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Abstract. Ontology matching consists of finding the semantic relations 
between different ontologies and is widely recognized as an essential process to 
achieve an adequate interoperability between people, systems or organizations 
that use different, overlapping ontologies to represent the same knowledge. 
There are several techniques to measure the semantic similarity of elements 
from separate ontologies, which must be adequately combined in order to 
obtain precise and complete results. Nevertheless, combining multiple 
similarity measures into a single metric is a complex problem, which has been 
traditionally solved using weights determined manually by an expert, or through 
general methods that do not provide optimal results. In this paper, a genetic 
algorithms-based approach to aggregate different similarity metrics into a single 
function is presented. Starting from an initial population of individuals, each 
one representing a combination of similarity measures, our approach allows to 
find the combination that provides the optimal matching quality.  
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1 Introduction 

At present, the role of ontologies as the essential artifact for allowing a more effective 
data and knowledge sharing and reusing in the Semantic Web [1] is widely 
recognized [2] and a variety of public ontologies exist for different areas. This 
innovative knowledge representation method is considered to be an appropriate 
solution to the problem of heterogeneity in data, since ontological methods make it 
possible to reach a common understanding of concepts in a particular domain, 
supporting the exchange of information between people (or systems) that utilize 
different representations for the same or similar knowledge [3, 4]. 

Nevertheless, given that different tasks or different points of view usually require 
different conceptualizations, utilizing a single ontology is neither always possible nor 
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advisable. This can lead to the usage of different ontologies, although in some cases 
they might contain information that could be overlapping. This, in turn, represents 
another type of heterogeneity that can result in inefficient processing or 
misinterpretation of data, information, and knowledge. Addressing this problem 
requires to find the correspondences, or mappings, that exist between the elements of 
the different ontologies being used. This process is commonly known as ontology 
matching, mapping or alignment [5]. The resulting set of inter-ontology relations can 
be used to adequately exchange information between people, systems and 
organizations. 

During the last years, multiple ontology alignment techniques have been conceived 
to identify these correspondences [6]. These methods are based on computing a 
similarity (or distance) value between elements of different ontologies. When 
computing the ontology alignment between two ontologies, it is frequently to use 
several ontology alignment techniques, based on different similarity approaches (e.g. 
lexical similarity, structural similarity, etc.) and then aggregating them into a unique 
similarity value. However, calculating the optimal similarity aggregation is a 
computationally expensive task that requires new, more efficient methods to get 
precise and complete alignments [5, 7, 8]. 

In this work, we propose an approach based on genetic algorithms (GAs) to 
ascertain how to combine multiple similarity measures into a single aggregated 
metric, in order to provide the optimal matching result. Our work can be useful to 
automatically tune an ontology matching system in environments where a reference 
matching is provided. 

Qazvinian et al. [9] are among the small number of authors who have tried, up to 
the moment, to apply GAs to the ontology matching task. They considered ontology 
matching as an optimization problem in which the objective is maximizing the overall 
similarity value between the input ontologies, and they used a GA to find the optimal 
mapping. In a similar way, another interesting approach to ontology matching by 
using GAs is GAOM [10]. In this work, ontology features are defined from two 
aspects: intensional and extensional, and the ontology matching problem is modeled 
as a global optimization of a mapping between two ontologies. Then GAs are used to 
achieve an approximate optimal solution. 

2 A New Approach to Optimize Similarity Aggregation 

In this section, a genetic algorithm to find the optimal aggregation of multiple 
similarity measures is presented. The GA starts from a randomly generated 
aggregation of similarity measures (set of weights), and tries to find the weights that 
optimize the global matching quality. In order to reliably describe the proposed 
strategy, it is necessary to define the following elements (see Fig. 1): 

• A and B are two ontologies with n and m elements (entities) respectively. A is 
composed by the entities naa ,...,1  while B has the entities mbb ,...,1 . 

• S is an existing set of semantic mappings or correspondences sij between A and B, 
being sij a semantic mapping between the entity ai from A and the entity bj from 
B, with ni ≤<0  and mj ≤<0 .  
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Fig. 1. Graphical representation of the ontology matching problem. The figure shows the 
taxonomy of two ontologies (A and B), and a set of semantic mappings (sij) between them. 

• { } { })(),...,(),(),...,,( 11 ijpijjipji sFsFbaFbaFF ==  is a set composed by p functions, 

or ontology matching metrics, to compute a value of semantic similarity (in the 
[0, 1] interval) between pairs of entities from separate ontologies. 

• t is a similarity threshold belonging to the interval [0, 1], which indicates the 
minimum similarity value required to consider that exists a semantic 
correspondence between two different entities. 
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aggregated similarity value between two entities. This function combines the 
similarity values provided by p different similarity functions into a single value 
belonging to the interval [0, 1]. The aggregation is based on the values of a set of 
p weights wk, which quantify the contribution of each separate similarity measure 
to the aggregated value. 

• [ ]1,0)( →SQ  is a function that measures the quality of a set of semantic 

correspondences between two ontologies. A good example of quality measure is 
the f-measure metric, which considers both the precision and the recall to 
compute the score. 

The approach is addressed to find the values of the weights wk that maximize the 
quality of the matching between the input ontologies A and B, that is, the function 
Q(S). The obtained set of weights could be subsequently used to compute the 
matching of ontologies with similar characteristics, or belonging to the same domain 
as the ontologies whose matching was selected as a reference.   

2.1 Encoding Mechanism and Initialization 

Each individual in the population represents a potential solution to the problem, that 
is, a set of weights wk that indicate the contribution of each similarity metric to the 
aggregated similarity function. We propose an encoding mechanism based on that 
each position in the chromosome contains a value in the interval [0, 1], which 
represents a cut, or separation point that limits the value of a weight (remember that 
the summation of all weights is equal to 1). Considering that p is the number of 
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required weights, the set of cuts could be formally represented as C’ = {c1’, …, cp-1’}. 
The chromosome decoding is carried out by ordering C’ from lower to higher, which 
constitutes the ordered set of values C = {c1, …, cp-1},  and calculating the weights 
according to the following expression: 
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A graphical representation of the chromosome and the decoded values is presented in 
Fig. 2, while Fig. 3 shows an example that can be useful to understand the decoding 
mechanism. 

 

 

Fig. 2. Graphical representation of a chromosome and the set of weights obtained after 
decoding it. Each gene in the chromosome contains a value belonging to the interval [0, 1] that 
represents a cut, or separation point between weights. C’ = {c1’, …, cp-1’} is an unordered set of 
cuts, while C = {c1, …, cp-1} is the result obtained after ordering C’ from lower to higher.  
W = {w1, …, wp} is the set of weights that constitute the solution to the problem. 

 

Fig. 3. Example of a specific individual and the weights obtained after decoding it. In this 
example, 7 different weights were considered. 

2.2 Reproduction Methods 

To go from one generation to the next one, we suggest using the following operators: 

• Selection. We propose to use a roulette wheel selection method, which consists 
in that individuals are given a probability of being selected that is directly 
proportionate to their fitness, so the best individuals will have more opportunities 
of reproduction. Two individuals are then chosen randomly based on these 
probabilities and produce offspring. 
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• Crossover. Crossover will use a non-destructive strategy, in such a way that the 
descendants will pass to the following generation only if they exceed the fitness 
of their parents. A single-point crossover will be used, which consists in 
randomly selecting a crossover point on both parent chromosomes and then 
interchanging the two parent chromosomes to produce two new offspring. 

• Copy. The best individual from one generation will be also copied to the 
following generation (elitist strategy). This decision has been taken to keep the 
best set of weights (best solution) that has been obtained up to the moment. 

• Mutation. When the crossover has been achieved, genes will be mutated with a 
low probability. This mutation will consist in replacing the selected gene by a 
randomly generated one. 

2.3 Fitness Function 

For the smooth running of a GA, it is necessary to have a method that allows to show 
if the individuals of the population are or are not good solutions to the problem. That 
is the aim of the fitness or objective function. As our fitness function, we propose to 
use the f-measure [11], which is the uniformly weighted harmonic mean of precision 
and recall. F-measure will be used as the reference quality metric, in such a way that 
we will consider that the best alignment is the alignment with highest f-measure. 

recallprecision

recallprecision
measureffitness

+
⋅⋅=−= 2  

2.4 Stop Criterion 

We propose to use a hybrid stop criterion: the GA will stop when one of the following 
conditions is true: (1) A fixed number of iterations have been reached; (2) The value 
for the fitness function is higher than a particular threshold. 

3 Execution Example 

In this section we provide a “toy” example with two small ontologies, which can be 
useful to understand how the proposed GA works. We will assume that: 

• A and B are two ontologies from a specific domain. Both ontology A and 
ontology B have 3 entities (n = 3,  m = 3). 

• S is the reference matching between A and B. In this example { }3312, ssS = , that 

is, it will be supposed that there is a semantic mapping between the pairs of 
entities (a1, b2) and (a3, b3), as shown in Fig. 4. We will also suppose that there 
are some similarity between the entities (a1, b1) and (a2, b2) , but not enough to be 
considered semantic mappings. 

• { })(),(),(),(),(),( 543211 ijijijijijij sFsFsFsFsFsFF = is a set composed by five 

different similarity functions. We need to aggregate the similarity values 
provided by these functions into a single measure. We will also suppose that the 
functions )(3 ijsF  and )(5 ijsF , due to the particular characteristics of A and B, are 

not adequate to align them, so they will not provide reliable similarity values. 



440 M. Martínez-Romero et al. 

• The similarity threshold t is set to 0.7, which means that the algorithm will 
consider that exists a mapping between a pair of entities (ai, bj) if the similarity 
function for such entities provides a value higher than 0.7. We will also suppose 
that the algorithm will finish if the value of the fitness function is higher than 0.8 
(stop criterion). 

 

Fig. 4. Graphical view of ontologies A and B, and the reference matching S (gold standard) 

Considering the previous information, the aggregated similarity function would be: 
)()()()()(),( 5544332211 ijijijijijjiagg sFwsFwsFwsFwsFwbaF ⋅+⋅+⋅+⋅+⋅= , with 

154321 =++++ wwwww . The GA will be used to find the values of weights w1, w2, 
w3, w4 and w5 that provide the optimal matching. 

Firstly, it is necessary to compute the values of similarity for the n x m possible 
correspondences between A and B, according to the five different similarity functions. 
In this example, we will suppose that the results of this computation are the ones in 
Table 1. Remember that it has been supposed that the correct mappings are s12 and s33, 
and that F3(sij) and F5(sij) are not adequate to align the given ontologies, so they are 
not able to identify s12 and s33 as the valid mappings. 

Table 1. Results of initial similarity computation 

s11 s12 s13 s21 s22 s23 s31 s32 s33 
F1(sij) 0.56 0.93 0.12 0.05 0.66 0.31 0.08 0.18 0.97 
F2(sij) 0.65 0.99 0.20 0.03 0.68 0.49 0.03 0.23 0.81 
F3(sij) 0.11 0.17 0.23 0.41 0.56 0.11 0.65 0.09 0.21 
F4(sij) 0.72 0.72 0.44 0.50 0.45 0.11 0.01 0.13 0.98 
F5(sij) 0.77 0.28 0.81 0.74 0.98 0.79 0.87 0.17 0.09 

The following step would be to generate the initial population. In this case, it is 
composed by 10 randomly generated individuals, which are shown in Table 2.  

Table 2. Initial population (first generation) 

Individual Values Individual Values 
1 0.37 0.62 0.23 0.43 6 0.30 0.27 0.92 0.71 
2 0.32 0.08 0.07 0.56 7 0.69 0.22 0.17 0.94 
3 0.53 0.91 0.11 0.73 8 0.22 0.66 0.45 0.21 
4 0.65 0.63 0.01 0.70 9 0.20 0.14 0.25 0.12 
5 0.86 0.19 0.59 0.21 10 0.85 0.53 0.41 0.19 
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The next step would be to calculate the fitness value for each individual. Each 
chromosome is decoded in order to obtain the values for the 5 weights (see Table 3). 

Table 3. Weights for the 1st generation, obtained after decoding the chromosomes in Table 2 

Individual w1 w2 w3 w4 w5 
1 0.23 0.14 0.06 0.19 0.38 
2 0.07 0.01 0.24 0.24 0.44 
3 0.11 0.42 0.20 0.18 0.09 
4 0.01 0.62 0.02 0.05 0.30 
5 0.19 0.02 0.38 0.27 0.14 
6 0.27 0.03 0.41 0.21 0.08 
7 0.17 0.05 0.47 0.25 0.06 
8 0.21 0.01 0.23 0.21 0.34 
9 0.12 0.02 0.06 0.05 0.75 
10 0.19 0.22 0.12 0.32 0.15 

The obtained weights are then used to compute the aggregated similarity value for 
each possible correspondence. These values are shown in Table 4. As an example, the 
aggregated value for the correspondence (a1, b1) and the weights obtained after 
decoding the individual 1, would be calculated as: 

=⋅+⋅+⋅+⋅+⋅= )()()()()(),( 1155114411331122111111 sFwsFwsFwsFwsFwbaFagg   

66.077.038.072.019.011.006.065.014.056.023.0 =⋅+⋅+⋅+⋅+⋅=  

Table 4. Aggregated similarity values for the initial population. The table also shows the 
mappings that exceed the similarity threshold (0.70), which are used to calculate the fitness 
value for each individual. 

Ind. Fagg11 Fagg12 Fagg13 Fagg21 Fagg22 Fagg23 Fagg31 Fagg32 Fagg33 Mappings Fitness 
1 0.66 0.61 0.46 0.42 0.74 0.47 0.39 0.17 0.57 s22 - 
2 0.58 0.41 0.53 0.55 0.73 0.43 0.55 0.14 0.40 s22 - 
3 0.56 0.71 0.30 0.26 0.64 0.35 0.23 0.17 0.67 s12 0.67 
4 0.68 0.75 0.39 0.27 0.76 0.55 0.29 0.20 0.59 s12, s22 0.50 
5 0.46 0.49 0.35 0.40 0.61 0.25 0.39 0.13 0.56 - - 
6 0.43 0.52 0.29 0.35 0.60 0.23 0.36 0.13 0.59 - - 
7 0.41 0.48 0.30 0.37 0.58 0.20 0.38 0.13 0.55 - - 
8 0.56 0.49 0.45 0.46 0.70 0.39 0.46 0.15 0.50 - - 
9 0.70 0.39 0.66 0.61 0.88 0.65 0.70 0.17 0.26 s22 - 
10 0.61 0.69 0.36 0.34 0.63 0.33 0.23 0.16 0.71 s33 0.67 

The correspondences with a similarity value higher than the given threshold (0.7) 
are considered valid semantic mappings. Using these mappings and the reference 
matching (gold standard), the fitness value (f-measure) is calculated. There are two 
individuals (3 and 10) that provide a fitness value of 0.67, but this value is not enough 
to stop the algorithm according to the fitness threshold that has been set (0.8). As a 
consequence, the next step is to select the individuals that will reproduce themselves 
to create the next generation.  
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The individuals that form the second generation are shown in Table 5. According 
to an elitist strategy, the individuals 3 and 10 are copied to the second generation 
(they are named 11 and 12). We suppose that the roulette selection method selects the 
individuals 3 and 10 to reproduce themselves and that a single-point crossover is 
applied between genes 1 and 2, giving as a result individuals 13 and 14; in the middle 
point (individuals 15 and 16); and between genes 3 and 4 (individuals 17 and 18). 
Individuals 19 and 20 are obtained by mutating one gene from the individuals 3 (gene 
1) and 10 (gene 2), respectively. The corresponding weights are shown in Table 6. 

Table 5. Second generation 

Individual Values Individual Values 
11 0.53 0.91 0.11 0.73 16 0.85 0.53 0.11 0.73 
12 0.85 0.53 0.41 0.19 17 0.53 0.91 0.11 0.19 
13 0.53 0.53 0.41 0.19 18 0.85 0.53 0.41 0.73 
14 0.85 0.91 0.11 0.73 19 0.25 0.91 0.11 0.73 
15 0.53 0.91 0.41 0.19 20 0.85 0.87 0.41 0.19 

Table 6. Weights for the 2nd generation, obtained after decoding the chromosomes in Table 5 

Individual w1 w2 w3 w4 w5 
11 0.11 0.42 0.20 0.18 0.09 
12 0.19 0.22 0.12 0.32 0.15 
13 0.19 0.22 0.12 0.00 0.47 
14 0.11 0.62 0.12 0.06 0.09 
15 0.19 0.22 0.12 0.38 0.09 
16 0.11 0.42 0.20 0.12 0.15 
17 0.11 0.08 0.34 0.38 0.09 
18 0.41 0.12 0.20 0.12 0.15 
19 0.11 0.14 0.48 0.18 0.09 
20 0.19 0.22 0.44 0.02 0.13 

Table 7. Aggregated similarity values, mappings and fitness for the second generation 

Ind. Fagg11 Fagg12 Fagg13 Fagg21 Fagg22 Fagg23 Fagg31 Fagg32 Fagg33 Mappings Fitness 
11 0.56 0.71 0.30 0.26 0.64 0.35 0.23 0.17 0.67 s12 0.67 
12 0.61 0.69 0.36 0.34 0.63 0.33 0.23 0.16 0.71 s33 0.67 
13 0.62 0.55 0.48 0.41 0.80 0.55 0.51 0.18 0.43 s22 - 
14 0.59 0.80 0.26 0.17 0.68 0.43 0.18 0.20 0.70 s12 0.67 
15 0.61 0.71 0.33 0.32 0.60 0.29 0.18 0.16 0.77 s12, s33 1 
16 0.56 0.68 0.32 0.27 0.67 0.39 0.28 0.18 0.62 - - 
17 0.49 0.54 0.35 0.40 0.58 0.22 0.31 0.13 0.62 - - 
18 0.53 0.66 0.29 0.28 0.67 0.34 0.30 0.16 0.67 - - 
19 0.40 0.48 0.30 0.36 0.61 0.25 0.41 0.13 0.51 - - 
20 0.41 0.52 0.28 0.30 0.66 0.32 0.42 0.15 0.49 - - 

 
The aggregated similarity values for the second generation are shown in Table 7. It 

is possible to see that the individual 15 has a fitness value of 1, which is the maximum 
value for the fitness function. Having reached this value, the GA stops (according to 
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the stop criterion). The GA has provided the following solution to the problem, 
obtained after decoding the individual 15: 

w1 = 0.19; w2 = 0.22; w3 = 0.12; w4 = 0.38; w5 = 0.09 

Given these weights, the aggregated similarity function for this example would be 
calculated according the following expression: 

)(09.0)(38.0)(12.0)(22.0)(19.0)( 54321 ijijijijijijagg sFsFsFsFsFsF ⋅+⋅+⋅+⋅+⋅=  

As it can be observed, this function gives a low weight to the functions )(3 ijsF  and 
)(5 ijsF . We had supposed that F3 and F5 were not reliable, so the result provided by 

the approach makes sense. Using this function, we could align any pair of ontologies 
with similar characteristics to A and B. 

4 Conclusion and Future Research 

Although a lot has been done towards tackling ontology matching, the research 
community still reports open issues that impose new challenges for researchers and 
underline new directions for the future. One of these issues, which represents an 
emerging research area, is the aggregation of different similarity measures into a 
single one. In this work, we have proposed a GA-based approach to combine different 
measures into a single metric, optimizing the quality of the matching results. The 
presented GA can be useful to automatically configure the similarity aggregation 
process in ontology matching systems addressed to provide precise and complete 
results in domains that require rapid processing. Through a simple example, we have 
showed how the GA can find the similarity combination that provides an optimal 
matching result between two ontologies. 

The most immediate future work is to embed our GA into a real existing ontology 
matching system that achieves similarity aggregation in a traditional manner (i.e., 
either through manual, user-based aggregation or by means of general methods), in 
order to measure the improvement of matching quality. We are also interested in 
extending our theory and mechanisms for providing an ontology matching system 
with full self-configuration capabilities, in order to obtain good results in dynamic 
environments that require immediate response, without requiring user interaction. 
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