Characterizations of a-Quasi Uniformity
and Theory of «-P.Q. Metrics

Xiu-Yun Wu, Li-Li Xie and Shi-Zhong Bai

Abstract In Wu Fuzzy Systems and Mathematics 3:94-99, 2012, the author intro-
duced concepts of «-remote neighborhood mapping and «-quasi uniform, and
obtained many good results in «-quasi uniform spaces. This chapter will further
investigate properties of a-remote neighborhood mapping, and give some charac-
terizations of «-quasi uniforms. Based on this, this chapter also introduces concept
of «-P.Q. metric, and establishes the relations between «-quasi uniforms and «-P.Q.
metrics.

Keywords «-Quasi uniform - o-Homeomorphism * «-P.Q. metric + o-Remote
neighborhood mapping

1 Introduction

Theory of quasi-uniformity in completely distributive lattices was firstly introduced
by Erceg [1] and Hutton [2]. Then it was developed into various forms and was
extended into different topological spaces [3-9]. In [10], the author introduced the
concept of @-quasi uniform in «-layer order-preserving operator spaces, and revealed
the relations between a-layer topological spaces and o-quasi uniform spaces. In this
chapter, firstly, we further study properties of «-remote neighborhood mappings.
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Then we discuss some characterizations of «-quasi uniformities. Secondly, we intro-
duce the concept of a-P.Q. metrics, and establish the relations between o-quasi
uniforms and «-P.Q. metrics.

2 Preliminaries

In this chapter, X, Y will always denote nonempty crisp sets, A mapping A : X — L
is called an L-fuzzy set. L is the set of all L-fuzzy sets on X. An element ¢ € L
is called an irreducible element in L, if p VV ¢ = e implies p = e or ¢ = e, where
P, q € L. The set of all nonzero irreducible elements in L will be denoted by M (L).
If x € X,a € M(L), then xq is called a molecule in LX. The set of all molecules in
LX is denoted by M*(LX).Tf A € LX, o € M(L), take Ajg) = {x € X | A(x) > a}
[31and A* = V{xq | xo £ A} [11]. Itis easy to check (A[q)) = A‘[’a].

Let (L%, 8) be an L-fuzzy topological space, « € M(L). VA € L%, Dy(A) =
NG € 8 | Gl D Ay} Then the operator D, is a a-closure operator of
some co-topology on L%, denoted by D, (8). We called a-layer topology. The pair
(L%, Dy(8)) is called a-layer co-topological space [11]. An a-layer topological
space(LX, Dy (8)) is called an «-Cy space, if there is a countable base %, of Dy, (5).

A mapping F, : LY — LY is called an a-mapping, if Fo(A)a] = Fu(B)[a]
whenever Ajy] = Blq), and Fy(A) = Ox whenever A = @. The mapping F, ! :
LY — L% is called the reverse mapping of F,, if for each B € LY, Fa_l(B) =
V{A € LX | Fy(A)[a] C Blaj}- Clearly, F ! is also an a-mapping.

An a-mapping F, : LX — LY is called an a-order-preserving homomorphism
(briefly a-oph), iff both F, and F !"are a-union preserving mappings.

An a-mapping F, : LX — LY is called an a-Symmetric mapping, if for every
A,Be L, we have

AC1a) € Afy)r Blol € Fu(O)je] © 3Djo) € Bfyp Ale) € Fo(D)(ay-

An o-mapping f, : LX — LX is called an a-remote neighborhood mapping, if
for each A € LX with Ala) # 9, we have Ag) € fo(A)[a)- The set of all a-remote
neighborhood mappings is denoted by .%, (LX), (briefly by .%,).

For fy, go € 4, let’s define

(D) fo<gue & VA€ LX’ fDl(A)[Ol] C ga(A)[a]-
(2) (fa V gu)(A) = fu(A) V ga(A).
(3) (fu © gu)(A) = A{foa(B) | 3B € L¥, Bio) & Gu(A)(a}-

An non-empty subfamily &, C %, is called an a-quasi-uniform, if Z,, satisfies:
(a-UD)Vfy € Dy, go € Fo With [ < gy, then gy € D,
(¢-U2) VY fy, 9o € Py implies fo V gy € Dy.
(x-U3)Vf, € Dy, then gy € D, such that gy O gy > fu.
(L%, 2,) is called an a-quasi-uniform space. A subset %, C %, is called a base
of Dy, it Vfy € Dy, there is g, € By, such that f, < gy. A subset &, C Yy is
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called a subbase of 9, if all of finite unions of the elements in .27, consist a base of
Dy . An a-quasi-uniform ¥, is called an a-uniform, if &, possesses a base whose
elements are o-symmetric. Usually, we call this base a-symmetric base.

In [10], the author discussed the relation between an «-quasi uniform space and
an a-layer co-topological space as following:

Let 7, be an a-quasi uniform on LX. VA € LX, Let’s take c4(A) = V{B €
LX | Vo € Dus Ale] € fu(B)lag}- Then ¢, is an a-closure operator of some
L-fuzzy co-topology, which is denoted by 1,(Zy). Each a-layer topological space
(LX, Dy (8)) can be «-quasi uniformitale, i.e., there is an a-quasi uniform %, such
that Dy (8) = na(@a)~

Other definitions and notes not mentioned here can be seen in [12].

3 Properties of «-Remote Neighborhood Mappings

Theorem 3.1 Let f,, gy € Fy. Then

(1) faV 9o € For fu © g € Fa.
(2) faOga < fus fa © ga < Ga-
(3) (fa ©ga) Vhe = (faVhy) O (g V he),

(fa Vv ga) ©} hﬂt = (fa O] hoz) Vv (goz © ha)~
Theorem 3.2 Let f, € .Z,. If for each A € LX,

A =MaB) A c | G

Gl ZBjy
and
A =AfaB) | | SOy & falA)a))-
G[al¢3ﬁ(1]
Then

(1) 1) f$ € Fu.
2) f2<f) < fa
(3) f2(A) =AY (B) | By € fa(Aia)} = (fy © fu)(A).

(4) fO{V is a-Symmetric.

Proof (1) By Ajg) € U fa(G)fy, we have Ay ¢ £,/ (A)jo). Thus f) €
G[a]¢Alfta]
Fo. Again by Ay € fu(A)e), we get U fa(G)‘f‘a] Z fo(A)[q). Therefore,
Gl ZAfy,
fy € Fa.
(2) The proof is obvious.
(3) For each B € LX,
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U %G, ¢ faBa ¢ 3D | fu(G)fyy Diat & fa(B)ia

Gl Z Bl Gl Z ATy,
&I C | J  fu(G)y) Dia) € fa(B)ja)-
G[a]¢B&]
So

F2(A) = ALY (D) | Doy & fa(D)ial} = (fy © fa)(A).

(4)VD, E € L*. If there is Ajy) ¢ DY, such that

[a]

Bl & £ (D = W faBiag | A € | fulOF)
G[Ot]ng[o;]

Then there is B € L%, satisfying Ejo] ¢ fou(B)gjand Alg) € U fa (G-
Gl £(BY,
Clearly, U ) fa(G)‘["a] s D‘[fy], ie., Do) € N ) fa(G)(q]. Thus, there is
Gla1Z By Gla1Z By
Cl1 Bﬁ‘x], such that Do) ¢ fo(C)[«]. Conclusively, we have

D) C faB)y € | fu(G)fy-
G[Ot]¢B[D;]

and

Dio) & N fa Oy | Dy € | fatHDf) = £ (D)1an.
H[a]¢cﬁ1]

Therefore, fav is a-Symmetric.

Theorem 3.3 Let f, be an a-Symmetric remote neighborhood mapping, then

(1) Cla) & faMja1 = A1 € U fa(D)yy-
Dioy Ciy
(2) A[a] C U fa(D)([xa] = C[ot] ¢ fot(A)[a]-
D[a]¢Cf:x]

Proof (1) Since f, is an @-Symmetric mapping. VD{y] ¢ A‘f‘a],thereis B ¢ Cﬁ‘x],
satisfying Do)  fo(B)[a]- Therefore,

A([XOK] D) m fOl(B)[C{]a ie., A[a] C U fa(D)t[)ta]

Bla) 2Ciy Dy £y

(2) By Ao C U fa(D)‘[xa], we have A‘[xa] ) N fa(D)a)- So Vx ¢
Die £ Cig Dia) £y
A‘["a], there is Do) ¢ Cﬁ‘x], such that x & f,(D)[q]. Since f, is a-Symmetric.
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There is Bffx] a xﬁ‘x], such that Ciy) ¢ fo(B*)[o]- Take E = V{B* | x ¢ A‘["a]}, then
x ¢ Ef,- Thisimplies Ef,, C A} 1.e., Aja] C E{o). Furthermore, we can conclude
Cla) € fa(A)[a)- Otherwise, if Clo] C fo(A)[a] C fo(E)[qa], thenit contradicts with
the statement: for each B* < E, Cjo] € fo(B)|a]-

Theorem 3.4 Let f, € %,. Then
Sy <12 O LY S f2= fa O fa
Proof YA e LX,
8 A) =AML B | Am | £G)
G[a]¢B[EJ
< AU (©O) | Clag £ 1y (A}
= (1Y © f))(A).
By Theorem 2 (2), fv < fa, we have
(fa © fI)A) = AL (O) | Clog € fy (A)fa}

< M) | Clay € fa(Ajar}
= fy(A).

Therefore

f9(A) = Ay (©) | Cloy & fa(A)a)} < MfalC) | Cla) & fa(A)a)} = (fu © fu) (A).

Theorem 3.5 Let f, € F#,. Then
(D) 13" = fa © fa

(2) fot @fot Qfa = fao~

Proof (1) By Theorem 2, we have

LA =MfaB) A C ] fuG)fy)
Gra1Z By

< Mfa(B) | Ata) € fu(A)al}

fa © fulA).

A

(2) By Theorem 3 (2), we have
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U Dy & ful@w = 3By € | fu(D)yy: Bioy € fu(Aia)
Dia1ZCly,) Dia)ZCly,)
= 3Ba) € fa(A)al, Cloy € fa(Bla)
= C[a] Z fa® fOl(A)[Ot]~

This shows fo, © fu © fo < f5. On the other hand, by Theorem 2 (2) and (1) above,
itis easy to find ¢ < fOlV O fa < fa © fo © fy. Therefore, (2) holds.

4 Characterizations of «-Quasi Uniformities

Theorem 4.1 An non-empty subfamily 9, C Fy is an a-uniform, iff Dy satisfies:

(1) fu € Dy, gu € Fo With fo < go, then gy € Dy
(2) fu»9a € Dy implies fo V gy € Dy.
(3) fo € Dy, then gy € Dy, such that g5, > f,.

Proof Necessity. Since %, is an a-uniform, (1) and (2) hold. Furthermore, if %,, C
Dy 18 an a-symmetric base. So for every f, € Y, there is g, € Ay, such that
94O Ja O ga Oga = fo-By Theorem5(2), g3 = gu ©Ja O = Ju O Ja O go O g =
fa-

Sufficiency. If A, = {gg | 9o € Dy}. Forevery fy € Py, thereis g4 € %, such
that g5 > fi. By Theorem4, g, ©gy > g5 > fo. Then 7, is an a-quasi-uniform. By
Theorem 2 (2)and (4), we know gz > g5 > fo. This shows A, is an «-symmetric
base of Z,,. Therefore Z, is an «-uniform.

Theorem 4.2 An non-empty subfamily 9, C Fo is an a-uniform, iff Dy satisfies:

(1) fo € Dy, go € Fo with fy < gy, then gy € Dy
(2) fu»9a € Dy implies fo V 9o € Dy.
(3) fo € Dy, then gy € D, such that gg > fo

Proof Necessity. Since ), is an a-uniform, (1) and (2) hold. By Theorem 6, For
every fo € Yy, there is gy € Yy, such that g5 > f,. So according to Theorem 2
(), 93 > g5 > fu- Thus (3) holds.

Sufficiency. If By = {9 | gu € Pu}. By (3), For every fy € Py, there is
Ju € Yy, such that gg > fy. Again, there is hy, € %, such that hz > gu. By
Theorem 4, we get

ho ©hy > hY OBY > (W)Y > gY > fa.

So %, is an a-symmetric base of Z,,. Therefore, 7, is an a-uniform.
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5 a-P.Q. Metric and its Properties

A binary mapping d, : L* x LX — [0, +0c0) is called an a-mapping, if
Y(A, B),(C,D) € LX x LX satisfying Ajq] = Clo) and Bjg] = Diq, then
dy(A, B) = dy(A, B).

Definition 5.1 An a-mapping d, : LY x LX — [0, 4+-00) is called an «-P.Q metric
on LX, if

(a-M1) dy, (A, A) =0

(a-M2) dy (A, C) < dy(A, B) +dy(B, C).

(@-M3)dy(A,B) = A\ du(A,C).
Cla1CBlay

Theorem 5.1 Let d, be an a-P.Q. metrics on LX.Vr € (0, +00), a mapping P, :
LX — LX is defined by VA € L%,

PL(A) = V{B € L* | dy(A, B) > r)}.

Then

(1) P[ is o-symmetric mapping.
(2) YA, B € L*, Bio] C PL(A)a)] & du(A, B) > r.
(3) VA€ LX,r >0, Ajg) € PL(A)a).
(4) Vr,s € (0,00), P, © P} > PL*5.
(5) VA€ L*,r >0, PL(A)g) = () PE(Aa)
s<r
(6) YA € L%, | PS(A)q = 9.
r>0
Proof Since d, is an o-mapping, (1), (5) and (6) are easy.

(2) Clearly, dy (A, B) > r = Bjq] C P}(A)[«]. Conversely. Vx € Bjy), Ix €
D, € L%, such that dy(A, D) > r. So dy(A, {x4}) > dy(A, D,) > r. Thereby
do(A,B) = A du(A, {xe}) 27

XEBlq]

(3)Suppose Ajq] C PL(A)[«]-By (2), we getdy (A, A) > r.Thisis acontradiction
with (¢-M1).

4)VA,B € LX,ifB[a] ¢ P, OP;(A)[«), thenthereis D e LX, such that Do) &
P} (A)q)and B € P, (D)[a]-By (2), wehaved, (A, D) < s,dy(D, B) < r.Then
by (@-M2), we gain dy (A, B) < r + s. Therefore By ¢ P, (A)[4]. This means
Pl O PS> PITS,

Theorem 5.2 [f a family of a-mappings {P. | P, : LX — LX r > 0} satisfies the
conditions (2)—(5) in Theorem 8. For each A, B € LX, let’s denote

da(A, B) = Ar | Bia) € Py(A)a1}-

Then



132 X. Wu et al.

(1) do(A, B) <r < Bla) £ Py(A)a)-
(2) dy is a-P.Q. metric on LX.

Proof (1) By Theorem 8 (2),(5), we have
dy(A,B) <1 ¢ 3s <7, Blo) ¢ PS(A)a) © Bla) ¢ PL(A)[a)-
(Q)VA,B e LX,r,s > 0,ifdy(A, B) > r + s, then
Bla)] C P (A) ) C (PL O PL(A))[ar-

Thus YC € L¥, we have Clg) ¢ P3(A)q) and Bly) ¢ P.(C)ja). this implies
dy(A,C) > s,and dy (A, B) > r. Hence dy(A, B) + dy (A, C) > r + 5. Conse-
quently, we obtain dy (A, B) +dy(A, C) > dy(A, B).

Theorem 5.3 Ano-mappingd,, : LXxLX = [0, +00) satisfies (a—M1),(a«—M?2)
and (o — M3*), then for each Cio] C Bla], do(C, B) = 0.
(@ — M3*WA e LX,r >0, A ¢ PL(A)a).

Proof By (a-M2),foreach B, C € LX, satisfying Cjo] C Bl«], Wwehaved, (A, B) <
dy(A, C)+dy(C, B).Here wecan conclude d,, (C, B) = 0.Otherwise, ifdy (C, B) =
s > 0, then Bg] C Pj(C)[q. it contracts with Cjy) ¢ Py (C)[q) according to (a-
M3*). Therefore d, (C, B) = 0.

Theorem 5.4 An a-mapping dy : LX x LX — [0, +00) is an a-P.Q metric on LX,
iff dy satisfies (a-M1),(a-M2) and (o-M3*).

Proof We only need to prove (¢-M3)<(a-M3*). By Theorem 8 (2), it is easy to
check (@-M3)=(x-M3*). If the converse result is not true, then there are r, s > 0,
such that
dy(A,B) <s<r< [ du(A Q).
Cla1CBje

so for each C|y] C Bly],
r <dy(A,C) <dy(A, B) +dy(B,C) <5 +dy(B,C).
Thus, 0 < r — s < dy(B, C), which implies Cjo] C P} ™*(B)[«]- As a result
Bio) = (V{C | Cla] C Bia1Dia) C Py " (B)(a)-

However, it contradicts with («-M3*). Therefore (@-M3) holds.

Theorem 5.5 d,, is a-P.Q. metric on LX. Then {P] | r > O} satisfying (3)—(5) in
Theorem 8 is an a-base of some o-uniform, which is called the o-uniform induced
by dy.



Characterizations of «-Quasi Uniformity and Theory of «-P.Q. Metrics 133

Given an a-quasi-uniform %, if we say 7, is metricable, we mean there is an
a-P.Q. metric dy, such that 7, is induced by dj.

Theorem 5.6 An a-quasi-uniform spaces (LX, D) is a-P.Q. metricable iff it has a
countable o-base.

Proof By Theorem 12, the necessity is obvious. Let’s prove the sufficiency.

Let 9, be an a-uniformity on LX, which has a countable a-base %, = {P}|ne
N}. Let’s take g} = P!, then there is g2 € %,, such that g2 © g2 © g2 > g} v P2.
In addition, there is g} € %y, such that g3 © g3 © g2 > g2 v PJ. The process
can be repeated again and again, then {g), € n € N} is also an «-base. Obviously,
O gt O git! > gl Let’s take ¢ : LX — LX, defined by: VA € LX,

M(A), A <r < s
r A — go[( ’ n — on 1>
PulA) Ox, r>1.

Clearly, ¥r > 0, Ajg] ¢ ¢, (A)ja). And Vo < r < we have

1
on—1>
nl_

(ﬂa®¢a®§0a_ga®ga®ga>ga (pgr'

Let’s define

k
Ja(A) = /\{(‘PQ QPO -0 ek(A) | Zri =r}.
i=1

Then By = {f) | r > 0} C Z,.

Finally, let’s prove %, is an a-base of 7, satisfying (3)-(6) in Theorem 8.

Step 1. For f, € 2, there is n € N, such that ga > fo, Soifr e (2n+,,2n],
then % = g". Besides, it is easy to check, po' © @ O -+ © @o > <pa whenever
k
> ri =r.Thus f > 2 = g" > f,. This means %, be an a-base of Z,.
i=1

Step 2. Obviously, f, € & satisfies (3) and (6) in Theorem 8. Furthermore, for
r,s >0,A e LY, if there is Bla] ¢ (fL O f5(A))[a]- Then there is C € LX, such

that Biy] ¢ f)(C)ja) and Co) ¢ fi3 (A)[«- So there are Z r; = r and z s =S,
i=1 i=1
such that

Bio) € (905 © @2 © -+ O ¢ (C))[a)

and
Cla] £ (@5 © 92 © -+ O @5 (A))[a)-

Thus
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Bio) 7 (9 © 92 O+ Q) O (g, O O O @) (Aay.
As artesult, By] ¢ f.15(A)[a). Consequently, f/+5 < fI'® f5. This is the proof

of (4) in Theorem 8.
Step 3.forr > s >0, A € LX,

k
Ja(A) = A[(fﬂé‘ OPZ O OPFA) | D i =r]
i=1

A

m
< A[(w;i‘ QPO 0@y 0P, (AN D si =M]

i=1

IA

A [«o;l PO 0PI AN D s = m} = f3(A).
i=1

Hence f < A f3.

s<r
Conversely. Let’s prove the reverse result.

k
If B e LY, By ¢ f(A)[q), thenthereis > r; = r,suchthat Big) ¢ ¢o O@e’ ©
i=
- O @of (A)[a)- So there is C € L, such that Cjg) ¢ (9of @ 9 © - - - © i (A)[a]
and Blg] ¢ 9o (C)ia]- By 96! = )\ ¢, thereis ¢ < ry, such that Bjy] Z ¢L,(C){a)s

1<ri
k
i€, B € ¢, O ¢it © -+ O ¢y (A)a). Let's take s =t + > r;, we have s < r
i=2
and Biy] ¢ f(A)[«]- Therefore ) > A fJ. Therefore (5) in Theorem 8 holds.

s<r
Theorem 5.7 Each a-Cyj a-layer topological space is P.Q.-metriclizable.
Proof Let (LX, Dy(8)) be an a-Cy; space, {P, | n € N} be an a-base. Vn € N,
faP” - LX — X is defined as: VA € L,

P, OX, A[oz] C Pn[oz]~
n A —
fa ( ) [ Pm A[a] ¢ Pn[ot]-

Let’s take * = {fD,P” | n e N}and

B =fu |3 € T i = 1,2, om, fu = \] f").

i=1

Then 4, is an a-base of some uniform denoted by &, and clearly, n, = 1y (Z,).
Furthermore, since %, is countable, we know (L%, D, (8)) is P.Q.-metriclizable.
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Theorem 5.8 An a-layer co-topology Dy (8) on LX can be a-P.Q. metriclizable iff
there is a Sequence of a-remote neighborhood mappings { f} }nen satisfying

(1) Vne N, fi < fitt o fitt o fit,
(2) Ya € M*(L%), {f2(a)}nen is the a-remote neighborhood family of a.

Proof Necessary. If D, (5) can be a-P.Q. metriclizable, there is an a-P.Q. metric,
1

say dy. Let’s take f)) = P By Theorem 8, it is clear that (1) and (2) hold.

Sufficiency. If { fJ/},en satisfies (1) and (2). Clearly, { f},en is countable. So
by Theorem 12, it is an a-base of some «-quasi uniform %, . Therefore D, (5) =
N« (Zy). This means Dy (8) is «-P.Q. metriclizable.

Theorem 5.9 An a-layer co-topology Dy (8) on LX can be a-P.Q. metriclizable
iff there is a Sequence of a-symmetric remote neighborhood mappings { fi}}nen
satisfying

(1) YneN. fi < fa* o i+ o fit!

(2) Ya € M*(L%), {fl(a)}nen is the a-remote neighborhood family of a.

Theorem 5.10 An a-layer co-topology Dy (8) on LX can be a-P.Q. metriclizable
iff there is a Sequence of a-symmetric remote neighborhood mappings { f}}nen

satisfying
(1) ¥ne N, f2 < (f2+th° < fith,
(2) Ya € M*(LY), {f(@)}nen is the a-remote neighborhood family of a.

Proof Necessity. It is similar to that of Theorem 14.
Sufficiency. If {f]},en satisfies (1) and (2). By Theorem 2, Vn € N, f7] <
(f2he < (fitHY < fu+! By Theorem 4, Vn € N, f} < (f2t)° < fitl o

fn+1
FA
Therefore Vn € N,

fr< ot <Y oY < (Y.
Again, by Theorem 4,

< (Y o (Y < (Y o (Y)Y
< (MY o (f1HY o (Y o (frHY
< (fFHY o (Y o (fIHY.

VYneN, g, = (fj”’3)v. Then {g}}},en is a family of «-symmetric remote neigh-
borhood mappings. It is clear that {g}, (a)},ecn is the a-remote neighborhood family
of a.

Theorem 5.11 An a-layer co-topology Dy (8) on LX can be a-P.Q. metriclizable
iff there is a Sequence of a-remote neighborhood mappings { fJ' }nen satisfying

(1) ¥n e N, f < (f2tHY < frtl,
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(2) Ya € M*(L%), {fl(a)}nen is the a-remote neighborhood family of a.
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