
I. Rojas, G. Joya, and J. Cabestany (Eds.): IWANN 2013, Part I, LNCS 7902, pp. 592–603, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Ensemble of Computational Intelligence Models
for Software Maintenance Effort Prediction

Hamoud Aljamaan, Mahmoud O. Elish, and Irfan Ahmad

Information & Computer Science Department
King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia
{hjamaan,elish,irfanics}@kfupm.edu.sa

Abstract. More accurate prediction of software maintenance effort contributes
to better management and control of software maintenance. Several research
studies have recently investigated the use of computational intelligence models
for software maintainability prediction. The performance of these models how-
ever may vary from dataset to dataset. Consequently, computational intelligence
ensemble techniques have become increasingly popular as they take advantage
of the capabilities of their constituent models toward a dataset to come up with
more accurate or at least competitive prediction accuracy compared to individu-
al models. This paper proposes and empirically evaluates an ensemble of com-
putational intelligence models for predicting software maintenance effort. The
results confirm that the proposed ensemble technique provides more accurate
prediction compared to individual models, and thus it is more reliable.

Keywords: Computational intelligence, Ensemble techniques, Software main-
tenance, Prediction.

1 Introduction

Software maintenance is one of the most difficult and costly tasks in the software
development lifecycle [24, 40]. Accurate prediction of software maintainability can
be useful to support and guide [9]: software related decision making; maintenance
process efficiency; comparing productivity and costs among different projects; re-
source and staff allocation, and so on. As a result, future maintenance effort can be
kept under control.

Recent research studies have investigated the use of computational intelligence
models for software maintainability prediction [10, 22, 40]. These models have dif-
ferent prediction capabilities and none of them has proved to be the best under all
conditions. Performance of these models may vary from dataset to dataset. Computa-
tional intelligence ensemble techniques take advantage of the capabilities of their
constituent models toward a dataset to come up with more accurate or at least compet-
itive prediction accuracy compared to individual models. They have high potential in
providing reliable predictions.

 An Ensemble of Computational Intelligence Models 593

This paper proposes and empirically evaluates an ensemble technique of computa-
tional intelligence models for predicting software maintenance effort. The rest of this
paper is organized as follows. Section 2 reviews related work. In Section 3, we de-
scribe the proposed computational intelligence ensemble technique. In Section 4, we
describe the ensemble constituent models. In Section 5, we present the discussions on
the conducted empirical evaluation and its results. In Section 6, we present the
conclusions and suggest directions for future work.

2 Related Work

Several research studies have investigated the relationship between object-oriented
metrics and the maintainability of object-oriented software systems, and they found
significant correlations between them [2, 6, 12, 24, 26]. These metrics can thus be
used as good predictors of software maintainability. Furthermore, recent research
studies have investigated the use of computational intelligence models for software
maintainability prediction. These models were constructed using object-oriented me-
trics as input variables. Such models include TreeNet [11], multivariate adaptive re-
gression splines [40], naïve bayes [22], artificial neural network [35, 40], regression
tree [22, 40], and support vector regression [40].

Thwin and Quah [35] predicted the software maintainability as the number of lines
changed per class. Their experimental results found that General Regression neural
network predict maintainability more accurately than Ward network model. Koten
and Gray [22] evaluated and compared the naïve bayes classifier with commonly used
regression-based models. Their results suggest that the naïve bayes model can predict
maintainability more accurately than the regression-based models for one system, and
almost as accurately as the best regression-based model for the other system. Zhou
and Leung [40] explored the employment of multiple adaptive regression splines
(MARS) in building software maintainability prediction models. MARS was eva-
luated and compared against multivariate linear regression models, artificial neural
network models, regression tree models, and support vector models. Their results
suggest that, for one system, MARS can predict maintainability more accurately than
the other four typical modeling techniques. Then, Elish and Elish [11] extended the
work done by Zhou and Leung [40] to investigate the capability of TreeNet technique
in software maintainability prediction. Their results indicate that TreeNet can yield
improved, or at least competitive, prediction accuracy over previous maintainability
prediction models.

Recently, computational intelligence ensemble models have received much atten-
tion and have demonstrated promising capabilities in improving the accuracy over
single models [4, 34]. Ensemble models have been used in the area of software engi-
neering prediction problems. They have been used in software reliability prediction
[39], software project effort estimation [4], and software fault prediction [1, 19]. In
addition, they have been used in many real applications such as face recognition [14,
18], OCR [25], seismic signal classification [33] and protein structural class predic-
tion [3]. However, according to the best knowledge of the authors, none of the

594 H. Aljamaan, M.O. Elish, and I. Ahmad

computational intelligence ensemble techniques have been used in the area of
software maintenance effort prediction.

3 The Ensemble Technique

An ensemble of computational intelligence models uses the outputs of all its individu-
al constituent prediction models, each being assigned a certain priority level, and
provide the final output with the help of an arbitrator [29]. There are single-model
ensembles and multi-model ensembles. In single-model ensembles, the individual
constituent prediction models are of the same type (for example, all of them could be
radial basis function network), but each with randomly generated training set. Exam-
ples of single-model ensembles include Bagging [5] and Boosting [13]. In multi-
model ensembles, there are different individual constituent prediction models. This
study focuses on multi-model ensembles.

The multi-model ensembles can be further classified, according to the design of the
arbitrator, into linear ensembles and nonlinear ensembles [20]. In linear ensembles,
the arbitrator combines the outputs of the constituent models in a linear fashion such
as average, weighted average, etc. In nonlinear ensembles, no assumptions are made
about the input that is given to the ensemble [20]. The output of the individual predic-
tion models are fed into an arbitrator, which is a nonlinear prediction model such as
neural network which when trained, assigns the weights accordingly. In this study, we
propose a linear computational intelligence ensemble technique, which is described
next.

The proposed ensemble takes the advantage of the fact that individual prediction
models have different errors across the used dataset partitions. The idea behind this
ensemble is that across the dataset partitions, take the best model in training based
upon a certain criterion in that partition. In this study, the criterion is mean magnitude
of relative error (MMRE). Fig. 1 provides a formal description of the ensemble.

Choose dataset with N observations
Choose M individual prediction models
Set K for K folds cross validation
For each k ∈ K fold

For each m ∈ M model
Apply model m on the training set for fold(k)
Calculate training error E, based on a certain criterion
Store error E

End for
Select the best model b ∈ M, based on training error E
For each n ∈ N observation in the testing set for fold(k)

EnsembleOutput = the result of applying model b on observation n
End for

 End for

Fig. 1. The ensemble technique

 An Ensemble of Computational Intelligence Models 595

4 Ensemble Constituent Models

In this section we briefly describe the individual computational intelligence models
that are used as base for the computational intelligence ensemble technique, i.e. the
ensemble constituent models. These models were chosen because they are commonly
and widely used in the literature of software quality and effort prediction. These mod-
els were built using WEKA machine learning toolkit [38], and their parameters were
initialized using the default values.

4.1 Multilayer Perceptron

Multilayer Perceptron (MLP) [17] are feedforward networks that consist of an input
layer, one or more hidden layers of nonlinearly activating nodes and an output layer.
Each node in one layer connects with a certain weight to every other node in the fol-
lowing layer. MLP uses backpropagation algorithm as the standard learning algorithm
for any supervised-learning.

The parameters of this model were initialized as follows. Backpropagation algo-
rithm was used for training. Sigmoid was used as an activation function. Number of
hidden layers was 5. Learning rate was 0.3 with momentum 0.2. Network was set to
reset with a lower learning rate. Number of epochs to train through was 500.
Validation threshold was 20.

4.2 Radial Basis Function Network

Radial Basis Function Network (RBF) [30] is an artificial neural network that uses
radial basis functions as activation functions to provide a flexible way to generalize
linear regression function. Commonly used types of radial basis functions include
Gaussian, Multiquadric, and Polyharmonic spline. RBF models with Gaussian basis
functions possess desirable mathematical properties of universal approximation and
best approximation. A typical RBF model consists of three layers: an input layer, a
hidden layer with a non-linear RBF activation function and a linear output layer.

The parameters of this model were initialized as follows. A normalized Gaussian
radial basis function network was used. Random seed to pass on to K-means cluster-
ing algorithm was 1. Number of clusters for K-means clustering algorithm to generate
was 2, with minimum standard deviation for clusters set to 0.1.

4.3 Support Vector Machines

Support Vector Machines (SVMs) was proposed by Vapnik [36] based on the struc-
tured risk minimization (SRM) principle. SVMs are a group of supervised learning
methods that can be applied to classification or regression problems. SVMs aim to
minimize the empirical error and maximize the geometric margin. SVM model is
defined by these parameters: complexity parameter C, extent to which deviations are
tolerated ε, and kernel.

596 H. Aljamaan, M.O. Elish, and I. Ahmad

The parameters of this model were initialized as follows. The cost parameter C was
set to 1, with polynomial as SVMreg kernel. The most popular (RegSMOImproved)
algorithm [32] was used for parameter learning.

4.4 M5 Model Tree

M5 Model tree (M5P) [31, 38] is an algorithm for generating M5 model trees that
predicts numeric values for a given instance. To build a model tree, the M5 algorithm
starts with a set of training instances. The tree is built using a divide-and-conquer
method. At a node, starting with the root node, the instance set that reaches it is either
associated with a leaf or a test condition is chosen that splits the instances into subsets
based on the test outcome. In M5, the test that maximizes the error reduction is used.
Once the tree has been built, a linear model is constructed at each node. The linear
model is a regression equation.

The parameters of this model were initialized as follows. M5 algorithm was used
for generating M5 model trees [31, 37]. Pruned M5 model trees were built, with 4
instances as the minimum number of instances allowed at a leaf node.

5 Empirical Evaluation

This empirical evaluation aims to determine the extent to which the proposed ensem-
ble technique offers an increase in software maintenance effort prediction accuracy
over individual models.

5.1 Datasets

We used two popular object-oriented software maintainability datasets published by
Li and Henry [24]: UIMS and QUES datasets. These datasets are publicly available
which makes our study verifiable, repeatable, and reputable [9]. The UIMS dataset
contains class-level metrics data collected from 39 classes of a user interface man-
agement system, whereas the QUES dataset contains the same metrics collected from
71 classes of a quality evaluation system. Both systems were implemented in Ada.
Both datasets consist of eleven class-level metrics: ten independent variables and one
dependent variable.

The independent (input) variables are five Chidambar and Kemerer metrics [7]:
WMC, DIT, NOC, RFC, and LCOM; four Li and Henry metrics [24]: MPC, DAC,
NOM, SIZE2; and one traditional lines of code metric (SIZE1). Table 1 provides brief
description for each metric.

The dependent (output) variable is a maintenance effort proxy measure, which is
the actual number of lines in the code that were changed per class during a 3-year
maintenance period. A line change could be an addition or a deletion. A change in the
content of a line is counted as a deletion and an addition [24].

 An Ensemble of Computational Intelligence Models 597

Table 1. Independent variables in the datasets

Metric Description
WMC Count of methods implemented within a class
DIT Level for a class within its class hierarchy
NOC Number of immediate subclasses of a class

RFC
Count of methods implemented within a class plus the number of
methods accessible to an object class due to inheritance

LCOM
The average percentage of methods in a class using each data field
in the class subtracted from 100%

MPC The number of messages sent out from a class
DAC The number of instances of another class declared within a class
NOM The number of methods in a class
SIZE1 The number of lines of code excluding comments

SIZE2
The total count of the number of data attributes and the number of
local methods in a class

Previous studies [10, 22, 40], on both datasets, indicate that both datasets have dif-

ferent characteristics, and therefore, considered heterogeneous and a separate
maintenance effort prediction model is built for each dataset.

5.2 Accuracy Evaluation Measures

We used de facto standard and commonly used accuracy evaluation measures that are
based on magnitude of relative error (MRE) [8]. These measures are mean magnitude
of relative error (MMRE), standard deviation magnitude of relative error (StdMRE),
and prediction at level q (Pred(q)). MMRE over a dataset of n observations is
calculated as follows:

 
=

=
n

i
iMRE

n
MMRE

1

1

where MREi is a normalized measure of the discrepancy between the actual value

(ix) and the predicated value (ix̂) of observation i. It is calculated as follows:

i

ii
i x

xx
MRE

ˆ−
=

In addition to MMRE, we used StdMRE since it is less sensitive to the extreme values
compared to MMRE. Pred(q) is a measure of the percentage of observations whose
MRE is less than or equal to q. It is calculated as follows:

n

k
qed =)(Pr

598 H. Aljamaan, M.O. Elish, and I. Ahmad

where k is the number of observations whose MRE is less than or equal to a specified
level q, and n is the total number of observations in the dataset. An acceptable value for
level q is 0.3, as indicated in the literature [8, 22, 40]. We therefore adopted that value.

5.3 Results and Analysis

We used a 10-fold cross validation [21] (i.e. k-fold cross validation, with k set to 10),
which is a common validation technique used to evaluate the performance of predic-
tion models. In 10-fold cross validation; a dataset is randomly partitioned into 10
folds of equal size. For 10 times, 9 folds are picked to train the models and the
remaining fold is used to test them, each time leaving out a different fold.

Table 2 provides the results obtained from applying the individual computational
intelligence models on UIMS dataset, as well as the results achieved by the ensemble
model. Among the individual models, the MLP model achieved the best result in gen-
eral, whereas the RBF model was the worst. It can be observed that the ensemble
model outperformed all the individual models.

Table 2. Prediction accuracy results: UIMS dataset

 Individual Models
Ensemble Model

 MLP RBF SVM M5P
MMRE 1.39 3.23 1.64 1.67 0.97
StdMRE 2.40 4.43 2.38 2.75 1.61
Pred(0.3) 23.33 15 20 23.33 25

Fig. 2 shows the box plot of MRE values for each model, where the middle of each

box represents the MMRE for each model. As can be seen, the ensemble model has
the narrowest box and the smallest whiskers (i.e. the lines above and below from the
box). Moreover, its box and whiskers are lower than those of the individual models,
which clearly indicate that the ensemble model outperforms the individual models.
Fig. 3 shows a histogram of the achieved Pred(0.30) value by each model. From the
figure it can be seen clearly that the ensemble model achieved the best Pred(0.30).

Fig. 2. Box plots of MRE for each model: UIMS dataset

MLP RBF SVM M5P Ensemble
-2

-1

0

1

2

3

4

5

6

7

8

9
 Mean ±SE ±SD

Fig. 3.

Table 3 provides the res
intelligence models on QUE
model. Among the individu
reas the RBF model was th
outperformed all the individ

Table 3.

 M

MMRE 0
StdMRE 0
Pred(0.3) 4

Fig. 4. Box

Fig. 4 shows the box plo
box represents the MMRE
el has the narrowest box a

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

An Ensemble of Computational Intelligence Models

 Pred(0.30) for each model: UIMS dataset

sults obtained from applying the individual computatio
ES dataset, as well as the results achieved by the ensem
ual models, the SVM model achieved the best result, w
he worst. It also can be observed that the ensemble mo
dual models.

. Prediction accuracy results: QUES dataset

Individual Models
Ensemble Model

MLP RBF SVM M5P
.71 0.96 0.44 0.54 0.41
.65 1.52 0.39 0.56 0.32
40 36.66 56.66 51.66 60

x plots of MRE for each model: QUES dataset

ot of MRE values for each model, where the middle of e
for each model. It can be observed that the ensemble m
and the smallest whiskers. Its box and whiskers are a

MLP RBF SVM M5P Ensemble

 Mean ±SE ±SD

599

onal
mble
whe-
odel

each
mod-
also

600 H. Aljamaan, M.O. E

lower than those of the ind
model outperforms the indi
of the achieved Pred(0.30)
highest Pred(0.30) value, i.e

Fig. 5.

When considering the re
servations. First, the results
models may vary from data
dataset while the SVM mo
ble model outperformed the

6 Conclusions and

In this paper we presented
dicting software maintenan
prediction models (MLP, R
of the ensemble technique w
software maintainability da
vides more accurate predic
reliable. It is worth noting
and computationally expens
benefits of using the ensem
weighs this penalty.

There are possible direc
near ensemble models and c
considering other ensemble
ensemble techniques to oth
prediction. Both theoretical
demonstrated that a good e
the ensemble are both accu
space. Therefore, one impor
of ensemble constituent mo

Elish, and I. Ahmad

dividual models, which clearly indicate that the ensem
ividual models in this dataset too. Fig. 5 shows a histogr
 value by each model. The ensemble model achieved
e. 60%.

Pred(0.30) for each model: QUES dataset

esults from both datasets, there are two main interesting
s support that the performance of the individual predict
aset to dataset; the MLP model was the best in the UI
del was the best in the QUES dataset. Second, the ense
e individual models in both datasets.

d Future Work

an ensemble of computational intelligence models for p
nce effort. As ensemble constituent models, four popu
RBF, SVM, and M5P) were used. The prediction accur
was empirically evaluated using two public object-orien
atasets. The results indicate that ensemble technique p
ction compared to individual models, and thus it is m
g that ensemble technique will be in general more comp
sive as compared to using a single prediction model but
mble in terms of prediction accuracy and robustness o

ctions for future work, which include: investigating no
comparing their performance with linear ensemble mod
e constituent models; applying computational intellige
her software engineering prediction problems such as fa
l [15, 23] and empirical [16, 27, 28] research studies h
ensemble is one where the individual prediction model
urate and make their errors on different parts of the in
rtant direction of future work is to investigate different s

odels.

mble
ram
the

ob-
tion
MS
em-

pre-
ular
racy
nted
pro-

more
plex

the
out-

onli-
dels;
ence
fault
have
s in

nput
sets

 An Ensemble of Computational Intelligence Models 601

Acknowledgements. The authors wish to acknowledge King Fahd University of
Petroleum and Minerals (KFUPM) for utilizing the various facilities in carrying out
this research.

References

1. Aljamaan, H., Elish, M.: An Empirical Study of Bagging and Boosting Ensembles for
Identifying Faulty Classes in Object-Oriented Software. In: IEEE Symposium on Compu-
tational Intelligence and Data Mining, pp. 187–194 (2009)

2. Bandi, R.K., Vaishnavi, V.K., Turk, D.E.: Predicting Maintenance Performance Using Ob-
ject-Oriented Design Complexity Metrics. IEEE Transactions on Software Engineer-
ing 29(1), 77–87 (2003)

3. Bittencourt, V.G., Abreu, M.C.C., Souto, M.C.P.D., Canuto, A.M.D.P.: An empirical
comparison of individual machine learning techniques and ensemble approaches in protein
structural class prediction. In: International Joint Conference on Neural Networks, pp.
527–531 (2005)

4. Braga, P.L., Oliveira, A.L.I., Ribeiro, G.H.T., Meira, S.R.L.: Bagging Predictors for Esti-
mation of Software Project Effort. In: International Joint Conference on Neural Networks,
pp. 1595–1600 (2007)

5. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
6. Briand, L.C., Bunse, C., Daly, J.W.: A Controlled Experiment for Evaluating Quality

Guidelines on the Maintainability of Object-Oriented Designs. IEEE Transactions on
Software Engineering 27(6), 513–530 (2001)

7. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

8. Conte, S., Dunsmore, H., Shen, V.: Software Engineering Metrics and Models. Benja-
min/Cummings, Menlo Park (1986)

9. De Lucia, A., Pompella, E., Stefanucci, S.: Assessing effort estimation models for correc-
tive maintenance through empirical studies. Information and Software Technology 47(1),
3–15 (2005)

10. Elish, M., Elish, K.: Application of TreeNet in Predicting Object-Oriented Software Main-
tainability: A Comparative Study. In: 13th European Conference on Software Maintenance
and Reengineering (CSMR 2009), pp. 69–78 (2009)

11. Elish, M.O., Elish, K.O.: Application of TreeNet in Predicting Object-Oriented Software
Maintainability: A Comparative Study. In: 13th European Conference on Software Main-
tenance and Reengineering (CSMR 2009), pp. 69–78 (2009)

12. Fioravanti, F., Nesi, P.: Estimation and prediction metrics for adaptive maintenance effort
of object-oriented systems. IEEE Transactions on Software Engineering 27(12), 1062–
1084 (2001)

13. Freund, Y.: Boosting a weak learning algorithm by majority. Information and Computa-
tion 121(2), 256–285 (1995)

14. Gutta, S., Wechsler, H.: Face Recognition Using Hybrid Classifier Systems. In: IEEE In-
ternational Conference on Neural Networks, pp. 1017–1022 (1996)

15. Hansen, L., Salamon, P.: Neural Network Ensembles. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 12(10), 993–1001 (1990)

602 H. Aljamaan, M.O. Elish, and I. Ahmad

16. Hashem, S., Schmeiser, B., Yih, Y.: Optimal linear combinations of neural networks.
Neural Networks 3, 1507–1512 (1994)

17. Haykin, S.: Neural Networks: A Comprehensive Foundation New Jersey. Prentice Hall,
New Jersey (1999)

18. Huang, F.J., Zhou, Z., Zhang, H.-J., Chen, T.: Pose invariant face recognition. In: Proc. 4th
IEEE Int. Conf. on Automatic Face and Gesture Recognition, France, pp. 245–250 (2000)

19. Khoshgoftaar, T.M., Geleyn, E., Nguyen, L.: Empirical Case Studies of Combining Soft-
ware Quality Classification Models. In: Third International Conference on Quality Soft-
ware, p. 40 (2003)

20. Kiran, N., Ravi, V.: Software reliability prediction by soft computing techniques. Journal
of Systems and Software 81(4), 576–583 (2008)

21. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 1137–1143 (1995)

22. Koten, C., Gray, A.: An application of Bayesian network for predicting object-oriented
software maintainability. Information and Software Technology 48(1), 59–67 (2006)

23. Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation, and Active Learn-
ing. In: Advances in Neural Information Processing Systems, vol. 7, pp. 231–238 (1995)

24. Li, W., Henry, S.: Object-Oriented Metrics that Predict Maintainability. Journal of Sys-
tems and Software 23(2), 111–122 (1993)

25. Mao, J.: A case study on bagging, boosting and basic ensembles of neural networks for
OCR. In: Proc. IEEE Int. Joint Conf. on Neural Networks, pp. 1828–1833 (1998)

26. Misra, S.C.: Modeling Design/Coding Factors That Drive Maintainability of Software Sys-
tems. Software Quality Control 13(3), 297–320 (2005)

27. Opitz, D.W., Shavlik, J.W.: Actively searching for an effective neural-network ensemble.
Connection Science 8(3/4), 337–353 (1996)

28. Opitz, D.W., Shavlik, J.W.: Generating Accurate and Diverse Members of a Neural-
Network Ensemble. In: Advances in Neural Information Processing Systems, vol. 8, pp.
535–541 (1996)

29. Optiz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of Artifi-
cial Intelligence Reseach 11, 169–198 (1999)

30. Poggio, T., Girosi, F.: Networks for approximation and learning. Proceedings of the
IEEE 78(9), 1481–1497 (1990)

31. Quinlan, R.J.: Learning with Continuous Classes. In: 5th Australian Joint Conference on
Artificial Intelligence, Singapore, pp. 343–348 (1992)

32. Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K.: Improvements to the
SMO Algorithm for SVM Regression. IEEE Transactions on Neural Networks 11(5),
1188–1193 (2000)

33. Shimshoni, Y., Intrator, N.: Classification of seismic signals by integrating ensembles of
neural networks. IEEE Transactions on Signal Processing 46(5), 1194–1201 (1998)

34. Sollich, P.: Learning with Ensembles: How over-fitting can be useful. In: Advances in
Neural Information Processing Systems, vol. 8, pp. 190–196 (1996)

35. Thwin, M.M.T., Quah, T.-S.: Application of Neural Networks for Software Quality Predic-
tion Using Object-Oriented Metrics. Journal of Systems and Software 76(2), 147–156
(2005)

36. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

 An Ensemble of Computational Intelligence Models 603

37. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. In:
Poster papers of the 9th European Conference on Machine Learning (1997)

38. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005)

39. Zheng, J.: Predicting software reliability with neural network ensembles. Expert Systems
with Applications (2007)

40. Zhou, Y., Leung, H.: Predicting object-oriented software maintainability using multiva-
riate adaptive regression splines. Journal of Systems and Software 80(8), 1349–1361
(2007)

	An Ensemble of Computational Intelligence Models
for Software Maintenance Effort Prediction
	1 Introduction
	2 Related Work
	3 The Ensemble Technique
	4 Ensemble Constituent Models
	4.1 Multilayer Perceptron
	4.2 Radial Basis Function Network
	4.3 Support Vector Machines
	4.4 M5 Model Tree

	5 Empirical Evaluation
	5.1 Datasets
	5.2 Accuracy Evaluation Measures
	5.3 Results and Analysis

	6 Conclusions and d Future Work
	References

