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Abstract. Learning how to control arm joints for goal-directed reaching
tasks is one of the earliest skills that need to be acquired by Develop-
mental Robotics in order to scaffold into tasks of higher Intelligence.
Motor Babbling seems as a promising approach toward the generation
of internal models and control policies for robotic arms. In this paper we
propose a mechanism for learning sensory-motor associations using lay-
ered arrangement of Self-Organizing Neural Network (SOINN) and joint-
egocentric representations. The robot starts off by random exploratory
motion, then it gradually shift into more coordinated, goal-directed ac-
tions based on the measure of error-change. The main contribution of
this research is in the proposition of a novel architecture for online
sensory-motor learning using SOINN networks without the need to pro-
vide the system with a kinematic model or a preprogrammed joint control
scheme. The viability of the proposed mechanism is demonstrated using a
simulated planar robotic arm.
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1 Introduction

Inspired by Both Developmental Psychology and Cognitive neuroscience, devel-
opmental robotics has gained considerable interest among roboticists recently,
[1]. The basic concern in this discipline is to formulate embodied Artificial Agents
that are capable of autonomous mental development[2],which is the ability of the
agent to adapt and grow mentally in the way it perceive, represent and process
its experiences and the way it acts in the world around . This development must
take place through interaction with the environment, using the agent’s sensors
and actuators, in a continuous life-long and open-ended manner[3].

Evidence from developmental psychology literature[4][5] suggests the pres-
ence of exploratory learning processes in the behavior of infants during the first
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months of motor-ability development. During the repetitive random motion of
the arm, that is considered as a characteristic pattern of infant motor behav-
ior, babies are believed to keep their hand constantly in visual field, which is
supposed to serve the goal of building internal associations between actions and
consequences in one’s own body [6]. So Motor Babbling is described as the
exploratory learning process of generating sensory-motor associations through
continues random motions with ballistic trajectories. These motions serve the
purpose of sampling representative data points that bootstrap the learning sys-
tem into incremental generation of internal model and implicit control policy for
the system at hand.

Many roboticists have attempted to mimic this developmental process using
robotic platforms. An example is found in the work of the group[7], here a gra-
dient descent method is used in order to enable the system to learn some of
the unprovided elements of the system’s kinematic model where the rest of the
elements were already provided and preprogrammed. A more efficient approach
than gradient descent was taken by group in[8] where the system starts off by
a population of candidate possible models then, and through interaction with
environment, the system evolve in approximating a more accurate model that
represents the system in hand. Beside the explicit dependency, in this system,
on artificial visual tags that are attached to segments of the robotic arm , this
approach make use of Bayesian learning and Gaussian regression, the mecha-
nism actually is very expensive on the computational side. A rather different
approach was taken by the group[9]. Here a camera calibration based method
were adopted together with open loop mechanism for generation of an implicit
body schema model, this system made use of look-up table learning mechanism
which naturally requires longer time for learning. The research group in[10]used
a more biologically inspired approach by incorporating concepts like popula-
tion code and equilibrium-point hypothesis in order to enable the system to
achieve reaching tasks. In a different approach[11]the research group used both
Bayesian belief functions and social learning mechanisms to facilitate learning-
by-imitation competence. This approach actually made use of hard-wired motor
primitives that were encoded manually into the robot. A Reinforcement learning
approach together with imitation methods using locally weighted regression was
facilitated by[12]where a robot was taught specific motor primitives, that are
specific to given task sittings, then the robot generated policies that enable it to
learn those primitives in an episodic manner . Although the robot managed to
perform the given tasks but it seemed like the system was kind of a task-specific
oriented in the way it learned each motor primitive.

2 Methodologies

The mechanism we are proposing is based on the idea of autonomous, incre-
mental generation of implicit system model and control policy using layers of
self-organizing maps and joint-egocentric representation of reaching experiences.
The robot is not provided with any control models or methods for calculating
Inverse and Forward kinematics.
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2.1 SOINN

The core associative learning mechanism that is adopted in this research is based
on Self-Organizing Incremental Neural Network (SOINN)[13]. SOINN is a Self-
organizing map that does not require any presumption to be made about the
topology or the distribution, of data.

Basically SOINN works by propagating network topology in a way that would
self-organize as to resemble the ”hot zones” of perception. For example, if a new
data point is presented to SOINN then the algorithm would find the closest two
network nodes to this newly presented data point ,Fig. 1.a. once these, most
closest, nodes are found , SOINN determines whether the newly presented data
point is within the coverage zone of these nodes. If yes then these nodes would
be now connected by an edge to make up a single cluster of nodes and then they
would be altered as to reflect the current blobs of persistent activity,Fig. 1.b.

Fig. 1. SOINN dynamics

In the other case where the newly presented data point is out of the coverage
zone of the closet nodes, Fig. 1.c, then this data point itself would be stored
by SOINN as a node that represents a possible independent zone of activity,
Fig.1.d. For a detailed explanation of the algorithm see[13].

SOINN has the feature of eliminating noisy and non-stable representations by
checking the level of activity of each stored cluster of nodes and then discarding
those stored clusters that doesn’t represent regions of input space with high
activity. So if a cluster of nodes has not been referenced frequently as being a
coverage zone for input data points, then this cluster would eventually fade away
and removed from the network.

2.2 The Architecture

First of all it is important to mention that each sensory-motor experience is
represented and learned as a pairing between joint angle and the resultant gripper
location in space. This pairing is joint-related, or joint-egocentric, i.e. for a given



324 T. Najjar and O. Hasegawa

joint this sensory-motor learning experience would be [θi, Li] where θi is the
angle of joint i, and Li is the resultant location of the gripper represented in
relevance to the joint i ,hence, in the Peripersonal space of Joint i. Representing
the location in the Peripersonal space of a given joint could be achieved by using
a receptive field or mathematical transformation method. The purpose of this
joint-egocentric representation is to make sure that learning is achieved on the
joint level, where each joint would learn, the required associations, in manner
that is independent from the other joints.

Each joint has its own associative learner, implemented as self-organizing map
(SOINN)Fig. 2. This learner is responsible of learning sensory-motor pairs of the
form [θi, Li] that are related to the joint to which the self-organizing map belong
to ,as mentioned above .

When a new target is presented to the system, the location of this target
is represented in relevance to the first joint. Then the system would ask the
self-organizing map, of the first joint, for the best angle that would achieve as
close gripper location as possible to the given target . Depending on the joint’s
previous experience, the self-organizing map would respond by retrieving the
joint angle that is associated with the closest gripper location to the target.

Now this angle, would be used to actuate the first joint of the manipulator even
before passing the control to the next joint. This means that after the system
has found out the suitable joint angle for the first joint, the target perception
would be altered for the rest of joints on the manipulator, so in order for the
next joint ”jointi+1” to ask its associative learner for suitable joint angle, θi+1,
the robot must check the new altered location of target, Li+1, in relevance to
the next joint i.e. in the Peripersonal space of the next joint.

Fig. 2 reveals the iterative nature of the solution proposed here, where the
problem of finding the best set of joint angles for multi-joint manipulator is solved
by breaking down the reaching task into smaller sub problems, each handled by
an independent subsystem that consist of single joint with its own perceptual
space and its own associative learner.

2.3 From Exploration into Coordinated Reaching

In the approach we are proposing, training and learning take place in a real-time
manner. The system itself decides when an exploration action is needed and
when actual goal-reaching can be performed while the system is being trained
continuously in both cases. So initially when we run the robot for the first time,
the robot actions would be random ballistic trajectories similar to the ones per-
formed by infants at early stages of motor development[5]. During this random
motor babbling behavior the robot starts to generate an internal model for the
control policy of its joints, through action-consequences coupling, which result
in an increased ability to control these joints in coordinated manner, hence a
less resultant error in reaching a target. To control the balance between motor
babbling and target-reaching behaviors the following equation is used:

P (rnd) = 0.5 + ξ(mcp −mfp) (1)



(SOINN) for Sensory-Motor Learning in Developmental Robotics 325

Fig. 2. The system Architecture

Where P (rnd) is the probability of performing a random action, and ξ(x) is the
normalized value of x. The quantity mcp is the mean error in the close past and
mfp is mean error in the far past.

The concept of close past and far past is generated by making the system
maintains, at each time step, a list of measured error, described as the distance
between the target location and the resultant gripper location, during the last n
steps. This list then is divided in two halves. The most recent half, which consist
of set of errors between j = t and j = t− (n/2), is considered as a set of errors in
the close past. The other half, that consists of set of errors between j = t−(n/2)
and j = t− n, is considered as a set of errors in the far past.

Dividing the most recent n time steps into close past and far past serves
the goal of altering the frequency and the necessity for random actions. So when
error is reducing, and the robot performance is getting better, a negative value of
ξ(x) would result, which would decrease the random action probability, P (rnd).
on the other hand, when the error is increasing, a positive value of ξ(x) would
be generated resulting in higher motor-babbling probability, equation 1.

3 The Experiments

In this experimental setup, a simulated 2DoF planar robotic arm is used to
demonstrate the developmental sensory-motor learning process, starting by
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random motor-babbling actions and then shifting gradually toward performing
more coordinated target-reaching trajectories.

It is crucial to mention that the robot was not provided with any knowl-
edge about how to control its joints, besides no action-consequence model was
preprogrammed by the designer beforehand of learning.

A red ball is used as the target that the robot is required to reach at any
given time. The ball location is generated randomly and then the robot is asked
to reach it with its end effector, then, after the robot trail to reach the target, a
new location is generated whether the robot has managed actually to reach the
target or not, Fig. 3.

As mentioned above, and illustrated in Fig. 2, the trajectories that are per-
formed by the robot, whether target-directed or random, are always used as a
training signal for the learning system, which implies a continues adaptation and
learning of the generated implicit model of control.

In Fig. 4, a gradual decrease in error is noticed with more practicing of the
learned model that was initiated by the babbling actions.

Fig. 3. The Experimental setup Fig. 4. resultant error during learning

The robot performance starts with high error rate. But with more training
experiences the multilayer architecture of self-organizing map, SOINN, starts
gradually to capture the contingencies behind joints angles and resultant end
effector location. This incremental self-organizing process results in the observed
decrease of the anticipated error of generated actions.

3.1 A Sudden Change

In this second experiment we demonstrate the system’s reaction to a sudden un-
expected change in the physical structure of the robot. This sudden change could
account for a breakage in a joint, increased length of a link or a displacement of
the end effector location in relevance to the arm links.

In this experimental setup we still have the same task of reaching a red ball,
but now , after the system has learned its own implicit model, we suddenly
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Fig. 5. A real-time reaction to an unexpected change in the physical structure

increased the length of the arm’s second link by 10% of its original one. Altering
the physical structure of the system means that now the learned implicit model
does not accurately reflect the actual system nature. So if the system, before
this unexpected change, had already reached a level of stability in term of the
frequency of babbling actions, where a lower rate of random motion could be
noticed, then now this stability won’t last, and the robot would need to re-explore
the contingencies of its action-consequence relation.

In Fig. 5, the horizontal axis shows a sequence of groups of time-steps ,each
consist of 10 actions, that depicts the transition of the robots performance be-
tween motor babbling and target-directed actions. The vertical axis shows the
number of babbling motions that was performed in each group of 10 time-steps.

As expected, most of the robot’s actions, when it starts learning, are babbling
ones and that is because the robot is not aware of its kinematic model. But then
gradually this rate of babbling actions would decrease as the system proceed in
building an implicit model of its control. Eventually we notice that almost no
babbling actions are being performed but rather almost all of the taken actions
are goal-directed.

During the robot’s performance we altered the second link length, as men-
tioned above. This change would increase the resultant error in the robot’s reach-
ing accuracy because the learned sensory-motor associations does not accurately
reflect the actual current status of the system. This increased error would gener-
ate a positive difference between mcp and mfp from equation 1, what eventually
results in a higher P (rnd), which is the probability of performing a babbling
action.

This change in the behavior of the system can be observed in Fig. 5 where a
peak in the frequency of babbling actions is clearly noticed around the point in
time where the physical structure of the robot was altered. What can be noticed
also is that the domination of babbling actions won’t last forever, but rather
it would be there as long as the system hasn’t fully recaptured the Contingent
action-consequence relation of its recently altered physical structure.This obser-
vation emphasizes the impact of the concept of learning through babbling on the
ability of the system to adapt and react to unanticipated changes and conditions.
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4 Discussion

A visualization of the first layer of SOINN is depicted in, Fig. 6. A 3-dimensional
visualization of this resultant network can be seen in Fig. 6.a, where each node
represents a single representative associative sensory-motor pairing of the form
[θ1, L1], as described in section2.2. if we look at the topological structure of this
network from 2-dimensional perspective, Fig. 6.b, we notice that it captures a
very similar structure to the Cartesian work space but spawned across a third
dimension of the associated angles of joint1 .

Next is a visualization of the learned SOINN network but for joint2, Fig. 7.
Again the network to the right, Fig. 7.b, is the 2-dimensional perspective of
the 3-dimensional SOINN network, Fig. 7.a, that represents the sensory-motor
associative model for joint2. Notice, from Fig. 7.b, the egocentric characteristic

Fig. 6. A 3-dimensional representation of the approximated sensory-motor associations
that correspond to joint1 (left). the same network but in 2-dimensional perspective
(right)

Fig. 7. A 3-dimensional representation of the approximated sensory-motor associations
that correspond to joint2 (left). the same network but in 2-dimensional perspective
(right)
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of the learned model since the Cartesian part of the associative data points does
not reflect the whole work space but rather it captures only locations that are
taken from the perspective of joint2.

In both learned networks, Fig. 6 and Fig. 7, we notice that SOINN has the
ability to cover the whole input training space with consistent distribution of
nodes that enables the system to generalize even for unseen data points that was
not provided during the process of network generation. This was demonstrated in
Fig. 4 where the ball location was generated in continues input space rather than
discrete one, but yet the system managed to generate trajectories of decreasing
error even without the need for separated training and testing phases.

5 Conclusion

In this paper we have presented an architecture for learning sensory-motor as-
sociations for coordinated reaching tasks, using Self Organizing Neural Network
(SOINN). The approach that was taking is inspired by developmental psychol-
ogy where motor learning starts by babbling-like ballistic trajectories, similar to
the ones observed during early stages of motor development in human infants,
then the robot shifts toward coordinated actions with continuously decreasing
error. This Developmental approach toward robot learning was demonstrated
by the fact that no preprogrammed control policy was provided beforehand of
learning. But rather the robot explored, on its own, the action-consequences
contingencies of its joints and then, autonomously, generated an implicit control
model through Motor babbling actions.
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