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Abstract. More accurate prediction of software maintenance effort contributes 
to better management and control of software maintenance. Several research 
studies have recently investigated the use of computational intelligence models 
for software maintainability prediction. The performance of these models how-
ever may vary from dataset to dataset. Consequently, computational intelligence 
ensemble techniques have become increasingly popular as they take advantage 
of the capabilities of their constituent models toward a dataset to come up with 
more accurate or at least competitive prediction accuracy compared to individu-
al models. This paper proposes and empirically evaluates an ensemble of com-
putational intelligence models for predicting software maintenance effort. The 
results confirm that the proposed ensemble technique provides more accurate 
prediction compared to individual models, and thus it is more reliable. 

Keywords: Computational intelligence, Ensemble techniques, Software main-
tenance, Prediction. 

1 Introduction 

Software maintenance is one of the most difficult and costly tasks in the software 
development lifecycle [24, 40]. Accurate prediction of software maintainability can 
be useful to support and guide [9]: software related decision making; maintenance 
process efficiency; comparing productivity and costs among different projects; re-
source and staff allocation, and so on. As a result, future maintenance effort can be 
kept under control. 

Recent research studies have investigated the use of computational intelligence 
models for software maintainability prediction [10, 22, 40]. These models have dif-
ferent prediction capabilities and none of them has proved to be the best under all 
conditions. Performance of these models may vary from dataset to dataset. Computa-
tional intelligence ensemble techniques take advantage of the capabilities of their 
constituent models toward a dataset to come up with more accurate or at least compet-
itive prediction accuracy compared to individual models. They have high potential in 
providing reliable predictions. 
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This paper proposes and empirically evaluates an ensemble technique of computa-
tional intelligence models for predicting software maintenance effort. The rest of this 
paper is organized as follows. Section 2 reviews related work. In Section 3, we de-
scribe the proposed computational intelligence ensemble technique. In Section 4, we 
describe the ensemble constituent models. In Section 5, we present the discussions on 
the conducted empirical evaluation and its results. In Section 6, we present the  
conclusions and suggest directions for future work. 

2 Related Work 

Several research studies have investigated the relationship between object-oriented 
metrics and the maintainability of object-oriented software systems, and they found 
significant correlations between them [2, 6, 12, 24, 26]. These metrics can thus be 
used as good predictors of software maintainability. Furthermore, recent research 
studies have investigated the use of computational intelligence models for software 
maintainability prediction. These models were constructed using object-oriented me-
trics as input variables. Such models include TreeNet [11], multivariate adaptive re-
gression splines [40], naïve bayes [22], artificial neural network [35, 40], regression 
tree [22, 40], and support vector regression [40].  

Thwin and Quah [35] predicted the software maintainability as the number of lines 
changed per class. Their experimental results found that General Regression neural 
network predict maintainability more accurately than Ward network model. Koten 
and Gray [22] evaluated and compared the naïve bayes classifier with commonly used 
regression-based models. Their results suggest that the naïve bayes model can predict 
maintainability more accurately than the regression-based models for one system, and 
almost as accurately as the best regression-based model for the other system. Zhou 
and Leung [40] explored the employment of multiple adaptive regression splines 
(MARS) in building software maintainability prediction models. MARS was eva-
luated and compared against multivariate linear regression models, artificial neural 
network models, regression tree models, and support vector models. Their results 
suggest that, for one system, MARS can predict maintainability more accurately than 
the other four typical modeling techniques. Then, Elish and Elish [11] extended the 
work done by Zhou and Leung [40] to investigate the capability of TreeNet technique 
in software maintainability prediction. Their results indicate that TreeNet can yield 
improved, or at least competitive, prediction accuracy over previous maintainability 
prediction models. 

Recently, computational intelligence ensemble models have received much atten-
tion and have demonstrated promising capabilities in improving the accuracy over 
single models [4, 34]. Ensemble models have been used in the area of software engi-
neering prediction problems. They have been used in software reliability prediction 
[39], software project effort estimation [4], and software fault prediction [1, 19]. In 
addition, they have been used in many real applications such as face recognition [14, 
18], OCR [25], seismic signal classification [33] and protein structural class predic-
tion [3]. However, according to the best knowledge of the authors, none of the  
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computational intelligence ensemble techniques have been used in the area of  
software maintenance effort prediction. 

3 The Ensemble Technique 

An ensemble of computational intelligence models uses the outputs of all its individu-
al constituent prediction models, each being assigned a certain priority level, and 
provide the final output with the help of an arbitrator [29]. There are single-model 
ensembles and multi-model ensembles. In single-model ensembles, the individual 
constituent prediction models are of the same type (for example, all of them could be 
radial basis function network), but each with randomly generated training set. Exam-
ples of single-model ensembles include Bagging [5] and Boosting [13]. In multi-
model ensembles, there are different individual constituent prediction models. This 
study focuses on multi-model ensembles. 

The multi-model ensembles can be further classified, according to the design of the 
arbitrator, into linear ensembles and nonlinear ensembles [20]. In linear ensembles, 
the arbitrator combines the outputs of the constituent models in a linear fashion such 
as average, weighted average, etc. In nonlinear ensembles, no assumptions are made 
about the input that is given to the ensemble [20]. The output of the individual predic-
tion models are fed into an arbitrator, which is a nonlinear prediction model such as 
neural network which when trained, assigns the weights accordingly. In this study, we 
propose a linear computational intelligence ensemble technique, which is described 
next. 

The proposed ensemble takes the advantage of the fact that individual prediction 
models have different errors across the used dataset partitions. The idea behind this 
ensemble is that across the dataset partitions, take the best model in training based 
upon a certain criterion in that partition. In this study, the criterion is mean magnitude 
of relative error (MMRE). Fig. 1 provides a formal description of the ensemble. 

 

Choose dataset with N observations 
Choose M individual prediction models 
Set K for K folds cross validation 
For each k ∈ K fold 

For each m ∈ M model 
Apply model m on the training set for fold(k) 
Calculate training error E, based on a certain criterion 
Store error E 

End for 
Select the best model b ∈ M, based on training error E 
For each n ∈ N observation in the testing set for fold(k) 

EnsembleOutput = the result of applying model b on observation n 
End for  

    End for 

Fig. 1. The ensemble technique 



 An Ensemble of Computational Intelligence Models 595 

4 Ensemble Constituent Models 

In this section we briefly describe the individual computational intelligence models 
that are used as base for the computational intelligence ensemble technique, i.e. the 
ensemble constituent models. These models were chosen because they are commonly 
and widely used in the literature of software quality and effort prediction. These mod-
els were built using WEKA machine learning toolkit [38], and their parameters were 
initialized using the default values. 

4.1 Multilayer Perceptron 

Multilayer Perceptron (MLP) [17] are feedforward networks that consist of an input 
layer, one or more hidden layers of nonlinearly activating nodes and an output layer. 
Each node in one layer connects with a certain weight to every other node in the fol-
lowing layer. MLP uses backpropagation algorithm as the standard learning algorithm 
for any supervised-learning. 

The parameters of this model were initialized as follows. Backpropagation algo-
rithm was used for training. Sigmoid was used as an activation function. Number of 
hidden layers was 5. Learning rate was 0.3 with momentum 0.2. Network was set to 
reset with a lower learning rate. Number of epochs to train through was 500.  
Validation threshold was 20. 

4.2 Radial Basis Function Network 

Radial Basis Function Network (RBF) [30] is an artificial neural network that uses 
radial basis functions as activation functions to provide a flexible way to generalize 
linear regression function. Commonly used types of radial basis functions include 
Gaussian, Multiquadric, and Polyharmonic spline. RBF models with Gaussian basis 
functions possess desirable mathematical properties of universal approximation and 
best approximation. A typical RBF model consists of three layers: an input layer, a 
hidden layer with a non-linear RBF activation function and a linear output layer. 

The parameters of this model were initialized as follows. A normalized Gaussian 
radial basis function network was used. Random seed to pass on to K-means cluster-
ing algorithm was 1. Number of clusters for K-means clustering algorithm to generate 
was 2, with minimum standard deviation for clusters set to 0.1. 

4.3 Support Vector Machines 

Support Vector Machines (SVMs) was proposed by Vapnik [36] based on the struc-
tured risk minimization (SRM) principle. SVMs are a group of supervised learning 
methods that can be applied to classification or regression problems. SVMs aim to 
minimize the empirical error and maximize the geometric margin. SVM model is 
defined by these parameters: complexity parameter C, extent to which deviations are 
tolerated ε, and kernel. 
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The parameters of this model were initialized as follows. The cost parameter C was 
set to 1, with polynomial as SVMreg kernel. The most popular (RegSMOImproved) 
algorithm [32] was used for parameter learning. 

4.4 M5 Model Tree 

M5 Model tree (M5P) [31, 38] is an algorithm for generating M5 model trees that 
predicts numeric values for a given instance. To build a model tree, the M5 algorithm 
starts with a set of training instances. The tree is built using a divide-and-conquer 
method. At a node, starting with the root node, the instance set that reaches it is either 
associated with a leaf or a test condition is chosen that splits the instances into subsets 
based on the test outcome. In M5, the test that maximizes the error reduction is used. 
Once the tree has been built, a linear model is constructed at each node. The linear 
model is a regression equation. 

The parameters of this model were initialized as follows. M5 algorithm was used 
for generating M5 model trees [31, 37]. Pruned M5 model trees were built, with 4 
instances as the minimum number of instances allowed at a leaf node. 

5 Empirical Evaluation 

This empirical evaluation aims to determine the extent to which the proposed ensem-
ble technique offers an increase in software maintenance effort prediction accuracy 
over individual models. 

5.1 Datasets 

We used two popular object-oriented software maintainability datasets published by 
Li and Henry [24]: UIMS and QUES datasets. These datasets are publicly available 
which makes our study verifiable, repeatable, and reputable [9]. The UIMS dataset 
contains class-level metrics data collected from 39 classes of a user interface man-
agement system, whereas the QUES dataset contains the same metrics collected from 
71 classes of a quality evaluation system. Both systems were implemented in Ada. 
Both datasets consist of eleven class-level metrics: ten independent variables and one 
dependent variable. 

The independent (input) variables are five Chidambar and Kemerer metrics [7]: 
WMC, DIT, NOC, RFC, and LCOM; four Li and Henry metrics [24]: MPC, DAC, 
NOM, SIZE2; and one traditional lines of code metric (SIZE1). Table 1 provides brief 
description for each metric. 

The dependent (output) variable is a maintenance effort proxy measure, which is 
the actual number of lines in the code that were changed per class during a 3-year 
maintenance period. A line change could be an addition or a deletion. A change in the 
content of a line is counted as a deletion and an addition [24]. 
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Table 1. Independent variables in the datasets 

Metric Description 
WMC Count of methods implemented within a class 
DIT Level for a class within its class hierarchy 
NOC Number of immediate subclasses of a class 

RFC 
Count of methods implemented within a class plus the number of 
methods accessible to an object class due to inheritance 

LCOM 
The average percentage of methods in a class using each data field 
in the class subtracted from 100% 

MPC The number of messages sent out from a class 
DAC The number of instances of another class declared within a class 
NOM The number of methods in a class 
SIZE1 The number of lines of code excluding comments 

SIZE2 
The total count of the number of data attributes and the number of 
local methods in a class 

 
Previous studies [10, 22, 40], on both datasets, indicate that both datasets have dif-

ferent characteristics, and therefore, considered heterogeneous and a separate  
maintenance effort prediction model is built for each dataset. 

5.2 Accuracy Evaluation Measures 

We used de facto standard and commonly used accuracy evaluation measures that are 
based on magnitude of relative error (MRE) [8]. These measures are mean magnitude 
of relative error (MMRE), standard deviation magnitude of relative error (StdMRE), 
and prediction at level q (Pred(q)). MMRE over a dataset of n observations is  
calculated as follows: 

 
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In addition to MMRE, we used StdMRE since it is less sensitive to the extreme values 
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where k is the number of observations whose MRE is less than or equal to a specified 
level q, and n is the total number of observations in the dataset. An acceptable value for 
level q is 0.3, as indicated in the literature [8, 22, 40]. We therefore adopted that value. 

5.3 Results and Analysis 

We used a 10-fold cross validation [21] (i.e. k-fold cross validation, with k set to 10), 
which is a common validation technique used to evaluate the performance of predic-
tion models. In 10-fold cross validation; a dataset is randomly partitioned into 10 
folds of equal size. For 10 times, 9 folds are picked to train the models and the  
remaining fold is used to test them, each time leaving out a different fold. 

Table 2 provides the results obtained from applying the individual computational 
intelligence models on UIMS dataset, as well as the results achieved by the ensemble 
model. Among the individual models, the MLP model achieved the best result in gen-
eral, whereas the RBF model was the worst. It can be observed that the ensemble 
model outperformed all the individual models. 

Table 2. Prediction accuracy results: UIMS dataset 

 Individual Models
Ensemble Model 

 MLP RBF SVM M5P 
MMRE 1.39 3.23 1.64 1.67 0.97 
StdMRE 2.40 4.43 2.38 2.75 1.61 
Pred(0.3) 23.33 15 20 23.33 25 

 
Fig. 2 shows the box plot of MRE values for each model, where the middle of each 

box represents the MMRE for each model. As can be seen, the ensemble model has 
the narrowest box and the smallest whiskers (i.e. the lines above and below from the 
box). Moreover, its box and whiskers are lower than those of the individual models, 
which clearly indicate that the ensemble model outperforms the individual models. 
Fig. 3 shows a histogram of the achieved Pred(0.30) value by each model. From the 
figure it can be seen clearly that the ensemble model achieved the best Pred(0.30). 

 

Fig. 2. Box plots of MRE for each model: UIMS dataset 
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