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Abstract. The main consequences of corrosion are the costs derived from both
the maintenance tasks as from the public safety protection. In this sense, artificial
intelligence models are used to determine pitting corrosion behaviour of stainless
steel. This work presents the C-MANTEC constructive neural network algorithm
as an automatic system to determine the status pitting corrosion of that alloy.
Several classification techniques are compared with our proposal: Linear Dis-
criminant Analysis, k-Nearest Neighbor, Multilayer Perceptron, Support Vector
Machines and Naive Bayes. The results obtained show the robustness and higher
performance of the C-MANTEC algorithm in comparison to the other artificial
intelligence models, corroborating the utility of the constructive neural networks
paradigm in the modelling pitting corrosion problem.

Keywords: Constructive neural networks, Austenitic stainless steel, Pitting
corrosion.

1 Introduction

Corrosion can be defined as the degradation of the material and its properties due to
chemical interactions with the environment. The main consequences of corrosion are
important maintenance costs in addition to endangering public safety. The annual cost
of corrosion worldwide has been estimated over 3% of the gross world product [1].
Therefore, corrosion has become one of the most relevant engineering problems. This
phenomenon occurs so often that it has been necessary to develop models in order to
predict corrosion behaviour of materials under specific environmental conditions.

Many authors have applied neural networks models to study corrosion: Kamrunna-
har and Urquidi-MacDonald [2] presented a supervised neural network method to study
localized and general corrosion on nickel based alloys. Cavanaugh et al. [3] used these
models to model pit growth as a function of different environmental factors. Lajevardi
et al. [4] applied artificial neural networks to predict the time to failure as a result of
stress corrosion cracking in austenitic stainless steel. While, Pidaparti et al. [5] devel-
oped computational model based on cellular automata approach to predict the multi-pit
corrosion damage initiation and growth in aircraft aluminium.
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In spite of the numerous researches in corrosion risk of materials, no reliable method
to predict pitting corrosion status of grade 316L stainless steel has yet been developed
by others authors. Based on our studies about pitting corrosion [6,7], constructive neural
networks (CNNs) are proposed in this paper to develop an automatic system to deter-
mine pitting corrosion status of stainless steel, with no need to check pits occurrence
on surface material by microscopic techniques. Particularly, C-MANTEC model [8] is
compared with other different standard classification models such as Linear Discrimi-
nant Analysis (LDA), k-Nearest Neighbor (kNN), Multilayer Perceptron (NeuralNet),
Support Vector Machines (SVM) and Naive Bayes, in order to check the robustness
and reliability of this algorithm on industrial environments. The use of C-MANTEC is
motivated in the good performance results previously obtained in other areas [9,10] and
due to its relatively small and compact neural network architecture leading to possible
hardware implementation on industrial environments.

The remainder of this paper is organized as follows: Section 2.1 and Section 2.2
provides respectively a description of the dataset utilized on the experiments and the use
of several classifiers models to be compared with C-MANTEC, and Section 3 shows the
experimental results over several classifying algorithms. Finally, Section 4 concludes
the article.

2 Material and Methods

2.1 Material

In order to study corrosion behaviour of austenitic stainless steel a European project
called “Avoiding catastrophic corrosion failure of stainless steel” CORINOX (RFSR-
CT-2006-00022) was partially developed by ACERINOX. In this project, 73 different
samples of grade 316L stainless steel were subjected to polarization tests in order to
determine pitting potentials values in different environmental conditions: varying ion
chloride concentration (0.0025−0−1M), pH values (3.5−7) and temperature (2−75oC)
using NaCl as precursor salt.

Pitting potential is one of the most relevant factors used to characterize pitting cor-
rosion [11]. This parameter is defined as the potential at which current density suffers
an abrupt increase. It can be determined based on polarization curves as the potential at
which current density is 100μA/cm2 [12].

All the polarization tests were carried out using a Potentiostate PARSAT 273. For
each of the 73 sample, the potential and current density values registered during the
tests were plotted on semi-logarithmic scale to determine pitting potential values (see
Figure 1). After polarization tests, all samples were checked microscopically for evi-
dence of localized corrosion. In this way, all species were characterized by the environ-
mental conditions tested (chloride ion concentration, pH and temperature) in addition
to corrosion status: 1 for samples where pits appeared on the material surface and 0
otherwise.

2.2 Methods

In this work, we propose the use of constructive neural networks as classifiers models,
in particular C-MANTEC, to predict corrosion behaviour of austenitic stainless steel.
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Fig. 1. Polarization curves measured for grade 316L stainless steel using NaCl as precursor
salt. The conditions tested were: 0.0025 M (mol/L) chlorides ions, pH = 5.5 and temperature
(5◦C-75◦C).

C-MANTEC (Competitive Majority Network Trained by Error Correction) is a novel
neural network constructive algorithm that utilises competition between neurons and a
modified perceptron learning rule to build compact architectures with good prediction
capabilities. The novelty of C-MANTEC is that the neurons compete for learning the
new incoming data, and this process permits the creation of very compact neural archi-
tectures. At the single neuronal level, the algorithm uses the thermal perceptron rule,
introduced by Marcus Frean in 1992 [13], that improves the convergence of the stan-
dard perceptron for non-linearly separable problems. In the thermal perceptron rule, the
modification of the synaptic weights, Δωi, is done on-line (after the presentation of a
single input pattern) according to the following equation:

Δωi = (t− S)ψiTfac (1)

where t is the target value of the presented input, andψ represents the value of input unit
i connected to the output by weight ωi. The difference to the standard perceptron learn-
ing rule is that the thermal perceptron incorporates the factor Tfac. This factor depends
on the value of the synaptic potential and on an artificially introduced temperature (T )
that is decreased as the learning process advances.

The topology of a C-MANTEC created network consists of a single hidden layer of
thermal perceptrons that maps the information to an output neuron that uses a majority
function. The choice of the output function as a majority gate is motivated by previous
experiments in which very good computational capabilities have been observed for the
majority function among the set of linearly separable functions [14]. The results so far
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Table 1. Brief pseudo-code summary of the C-MANTEC learning algorithm

C-MANTEC learning algorithm

1 I n i t i a l i s e t h e p a r a m e t e r s o f t h e a l g o r i t h m ;
2
3 whi le ( e x i s t s p a t t e r n s t o be l e a r n e d ) {
4 i n p u t a random p a t t e r n ;
5 i f ( p a t t e r n t a r g e t v a l u e == ne twork o u t p u t ) {
6 remove t e m p o r a r i l y t h e p a t t e r n from t h e d a t a s e t ;
7 }
8 e l s e {
9 t h e p a t t e r n has t o be l e a r n e d by t h e ne twork ;

10 s e l e c t t h e wrong neuron wi th h i g h e s t t e m p e r a t u r e ;
11 i f ( T fac >= Gfac ) {
12 t h e neuron w i l l l e a r n t h e p a t t e r n ;
13 u p d a t e i t s s y n a p t i c w e i g h t s a c c o r d i n g t o t h e t h e r m a l p e r c e p t r o n r u l e ;
14 }
15 e l s e {
16 a new neuron i s added t o t h e ne twork ;
17 t h i s new neuron l e a r n s t h e p a t t e r n ;
18 i t e r a t i o n c o u n t e r s a r e r e s e t ;
19 n o i s y p a t t e r n s a r e d e l e t e d from t h e t r a i n i n g d a t a s e t ;
20 r e s e t t h e s e t o f p a t t e r n s ;
21 }
22 }
23 }

obtained with the algorithm [15,8,10] show that it generates very compact neural archi-
tectures with state-of-the-art generalization capabilities. It has to be noted that the algo-
rithm incorporates a built-in filtering stage that prevent overfitting of noisy
examples.

The C-MANTEC algorithm has 3 parameters to be set at the time of starting the
learning procedure. Several experiments have shown that the algorithm is very robust
against changes of the parameter values and thus C-MANTEC operates fairly well in
a wide range of values. The three parameters of the algorithm to be set are: (i) Imax

as maximum number of iterations allowed for each neuron present in the hidden layer
per learning cycle, (ii) Gfact as growing factor that determines when to stop a learning
cycle and include a new neuron in the hidden layer, and (iii) Fitemp that determines
in which case an input example is considered as noise and removed from the training
dataset according to Eq. 2, where N represents the number of input patterns of the
dataset, NTL is the number of times that the patternX has been learned on the current
learning cycle, and the pair {μ,σ} corresponds to the mean and variance of the normal
distribution that represents the number of times that each pattern of the dataset has been
learned during the learning cycle.

∀X ∈ {X1, ..., XN}, delete(X) | NTL ≥ (μ+ Fitempσ) (2)

A summary of the C-MANTEC pseudo-code algorithm is described in Table 1. This
learning procedure is essentially based on the idea that patterns are learned by those
neurons, the thermal perceptrons in the hidden layer of the neural architecture, whose
output differs from the target value (wrongly classified the input) and for which its
internal temperature is higher than the set value of Gfac. In the case in which more
than one thermal perceptron in the hidden layer satisfies these conditions at a given
iteration, the perceptron that has the highest temperature is the selected candidate to



92 D. Urda et al.

Dataset

Train Test

Split Data

Randomize

Classification
ModelParameter

Configuration

x5

x50

50x5 classification results

Fig. 2. Bootstrap resampling technique procedure used for each classification model, both for
estimating the parameters configuration of each model and to predict pitting corrosion behaviour

learn the incoming pattern. A new single neuron is added to the network when there is
no a thermal perceptron that complies with these conditions and a new learning cycle
starts. The learning process ends when there are no more patterns to be learned, as all of
them are classified correctly or are outside of the initial dataset because are considered
noisy by an internal built-in filter.

Several classification models have been used to evaluate our proposal in this paper:
LDA, kNN, NeuralNet, SVM and Naive Bayes. As Figure 2 shows, first a bootstrap
resampling technique is applied 50x5 times for each of these models varying the val-
ues of their required parameters, including C-MANTEC. Although it is not an honest
parameter estimation procedure, it allows us to estimate a parameter configuration set
in order to test the robustness of different classification models [16]. Afterwards, boot-
strapping is reapplied 200x10 for each model with the obtained parameters in order to
predict pitting corrosion behaviour in terms of accuracy and standard deviation.

3 Experimental Results

It is not easy to determine in advance the appropriate parameters to get a good gen-
eralization rate, which requires a tedious empirical assessment of the data to assign
these values. In this way, multiple configurations of the comparative techniques are
generated by combining the values of the parameters shown in Table 2 in every pos-
sible manner, which also includes the final quantitative results in the column “Ac-
curacy”. These results are obtained by setting the algorithms parameters as follows:
{k = 1, d = cosine-similarity} in kNN; {NHidden = 20, α = 0.05, NCycles = 25}
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Table 2. Parameter settings tested during evaluation of the classification algorithms. The combi-
nation of all the values of the parameters generate a set of configurations for each method. The
third column shows the quantitative results for the best parameter setting of each algorithm.

Algorithm Test Parameters Accuracy

LDA No parameters 72.560±0.49

kNN
Neighbours, k= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

79.867±0.44
Distance type, d= {euclidean, chi-squared, cosine-similarity}

NeuralNet
Hidden neurons, NHidden= {2, 4, 6, 8, 10, 15, 20}

87.254±0.47Alpha, α= {0.05, 0.1, 0.2, 0.3, 0.5}
Number cycles, NCycles= {10, 25, 50}

SVM

Kernel type, t= {linear, polynomial, radial base function, sigmoid}

85.508±0.50
Cost, C= {1, 3, 5, 7, 9, 10, 12, 15}
Degree, d= {1, 2, 3, 4, 5}
Gamma, g= {0.001, 0.005, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 5}
Coef0, r= {0, 1, 2}

NaiveBayes Kernel density, K= {0, 1} 66.882±0.55

C-MANTEC
Max. Iterations, Imax= {1000, 10000, 100000}

89.788±0.56GFac, gfac = {0.01, 0.05, 0.1, 0.2, 0.25, 0.3}
Phi, φ = {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}
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Fig. 3. False Positives (FP) and False Negatives (FN) ratios after applying each method to the
dataset with all the parameter configurations. Each coloured point ’*’ is considered as a different
configuration of that method. The closer the points are to the origin, the better the segmentation
is. Additionally, the method is less sensible to a parameters’ change if the points’ cloud keeps
compact and grouped.
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in NeuralNet; {t = polynomial, C = 15, d = 2, g = 5, r = 0} in SVM; {K = 0} in
NaiveBayes; and {Imax = 10000, gfac = 0.3, φ = 4.5} in C-MANTEC. In concrete,
C-MANTEC (89.78% in accuracy) clearly outperforms LDA (72.56%), kNN (79.86%)
and NaiveBayes (66.88%) models, and it also improves the NeuralNet and SVM clas-
sification accuracies but only in 2 and 4 percentage points respectively.

A thorough analysis is presented in Figure 3, where the influence of the parameter
setting for different algorithms is evaluated in the classification accuracy variability.
The horizontal axis corresponds to the average percentage of the false positives (FP )
on the data, while the vertical axis is associated with the false negatives values (FN ).
Each point of the plot represents the average FP and FN of a generated configuration
when it is applied to the dataset. The closer the points are to the origin, the better the
classification process. The optimum performance occurs if FN = 0 and FP = 0,
which implies there is a perfect match between the output of the algorithm and the real
output of the problem. The results are always below the diagonal of the plot because we
always have FN + FP <= 1.

The variability for each classifier depends largely on the analysed dataset, but the
robustness of the method has also an influence, i.e. more robust methods yield smaller
values. If the configuration cloud is compact, it means that the results do not vary signif-
icantly after a change in its parameters. On the other hand, if several configurations are
far from each other, it implies that the variation of a parameter causes abrupt changes
in the results, which is a very undesirable property for a classification algorithm. As
shown in Figure 3, the compactness for kNN and SVM methods is rather poor, while
our C-MANTEC approach and NeuralNet model have their configurations very close
together. In other words, the performance of the proposed method is not very sensitive
to the parameter selection. Additionally, our approach is closer to the zero point than the
remaining alternatives, which implies that C-MANTEC provides the best classification
result. Since the NaiveBayes classifier do not require many values for its parameters,
the cloud of points for this method (i.e. number of configurations) is not relevant.

4 Conclusions

This work presents a novel application of a constructive neural network (the
C-MANTEC algorithm) to the prediction of pitting corrosion status of stainless steel as
function of environmental conditions. The results demonstrate that C-MANTEC out-
performs, in terms of classification accuracy, the other algorithms under study. In addi-
tion, the compact neural network architecture generated by the C-MANTEC algorithm
makes it suitable to be implemented in a hardware architecture for industrial scope.

The high cost of the polarization tests, in addition to the complexity of its interpre-
tation because of the multiples factor involved, justifies the development of a model
to predict pitting corrosion behaviour of austenitic stainless steel without resorting po-
larization tests. In this sense and as further work, it could be interesting to provide
a useful tool to determine the existence of pits on the material surface by automatic
technique without need of microscope analysis reducing the cost of experimental tests.
Moreover, due to the multiple variables affecting pitting corrosion behaviour of stain-
less steel, it would also be interesting to test classification models varying some of the
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environmental factors studied in this paper. A remarkable case of study would be to
analyse the influence of precursor salts on classification performance.
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