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Abstract In Wu Fuzzy Systems and Mathematics 3:94–99, 2012, the author intro-
duced concepts of α-remote neighborhood mapping and α-quasi uniform, and
obtained many good results in α-quasi uniform spaces. This chapter will further
investigate properties of α-remote neighborhood mapping, and give some charac-
terizations of α-quasi uniforms. Based on this, this chapter also introduces concept
of α-P.Q. metric, and establishes the relations between α-quasi uniforms and α-P.Q.
metrics.
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1 Introduction

Theory of quasi-uniformity in completely distributive lattices was firstly introduced
by Erceg [1] and Hutton [2]. Then it was developed into various forms and was
extended into different topological spaces [3–9]. In [10], the author introduced the
concept of α-quasi uniform in α-layer order-preserving operator spaces, and revealed
the relations between α-layer topological spaces and α-quasi uniform spaces. In this
chapter, firstly, we further study properties of α-remote neighborhood mappings.
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Then we discuss some characterizations of α-quasi uniformities. Secondly, we intro-
duce the concept of α-P.Q. metrics, and establish the relations between α-quasi
uniforms and α-P.Q. metrics.

2 Preliminaries

In this chapter, X, Y will always denote nonempty crisp sets, Amapping A : X → L
is called an L-fuzzy set. L X is the set of all L-fuzzy sets on X . An element e ∈ L
is called an irreducible element in L , if p ∨ q = e implies p = e or q = e, where
p, q ∈ L . The set of all nonzero irreducible elements in L will be denoted by M(L).
If x ∈ X , α ∈ M(L), then xα is called a molecule in L X . The set of all molecules in
L X is denoted by M∗(L X ). If A ∈ L X , α ∈ M(L), take A[α] = {x ∈ X | A(x) ≥ α}
[3] and Aα = ∨{xα | xα �≤ A} [11]. It is easy to check (A[α])′ = Aα[α].

Let (L X , δ) be an L-fuzzy topological space, α ∈ M(L). ∀A ∈ L X , Dα(A) =
∧{G ∈ δ′ | G[α] ⊃ A[α]}. Then the operator Dα is a α-closure operator of
some co-topology on L X , denoted by Dα(δ). We called α-layer topology. The pair
(L X , Dα(δ)) is called α-layer co-topological space [11]. An α-layer topological
space(L X , Dα(δ)) is called an α-CI I space, if there is a countable baseBα of Dα(δ).

A mapping Fα : L X → LY is called an α-mapping, if Fα(A)[α] = Fα(B)[α]
whenever A[α] = B[α], and Fα(A) = 0X whenever A[α] = ∅. The mapping F−1

α :
LY → L X is called the reverse mapping of Fα , if for each B ∈ LY , F−1

α (B) =
∨{A ∈ L X | Fα(A)[α] ⊂ B[α]}. Clearly, F−1

α is also an α-mapping.
An α-mapping Fα : L X → LY is called an α-order-preserving homomorphism

(briefly α-oph), iff both Fα and F−1
α are α-union preserving mappings.

An α-mapping Fα : L X → LY is called an α-Symmetric mapping, if for every
A, B ∈ L X , we have

∃C[α] �⊂ Aα[α], B[α] �⊂ Fα(C)[α] ⇔ ∃D[α] �⊂ Bα[α], A[α] �⊂ Fα(D)[α].

An α-mapping fα : L X → L X is called an α-remote neighborhood mapping, if
for each A ∈ L X with A[α] �= ∅, we have A[α] �⊂ fα(A)[α]. The set of all α-remote
neighborhood mappings is denoted by Fα(L X ), (briefly byFα).

For fα, gα ∈ Fα , let’s define

(1) fα ≤ gα ⇔ ∀A ∈ L X , fα(A)[α] ⊂ gα(A)[α].
(2) ( fα ∨ gα)(A) = fα(A) ∨ gα(A).
(3) ( fα � gα)(A) = ∧{ fα(B) | ∃B ∈ L X , B[α] �⊂ gα(A)[α]}.

An non-empty subfamilyDα ⊂ Fα is called an α-quasi-uniform, ifDα satisfies:
(α-U1) ∀ fα ∈ Dα, gα ∈ Fα with fα ≤ gα , then gα ∈ Dα .

(α-U2) ∀ fα, gα ∈ Dα implies fα ∨ gα ∈ Dα .
(α-U3) ∀ fα ∈ Dα , then ∃gα ∈ Dα , such that gα � gα ≥ fα .
(L X ,Dα) is called an α-quasi-uniform space. A subset Bα ⊂ Dα is called a base
of Dα , if ∀ fα ∈ Dα , there is gα ∈ Bα , such that fα ≤ gα . A subset Aα ⊂ Dα is
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called a subbase of Dα , if all of finite unions of the elements inAα consist a base of
Dα . An α-quasi-uniform Dα is called an α-uniform, if Dα possesses a base whose
elements are α-symmetric. Usually, we call this base α-symmetric base.

In [10], the author discussed the relation between an α-quasi uniform space and
an α-layer co-topological space as following:

Let Dα be an α-quasi uniform on L X . ∀A ∈ L X , Let’s take cα(A) = ∨{B ∈
L X | ∀ fα ∈ Dα, A[α] �⊂ fα(B)[α]}. Then cα is an α-closure operator of some
L-fuzzy co-topology, which is denoted by ηα(Dα). Each α-layer topological space
(L X , Dα(δ)) can be α-quasi uniformitale, i.e., there is an α-quasi uniform Dα , such
that Dα(δ) = ηα(Dα).

Other definitions and notes not mentioned here can be seen in [12].

3 Properties of α-Remote Neighborhood Mappings

Theorem 3.1 Let fα, gα ∈ Fα . Then

(1) fα ∨ gα ∈ Fα , fα � gα ∈ Fα .
(2) fα � gα ≤ fα, fα � gα ≤ gα .
(3) ( fα � gα) ∨ hα = ( fα ∨ hα) � (gα ∨ hα),

( fα ∨ gα) � hα = ( fα � hα) ∨ (gα � hα).

Theorem 3.2 Let fα ∈ Fα . If for each A ∈ L X ,

f ∇
α (A) = ∧{ fα(B) | A[α] ⊂

⋃

G[α] �⊂Bα[α]

fα(G)α[α]},

and
f �
α (A) = ∧{ fα(B) |

⋃

G[α] �⊂Bα[α]

fα(G)α[α] �⊂ fα(A)[α]}.

Then

(1) f ∇
α , f �

α ∈ Fα .
(2) f �

α ≤ f ∇
α ≤ fα .

(3) f �
α (A) = ∧{ f ∇

α (B) | B[α] �⊂ fα(A)[α]} = ( f ∇
α � fα)(A).

(4) f ∇
α is α-Symmetric.

Proof (1) By A[α] ⊂ ⋃
G[α] �⊂Aα[α]

fα(G)α[α], we have A[α] �⊂ f ∇
α (A)[α]. Thus f ∇

α ∈
Fα . Again by A[α] �⊂ fα(A)[α], we get

⋃
G[α] �⊂Aα[α]

fα(G)α[α] �⊂ fα(A)[α]. Therefore,

f �
α ∈ Fα .
(2) The proof is obvious.
(3) For each B ∈ L X ,
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⋃

G[α] �⊂Bα[α]

fα(G)α[α] �⊂ fα(B)[α] ⇔ ∃D[α] ⊂
⋃

G[α] �⊂Aα[α]

fα(G)α[α], D[α] �⊂ fα(B)[α]

⇔ ∃D[α] ⊂
⋃

G[α] �⊂Bα[α]

fα(G)α[α], D[α] �⊂ fα(B)[α].

So
f �
α (A) = ∧{ f ∇

α (D) | D[α] �⊂ fα(D)[α]} = ( f ∇
α � fα)(A).

(4) ∀D, E ∈ L X . If there is A[α] �⊂ Dα[α], such that

E[α] �⊂ f ∇
α (A)[α] = ∩{ fα(B)[α] | A[α] ⊂

⋃

G[α] �⊂Bα[α]

fα(G)α[α]}.

Then there is B ∈ L X , satisfying E[α] �⊂ fα(B)[α] and A[α] ⊂ ⋃
G[α] �⊂(Bα[α]

fα(G)α[α].

Clearly,
⋃

G[α] �⊂Bα[α]
fα(G)α[α] �⊂ Dα[α], i.e., D[α] �⊂ ⋂

G[α] �⊂Bα[α]
fα(G)[α]. Thus, there is

C[α] �⊂ Bα[α], such that D[α] �⊂ fα(C)[α]. Conclusively, we have

D[α] ⊂ fα(B)α[α] ⊂
⋃

G[α] �⊂Bα[α]

fα(G)α[α].

and
D[α] �⊂ ∩{ fα(C)[α] | D[α] ⊂

⋃

H[α] �⊂Cα[α]

fα(H)α[α]} = f ∇
α (D)[α].

Therefore, f ∇
α is α-Symmetric.

Theorem 3.3 Let fα be an α-Symmetric remote neighborhood mapping, then

(1) C[α] �⊂ fα(A)[α] ⇒ A[α] ⊂ ⋃
D[α] �⊂Cα[α]

fα(D)α[α].

(2) A[α] ⊂ ⋃
D[α] �⊂Cα[α]

fα(D)α[α] ⇒ C[α] �⊂ fα(A)[α].

Proof (1) Since fα is anα-Symmetricmapping. ∀D[α] �⊂ Aα[α], there is B[α] �⊂ Cα[α],
satisfying D[α] �⊂ fα(B)[α]. Therefore,

Aα[α] ⊃
⋂

B[α] �⊂Cα[α]

fα(B)[α], i.e., A[α] ⊂
⋃

D[α] �⊂Cα[α]

fα(D)α[α].

(2) By A[α] ⊂ ⋃
D[α] �⊂Cα[α]

fα(D)α[α], we have Aα[α] ⊃ ⋂
D[α] �⊂Cα[α]

fα(D)[α]. So ∀x �∈
Aα[α], there is D[α] �⊂ Cα[α], such that x �∈ fα(D)[α]. Since fα is α-Symmetric.
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There is Bx[α] �⊂ xα[α], such that C[α] �⊂ fα(Bx )[α]. Take E = ∨{Bx | x �∈ Aα[α]}, then
x �⊂ Eα[α]. This implies Eα[α] ⊂ Aα[α], i.e., A[α] ⊂ E[α]. Furthermore, we can conclude
C[α] �⊂ fα(A)[α]. Otherwise, ifC[α] ⊂ fα(A)[α] ⊂ fα(E)[α], then it contradicts with
the statement: for each Bx ≤ E, C[α] �⊂ fα(Bx )[α].

Theorem 3.4 Let fα ∈ Fα . Then

( f ∇
α )∇α ≤ f ∇

α � f ∇
α ≤ f �

α ≤ fα � fα.

Proof ∀A ∈ L X ,

( f ∇
α )∇α (A) = ∧{ f ∇

α (B) | A[α] ⊂
⋃

G[α] �⊂Bα[α]

f ∇
α (G)α[α]}

≤ ∧{ f ∇
α (C) | C[α] �⊂ f ∇

α (A)[α]}
= ( f ∇

α � f ∇
α )(A).

By Theorem 2 (2), f ∇
α ≤ fα , we have

( f ∇
α � f ∇

α )(A) = ∧{ f ∇
α (C) | C[α] �⊂ f ∇

α (A)[α]}
≤ ∧{ f ∇

α (C) | C[α] �⊂ fα(A)[α]}
= f �

α (A).

Therefore

f �
α (A) = ∧{ f ∇

α (C) | C[α] �⊂ fα(A)[α]} ≤ ∧{ fα(C) | C[α] �⊂ fα(A)[α]} = ( fα � fα)(A).

Theorem 3.5 Let fα ∈ Fα . Then

(1) f ∇
α ≤ fα � fα .

(2) fα � fα � fα = f �
α .

Proof (1) By Theorem 2, we have

f ∇
α (A) = ∧{ fα(B) | A[α] ⊂

⋃

G[α] �⊂Bα[α]

fα(G)α[α]}

≤ ∧{ fα(B) | A[α] �⊂ fα(A)[α]}
= fα � fα(A).

(2) By Theorem 3 (2), we have
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⋃

D[α] �⊂Cα[α]

fα(D)α[α] �⊂ fα(A)[α] ⇒ ∃B[α] ⊂
⋃

D[α] �⊂Cα[α]

fα(D)α[α], B[α] �⊂ fα(A)[α]

⇒ ∃B[α] �⊂ fα(A)[α], C[α] �⊂ fα(B)[α]
⇒ C[α] �⊂ fα � fα(A)[α].

This shows fα � fα � fα ≤ f �
α . On the other hand, by Theorem 2 (2) and (1) above,

it is easy to find f �
α ≤ f ∇

α � fα ≤ fα � fα � fα . Therefore, (2) holds.

4 Characterizations of α-Quasi Uniformities

Theorem 4.1 An non-empty subfamily Dα ⊂ Fα is an α-uniform, iff Dα satisfies:

(1) fα ∈ Dα, gα ∈ Fα with fα ≤ gα , then gα ∈ Dα .
(2) fα, gα ∈ Dα implies fα ∨ gα ∈ Dα .
(3) fα ∈ Dα , then ∃gα ∈ Dα , such that g�

α ≥ fα .

Proof Necessity. SinceDα is an α-uniform, (1) and (2) hold. Furthermore, ifBα ⊂
Dα is an α-symmetric base. So for every fα ∈ Dα , there is gα ∈ Bα , such that
gα �gα �gα �gα ≥ fα . By Theorem 5 (2), g�

α = gα �gα �gα ≥ gα �gα �gα �gα ≥
fα .
Sufficiency. IfBα = {g∇

α | gα ∈ Dα}. For every fα ∈ Dα , there is gα ∈ Dα , such
that g�

α ≥ fα . By Theorem 4, gα�gα ≥ g�
α ≥ fα . ThenDα is anα-quasi-uniform. By

Theorem 2 (2)and (4), we know g∇
α ≥ g�

α ≥ fα . This shows Bα is an α-symmetric
base of Dα . Therefore Dα is an α-uniform.

Theorem 4.2 An non-empty subfamily Dα ⊂ Fα is an α-uniform, iff Dα satisfies:

(1) fα ∈ Dα, gα ∈ Fα with fα ≤ gα , then gα ∈ Dα .
(2) fα, gα ∈ Dα implies fα ∨ gα ∈ Dα .
(3) fα ∈ Dα , then ∃gα ∈ Dα , such that g∇

α ≥ fα .

Proof Necessity. Since Dα is an α-uniform, (1) and (2) hold. By Theorem 6, For
every fα ∈ Dα , there is gα ∈ Dα , such that g�

α ≥ fα . So according to Theorem 2
(2), g∇

α ≥ g�
α ≥ fα . Thus (3) holds.

Sufficiency. If Bα = {g∇
α | gα ∈ Dα}. By (3), For every fα ∈ Dα , there is

gα ∈ Dα , such that g∇
α ≥ fα . Again, there is hα ∈ Dα , such that h∇

α ≥ gα . By
Theorem 4, we get

hα � hα ≥ h∇
α � h∇

α ≥ (h∇
α )∇α ≥ g∇

α ≥ fα.

SoBα is an α-symmetric base of Dα . Therefore, Dα is an α-uniform.
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5 α-P.Q. Metric and its Properties

A binary mapping dα : L X × L X → [0,+∞) is called an α-mapping, if
∀(A, B), (C, D) ∈ L X × L X satisfying A[α] = C[α] and B[α] = D[α], then
dα(A, B) = dα(A, B).

Definition 5.1 An α-mapping dα : L X × L X → [0,+∞) is called an α-P.Q metric
on L X , if

(α-M1) dα(A, A) = 0.
(α-M2) dα(A, C) ≤ dα(A, B) + dα(B, C).
(α-M3) dα(A, B) = ∧

C[α]⊂B[α]
dα(A, C).

Theorem 5.1 Let dα be an α-P.Q. metrics on L X . ∀r ∈ (0,+∞), a mapping Pr :
L X → L X is defined by ∀A ∈ L X ,

Pr
α (A) = ∨{B ∈ L X | dα(A, B) ≥ r}.

Then

(1) Pr
α is α-symmetric mapping.

(2) ∀A, B ∈ L X , B[α] ⊂ Pr
α (A)[α] ⇔ dα(A, B) ≥ r .

(3) ∀A ∈ L X , r > 0, A[α] �⊂ Pr
α (A)[α].

(4) ∀r, s ∈ (0,∞), Pr
α � Ps

α ≥ Pr+s
α .

(5) ∀A ∈ L X , r > 0, Pr
α (A)[α] = ⋂

s<r
Ps

α(A)[α].

(6) ∀A ∈ L X ,
⋂

r>0
Ps

α(A)[α] = ∅.

Proof Since dα is an α-mapping, (1), (5) and (6) are easy.
(2) Clearly, dα(A, B) ≥ r ⇒ B[α] ⊂ Pr

α (A)[α]. Conversely. ∀x ∈ B[α], ∃x ∈
Dx ∈ L X , such that dα(A, Dx ) ≥ r . So dα(A, {xα}) ≥ dα(A, Dx ) ≥ r . Thereby
dα(A, B) = ∧

x∈B[α]
dα(A, {xα}) ≥ r .

(3) Suppose A[α] ⊂ Pr
α (A)[α]. By (2),wegetdα(A, A) ≥ r . This is a contradiction

with (α-M1).
(4)∀A, B ∈ L X , if B[α] �⊂ Pr

α �Ps
α(A)[α], then there is D ∈ L X , such that D[α] �⊂

Ps
α(A)[α] and B[α] �⊂ Pr

α (D)[α]. By (2), we have dα(A, D) < s, dα(D, B) < r . Then
by (α-M2), we gain dα(A, B) < r + s. Therefore B[α] �⊂ Pr+s

α (A)[α]. This means
Pr

α � Ps
α ≥ Pr+s

α .

Theorem 5.2 If a family of α-mappings {Pr
α | Pr : L X → L X , r > 0} satisfies the

conditions (2)–(5) in Theorem 8. For each A, B ∈ L X , let’s denote

dα(A, B) = ∧{r | B[α] �⊂ Pr
α (A)[α]}.

Then
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(1) dα(A, B) < r ⇔ B[α] �⊂ Pr
α (A)[α].

(2) dα is α-P.Q. metric on L X .

Proof (1) By Theorem 8 (2),(5), we have

dα(A, B) < r ⇔ ∃s < r, B[α] �⊂ Ps
α(A)[α] ⇔ B[α] �⊂ Pr

α (A)[α].

(2) ∀A, B ∈ L X , r, s > 0, if dα(A, B) > r + s, then

B[α] ⊂ Pr+s
α (A)[α] ⊂ (Pr

α � Ps
α(A))[α].

Thus ∀C ∈ L X , we have C[α] �⊂ Ps
α(A)[α] and B[α] �⊂ Pr

α (C)[α]. this implies
dα(A, C) > s, and dα(A, B) > r . Hence dα(A, B) + dα(A, C) > r + s. Conse-
quently, we obtain dα(A, B) + dα(A, C) ≥ dα(A, B).

Theorem 5.3 An α-mapping dα : L X ×L X → [0,+∞) satisfies (α−M1),(α−M2)
and (α − M3∗), then for each C[α] ⊂ B[α], dα(C, B) = 0.

(α − M3∗)∀A ∈ L X , r > 0, A[α] �⊂ Pr
α (A)[α].

Proof By (α-M2), for each B, C ∈ L X , satisfyingC[α] ⊂ B[α], we have dα(A, B) <

dα(A, C)+dα(C, B).Herewecan concludedα(C, B) = 0.Otherwise, ifdα(C, B) =
s > 0, then B[α] ⊂ Ps

α(C)[α]. it contracts with C[α] �⊂ Ps
α(C)[α] according to (α-

M3∗). Therefore dα(C, B) = 0.

Theorem 5.4 An α-mapping dα : L X × L X → [0,+∞) is an α-P.Q metric on L X ,
iff dα satisfies (α-M1),(α-M2) and (α-M3∗).

Proof We only need to prove (α-M3)⇔(α-M3∗). By Theorem 8 (2), it is easy to
check (α-M3)⇒(α-M3∗). If the converse result is not true, then there are r, s > 0,
such that

dα(A, B) < s < r ≤
⋂

C[α]⊂B[α]
dα(A, C).

so for each C[α] ⊂ B[α],

r ≤ dα(A, C) ≤ dα(A, B) + dα(B, C) < s + dα(B, C).

Thus, 0 < r − s < dα(B, C), which implies C[α] ⊂ Pr−s
α (B)[α]. As a result

B[α] = (∨{C | C[α] ⊂ B[α]})[α] ⊂ Pr−s
α (B)[α].

However, it contradicts with (α-M3∗). Therefore (α-M3) holds.

Theorem 5.5 dα is α-P.Q. metric on L X . Then {Pr
α | r > 0} satisfying (3)–(5) in

Theorem 8 is an α-base of some α-uniform, which is called the α-uniform induced
by dα .
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Given an α-quasi-uniform Dα , if we say Dα is metricable, we mean there is an
α-P.Q. metric dα , such that Dα is induced by dα .

Theorem 5.6 An α-quasi-uniform spaces (L X ,Dα) is α-P.Q. metricable iff it has a
countable α-base.

Proof By Theorem 12, the necessity is obvious. Let’s prove the sufficiency.
LetDα be an α-uniformity on L X , which has a countable α-baseBα = {Pn

α | n ∈
N }. Let’s take g1α = P1

α , then there is g
2
α ∈ Bα , such that g2α � g2α � g2α ≥ g1α ∨ P2

α .
In addition, there is g3α ∈ Bα , such that g3α � g3α � g3α ≥ g2α ∨ P3

α . The process
can be repeated again and again, then {gn

α ∈ n ∈ N } is also an α-base. Obviously,
gn+1
α � gn+1

α � gn+1
α ≥ gn

α . Let’s take ϕα : L X → L X , defined by: ∀A ∈ L X ,

ϕr
α(A) =

{
gn
α(A), 1

2n < r ≤ 1
2n−1 ,

0X , r > 1.

Clearly, ∀r > 0, A[α] �⊂ ϕr
α(A)[α]. And ∀ 1

2n < r ≤ 1
2n−1 , we have

ϕr
α � ϕr

α � ϕr
α = gn

α � gn
α � gn

α ≥ gn−1
α = ϕ2r

α .

Let’s define

f r
α (A) = ∧

{
(ϕr1

α � ϕr2
α � · · · � ϕrk

α (A)) |
k∑

i=1

ri = r

}
.

Then Bα = { f r
α | r > 0} ⊂ Dα .

Finally, let’s prove Bα is an α-base of Dα satisfying (3)-(6) in Theorem 8.
Step 1. For fα ∈ D , there is n ∈ N , such that gn

α ≥ fα . So if r ∈ ( 1
2n+1 ,

1
2n ],

then ϕ2r
α = gn

α . Besides, it is easy to check, ϕr1
α � ϕ

r2
α � · · · � ϕ

rk
α ≥ ϕ2r

α whenever
k∑

i=1
ri = r . Thus f r

α ≥ ϕ2r
α = gn

α ≥ fα . This means Bα be an α-base of Dα .

Step 2. Obviously, fα ∈ B satisfies (3) and (6) in Theorem 8. Furthermore, for
r, s > 0, A ∈ L X , if there is B[α] �⊂ ( f r

α � f s
α (A))[α]. Then there is C ∈ L X , such

that B[α] �⊂ f r
α (C)[α] and C[α] �⊂ f s

α (A)[α]. So there are
k∑

i=1
ri = r and

m∑
i=1

si = s,

such that
B[α] �⊂ (ϕr1

α � ϕr2
α � · · · � ϕrk

α (C))[α]

and
C[α] �⊂ (ϕs1

α � ϕs2
α � · · · � ϕsm

α (A))[α].

Thus
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B[α] �⊂ (ϕr1
α � ϕr2

α � · · · � ϕrk
α ) � (ϕs1

α � ϕs2
α � · · · � ϕsm

α )(A)[α].

As a result, B[α] �⊂ f r+s
α (A)[α]. Consequently, f r+s

α ≤ f r
α � f s

α . This is the proof
of (4) in Theorem 8.

Step 3. for r > s > 0, A ∈ L X ,

f r
α (A) = ∧

{
(ϕr1

α � ϕr2
α � · · · � ϕrk

α (A) |
k∑

i=1

ri = r

}

≤ ∧
{

(ϕs1
α � ϕs2

α � · · · � ϕsm
α � ϕr−s

α (A)) |
m∑

i=1

si = m

}

≤ ∧
{

(ϕs1
α � ϕs2

α � · · · � ϕsm
α (A)) |

m∑

i=1

si = m

}
= f s

α (A).

Hence f r
α ≤ ∧

s<r
f s
α .

Conversely. Let’s prove the reverse result.

If B ∈ L X , B[α] �⊂ f r
α (A)[α], then there is

k∑
i=1

ri = r , such that B[α] �⊂ ϕ
r1
α �ϕ

r2
α �

· · · � ϕ
rk
α (A)[α]. So there is C ∈ L X , such that C[α] �⊂ (ϕ

r2
α � ϕ

r2
α � · · · � ϕ

rk
α (A)[α]

and B[α] �⊂ ϕ
r1
α (C)[α]. By ϕ

r1
α = ∧

t<r1
ϕt

α , there is t < r1, such that B[α] �⊂ ϕt
α(C)[α],

i.e., B[α] �⊂ ϕt
α � ϕ

r2
α � · · · � ϕ

rk
α (A)[α]. Let’s take s = t +

k∑
i=2

ri , we have s < r

and B[α] �⊂ f s
α (A)[α]. Therefore f r

α ≥ ∧
s<r

f s
α . Therefore (5) in Theorem 8 holds.

Theorem 5.7 Each α-CI I α-layer topological space is P.Q.-metriclizable.

Proof Let (L X , Dα(δ)) be an α-CI I space, {Pn | n ∈ N } be an α-base. ∀n ∈ N ,
f Pn
α : L X → L X is defined as: ∀A ∈ L X ,

f Pn
α (A) =

{
0X , A[α] ⊂ Pn[α].
Pn, A[α] �⊂ Pn[α].

Let’s take D∗ = { f Pn
α | n ∈ N } and

Bα = { fα | ∃ f
Pni
α ∈ D∗, i = 1, 2, · · ·, m, fα =

m∨

i=1

f
Pni
α }.

Then Bα is an α-base of some uniform denoted by Dα and clearly, ηα = ηα(Dα).
Furthermore, since Bα is countable, we know (L X , Dα(δ)) is P.Q.-metriclizable.
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Theorem 5.8 An α-layer co-topology Dα(δ) on L X can be α-P.Q. metriclizable iff
there is a Sequence of α-remote neighborhood mappings { f n

α }n∈N satisfying

(1) ∀n ∈ N , f n
α ≤ f n+1

α � f n+1
α � f n+1

α ,
(2) ∀a ∈ M∗(L X ), { f n

α (a)}n∈N is the α-remote neighborhood family of a.

Proof Necessary. If Dα(δ) can be α-P.Q. metriclizable, there is an α-P.Q. metric,

say dα . Let’s take f n
α = P

1
3n

α . By Theorem 8, it is clear that (1) and (2) hold.
Sufficiency. If { f n

α }n∈N satisfies (1) and (2). Clearly, { f n
α }n∈N is countable. So

by Theorem 12, it is an α-base of some α-quasi uniform Dα . Therefore Dα(δ) =
ηα(Dα). This means Dα(δ) is α-P.Q. metriclizable.

Theorem 5.9 An α-layer co-topology Dα(δ) on L X can be α-P.Q. metriclizable
iff there is a Sequence of α-symmetric remote neighborhood mappings { f n

α }n∈N

satisfying

(1) ∀n ∈ N , f n
α ≤ f n+1

α � f n+1
α � f n+1

α ,
(2) ∀a ∈ M∗(L X ), { f n

α (a)}n∈N is the α-remote neighborhood family of a.

Theorem 5.10 An α-layer co-topology Dα(δ) on L X can be α-P.Q. metriclizable
iff there is a Sequence of α-symmetric remote neighborhood mappings { f n

α }n∈N

satisfying

(1) ∀n ∈ N , f n
α ≤ ( f n+1

α )� ≤ f n+1
α ,

(2) ∀a ∈ M∗(L X ), { f n
α (a)}n∈N is the α-remote neighborhood family of a.

Proof Necessity. It is similar to that of Theorem 14.
Sufficiency. If { f n

α }n∈N satisfies (1) and (2). By Theorem 2, ∀n ∈ N , f n
α ≤

( f n+1
α )� ≤ ( f n+1

α )∇ ≤ f n+1
α . By Theorem 4, ∀n ∈ N , f n

α ≤ ( f n+1
α )� ≤ f n+1

α �
f n+1
α .
Therefore ∀n ∈ N ,

f n
α ≤ f n+1

α � f n+1
α ≤ ( f n+2

α )∇ � ( f n+2
α )∇ ≤ ( f n+2

α )∇ .

Again, by Theorem 4,

f n
α ≤ ( f n+2

α )∇ � ( f n+2
α )∇ ≤ (( f n+4

α )∇)∇ � (( f n+4
α )∇)∇

≤ ( f n+4
α )∇ � ( f n+4

α )∇ � ( f n+4
α )∇ � ( f n+4

α )∇

≤ ( f n+4
α )∇ � ( f n+4

α )∇ � ( f n+4
α )∇ .

∀n ∈ N , gn
α = ( f 4n−3

α )∇ . Then {gn
α}n∈N is a family of α-symmetric remote neigh-

borhood mappings. It is clear that {gn
α(a)}n∈N is the α-remote neighborhood family

of a.

Theorem 5.11 An α-layer co-topology Dα(δ) on L X can be α-P.Q. metriclizable
iff there is a Sequence of α-remote neighborhood mappings { f n

α }n∈N satisfying

(1) ∀n ∈ N , f n
α ≤ ( f n+1

α )∇ ≤ f n+1
α ,
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(2) ∀a ∈ M∗(L X ), { f n
α (a)}n∈N is the α-remote neighborhood family of a.
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