
The Echo State Network on the Graphics

Processing Unit

Tūreiti Keith and Stephen J. Weddell

Dept. of Electrical & Computer Engineering, University of Canterbury, New Zealand
tureiti.keith@gmail.com, steve.weddell@canterbury.ac.nz

Abstract. Extending on previous work, the Echo State Network (ESN)
and Tikhonov Regularisation (TR) training algorithms were implemented
for both the CPU, an Intel i7-980; and the GPU, an Nvidia GTX480.
The implementation used all 4 cores of the CPU, and all 480 cores of the
GPU. The execution times of these implementations were measured and
compared. In the ESN case, speed-ups were observed at reservoir sizes
greater than 1,024. The first significant speed-ups of 6 and and 5 were
observed at a reservoir size of 2,048 in double and single precision respec-
tively. In the case of Tikhonov Regularisation, no significant speed-ups
were observed.

Keywords: echo state network, GPU, Tikhonov regularisation.

1 Introduction

The Echo State Network (ESN) was introduced by Jaeger in 2001 [1]. In 2002,
Maass conceived of the Liquid State Machine (LSM) [2]. These efforts mark the
beginning of what is now referred to as Reservoir Computing [3]. At the core
of a Reservoir Computer (RC) is a randomly generated dynamical system – a
reservoir of dynamics. The output of an RC is a linear combination of signals
tapped from this reservoir. An RC may also (but not necessarily) accept inputs
which perturb the reservoir. [1, 2, 3]

This work extends on previous work to implement the Echo State Network
on the Graphics Processing Unit (GPU) [4]. The following sections detail the
implementation of the ESN and an offline training algorithm based on Tikhonov
Regularisation. Section 2 presents the Echo State Network, the Tikhonov Regu-
larisation algorithm, and the GPU. Details of the GPU implementation are given
in Sect. 3, and the method for testing the behaviour of this implementation in
Sect. 4. The results of these experiments are given in Sect. 5.

2 Background

2.1 The Echo State Network

The Echo State Network (ESN) is a form of Recurrent Neural Network (RNN)
topology that lends itself to offline training via linear regression. At the core of an

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 96–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Echo State Network on the Graphics Processing Unit 97

ESN is a sparse, randomly connected RNN comprising sigmoidal neurons. This
is referred to as the “reservoir”. The output of the ESN is composed of linear
neurons that tap signals from the RNN. It is the linear output that facilitates
ESN training via linear regression. [1, 3]

Equations (1) & (2) define the behaviour of the network. Equation (1),

x (n) = f (Winu (n) +Wx (n− 1) +Wofby (n− 1)) , (1)

describes the state of the neurons in the reservoir x at time n after receiving an
input u (n− 1). Here Win represents the input weights,W the reservoir weights,
Wofb the optional output feedback, and f (. . .) a sigmoidal activation function.
The state of the reservoir is then used in (2),

y (n) = fout

(
Wout

[
u (n)
x (n)

])
, (2)

to calculate the ESN output y (n). Here Wout are the output weights and
fout (. . .) is the linear activation function. [1]

At the core of the Echo state Network is its reservoir, represented by the weight
matrix W given in (1). This is a sparse and randomly generated matrix. [1].
Equation (3),

ρ = max (|λ (W) |) , (3)

gives the spectral radius of W. This is the largest absolute eigenvalue of W, and
is typically scaled to a value less than, but close to one. Equation (4),

W =
ρWrand

max (|λ (Wrand) |) , (4)

can be used to scale a random matrix, Wrand, to a desired spectral radius,
ρ. [1, 5]

Linear regression can be used to train an Echo State Network offline. Only
the output matrix, Wout, is trained. One approach to obtain the output matrix
Wout is a form of linear regression known as Tikhonov Regularisation (TR) or
Ridge Regression. Equation (5),

Wout = YtargetX
T
(
XXT + α2I

)−1
, (5)

describes TR used to calculate Wout. Here Ytarget is the training target, α is a
regularisation constant and X,

X =

[
u (1) . . . u (n) . . . u (N)
x (1) . . . x (n) . . . x (N)

]
, (6)

is a history of the state vector and input vector for N time steps collected while
processing training input data with (1). [1, 3, 5, 6]

Equation (5) requires a square matrix inversion. The matrix may not be in-
vertible, however, singular value decomposition can be used to find a pseudo-
inverse. [7, 8]

98 T. Keith and S.J. Weddell

2.2 The General Purpose Graphics Processing Unit

The General Purpose Graphics Processing Unit (GPGPU, or just GPU) is a
highly parallel computing platform available to desktop and laptop users. Toolk-
its for working with GPUs include the open and cross-platformOpenCL; Nvidia’s
Cuda [9]; and AMD’s Heterogeneous Computing Platform, the GPU component
is based on OpenCL. Due to the availability of an Nvidia platform with Cuda-
based Blas and Sparse mathematics libraries, Nvidia hardware and tools were
used in this work. The Nvidia GPU and the Cuda programming model are briefly
described in this section.

The Nvidia Cuda Programming Model. Nvidia refers to their GPGPUs
as single instruction multiple thread devices (SIMT). The same instruction is
executed in parallel on different pieces of data, as per Flynn’s single instruction
multiple device (SIMD) architecture. However, the SIMT model also allows for
conditional branching1. On an Nvidia Cuda device, a programmer writes a kernel
of code that defines these instructions. [10, 11]

On execution, a kernel is run in multiple SIMT threads. Each thread has
access to private local memory, shared memory visible to a group of threads
(called a thread block), and global memory. At run time, a kernel has access
to the thread’s thread index. This can be used to determine which addresses of
memory to access. The thread index is a vector of up to three dimensions, and is
unique for each thread within the thread block. The dimensionality of the thread
index and, therefore, the thread block, allows the programmer to model vector,
1D; matrix, 2D; or volume, 3D calculations.

3 Implementation Details

3.1 The Toolchain

Two Echo State Network and Tikhonov Regularisation implementations were
built, one targeting the CPU, the other the GPU. Table 1 summarises the tools
used for each implementation. The remainder of this section details a selection
of these tools.

Cuda C++. This is a programming language designed for use with the Nvidia
Cuda toolchain. It is an extension of a subset of the existing C++ ISO/IEC
14882:2003 standard. The primary goal of this language is to facilitate the pro-
gramming of Single Instruction Multiple Thread (SIMT) code. Using Cuda C++,
a developer can compose kernels. These kernels are executed on the GPU with
instruction-level parallelism across multiple threads (See Sect. 2.2).

1 Such branching typically impacts negatively on the efficiency of the GPU. [10]

The Echo State Network on the Graphics Processing Unit 99

Table 1. ESN and GPU implementation tools

GPU CPU
ESN TR ESN TR

Language C++, Cuda C++ r4.2 GNU Octave
Compiler gcc 4.6.2, nvcc r4.2 Interpreted
Libraries Cuda, Cublas, Cusparse, Curand

Magma 1.2
Atlas 3.8.4

Blas 3.3.1, Lapack 3.3.1

The Cuda Libraries. These are distributed gratis with the Nvidia drivers.
The libraries used for this project include release 4.2 of the Cuda, Cublas, Cus-
parse, and Curand libraries. The Cuda library coupled with the Nvidia Cuda
Compiler facilitate the use of C++ language level extensions for kernel devel-
opment. The Cublas library provides GPU implementations of the well known
Blas level 1, 2, and 3 routines. The Cusparse library provides GPU implementa-
tions of some sparse matrix storage formats and operations. The Curand library
provides pseudo-random number generation routines.

The Nvidia Cuda Compiler. Also known as nvcc, the Nvidia Cuda Compiler
is used to compile Cuda C++ code. It is capable of producing both architecture
specific, and compute-capability dependent code. In the latter case, the compiler
generates a first-pass compilation, preparing a distributable for Just-In-Time
(JIT) compilation. JIT compilation occurs on first execution of the code on
the target GPU. With the correct settings on the target PC, the resulting JIT
compiled binaries are cached for later use, and are updated with a change to the
Nvidia drivers.

TheAtlas Library. This is also known as the Automatically Tuned Linear Alge-
bra Software library. It is a free software project to provide tuned Blas and Lapack
routines. In this instance, the Atlas library interfaces with the reference Fortran77
implementation of Blas, and its accompanying Lapack implementation.

The Magma Library. Magma is a free software project to migrate Lapack
routines to the GPU. Magma currently implements hybrid CPU/GPU versions
of Lapack routines calling, in this instance, a mixture of Cublas, Magma Lapack,
and the Fortran77 reference Lapack routines.

GNU Octave. Octave is a high-level interpreted programming language for
linear algebra. The GNU Octave environment/interpreter is free software. In
this instance Octave interfaces with the Atlas library to perform linear algebraic
operations.

100 T. Keith and S.J. Weddell

3.2 Implementing the ESN and TR Algorithms

The Echo State Network and Tikhonov Regularisation algorithms were imple-
mented for the GPU and CPU using the toolchain described in Sect. 3.1. Blas,
Sparse, Lapack, and Pseudo Random Number libraries, along with bespoke ker-
nels were used to implement (1), (2), (3), (4),(5), and (6). The details of the
GPU implementation follow, and are summarised in Table 2.

Table 2. ESN and GPU implementation details

Operation Implementation

Reservoir
generation,
(3) & (4)

Wrand Curand pseudo-random number generator

λ (Wrand) Magma eigenvalue extraction

ρWrand
...

Cublas scalar-vector multiplication

ESN state
calculation,
(1)

Winu (n), Wofby (n− 1) Cublas matrix-vector multiplication

Wx (n− 1) Cusparse matrix-vector multiplication
(with W stored in compressed sparse row,
CSR, format [12, 13])

f (. . .+ . . .+ . . .) Single bespoke kernel

ESN output
calculation,
(2)

[
u (n)
x (n)

]
Cuda memory copy

fout (Wout [. . .]) Cublas matrix-vector multiplication (fout is
linear)

Tikhonov
Regularisa-
tion,
(5)

XXT + α2I Cublas matrix-matrix & scalar-vector mul-
tiplication, vector addition

(. . .)−1 Magma SVD, Cublas matrix-matrix mul-
tiplication, bespoke diagonal matrix inver-
sion kernel

YtargetX
T (. . .) Cublas matrix-matrix multiplication

Calculating the ESN Reservoir State. Described in (1), this implementa-
tion uses Cublas matrix-vector multiplication to performWinu (n) andWofby(n−
1). As W is sparse (see Sect. 2.1), Wx (n− 1) is performed using Cusparse
matrix-vector multiplication. W is stored in compressed sparse row (CSR) for-
mat [12, 13]. A single bespoke kernel executes the activation function f (. . .), and
the addition of factors Winu (n), Wx (n− 1), and Wofby (n− 1). Here, f (. . .)
is a hyperbolic tangent. When a user initiates an ESN reservoir state calculation,
they can choose to provide multiple time-steps of input data, e.g. training data,
and collect the input and reservoir state vectors in host memory as per (6). This
state history can be later used to train the ESN as per (5).

There is a limit to the amount of input data that may be used, this is depen-
dent on the size of the ESN, and the memory available on the GPU. Similarly,

The Echo State Network on the Graphics Processing Unit 101

if the reservoir state vector history is to be used for training, then the size of
the history will be limited by the size of the GPU memory, and the accompa-
nying matrices described in (5). The implementation does not currently warn of
memory limitations.

Calculating the ESN Output. The ESN output, (2), is calculated using
Cublas and Cuda memory copy operations. A Cuda device-side memory copy is
used to stack the vectors u (n) and x (n). A Cublas matrix-vector multiplication
is used to perform

Wout

[
u (n)
x (n)

]
.

The Tikhonov Regularisation Algorithm. Described in (5), this was imple-
mented using Cublas and Magma libraries. Blas matrix-matrix and scalar-vector
multiplications were used to obtain

(
XXT + α2I

)
. To invert this result, singu-

lar value decomposition is used [8, 7]. This was implemented using Magma pro-
vided SVD, Cublas matrix-matrix multiplication, and a bespoke diagonal-matrix
pseudo-inverse kernel.

Reservoir Generation. To generate a reservoir of a given spectral radius and
connectivity, (3) & (4) were implemented. This required the pseudo-random
number generating library, Curand, to create Wrand with the desired connec-
tivity, and a Magma routine to extract its eigen-values. Cublas scalar-vector
multiplication was used to scale Wrand as per (4).

4 Experimental Configuration

The goal of these experiments is to gather information that will help users de-
cide when best to perform Echo State Network and Tikhonov Regularisation
algorithms on a GPU, and when best to use a CPU. Four experiments have
been devised, two of which have been executed. Two further experiments are
described in Sect. 7. The two executed experiments examine the relative speed
performance of CPU and GPU based ESN and TR algorithms in both double
and single precision. The methods and equipment used to perform this evaluation
follow.

4.1 Hardware

To perform this comparison, a multi-core Intel Core i7-920 was used as the
CPU, and an Nvidia GTX480 as the GPU. Both are representative of high-end
commodity hardware in their respective domains. Comparative information on
these processors is presented in Table 3.

102 T. Keith and S.J. Weddell

Table 3. Selected CPU and GPU parameters

Intel Core i7-920 Nvidia GTX480

Core count 4 480
Thread count 8 23,040
Core clock speed 2.67GHz 1.401GHz
Warp size – 32
Concurrent kernels – 1
Memory2 6GiB 1.5GiB
Memory clock speed 1.066 GHz 1.848GHz
Shared memory per block – 48KiB
PCI bus speed3 – 2.5GiT/s

4.2 Measurement Variables

Selected variables were isolated to measure the Echo State Network and Tikhonov
Regularisation speed performance. To measure ESN speed performance, three
independent variables were isolated – reservoir size, calculation precision and
hardware type. The same independent variables were isolated for TR speed per-
formance measurements, with an additional fourth variable, the number of ex-
ecution time-steps. This is the number of columns, N , in (6). The remaining
variables were controlled. A summary of the values used in the experiment is
given in Table 4, where irrelevant variables are indicated with a “–”.

Table 4. ESN and TR speed comparison variables

Variable ESN Values TR Values

Hardware {Intel i7-980, Nvidia GTX-480}
Calculation precision {double, single}
ESN reservoir size

{
24, 25, . . . , 211

}
ESN execution time steps 210

{
24, 25, . . . , 216

}
ESN input size 24

ESN output size 24

ESN output feedback present –
ESN reservoir connectivity 10% –
ESN reservoir spectral radius (ρ) 0.9 –
Tikhonov regularisation factor (α) – 0.1

4.3 Measurement Method

To ensure statistically valid measurements, each timing measurement was re-
peated 20 times. The first 10 timing measurements were discarded to reduce

2 Host-side random access memory compared with GPU-side global memory.
3 GiT/s (gibitransfers per second) is equivalent to gibibytes per second and includes
PCI protocol overheads.

The Echo State Network on the Graphics Processing Unit 103

the impact of any just-in-time compiled elements. For each point in independent
variable space, a mean and standard deviation execution time was recorded.

5 Results

The execution times of the Echo State Network are given in Fig. 1. Tikhonov Reg-
ularisation executions times are given in Figs. 2 & 3. From these measurements,
ESN and TR mean speed-up times are presented in Tables 5 & 6 respectively.

10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Reservoir Size

E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

on
ds

)

CPU Double Precision
CPU Single Precision
GPU Double Precision
GPU Single Precision

Fig. 1. Mean Echo State Network execution times – CPU versus GPU

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Training Sample Count

E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

on
ds

)

 N=16
N=16

 N=32

N=32

 N=64

N=64

 N=128

N=128

 N=256

N=256

 N=512

N=512

 N=1024

N=1024

 N=2048

N=2048

CPU
GPU

Fig. 2. Double precision Tikhonov Regularisation execution times – CPU versus GPU
for varying reservoir sizes (r)

104 T. Keith and S.J. Weddell

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Training Sample Count

E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

on
ds

)

 N=16

N=16

 N=32

N=32

 N=64

N=64

 N=128

N=128

 N=256

N=256

 N=512
N=512

 N=1024
N=1024

 N=2048N=2048

CPU
GPU

Fig. 3. Single precision Tikhonov Regularisation execution times – CPU versus GPU
for varying reservoir sizes (r)

5.1 Echo State Network Speed Performance

In the ESN case, the GPU implementation gives a speed-up at reservoir sizes of
1024 and 2048 (Table 5). The largest speed-up, 5.9923, is observed for a reservoir
size of 2048 in double precision. The largest slow-down is 0.2107 at a reservoir
size of 16 in single precision.

Table 5. Echo State Network execution: Observed GPU speed-up. The largest and
smallest speed-ups are given in bold.

Reservoir Size ESN Execution: ESN Speed-up
Double Precision Single Precision

16 0.2130 ± 0.1314 0.2107 ± 0.1048
32 0.2368 ± 0.1483 0.2486 ± 0.1076
64 0.2602 ± 0.0600 0.2227 ± 0.1153
128 0.2944 ± 0.0416 0.2944 ± 0.0392
256 0.3499 ± 0.1034 0.3590 ± 0.0891
512 0.6151 ± 0.1308 0.5498 ± 0.1500
1024 2.0243 ± 0.0314 1.4407 ± 0.1164
2048 5.9923 ± 0.0563 4.9652 ± 0.0893

For small ESNs, it is likely that host-GPU memory transfers dominate ESN
calculation time. Also, it is probable that the GPU is not fully occupied, and
therefore not performing at full capacity or efficiency. The slower clock speed
of the GPU will also contribute to a slower than CPU execution time. As the
ESNs become larger, it is likely that the occupancy of the GPU improves, and
the dominance of host-GPU memory transfers decreases. The CPU, running 4

The Echo State Network on the Graphics Processing Unit 105

cores and 8 threads, reaches its computational capacity earlier than the GPU,
which has 480 cores and 23,040 threads. GPU thread occupancy and the impact
of memory transfers is yet to be measured.

5.2 Tikhonov Regularisation Speed Performance

In the TR case, the speed-up of the extreme reservoir sizes was calculated. The
speed-ups for r = 16 and r = 2048 are given in Table 6.

Table 6. Tikhonov Regularisation execution: Observed GPU speed-up. The largest
and smallest speed-ups are given in bold.

History Size TR Execution: GPU Speed-up
r = 2048 r = 16

Double Single Double Single
Precision Precision Precision Precision

16 1.6961 ± 0.0156 1.0357± 0.0107 0.0197± 0.3367 0.0266 ± 0.1029
32 1.0022 ± 0.0187 1.0675 ± 0.0062 0.0273 ± 0.0158 0.0306 ± 0.0270
64 0.9499 ± 0.0067 1.1372 ± 0.0079 0.0305 ± 0.0364 0.0329 ± 0.0423
128 0.9498 ± 0.0045 1.1199 ± 0.0048 0.0340 ± 0.0456 0.0397 ± 0.0566
256 0.8814 ± 0.0066 1.0737 ± 0.0054 0.0435 ± 0.0342 0.0467 ± 0.0458
512 0.8012 ± 0.0076 1.0735 ± 0.0077 0.0495 ± 0.0303 0.0498 ± 0.1220
1024 0.7910± 0.0076 1.1291 ± 0.0067 0.0608 ± 0.0196 0.0693 ± 0.0406
2048 0.9824 ± 0.0091 1.1499 ± 0.0059 0.0879 ± 0.0095 0.1059 ± 0.0201
4096 1.0605 ± 0.0075 1.1310 ± 0.0061 0.1398 ± 0.0149 0.1690 ± 0.0277
8192 1.3258 ± 0.2617 1.1621 ± 0.0158 0.2366 ± 0.0024 0.2950 ± 0.0040
16384 2.3569 ± 0.0929 1.3997 ± 0.2584 0.4067 ± 0.0031 0.5010 ± 0.0325
32768 2.6813± 0.0118 1.4287 ± 0.1147 0.6557 ± 0.0307 0.8196 ± 0.0361
65536 – 1.6864± 0.2362 0.8561± 0.2424 1.2571 ± 0.0289

In the r = 16 case one speed-up of 1.2571 occurred at a history size of 65,536
in single precision, all other measures gave a slow-down. The largest slow-down,
0.0197, was observed for a history size of 16 in double precision. It should be
noted that several of the calculated speed-ups in this set have accumulated stan-
dard deviations that are larger than the mean, implying that the variability of
measurements at these points is too high to give an accurate measure.

In the r = 2048 case speed-ups were observed at most measurement points,
excluding from a history size of 64 to 2,048 in the double precision case. The
greatest speed-up, 2.6813, was observed at a history size of 32,768 in double
precision. The largest single precision speed-up, 1.6864 was observed at a history
size of 65,536. The greatest slow-down 0.7910 was observed at a history size of
1024 in the double precision case. It should be noted that in the r = 2048, double
precision case, the measurement at history size 65,536 could not be taken as the
GPU had reached its global memory limits.

106 T. Keith and S.J. Weddell

The slow-down observed may be partly attributed to host-GPUmemory trans-
fers that take place. The current implementation uses Magma’s SVD imple-
mentation. The Magma SVD requires inputs from, and returns outputs to host
memory; whereas the TR implementation generates SVD inputs and processes
SVD outputs on the GPU. This necessitates additional host-GPU memory trans-
fers. While it is likely that these transfers impact the GPU TR execution time,
the actual impact of these transfers is yet to be assessed.

6 Conclusion

The Echo State Network and Tikhonov Regularisation training algorithms were
implemented for both the CPU, an Intel i7-980; and the GPU, an Nvidia GTX480.
The execution times of these implementations were measured and compared.

In the ESN case, speed-ups were observed at reservoir sizes greater than 1,024.
The first significant speed-ups of 5.9923 and 4.9652 were observed at a reservoir
size of 2,048 in double and single precision respectively.

In the case of Tikhonov Regularisation, no significant speed-ups were ob-
served, and memory limitations were seen for large reservoir state history sizes.
This may be due to host-GPU memory transfers required to perform singular
value decomposition.

7 Future Work

Experimental refinement, two further experiments, and profiling work is planned.
Large variations are observed at some measurement points (See Sect. 5.2), which
warrants further investigation. This may be an indication that the measurement
“warm-up” time was insufficient. Two further experiments will be conducted.
These aim to compare the execution times of the CPU and GPU implementations
as reservoir connectivity changes, and when performing a full train-test cycle on
chaotic time-series data. Finally, the GPU implementation will be profiled. This
may yield information on inefficiencies in the design of the program, and therefore
guide us to points of optimisation.

References

[1] Jaeger, H.: The ‘echo state’ approach to analysing and training recurrent neu-
ral networks. GMD - German National Research Institute for Computer Science,
GMD Report 148 (December 2001)

[2] Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput 14(11), 2531–2560 (2002)

[3] Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Computer Science Review 3(3), 127–149 (2009)

The Echo State Network on the Graphics Processing Unit 107

[4] Keith, T., Weddell, S., Van Cutsem, T.: Gpu implementation of an echo state net-
work for optical wavefront prediction. In: Grosspietsch, E., Klöckner, K. (eds.) Pro-
ceedings of the Work in Progress Session, 20th Euromicro Intl. Conf. on Parallel,
Distributed & Network-based Processing, Garching, Germany. SEA-Publications,
Johannes Kepler University, Austria (2012)

[5] Jaeger, H.: Tutorial on training recurrent neural networks, covering BPTT, RTRL,
EKF and the ”echo state network” approach. German National Research Center
for Information Technology. Technical Report 159 (October 2002)

[6] Tikhonov, A.N.: Solution of incorrectly formulated problems and the regulariza-
tion method. Soviet Math. Dokl. 4, 1035–1038 (1963)

[7] Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a
matrix. Journal of the Society for Industrial and Applied Mathematics: Series B,
Numerical Analysis 2(2), 205–224 (1965)

[8] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University
Press, New York (2007)

[9] Nvidia Corporation. Nvidia cuda. Nvidia Corporation (October 2012),
http://www.nvidia.com/object/cuda_home_new.html

[10] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, version 4.2.
NVIDIA Corporation, Santa Clara (April 2012)

[11] Flynn, M.: Some Computer Organizations and Their Effectiveness. IEEE Trans.
Comput. C-21, 948+ (1972)

[12] NVIDIA Corporation, CUDA Toolkit 4.2 CURAND Library, version 4.2. NVIDIA
Corporation, Santa Clara (March 2012)

[13] Eaton, J.W., Bateman, D., Hauberg, S.: GNU Octave: A high-level interactive
language for numerical computations, version 3.6.1, 3rd edn. Free Software Foun-
dation, Inc., Boston (2011)

http://www.nvidia.com/object/cuda_home_new.html

	The Echo State Network on the Graphics Processing Unit
	1 Introduction
	2 Background
	2.1 The Echo State Network
	2.2 The General Purpose Graphics Processing Unit

	3 Implementation Details
	3.1 The Toolchain
	3.2 Implementing the ESN and TR Algorithms

	4 Experimental Configuration
	4.1 Hardware
	4.2 Measurement Variables
	4.3 Measurement Method

	5 Results
	5.1 Echo State Network Speed Performance
	5.2 Tikhonov Regularisation Speed Performance

	6 Conclusion
	7 Future Work
	References

