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Abstract In this paper, we define the concept of complex Fuzzy measure, which is
different from the concept of complex Fuzzymeasure in [2], and discuss its properties
and theorems. On the basis of the concept of complex Fuzzy measurable function
in [2], we study its convergence theorem. It builds the certain foundation for the
research of complex Fuzzy integral.
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1 Introduction

In 1990–1991, Buckley [1] proposed the concept of fuzzy complex numbers and
fuzzy complex-valued function. In 1997, Qiu Jiqing [2–5] firstly proposed the con-
cept of the complex fuzzy measure on the basis of classical measure theory method.
Since 2000, According to this issue, Ma shengquan [6] has done some exploratory
work, and made a series of achievement in this field. The theory of fuzzy com-
plex valued measure is an important part of fuzzy complex analysis, which has a
strong background of practical application [7]. For instance it can use in the fuzzy
system identification, fuzzy control, multi-classifier system design and other fields.
The development of theoretical research of fuzzy complex valued measure is slow,
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because it is much more complicated than Fuzzy real-valued measure. The complex
Fuzzy measure which defined in this paper is different from that in paper [2], the
concept of Fuzzy measure was redefined, which distinguished between the real and
imaginary parts in order to facilitate research.

2 Complex Fuzzy Measure

R̂+ denote positive real set, Ĉ+ denote the set of complex number on R̂+ [8].

Definition 2.1 Let X be a nonempty set, F be a σ− algebra, comprising of the subset

of X, the mapping μ:F → Ĉ
+

is set function, satisfying:

(1) μ(∅) = 0;
(2) (monotonicity) If A, B ∈ F and A ⊆ B ,then Re(μ(A)) ≤ Re(μ(B)) and

I m(μ(A)) ≤ I m(μ(B)). Denote μ(A) ≤ μ(B)

(3) if An ∈ F(n = 1, 2, · · · ), A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · then

μ(

∞⋃

n=1

An) = lim
n→∞ μ(An)

(4) if An ∈ F(n = 1, 2, . . .), A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · , and ∃n0 such that

Re(μ(An0)) < ∞, Im(μ(An0)) < ∞ then μ(
∞⋂

n=1
An) = lim

n→∞ μ(An). Then μ

is called as complex Fuzzy measure on F, (X,F,μ) is called as complex Fuzzy
measure space.

Definition 2.2 Fuzzy complex measure μ is said to be zero-additive, if for arbitrary
E, F ∈ F, μ(F) = 0 and E ∩ F = ϕ, then μ(E ∪ F) = μ(E).

Theorem 2.1 (X, F, μ) is complex Fuzzy measure space, The following propositions
are equivalence.

(1) μ is zero-additive ;
(2) since μ(F) = 0, then for arbitrary E, F ∈ F, such that μ(E ∪ F) = μ(E);
(3) since μ(F) = 0, then for arbitrary E, F ∈ F, such that μ(E\F) = μ(E):

Proof. (1)⇒(2):
E ∪ F = E ∪ (F\E), since μ is nonnegative monotony, then for μ(F) = 0, such
that
μ(F\E) ≤ μ(F) = 0, therefore μ(F\E) = 0. Applying the zero-additive of
μ,μ(F\E) = 0 and E ∩ (F\E) = ϕ, then

μ(E ∪ F) = μ(E ∪ (F\E)) = μ(E).

(2)⇒(3):
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Due to E = (E\F) ∪ (E ∩ F), and μ(F) = 0, then μ(E ∩ F) = 0.
We know μ(E) = μ((E\F) ∪ (E ∩ F)) = μ(E\F) from the proposition
(2).(3)⇒(1):
Due to E ∩ F = ϕ, then E = (E ∪ F)\F .
If μ(F) = 0 and E ∩ F = ϕ, we can know

μ(E) = μ((E ∪ F)\F) = μ(E ∪ F)

from the proposition (3).

Theorem 2.2 Suppose μ is complex Fuzzy measure of zero-additive, A ∈ F, there
is a descending sequence of {Bn} ⊂ F, (B1 ⊇ B2 ⊇ · · · ), if μ(Bn) → 0, then

(1) μ(A\Bn) → μ(A);
(2) whereupon Re(μ(A)) < ∞, and Im(μ(A)) < ∞ , and if exists Re(μ(A ∪

Bn0)) < ∞ and Im(μ(A ∪ Bn0)) < ∞ , therefore μ(A ∪ Bn) → μ(A).

Proof. (1) since {A\Bn} is ascending sequence and if μ is lower-continuous, we

can know lim
n→∞ μ(A\Bn) = μ(

∞⋃
n=1

(A\Bn)) = μ(A\
∞⋂

n=1
Bn).

Applying μ is upper-continuous, lim
n→∞ μ(Bn) = μ(

∞⋂
n=1

Bn) = 0, since μ is zero-

additive, from the Theorem 1, then lim
n→∞ μ(A\Bn) = μ(A).

(2) {A ∪ Bn} is descending sequence, Re(μ(A)) < ∞, and I m(μ(A)) < ∞, and
exist Re(μ(A∪Bn0)) < ∞ and I m(μ(A∪Bn0)) < ∞, due toμ is upper-continuous,

lim
n→∞ μ(A ∪ Bn) = μ(

∞⋂

n=1

(A ∪ Bn)) = μ(A ∪ (

∞⋂

n=1

Bn)).

Since μ is zero-additive, and μ(
∞⋂

n=1
Bn) = 0, so we know

lim
n→∞ μ(A ∪ Bn) = μ(A)

according to Theorem 1.

Definition 2.3 Let (X,F) be measurable space, the mapping μ:F → Ĉ+ is set func-
tion, Complex fuzzy measure μ is upper-self-continuous, if for arbitrary A, Bn ∈ F,
and A ∩ Bn = �, lim

n→∞ Bn = 0, then

lim
n→∞ μ(A\Bn) = μ(A).

Complex fuzzy measure μ is lower-self-continuous, if for arbitrary A, Bn ∈ F and
Bn ⊆ A, lim

n→∞ Bn = 0, then lim
n→∞ μ(A\Bn) = μ(A).
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Complex fuzzy measure μ is self-continuous, if and only if μ is not only upper-self-
continuous but also lower-self-continuous.

Theorem 2.3 Suppose μ is complex Fuzzy measure on (X,F), then

(1) μ is upper-self-continuous if and only if lim
n→∞ μ(A∪ Bn) = μ(A) if for arbitrary

A, Bn ∈ F and lim
n→∞ Bn = 0.

(2) μ is lower-self-continuous if and only if lim
n→∞ μ(A\Bn) = μ(A) if for arbitrary

A, Bn ∈ F and lim
n→∞ Bn = 0.

Proof. The necessity is easily proved from the definition.2.3

(1) Sufficiency: Let En = Bn\A, we know μ(En) ≤ μ(Bn), therefore En ∩ A =
ϕ, and lim

n→∞ μ(En) = 0, then lim
n→∞ μ(A ∪ En) = μ(A), so μ is upper-self-

continuous.
(2) Sufficiency: Let En = Bn ∩ A, we knowμ(En) ≤ μ(Bn), therefore En ⊆ A, and

lim
n→∞ μ(En) = 0, then lim

n→∞ μ(A\En) = μ(A), so μ is lower-self-continuous

Definition 2.4 Let (X, F) be measurable space, the mapping μ:F → Ĉ+ is set
function,

(1) Suppose for arbitrary εi > 0, exists δi = δ(εi ) > 0(i = 1, 2),
where ε = ε1 + iε2, δ = δ1 + iδ2,
Complex fuzzy measure μ is uniform-upper-self-continuous, if for arbitrary
A, B ∈ F and μ(B) ≤ δ , then μ(A ∪ B) ≤ μ(A) + ε.

(2) Suppose for arbitrary εi > 0, exists δi = δ(εi ) > 0(i = 1, 2), where ε = ε1 +
iε2, δ = δ1 + iδ2, Complex fuzzy measure μ is uniform-lower-self- continuous,
if for arbitrary A, B ∈ F and μ(B) ≤ δ, then μ(A) − ε ≤ μ(A\B).

(3) Complex fuzzy measure μ is uniform-self-continuous, if and only if μ is not only
uniform-upper-self-continuous but also uniform-lower-self-continuous.

Theorem 2.4 Suppose set function μ is uniform-upper-self-continuous (uniform-
lower-self-continuous), then μ is upper-self-continuous (lower-self- continuous).

Proof. It is obvious.

Theorem 2.5 Suppose μ is complex Fuzzy measure on (X,F), The following propo-
sitions are equivalence.

(1) μ is uniform-self-continuous;
(2) μ is uniform-upper-self-continuous;
(3) μ is uniform-lower-self-continuous.

Proof. (1) ⇒ (2) It is obvious.
(2) ⇒ (3): Since μ is uniform-upper-self-continuous, so if for arbitrary εi >

0, ∃δi = δ(εi ) > 0(i = 1, 2), where ε = ε1 + iε2, δ = δ1 + iδ2, and for arbi-
trary A′, B ′ ∈ F, μ(B ′) ≤ δ,then μ(A′) − ε ≤ μ(A′ ∪ B ′) ≤ μ(A′) + ε. if for
arbitrary A, B ∈ F, μ(B) ≤ δ, LetA′ = A\B, B ′ = A ∩ B, μ(B ′) ≤ μ(B) ≤ δ,
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ifμ(A\B)−ε ≤ μ(A′ ∪ B ′) ≤ μ(A\B)+ε, thenμ(A)−ε ≤ μ(A\B) ≤ μ(A)+ε.
It means μ is uniform-lower-self-continuous.
(3) ⇒ (1): Since μ is uniform-lower-self-continuous, if for arbitrary
εi > 0, ∃δi = δ(εi ) > 0(i = 1, 2), where ε = ε1 + iε2, δ = δ1 + iδ2, and for
arbitrary A′, B ′ ∈ F, μ(B ′) ≤ δ, then μ(A′) − ε ≤ μ(A′\B ′) ≤ μ(A′) + ε. if for
arbitrary
A, B ∈ F, μ(B) ≤ δ, LetA′ = A ∪ B, B ′ = A ∩ B, μ(B ′) ≤ μ(B) ≤ δ,

therefore
μ(A′\B′) ≥ μ(A′) − ε ≥ μ(A) − ε.

Again let A′′ = (A ∪ B)\(A ∩ B), B ′′ = B\A, then A′′\B ′′ = A\B, and μ(B ′′) ≤
μ(B) ≤ δ, so

μ(A′′) − ε ≤ μ(A′′\B ′′) = μ(A\B) ⇒ μ(A\B) + ε ≤ μ(A) + ε.

Again let A = E, B = F\E , then (A ∪ B)\(A ∩ B) = E ∪ F, μ(B) ≤ μ(F) ≤ δ,

soμ(E)−ε ≤ μ(E ∪ F) ≤ μ(E)+ε. It meansμ is uniform-upper-self-continuous.
So μ is uniform-self-continuous.

Definition 2.5 Let (X,F) be measurable space, the mapping μ:F → Ĉ+ is set func-
tion, If for arbitrary {Bn} ⊆ A, B1 ⊇ B2 ⊇ · · · , if ∃n0,∀n > n0, Re(μ(Bn)) < ∞,

I m(μ(Bn)) < ∞ and
∞⋂

n=1
Bn = ϕ, there must be lim

n→∞ μ(Bn) = 0, so μ is called

zero-upper-continuous.

Theorem 2.6 μ is nonnegative monotonic ascending set function, and zero-upper-
continuous, Then if μ is upper-self- continuous, then μ is upper- continuous;
if μ is limit and lower-self- continuous, then μ is lower- continuous.

Proof. (1) If {An} ⊆ F, A1 ⊇ A2 ⊇ · · · , exist Re(μ(Bn)) < ∞, I m(μ(Bn)) < ∞,
let

A =
∞⋂

n=1
An, Bn = An\A (n = 1, 2, · · · ),then B1 ⊇ B2 ⊇ · · · , and

∞⋂
n=1

Bn = ϕ.if

for
arbitrary

n > n0, Re(μ(Bn)) ≤ Re(μ(Bn0)) ≤ Re(μ(An0)) < ∞,

Im(μ(Bn)) ≤ Im(μ(Bn0)) ≤ Im(μ(An0)) < ∞. Since μ is zero-upper-continuous,
we know lim

n→∞ μ(Bn) = 0. Due to An = A ∪ Bn, A ∩ Bn = ϕ, and μ is upper-

self-continuous, if μ(An) = μ(A ∪ Bn), then μ(A) = μ(
∞⋂

n=1
An).So μ is upper-

continuous.
(2)The proof is similar to (1) above.
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3 Complex Fuzzy Measurable Function

R denote real set, C denote the set of complex number on R.

Definition 3.1 [2] Suppose (X,F,μ) is complex Fuzzy measure space, the mapping
f̃ : X → C is called complex Fuzzy measurable function, if for arbitrary a+bi ∈ C,

then {x ∈ X
∣∣∣Re[ f̃ (x)] ≥ a, I m[ f̃ (x)] ≥ b} ∈ F.

Definition 3.2 Suppose (X,F,μ) is complex Fuzzy measure space, f̃n(n = 1, 2, · · · ),
f̃ is complex fuzzy measurable function, for arbitrary A ∈ F,

(1) { f̃n} almost everywhere converge to f̃ on A, denote f̃n
a.e.→ f̃ , if there exists B ∈ F,

such that μ(B) = 0 , then { f̃n} with pointwise convergence to f̃ on A\B.

(2) { f̃n} pseudo-almost everywhere converge to f̃ on A, denote f̃n
p.a.e.→ f̃ , if there

exists B ∈ F, such that μ(A\B) = μ(A), then { f̃n} with pointwise convergence
to f̃ on A\B.

(3) { f̃n} almost everywhere uniformly converge to f̃ on A, denote f̃n
a.e.u.→ f̃ , if there

exists B ∈ F, such that μ(B) = 0, then { f̃n} with pointwise uniform convergence
to f̃ on A\B.

(4) { f̃n} pseudo-almost everywhere uniformly converge to f̃ on A, denote f̃n
p.a.e.u.→

f̃ , if there exists B ∈ F, such that μ(A\B) = μ(A), then { f̃n} with pointwise
uniform convergence to f̃ on A\B.

(5) { f̃n} almost uniformly converge to f̃ on A, denote f̃n
a.u.→ f̃ , if there exists set

sequence{Ek} on F, such that μ̃(Ek) → 0 ,and for arbitrary k, then { f̃n} with
pointwise uniform convergence to f̃ on A\Ek.

(6) { f̃n} pseudo-almost uniformly converge to f̃ on A, denote f̃n
p.a.u.→ f̃ , if there

exists set sequence {Ek} on F, such that μ(A\Ek) → μ(A), and for arbitrary
k, then { f̃n} with pointwise uniform convergence to f̃ on A\Ek.

(7) { f̃n} converge in complex fuzzy measure μ to f̃ on A, denote f̃n
u.→ f̃ , if for

arbitrary ε = ε1 + iε2, ε1, ε2 > 0, such that

lim
n→∞ μ({x

∣∣∣Re
∣∣∣ f̃n − f̃

∣∣∣ ≥ ε1, I m
∣∣∣ f̃n − f̃

∣∣∣ ≥ ε2} ∩ A) = 0.

(8) { f̃n} converge in pseudo complex fuzzy measure μ̃ to f̃ on A, denote f̃n
p.u.→ f̃ ,

if for arbitrary ε > 0, such that

lim
n→∞ μ({x

∣∣∣Re
∣∣∣ f̃n − f̃

∣∣∣ < ε1, I m
∣∣∣ f̃n − f̃

∣∣∣ < ε2} ∩ A) = μ(A).

Theorem 3.1 Suppose (X,F,μ) is complex Fuzzy measure space, f̃n(n = 1, 2, · · · ),
f̃ is complex fuzzy measurable function, for arbitrary A ∈ F,

(1) f̃n
a.e.→ f̃ if and only if { f̃n} converge to f̃ on A\Ek, if there exists set sequence

{Ek} on F, such that μ(Ek) → 0, and for arbitrary k.
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(2) f̃n
p.a.e.→ f̃ if and only if { f̃n} converge to f̃ on A\Ek, if there exists set sequence

{Ek} on F, such that μ(A\Ek) → μ(A), and for arbitrary k.

(3) f̃n
a.e.u.→ f̃ if and only if

∣∣∣Re( f̃ − f̃k)

∣∣∣ < ε1 and
∣∣∣I m( f̃ − f̃k)

∣∣∣ < ε2, if there

exists set sequence {Ek} on F, such that μ(Ek) → 0, and for arbitrary εi >

0, (i = 1, 2), where ε = ε1 + iε2, ∃n0,∀n > n0,∀k,∀x ∈ A\Ek.

(4) f̃n
p.a.e.u.→ f̃ if and only if

∣∣∣Re( f̃ − f̃k)

∣∣∣ < ε1 and
∣∣∣I m( f̃ − f̃k)

∣∣∣ < ε2, if there

exists set sequence {Ek} on F, such that μ(A\Ek) → μ(A), and for arbitrary
εi > 0, (i = 1, 2), where ε = ε1 + iε2, ∃n0,∀n > n0,∀k,∀x ∈ A\Ek.

Proof. (1) If f̃n
a.e.→ f̃ , then exists B ∈F, μ(B) = 0, such that f̃n → f̃ on A\B. Let

Ek = B(k = 1, 2, · · · ), we know μ(Ek) → 0, and { f̃n} converge to f̃ on A\Ek , for
arbitrary k.
Otherwise, if there exists {Ek} ⊆F,μ(Ek) → 0, such that f̃n → f̃ on A\Ek . Let

Bk =
k⋂

i=1
Ei , B =

∞⋂
k=1

Bk =
∞⋂

k=1
Ek , so μ(Bk) ≤ μ(Ek) and B1 ⊇ B2 ⊇ · · · . Due

to μ(Ek) → 0, there exists
Re(μ(Bk0)) ≤ Re(μ(Ek0)) < ∞,and Im(μ(Bk0)) ≤ Im(μ(Ek0)) < ∞.

Applying the upper-continuity of μ, we know that μ(B) = lim
k→0

μ(Bk) = 0. If for

arbitrary x ∈ A\B =
∞⋃

k=1
(A\Ek), ∃k0, x ∈ A\Ek0 , then f̃n → f̃ , therefore { f̃n}

converge to f̃ on A\B, denote f̃n
a.e.→ f̃ .

The proof of (2),(3),(4) is similar to (1), we omit here.

Inference 3.1 If f̃n
a.e.u.→ f̃ , then f̃n

a.u.→ f̃ ;If f̃n
p.a.e.u.→ f̃ , then f̃n

p.a.u.→ f̃ .

Theorem 3.2 Suppose complex Fuzzy measure μ is lower-self- continuity, for A ∈F,

If f̃n
a.e.→ f̃ , then f̃n

p.a.e.→ f̃ .

If f̃n
a.e.u.→ f̃ , then f̃n

p.a.e.u.→ f̃ .

If f̃n
a.u.→ f̃ then f̃n

p.a.u.→ f̃ .

Proof. (1) If f̃n
a.e.→ f̃ on A, then there exists B ∈ F, μ(B) = 0, such that { f̃n}

converge to f̃ on A\B, therefore f̃n
p.a.e.→ f̃ on A.

The proof of (2),(3) is similar to (1), we omit here.

Theorem 3.3 Suppose for arbitrary A ∈F, and complex fuzzy measurable function

f̃ and f̃n(n = 1, 2, · · · ), if f̃n
u.→ f̃ , then f̃n

p.u.→ f̃ if and only if complex fuzzy
measure μ is lower-self- continuity.

Proof. (necessity) if f̃n
u.→ f̃ , then f̃n

p.u.→ f̃ , so lim
n→∞ μ(Bn) = 0, for arbitrary A ∈F

and {Bn} ⊆F
Let

f̃n(x) =
{
1 x ∈ Bn

0 x /∈ Bn
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So

lim
n→∞ μ({x

∣∣∣
∣∣∣Re( f̃n − 0)

∣∣∣ ≥ ε1,

∣∣∣Im( f̃n − 0)
∣∣∣ ≥ ε2} ∩ A) = lim

n→∞ μ(Bn) = 0,

where for arbitrary εi > 0, (i = 1, 2), ε = ε1 + iε2. So on A, if f̃n
u.→ 0, then

f̃n
p.u.→ 0.

Suppose for εi < 1, then μ(A\Bn) = μ({x
∣∣∣
∣∣∣Re( f̃n − 0)

∣∣∣ < ε1,

∣∣∣Im( f̃n − 0)
∣∣∣ <

ε2} ∩ A) = μ(A),
So μ is lower-self- continuity.

(Sufficiency): If f̃n
u.→ f̃ onA, then lim

n→∞ μ({x
∣∣∣
∣∣∣Re( f̃n − 0)

∣∣∣ ≥ ε1,

∣∣∣I m( f̃n − 0)
∣∣∣ ≥

ε2} ∩ A) = 0, where for arbitrary εi > 0, (i = 1, 2), ε = ε1 + iε2. Let

Bn = {x
∣∣∣
∣∣∣Re( f̃n − f̃ )

∣∣∣ ≥ ε1,

∣∣∣I m( f̃n − f̃ )

∣∣∣ ≥ ε2} ∩ A,

then {Bn} ⊆ A and lim
n→∞ μ(Bn) = 0. Due to μ is lower-self- continuity, so

μ(A ∩ {x
∣∣∣
∣∣∣Re( f̃n − f̃ )

∣∣∣ < ε1,

∣∣∣I m( f̃n − f̃ )

∣∣∣ < ε2}) = μ(A\Bn) → μ(A).

Therefore f̃n
p.u.→ f̃ on A.

4 Conclusion

On the basis of the concept of complex Fuzzy measurable function in [2], we study
its convergence theorem. It builds the certain foundation for the research of complex
Fuzzy integral. Provide a strong guarantee for the complex fuzzy integral develop-
ment, enrichment and development of complex fuzzy Discipline.
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