The Complex Fuzzy Measure

Sheng-quan Ma, Mei-qin Chen and Zhi-qing Zhao

Abstract In this paper, we define the concept of complex Fuzzy measure, which is different from the concept of complex Fuzzy measure in [\[2\]](#page-7-0), and discuss its properties and theorems. On the basis of the concept of complex Fuzzy measurable function in [\[2](#page-7-0)], we study its convergence theorem. It builds the certain foundation for the research of complex Fuzzy integral.

Keywords Complex fuzzy measure · Complex fuzzy measurable function

1 Introduction

In 1990–1991, Buckley [\[1](#page-7-1)] proposed the concept of fuzzy complex numbers and fuzzy complex-valued function. In 1997, Qiu Jiqing [\[2](#page-7-0)[–5\]](#page-8-0) firstly proposed the concept of the complex fuzzy measure on the basis of classical measure theory method. Since 2000, According to this issue, Ma shengquan [\[6](#page-8-1)] has done some exploratory work, and made a series of achievement in this field. The theory of fuzzy complex valued measure is an important part of fuzzy complex analysis, which has a strong background of practical application [\[7](#page-8-2)]. For instance it can use in the fuzzy system identification, fuzzy control, multi-classifier system design and other fields. The development of theoretical research of fuzzy complex valued measure is slow,

College of Mathematics and Information Science, Shanxi Normal University, Xian,Shanxi 710062, China e-mail: mashengquan@163.com

Z. Zhao and S. Ma Dept. of Math, Hainan Normal University, Haikou,Hainan,571158Haikou, China

S. Ma (\boxtimes)

M. Chen

College of information science and Technology,Hainan Normal University, Haikou, Hainan,Haikou571158, China

because it is much more complicated than Fuzzy real-valued measure. The complex Fuzzy measure which defined in this paper is different from that in paper [\[2](#page-7-0)], the concept of Fuzzy measure was redefined, which distinguished between the real and imaginary parts in order to facilitate research.

2 Complex Fuzzy Measure

 \hat{R}^+ denote positive real set, \hat{C}^+ denote the set of complex number on \hat{R}^+ [\[8](#page-8-3)].

Definition 2.1 *Let X be a nonempty set, F be a* σ− *algebra, comprising of the subset of X, the mapping* μ : $F \rightarrow \hat{C}^+$ *is set function, satisfying:*

- *(1)* $\mu(\emptyset) = 0$ *:*
- *(2) (monotonicity)* If $A, B \in F$ *and* $A \subseteq B$, *then* $Re(\mu(A)) \leq Re(\mu(B))$ *and* $Im(\mu(A)) \le Im(\mu(B))$. *Denote* $\mu(A) \le \mu(B)$
- *(3) if* A_n ∈ $F(n = 1, 2, \cdots)$, $A_1 ⊆ A_2 ⊆ \cdots ⊆ A_n ⊆ \cdots$ *then*

$$
\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n)
$$

(4) if A_n ∈ $F(n = 1, 2, ...)$, $A_1 \supseteq A_2 \supseteqeq \cdots \supseteq A_n \supseteqeqeq \cdots$, and $\exists n_0$ such that $Re(\mu(A_{n_0})) < \infty$, $Im(\mu(A_{n_0})) < \infty$ then $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$. Then μ *n*=1 *is called as complex Fuzzy measure on F*, (*X,F,*μ) *is called as complex Fuzzy measure space.*

Definition 2.2 *Fuzzy complex measure* μ *is said to be zero-additive, if for arbitrary* $E, F \in F, \mu(F) = 0$ *and* $E \cap F = \varphi$ *, then* $\mu(E \cup F) = \mu(E)$ *.*

Theorem 2.1 (X, F*,* μ) *is complex Fuzzy measure space, The following propositions are equivalence.*

- *(1)* μ *is zero-additive ;*
- *(2)* since $\mu(F) = 0$, then for arbitrary $E, F \in F$, such that $\mu(E \cup F) = \mu(E)$;
- *(3)* since $\mu(F) = 0$, then for arbitrary $E, F \in F$, such that $\mu(E \backslash F) = \mu(E)$:

Proof. $(1) \Rightarrow (2)$: $E \cup F = E \cup (F \setminus E)$, since μ is nonnegative monotony, then for $\mu(F) = 0$, such that

 $\mu(F \backslash E) \leq \mu(F) = 0$, therefore $\mu(F \backslash E) = 0$. Applying the zero-additive of μ , μ ($F \backslash E$) = 0 and $E \cap (F \backslash E) = \varphi$, then

$$
\mu(E \cup F) = \mu(E \cup (F \backslash E)) = \mu(E).
$$

 $(2) \Rightarrow (3)$:

Due to $E = (E \backslash F) \cup (E \cap F)$, and $\mu(F) = 0$, then $\mu(E \cap F) = 0$. We know $\mu(E) = \mu((E \backslash F) \cup (E \cap F)) = \mu(E \backslash F)$ from the proposition $(2).(3) \Rightarrow (1)$: Due to $E \cap F = \varphi$, then $E = (E \cup F) \backslash F$. If $\mu(F) = 0$ and $E \cap F = \varphi$, we can know

$$
\mu(E) = \mu((E \cup F)\backslash F) = \mu(E \cup F)
$$

from the proposition (3).

Theorem 2.2 *Suppose* μ *is complex Fuzzy measure of zero-additive,* $A \in F$ *, there is a descending sequence of* ${B_n} \subset F$, $(B_1 \supseteq B_2 \supseteq \cdots)$ *, if* $\mu(B_n) \to 0$ *, then*

- (1) $\mu(A \backslash B_n) \rightarrow \mu(A);$
- *(2) whereupon Re*(μ (*A*)) < ∞, *and Im*(μ (*A*)) < ∞, *and if exists Re*(μ (*A* ∪ (B_{n_0})) < ∞ *and Im*($\mu(A \cup B_{n_0})$) < ∞ *, therefore* $\mu(A \cup B_n) \rightarrow \mu(A)$ *.*

Proof. (1) since $\{A \setminus B_n\}$ is ascending sequence and if μ is lower-continuous, we can know $\lim_{n\to\infty} \mu(A \setminus B_n) = \mu(\bigcup_{n=1}^{\infty}$ *n*=1 $(A \setminus B_n)) = \mu(A \setminus \bigcap_{n=1}^{\infty}$ $n=1$ *Bn*).

Applying μ is upper-continuous, $\lim_{n \to \infty} \mu(B_n) = \mu(\bigcap_{n=1}^{\infty} A_n)$ *n*=1 B_n) = 0, since μ is zeroadditive, from the Theorem 1, then $\lim_{n\to\infty} \mu(A\backslash B_n) = \mu(A)$.

(2) ${A \cup B_n}$ is descending sequence, $Re(\mu(A)) < \infty$, and $Im(\mu(A)) < \infty$, and exist $Re(\mu(A \cup B_{n_0})) < \infty$ and $Im(\mu(A \cup B_{n_0})) < \infty$, due to μ is upper-continuous,

$$
\lim_{n\to\infty}\mu(A\cup B_n)=\mu(\bigcap_{n=1}^{\infty}(A\cup B_n))=\mu(A\cup(\bigcap_{n=1}^{\infty}B_n)).
$$

Since μ is zero-additive, and $\mu(\bigcap_{n=1}^{\infty} B_n) = 0$, so we know *n*=1

$$
\lim_{n\to\infty}\mu(A\cup B_n)=\mu(A)
$$

according to Theorem 1.

Definition 2.3 Let (X, F) be measurable space, the mapping $\mu: F \to \hat{C}^+$ is set func*tion, Complex fuzzy measure* μ *is upper-self-continuous, if for arbitrary* $A, B_n \in F$, $and A \cap B_n = \Phi, \lim_{n \to \infty} B_n = 0, then$

$$
\lim_{n\to\infty}\mu(A\backslash B_n)=\mu(A).
$$

Complex fuzzy measure μ *is lower-self-continuous, if for arbitrary* $A, B_n \in F$ *and* $B_n \subseteq A$, $\lim_{n \to \infty} B_n = 0$, then $\lim_{n \to \infty} \mu(A \setminus B_n) = \mu(A)$ *.*

Complex fuzzy measure μ *is self-continuous, if and only if* μ *is not only upper-selfcontinuous but also lower-self-continuous.*

Theorem 2.3 *Suppose* μ *is complex Fuzzy measure on (X,F), then*

- *(1)* μ *is upper-self-continuous if and only if* $\lim_{n\to\infty} \mu(A \cup B_n) = \mu(A)$ *if for arbitrary* $A, B_n \in F$ and $\lim_{n \to \infty} B_n = 0.$
- (2) μ *is lower-self-continuous if and only if* $\lim_{n\to\infty} \mu(A \setminus B_n) = \mu(A)$ *if for arbitrary* $A, B_n \in F$ and $\lim_{n \to \infty} B_n = 0$.

Proof. The necessity is easily proved from the definition.2.3

- (1) Sufficiency: Let $E_n = B_n \backslash A$, we know $\mu(E_n) \leq \mu(B_n)$, therefore $E_n \cap A =$ φ , and $\lim_{n\to\infty} \mu(E_n) = 0$, then $\lim_{n\to\infty} \mu(A \cup E_n) = \mu(A)$, so μ is upper-selfcontinuous.
- (2) Sufficiency: Let $E_n = B_n \cap A$, we know $\mu(E_n) \leq \mu(B_n)$, therefore $E_n \subseteq A$, and $\lim_{n \to \infty} \mu(E_n) = 0$, then $\lim_{n \to \infty} \mu(A \setminus E_n) = \mu(A)$, so μ is lower-self-continuous

Definition 2.4 *Let* (X, F) *be measurable space, the mapping* $\mu: F \to \hat{C}^+$ *is set function,*

- *(1)* Suppose for arbitrary $\varepsilon_i > 0$, exists $\delta_i = \delta(\varepsilon_i) > 0$ (*i* = 1, 2), *where* $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\delta = \delta_1 + i\delta_2$, *Complex fuzzy measure* μ *is uniform-upper-self-continuous, if for arbitrary* $A, B \in F$ and $\mu(B) \leq \delta$, then $\mu(A \cup B) \leq \mu(A) + \varepsilon$.
- *(2) Suppose for arbitrary* $\varepsilon_i > 0$ *, exists* $\delta_i = \delta(\varepsilon_i) > 0$ *(i = 1, 2), where* $\varepsilon = \varepsilon_1 + \varepsilon_2$ $i\varepsilon_2$, $\delta = \delta_1 + i\delta_2$, *Complex fuzzy measure* μ *is uniform-lower-self- continuous, if for arbitrary A, B* \in *F and* μ (*B*) \lt *δ, then* μ (*A*) $- \varepsilon$ \lt μ (*A**B*).
- *(3) Complex fuzzy measure* μ *is uniform-self-continuous, if and only if* μ *is not only uniform-upper-self-continuous but also uniform-lower-self-continuous.*

Theorem 2.4 *Suppose set function* μ *is uniform-upper-self-continuous (uniformlower-self-continuous), then* μ *is upper-self-continuous (lower-self- continuous).*

Proof. It is obvious.

Theorem 2.5 *Suppose* μ *is complex Fuzzy measure on* (X, F) *, The following propositions are equivalence.*

- *(1)* μ *is uniform-self-continuous;*
- *(2)* μ *is uniform-upper-self-continuous;*

(3) μ *is uniform-lower-self-continuous.*

Proof. $(1) \Rightarrow (2)$ It is obvious.

(2) \Rightarrow (3): Since μ is uniform-upper-self-continuous, so if for arbitrary ε_i 0, $\exists \delta_i = \delta(\varepsilon_i) > 0 (i = 1, 2)$, where $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\delta = \delta_1 + i\delta_2$, and for arbitrary $A', B' \in F, \mu(B') \leq \delta$, then $\mu(A') - \varepsilon \leq \mu(A' \cup B') \leq \mu(A') + \varepsilon$. if for arbitrary $A, B \in \mathbb{F}, \mu(B) \le \delta$, Let $A' = A \setminus B, B' = A \cap B, \mu(B') \le \mu(B) \le \delta$,

if $\mu(A \setminus B) - \varepsilon \le \mu(A' \cup B') \le \mu(A \setminus B) + \varepsilon$, then $\mu(A) - \varepsilon \le \mu(A \setminus B) \le \mu(A) + \varepsilon$. It means μ is uniform-lower-self-continuous.

 $(3) \Rightarrow (1)$: Since μ is uniform-lower-self-continuous, if for arbitrary

 $\varepsilon_i > 0$, $\exists \delta_i = \delta(\varepsilon_i) > 0$ $(i = 1, 2)$, where $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\delta = \delta_1 + i\delta_2$, and for arbitrary *A'*, $B' \in F$, $\mu(B') \leq \delta$, then $\mu(A') - \varepsilon \leq \mu(A' \setminus B') \leq \mu(A') + \varepsilon$. if for arbitrary

 $A, B \in F, \mu(B) \le \delta$, Let $A' = A \cup B, B' = A \cap B, \mu(B') \le \mu(B) \le \delta$, therefore

$$
\mu(A'\backslash B')\geq \mu(A')-\varepsilon\geq \mu(A)-\varepsilon.
$$

Again let $A'' = (A \cup B) \setminus (A \cap B), B'' = B \setminus A$, then $A'' \setminus B'' = A \setminus B$, and $\mu(B'') \le$ $\mu(B) < \delta$, so

$$
\mu(A'') - \varepsilon \le \mu(A'' \setminus B'') = \mu(A \setminus B) \Rightarrow \mu(A \setminus B) + \varepsilon \le \mu(A) + \varepsilon.
$$

Again let $A = E$, $B = F\setminus E$, then $(A \cup B)\setminus (A \cap B) = E \cup F$, $\mu(B) \le \mu(F) \le \delta$, so $\mu(E) - \varepsilon \leq \mu(E \cup F) \leq \mu(E) + \varepsilon$. It means μ is uniform-upper-self-continuous. So μ is uniform-self-continuous.

Definition 2.5 *Let* (X, F) *be measurable space, the mapping* $\mu: F \to \hat{C}^+$ *is set function, If for arbitrary* ${B_n} \subseteq A, B_1 \supseteq B_2 \supseteq \cdots$, *if* $\exists n_0, \forall n > n_0, Re(\mu(B_n)) < \infty$, $Im(\mu(B_n)) < \infty$ and $\bigcap_{n=1}^{\infty}$ *n*=1 $B_n = \varphi$, there must be $\lim_{n \to \infty} \mu(B_n) = 0$, so μ is called *zero-upper-continuous.*

Theorem 2.6 μ *is nonnegative monotonic ascending set function, and zero-uppercontinuous, Then if* μ *is upper-self- continuous, then* μ *is upper- continuous; if* μ *is limit and lower-self- continuous, then* μ *is lower- continuous.*

Proof. (1) If $\{A_n\} \subseteq F$, $A_1 \supseteq A_2 \supseteq \cdots$, exist $Re(\mu(B_n)) < \infty$, $Im(\mu(B_n)) < \infty$, let $A = \bigcap_{i=1}^{\infty}$ *n*=1 $A_n, B_n = A_n \setminus A \quad (n = 1, 2, \cdots)$, then $B_1 \supseteq B_2 \supseteq \cdots$, and $\bigcap_{n=1}^{\infty}$ *n*=1 $B_n = \varphi$.if for arbitrary $n > n_0$, $Re(\mu(B_n)) \leq Re(\mu(B_{n_0})) \leq Re(\mu(A_{n_0})) \leq \infty$,

 $\text{Im}(\mu(B_n)) \leq \text{Im}(\mu(B_{n_0})) \leq \text{Im}(\mu(A_{n_0})) < \infty$. Since μ is zero-upper-continuous, we know $\lim_{n\to\infty} \mu(B_n) = 0$. Due to $A_n = A \cup B_n$, $A \cap B_n = \varphi$, and μ is upper-

self-continuous, if $\mu(A_n) = \mu(A \cup B_n)$, then $\mu(A) = \mu(\bigcap_{n=1}^{\infty} A_n)$ *n*=1 A_n).So μ is uppercontinuous.

(2)The proof is similar to (1) above.

3 Complex Fuzzy Measurable Function

R denote real set, *C* denote the set of complex number on *R*.

Definition 3.1 *[\[2](#page-7-0)] Suppose* (*X,F,*μ) *is complex Fuzzy measure space, the mapping* $\tilde{f}: X \to C$ is called complex Fuzzy measurable function, if for arbitrary $a + bi \in C$, $then \{x \in X \mid Re[\tilde{f}(x)] \ge a, Im[\tilde{f}(x)] \ge b\} \in F.$

Definition 3.2 *Suppose* (*X,F,* μ) *is complex Fuzzy measure space,* \tilde{f}_n ($n = 1, 2, \dots$), \tilde{f} *is complex fuzzy measurable function, for arbitrary* $A \in F$,

- *(1)* $\{\tilde{f}_n\}$ *almost everywhere converge to* \tilde{f} *on A, denote* $\tilde{f}_n \stackrel{a.e.}{\rightarrow} \tilde{f}$ *, if there exists* $B \in F$ *, such that* $\mu(B) = 0$, then $\{\tilde{f}_n\}$ with pointwise convergence to \tilde{f} on $A \setminus B$.
- *(2)* $\{\tilde{f}_n\}$ *pseudo-almost everywhere converge to* \tilde{f} *on* A, denote $\tilde{f}_n \stackrel{p.a.e.}{\rightarrow} \tilde{f}$ *, if there exists* $B \in F$ *, such that* $\mu(A \setminus B) = \mu(A)$ *, then* $\{\tilde{f}_n\}$ *with pointwise convergence to* \tilde{f} *on* $A \setminus B$.
- *(3)* $\{\tilde{f}_n\}$ *almost everywhere uniformly converge to* \tilde{f} *on A, denote* $\tilde{f}_n \stackrel{a.e.u.}{\rightarrow} \tilde{f}$ *, if there exists* $B \in F$, such that $\mu(B) = 0$, then $\{\tilde{f}_n\}$ with pointwise uniform convergence *to* \tilde{f} *on* $A \setminus B$.
- *(4)* $\{\tilde{f}_n\}$ *pseudo-almost everywhere uniformly converge to* \tilde{f} *on* A _{*z} denote* $\tilde{f}_n \stackrel{p.a.e.u.}{\rightarrow}$ </sub> \tilde{f} , if there exists $B \in F$, such that $\mu(A \setminus B) = \mu(A)$, then $\{\tilde{f}_n\}$ with pointwise *uniform convergence to* \tilde{f} *on* $A \ B$.
- (5) $\{\tilde{f}_n\}$ *almost uniformly converge to* \tilde{f} *on A, denote* $\tilde{f}_n \stackrel{a.u.}{\rightarrow} \tilde{f}$ *, if there exists set sequence*{ E_k } *on F, such that* $\tilde{\mu}(E_k) \rightarrow 0$ *, and for arbitrary k, then* { \tilde{f}_n } *with pointwise uniform convergence to* \tilde{f} *on* $A \ E_k$.
- *(6)* $\{\tilde{f}_n\}$ *pseudo-almost uniformly converge to* \tilde{f} *on A, denote* $\tilde{f}_n \stackrel{p.a.u.}{\rightarrow} \tilde{f}$ *, if there exists set sequence* ${E_k}$ *on F, such that* $\mu(A \backslash E_k) \rightarrow \mu(A)$ *, and for arbitrary k, then* $\{\tilde{f}_n\}$ *with pointwise uniform convergence to* \tilde{f} *on* $A \setminus E_k$.
- *(7)* $\{\tilde{f}_n\}$ *converge in complex fuzzy measure* μ *to* \tilde{f} *on A, denote* $\tilde{f}_n \stackrel{u}{\rightarrow} \tilde{f}$ *, if for arbitrary* $\varepsilon = \varepsilon_1 + i\varepsilon_2$, ε_1 , $\varepsilon_2 > 0$, such that

$$
\lim_{n\to\infty}\mu(\lbrace x\,\middle|\,Re\,\middle|\,\tilde{f}_n-\tilde{f}\,\middle|\,\geq\varepsilon_1,\,Im\,\middle|\,\tilde{f}_n-\tilde{f}\,\middle|\,\geq\varepsilon_2\rbrace\cap A)=0.
$$

(8) $\{\tilde{f}_n\}$ *converge in pseudo complex fuzzy measure* $\tilde{\mu}$ *to* \tilde{f} *on A, denote* $\tilde{f}_n \stackrel{p.u.}{\rightarrow} \tilde{f}$ *, if for arbitrary* $\varepsilon > 0$ *, such that*

$$
\lim_{n\to\infty}\mu(\lbrace x\,\middle|\,Re\,\middle|\,\tilde{f}_n-\tilde{f}\,\middle|\,<\varepsilon_1,\,Im\,\left|\tilde{f}_n-\tilde{f}\,\middle|\,<\varepsilon_2\right\}\cap A)=\mu(A).
$$

Theorem 3.1 *Suppose* (*X,F,* μ) *is complex Fuzzy measure space,* \tilde{f}_n ($n = 1, 2, \dots$), \tilde{f} *is complex fuzzy measurable function, for arbitrary* $A \in F$,

(1) $\tilde{f}_n \stackrel{a.e.}{\rightarrow} \tilde{f}$ *if and only if* $\{\tilde{f}_n\}$ *converge to* \tilde{f} *on* $A \setminus E_k$ *, if there exists set sequence* ${E_k}$ *on F, such that* $\mu(E_k) \rightarrow 0$ *, and for arbitrary k.*

- *(2)* $\tilde{f}_n \stackrel{p.a.e.}{\rightarrow} \tilde{f}$ if and only if $\{\tilde{f}_n\}$ converge to \tilde{f} on $A \setminus E_k$, if there exists set sequence ${E_k}$ *on F, such that* $\mu(A \backslash E_k) \to \mu(A)$ *, and for arbitrary k.*
- $\left| \int_{0}^{\pi} \int_{0}^{a} f(x, y, y, z) \, dx \right|$ *Re*($\tilde{f} \tilde{f}$) $\leq \varepsilon_1$ *and* $\left| Im(\tilde{f} \tilde{f}$) $\leq \varepsilon_2$, if there *exists set sequence* ${E_k}$ *on F, such that* $\mu(E_k) \rightarrow 0$ *, and for arbitrary* ε_i > 0, $(i = 1, 2)$ *, where* $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\exists n_0, \forall n > n_0, \forall k, \forall x \in A \setminus E_k$.
- $\left| \begin{array}{c} \text{if } p \text{ a.e. } u \text{ if } h \text{ and } h \text{ and } h \text{ if } h \text{ is } h \text{ and } h \text{ and } h \text{ and } h \text{ and } h \text{ is } h \text{ and } h \text{ and } h \text{ is } h \text{ and } h \text{ is$ *exists set sequence* { E_k } *on F, such that* $\mu(A \setminus E_k) \rightarrow \mu(A)$ *, and for arbitrary* $\varepsilon_i > 0$, $(i = 1, 2)$, where $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\exists n_0, \forall n > n_0, \forall k, \forall x \in A \setminus E_k$.

Proof. (1) If $\tilde{f}_n \stackrel{a.e.}{\rightarrow} \tilde{f}$, then exists $B \in \mathbb{F}$, $\mu(B) = 0$, such that $\tilde{f}_n \rightarrow \tilde{f}$ on $A \setminus B$. Let $E_k = B(k = 1, 2, \dots)$, we know $\mu(E_k) \to 0$, and $\{\tilde{f}_n\}$ converge to \tilde{f} on $A \backslash E_k$, for

arbitrary *k*.
Otherwise, if there exists $\{E_k\} \subseteq F, \mu(E_k) \to 0$, such that $\tilde{f}_n \to \tilde{f}$ on $A \setminus E_k$. Let Otherwise, if there exists $\{E_k\} \subseteq F$, $\mu(E_k) \to 0$, such that $f_n \to f$ on $A \setminus E_k$. Let $B_k = \bigcap_{k=1}^k$ *i*=1 $E_i, B = \bigcap_{i=1}^{\infty}$ *k*=1 $B_k = \bigcap_{k=1}^{\infty}$ *k*=1 E_k , so $\mu(B_k) \leq \mu(E_k)$ and $B_1 \supseteq B_2 \supseteq \cdots$. Due to $\mu(E_k) \to 0$, there exists

 $\text{Re}(\mu(B_{k_0})) \leq \text{Re}(\mu(E_{k_0})) < \infty$, and $\text{Im}(\mu(B_{k_0})) \leq \text{Im}(\mu(E_{k_0})) < \infty$. Applying the upper-continuity of μ , we know that $\mu(B) = \lim_{k \to 0} \mu(B_k) = 0$. If for arbitrary $x \in A \setminus B = \bigcup_{k=0}^{\infty} B_k$ *k*=1 $(A \ E_k)$, ∃ k_0 , $x \in A \ E_{k_0}$, then $f_n \to f$, therefore $\{f_n\}$ converge to \tilde{f} on $A \setminus B$, denote $\tilde{f}_n \stackrel{a.e.}{\rightarrow} \tilde{f}$.

The proof of $(2),(3),(4)$ is similar to (1) , we omit here. Inference 3.1 If $\tilde{f}_n \stackrel{a.e.u.}{\rightarrow} \tilde{f}$, then $\tilde{f}_n \stackrel{a.u.}{\rightarrow} \tilde{f}$; If $\tilde{f}_n \stackrel{p.a.e.u.}{\rightarrow} \tilde{f}$, then $\tilde{f}_n \stackrel{p.a.u.}{\rightarrow} \tilde{f}$.

Theorem 3.2 *Suppose complex Fuzzy measure* μ *is lower-self- continuity, for* $A \in \mathbb{F}$, If $\tilde{f}_n \stackrel{a.e.}{\rightarrow} \tilde{f}$, then $\tilde{f}_n \stackrel{p.a.e.}{\rightarrow} \tilde{f}$. If $\tilde{f}_n \stackrel{a.e.u.}{\rightarrow} \tilde{f}$, then $\tilde{f}_n \stackrel{p.a.e.u.}{\rightarrow} \tilde{f}$. *If* $\tilde{f}_n \stackrel{a.u.}{\rightarrow} \tilde{f}$ then $\tilde{f}_n \stackrel{p.a.u.}{\rightarrow} \tilde{f}$.

Proof. (1) If $\tilde{f}_n \stackrel{a.e.}{\rightarrow} \tilde{f}$ on A, then there exists $B \in F$, $\mu(B) = 0$, such that $\{\tilde{f}_n\}$ converge to \tilde{f} on $A \setminus B$, therefore $\tilde{f}_n \stackrel{p.a.e.}{\rightarrow} \tilde{f}$ on A .

The proof of (2) , (3) is similar to (1) , we omit here.

Theorem 3.3 *Suppose for arbitrary A* \in *F, and complex fuzzy measurable function* \tilde{f} and \tilde{f}_n ($n = 1, 2, \dots$), if $\tilde{f}_n \stackrel{u}{\rightarrow} \tilde{f}$, then $\tilde{f}_n \stackrel{p.u.}{\rightarrow} \tilde{f}$ if and only if complex fuzzy *measure* μ *is lower-self- continuity.*

Proof. (necessity) if $\tilde{f}_n \stackrel{u}{\rightarrow} \tilde{f}$, then $\tilde{f}_n \stackrel{p.u.}{\rightarrow} \tilde{f}$, so $\lim_{n \to \infty} \mu(B_n) = 0$, for arbitrary $A \in F$ and ${B_n} \subset F$ Let

$$
\tilde{f}_n(x) = \begin{cases} 1 & x \in B_n \\ 0 & x \notin B_n \end{cases}
$$

So

$$
\lim_{n\to\infty}\mu(\lbrace x\;\middle\vert\vert \mathrm{Re}(\tilde{f}_n-0)\vert\geq\varepsilon_1,\;\bigvert \mathrm{Im}(\tilde{f}_n-0)\big\vert\geq\varepsilon_2\}\cap A)=\lim_{n\to\infty}\mu(B_n)=0,
$$

where for arbitrary $\varepsilon_i > 0$, $(i = 1, 2)$, $\varepsilon = \varepsilon_1 + i\varepsilon_2$. So on A, if $\tilde{f}_n \stackrel{u}{\rightarrow} 0$, then $\tilde{f}_n \stackrel{p.u.}{\rightarrow} 0.$

Suppose for
$$
\varepsilon_i
$$
 < 1, then $\mu(A \setminus B_n) = \mu({x \bigg| \bigg| \text{Re}(\tilde{f}_n - 0) \bigg| < \varepsilon_1, \bigg| \text{Im}(\tilde{f}_n - 0) \bigg| < \varepsilon_2$ } \cap A) = $\mu(A)$,

So μ is lower-self- continuity.

 $\left|\frac{\text{Sufficiency}}{\text{F}_n} \text{ If } \tilde{f}_n \stackrel{u}{\rightarrow} \tilde{f} \text{ on A, then } \lim_{n \to \infty} \mu(\lbrace x \mid \left| \text{Re}(\tilde{f}_n - 0) \right| \geq \varepsilon_1, \left| \text{Im}(\tilde{f}_n - 0) \right| \geq \varepsilon_1, \text{Im}(\tilde{f}_n - 0)$ ϵ_2 \cap *A*) = 0, where for arbitrary $\epsilon_i > 0$, $(i = 1, 2)$, $\epsilon = \epsilon_1 + i\epsilon_2$. Let

$$
B_n = \{x \mid \left| Re(\tilde{f}_n - \tilde{f}) \right| \geq \varepsilon_1, \left| Im(\tilde{f}_n - \tilde{f}) \right| \geq \varepsilon_2 \} \cap A,
$$

then ${B_n} \subseteq A$ and $\lim_{n \to \infty} \mu(B_n) = 0$. Due to μ is lower-self- continuity, so

$$
\mu(A \cap \{x \mid \left| Re(\tilde{f}_n - \tilde{f}) \right| < \varepsilon_1, \left| Im(\tilde{f}_n - \tilde{f}) \right| < \varepsilon_2\}) = \mu(A \setminus B_n) \to \mu(A).
$$

Therefore $\tilde{f}_n \stackrel{p.u.}{\rightarrow} \tilde{f}$ on A.

4 Conclusion

On the basis of the concept of complex Fuzzy measurable function in [\[2](#page-7-0)], we study its convergence theorem. It builds the certain foundation for the research of complex Fuzzy integral. Provide a strong guarantee for the complex fuzzy integral development, enrichment and development of complex fuzzy Discipline.

Acknowledgments This work is supported by International Science & Technology Cooperation Program of China (2012DFA11270), Hainan International Cooperation Key Project(GJXM201105) and Natural Science Foundation of Hainan Province (No.111007)

References

- 1. Buckley, J.J.: Fuzzy complex numbers. FSS **33**, 333–345 (1989)
- 2. Jiqing, Q., Fachao, L., Liangqing, S.: Complex fuzzy measure and complex fuzzy integral. J. Hebei Inst. Chem. Technol Light Ind. **18**(1), 1–5 (1997)
- 3. Wenxiu, Z.: An Introduction of Fuzzy Mathematics. Xi'an Jiaotong University Press (1991)
- 4. Congxin, W.: Fuzzy Analysis. pp. 24–28. National Defense Industry Press, Beijing (1991)
- 5. Guangquan, Z.: Fuzzy Limit theory of fuzzy Complex numbers.Fuzzy Sets and Systems **46**, 227–235 (1992)
- 6. Shengquan, M., Chun, C.: Fuzzy complex analysis. The Ethnic publishing house, Beijing (2001)
- 7. Jiqing, Q.,Ting, S.: Relation on Convergence of Measurable Functions Sequence on Fuzzy Complex Measure Space. Fuzzy Sets and Systems **21**, 92–96 (2007)
- 8. Shengquan, M.: The fundamental theory of fuzzy complex analysis. Science Press, Beijing (2010)