
Restricted Dynamic Heterogeneous Fleet Vehicle

Routing Problem with Time Windows�

Jesica de Armas, Belén Melián-Batista, and José A. Moreno-Pérez
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Abstract. This paper tackles a Restricted Dynamic Heterogeneous
Fleet Vehicle Routing Problem with Time Windows as a real-world
application of a courier service company in the Canary Islands, Spain.
In this particular application of the Vehicle Routing Problem with Time
Windows (VRPTW), customer requests can be either known at the be-
ginning of the planning horizon or dynamically revealed over the day.
Moreover, a heterogeneous fleet of vehicles has to be routed in real time.
In addition, some other constraints required by the company, such as the
allowance of extra hours for the vehicles, as well as, the use of several
objective functions, are taken into account. This paper proposes a meta-
heuristic procedure to solve this particular problem. It has already been
installed in the fleet management system of the company. The compu-
tational experiments indicate that the proposed method is both feasible
to solve this real-world problem and competitive with the literature.

Keywords: Dynamic vehicle routing, Time windows, Heterogeneous
fleet, Metaheuristics.

1 Introduction

Contrary to the classical static vehicle routing problems, real-world applications
often include evolution, as introduced by Psaraftis in 1980 [9], which takes into
consideration the fact that the problem data might change over the planning
horizon. Latest developments in fleet management systems and communication
technology have enabled people to quickly access and process real-time data.
Therefore, dynamic vehicle routing problems have been lately given more atten-
tion. Last decade has been characterized by an increasing interest for dynamic
routing problems, with solution methods ranging from mathematical program-
ming to metaheuristics (see Pillac et al, 2013 [8] for a comprehensive review of
dynamic vehicle routing problems).
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The main goal of the Restricted Dynamic Heterogeneous Fleet VRPTW (RD-
HFVRPTW) tackled in this paper is to dynamically route couriers taking into
account not only the requests known at the beginning of the planning horizon,
but also new service requests that arrive over it. In the particular real-world ap-
plication posed to the authors by a company in the Canary Islands, all delivery
and about the 60% of the pick-up requests are known in advance, whereas the
remaining pick-up requests arrive over the planning horizon. Moreover, compa-
nies offering courier services often have a heterogeneous fleet of vehicles, which
represents an additional difficulty in the resolution of the problem. Using exact
methods is not a suitable solution for this kind of problems, since the arrival of
a new request has to be followed by a quick re-optimization phase to include it
into the solution at hand. Therefore, most dynamic problems rely on the use of
metaheuristics.

Solution approaches for Dynamic Vehicle Routing Problems (DVRP) can be
divided into two main classes: those applied to dynamic and deterministic routing
problems without any stochastic information, and those applied to dynamic and
stochastic routing problems, in which additional stochastic information regarding
the new requests is known. Given the fact that in the real-world application
tackled in this paper, the information is dynamically given by the company
fleet management system, we will focus on the first class of dynamic problems.
In this case, solution methods can be based on either periodic or continuous re-
optimization. Periodic optimization approaches firstly generate an initial solution
consisting of a set of routes that contain all the static customers. Then, a re-
optimization method periodically solves a static routing problem, either when
new requests arrive or at fixed time slots [1]. On the other hand, continuous
re-optimization approaches carry out the optimization over the day by keeping
high quality solutions in an adaptive memory. In this case, vehicles do not know
the next customer to be visited until they finish the service of a request.

The following literature references regarding periodic optimization approaches
to solve the DVRP with Time Windows (DVRPTW) are worth mentioning.
Chen and Xu [1] proposed a dynamic column generation algorithm for solving
the DVRPTW based on their notion of decision epochs over the planning hori-
zon, which indicate the moments of the day when the re-optimization process is
executed. Some other papers that make also use of time slices and solve static
VRPs are due to Montemani et al. [7], Rizzoli et al. [10] and Khouadjia et al. [4].
In these last papers, requests are never urgent and can be postponed since time
windows are not handled. On the other hand, the work by Hong [3] does con-
sider time windows and therefore, some request can be urgent. Hong proposes
a Large Neighborhood Search algorithm for real-time vehicle routing problem
with time windows, in which each time a new request arrives, it is immediately
considered to be included in the current solution. In our work, the same con-
sideration is taken into account given the urgency of some requests. The main
differences of the problem tackled in this paper and the one proposed by Hong
are on one hand, the fact that we consider a heterogeneous fleet of vehicles, and
on the other hand, the fact that we consider a restricted version of dynamism.
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Furthermore, in our real-world problem customers and vehicles can have more
than one time window in the same planning horizon. In addition, customers can
be postponed according to their assigned priorities. There also exist constraints
that do not allow certain customers to be visited by some of the vehicles due
to road restrictions. Extra hours for the vehicles may also be allowed in our
problem, which incur in additional costs. Finally, several objective functions are
considered and hierarchically evaluated. Hierarchic evaluation means that the
functions are considered in a certain order, so that if two selected solutions have
equal objective function values for a function, then the next one in the order
is considered to break ties. The objective functions considered in this work are
total traveled distance, time balance, that is defined as the longest minus the
shortest route in time required, and cost, which includes fuel consumption and
other salaries.

The main contributions of this paper are the following. This work tackles a
variant of a Dynamic VRPTW, which handles all the real-world constraints re-
quired by a courier service company. The problem combines constraints, which
have not been managed all together in the literature as far as we know. A meta-
heuristic solution approach is proposed. Furthermore, this optimization tool has
been inserted into the fleet management system of the company Computational
experiments over instances based on the real ones are carried out in this paper.
Moreover, some preliminary experiments performed with the fleet management
system are quite promising. The static part of the problem has already been
successfully tested with other companies. The current state of this real-world
application is the on-line communication between the fleet management system
and the courier service company. Therefore, the last phase of the whole system is
the combination of the solver proposed in this paper with the rest of the system,
which will be performed in future works.

The rest of the paper is organized as follows. Section 2 is devoted to thor-
oughly describe the real-world problem posed to the authors by the company.
Section 3 summarizes the metaheuristic procedure developed to solve the prob-
lem at hand. Section 4 reports the computational experiments performed in this
work. Finally, the conclusions are given in Section 5.

2 Problem Description

The real-world VRPTW tackled in this paper is defined by means of a network
that contains the depot and a set of N customer nodes, C, which represent
the requests characterized by their type (static or dynamic), demand, location,
arrival time, ati and time window, [ei, li], which might not be unique. As indi-
cated above customers can have several time windows during the day. The depot
has an associated time window, [e0, l0], and a set of K heterogeneous vehicles
V = {v1, .., vK} with different capacities V C = {vc1, ..vcK}, driving to a Hetero-
geneous Fleet VRPTW (HFVRPTW). Moreover, associated with each vehicle,
k, there are one or more time windows [evk, lvk] that represent its working shift
and that can be different from one vehicle to another.
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As mentioned in the introduction, in the particular application of the courier
service company considered in this paper, all delivery requests and a percent-
age of the pick-up requests are known at the beginning of the planning horizon.
Therefore, these customers are considered to be static. The remaining pick-up
requests, which are known over the day, are considered to be dynamic and an
arrival time ati ∈ [e0, l0] is associated to the dynamic customer i. Thus, a Dy-
namic HFVRPTW is being taken into consideration. At this point, it is worth
mentioning that the company does not allow exchanging delivery packages be-
tween vehicles due to operational purposes. If it were permitted, vehicles would
have to meet in some intermediate point and devote time to carry out the ex-
change. Therefore, the static customers (deliveries and pick-ups) that are routed
at the beginning of the planning horizon do not change their assigned route.
Finally, the dynamic customers have then to be assigned to any of the existing
routes while guaranteeing feasibility. The so obtained problem is referred to as
Restricted Dynamic HFVRPTW (RDHFVRPTW) in this paper.

The objective function associated to the problem has not yet been established.
An additional feature required by the company is the presence of multiple ob-
jective functions that have to be taken into consideration in the optimization
phase. The total traveled distance, time balance, infeasibility and cost are used
as it will be explained in the next section. The first objective function measures
the total distance traveled by all the vehicles involved in the solution. The time
balance function is stated as the time difference between the largest route and
the shortest route regarding time. The infeasibility function reports the sum of
time infeasibilities at each customer, i.e., the sum of the differences between
the arrival time which exceeds the time window of a customer, and the upper
limit of this customer’s time window. Finally, the cost function indicates the fuel
consumption.

In order to measure the dynamism of a given problem instance, Lund et al.
[6] defined the degree of dynamism of the system as follows:

δ =
|CD|
N

× 100,

where |CD| indicates the number of dynamic customers. Moreover, since the
disclosure time of requests is also important, Larsen [5] defined the reaction
time of customer i, that measures the difference between the arrival time, ati,
and the end of the corresponding time window, li. Notice that longer reaction
times indicate that there is more flexibility to insert any new request into the
existing routes. Therefore, the effective degree of dynamism provided by Larsen
is stated as follows:

δeTW =
1

N

∑

i∈C

(
1− li − ati

T

)
,

where T is the length of the planning horizon. These measures will be used in
the computational experience section to generate the set of problem instances
used in this work.
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3 Metaheuristic Solution Approach

The solution method proposed in this work to solve the RDHFVRPTW is sum-
marized in Algorithm 1, which will be now thoroughly described. First of all, an
initial solution consisting of all the static customers is generated by using the
Solomon Heuristic [11]. The obtained solution is then improved running a Vari-
able Neighborhood Search algorithm proposed in [2] to solve the static problem
with all the constraints required by the company for which this dynamic problem
has also to be solved. This process (lines 3− 4) is iterated for a certain number
of iterations and the best reached solution is selected to be implemented by the
company. In this step, all the requests known at the beginning of the planning
horizon are already inserted in a route. As indicated above, these requests are
not allowed to change their route assignments.

Algorithm 1. General Algorithm

// Create solution S∗ containing all static customers

1 Initialize solution S∗;
2 while (a maximum number of iterations is not reached) do
3 S ← Run Solomon Heuristic;
4 S′ ← Apply the VNS proposed by De Armas et al. [2] to S;
5 if (S′ is better than S∗) then
6 S∗ ← S′;

// Insert dynamic customers at their arrival times

7 while (a new dynamic customer, i, appears) do
8 Try to insert i in the closest feasible existing route, r if it exists;
9 if (route r does not exist) then

10 if (extra hours are allowed) then
11 Insert customer i in a route without any accumulated infeasibility

taking into account the different objective functions;

12 else
13 if (the priority of customer i allows it) then
14 Postpone customer i until the next day;

15 else if (there is an alternative permitted customer j that let the
insertion of i) then

16 Postpone customer j;

17 else
18 Insert customer i in the route that supposes the smallest

infeasibility (if it coincides among routes, consider the remaining
objective functions);

19 Report infeasibility to the company;

Once the selected initial solution is being implemented, new dynamic cus-
tomers might be revealed over the planning horizon, which have to be inserted
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in any existing route. Let us suppose that the dynamic customer i arrives at
time ati. As reported in line 8, the algorithm first tries to insert i in the closest
possible feasible existing route. For each of these routes, from the last visited
customer to the last customer in the route, it is searched the feasible insertion
point either with the least distance or time balance increment. The company
is interested in either minimizing the total distance and the number of routes
or minimizing the time balance if all the available vehicles are used (stopping
available vehicles is not desirable). If there were ties, the remaining objective
functions are hierarchically evaluated. In this case, after the distance objective
or time balance and cost are considered.

If the previous option is not feasible and no feasible alternative is available for
customer i, then there are two options. On one hand, in case that extra hours are
allowed for the vehicles (lines 10− 11), violating their time window constraints,
customer i is tried to be inserted in a route using time window infeasibility as the
objective function guiding the search. If there were ties, distance, time balance
and cost, are hierarchically taken into consideration. On the other hand, if extra
hours are not permitted by the company, then the notion of request priority
shows up. If customer i has a low priority, then it can be postponed until the
following day (lines 13− 14). If it is not possible, but there is a customer j that
can be postponed allowing the insertion of i (lines 13− 14), then customer j is
postponed, while i is inserted. In order to select customer i, the objective func-
tions are hierarchically evaluated in the following order: number of postponed
requests, extra hours, distance or time balance and cost.

If all the previous attempts have failed, customer i is inserted in the route
with the least increment of the following objective functions (lines 17 − 18):
infeasibility, distance or time balance and cost. Finally, there are two cases in
which customer i cannot be inserted in the current solution: vehicle capacities
are violated or there is not any vehicle with a working shift long enough to insert
the new customer. In these two cases, the corresponding infeasibility is reported
to the company (line 19).

4 Discussion and Future Research

This section is devoted to analyze the performance of the algorithm proposed
in this work. Despite the fact that experiments within the real system have to
be carried out, the goals of the reported experiments are both to corroborate
the good behavior of the method and discuss the effect of the input data over
the total reached infeasibility. With these goals in mind, it has been created a
set of instances based on the real data provided by a company in the Canary
Islands, taking into account the features of the courier service company. A total
of 20 different instances consisting of 100 customers, from which the 20% are
dynamic, have been generated. In order to obtain instances with a wide range of
effective dynamism degrees, random, short and large reaction times have been
considered. Moreover, the standard Solomon instances are used to compare the
results given by our algorithm with the best known solutions form the literature.
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The first experiment reported in this section corresponds to the comparison
over the standard Solomon instances. Note that the algorithm proposed in this
work is thought to solve dynamic problems with the inclusion of all the real-world
constraints explained in previous section. Therefore, the method is not supposed
to be the most competitive over these instances, particularly due to the fact that
real instances have different features. Table 1 summarizes the comparative, in
which average values of number of vehicles (NV ) and traveled distance (TD)
are reported. The first column of the table shows the instance categories corre-
sponding to the Solomon instances. Note that in the worst case, the deviation
is about 5%.

Table 1. Computational results of the standard static Solomon instances

NV TD BestNV BestTD

C1 10.00 835.88 10.00 828.38
C2 3.12 621.01 3.00 589.90
R1 14.08 1252.41 11.91 1203.16
R2 5.00 988.26 3.00 941.87
RC1 13.62 1402.50 12.00 1345.56
RC2 6.00 1127.62 3.62 1111.99

The second experiment reported in this work is summarized in Figure 1. It
shows, for each problem instance, the total infeasibility accumulated at the end
of the execution when random, short and large reaction times are considered.
It is noticeable that there is a clear difference between short and large reaction
times. Let us remind that the reaction time of a customer provides the difference
between the end of its time window and its arrival time. Longer reaction times
lead to a more insertion flexibility and therefore to less infeasibility. As indicated
in Figure 1, this expected behavior is obtained by our solution method.

Fig. 1. Total infeasibility for different reaction times
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Table 2. Dynamic customers

Dynamic Request 81 82 83 84 85 86 87 88 89 90

Arrival Time 14105 27790 19617 14111 9494 21474 31747 19119 17287 30821

Dynamic Request 91 92 93 94 95 96 97 98 99 100

Arrival Time 21811 21064 14527 15419 19106 20479 7725 25892 12850 15807

Table 3. Solution example. Insertion of dynamic requests

R1 R2 R3 R4 R5 R6 R1 R2 R3 R4 R5 R6

Last visited customer 4 5 4 5 4 3 5 6 5 6 5 3
Accumulated infeasibility 0 0 0 0 0 0 0 0 0 0 0 0

(C97,R5,5,0) (C85,R3,8,2060)

Last visited customer 7 8 6 9 7 3 8 9 7 9 8 3
Accumulated infeasibility 0 0 2060 0 0 0 0 0 2060 0 1751 0

(C99,R5,10,1751) (C81,R4,16,0)

Last visited customer 8 9 7 9 8 3 8 9 7 10 8 3
Accumulated infeasibility 0 0 2060 0 1751 0 0 0 2060 0 1751 0

(C84,R7,17,0) (C93,R4,13,3103)

Last visited customer 8 9 7 10 8 3 9 9 7 10 8 3
Accumulated infeasibility 0 0 2060 3103 1751 0 1475 0 2060 3103 1751 0

(C94,R1,11,1475) (C100,R3,11,5425)

Last visited customer 10 11 8 11 9 3 11 12 9 12 10 3
Accumulated infeasibility 1475 0 5425 3103 1751 0 1475 0 5425 3103 1751 0

(C89,R5,12,1751) (C95,R2,19,2211)

Last visited customer 11 12 9 12 10 3 12 13 9 12 10 3
Accumulated infeasibility 1475 2211 5425 3103 1751 0 1475 2211 5425 3103 3592 0

(C88,R5,13,3592) (C83,R5,13,1751)

Last visited customer 13 13 10 12 11 3 14 13 10 13 11 3
Accumulated infeasibility 1475 2211 5425 3103 1751 0 1475 2211 5425 3103 3153 0

(C96,R5,14,3153) (C92,R1,20,2945)

Last visited customer 14 13 11 13 11 3 14 13 11 13 11 3
Accumulated infeasibility 2945 2211 5425 3103 3153 0 3776 2211 5425 3103 3153 0

(C86,R1,21,3776) (C91,R3,12,5425)

Last visited customer 17 16 11 13 14 3 19 17 12 14 14 3
Accumulated infeasibility 3776 2211 5425 3103 3153 0 3776 4814 5425 3103 3153 0

(C98,R2,20,4814) (C82,R4,15,8586)

Last visited customer 21 18 12 15 16 3 22 19 13 15 16 3
Accumulated infeasibility 3776 4814 5425 8586 3153 0 3776 4814 5425 8586 8332 0

(C90,R5,17,8332) (C87,R5,17,8612)

4.1 Example Solution

In this section, a solution example corresponding to a problem instance with
short reaction times is provided. The initial static solution is 0− 15− 73− 17−
16− 40− 5− 72− 51− 67− 37− 47− 78− 68− 25− 9− 13− 27− 45− 8− 39−
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53− 34− 0− 11− 54− 29− 70− 55− 22− 42− 38− 36− 79− 43− 10− 57−
48− 1 − 75 − 74− 26 − 18− 65 − 0 − 32 − 71− 21 − 76− 60 − 44− 80 − 56−
61− 0− 52− 64− 23− 58− 12− 7− 49− 31− 20− 28− 69− 33− 3− 19− 62−
0 − 46 − 14 − 4 − 24 − 77 − 35 − 66 − 6 − 30 − 59 − 41 − 2 − 0 − 63 − 50 − 0,
where routes R1 to R6 are separated by zeros. The dynamic customers go from
C81 up to C100, and their arrival times in seconds are shown in Table 2. Table
3 reports how the dynamic customers are inserted indicating if they incur in any
infeasibility. In this table, as an example, vector (C85, R3, 8, 2060) indicates that
customer C85 is inserted into route R3 in position 8 leading to an infeasibility
value in time equal to 2060. The dynamic customers are selected according to
their arrival times to be inserted into the current solution. Firstly, customer C97
is taken into consideration and the best position into every route is calculated. In
this case, C97 is inserted in position 5 of route R5 because it produces the least
traveled distance increment. Then, customer C85 arrives and has to be served
in any of the routes. The best option corresponds to position 8 of route R3,
reaching a total infeasibility value of 2060. The remainder customers are then
selected and inserted as indicated in Table 3. For those readers interested in
replicating the experiment, the instance used in this section can be downloaded
from https://sites.google.com/site/gciports/vrptw/dynamic-vrptw.

5 Conclusions

This work tackles a variant of a Dynamic VRPTW, which handles all the real-
world constraints required by a courier service company. The problem combines
constraints, which have not been managed all together in the literature, as far as
we know . A metaheuristic solution approach is proposed for solving the problem
at hand. It is worth mentioning that this optimization tool has been inserted
into the fleet management system owned by the company, who is the technical
support of the previous one and the nexus with our research. The computational
experience carried out in this work over a set of generated instances based on
the real ones, has a twofold goal, corroborating the good behavior of the method
and discussing the effect of the input data over the total reached infeasibil-
ity. Moreover, preliminary experiments that have been performed with the fleet
management system are quite promising. The current state of this real-world ap-
plication is to set up the on-line communication between the fleet management
system and the courier service company, which is being correct. Therefore, the
last phase of the whole system is the combination of the solver proposed in this
paper with the rest of the system, which constitutes future research.
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