The Complex Fuzzy Measure

Sheng-quan Ma, Mei-qin Chen and Zhi-qing Zhao

Abstract In this paper, we define the concept of complex Fuzzy measure, which is different from the concept of complex Fuzzy measure in [2], and discuss its properties and theorems. On the basis of the concept of complex Fuzzy measurable function in [2], we study its convergence theorem. It builds the certain foundation for the research of complex Fuzzy integral.

Keywords Complex fuzzy measure · Complex fuzzy measurable function

1 Introduction

In 1990–1991, Buckley [1] proposed the concept of fuzzy complex numbers and fuzzy complex-valued function. In 1997, Qiu Jiqing [2–5] firstly proposed the concept of the complex fuzzy measure on the basis of classical measure theory method. Since 2000, According to this issue, Ma shengquan [6] has done some exploratory work, and made a series of achievement in this field. The theory of fuzzy complex valued measure is an important part of fuzzy complex analysis, which has a strong background of practical application [7]. For instance it can use in the fuzzy system identification, fuzzy control, multi-classifier system design and other fields. The development of theoretical research of fuzzy complex valued measure is slow,

College of Mathematics and Information Science, Shanxi Normal University, Xian,Shanxi 710062, China e-mail: mashengquan@163.com

Z. Zhao and S. Ma Dept. of Math, Hainan Normal University, Haikou, Hainan, 571158Haikou, China

S. $Ma(\boxtimes)$

M. Chen

College of information science and Technology, Hainan Normal University, Haikou, Hainan, Haikou 571158, China

because it is much more complicated than Fuzzy real-valued measure. The complex Fuzzy measure which defined in this paper is different from that in paper [2], the concept of Fuzzy measure was redefined, which distinguished between the real and imaginary parts in order to facilitate research.

2 Complex Fuzzy Measure

 \hat{R}^+ denote positive real set, \hat{C}^+ denote the set of complex number on \hat{R}^+ [8].

Definition 2.1 Let X be a nonempty set, F be a σ – algebra, comprising of the subset of X, the mapping $\mu: F \to \hat{C}^+$ is set function, satisfying:

- (1) $\mu(\emptyset) = 0;$
- (2) (monotonicity) If $A, B \in F$ and $A \subseteq B$, then $Re(\mu(A)) \leq Re(\mu(B))$ and $Im(\mu(A)) \leq Im(\mu(B))$. Denote $\mu(A) \leq \mu(B)$
- (3) if $A_n \in F(n = 1, 2, \dots)$, $A_1 \subseteq A_2 \subseteq \dots \subseteq A_n \subseteq \dots$ then

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$$

(4) if $A_n \in F(n = 1, 2, ...)$, $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supseteq \cdots$, and $\exists n_0$ such that $Re(\mu(A_{n_0})) < \infty$, $Im(\mu(A_{n_0})) < \infty$ then $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$. Then μ is called as complex Fuzzy measure on F, (X, F, μ) is called as complex Fuzzy measure space.

Definition 2.2 Fuzzy complex measure μ is said to be zero-additive, if for arbitrary $E, F \in F, \mu(F) = 0$ and $E \cap F = \varphi$, then $\mu(E \cup F) = \mu(E)$.

Theorem 2.1 (X, F, μ) is complex Fuzzy measure space, The following propositions are equivalence.

- (1) μ is zero-additive;
- (2) since $\mu(F) = 0$, then for arbitrary $E, F \in F$, such that $\mu(E \cup F) = \mu(E)$;
- (3) since $\mu(F) = 0$, then for arbitrary $E, F \in F$, such that $\mu(E \setminus F) = \mu(E)$:

Proof. (1) \Rightarrow (2): $E \cup F = E \cup (F \setminus E)$, since μ is nonnegative monotony, then for $\mu(F) = 0$, such that

 $\mu(F \setminus E) \leq \mu(F) = 0$, therefore $\mu(F \setminus E) = 0$. Applying the zero-additive of $\mu, \mu(F \setminus E) = 0$ and $E \cap (F \setminus E) = \varphi$, then

$$\mu(E \cup F) = \mu(E \cup (F \setminus E)) = \mu(E).$$

(2)⇒(3):

Due to $E = (E \setminus F) \cup (E \cap F)$, and $\mu(F) = 0$, then $\mu(E \cap F) = 0$. We know $\mu(E) = \mu((E \setminus F) \cup (E \cap F)) = \mu(E \setminus F)$ from the proposition $(2).(3) \Rightarrow (1):$ Due to $E \cap F = \varphi$, then $E = (E \cup F) \setminus F$. If $\mu(F) = 0$ and $E \cap F = \varphi$, we can know

$$\mu(E) = \mu((E \cup F) \setminus F) = \mu(E \cup F)$$

from the proposition (3).

Theorem 2.2 Suppose μ is complex Fuzzy measure of zero-additive, $A \in F$, there is a descending sequence of $\{B_n\} \subset F$, $(B_1 \supseteq B_2 \supseteq \cdots)$, if $\mu(B_n) \to 0$, then

- (1) $\mu(A \setminus B_n) \to \mu(A);$
- (2) whereupon $Re(\mu(A)) < \infty$, and $Im(\mu(A)) < \infty$, and if exists $Re(\mu(A \cup A)) = 0$ $(B_{n_0}) < \infty$ and $Im(\mu(A \cup B_{n_0})) < \infty$, therefore $\mu(A \cup B_n) \rightarrow \mu(A)$.

Proof. (1) since $\{A \setminus B_n\}$ is ascending sequence and if μ is lower-continuous, we

can know $\lim_{n \to \infty} \mu(A \setminus B_n) = \mu(\bigcup_{n=1}^{\infty} (A \setminus B_n)) = \mu(A \setminus \bigcap_{n=1}^{\infty} B_n).$ Applying μ is upper-continuous, $\lim_{n \to \infty} \mu(B_n) = \mu(\bigcap_{n=1}^{\infty} B_n) = 0$, since μ is zero-additive, from the Theorem 1, then $\lim_{n \to \infty} \mu(A \setminus B_n) = \mu(A).$

(2) $\{A \cup B_n\}$ is descending sequence, $Re(\mu(A)) < \infty$, and $Im(\mu(A)) < \infty$, and exist $Re(\mu(A \cup B_{n_0})) < \infty$ and $Im(\mu(A \cup B_{n_0})) < \infty$, due to μ is upper-continuous,

$$\lim_{n \to \infty} \mu(A \cup B_n) = \mu(\bigcap_{n=1}^{\infty} (A \cup B_n)) = \mu(A \cup (\bigcap_{n=1}^{\infty} B_n)).$$

Since μ is zero-additive, and $\mu(\bigcap_{n=1}^{\infty} B_n) = 0$, so we know

$$\lim_{n \to \infty} \mu(A \cup B_n) = \mu(A)$$

according to Theorem 1.

Definition 2.3 Let (X,F) be measurable space, the mapping $\mu: F \to \hat{C}^+$ is set function, Complex fuzzy measure μ is upper-self-continuous, if for arbitrary A, $B_n \in F$, and $A \cap B_n = \Phi$, $\lim_{n \to \infty} B_n = 0$, then

$$\lim_{n\to\infty}\mu(A\backslash B_n)=\mu(A).$$

Complex fuzzy measure μ is lower-self-continuous, if for arbitrary $A, B_n \in F$ and $B_n \subseteq A$, $\lim_{n \to \infty} B_n = 0$, then $\lim_{n \to \infty} \mu(A \setminus B_n) = \mu(A)$.

Complex fuzzy measure μ is self-continuous, if and only if μ is not only upper-self-continuous but also lower-self-continuous.

Theorem 2.3 Suppose μ is complex Fuzzy measure on (X,F), then

- (1) μ is upper-self-continuous if and only if $\lim_{n \to \infty} \mu(A \cup B_n) = \mu(A)$ if for arbitrary $A, B_n \in F$ and $\lim_{n \to \infty} B_n = 0$.
- (2) μ is lower-self-continuous if and only if $\lim_{n \to \infty} \mu(A \setminus B_n) = \mu(A)$ if for arbitrary $A, B_n \in F$ and $\lim_{n \to \infty} B_n = 0$.

Proof. The necessity is easily proved from the definition.2.3

- (1) Sufficiency: Let $E_n = B_n \setminus A$, we know $\mu(E_n) \le \mu(B_n)$, therefore $E_n \cap A = \varphi$, and $\lim_{n \to \infty} \mu(E_n) = 0$, then $\lim_{n \to \infty} \mu(A \cup E_n) = \mu(A)$, so μ is upper-self-continuous.
- (2) Sufficiency: Let $E_n = B_n \cap A$, we know $\mu(E_n) \le \mu(B_n)$, therefore $E_n \subseteq A$, and $\lim_{n \to \infty} \mu(E_n) = 0$, then $\lim_{n \to \infty} \mu(A \setminus E_n) = \mu(A)$, so μ is lower-self-continuous

Definition 2.4 Let (X, F) be measurable space, the mapping $\mu: F \to \hat{C}^+$ is set function,

- (1) Suppose for arbitrary $\varepsilon_i > 0$, exists $\delta_i = \delta(\varepsilon_i) > 0(i = 1, 2)$, where $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\delta = \delta_1 + i\delta_2$, Complex fuzzy measure μ is uniform-upper-self-continuous, if for arbitrary $A, B \in F$ and $\mu(B) \le \delta$, then $\mu(A \cup B) \le \mu(A) + \varepsilon$.
- (2) Suppose for arbitrary $\varepsilon_i > 0$, exists $\delta_i = \delta(\varepsilon_i) > 0$ (i = 1, 2), where $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\delta = \delta_1 + i\delta_2$, Complex fuzzy measure μ is uniform-lower-self- continuous, if for arbitrary $A, B \in F$ and $\mu(B) \leq \delta$, then $\mu(A) \varepsilon \leq \mu(A \setminus B)$.
- (3) Complex fuzzy measure μ is uniform-self-continuous, if and only if μ is not only uniform-upper-self-continuous but also uniform-lower-self-continuous.

Theorem 2.4 Suppose set function μ is uniform-upper-self-continuous (uniform-lower-self-continuous), then μ is upper-self-continuous (lower-self-continuous).

Proof. It is obvious.

Theorem 2.5 Suppose μ is complex Fuzzy measure on (X,F), The following propositions are equivalence.

- (1) μ is uniform-self-continuous;
- (2) μ is uniform-upper-self-continuous;

(3) μ is uniform-lower-self-continuous.

Proof. (1) \Rightarrow (2) It is obvious.

(2) \Rightarrow (3): Since μ is uniform-upper-self-continuous, so if for arbitrary $\varepsilon_i > 0, \exists \delta_i = \delta(\varepsilon_i) > 0(i = 1, 2)$, where $\varepsilon = \varepsilon_1 + i\varepsilon_2, \delta = \delta_1 + i\delta_2$, and for arbitrary $A', B' \in F, \mu(B') \leq \delta$, then $\mu(A') - \varepsilon \leq \mu(A' \cup B') \leq \mu(A') + \varepsilon$. if for arbitrary $A, B \in F, \mu(B) \leq \delta$, Let $A' = A \setminus B, B' = A \cap B, \mu(B') \leq \mu(B) \leq \delta$,

if $\mu(A \setminus B) - \varepsilon \le \mu(A' \cup B') \le \mu(A \setminus B) + \varepsilon$, then $\mu(A) - \varepsilon \le \mu(A \setminus B) \le \mu(A) + \varepsilon$. It means μ is uniform-lower-self-continuous.

(3) \Rightarrow (1): Since μ is uniform-lower-self-continuous, if for arbitrary

 $\varepsilon_i > 0, \exists \delta_i = \delta(\varepsilon_i) > 0 (i = 1, 2)$, where $\varepsilon = \varepsilon_1 + i\varepsilon_2, \delta = \delta_1 + i\delta_2$, and for arbitrary $A', B' \in F, \mu(B') \leq \delta$, then $\mu(A') - \varepsilon \leq \mu(A' \setminus B') \leq \mu(A') + \varepsilon$. if for arbitrary

 $A, B \in F, \mu(B) \le \delta$, Let $A' = A \cup B, B' = A \cap B, \mu(B') \le \mu(B) \le \delta$, therefore

$$\mu(A' \setminus B') \ge \mu(A') - \varepsilon \ge \mu(A) - \varepsilon.$$

Again let $A'' = (A \cup B) \setminus (A \cap B)$, $B'' = B \setminus A$, then $A'' \setminus B'' = A \setminus B$, and $\mu(B'') \le \mu(B) \le \delta$, so

$$\mu(A'') - \varepsilon \le \mu(A'' \setminus B'') = \mu(A \setminus B) \Rightarrow \mu(A \setminus B) + \varepsilon \le \mu(A) + \varepsilon.$$

Again let A = E, $B = F \setminus E$, then $(A \cup B) \setminus (A \cap B) = E \cup F$, $\mu(B) \le \mu(F) \le \delta$, so $\mu(E) - \varepsilon \le \mu(E \cup F) \le \mu(E) + \varepsilon$. It means μ is uniform-upper-self-continuous. So μ is uniform-self-continuous.

Definition 2.5 Let (X,F) be measurable space, the mapping $\mu:F \to \hat{C}^+$ is set function, If for arbitrary $\{B_n\} \subseteq A$, $B_1 \supseteq B_2 \supseteq \cdots$, if $\exists n_0, \forall n > n_0, Re(\mu(B_n)) < \infty$, $Im(\mu(B_n)) < \infty$ and $\bigcap_{n=1}^{\infty} B_n = \varphi$, there must be $\lim_{n \to \infty} \mu(B_n) = 0$, so μ is called zero-upper-continuous.

Theorem 2.6 μ is nonnegative monotonic ascending set function, and zero-uppercontinuous, Then if μ is upper-self- continuous, then μ is upper- continuous; if μ is limit and lower-self- continuous, then μ is lower- continuous.

Proof. (1) If $\{A_n\} \subseteq F$, $A_1 \supseteq A_2 \supseteq \cdots$, exist $Re(\mu(B_n)) < \infty$, $Im(\mu(B_n)) < \infty$, let $A = \bigcap_{n=1}^{\infty} A_n, B_n = A_n \setminus A \quad (n = 1, 2, \cdots)$, then $B_1 \supseteq B_2 \supseteq \cdots$, and $\bigcap_{n=1}^{\infty} B_n = \varphi$. if for arbitrary

$$n > n_0, Re(\mu(B_n)) \le Re(\mu(B_{n_0})) \le Re(\mu(A_{n_0})) < \infty$$

Im $(\mu(B_n)) \leq \text{Im}(\mu(B_{n_0})) \leq \text{Im}(\mu(A_{n_0})) < \infty$. Since μ is zero-upper-continuous, we know $\lim_{n \to \infty} \mu(B_n) = 0$. Due to $A_n = A \cup B_n$, $A \cap B_n = \varphi$, and μ is upperself-continuous, if $\mu(A_n) = \mu(A \cup B_n)$, then $\mu(A) = \mu(\bigcap_{n=1}^{\infty} A_n)$. So μ is upper-

continuous.

(2)The proof is similar to (1) above.

3 Complex Fuzzy Measurable Function

R denote real set, *C* denote the set of complex number on *R*.

Definition 3.1 [2] Suppose (X,F,μ) is complex Fuzzy measure space, the mapping $\tilde{f}: X \to C$ is called complex Fuzzy measurable function, if for arbitrary $a+bi \in C$, then $\{x \in X \mid Re[\tilde{f}(x)] \ge a, Im[\tilde{f}(x)] \ge b\} \in F$.

Definition 3.2 Suppose (X, F, μ) is complex Fuzzy measure space, $\tilde{f}_n (n = 1, 2, \dots)$, \tilde{f} is complex fuzzy measurable function, for arbitrary $A \in F$,

- (1) $\{\tilde{f}_n\}$ almost everywhere converge to \tilde{f} on A, denote $\tilde{f}_n \xrightarrow{a.e.} \tilde{f}$, if there exists $B \in F$, such that $\mu(B) = 0$, then $\{\tilde{f}_n\}$ with pointwise convergence to \tilde{f} on $A \setminus B$.
- (2) $\{\tilde{f}_n\}$ pseudo-almost everywhere converge to \tilde{f} on A, denote $\tilde{f}_n \stackrel{p.a.e.}{\to} \tilde{f}$, if there exists $B \in F$, such that $\mu(A \setminus B) = \mu(A)$, then $\{\tilde{f}_n\}$ with pointwise convergence to \tilde{f} on $A \setminus B$.
- (3) $\{\tilde{f}_n\}$ almost everywhere uniformly converge to \tilde{f} on A, denote $\tilde{f}_n \xrightarrow{a.e.u.} \tilde{f}$, if there exists $B \in F$, such that $\mu(B) = 0$, then $\{\tilde{f}_n\}$ with pointwise uniform convergence to \tilde{f} on $A \setminus B$.
- (4) $\{\tilde{f}_n\}$ pseudo-almost everywhere uniformly converge to \tilde{f} on A, denote $\tilde{f}_n \xrightarrow{p.a.e.u.}$ \tilde{f} , if there exists $B \in F$, such that $\mu(A \setminus B) = \mu(A)$, then $\{\tilde{f}_n\}$ with pointwise uniform convergence to \tilde{f} on $A \setminus B$.
- (5) $\{\tilde{f}_n\}$ almost uniformly converge to \tilde{f} on A, denote $\tilde{f}_n \xrightarrow{a.u.} \tilde{f}$, if there exists set sequence $\{E_k\}$ on F, such that $\tilde{\mu}(E_k) \to 0$, and for arbitrary k, then $\{\tilde{f}_n\}$ with pointwise uniform convergence to \tilde{f} on $A \setminus E_k$.
- (6) $\{\tilde{f}_n\}$ pseudo-almost uniformly converge to \tilde{f} on A, denote $\tilde{f}_n \xrightarrow{p.a.u.} \tilde{f}$, if there exists set sequence $\{E_k\}$ on F, such that $\mu(A \setminus E_k) \to \mu(A)$, and for arbitrary k, then $\{\tilde{f}_n\}$ with pointwise uniform convergence to \tilde{f} on $A \setminus E_k$.
- (7) $\{\tilde{f}_n\}$ converge in complex fuzzy measure μ to \tilde{f} on A, denote $\tilde{f}_n \xrightarrow{u} \tilde{f}$, if for arbitrary $\varepsilon = \varepsilon_1 + i\varepsilon_2, \varepsilon_1, \varepsilon_2 > 0$, such that

$$\lim_{n \to \infty} \mu(\{x \left| Re \left| \tilde{f}_n - \tilde{f} \right| \ge \varepsilon_1, Im \left| \tilde{f}_n - \tilde{f} \right| \ge \varepsilon_2\} \cap A) = 0.$$

(8) $\{\tilde{f}_n\}$ converge in pseudo complex fuzzy measure $\tilde{\mu}$ to \tilde{f} on A, denote $\tilde{f}_n \xrightarrow{p.u.} \tilde{f}$, if for arbitrary $\varepsilon > 0$, such that

$$\lim_{n\to\infty}\mu(\left\{x\left|Re\left|\tilde{f}_n-\tilde{f}\right|<\varepsilon_1, Im\left|\tilde{f}_n-\tilde{f}\right|<\varepsilon_2\right\}\cap A\right)=\mu(A).$$

Theorem 3.1 Suppose (X,F,μ) is complex Fuzzy measure space, $\tilde{f}_n (n = 1, 2, \dots)$, \tilde{f} is complex fuzzy measurable function, for arbitrary $A \in F$,

(1) $\tilde{f}_n \xrightarrow{a.e.} \tilde{f}$ if and only if $\{\tilde{f}_n\}$ converge to \tilde{f} on $A \setminus E_k$, if there exists set sequence $\{E_k\}$ on F, such that $\mu(E_k) \to 0$, and for arbitrary k.

- (2) $\tilde{f}_n \xrightarrow{p.a.e.} \tilde{f}$ if and only if $\{\tilde{f}_n\}$ converge to \tilde{f} on $A \setminus E_k$, if there exists set sequence $\{E_k\}$ on F, such that $\mu(A \setminus E_k) \to \mu(A)$, and for arbitrary k.
- (3) $\tilde{f}_n \stackrel{a.e.u.}{\to} \tilde{f}$ if and only if $\left| Re(\tilde{f} \tilde{f}_k) \right| < \varepsilon_1$ and $\left| Im(\tilde{f} \tilde{f}_k) \right| < \varepsilon_2$, if there exists set sequence $\{E_k\}$ on F, such that $\mu(E_k) \to 0$, and for arbitrary $\varepsilon_i > 0$, (i = 1, 2), where $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\exists n_0, \forall n > n_0, \forall k, \forall x \in A \setminus E_k$.
- (4) $\tilde{f}_n \xrightarrow{p.a.e.u.} \tilde{f}$ if and only if $\left| Re(\tilde{f} \tilde{f}_k) \right| < \varepsilon_1$ and $\left| Im(\tilde{f} \tilde{f}_k) \right| < \varepsilon_2$, if there exists set sequence $\{E_k\}$ on F, such that $\mu(A \setminus E_k) \rightarrow \mu(A)$, and for arbitrary $\varepsilon_i > 0$, (i = 1, 2), where $\varepsilon = \varepsilon_1 + i\varepsilon_2$, $\exists n_0, \forall n > n_0, \forall k, \forall x \in A \setminus E_k$.

Proof. (1) If $\tilde{f}_n \stackrel{a.e.}{\to} \tilde{f}$, then exists $B \in F$, $\mu(B) = 0$, such that $\tilde{f}_n \to \tilde{f}$ on $A \setminus B$. Let $E_k = B(k = 1, 2, \dots)$, we know $\mu(E_k) \to 0$, and $\{\tilde{f}_n\}$ converge to \tilde{f} on $A \setminus E_k$, for arbitrary k.

Otherwise, if there exists $\{E_k\} \subseteq F, \mu(E_k) \to 0$, such that $\tilde{f}_n \to \tilde{f}$ on $A \setminus E_k$. Let $B_k = \bigcap_{i=1}^k E_i, B = \bigcap_{k=1}^\infty B_k = \bigcap_{k=1}^\infty E_k$, so $\mu(B_k) \le \mu(E_k)$ and $B_1 \supseteq B_2 \supseteq \cdots$. Due to $\mu(E_k) \to 0$, there exists

 $\operatorname{Re}(\mu(B_{k_0})) \leq \operatorname{Re}(\mu(E_{k_0})) < \infty, \text{and } \operatorname{Im}(\mu(B_{k_0})) \leq \operatorname{Im}(\mu(E_{k_0})) < \infty.$ Applying the upper-continuity of μ , we know that $\mu(B) = \lim_{k \to 0} \mu(B_k) = 0$. If for arbitrary $x \in A \setminus B = \bigcup_{k=1}^{\infty} (A \setminus E_k), \exists k_0, x \in A \setminus E_{k_0}$, then $\tilde{f}_n \to \tilde{f}$, therefore $\{\tilde{f}_n\}$ converge to \tilde{f} on $A \setminus B$, denote $\tilde{f}_n \stackrel{a.e.}{\to} \tilde{f}$.

The proof of (2),(3),(4) is similar to (1), we omit here. Inference 3.1 If $\tilde{f}_n \stackrel{a.e.u.}{\to} \tilde{f}$, then $\tilde{f}_n \stackrel{a.u.}{\to} \tilde{f}$; If $\tilde{f}_n \stackrel{p.a.e.u.}{\to} \tilde{f}$, then $\tilde{f}_n \stackrel{p.a.u.}{\to} \tilde{f}$.

Theorem 3.2 Suppose complex Fuzzy measure μ is lower-self- continuity, for $A \in F$, If $\tilde{f}_n \stackrel{a.e.}{\to} \tilde{f}$, then $\tilde{f}_n \stackrel{p.a.e.}{\to} \tilde{f}$. If $\tilde{f}_n \stackrel{a.e.u.}{\to} \tilde{f}$, then $\tilde{f}_n \stackrel{p.a.u.}{\to} \tilde{f}$. If $\tilde{f}_n \stackrel{a.u.}{\to} \tilde{f}$ then $\tilde{f}_n \stackrel{p.a.u.}{\to} \tilde{f}$.

Proof. (1) If $\tilde{f}_n \xrightarrow{a.e.} \tilde{f}$ on A, then there exists $B \in F$, $\mu(B) = 0$, such that $\{\tilde{f}_n\}$ converge to \tilde{f} on $A \setminus B$, therefore $\tilde{f}_n \xrightarrow{p.a.e.} \tilde{f}$ on A.

The proof of (2),(3) is similar to (1), we omit here.

Theorem 3.3 Suppose for arbitrary $A \in F$, and complex fuzzy measurable function \tilde{f} and $\tilde{f}_n (n = 1, 2, \dots)$, if $\tilde{f}_n \stackrel{u.}{\to} \tilde{f}$, then $\tilde{f}_n \stackrel{p.u.}{\to} \tilde{f}$ if and only if complex fuzzy measure μ is lower-self- continuity.

Proof. (necessity) if $\tilde{f}_n \xrightarrow{u} \tilde{f}$, then $\tilde{f}_n \xrightarrow{p.u.} \tilde{f}$, so $\lim_{n \to \infty} \mu(B_n) = 0$, for arbitrary $A \in F$ and $\{B_n\} \subseteq F$ Let

$$\tilde{f}_n(x) = \begin{cases} 1 & x \in B_n \\ 0 & x \notin B_n \end{cases}$$

So

$$\lim_{n \to \infty} \mu(\left\{x \left| \left| \operatorname{Re}(\tilde{f}_n - 0) \right| \ge \varepsilon_1, \left| \operatorname{Im}(\tilde{f}_n - 0) \right| \ge \varepsilon_2 \right\} \cap A) = \lim_{n \to \infty} \mu(B_n) = 0,$$

where for arbitrary $\varepsilon_i > 0$, (i = 1, 2), $\varepsilon = \varepsilon_1 + i\varepsilon_2$. So on A, if $\tilde{f}_n \xrightarrow{u} 0$, then $\tilde{f}_n \xrightarrow{p.u.} 0$.

Suppose for
$$\varepsilon_i < 1$$
, then $\mu(A \setminus B_n) = \mu(\{x \mid |\operatorname{Re}(\tilde{f}_n - 0)| < \varepsilon_1, |\operatorname{Im}(\tilde{f}_n - 0)| < \varepsilon_2\} \cap A) = \mu(A),$

So μ is lower-self- continuity.

(Sufficiency): If $\tilde{f}_n \xrightarrow{u} \tilde{f}$ on \tilde{A} , then $\lim_{n \to \infty} \mu(\{x \mid |Re(\tilde{f}_n - 0)| \ge \varepsilon_1, |Im(\tilde{f}_n - 0)| \ge \varepsilon_2\} \cap A) = 0$, where for arbitrary $\varepsilon_i > 0$, $(i = 1, 2), \varepsilon = \varepsilon_1 + i\varepsilon_2$. Let

$$B_n = \{x \mid \left| Re(\tilde{f}_n - \tilde{f}) \right| \ge \varepsilon_1, \left| Im(\tilde{f}_n - \tilde{f}) \right| \ge \varepsilon_2\} \cap A,$$

then $\{B_n\} \subseteq A$ and $\lim_{n \to \infty} \mu(B_n) = 0$. Due to μ is lower-self- continuity, so

$$\mu(A \cap \{x \mid \left| Re(\tilde{f}_n - \tilde{f}) \right| < \varepsilon_1, \left| Im(\tilde{f}_n - \tilde{f}) \right| < \varepsilon_2\} = \mu(A \setminus B_n) \to \mu(A).$$

Therefore $\tilde{f}_n \xrightarrow{p.u.} \tilde{f}$ on A.

4 Conclusion

On the basis of the concept of complex Fuzzy measurable function in [2], we study its convergence theorem. It builds the certain foundation for the research of complex Fuzzy integral. Provide a strong guarantee for the complex fuzzy integral development, enrichment and development of complex fuzzy Discipline.

Acknowledgments This work is supported by International Science & Technology Cooperation Program of China (2012DFA11270), Hainan International Cooperation Key Project(GJXM201105) and Natural Science Foundation of Hainan Province (No.111007)

References

- 1. Buckley, J.J.: Fuzzy complex numbers. FSS 33, 333-345 (1989)
- Jiqing, Q., Fachao, L., Liangqing, S.: Complex fuzzy measure and complex fuzzy integral. J. Hebei Inst. Chem. Technol Light Ind. 18(1), 1–5 (1997)
- 3. Wenxiu, Z.: An Introduction of Fuzzy Mathematics. Xi'an Jiaotong University Press (1991)
- 4. Congxin, W.: Fuzzy Analysis. pp. 24–28. National Defense Industry Press, Beijing (1991)

- 5. Guangquan, Z.: Fuzzy Limit theory of fuzzy Complex numbers. Fuzzy Sets and Systems 46, 227–235 (1992)
- 6. Shengquan, M., Chun, C.: Fuzzy complex analysis. The Ethnic publishing house, Beijing (2001)
- 7. Jiqing, Q., Ting, S.: Relation on Convergence of Measurable Functions Sequence on Fuzzy Complex Measure Space. Fuzzy Sets and Systems **21**, 92–96 (2007)
- 8. Shengquan, M.: The fundamental theory of fuzzy complex analysis. Science Press, Beijing (2010)