inT ∩ outS ,

4.1: if qS
a−→S q′S then (qS , qT ,v)

a�
−→ (q′S , qT ,v[a++])

and (q′S , qT ,v[a++]) ∈ Q,

4.2: if qT
a−→T q′T and v(a) > 0 then (qS , qT ,v)

�a−→ (qS , q′T ,v[a−−])
and (qS , q′T ,v[a−−]) ∈ Q.

– For all (qS , qT ,v) ∈ Q and a ∈ C,

val((qS , qT ,v), a) =

⎧⎪⎨⎪⎩
valS(qS , a) if a ∈ CS

valT (qT , a) if a ∈ CT

v(a) if a ∈ CST

For the rules (1),(3.1) and (4.1), we say that the resulting transition in the
composition is triggered by S. Let ρ be a trace of S ⊗ T starting from a state
q = (qS , qT ,v) ∈ Q. The projection of ρ to S, denoted by ρ|S , is the sequence of
transitions of S, starting from qS , which have triggered corresponding transitions
in ρ. ♦

The following theorem shows that the transition system semantics of asyn-
chronous I/O-Petri nets is compositional. The proof is given in [12].

Theorem 8. Let N and M be two composable AIOPNs. Then it holds that
aiots(N ⊗pn M) = aiots(N ) ⊗ aiots(M) (up to bijection between state spaces).

4 Channel Properties and Their Compositionality

In this section we consider various properties concerning the asynchronous com-
munication via channels. We give a classification of the properties, show their
relationships and prove that they are compositional w.r.t. asynchronous compo-
sition, a prerequisite for incremental design.

4.1 Channel Properties

We consider two classes of channel properties. The first class deals with the
requirements that messages sent to a communication channel should also be
consumed; the second class concerns the termination of communication in the
sense that if consumption from a channel has been stopped then also production
on this channel will stop. The channel properties will be defined by considering
the semantics of AIOPNs, i.e. they will be formulated for AIOTSs.

Some of the properties, precisely the “necessarily properties” of type (c) in
Def. 10 below, rely on the consideration of system runs. In principle a system
run is a maximal execution trace; it can be infinite but also finite if no further
actions are enabled. It is important to remember, that we deal with open systems
whose possible behaviours are also determined by the environment. Hence, the
definition of a system run must take into account the possibility that the system
may stop in a state where the environment does not serve any offered input of the



Channel Properties of Asynchronously Composed Petri Nets 379

system while at the same time the system has no enabled autonomous action, i.e.
an action which is not an input from the environment. Such states will be called
pure input states. They correspond to markings that “stop except for inputs”
in [24]. Note that all possible communication actions inside the system can be
autonomously executed. The same holds for output actions to the environment,
since we are working with asynchronous communication such that messages can
always be sent, even if they are never accepted by the environment. Formally,
system runs are defined as follows.

Let S = (C,Σ,Q, q0,−→, val) be an AIOTS with Σ = in ! out ! com.
A state q ∈ Q is called a pure input state if Post(q,Σ \ in) = ∅, i.e. only in-
puts are enabled. A pure input state is a potential deadlock, as the environment
of S might not serve any inputs for S. Let q1 ∈ Q. A run of S starting in q1
is a trace of S starting in q1, that is either infinite or finite such that its last
state is a pure input state. We denote the set of all runs of S starting from q1
as runS(q1).

In the following we also assume that system runs are only executed in a run-
time infrastructure which follows a weakly fair scheduling policy. In our context
this means that any autonomous action a, that is always enabled from a certain
state on, will infinitely often be executed. Formally, a run ρ ∈ runS(q1) with

q1 ∈ Q, ρ = q1
a1−→ q2

a2−→ · · · , is called weakly fair if it is finite or if it is infinite
and for all a ∈ (Σ \ in) the following holds:

(∃k ≥ 1 . ∀i ≥ k . qi
a−→) =⇒ (∀k ≥ 1 . ∃i ≥ k . ai = a).

We denote the set of all weakly fair runs of S starting from q1 by wfrunS(q1). It
should be noted that for our results it is sufficient to use weak fairness instead
of strong fairness.2

Example 9. Let S = aiots(N3) be the associated AIOTS of the Petri net N3 in
Fig. 1c. An excerpt of S has been shown in Fig. 2. The following are three traces
of S starting in the initial state 01010:

ρ0 = 01010,

ρ1 = 01010
in?−→ 10010

msg�
−→ 01110

�msg−→ 01001,

ρ2 = 01010
in?−→ 10010

msg�
−→ 01110

�msg−→ 01001
out!−→ 01010.

The traces ρ0 and ρ2 are runs of S while ρ1 is not a run, since 01001 is not a
pure input state. Now consider the infinite trace indicated at the bottom line in
Fig. 2, that is an infinite alternation of in? and msg�. The trace is a run, since
it is infinite. But the run is not weakly fair, since from the second state on �msg
is always enabled but never taken.

Our first class of channel properties deals with the consumption of previously
produced messages. We consider four groups of such properties (P1) - (P4)
with different strength. In each case we consider three variants which all are
parametrised w.r.t. a subset B of the communication channels.

2 For a discussion of the different fairness properties see, e.g., [3].
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Let us discuss the consuming properties (P1) of Def. 10 below for an AIOTS
S and a subset B of its channels. Property (P1.a) requires, for each channel
a ∈ B, that if in an arbitrary reachable state q of S there is a message avail-
able on a, then S can consume the message possibly after the execution of
some autonomous actions. Let us comment on the role of the environment for
the formulation of this property. First, we consider arbitrary reachable states
q ∈ Post∗(q0) with q0 being the initial state of S. This means that we take into
account the worst environment which can let S go everywhere by providing (non-
deterministically) all inputs that S can accept. Then, at some point at which a
message is available on channel a, the environment can stop to provide further
inputs and waits whether S can autonomously reach a state q′ ∈ Post∗(q,Σ \ in)
in which it can consume from a, i.e. execute �a. To allow autonomous actions
before consumption is inspired by the property of “output compatibility” stud-
ied for synchronously composed transition systems in [14]. Property (P1.b) does
not allow autonomous actions before consumption. It requires that S can im-
mediately consume the message in state q, similar to the property of specified
reception in [5]. Property (P1.c) requires that the message will definitely be con-
sumed on each weakly fair run of S starting from q and, due to the definition
of a system run, that this will happen in any environment whatever inputs are
provided.

As an example consider the AIOTS S = aiots(N3) associated with the AIOPN
N3 in Fig. 1c and its reachable state 01101 such that one message is on chan-
nel msg. In this state S can autonomously perform the output out! reaching
state 01110 and then it can consume the message by performing �msg. Since
also in all other reachable states in which the channel is not empty S can au-
tonomously reach a state in which it can consume from the channel, S satisfies
property (P1.a) (for its only channel msg). However, S is not strongly con-
suming (P1.b). For instance in state 01101, S cannot immediately consume the
message. On the other hand, S is necessarily consuming (P1.c). Whenever in a
reachable state q the channel is not empty an autonomous action, either �msg
or out!, is enabled. Hence q is not a pure input state and, due to the weak fair-
ness condition, eventually �msg or out! must be performed in any weakly fair
run starting from q. If �msg is performed we are done. If out! is performed we
reach a state where �msg is enabled and with the same reasoning eventually
�msg will be performed. This can be easily detected by considering Fig. 2.

The other groups of properties (P2) - (P4) express successively stronger (or
equivalent) requirements on the kind of consumption. For instance, (P3) requires
that the consumption will lead to a state in which the channel is empty. Again we
distinguish if this can be achieved after some autonomous actions (P3.a), can be
achieved immediately (P3.b), or must be achieved in any weakly fair run (P3.c).

Definition 10 (Consumption properties). Let S = (C,Σ,Q, q0,−→, val)
be an AIOTS with I/O-alphabet Σ = in ! out ! com and let B ⊆ C be a subset
of its channels.
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P1: (Consuming)
a) S is B-consuming, if for all a ∈ B and all q ∈ Post∗(q0),

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . q′
�a−→ .

b) S is strongly B-consuming, if for all a ∈ B and all q ∈ Post∗(q0),

val(q, a) > 0 =⇒ q
�a−→ .

c) S is necessarily B-consuming, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q) . �a ∈ ρ .

P2: (Decreasing)
a) S is B-decreasing, if for all a ∈ B and all q ∈ Post∗(q0),

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, a) < val(q, a) .

b) S is strongly B-decreasing, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, a) < val(q, a) .

c) S is necessarily B-decreasing, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, a) < val(q, a) .

P3: (Emptying)
a) S is B-emptying, if for all a ∈ B and all q ∈ Post∗(q0),

val(q, a) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, a) = 0 .

b) S is strongly B-emptying, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, a) = 0 .

c) S is B-necessarily emptying, if for all a ∈ B and all q ∈ Post∗(q0),
val(q, a) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, a) = 0 .

P4: (Wholly emptying)
a) S is B-wholly emptying, if for all q ∈ Post∗(q0),

val(q, B) > 0 =⇒ ∃q′ ∈ Post∗(q,Σ \ in) . val(q′, B) = 0.

b) S is strongly B-wholly emptying, if for all q ∈ Post∗(q0),
val(q, B) > 0 =⇒ ∃q′ ∈ Post(q,Σ \ in) . val(q′, B) = 0.

c) S is B-necessarily wholly emptying, if for all q ∈ Post∗(q0),
val(q, B) > 0 =⇒ ∀ρ ∈ wfrunS(q), ∃q′ ∈ ρ . val(q′, B) = 0 . ♦

Note if the initial state of S is reachable from all other reachable states, i.e. the
initial state is a home state, then S is B-wholly emptying.

The next class of channel properties concerns the termination of communica-
tion. We consider two variants: (P5.a) requires that in any weakly fair run, in
which consumption from a channel a has stopped, only finitely many subsequent
productions are possible, i.e. the channel is closed after a while. Property (P5.b)
expresses that the channel is immediately closed.

Definition 11 (Communication stopping). Let S be an AIOTS and B ⊆ C
be a subset of its channels.

P5: (Communication stopping)
a) S is B-communication stopping, if for all q ∈ Post∗(q0), ρ ∈ wfrunS(q)

and a ∈ B, �ρ(
�a) = 0 =⇒ �ρ(a

�) < ∞ .

b) S is strongly B-communication stopping, if for all q ∈ Post∗(q0), ρ ∈
wfrunS(q) and a ∈ B, �ρ(

�a) = 0 =⇒ �ρ(a
�) = 0 . ♦
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We say that an AIOTS S has a channel property P , if S has property P with
respect to the set C of all channels of S.

Definition 12 (Channel properties of AIOPNs). Let P be an arbitrary
channel property as defined above. An AIOPN N has property P w.r.t. some
subset B of its channels if its generated AIOTS aiots(N ) has property P w.r.t.
B; N has property P if aiots(N ) has property P .

Relevance of Channel Properties. The generic properties that we have de-
fined fit well with properties related to specific distributed mechanisms, algo-
rithms and applications. For instance:

– When sending an email the user must be confident that its mail will be even-
tually read. Such a property can be formalized as the necessarily consuming
property.

– Most distributed applications can be designed with an underlying token cir-
culation between the processes of the applications. This requires that at any
time there is at most one token in all channels and that this token can be im-
mediately handled. Such a property can be formalized as the strong wholly
emptying property.

– Recovery points are useful for applications prone to faults. While algorithms
for building recovery points can handle non-empty channels, the existence
(and identification) of states with empty channels eases this task. Such a
property can be formalized as the necessarily wholly emptying property.

– In UNIX, one often requires that a process should not write in a socket when
no reader of the socket is still present (and this could raise a signal). Such a
property can be formalized as the strong communication stopping property.

4.2 Relationships between Channel Properties

Table 1 shows relationships between the channel properties and pointers to ex-
amples of AIOPNs from Fig. 1 and Fig. 3 which have the indicated properties.

All the downward implications inside the boxes are direct consequences of the
definitions. It is trivial to see that downward implication 3 is an equivalence, since
immediate consumption leads to a decreasing valuation. Downward implications
9 and 16 are equivalences, since repeated decreasing of messages on a channel
will eventually lead to an empty channel. The implications 4, 5, 7, 11-14 and 18
are proved in [12]. Additionally we have that all properties in box b) of Tab. 1
imply the strongest property in box a), since if S is strongly B-consuming we
can by repeated consumption empty all channels in B.

Let us now discuss some counterexamples. As discussed in Sect. 4.1, a coun-
terexample for the converse of implication 7 is the AIOPN N3 in Fig. 1c. An
obvious counterexample for the converse of the implications 2, 10, 11, 12, 13 is
given by the AIOPN N4 shown in Fig. 3a. N4 is also a counterexample for impli-
cation 6. The AIOPN N5 in Fig. 3b with channels a and b is a counterexample
for the converse of implication 15. The net can empty each single channel a and
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Table 1. Relationships between channel properties and examples

b) c) a)

Strongly wholly emptying
4⇒ Necessarily wholly emptying

11⇒ Wholly emptying
(e.g. N3,N4,N6)

⇓1 ⇓8 ⇓15

Strongly emptying
5⇒ Necessarily emptying

12⇒ Emptying
(e.g. N3,N4,N5,N6)

⇓2 �9 �16

Strongly decreasing
6

�⇒ Necessarily decreasing
13⇒ Decreasing

(e.g. N4) (e.g. N3,N4,N5,N6)
�3 ⇓10 ⇓17

Strongly consuming
7⇒ Necessarily consuming

14⇒ Consuming
(e.g. N4) (e.g. N3,N4,N5) (e.g. N3,N4,N5,N6)

⇓18

Strongly com. stopping
(e.g. N3,N4,N5)

⇓19

Com. stopping
(e.g. N3,N4,N5)

b but it can never have both channels empty at the same time (after the first
message has been produced on a channel). A counterexample for the converse
of implication 14 is shown by the net N6 in Fig. 3c. The net can put a token on
the channel a, but afterwards the transition �a is not necessarily always enabled
which means there exists a weakly fair run such that there is always a token in
a and �a is never fired.

Counterexamples for the converse of implication 17 rely on the idea to produce
twice while consuming once. A counterexample for the converse of implication
18 is provided by a net that first produces a finite number n of messages on
a channel, then it consumes less than n of these messages and then it stops.
Counterexamples for the remaining converse implications are straightforward to
construct.

4.3 Compositionality of Channel Properties

Modular verification of systems is an important goal in any development method.
In our context this concerns the question whether channel properties are pre-
served in arbitrary environments or, more precisely, whether they are preserved
under asynchronous composition. In this section we show that indeed all channel
properties defined above are compositional. This can be utilised to get a method
for incremental design. The proofs of the results of this section are given in [12].

In order to relate channel properties of asynchronous compositions to channel
properties of their constituent parts we need the next two lemmas. The first
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a� a �a

(a) N4

a�

�b

a

b

�a

b�

2

2

(b) N5

a� �a

p0

out!

out!

p1a

(c) N6

Fig. 3. Examples of AIOPNs

one shows that autonomous executions of constituent parts (not involving in-
puts) can be lifted to executions of compositions. This is the essence to prove
compositionality of the properties of type (a) and type (b) in Def. 10.

Lemma 13. Let S = (CS , ΣS , QS , q0S ,−→S , valS), T = (CT , ΣT , QT , q0T ,−→T ,
valT ) be two composable AIOTSs, and let S ⊗ T = (C,Σ,Q, q0,−→, val). For
all (qS , qT ,v) ∈ Post∗(q0) and σ ∈ (ΣS \ inS)∗ it holds that

qS
σ−→S q′S =⇒ ∃v′ . (qS , qT ,v)

σ̄−→ (q′S , qT ,v′),
with σ̄ ∈ (Σ \ in)∗ obtained from σ by replacing any occurrence of a shared label
a ∈ outS ∩ inT by the communication label a�.

The next lemma is crucial to prove compositionality of the “necessarily” proper-
ties of type (c) in Def. 10 and the communication stopping properties in Def. 11.
It shows that projections of weakly fair runs are weakly fair runs again. This
result can only be achieved in the asynchronous context.

Lemma 14. Let S, T be two composable AIOTSs, and S ⊗ T = (C,Σ,Q, q0,
−→, val). Let q = (qS , qT ,v) ∈ Q and ρ ∈ wfrunS⊗T (q) be a weakly fair run.
Then ρ|S ∈ wfrunS(qS), is a weakly fair run.

Proposition 15 (Compositionality of Channel Properties). Let S and T
be two composable AIOTSs such that CS is the set of channels of S. Let B ⊆ CS
and let P be an arbitrary channel property as defined in Sec. 4.1. If S has property
P with respect to the channels B, then S ⊗ T has property P with respect to the
channels B. This holds analogously for asynchronous I/O-Petri nets (due to the
compositional semantics of AIOPNs; see Thm. 8).

Proposition 15 leads to the desired modular verification result for all properties
except wholly emptying (P4): In order to check that a composition N ⊗pn M



Channel Properties of Asynchronously Composed Petri Nets 385

of two AIOPNs has a channel property P , i.e. P holds for all channels of the
composition, it is sufficient to know that N andM have property P and to prove
that N ⊗pn M has property P with respect to the new channels introduced by
the asynchronous composition.

Theorem 16 (Incremental Design). Let N and M be two composable
AIOPNs with shared actions ΣN ∩ΣM and let P be an arbitrary channel prop-
erty but (P4). If both N and M have property P and if N ⊗pn M has property
P with respect to the new channels ΣN ∩ΣM, then N ⊗pn M has property P .

5 Decidability of Channel Properties

We begin this section by recalling some information related to semi-linear sets
and decision procedures in Petri nets that we use in our proofs.

Let E ⊆ Nk, E is a linear set if there exists a finite set of vectors of Nk

{v0, . . . , vn} such that E = {v0 +
∑

1≤i≤n λivi | ∀i λi ∈ N}. A semi-linear
set [10] is a finite union of linear sets; a representation of it is given by the
family of finite sets of vectors defining the corresponding linear sets. Semi-linear
sets are effectively closed w.r.t. union, intersection and complementation. This
means that one can compute a representation of the union, intersection and
complementation starting from a representation of the original semi-linear sets.
E is an upward closed set if ∀v ∈ E. v′ ≥ v ⇒ v′ ∈ E. An upward closed set
has a finite set of minimal vectors denoted min(E). An upward closed set is a
semi-linear set which has a representation that can be derived from the equation
E = min(E) + Nk if min(E) is computable.

Given a Petri net N and a marking m, the reachability problem consists in
deciding whether m is reachable from m0 in N . This problem is decidable [18]
but none of the associated algorithms are primitive recursive. Furthermore this
procedure can be adapted to semi-linear sets when markings are identified to
vectors of N|P |. Based on reachability analysis, the authors of [9] design an
algorithm that decides whether a marking m is a home state, i.e. m is reachable
from any reachable marking. A more general problem is in fact decidable: given
a subset of places P ′ and a (sub)marking m on this subset, is it possible from
any reachable marking to reach a marking that coincides on P ′ with m?

In [20], the coverability is shown to be EXPSPACE-complete. The coverability
problem consists in determining, given a net and a target marking, whether one
can reach a marking greater or equal than the target. In [26] given a Petri net,
several procedures have been designed to compute the minimal set of markings
of several interesting upward closed sets. In particular, given an upward closed
set Target, by a backward analysis one can compute the (representation of)
upward closed set from which Target is reachable. Using the results of [20], this
algorithm performs in EXPSPACE.

While in Petri nets, strong fairness is undecidable [6], weak fairness is decid-
able and more generally, the existence of an infinite sequence fulfilling a formula
of the following fragment of LTL is decidable [15]. The literals are (1) compar-
isons between places markings and values, (2) transition firings and (3) their



386 S. Haddad, R. Hennicker, and M.H. Møller

negations. Formulas are inductively defined as literals, conjunction or disjunc-
tion of formulas and GFϕ where GF is the infinitely often operator and ϕ is a
formula.

The next theorem establishes the decidability of the strong properties of type
(b) of Def. 10. Observe that their proofs given in [12] are closely related and that
they rely on the decidability of reachability and coverability problems.

Theorem 17. The following problems are decidable for AIOPNs: Is an AIOPN
N strongly B-consuming, strongly B-decreasing, strongly B-emptying, strongly
B-wholly emptying?

The next theorem establishes the decidability of the properties of type (a) of
Def. 10. Observe that their proofs rely on (1) the effectiveness of backward
analysis for upward closed marking sets (2) the decidability of reachability and
home space problems and (3) appropriate transformations of the net.

Theorem 18. The following problems are decidable for AIOPNs: Is an AIOPN
N B-consuming, B-decreasing, B-emptying, B-wholly emptying?

Proof.
B-consuming. Given an AIOPN N and B a subset of its channels, one decides
whether N is B-consuming as follows.

Let a ∈ B and Ea be the upward closed set of markings defined by:
Ea = {m | ∃t ∈ T with λ(t) = �a and m ≥ W−(t)}

Ea is the set of markings from which one can immediately consume some mes-
sage a. Let Fa be the upward closed set of markings defined by:

Fa = {m | ∃m′ ∈ Ea ∃σ ∈ T ∗. λ(σ) ∈ (Σ \ in)∗ ∧m
σ−→ m′}

Fa is the set of markings from which one can later (without the help of the en-
vironment) consume some message a. One computes Fa by backward analysis.
Let G be defined by: G = {m | ∃a ∈ B. m(a) > 0 ∧m /∈ Fa}
G is a semi-linear set corresponding to the markings from which some message
a ∈ B will never be consumed. Then N is not B-consuming iff G is reachable.

B-emptying (and B-decreasing). Given an AIOPN N and B a subset of its
channels, one decides whether N is B-emptying as follows. First one builds a
net N ′:
– P ′ = P ! {run}
– T ′ = T ! {stop}
– ∀p ∈ P ∀t ∈ T W ′−(p, t) = W−(p, t),W ′+(p, t) = W+(p, t), m′0(p) = m0(p)
– W ′−(run, stop) = 1,, W ′+(run, stop) = 0, m′0(run) = 1
– ∀p ∈ P W ′−(p, stop) = W ′+(p, stop) = 0
– ∀t ∈ T such that λ(t) ∈ in W ′−(run, t) = W ′+(run, t) = 1
– ∀t ∈ T such that λ(t) /∈ in W ′−(run, t) = W ′+(run, t) = 0
N ′ behaves as N as long as stop is not fired. When stop is fired only transitions
not labelled by inputs are fireable. Thus N is B-emptying iff for all a ∈ B the
set of markings Za = {m | m(a) = 0} is a home space for N ′.

B-wholly emptying. Using the same construction N is B-weakly wholly emp-
tying if ZB = {m | m(B) = 0} is a home space for N ′.

� 
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The next theorems, whose proofs are given in [12], establish the decidability of
the necessarily properties of type (c) of Def. 10 and the communication stopping
properties.

Theorem 19. The following problems are decidable for AIOPNs: Is an AIOPN
N necessarily B-consuming, necessarily B-decreasing, necessarily B-emptying,
necessarily B-wholly emptying?

Theorem 20. The following problems are decidable for AIOPNs: Is an AIOPN
N B-communication stopping, strongly B-communication stopping?

6 Conclusion and Future Work

We have introduced asynchronously composed I/O-Petri nets and we have stud-
ied various properties of their communication channels based on a transition
system semantics. Useful links between the channel properties are established.
We have shown that the channel properties are compositional thus supporting
incremental design. Moreover we have shown that the channel properties for
AIOPNs are decidable. This work can be extended in at least three directions.
The first direction would introduce new operations on AIOPNs, like hiding, to
design component systems in a hierarchical way by encapsulating subsystems.
The second direction concerns more general communication schemes like broad-
casting. Finally, we want to establish conditions for the preservation of channel
properties along the “vertical axis” namely by refinement, in particular within
the framework of modal Petri nets as considered in [8].

Acknowledgement. We would like to thank the reviewers of the submitted
version of this paper for many useful comments which led to a major restructur-
ing of the paper.
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Abstract. MARCIE is a tool for the analysis of generalized stochastic
Petri nets which can be augmented by rewards. The supported analy-
sis methods range from qualitative and quantitative standard properties
to model checking of established temporal logics. MARCIE’s analysis
engines for bounded Petri net models are based on Interval Decision
Diagrams. They are complemented by simulative and approximative en-
gines to allow for quantitative reasoning on unbounded models. Most of
the quantitative analyses benefit from a multi-threaded implementation.
This paper gives an overview on MARCIE’s functionality and architec-
ture and reports on the recently added feature of CSRL and PLTLc
model checking.

Keywords: generalized stochastic Petri nets, model checking, simula-
tion.

1 Objectives

Generalized stochastic Petri nets (GSPN ) are a widely used formalism in ap-
plication fields as performance evaluation of technical systems, or synthetic and
systems biology. Augmented with rewards they permit intuitive modeling and
powerful analyses of inherently concurrent stochastic systems. As their seman-
tics can be mapped to Continuous-time Markov chains (CTMC), a wide range
of quantitative analysis methods up to probabilistic model checking is available.

There are several tools supporting different kinds of efficient CTMC analysis,
e.g., by applying symbolic techniques or discrete event simulation. However, their
use is often restricted by specific constraints. There are tools which support only
the analysis of bounded models, even if discrete event simulation is used. Some
tools enable the augmentation of CTMC models by rewards, but do not provide
model checking of related temporal logics as the Continuous Stochastic Reward
Logic (CSRL). Most tools do not support multi-threading, although this could
drastically decrease the runtime of the analyses. Often tools demand for skilled
users with sophisticated insights how to specify the model best and how to
set the most appropriate tool parameters to configure internal data structures
and algorithms. Dedicated simulation tools generally support only the simple
generation of traces, although more advanced evaluation would be desirable.
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MARCIE overcomes these problems and integrates all features into one tool
dedicated to the analysis of GSPN extended by rewards.

2 Functionality

In this section we give an overview of MARCIE’s functionality with special focus
on its latest extensions. The numbers given in round brackets refer to Fig. 3.

2.1 Net Classes

Basically, MARCIE analyses GSPN augmented by rewards. However, MAR-
CIE’s internal net representation (1) distinguishes the following net classes as
the range of supported analysis capabilities depends on them. The core build
place/transition Petri nets extended by read and inhibitor arcs. As they do not
contain any time information, we call them qualitative Petri nets (QPN ). Fig. 1
shows a very simple QPN for a producer and a consumer connected by an
N -bounded buffer.

We speak of stochastic Petri nets (SPN ) if all transitions carry further infor-
mation in terms of firing rates which govern exponentially distributed waiting
times. We obtain generalized stochastic Petri nets (GSPN ) if additionally imme-
diate transitions (no waiting time) are allowed. SPN and GSPN can be enriched
by rewards which can be associated with states (rate rewards) or transitions (im-
pulse rewards). They are specified by reward definitions in a style similar to [19].
A reward definition consists of a set of reward items – state reward items and
transition reward items. A reward item specifies a set of states by means of a
guard and a possibly state-dependent reward function defining the actual reward
value. We call an SPN augmented with rate rewards a stochastic reward net
(SRN ), and a GSPN augmented with arbitrary rewards a generalized stochas-
tic reward net (GSRN ). Rewards do not change the state space, but prepare
the ground for more convenient and powerful analyses.

2.2 Engines

IDD Engine. (3) A cornerstone of MARCIE is its efficient implementation
of Interval Decision Diagrams (IDD) [29]. Three different state space genera-
tion algorithms (4) were implemented upon this. The first one is the common
Breadth-First Search (BFS) algorithm. All transitions fire in one iteration once

producer consumerbuffer

receivesendproduce consume
N

Fig. 1. A producer/consumer system with a buffer of size N
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according to the transition order before adding the new states to the state space.
The second algorithm is called Transition chaining. It works like BFS, but the
state space is updated after the firing of each single transition. The Saturation
algorithm is the last one. Transitions fire in conformance with the decision dia-
gram. A transition is saturated if its firing does not add new states to the current
state space. It should be noted that the efficiency of Chaining and Saturation
depends on the transition order.

Having the state space, MARCIE permits to find dead states and to decide
reversibility and liveness of transitions, which involves a symbolic decomposition
of the state space into strongly connected components.

The implemented IDD engine enjoys several features to address efficiency
issues, as for instance the concept of shared DDs, fast detection of isomorphic
sub-diagrams by use of a unique table, and efficient operation caches; see [29]
for a detailed discussion. Furthermore, the engine offers dedicated operations
for forward and backward firing of Petri net transitions. It is well known that
the variable order used for constructing a DD may have a strong influence on
its size in terms of number of nodes, and thus on the performance of all related
operations. To find an optimal variable order is an NP-hard problem. MARCIE’s
heuristic to pre-compute static variable orders has a simple underlying idea. It
examines the structure of the given Petri net and arranges dependent places close
to each other. Two places are dependent if there is a transition which affects
both places [20]. MARCIE’s order generator (2) offers seven options to control
the generation of the place order, and six options to influence the transition
order.

Symbolic CTMC Engine. (6) MARCIE provides exact quantitative analy-
ses based on the computation of various probability distributions. Its symbolic
engine is responsible for a compact representation of the real-valued state transi-
tion relation, amatrix, and some efficient numerical operations which are basically
matrix-vector multiplications. The engine combines IDD-based state space encod-
ing and “on-the-fly” generation of the state transitions which are labeled with the
firing rates of stochastic transitions or the firing probabilities of immediate transi-
tions. The computation vectors and the entries of the matrix diagonals are explic-
itly stored in arrays of double precision type and represent the actual limitation of
applicability as their size equals the number of reachable states. On current work-
stations this still allows us to consider models with more than 109 states.

MARCIE computes the instantaneous and cumulative transient probability
distribution and the steady state probability distribution for GSPN , and the
joint distribution of time and accumulated reward, a special case of Meyer’s
performability, for SRN . For the latter, MARCIE makes use of Markovian ap-
proximation [5] and transforms the SRN description into an SPN . For more
details we refer to [26,28,25].

Approximative CTMC Engine. (7) To overcome the problem of an unman-
ageable state space size, MARCIE provides an approximative CTMC engine.
This engine dynamically restricts the number of states. The basic idea is to
combine a breadth-first variant of the state space construction with a transient
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analysis using uniformization [7]. During construction, all explored states having
a probability below a specified threshold will be removed from the current state
space. The default threshold is 10−11, but can be changed by the user. Thus,
only a finite subset of a possibly infinite state space will be considered. Contrary
to the symbolic CTMC engine, it uses an explicit state space representation.

The approximative engine can handle SPN and GSPN . The results can
be exported in comma separated values (CSV) format for plotting or further
analysis.

Stochastic Simulation Engine. (8) If the approximative numerical analysis ex-
ceeds the available memory, the method of choice has to be simulation. MARCIE
provides two stochastic simulation algorithms – the direct method introduced
by Gillespie [12], and the next reaction method introduced by Gibson & Bruck
[11]. Stochastic simulation generates paths of finite length of a possibly infinite
CTMC. In contrast to numerical analysis, simulation has a constant memory
consumption, because only the current state is hold in memory.

Generally it is necessary to perform a sufficient number of simulation runs
due to the variance of the stochastic behavior. We choose the confidence interval
method as described in [22] to determine the required number of simulation runs.
The user can specify the confidence interval by defining the confidence level,
usually 95% or 99%, and the estimated accuracy, e.g., 10−3 or 10−4. MARCIE
calculates the required number of simulation runs to achieve this confidence
interval. Alternatively, the user can set the number of simulation runs manually.

The individual simulation runs are done independently from each other. Thus,
it is not challenging to parallelize stochastic simulations. MARCIE provides a
multi-threaded simulation engine. Stochastic simulation results can be exported
in CSV format for visualization, further analyses or documentation purposes.

This engine can not only treat GSPN , but also XSPN ; see [14] for details.

2.3 Model Checkers

CTL (5) The Computation Tree Logic (CTL) [4] is a widely used branching
time logic. It permits to specify properties over states and paths of a labeled
transition system (LTS), the Kripke structure. Path quantifiers specify whether
path formulas, which can be written by means of temporal operators, should
be fulfilled on all paths or at least on one path starting in some state. One can
interpret the reachability graph of a Petri net as a Kripke structure and thus
apply CTL model checking algorithms. MARCIE supports symbolic CTL model
checking for QPN based on its IDD engine, for details see [29].

CSL (9) The Continuous Stochastic Logic (CSL) [1] is the stochastic counter-
part to CTL. The path quantifiers of CTL are replaced by the probability oper-
ator P . The usual temporal operators are decorated with time intervals. In [2],
CSL has been extended by the steady state operator S and by time-unbounded
versions of the temporal operators. The basic CSL model checking algorithm is
similar to the one for CTL, but additionally requires to compute steady state
and transient probabilities. MARCIE supports CSL model checking of GSPN
based on its exact symbolic engine. Unnested formulas can also be checked with
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the simulative engine. If CSL formulas are unnested and time bounded, it is also
possible to use the approximative engine.

Reward Measures. In addition to CSL, special operators for the computation
of expectations of instantaneous and cumulative state and transition rewards
have been introduced [19]. MARCIE’s symbolic CTMC and simulation engines
support these measures, too. A genuine extension of CSL by rewards is presented
in the next section.

2.4 New Functionalities

We now discuss in more details the latest features integrated into MARCIE.

Abstract Net Definition Language. MARCIE reads Petri net models defined
in the Abstract Net Description Language (ANDL) [24]. ANDL is a lightweight
and human readable description language with semantical and syntactical simi-
larities to a guarded command language. However, contrary to, e.g., the PRISM
language [16], ANDL enjoys an explicit Petri net semantics and defines addi-
tional transition types and rate function patterns.

ANDL complements model specification with bloated XML-based languages
like PNML [15] (which MARCIE does support for QPN ) and serves as exchange
format between MARCIE and its friend Snoopy [13], which can be used to
construct QPN , SPN , GSPN , and XSPN .

The ANDL specification of the running SPN example in Fig. 1 and an addi-
tional reward definition are given in Fig. 2.

spn [procon] {
constants:

int cap; // buffer capacity
double p_rate; // production rate
double c_rate; // consumption rate

places:
producer = 1;
consumer = 0;
buffer = 0;

transitions:
receive : [consumer < 1] : [consumer + 1] & [buffer - 1] : 1;
send : [buffer < cap] : [buffer + 1] & [producer - 1] : 1;
produce : [producer < 1] : [producer + 1] : p_rate;
consume : : [consumer - 1] : c_rate;

}

rewards [ r2r ] {
/* states where the

consumer is ready to
receive, have
a reward of 1
*/
consumer > 0 : 1 ;

}

Fig. 2. The ANDL specification of a scalable SPN for the producer/consumer model.
The buffer capacity and the rates of item production and consumption are defined
by constants. The SPN is augmented by the separate reward definition r2r which
associates a reward of one to states where the consumer can receive an item.

Continuous Stochastic Reward Logic. (9) As a new feature MARCIE sup-
ports the Continuous Stochastic Reward Logic (CSRL) [5]. CSRL is a superset
of CSL and augments the temporal operators with additional reward intervals.
Re our example and the reward definition r2r, we can ask for instance for the
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probability to reach within t time units a state where the buffer is full. We may
also expect that the consumer is ready to receive for at least half of the time
period. Thus we specify the reward interval [t/2, t], and obtain the CSRL formula

P [r2r]
=? [F

[0,t]
[t/2,t]buffer = cap] .

The extent of MARCIE’s support of CSRL model checking depends on the en-
gines. The simulative engine supports unnested CSRL formulas for GSRN . The
symbolic engine currently supports full CSRL for SRN . It uses Markovian ap-
proximation to transform the SRN into an SPN and maps the CSRL formula
to a CSL formula with the reward bounds encoded as state properties. For more
details we refer to [25].

Probabilistic Linear-Time Temporal Logic. (10) Besides the branching
time temporal logics CTL and CSRL, MARCIE supports the Probabilistic Linear-
time Temporal Logic with numerical constraints (PLTLc) [9]. In PLTLc, one can
encode formulas on the future of paths through the state space of the model un-
der study. So, it is quite obvious to deploy stochastic simulation to verify PLTLc
formulas, because that is what stochastic simulation does – to compute paths
through the model’s state space. In contrast to branching time logics, PLTLc
can not compute the probabilities of a given state, because it operates on paths,
not on distributions. Therefore, it is impossible to nest the probability operator
P in PLTLc. We recently extended PLTLc to check time-unbounded temporal
operators, see [21].

Unlike symbolic model checking, simulative model checking computes a con-
fidence interval of the expected probability rather than the concrete value, i.e.,
simulative model checking calculates probabilities up to a certain accuracy, which
is the width of the confidence interval. Besides the standard return value of the
P operator, the PLTLc model checker yields the expected probabilities of the
domains of free variables (denoted with $) for which the formula holds. Back
to our example, the maximum number of tokens on the place buffer up to time
point t and their probabilities can be determined with the following formula

P=?[F
[0,t]buffer > $x] .

The PLTLc model checker works with any exact stochastic simulation algorithm,
e.g., the direct method and the next reaction method, both are implemented in
MARCIE. The model checking procedure is done on-the-fly, i.e., the formula is
checked while the trace is generated. Furthermore, pre-computed integer traces
given in CSV format can be verified.

3 Architecture

In the following we present the basic tool architecture, which is depicted in Fig. 3.
We sketch the main ideas which we took into consideration during the develop-
ment of MARCIE’s components to achieve highly efficient analysis capabilities.
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Fig. 3. MARCIE’s architecture and its eleven components

MARCIE is entirely written in the programming language C++ with intensive
use of template programming. It builds on the GNU multiple precision library
and several parts of the boost library.

Currently, all parsers (11) for the actual Petri nets, CTL and CSRL formulas,
reward definitions, as well as place and transition orders are built on the aging
lexical analyzer Flex and parser generator Bison. We are about to move to the
lightweight parser generator Spirit from the boost library, as it has already been
done for the PLTLc parser. See [24] for detailed input syntax specifications.

4 Comparison with Other Tools

One could create a long list of tools, supporting the analysis of CTMCs and
related formalisms and, thus, indirectly stochastic Petri nets as well. Due to the
lack of space we confine ourselves to a very brief shortlist. Table 1 compares the
main features. An elaborated comparison of CSL model checkers can be found
in [17], comprising explicit, symbolic and simulative engines.

The probabilistic model checker PRISM [16] supports analysis of CTMCs,
DTMCs and Markov Decision Processes by means of CSL, PCTL, and LTL, and
exploits Multi-Terminal BDDs. It also permits the computation of expectations
of reward measures and defines its own model description language in the style
of guarded commands which can be easily used to specify bounded SPN . An
extensive performance comparison of MARCIE and PRISM was done in [27].
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Table 1. Feature comparison of MARCIE and related tools. Entries in round brackets
suggest a look in the tool’s manual for further details.

MARCIE Prism MRMC Smart Möbius

Q
u
a
li
ta
ti
v
e Net classes XPN SPN — GSPN (XSPN )

State space
generation

BFS,
Chaining,
Saturation

BFS —
BFS,

Chaining,
Saturation

BFS

Orders heuristics plain — plain plain

Standard
properties

� (�) — (�) —

Model
checker

CTL — — CTL —

N
u
m
er
ic
a
l

Net classes GSPN SPN (SPN ) GSPN (XSPN )

Transient � � � � �
Steady state � � � � �
Rewards � � � — �
Model
checker

CSRL CSL (CSRL) — —

Multi
threading

(�) — — — —

S
im

u
la
ti
v
e

Net classes XSPN SPN (SPN ) — XSPN
Transient � � � — �

Steady state � — � — �
Rewards � � — — �
Model
checker

(CSRL),
PLTLc

(CSL) (CSL) — —

Multi
threading

� — — — �

See also [26], where we compared PRISM and MARCIE’s predecessor IDD-MC
concerning transient analysis of biological models.

Another CSL model checker is the Markov Reward Model Checker (MRMC)
[18]. It also offers analysis capabilities for CTMCs and related formalisms based
on temporal logics. Besides MARCIE, it is the only tool supporting model check-
ing of CSRL formulas. MRMC uses sparse representations to encode state space
and matrices. Special features are bisimulation-based state space reduction and
simulative steady state detection. MRMC provides simulative model checking of
unnested CSL. It requires third party tools to generate the actual Markov model,
which becomes prohibitive with increasing file size.

A further popular tool is SMART [3]. It offers qualitative and quantitative anal-
ysis of GSPN with marking-dependent arcs and defines its own model descrip-
tion language. SMART supports CTL, but not CSL model checking, in spite of
its ability to compute transient and steady state probabilities. The user can choose
between various explicit and symbolic storage strategies for the state space
(e.g., AVL trees,Multi-valued DecisionDiagrams (MDDs)) and for the rate matrix
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(e.g., Kronecker representations,Multi-TerminalMDDs, Edge-ValuedMDDs, Ma-
trix Diagrams (MxD)). However, some of these storage strategies force the user to
obey somemodeling restrictions.Theuse ofMDDs,which, e.g., allow for saturation-
based reachability analysis, requires to specify a suitable place partition.

A tool which offers explicit, symbolic (MDD, MxD, MTBDD, Lumping) and
multi-threaded simulative analysis is Möbius [6].

None of these tools supports the numerical approximation algorithm for com-
puting transient solutions of stochastic models as implemented in MARCIE. To
the best of our knowledge, the tool Sabre [8] is besides MARCIE the only publicly
available implementation. But in contrast to MARCIE, Sabre does not include
any model checking capabilities.

The Monte Carlo Model Checker MC2 [9] validates PLTLc formulas, but does
not include any simulation engine. MC2 works offline by reading a set of sampled
trajectories, generated by any simulation or ODE solver software.

Furthermore, there exist a great variety of dedicated simulation tools, e.g.,
StochKit2 [23], but all lack advanced analysis methods.

5 Installation

MARCIE is available for non-commercial use. We provide statically
linked, self-contained binaries for Mac OS X, and Linux. The tool,
its manual and a benchmark suite can be found on our website
http://www-dssz.informatik.tu-cottbus.de/marcie.html. Currently,
MARCIE itself comes with a textual user interface. Tool options and input files
can also be specified by a generic Graphical User Interface (GUI), written in
Java, which can be easily configured by means of an XML description. The GUI
is part of our Petri net analyzer Charlie [10].
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Abstract. CPN Tools is an advanced tool for editing, simulating, and
analyzing colored Petri nets. This paper discusses the fourth major re-
lease of the tool, which makes it simple to use the tool for ordinary Petri
nets, including adding inhibitor and reset arcs, and PNML export. This
version also supports declarative modeling using constraints, and adds
an extension framework making it easy for third parties to extend CPN
Tools using Java.

1 Introduction

CPN Tools [2] is a popular tool for modeling and analysis of colored Petri nets [6]
(CP-nets). The large user base and several years of development has resulted
in a stable and versatile tool for users and researchers working with CP-nets.
CPN Tools incremental syntax check of models, making it very accessible for
beginners, and provides tools for analysis both by means of simulation and state
space generation, making it useful for research and industry alike. Unfortunately,
some design choices made when starting CPN Tools development make it difficult
to use for developers and researchers working with other formalisms similar to
CP-nets. Furthermore, the modeling power of CP-nets imposes a certain mental
overhead which is not desirable when performing simple modeling tasks. In this
paper, we present the 4th major version of CPN Tools, which aims to make
CPN Tools even more useful for regular users, and also provide developers and
researchers with a solid base for simple extension development.

Colored Petri nets extend basic Petri nets (also known as place-transition Petri
nets or PT-nets) [3] with distinguishable tokens and data types. This makes it
possible to share net structure by relying on inscriptions. CP-nets constitute
a pure extension and can hence simulate PT-net models. This often incurs a
penalty in modeling complexity, however. CPN Tools 4 alleviates this by as-
suming sensible defaults for all inscriptions, which makes it possible to make a
PT-net model in CPN Tools with the same syntax and amount of work required
in a native PT-net editor.
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CPN Tools 4 also allows users to use the full syntax of the Declare [17] work-
flow language. This language does not explicitly focus on the control- or data-flow
of models, but instead allows users to specify requirements on the order of exe-
cution of actions (transitions) such as “transition A cannot be executed before
transition B” or “it is not possible to execute both transitions A and B”. This is
very useful for abstract specifications, especially in early phases, where the ex-
act control-flow is of less significance. Some Declare constraints are very verbose
to express explicitly, including the constraint stating that “it is not allowed to
execute any transitions before A”. Thus, by embedding the Declare language,
CPN Tools 4 makes it possible to use the tool earlier in the development process,
and later specify the declarative requirements more explicitly using classical net
constructions or just retain the declarative specifications, as CPN Tools allows
freely mixing of CP-nets, PT-nets, and Declare constraints.

Many low-level variants of Petri nets include extended syntax to extend the
expressivity of the formalisms. CP-nets do not need these extensions as they
can be expressed using common and documented patterns [1], but often these
extensions constitute a shorthand which may be useful for recognition and ease
of modeling. By embracing low-level nets, we think it is beneficial to support
some of these extensions in CPN Tools as well. The focus has been on adding
the most useful extensions in the most conservative way. We aim to make sure
that a model working in a previous version of CPN Tools also works in future
versions, and hence we prefer not to add extensions we are not sure will stand
the test of time. For this reason, CPN Tools 4 adds support for inhibitor arcs and
reset arcs in a limited form. We only allow an all-or-nothing semantics, which
is contrary to the colored nature of CP-nets. The reason is that the semantics
of colored inhibitor or reset arcs is not completely obvious, and we would prefer
modelers to get experience with the limited versions before we extend support.

CPN Tools comprises two components, the user interface and the simulator,
communicating using TCP. The simulator is developed is the functional lan-
guage Standard ML, and the GUI is developed in the object oriented language
BETA. While both languages are perfectly suitable for their uses in CPN Tools,
they are not widely known. We have received a lot of requests to allow third
party developers to contribute to CPN Tools. This includes researchers wanting
to add their experimental extensions to CPN Tools instead of creating a tool
from scratch, developers creating amazing extensions making the life easier for
themselves and others, and our own students making projects of various com-
plexity within a popular framework. While both components of CPN Tools are
open source and the protocol between them public and documented, this is not
an easy task due to the language barrier. CPN Tools 4 aims to make this easier
by providing a back-end hook into the tool for Java developers.

CPN Tools has a history for allowing extensions. It uses a full programming
language for inscriptions, which allows developers to develop libraries extend-
ing the annotation language of CPN Tools, including providing communication
primitives using Comms/CPN [4]. Design/CPN, a predecessor of CPN Tools,
even allowed such libraries to create elements elements in the GUI, leading to
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libraries such as a message-sequence chart library and Mimic/CPN [10], which
is a general-purpose tool for creating and animating graphical elements from
CP-net models. CPN Tools has had external extensions, including the BRIT-
NeY Suite [16], providing model visualizations in an external tool, and the Ac-
cess/CPN library [13, 15] making it possible to interact with the simulator
from external Java programs. While these tools have made it easier to interact
with CPN Tools, they have not made it possible to extend CPN Tools aside
from useful but simplistic annotation extensions. Simulator extensions in CPN
Tools provide an architecture for directly extending CPN Tools without having
to bother with the relatively unknown languages BETA and Standard ML.

An obvious way to allow extensions of CPN Tools is to provide a high-level
macro language. This would be similar to providing a domain-specific inscrip-
tion language, however. While suitable for some cases, it would not allow the
truly creative uses of CPN Tools in the past. Instead, we have chosen to provide
powerful low-level primitives in a regular and well-known language, The idea is
to add hooks into the simulator allowing developers to modify the foundational
behavior as necessary. Furthermore, we have added hooks making it possible to
draw and control graphical elements directly in the CPN Tools GUI. Simula-
tor extensions can also directly interfere with the syntax check and simulation of
models, allowing them to extend the semantics of CP-nets. Extensions can seam-
lessly support new operations to the protocol between the CPN Tools GUI and
simulator, making it easier to add new functionality to CPN Tools, as function-
ality can be prototyped in Java and subsequently be moved to Standard ML for
improved performance if required. Finally, extensions can interact directly with
the model, making it possible to create completely new CP-net-like formalisms
inside CPN Tools without having to resort to esoteric languages.

Simulator extensions can work on many levels. They can provide extensions
to the CPN inscription language written in Java, similar to what was previously
possible using Standard ML libraries. Extensions can create and manipulate
graphical elements in the CPN Tools GUI as was possible in Design/CPN.
Extensions can also filter the communication between the GUI and simulator,
similarly to what the BRITNeY Suite previously offered [12], but much more
tightly integrated with CPN Tools and easier to use. Extensions are also able to
provide completely new functionality to the GUI, making it easier to implement
certain features, including the Declare support, web-services integration, and
PNML export (as specified in ISO/IEC 15909-1) of CPN Tools 4. Simulator
extensions are designed to complement, not to replace, theAccess/CPN library.
While extensions can present themselves as separate applications, the intention
is that they present themselves inside the CPN Tools GUI and not as separate
applications.

In the remainder of this paper, we go though the major new features of CPN
Tools 4. We first summarize the existing and new architecture of CPN Tools in
Sect. 2, and turn to the multi-formalism extensions of CPN Tools in Sect. 3.
In Sect. 4, we present the simulator extensions framework and present several
examples of its use. Finally, we conclude and provide directions for future work.
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2 Architecture

CPN Tools and Design/CPN before it have a bi-process architecture. This
means they have a user-facing graphical user interface (GUI) and a lower level
simulator component. The simulator component is responsible for the heavy al-
gorithmic lifting whereas the GUI is responsible for allowing the user to indicate
what the model should look like. While CPN Tools tries to hide this fact from
the user, it can be useful to know. For example, this means that it is possible to
design model on a relatively low-powered workstation and do heavy analysis on
a more powerful grid, cloud or distributed architecture. This architecture is also
important to understand simulator extensions in CPN Tools 4.

CPN Tools 
GUI

CPN Tools 
Simulator

Fig. 1. Basic architecture of CPN Tools

The basic architecture of CPN Tools
is shown in Fig. 1. Here, we see that the
GUI is communicating directly with the
simulator to provide editing and simula-
tion of CP-net models. Here, the GUI
initiates communication. Several tools
have exploited this architecture to extend

CPN Tools. Probably most prominent is the BRITNeY suite, which provided two
modes of extensions; either it could be called as an external application to pro-
vide visualization, Fig. 2 (top), or it could mediate the communication between
the GUI and the simulator (Fig. 2 (bottom)), allowing it to provide an even
tighter integration such as performing inspection and on-the-fly modification of
the constructed model and injection of appropriate inscription extensions.

CPN Tools 
GUI

CPN Tools 
Simulator

BRITNeY 
Suite

CPN Tools 
GUI

BRITNeY 
Suite CPN Tools 

Simulator
Proxy

Fig. 2. CPN Tools and the BRITNeY Suite
running in slave mode (top) and in filter mode
(bottom)

Several extensions to CPN Tools
have been proposed, both before
and after the BRITNeY Suite, typ-
ically using the architecture in
Fig. 2 (top) [4,8,9]. Access/CPN
instead replaces the user inter-
face component in Fig. 1, and this
architecture has also been used
in ASAP [14]. Mimic/CPN made
it possible using Design/CPN
to provide an architecture similar
to Fig. 2 (top) with bidirectional
communication between the GUI
and simulator.

With simulator extensions, we considered the least intrusive architecture
change making it possible to reuse as much as possible of the existing code
base, both ours and that developed by others. We wanted to make the exten-
sions efficient and as far as possible transparent to end-users. We considered
adding another process communicating with the user interface. The argument
for this architecture is that it does not require (substantial) changes to the sim-
ulator component and it does not impose any overhead if unused. In the end,
we decided to go with the architecture in Fig. 3. The main reason is that we do
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not wish to duplicate any implementation in Access/CPN and we want to be
able to load and simulate any model created in CPN Tools using Access/CPN.
We see that we add a new process for handling the extensions, much like the
architecture in Fig. 2 (top). We allow bi-directional communication between the
simulator and the GUI, as well as between the GUI and the extension manager.
We also allow communication between the GUI and extension manager, but this
is always mediated by the simulator. This architecture minimizes changes in the
CPN Tools GUI, and the main challenge is a purely technical one, namely that
the CPN simulator is inherently single-threaded. The architecture imposes min-
imal overhead as communication with the extension server only happens when
communication with the simulator happens anyway.

CPN Tools 
GUI

CPN Tools 
Simulator

CPN Tools 
Extension 
Manager

Fig. 3. Architecture of CPN Tools 4

CPN Tools uses an extensible
protocol framework for communi-
cation between the GUI and the
simulator, and we have extended
this to also handle extensions and
use the same framework for com-
munication between the simulator
and the extension manager. We extend the framework to handle call-back mes-
sages in the GUI (allowing the simulator or extensions to invoke procedures in
the GUI) and to allow extensions to filter the communication between the user
interface and the simulator.

3 Multi-formalism Support

CPN Tools 4 extends CP-nets with provisions for directly handling PT-nets [3]
and Declare [17] models in addition to CP-net models. We do this in a conserva-
tive way, meaning that each formalism can be used completely independently of
any of the others and no formalism imposes an overhead when not used. PT-nets
can easily be embedded in CPN models and are handled by introducing syntac-
tical sugar. We also introduce modeling extensions that traditionally extend the
power of low-level formalisms but are just conveniences for CP-nets. Declare
models deal only with the ordering of tasks, and have minimal or no handling of
data flow. As such, we can see the join of a CP-net model and a Declare graph
model as the synchronous product of the behavior of the CP-net model (pro-
jected onto just the transition instances) and the Declare model. Thus, Declare
constraints are purely restrictions of the dynamic behavior of CP-nets, similar
to the concept of time used in CPN Tools.

3.1 PT-Net Support

High-level net modeling formalisms, such as CP-nets, easily embed lower-level
net formalisms, such as PT-nets. This is traditionally done by introducing a
color set, or type, with just one element. In CPN Tools this type is called UNIT
and it contains a single value, (). By making CPN Tools automatically recognize
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no explicit type as UNIT and no arc inscription as (), it is easy to emulate most
common PT-net behavior as CPN models. By further allowing the shorthand
n, where n is any integer, as a shorthand for n‘(), or n tokens with the value
(), we can also simulate weighted arcs and how initial markings are typically
written in the setting of PT-nets. We also allow inhibitor arcs and reset arcs
with the semantics known from PT-net literature [3], i.e., a transition connected
to an arc with an inhibitor arc cannot be enabled if there are tokens on the
place, and transitions connected to a place with a reset arc will not be inhibited
from enabling and upon execution will consume all tokens from the connected
place.PT-nets created using CPN Tools can be exported to PNML for analysis
in other tools. In the model in Fig. 4, all places but one make use of this short-
hand, and transition d has a reset arc and transition c an inhibitor arc. The save
file dialog at the bottom-left exposes a save a PNML option.

3.2 Declarative Modeling

Declarative modeling has so far mostly focused on the control-flow perspective,
i.e., the order of transitions. We can consider the embedding of declarative lan-
guages in CPN Tools as adding constraints to CP-nets or as adding a data
perspective to declarative formalisms. From an implementation perspective, we
prefer the former. Thus, simulation consists of considering whether a transition
instance (or binding element) is enabled in the CP-net sense, and subsequently
whether it is also allowed according to the declarative constraint. This prompts
an easy means of simulation: we simply run the standard enabling check in CPN
Tools (taking data into account) and subsequently (or in parallel) run a declar-
ative check without considering data. In the example in Fig. 4, transitions a, b
and d are enabled according to the Petri net semantics, but only a is enabled
according to the Declare semantics (the init constraint indicates it must be the
first transition to be executed).

Fig. 4. CPN Tools 4 with a model mixing Declare, PT-nets, and CP-nets; to the right
a model-generated message sequence chart
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4 Simulator Extensions
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Fig. 5. Patterns of communication allowed
for extensions

Simulator extensions aim to make it
possible to extend CPN Tools. The
aim is not to allow external tools to
interact with CP-net models, for that
Access/CPN is a much better tool,
but rather aim to make it possible to
make third party extensions of CPN
Tools in Java with a look and feel
as close as possible to the native feel
of CPN Tools. Some features of CPN
Tools 4 use extensions for simplified
implementation; this includes support
for Declare and PNML export.

We have already shown, in Fig. 3,
the architecture of CPN Tools with
extensions. The extensions can com-
municate directly with the simula-
tor, and the simulator will take care
of mediating communication between
extensions and the GUI. To support
extensions, we add 6 new kinds of
communication, shown in Fig. 5. The
first pattern (0) is the old kind of com-
munication used in CPN Tools. The
next two patterns augment pattern 0,
and allow extensions to inspect and
modify communication from the GUI
to the simulator (1), and to add new
patterns of communication (2). Pat-
tern 3 allows extensions to act like
the GUI, and pattern 4 adds a simple
remote procedure call (RPC) mech-
anism making it possible to add in-
scription extensions implemented in
Java. Patterns 5 and 6 add commu-
nication to the GUI from the simulator (or extensions), making it possible to
create and manipulate graphical elements directly in the GUI.

Pattern 1 informs extensions about the model under construction. It is pos-
sible to alter the view the simulator and GUI have of the system. This makes it
possible to allow an extension to alter inscriptions, which is for example used to
allow time inscriptions to use intervals instead of simple expressions. Filtering
the communication from the simulator to the GUI makes it possible to enable
and disable transitions, which is used by the extension implementing Declare
constraints to disable any transitions not allowed by the constraints.
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Some functionality is easier written in Java than in BETA or Standard ML.
This may be due to familiarity, a more suitable programing paradigm, or simply
due to better library support. For example, PNML export is easily implemented
using an XML transformation, but while common in Java, this feature is not
available in BETA nor in SML. PNML export in CPN Tools 4 is implemented
using a simulator extension written in Java. Similarly, Declare has already been
implemented in Java, so using that implementation instead of writing one from
scratch makes it much faster to make the implementation and the result is likely
to be less error-prone as it has already received testing. This is done with com-
munication pattern 2.

Pattern 3 allows extensions to completely control the simulator. This is for
example useful for an extensions exposing a CP-net model as a web-service or
by other means let external applications invoke a CP-net model. By allowing
generic function calls to extensions using pattern 4, it is possible to expose code
in extensions to models. This is used in CPN Tools to expose a Java library for
drawing message sequence charts to CPN models.

The GUI callback mechanism (patterns 5 and 6) has existed for some time
in CPN Tools, though it has only been used internally by, e.g., Access/CPN 2
to implement cosimulation [13]. By extending this mechanism, it is now possible
to directly invoke code in CPN Tools from extensions. Most importantly, it is
possible to create pages and add graphical elements to them. This makes it
possible to implement visualizations directly in the CPN Tools GUI. One such
extension draws message sequence charts in the CPN Tools GU with the layout
logic written in Java.

Often, extensions need several of the communication patterns; for example,
the Declare extension adds new commands for syntax checking Declare con-
straints (pattern 2) and filters communication from the simulator to disable
transitions (pattern 1). The message sequence chart extension asks the simula-
tor to instantiate stub-functions for drawing message sequence charts (pattern
3). These functions call into the extension (pattern 4), which makes callbacks to

Listing 1. Parts of Declare extension� �
1 public c lass DeclareExtens ion
2 extends AbstractExtension {
3 stat i c f ina l int ID = 10001;
4 Option<Boolean> SMART =
5 Option . c r ea t e ( ”Smart” , ” smart” ,
6 Boolean . c las s ) ;

8 public DeclareExtens ion ( ) {
9 addOption (SMART)

10 addSubscr ipt i on (
11 new Command(400 , 2 ) ) ; }

13 public int g e t I d e n t i f i e r ( ) {
14 return ID ; }
15 public S t r i g getName ( ) {
16 return ”Declare” ; }

18 public Packet handle ( Packet p) {
19 switch (p . g e t In t ege r ) ) {
20 case 400 : . . .
21 . . .
22 case 10001: . . . } }
23 . . . }	 


Listing 2. Parts of MSC extension� �
31 public c lass MSCExtension
32 extends AbstractExtension {
33 public Object getRPCHandler ( ) {
34 return new Dispatcher ( channel ) ; }
35 . . . }

37 public c lass Dispatcher {
38 Channel c ;
39 int s e r i a l = 0 ;
40 Map<Integer , Canvas> mscs = . . .
41 public Dispatcher ( Channel c ) {
42 th is . c = c ; }

44 public I n t ege r createMSC( St r ing n) {
45 int i d = s e r i a l ++;
46 mscs . put ( id , new Canvas ( c , n ) ) ;
47 return i d ; }

49 public void addEl l ips e ( In t ege r id ) {
50 Canvas cv = mscs . get ( id ) ;
51 cv . add (new E l l i p s e (10 , 10 , 60 , 40)
52 . setBackground ( Color .GREEN) ) ; }
53 . . . }	 
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the GUI for performing the actual drawing inside the CPN Tools GUI (pattern
6). The chart at the right of Fig. 4 is created using this extension, and illustrates
(simplified) the communication taking place to draw itself. In Listings 1 and 2,
we see fragments of the implementations of extensions. Extensions must define
a name (ll. 15–16) and a numerical identifier (ll. 3, 13–14) so the extension man-
ager can tell all running extensions apart. Extensions can have options (ll. 4–6,
9) which are exposed in the GUI and automatically transmitted to the extension
when changed. Handling packages received for communication patterns 1 and 2
is done by implementing a handle method (ll. 18–22). An extension says it wants
to intercept packages using pattern 1 by subscribing to them (ll. 10–11). Han-
dling pattern 4 is done by returning a RPC handler (ll. 33–34); all methods are
automatically made available in the simulator. All communication (using pattern
6) for drawing is abstracted away by object oriented primitives (ll. 44–52).

5 Conclusion and Future Work

CPN Tools 4 improves on an already useful tool in two main areas: providing end-
users with conveniences making them more efficient, and providing developers
with an extension mechanism that can be used to make extensions of CPN Tools
that feel close to native.

CPN Tools 4 provides syntactical sugar making it very easy to make Place/-
Transition Petri net models. This is performed as a backward- and forward-
compatible embedding of the formalism in CP-nets. In addition, CPN Tools
adds support for common low-level special arcs, including inhibitor and reset
arcs, and allows saving models using low-level constructs only in the PNML
format. CPN Tools 4 also adds support for the Declare language, which allows
modelers to focus less on the actual execution order but instead on constraints
on the order of execution. Some of the user-facing features could not have been
developed without the use of the other major new feature of CPN Tools, sim-
ulator extensions. This feature makes it easy to extend CPN Tools using Java
code. Several extensions ship directly with CPN Tools; some features of CPN
Tools appear as completely native features, but are realized using extensions,
including Declare support, PNML export, and drawing message sequence charts
from model executions. The default distribution includes a scene-graph-based
library for maintaining visualizations in the CPN Tools GUI without worrying
about the underlying protocol.

While we have extended CPN Tools to make it easy to make different kinds
of models, we do not aim for a generic framework for Petri nets like the Petri
Net Kernel [7]. We still deal primarily with CP-nets, and the embedding of PT-
nets is just that, an embedding, which means we do not do any of the advanced
analysis facilitated by looking at low-level nets, such as advanced state-space
analysis as performed by LoLA [18], stochastic/timed analysis as performed by
GreatSPN [5], or symmetry reduction as performed by CPN-AMI [11]. Adding
Declare constraints is interesting as it provides Declare models with data (from
the CP-nets) and provides CP-nets with a new description of control-flow at at
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higher level, making it easier to step-wise refinement by focusing on abstract
control flow first, and add concrete control flow and data as necessary.

CPNTools is available free of charge from cpntools.org; theGUI runs onWin-
dows, and the simulator andextensionmanager onWindows,MacOSX,andLinux.
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