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Abstract. Particle Swarm Optimization (PSO) is heuristics-based
method, in which the solution candidates of a problem go through a pro-
cess that simulates a simplified model of social adaptation. In this paper,
we propose three alternative algorithms to massively parallelize the PSO
algorithm and implement them using a GPGPU-based architecture. We
aim at improving the performance of computationally demanding opti-
mizations of many-dimensional problems. The first algorithm parallelizes
the particle’s work. The second algorithm subdivides the search space
into a grid of smaller domains and distributes the particles among them.
The optimization subprocesses are performed in parallel. The third al-
gorithm focuses on the work done with respect to each of the problem
dimensions and does it in parallel. Note that in the second and third
algorithms, all particles act in parallel too. We analyze and compare the
speedups achieved by the GPU-based implementations of the proposed
algorithms, showing the highlights and limitations imposed.

1 Introduction

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart
[1] and is based on collective behavior, social influence and learning. Many suc-
cessful applications of PSO have been reported, in which this algorithm has
shown many advantages over other algorithms based on swarm intelligence,
mainly due to its robustness, efficiency and simplicity. Moreover, it usually re-
quires less computational effort when compared to other stochastic algorithms
[2]. The PSO algorithm maintains a swarm of particles, where each of which rep-
resents a potential solution. In analogy with evolutionary computation, a swarm
can be identified as the population, while a particle with an individual. In gen-
eral terms, the particle flows through a multidimensional search space, where
the corresponding position is adjusted according to its own experience and that
of its neighbors [2].
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Several works show that PSO implementation in GPGPU provide a better
performance than CPU-based implementations [9] [10] [11]. In contrast, the pur-
pose of this paper is to implement the Global Best version of PSO in GPGPUs.
In order to take full advantage of the massively parallel nature of GPGPUs, we
explore three different scenarios: (i) In the first proposed approach, the work
done by the particles of the swarm is performed in parallel until a synchroniza-
tion is required. Nonetheless, the work done by the particle itself is performed
sequentially. Hence, here each thread is associated with a given particle of the
swarm. (ii) In the second approach, the search space is divided into a grid of
smaller subspaces. Then, swarms of particles are formed and assigned to search
the subdomains. The swarms act simultaneously. Moreover, within each swarm,
particles act in parallel until a synchronization point, during which they ex-
change knowledge acquired so far, individually. It is worth noting that there is
no cooperative work among the swarms. So, there is no exchange of information
about best position found by the groups. (iii) The third approach explores a fine-
grained parallelism, which consists of doing the computational work with respect
to each of the problem dimensions in parallel. As in the first approach, this one
also handles a single swarm of particles. Nonetheless, here a thread corresponds
to a given dimension of the problem and a block of threads to a given particle.
This approach should favor optimization problems with high dimensionality.

An analysis is done in order to identify the number of swarms and particles
per swarm as well as how to map the swarms into blocks and particles into
threads, aiming at maximizing performance. Furthermore, we study the impact
of the grid resolution on the convergence time. The grid resolution is defined by
the number of cells used. It coincides with the number of swarms invested in the
search. Finally, we study the change of the number of dimensions between the
implementations.

This paper is organized as follows: First, in Section 2, we sketch briefly the
PSO process and the algorithm; After that, in Section 3, we describe the first
approach: PPSO; In the sequel, in Section 4, we describe the second approach:
SGPSO; Then, in Section 5, we describe the third approach: PDPSO; Subse-
quently, in Section 6, we present and analyze the obtained results; Finally, in
Section 7, we draw some concluding remarks and point out directions for future
work.

2 Particle Swarm Optimization

The main steps of the PSO algorithm are described in Algorithm 1. Note that, in
this specification, the computations are executed sequentially. In this algorithm,
each particle has a velocity and an adaptive direction [1] that determine its next
movement within the search space. The particle is also endowed with a memory
that makes it able to remember the best previous position it passed by.

In this variation of the PSO algorithm, the neighborhood of each particle is
formed by all the swarm’s particles. Using this strategy, the social component
of the particle’s velocity is influenced by all other particles [2] [3]. The velocity
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Algorithm 1. PSO

for i = 1 to n do
randomly initialize position and velocity of particle i

repeat
for i = 1 to n do

compute the Fitnessi of particle i
if Fitnessi ≤ Pbest then

update Pbest using the position of particle i
if Fitnessi ≤ Gbest then

update Gbest using the position of particle i
update the velocity of particle i; update the position of particle i

until stopping criterion
return Gbest and corresponding position

is the element that promotes the capacity of particle locomotion and can be
computed as described in (1) [1] [2], wherein w is called inertia weight, r1 and
r2 are random numbers in [0,1], c1 and c2 are positive constants, yij is the best
position Pbest found by the particle i so far, w.r.t. dimension j, and yj is the best
position Gbest, w.r.t. dimension j, found so far, considering all the population’s
particles. The position of each particle is also updated as described in (1). Note

that x
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The velocity component drives the optimization process, reflecting both the ex-
perience of the particle and the exchange of information between the particles.
The particle’s experimental knowledge is referred to as the cognitive behavior,
which is proportional to the distance between the particle and its best position
found, with respect to its first iteration [3]. The maximum velocity vk,max is
defined for each dimension k of the search space. It can be expressed as a per-
centage of this space by vk,max = δ(xk,max−xk,min), wherein xk,max and xk,min

are the maximum and minimum limits of the search space explored, with respect
to dimension k, respectively and δ ∈ [0, 1].

3 First Algorithm: PPSO

The first proposed algorithm, called PPSO, follows from the idea that the work
performed by a given particle is independent of that done by the other particles
of the swarm, except in terms of Gbest, and thus the computation done by the
particles could be executed simultaneously. This algorithm has a synchronization
point at the election of Gbest, wherein p1, . . . pn denote the n particles of the
swarm, and v(p1), . . . v(pn) and x(p1), . . . x(pn) the respective velocities and posi-
tions. Each particle computes the corresponding fitness, velocity and position,
independently and in parallel with the other particles, until the election of Gbest.
In order to synchronize the process and prevent using incorrect values of Gbest,
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Algorithm 2. CUDA Pseudo-code for PPSO

let b = number of blocks; let t = number of threads
kernel〈b, t〉 position and velocity random generators
repeat

kernel〈b, t〉 fitness calculator; kernel〈b, t〉 velocity and position calculator
until stopping condition
transfer result back to CPU
return Gbest and corresponding position;

Algorithm 3. CUDA Pseudo-code of kernel fitness calculator

let tid = threadIdx+ blockIdx× blockDim
compute fitness of particle tid; update Pbest of particle tid
if (tid = 0) then

compute Gbest of swarm

the velocity and position computations can only commence once Gbest has been
chosen among the Pbest values of all particles of the swarm [4] [5]. Note that the
verification of the stopping criterion achievement is also done synchronously by
the parallel processes, but it does not hinder the performance of the algorithm.

The CUDA pseudo-code of algorithm PPSO is shown in Algorithm 2. Algo-
rithm 3 shows the code executed by thread tid associated with a given particle
of the swarm. Note that the processes corresponding to the n threads launched
within a kernel are executed in parallel. Recall that, in this first approach, each
particle is mapped onto a single thread. The algorithm uses b blocks and t threads
per block. Thus, the total number of particles is b× t. In Algorithm 3, a particle
thread tid identification is done relatively to the associated thread, identified
by threadIdx, and block, identified by blockIdx, and number of of threads per
block, identified by blockDim.

4 Second Algorithm: SGPSO

The main idea behind the second approach consists of subdividing the search
space into a grid of cells, where each cell is searched by an independent swarm
of particles. This approach should favor optimization problems with large search
space. In [6], we studied the impact of the number and size of the swarms on the
optimization process, in terms of the execution time, convergence and quality of
the solution found.

The dimension and size of blocks per grid and the dimension and size of
threads per block are both important factors. The number of blocks in a grid
should be at least the same or larger than the number of streaming multipro-
cessors (SMs), so that all available SM have at least one block to execute. Fur-
thermore, there should be multiple active blocks per SM, so that blocks that
are not waiting, due to a synchronization point, can keep the hardware busy.
This recommendation is subject to resource availability. Therefore, it should be
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determined in the context of the second execution parameter, which is the num-
ber of threads per block, or block size, as well as shared memory usage.

In the proposed parallel implementation, the maximum velocity vi,max with
respect to dimension i is formulated as a percentage of the considered search
subspace of size Di for that dimension, as defined in (2), wherein xmax and xmin

are the maximum and minimum values of the whole search space, Ns represents
the number of swarms, that work in parallel, and 0 ≤ δ ≤ 1. Moreover, the search
space for a given swarm i is delimited by xi,min and xi,max. In order to increase
the efficiency of the algorithm in high dimensions, we use dynamic update of the
inertia weight w.

Di = (xmax − xmin) /Ns, vi,max = δ ∗Di

xi,min = i×Di + xmin, xi,max = xi,min +Di
(2)

In order to implement the SGPSO approach using CUDA, we opted to exploit
two kernels. The first kernel generates random numbers and stores them in the
GPU global memory. The second kernel runs all the steps of the parallel PSO.
This way, the host CPU, after triggering the PSO process, becomes totally free.
Using a single kernel for the whole PSO, excluding the random number genera-
tion, allows us to optimize the implementation, as there is no need for host/device
communications. Recall that kernel particle swarm optimizer updates the inertia
weight dynamically.

As introduced earlier, the problem search domain is organized into a grid of
swarms, wherein each swarm is implemented as a block and each particle as a
thread. The grid size is the number of swarms and block size is the number of
particles. So, population size can be defined as the product of the grid size and
block size, and this coincides with the total number of threads run by the GPU
infrastructure. In this implementation, the position, velocity and Pbest of all the
particles are kept in the global memory on the GPU chip.

Nonetheless, the Gbest obtained for all the grid’s swarms are stored in the
shared memory of the respective SM. The CUDA pseudo-code for the approach
behind SGPSO is shown in Algorithm 4, wherein s denotes the number of seg-
ments into which each of the d dimensions of the problem is divided. Note that
this subdivision generates sd voxels which are the search subspaces. The code
launches t threads per block, which means that it starts t particles per subspace.
The total number of particles is thus t × sd. Kernel particle swarm optimizer
proceeds as described in Algorithm 5. Note, that in this approach, the number
of blocks coincides with that of swarms and the number of threads coincides
with that of particles in each swarm.

The initialization of positions and velocity as well as the maximal velocity
allowed for a particle within a swarm is done as described in Algorithm 6.

5 Third Algorithm: PDPSO

The third approach considers the fact that in some computationally demanding
optimization problems the objective function is based on a large number of
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Algorithm 4. CUDA Pseudo-code for SGPSO

let s = the number of segments; let d = the number of dimensions
let b = sd be the number of blocks ; let t = the number of threads
generate the swarm grid according the s and d
transfer data of the grid from CPU to GPU
kernel〈b, t〉 random number generator; kernel〈b, t〉 particle swarm optimizer
transfer result back to CPU
return Gbest and corresponding position;

Algorithm 5. CUDA Pseudo-code for particle swarm optimizer

initialize randomly position and velocity of particles according to subspace of
respective swarm blockIdx
repeat

compute fitness of particle threadIdx; update Pbest of particle threadIdx
if (threadIdx = 0) then

update Gbest of respective swarm blockIdx
synchronize all threads of swarm blockIdx
update velocity and position of particle threadIdx

until stopping condition

dimensions. Here, we are talking about more than thirty different dimensions
and can even reach 100. Therefore, in this approach, the parallelism is more fine-
grained as it is associated with the problem dimensions. The algorithm is called
PDPSO (Parallel Dimension PSO). In contrast with SGPSO, this algorithm
handles only one swarm and its main characteristic is the parallelism at the
dimension level. Thus, the particle is now implemented as a block wherein each
dimension is a thread of the block. This should favor optimization problems
that exhibit a very high dimensionality. The GPU grid size is the number of
particles and block size is the number of dimensions. For example, if the number
of dimensions of the problem is 100, the SGPSO needs 100 iterations to compute
the fitness values. The PDPSO will do the job using a single iteration to obtain
the fitness values with respect to each of the problem dimensions plus an extra
10 iterations to summarize these intermediary results in order to get a single
value which is the particle fitness. We call this process the fitness reduction.
Thus, after 11 steps the result will be ready. Thus, it is possible to distribute
the computational load at a lower degree of granularity, which can be up to one
thread per problem dimension.

The PDPSO algorithm written in a CUDA-based pseudo-code is given in
Algorithm 7. It uses four kernels: The first one launches the random number
generators, i.e. one for each particle dimension and initialize the positions and
velocities of the particles; The second kernel generates the threads that com-
pute the fitness according to the corresponding dimension, perform the reduc-
tion process to get the fitness value of the particle that is represented by the
block, and when this is completed, checks whether Pbest needs to be updated.
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Algorithm 6. CUDA Pseudo-code position and maximum velocity initialization
in subspace blockIdx

let k = blockIdx
for i = 1 to d do

xi := (k × d+ i)(rand(maxk −mink) +mink); vi := 0.0f
vmaxi := δ(k × d+ i)(maxk −mink)

Algorithm 7. CUDA Pseudo-code for PDPSO

let t = number of threads (dimensions); let b = number of blocks (particles)
kernel〈b, t〉 position and velocity random generators (one for each dimension)
repeat

kernel〈b, t〉 fitness and Pbest calculator (one for each dimension)
kernel〈b, t〉 Gbest elector
kernel〈b, t〉 velocity and position calculator (one for each dimension)

until stopping condition
transfer result back to CPU
return Gbest and corresponding position

Algorithm 8. CUDA Pseudo-code for fitness, Pbest calculator

let j = blockIdx, k = threadIdx and b = blockDim; tid = k + j ∗ b
let cache be the shared memory of the GPU where cache[k] = x[tid]
compute fitness with respect to dimension k; i := t/2
while (i �= 0) do

if (k < i) then
reduce fitness[k] and fitness[k + i] according to objective function

i := i/2
synchronize all threads
if (fitness[j] < Pbest[j]) then

Pbestx[(j × d) + k] := cache[(j × d) + k]
if k = 0 then

Pbest[j] := fitness[j]

Algorithm 9. CUDA Pseudo-code for kernel Gbest elector

let tid = threadIdx+ blockIdx ∗ blockDim; i := b/2
while (i �= 0) do

if (tid < i) and Gbest[tid+ i] < Gbest[tid] then
Gbest[tid] := Gbest[tid+ i]

i := i/2

If this is the case, the threads update the coordinates associated with this new
Pbest. Note that there is a synchronization point of all threads so as to use the
fitness value only when all the fitness reduction process has been completed.
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6 Performance Results

The three proposed approaches were implemented on a NVDIA GeForce GTX
460 GPU [7]. This GPU contains 7 SMs with 48 CUDA cores each, hence a total
of 336 cores. Three classical benchmark functions, as listed in Table 1, were used
to evaluate the implementations performance. Function f1 defines a Sphere, f2
is Griewank function and f3 is the Rastrigin function.

In the following, we report on the experiments performed to analyze the im-
pact of each one of the proposed approaches. In all experiments, we always run
the PSO algorithms for 2000 iterations.

Table 1. Fitness Functions

Function Domain fmin

f1(x) =
n∑

i=1

(x2
i ) (−100, 100)n 0

f2(x) = 1 + 1
4000

n∑

i=1

x2
i −

n∏

i=1

cos
(

xi√
i

)
(−600, 600)n 0

f3(x) =
n∑

i=1

(x2
i − 10cos(2πxi) + 10) (−10, 10)n 0

6.1 Impact of the Swarm Number

Using the CUDA Occupancy calculator [7], the GPU occupancy, which depends
on the number of threads per block and that of register as well as the size of
the kernel shared memory, amounts to 67%. Note that in all verified cases of
different pairs of number and size of blocks per SM, the total number of 7168
threads was kept constant. In the case of SGPSO, this means a total number of
particles of 7168 was used, as it is also the case of PPSO. However, in the case of
PDPSO, as threads correspond to dimensions in the particles, which is 32 in this
experiment, hence the number of particles sums up to 224 only. This explains
the poor performance presented by this algorithm. Nonetheless, the disposition
of block and thread numbers had significant impact on the performance in the
case of SGPSO. Fig. 1(a) shows that despite the fact that the total number
of particles is the same in all checked dispositions of number of swarms and
particles per swarm, the combination 56×128 leads to the lowest execution time
for SGPSO.

The increase in execution time can be explained by the work granularity
level that each block of threads is operating at. Parallel computation of position
coordinates and subsequently the velocity are performed by all threads within a
block, but conditional branches, used to elect Pbest and Gbest, as well as loops
that allow the iteration of the work for each one of the problem dimensions,
dominate most part of the thread computation. It is well-known that conditional
constructions are not well suited for the Stream Processing model.
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Fig. 1. Execution times for different configurations of swarms for SGPSO and Impact
of the total number of particles

Also, the performance degenerates because more blocks of threads are com-
peting for the resources available to the SMs. A GPU offers a limited amount of
shared memory, which limits the number of threads that can be simultaneously
executed in the SM for a given application. In general, the more memory each
thread requires, the fewer the number of threads that can reside in the pro-
cessor [8]. Therefore, the choice of pair (block number and block size) has the
kind of effect illustrated in Fig. 1(a) on the execution time. This experiment was
repeated for different problem dimensions. The observed behavior is confirmed
independently of this parameter. The case reported here is for dimension 32.
Figure 1(b) shows the speedup achieved. Note that due to the stochastic nature
of PSO, we run the same optimization 50 times.

6.2 Impact of the Swarm Size

It is expected that the number of particles influences positively the conver-
gence speed of the optimization process, yet it has a negative impact on the

Fig. 2. Impact of the total number of particle
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(a) f1

(b) f2

(c) f3

Fig. 3. Impact of the number of dimensions for functions used as benchmarks
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corresponding processing time. In SGPSO, increasing the number of particles
can be achieved by either increasing the number of swarms and/or the number
of particles per swarm. In order to study the impact of this parameter on the
performance of SGPSO, we opted to keep the number of particles in a given
swarm constant, i.e. 128, and increase the number of swarms. The latter was set
as a multiple of the available streaming multiprocessors. Recall that the GPU
used here includes 7 SMs.

Considering the optimization time comparison for the different studied config-
urations, with respect to the three used functions, we could easily observe that,
in the case of SGPSO, for at most 56 swarms, which entails 56 × 128 = 7168
particles, the increase in terms of processing time is justified as the quality of
the best solution is improved proportionally. PPSO presented a similar behavior
as SGPSO when varying upwards the number of particles. Nonetheless, one can
notice that for function f2, SGPSO performs better, which in our opinion is due
to the large search space and thus SGPSO takes advantage of the topology of
distributed swarms. In the case of PDPSO, because of the explosion in terms
of number of required threads, even in the first case, wherein a total of 28672
threads are required, the computational work surely ends up being sequential-
ized. Therefore, we do not show all the results for this approach. Figure 2 shows
the speedup achieved.

6.3 Impact of the Number of Dimensions

Surely, the increase in terms of problem dimensions has an impact on the ex-
ecution time. Recall that, in PPSO and SGPSO approaches, the computation
with respect to the many dimensions of the objective function are performed se-
quentially, while in PDPSO, this is done concurrently. Figures 3(a) – 3(c) show
a positive speedup for at most 256 dimensions. Nonetheless, for 512 dimensions
the rate of increase of the performance deteriorates for all three implementa-
tions. The implementation of PDPSO performed much better than PPSO and
SGPSO, even though the latter (PPSO and SGPSO) are handling 7168 threads
while PDPSO 14336. This is twice the whole capacity of the GPU.

7 Conclusion

This paper presents three implementations of parallel PSO using GPGPU: PPSO,
SGPSO and PDPSO. The first approach explores the parallelism between parti-
cles. In the second approach, the algorithm divides the search space into a grid
of subspaces and assigns a swarm to each and every one of them. The implemen-
tation exploits the parallelism of the particle computation of the corresponding
position and velocity as well as the fitness value of the solution associated. This
is performed independently of the others particles of the swarm. A swarm of
particles was implemented as a block of threads, wherein each thread simulates
a single particle. This has a positive impact on the performance of the opti-
mization of problems with large search space. In the third implementation, the
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particle is implemented as a block of threads and each dimension as one thread.
This allows the distribution of the computational load at a finer degree of gran-
ularity, which is up to one thread per problem dimension. This has a positive
impact on the performance of the optimization of large dimension problems.

A three-fold analysis was carried out to evaluate the performance of the
proposed parallel implementation: first, the impact of the number of invested
swarms; second the impact of their size; then the impact of the number of
dimensions.
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