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Jesús Caraballo1, Fermı́n Vaz1, and Carlos Cotta3

1 Dept. of Computer Science, University of Huelva, Spain
2 Dept. of Computer Architecture and Technology, University of Granada, Spain

3 Dept. of Computer Languages and Computer Sciences, Málaga, Spain
jose.carpio@dti.uhu.es

Abstract. This work studies the performance and the results of the
application of Evolutionary Algorithms (EAs) for evolving the decision
engine of a program, called in this context agent, which controls the
player’s behaviour in an real-time strategy game (RTS). This game was
chosen for the Google Artificial Intelligence Challenge in 2011, and sim-
ulates battles between teams of ants in different types of maps or mazes.
According to the championship rules the agents cannot save information
from one game to the next, which makes impossible to implement an EA
‘inside’ the agent, i.e. on game time (or on-line), that is why in this paper
we have evolved this engine off-line by means of an EA, used for tuning
a set of constants, weights and probabilities which direct the rules. This
evolved agent has fought against other successful bots which finished in
higher positions in the competition final rank. The results show that,
although the best agents are difficult to beat, our simple agent tuned
with an EA can outperform agents which have finished 1000 positions
above the untrained version.

1 Introduction

Real-Time Strategy (RTS) games are a sub-genre of strategy-based videogames
in which the contenders control a set of units and structures that are distributed
in a playing arena. The game objective is normally eliminating all the enemy
units. It is usually possible to create additional units and structures during the
course of the game, at a cost in resources. Another usual feature is their real time
nature, so the player is not required to wait for the results of other players’ moves
as in turn-based games. StarcraftTM, WarcraftTM and Age of EmpiresTM are
some examples of RTS games.

The 2011 edition of the Google AI Challenge [5] was conducted with an RTS
game named ANTS, in which the players control a set of ants that must ‘fight’
against the colonies of the rest of players in a grid with labyrinthine paths. The
ants must gather food for generating new individuals and get an advance over
the rivals. The fighting between ants is solved following some rules, but as a
thumb rule, the higher number of ants are grouped, the easier will be to win a
fight.
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Thus, this is a RTS where the AI must be implemented at both commented
levels: on the one hand, the ants must be grouped and specialized (explorers,
fighters, gatherers), on the other hand each individual should have a particular
behaviour to get a global emergent behaviour.

As a first approximation, a behavioural engine (for both levels) was designed
by defining a set of states and rules guided by several parameters. This agent
participated in the contest and finished in position 2076.

Then the initial engine has been improved by means of a Evolutionary Algo-
rithms (EAs)[2]. They are a class of probabilistic search and optimisation algo-
rithms inspired in darwinistic evolution theory. There are some types, including
the extended Genetic Algorithms (GAs)[4], but the main features are common
to all of them: a population of possible solutions (individuals) of the target prob-
lem, a selection method that favours better solutions and a set of evolutionary
operators that act upon the selected solutions. After an initial population is cre-
ated (usually randomly), the selection mechanism and the operators (crossover,
mutation, etc) are successively applied to the individuals in order to create new
populations that replace the older one. The candidates compete using their fit-
ness (quality of adaptation). This process guarantees that the average quality
of the individuals tends to increase with the number of generations. Eventually,
depending on the type of problem and on the efficiency of the EA, the optimal
solution may be found.

To conduct the evolution (in the evaluation step), every candidate agent
in the population has fought against three different enemies (in two differ-
ent approaches): a deterministic agent who finished in rank 993, and two very
competitive agents which got position 1 and 165.

According to the results the agent has performed quite good, and has been
able to beat bots which finished almost 1000 positions better than it in the
competition.

2 State of the Art

AI in games has become the most interesting element in actual games from
the player’s point of view, once the technical components (graphics and sound)
have reached almost an upper bound. They mostly request opponents exhibiting
intelligent behaviour, or just better human-like behaviours [9].

Researchers have also found it an interesting area from the early nineties, so
this scope has presented an exponential grown in several videogames and fields,
mainly starting with the improvement of FPS Bot’s AI, the most prolific type of
game [8,12], and following with several games such as Super Mario [19], Pac-Man
[10] or Car Racing Games [14], to cite a few.

The RTS games research area presents an emergent component [18] as a con-
sequence of the commented two level AIs (units and global controllers). RTS
games usually correspond to vast search spaces that traditional artificial in-
telligence techniques fail to play at a human level. As a mean to address it,
authors in [15] proposed to extract behavioural knowledge from expert demon-
strations which could be used to achieve specific goals. There are many research
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problems involving the AI for RTSs, including: planning with uncertainty or
incomplete information, learning, opponent modelling, or spatial and temporal
reasoning [1].

However, most of the RTS games in industry are basically controlled by a fixed
script (i.e. a pre-established behaviour independent of inputs) that has been
previously programmed, so they are predictable for the player some combats
later. Falke et al. [3] tried to improve the user’s gaming experience by means
of a learning classifier system that can provide dynamically-changing strategies
that respond to the user’s strategies.

Evolutionary Algorithms (EAs), have been widely used in this field [16,7], but
they are not frequently used on-line (in real-time) due to the high computational
cost they require. In fact, the most successful proposals for using EAs in games
corresponds to off-line applications [17], that is, the EA works previously the
game is executed (played), and the results or improvements can be used later
during the real-time game. Through off-line evolutionary learning, the quality
of bots’ intelligence in commercial games can be improved, and this has been
proven to be more effective than opponent-based scripts. For instance, in [11]
an agent trained with an EA to play in the previous Google AI Challenge is
presented.

In the present work, EAs are also used, and an off-line Genetic Algorithm
(GA) is applied to improve a parametrised behaviour model (set of rules), inside
a RTS named ANTS.

3 The Google AI Challenge

This section describes the game scenario where the bots will play. The ANTS
game was used as base for the Google AI Challenge 2011 (GAIC)1 [6]. An ANTS
match takes place on a map (see Figure 1) that contains several anthills. The
game involves managing the ant community in order to attack (and destroy) the
maximum number of enemy hills. Initially, game players have one or more hills
and each hill releases the first ant. Then, the bot has to control it in order to
reach food and generate another ant. Game is based on a turn system (1000 turns
in official games). For each turn, participants have a limited time to develop a
strategy with the ant community, i.e. decide the set of simple steps (just one cell
in one direction) that every ants must perform. Before turn time-over, the bot
should return a witness indicating that tasks have been finished. If the witness
is not sent before time-over, the player receives the ‘timeout’ signal. This signal
carries penalty points and the inability to make more movements until game
finish. However, this does not entail game disqualification.

If the player has accumulated enough points before ‘timeout’, she could win.
For each captured hill, the player receives two points and if one of our hills is
captured, she misses a point.

There are two strong constraints (set by the competition rules) which deter-
mine the possible methods to apply to design a bot: a simulated turn takes just

1 http://ants.aichallenge.org/

http://ants.aichallenge.org/
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one second, and the bot is not allowed to store any kind of information between
games about its former actions, about the opponent’s actions or about the state
of the game (i.e., the game’s map).

Thus, if desired, it is mandatory to perform an off-line (not during the match)
fine-tuning or adaptation in order to improve an agent’s behaviour. In this work,
an evolutionary algorithm has been applied. Therefore, the goal in this paper
is to design a bot/agent and improve it using an extra GA layer that consider
a set of representative maps and enemies to train and adapt the bot for being
more competitive, in order to fight the enemy, conquer its anthills, and finally
win the game.

4 Algorithm and Experimental Setup

In this section the strategy to evolve is presented. A Genetic Algorithm (GA) is
used to improve parameters of a basic agent. In order to improve the agent two
different type of fitness functions and six different maps have been used.

4.1 Behavioural Rules and Parameters

The basic behaviour of our bot is mainly based in a Greedy strategy to prioritize
multiple tasks entrusted to the ants:

IF enemy hill in sight

attack the hill

ELSE IF food in sight

pick up the food

ELSE IF enemy ants in sight

attack the ants

ELSE IF non-explored zone in sight

explore the area randomly

The second part of the strategy, is a lefty movement, i.e. follow a straight line
until water/obstacle is found, and then, walks to the left bordering it.

In order to perform a parameter optimization using genetic algorithms, we
have defined a set in the above specified bot’s rules. They are:

– food distance: Maximum distance to go get food, i.e. ants ignores food that
is at a distance greater than this value.

– time remaining: Margin time we have for one turn to finish without a ‘time-
out penalty’. Higher values indicate that more actions are performed, but as
previously explained, the player receives a penalty.

– distance my ant attack and distance hill attack: These parameters are used
to determine the attack priority. Distance my ant attack means that we have
one ant partner close enough to take advantage when attacking enemy ants.
In this situation, the distance hill attack is taking into account in order to
change ant objective. If another enemy ant is close to our hill, our ant give
priority to this more dangerous situation for our interest. In this case an ant
is sacrificed to keep alive our anthill.
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– turns lefty: Maximum number of consecutive turns in which an ant lefty
strategy can be used. After that number of turns, ants community change
to Greedy strategy.

4.2 Genetic Algorithm

A GA has been used to evolve the previously presented parameters. Thus each
individual in the population is represented by an array of integers, where each
number indicates the value of one of the parameters previously explained.

The fitness function, which determines the individual’s adaptation to the en-
vironment, is based on launching a game against several opponents, in a certain
number of turns and a specific map. The score for the agent after that game will
determine the degree of kindness and individual adaptation to the problem we
want to solve, knowing the individual that maximizes the score. Two different
fitness functions have been studied:

– Basic fitness: it only considers the score obtained by our agent in the
battle.

– Hierarchical fitness: the fitness is a tuple of the following elements in order:
My score, enemy’s score (negative), number of my own ants and number of
enemy’s ants (negative). A lexicographical order is applied to compare two
individuals.

The considered operators have been:

– selection: choose half of population with individuals who obtained the high-
est scores in the games for improving the convergence component.

– crossover : multi-point crossover has been performed, mixing some parts of
the parents to create the offspring.

– mutation: changes parameter values in an individual randomly (inside a
range) with certain probability.

In order to achieve evolution it has been added an extra layer to the game
implementation that allows us to store best individuals (set of parameters), and
let to evolve the population in future generations.

4.3 Experimental Setup

Six maps have been considered in order to perform the bot evolution. All of
them are provided by the competition organizers in a tools package. Three maps
are mazes with different level of difficulty and the rest are open walking areas.
Figure 1 shows two examples of different type of maps. The circles mark hills
positions with one colour for each team/player. The blue areas represent water
that ants cannot cross, nor walk on it, small points represent food and the rest
are land where ants can move. Some other relevant information about maps is
detailed in Table 1.
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Table 1. Maps

Name Type #competitors Rows Cols #Hills

map1 random walk p02 01 Open 2 100 80 1
map2 random walk p02 05 Open 2 52 70 1
map3 maze p02 05 Maze 2 66 66 2
map4 maze p02 34 Maze 2 108 138 1
map5 maze p02 42 Maze 2 72 126 2
map6 cell maze p02 10 Open maze 2 42 142 2

(a) Map 1: open map (b) Map 3: maze/labyrinth type

Fig. 1. Two different example maps considered in the experiments

The experiments conducted try to analyze the performance of the imple-
mented approaches (GA + fitness function) in each of the six maps. Both have
considered 64 individuals in the population, a crossover rate equal to 0.3, a
mutation rate of 0.1 and a stop criterion set to 20 generations. Every agent is
evolved in the six maps 10 times in order to get a reliable fitness value; i.e trying
to avoid the ‘noisy nature’ [13] of game playing as a valuation function for an
individual when the opponent is non-deterministic. The reason is the same agent
(individual) could be valued as very good or very bad depending on the combat
result, which in turn depends on the enemy’s actions and the game events.

5 Results and Analysis

Firstly it is important to notice that all the selected competitors which have been
considered as opponents in the evolution got higher final rankings than our bot,
who finished in rank 2076. They are a deterministic agent who finished in rank
993, and two very competitive and non-deterministic agents which got position
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Table 2. Results of ten battles between the evolved bot (using two fitness functions)
and three different opponents with higher final ranks in the Google AI 2011 Competi-
tion. The scores, number of own and enemy’s ants and the average number of turns to
finish the match are presented, along with the standard deviation in each case.

maxScore maxMyAnts maxEnemyAnts meanTurns

Basic fitness vs. Bot993.

map1 3,00 ± 0,00 84,08 ± 43,82 66,50 ± 49,20 416,87 ± 125,94
map2 3,00 ± 0,00 68,08 ± 39,10 60,67 ± 34,92 425,64 ± 90,26
map3 6,00 ± 0,00 39,91 ± 15,65 186,91 ± 63,74 318,28 ± 124,63
map4 1,00 ± 0,00 8,64 ± 0,67 12,00 ± 0,00 150,00 ± 0,00
map5 5,42 ± 0,51 36,00 ± 27,24 228,75 ± 89,91 428,93 ± 189,53
map6 6,00 ± 0,00 46,25 ± 59,21 111,25 ± 20,82 221,18 ± 104,35

Hierarchical fitness vs. Bot993.

map1 3,00 ± 0,00 154,56 ± 28,84 2,67 ± 1,50 481,33 ± 48,26
map2 3,00 ± 0,00 97,67 ± 37,83 3,00 ± 2,18 486,78 ± 79,99
map3 6,00 ± 0,00 45,00 ± 8,85 118,33 ± 19,49 266,00 ± 55,57
map4 1,00 ± 0,00 9,22 ± 0,44 12,00 ± 0,00 150,00 ± 0,00
map5 4,67 ± 0,50 73,78 ± 71,10 226,89 ± 57,61 706,78 ± 262,88
map6 5,00 ± 1,15 104,11 ± 107,52 77,89 ± 58,10 519,44 ± 262,51

Hierarchical fitness vs. Bot165.

map1 0,00 ± 0,00 33,58 ± 2,97 101,17 ± 7,83 183,42 ± 7,29
map2 0,17 ± 0,39 31,08 ± 8,54 122,00 ± 49,41 221,17 ± 86,06
map3 0,00 ± 0,00 35,33 ± 9,72 98,83 ± 10,99 186,50 ± 9,26
map4 0,00 ± 0,00 34,75 ± 9,75 99,17 ± 10,96 184,92 ± 9,11
map5 0,00 ± 0,00 32,50 ± 10,51 101,75 ± 12,19 186,25 ± 9,18
map6 0,00 ± 0,00 31,50 ± 10,91 103,10 ± 12,80 188,00 ± 9,08

Hierarchical fitness vs. Bot1.

map1 0,00 ± 0,00 31,00 ± 34,00 109,00 ± 95,00 185,00 ± 198,00
map2 0,00 ± 0,00 17,00 ± 23,00 119,00 ± 132,00 156,00 ± 175,00
map3 0,00 ± 0,00 16,00 ± 17,00 118,00 ± 147,00 160,00 ± 186,00
map4 0,00 ± 0,00 14,00 ± 17,00 130,00 ± 120,00 166,00 ± 160,00
map5 0,00 ± 0,00 20,00 ± 31,00 112,00 ± 108,00 149,00 ± 147,00
map6 0,00 ± 0,00 21,00 ± 19,00 127,00 ± 131,00 172,00 ± 171,00

165 and the winner of the competition. Table 2 shows the obtained results in
ten combats performed once the evolution has been completed.

It could be noticed the small standard deviation present in most of the results,
due to the small variations in the combat scores. It is zero in many cases because
there are very few possible values (i.e. in maps with only two hills, max score
will be 0, 1 or 3 points). In addition, when a bot is good, it wins most of times
and the other way round. Thus in the evolutionary process after 20 generations
the system evolves always to reach max score.

For the same reason it can be seen in the table that our bot can not beat those
in positions 165 and 1, since they are much more sophisticated in its defined
behavioural engine. However, the evolution of the agent gets higher number of
own ants and decreases the number of enemy ants.
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Moreover, our evolved agent wins on all maps to the robot that ended in
ranking 993, more than 1000 positions above the initial version (without opti-
mization). The number of ants is the main difference between basic fitness and
hierarchical fitness, and this feature allows to use more effective attack tech-
niques. In maps 5 and 6, the score is lower than the obtained with basic fitness
in some cases. However, the number of own ants doubles those obtained with
a basic fitness. This invites us to improve strategies in such type of maps to
achieve a better use of the large community of generated ants.

6 Conclusions and Future Work

This paper presents the design of an agent (bot) that plays in the RTS ANTS
game proposed for the Google AI Challenge 2011. Starting with a combination
of two basic behaviours (Lefty and Greedy) and a set of parameters, an Evolu-
tionary Algorithm (EA) is used to fine-tune them and thus modify the agent’s
behaviour.

This bot is evolved in six maps provided by Google, and fighting three different
bots that participated in the contest: those who finished in positions 993, 165
and the winner. Two different fitness functions have been tested: a basic function
that only takes into account the final score (the number of conquered anthills in
a run), and a hierarchical fitness, where the number of player’s ants, turns, and
enemy ants are also used to compare individuals.

Results show that, even evolving the parameters of two simple strategies, the
agent is capable to win harder opponents. On the other hand, the same strat-
egy is not affective against a medium-ranked bot, so it is clear that the enemy
behaviour affects to the off-line training algorithms with an specific strategy.
However genetic optimization is enough to beat a competitor who is above more
than 1000 positions in the ranking.

We conclude that parameters optimization using EA significantly improves
agent performance in RTS games and this technique would obtain better results
combined with good planning strategies.

For future work, new combination of strategies will be studied and more dif-
ferent fitness funtions will be analysed: for example, combining all maps in each
fitness calculation. Because the stochastic behaviour of some robots also affects
the fitness, an study of how this fitness is affected during the algorithm run
will be performed. As demonstrated, the behaviour of the enemies is also a very
important key to analyse for designing a all-terrain bot: an agent should adapt
to these different behaviours. Also, using a quick map analysis in each turn to
set the parameters obtained in this work could be studied to adapt the agent
accordingly. A map analysis could be performed, for example, counting the num-
ber of direction changes in a period of time. If many direction changes occurs by
collisions with walls, means that bots are fighting in a map with maze pattern.
Once map type has been detected, bot can choose suitable parameter group for
the map. The combination of the Greedy and Lefty actions also will be studied
in other RTS games, as the previous Google AI Contest games.
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Laredo, J.L.J.: Evolving the cooperative behaviour in UnrealTM bots. In: Proc.
2010 IEEE Conference on Computational Intelligence and Games, CIG 2010, pp.
241–248 (2010)

13. Mora, A.M., Fernández-Ares, A., Merelo Guervós, J.J., Garćıa-Sánchez, P.,
Fernandes, C.M.: Effect of noisy fitness in real-time strategy games player be-
haviour optimisation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5),
1007–1023 (2012)

14. Onieva, E., Pelta, D.A., Alonso, J., Milans, V., Prez, J.: A modular parametric
architecture for the torcs racing engine. In: Proc. 2009 IEEE Symposium on Com-
putational Intelligence and Games, CIG 2009, pp. 256–262 (2009)
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