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Abstract. Blind Source Separation (BSS) techniques aim at recovering
unobserved source signals from observed mixtures (typically, the outputs
of an array of sensors). Practically all classical BSS techniques do not
work properly under reverberant conditions and therefore, it still remains
an open problem. In this sense, we propose in this document the use of
synchronization of speech mixtures in order to improve the results of clas-
sical BSS techniques. Specifically, we have applied the synchronization
of mixtures combined with one of the most well-known and robust BSS
algorithms that works under non-reverberant conditions, the Degenerate
Unmixing Estimation Technique (DUET). In the aim of synchronizing
speech mixtures prior to the speech source separation, the suitability of
working with seven Time Delay Estimation (TDE) techniques has been
analyzed. Results show the feasibility of using synchronization since the
results of DUET are improved and additionally, it has been observed
what is the most useful TDE algorithm in this framework.

Keywords: Speech Source Separation, Time-Delay Estimation,
Convolutive Mixing Model, Reverberant Conditions.

1 Introduction

Blind Source Separation (BSS) [1], which was firstly proposed in [2], consists
in recovering unobserved source signals from observed mixtures received at a
set of sensors. This problem is named as “blind” since: 1) the mixing process
is unknown and, 2) there is not much information about the characteristics of
the source signals. In order to compensate this lack of information, different
techniques and assumptions about the nature of the sources are made. There
is a powerful technique underlying BSS algorithms, which is based on spatial
diversity. Put it very simple, spatial diversity is a property of sensor arrays that
relies on the fact of having more than one sensor and has been exploited in many
applications such as, wireless communications [3]. With respect to the different
assumptions, the mutual statistical independence of the source signals is broadly
supposed [4]; the Independent Component Analysis (ICA) method [5] being a
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good example of a BSS algorithm working under this assumption. Apart from
this realistic hypothesis, sparsity, which is another property of source signals, is
commonly used. Sparsity has different definitions [6] and it is commonly assumed
that a signal is sparse when all its energy is concentrated in just one coefficient
and all others are zero (or almost zero). In the particular case at hand, since the
signals correspond to speech sources1, an appropriate transformation must be
carried out aiming at achieving an adequate sparse representation of them. In this
regard, it is well-known that a speech signal represented in the Time-Frequency
(T-F) domain can be considered as sparse, since the energy due to speech is
contained in a reduced number of time-frequency points and, in general, these
points do not overlap with points due to other sources. With this in mind, the
Short-Time-Fourier-Transform (STFT) may be applied to the speech sources.

In this sense, the popular Degenerate Unmixing Estimation Technique
(DUET) [7] is a good example of a BSS algorithm that makes use of the STFT
and aims at assigning each T-F point to one source. In the effort of associating
each T-F point with one source or another, it calculates a binary mask that
helps the algorithm decide whether a point belongs to a source or the other.
These masks are obtained by means of two different ratios computed from the
STFT. Being more explicit, these measures include the Inter-sensor Level Differ-
ence (ILD) and Inter-sensor Time Difference (ITD). From a mathematical point
of view, let us suppose two mixtures (x1 and x2) and their STFTs (X1(ω, k)
and X2(ω, k)), the mentioned ratios are calculated as shown in Equations (1)
and (2)

ILD = a21 =
|X2(ω, k)|
|X1(ω, k)| (1)

ITD = δ21 = − 1

ω
arg

(
X2(ω, k)

X1(ω, k)

)
(2)

where ω is the index over the frequency bins and k labels the one over the time
frames. In this point, it is highlight to mention a certain problem arising in this
context when the mixtures are delayed more than the length of a time frame,
what basically involves the T-F points do not coincide and then, the information
extracted from the abovementioned ratios is wrong. Aiming at overcoming this
problem, we propose in this paper, prior to the speech source separation prob-
lem carried out by means of DUET algorithm, to firstly synchronize the speech
mixtures captured at the set of sensors (microphones in this case). In this sense,
in [8], it is studied how clock synchronization affects the performance of sound
source separation with a distributed microphone array.

The first step to synchronize the mixtures is to identify the delays. In the
particular case at hand, speech mixtures can experiment two different delays.
The first one is the propagation delay which involves the time required for the
signal to propagate from the source to the microphones and, the second one
is due to the synchronization of the microphones since, in a real study-case, it

1 The task of recovering speech sources from audio mixtures is the so-called Blind
Audio Source Separation (BASS) in the literature.
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seems clear to note that the microphones involved in a set of sensors will not start
the recording of the signal at the same time. Note that this latter delay should
not exceed the length of a time frame. An example of a scheme to overcome the
synchronization problem of distributed audio capture devices is shown in [9].

In this regard, the synchronization of single speech signals by means of Time
Delay Estimation (TDE) algorithms has been widely studied in the literature
[10,11]. Put it very simple, TDE is the process of determining the relative time
shift between a reference signal and a delayed signal and lies at the core of
many modern signal-processing algorithms. Different TDE algorithms have been
proposed in both time and frequency domain. In this paper, we will focus on a
set of very well-known TDE algorithms proposed for time domain.

Within these algorithms, the cross-correlation-based TDE algorithms are the
most popular ones. In this kind of algorithms, the goal is to search the maxi-
mum value of the cross-correlation, since that value indicates when a signal and
the shifted version of another signal have the maximum similarity. Aiming at en-
hancing the performance of these methods, a large number of improvements have
been proposed [12] and they basically consist in introducing a filter or weighting
function in the expression of the cross-correlation. These algorithms are known
as Generalized Cross-Correlation (GCC) methods [13]. The objective of these
algorithms is to make easier the search of the aforementioned maximum value.
Examples of GCC methods include the Phase Transform Algorithm (PHAT) or
the Roth Processor (ROTH), which both have been studied in this paper. Apart
from these two methods, it has been also explored here the use of other algo-
rithms such as, for instance, the Average Square Difference Function (ASDF)
method or an adaptive algorithm like the Maximum Likelihood (ML) method.

In the speech signals framework, it is important to point out that the vast
majority of the aforementioned TDE algorithms aim at estimating the delay
under the assumption of single source signals, or in other words, only one speech
source is contained in the signal or, at most, the speech signal with a signal due to
noise. In the problem at hand, multiple signals are presented in the mixtures, and
consequently, speech mixtures are more complex. Note that TDE algorithms for
speech mixtures has seen little treatment in the literature so far. For illustrative
purposes, in [14] can be found a TDE algorithm working with speech mixtures.
It must also be mentioned a interesting work [15], where a very efficient scheme
of synchronization combined with a BSS [16] method is proposed.

To sum up, we propose in this paper the synchronization of speech mixtures
aiming at improving the results obtained with DUET algorithm in scenarios of
convolutive mixtures, paying special attention to situations under reverberant
effects. To be more precise, the speech mixtures are firstly synchronized by means
of TDE algorithms and after that, the DUET algorithm is carried out. In order
to evaluate the feasibility of using the study-case TDE algorithms, we have made
use of the so-called signal-to-noise-ratio (SNR) between source signals and the
estimated ones as will be shown in the numerical results.

The remainder of this paper is organized as follows. In Section 2, the speech
separation problem is described. Section 3 contains the description of the TDE
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methods that have been implemented in this paper. In Section 4, the experimen-
tal setup and the database used for the experiments are explained, along with
the results obtained. Finally, Section 5 summarizes the conclusions of this work.

2 Speech Separation Problem

2.1 The Mixing Model

Fig. 1 illustrates the particular speech separation problem explored in this paper.
As shown, N = 2 speech sources and M = 2 microphones are presented, what
involves an even-determined case. Although it will be better understood later
on, we can say in advance that this figure depicts the typical scenario in which
two people are speaking in a room.

Central processor

Synchronization

 

X1

X2

BSS

S1

Sensor 1

Sensor 2

S2

Signal 
Processing

Signal 
Processing

Fig. 1. An illustrative representation of the particular speech separation problem ex-
plored in this paper, that is, convolutive mixing model with noise and reverberation
effects. Note that prior to the speech separation, mixtures are synchronized in a central
processor by means of TDE methods.

In order to carry out the speech source separation, it is necessary to previously
understand the way the mixing process happens. In our particular study-case,
we suppose a convolutive mixing model in a noisy and reverberant environment.
Convolutive mixing process refers here to the fact that the differences of delays
that a speech source suffers among the different microphones are taken into ac-
count. Regarding the noise, it has been assumed an additive Gaussian noise with
mean equals to zero and variance equals to σ2. In addition, echoes of the target’s
reflected waves also have been considered due to the reverberant conditions.

Put it in a more mathematical way, it is assumed that at the discrete-time
t, a set of N sources signals, that is, s(t) = [s1(t), . . . , sN(t)] is received at M
sensors that are part of an array sensor, x(t) = [x1(t), . . . , xM (t)] being thus the
received mixtures at the time t. This can be clearly observed in Equation (3)
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xm(t) =

N∑
n=1

amn(t) ∗ sn(t), ∀ m = 1, . . . ,M, (3)

where any mixed signal is a linear mixture of filtered versions of each source
signal and amn(t) label the mixing filter coefficients which basically depend on
the position of sources and microphones. And since noise and reverberation
effects are considered, Equation (3) can be rewritten as shown in Equation (4)

xm(t) =

N∑
n=1

amn(t) ∗ sn(t) + im(t), ∀ m = 1, . . . ,M. (4)

im(t) being the sum of interfering signals at the discrete time t and at the mi-
crophone m. These interference signals may occur because of 1) the background
noise and/or 2) echoes of the sources due to reverberation phenomena, which
result in attenuated and delayed copies of the sources sn(t), ∀ n = 1, . . . , N .

As stated in the Introduction, the studied BSS algorithms work in the T-
F domain in order to obtain a sparse representation of the source signals and
Equation (4) is thus re-written as depicted in Equation (5)

Xm(ω, k) =

N∑
n=1

Amn(ω) · Sn(ω, k) + Im(ω, k), (5)

where Xm(ω, k) and Sn(ω, k) represent the STFT for the ω-th frequency bin and
m-th time frame of xm(t) and sn(t), respectively.

2.2 Source Demixing

As succinctly mentioned in the Introduction, DUET makes use of a time-
frequency mask (Mωk) to separate speech sources in the T-F domain and this
mask is calculated from Inter-sensor Level Differences and Inter-sensor Time
Differences as explained in [7]. From a mathematical point of view, this mask is
used as follows:

Ŝn(ω, k) =Mωk ·Xm(ω, k), (6)

where Ŝn(ω, k) is the estimation of the n-th source and Xm(ω, k) labels the
mixture at ω-th frequency bin and k-th frame for the m-th microphone.

Regrettably, in the case of speech mixtures, this mask may not work properly
since the sparse property is not always correct because of the fact that there are
contributions of different sources, echoes of these sources and so on.

3 Time Delay Estimation

The study-case TDE algorithms are explained in a detailed way in the para-
graphs that follow. As previously mentioned, they have been chosen because
they are well-known and robust methods for estimating delays between different
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kinds of signals. In Section 4, we will explore how well these algorithms work
in estimating delays for the case of speech mixtures. In order to explain the
methods, it is worth mentioning that we denote the two speech mixtures of our
study-case by (x1 and x2) and the delay between them by D12.

3.1 Cross-Correlation (CC) Method

The cross-correlation between speech mixtures is calculated. If the length of the
mixtures is T , the expression of the cross-correlation is shown in Equation (7)

Rx1x2(τ) = E [x1(t)x2(t− τ)] , ∀ 1 ≤ t ≤ T. (7)

It is well-known that the delay between both mixtures can be obtained from the
position of the maximum peak of the cross-correlation [12].

3.2 Phase Transform (PHAT) Method

This algorithm has been chosen since it has been widely used for estimating
delays between acoustic signals arriving at spatially distributed microphones.
PHAT method can be classified into the group of Generalized Cross-Correlation
(GCC) methods, or in other words, a weighting function (ψp) is introduced in
the expression of the cross-correlation, as it can be observed in Equation (8)

Rx1x2(τ) =

∫ ∞

−∞
ψp(f)Gx1x2(f)e

j2πfτdf (8)

where Gx1x2(f) labels the cross-spectrum of the received signals and the weight-
ing function responds to Expression (9)

ψp(f) =
1

|Gx1x2(f)|
. (9)

This new weighting function can be very useful since it aims to sharpen the
peaks of the cross-correlation by means of whitening the input mixtures, making
easier to find the location of the maximum peak. Having a look at Expression
(9), it seems clear to note that the information related to phase is preserved.

3.3 Modified Phase Transform (PHAT-β) Method

This modified version [17] of PHAT algorithm has been also studied. It has
been shown that it provides very good results in estimating delays when signals
are corrupted by both independent noise and reverberation effects. Within this
algorithm, the weighting function is very similar to that of PHAT algorithm but
in this case, a new parameter (β) is taken into account. The expression of this
new weighting function can be observed in Equation (10)

ψpβ(f) =
1∣∣∣Gβ

x1x2(f)
∣∣∣ . (10)
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This parameter allows us to control the degree of whitening and limit the
amount of degradation from the independent noise. Please note that β is a real
number ranging from 0 to 1. If β is equal to 0, the algorithm is equivalent to CC
method and if β is set to be 1, the algorithm is equivalent to PHAT method. In
the case of intermediate values, a process of partial whitening occurs.

3.4 Maximum Likelihood (ML) Method

ML method [18] is also included in GCC methods and it has been selected
since it works in systems where multipath effects are considered. It tends to
obtain maximum likelihood solutions for TDE problems. Within this method,
the weighting function responds to the expression shown in Equation (11)

ψML(f) =
1

|Gx1x2(f)|
|γx1x2(f)|2

1− |γx1x2(f)|2
(11)

where |γx1x2(f)|2 is the magnitude squared coherency and it responds to Equa-
tion (12)

|γx1x2(f)|2 =
|Gx1x2(f)|2

Gx1x1(f) ·Gx2x2(f)
. (12)

The ML function aims at increasing the accuracy of the calculation of the delay.
It can be observed that the greater weight is assigned to frequency bands that
give near-unity coherence. In the same line of reasoning as that in the previous
methods, the maximum of the cross-correlation must be computed.

3.5 Roth Processor (ROTH)

ROTH processor [19] has been chosen since it has been proven to be very efficient
in scenarios where additive noise is presented [13], by means of suppressing the
frequency regions where noise is clearly presented. Within this algorithm, the
weighting function has been found to be as follows:

ψroth(f) =
1

Gx1x1(f)
. (13)

3.6 Smoothed Coherence Transform (SCOT)

SCOT method [20] has been used in many TDE applications where the presence
of noise is important. In this case, the expression of the weighting function is as
indicated in Equation (14)

ψscoth(f) =
1√

Gx1x1(f) ·Gx2x2(f)
. (14)

It can be considered as a pre-whitening filter followed by a process of cross-
correlation. Having a look at Equation (13), it seems clear to note that if
Gx1x1(f) = Gx2x2(f), SCOT method is equivalent to ROTH algorithm.



Synchronizing Speech Mixtures in Speech Separation Problems 575

3.7 Average Square Difference Function (ASDF) Method

ASDF [21] method does not belong to GCC methods, since instead of using
the cross-correlation function, it uses a difference function what involves lower
usage of computational load, since multiplications are not needed. This difference
function is the square error between the signals as shown in Equation (15)

RASDF (τ) =
1

T

T−1∑
t=0

|x1(t)− x2(t− τ)|2 . (15)

By searching the minimum of the previous function, the delay between the signals
is determined from its corresponding τ .

To sum up, it can be mentioned that these classical TDE algorithms have been
chosen because they have demonstrated to have several advantages in classical
TDE problems, not only in terms of computational cost, but also in robustness
against the presence of noise, reverberations or multipath effects, etc. Then, we
are interested in exploring their performances in our BSS problem.

4 Results

4.1 Experimental Setup

The sound database has been created from TIMIT database [22]. TIMIT
database includes a total of 630 speakers (70% male and 30% female) of Ameri-
can English. The signals are 16-bit with a sampling frequency of 16000 Hz. From
these speech signals, signals of different lengths have been obtained (0.25, 0.5,
1, 2, 4, 8 and 16 seconds). Frame size of the STFT (Lf ) has also been set to
different values (128, 256, 512, 1024 and 2048 samples), aiming at exploring the
performance of DUET using the study-case TDE algorithms.

To carry out the experiments, we have set up a simple scenario that simulates
the situation of two people talking simultaneously in a room of dimensions 6×6×
3 m. A 2-microphone array has been used and in order to simulate its response,
the model that we use is the so-called Mirror Image model [23], which performs
the microphone impulse response including room impulse response calculation.
It considers both directivity pattern of the microphone and attenuation due to
distance. For a number of N sources, the mentioned model considers that there
are (2·N+1)3 virtual sources to simulate the echoes of the speech sources. In this
model, we have modified the reflection coefficient (Cr), from 0 (non-reverberant
environment) to 0.2 in steps of 0.1 (reverberant environments).

To evaluate the performance of BSS algorithms, we have chosen a metric
that considers the quality of the separated signals, to be more precise, the SNR
between original and separated sources.

4.2 Numerical Results

In the aim of demonstrating the advantages of synchronizing the input speech
mixtures in DUET algorithm, different experiments are carried out considering a
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large number of parameter combinations (length of mixtures, STFT frame size,
reflection coefficient, . . . ). Due to the large number of parameter combinations,
all the results cannot be shown, nevertheless, the most important ones are pre-
sented. For example, it has been observed that the longer the length signal is,
the better the results obtained are and this is the reason why the results for
signals of 16 seconds length are shown in Table 1 and Table 2. Specifically, these
tables show the mean SNR of 60 experiments between the separated and original
sources in a non-reverberant and in a reverberant environment, respectively.

Deepening a little more in the results depicted in Table 1, the first row shows
the values obtained by using DUET algorithm without synchronizing the speech
mixtures, in the scenario proposed in Section 4.1. As illustrated, these values
basically range from 3.26 to 3.54 dB, which are low in terms of speech quality
and motivate us to explore the performance of synchronizing the speech mixtures.
In the rest of rows in Table 1, the outcomes achieved thanks to the combination
of the synchronization of the speech mixtures and DUET algorithm are shown,
for different STFT frame sizes (Lf). Note that the TDE algorithms used in the
synchronization process are explained in Section 3. It is also worth mentioning
that for PATH-β algorithm, β is varied from 0.1 to 0.9 in steps of 0.1, although
Table 1 only shows the cases in which the highest SNR is obtained, that is, for
β = 0.1, 0.2, 0.3, 0.4 and 0.9. Looking at the SNRs obtained, it seems clear to
note that an important increase of the SNR has been obtained when compared to
those values obtained without synchronization, leading to reach values of SNR
higher than 7 dB, what represents significant improvements. For the cases of
shorter STFT frame sizes, especially for Lf = 128 and 256, an improvement of
more than 70% is obtained, reaching more than 100% of improvement when
longer STFT frame sizes are used, like, for example, for Lf = 1024 and 2048.
Then, it is clear to note that the longer the STFT frame size is, the better the
SNR obtained is and roughly speaking, this increase of SNR for longer frame
sizes occurs with all the study-case TDE methods. For illustrative purposes,
PATH-0.2 obtains a SNR equals to 5.80 dB for Lf = 128, whereas it reaches
a SNR equals to 7.39 dB for Lf = 2048. It is interesting to note that PATH-β
obtains in general very good results for all the frame sizes for low values of β
(from 0.1 to 0.4), what it makes sense since PATH-β is especially designed for
cases in which reverberation effects and noise are presented. Note that ASDF
method decreases drastically its performance as the STFT frame size increases.

Table 2 illustrates very interesting information since a speech separation prob-
lem in a room under reverberation effects (Cr = 0.2, a typical reflection coeffi-
cient) is considered. Speech separation in reverberant conditions still remains an
open problem since, due to its complexity, the vast majority of BSS algorithms
do not achieve good results. Table 2 represents the same information as Table 1
but for a reverberant case. Looking at the first row of Table 2, DUET algorithm
without synchronizing speech mixtures obtains lower SNRs than for the same
situation without reverberation, these values ranging from 2.17 to 2.67 dB. It
is important to note that, despite reverberation effects, an improvement close
to 65% has been obtained for the shorter STFT frame sizes and reaching an
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Table 1. Mean SNR obtained by DUET without (first row) and using (the rest of rows)
the different TDE algorithms, for the even-determined convolutive case of two mixtures
and two sources, with noise and without reverberation effects (Cr = 0). 60 speech
separation experiments have been carried out per each combination of parameters.

TDE Lf=128 Lf=256 Lf=512 Lf=1024 Lf=2048

- 3.31 3.33 3.26 3.30 3.54
CC 5.79 5.82 6.11 6.84 7.37

PHAT 5.61 5.73 5.88 6.47 6.93
PHAT-0.1 5.79 5.82 6.11 6.84 7.35
PHAT-0.2 5.80 5.78 6.02 6.97 7.39
PHAT-0.3 5.85 5.78 6.03 6.84 7.24
PHAT-0.4 5.80 5.76 6.01 6.80 7.18
PHAT-0.9 5.56 5.54 5.85 6.58 6.92

ML 5.47 5.69 5.75 6.47 6.93
ASDF 5.79 5.82 6.29 5.32 4.39
ROTH 5.44 5.52 5.62 6.23 6.69
SCOT 5.72 5.66 6.00 6.50 7.01

Table 2. Mean SNR obtained by DUET without (first row) and using (the rest of
rows) the different TDE algorithms, for the even-determined convolutive case of two
mixtures and two sources, with noise and reverberation effects (Cr = 0.2). 60 speech
separation experiments have been carried out per each combination of parameters.

TDE Lf=128 Lf=256 Lf=512 Lf=1024 Lf=2048

- 2.39 2.17 2.41 2.67 2.56
CC 3.81 3.85 3.90 3.96 4.66

PHAT 3.84 3.89 3.92 3.99 4.47
PHAT-0.1 3.81 3.83 3.86 3.94 4.68
PHAT-0.2 3.84 3.83 4.03 3.97 4.65
PHAT-0.3 3.84 3.83 4.03 3.97 4.65
PHAT-0.4 3.81 3.81 3.96 4.04 4.64
PHAT-0.9 3.84 3.89 3.92 3.99 4.47

ML 3.83 3.88 3.89 4.01 4.46
ASDF 3.81 3.85 4.09 3.55 3.43
ROTH 3.73 3.68 3.81 3.83 4.52
SCOT 3.87 3.87 3.74 3.99 4.42

improvement of approximately 80% for STFT frames of Lf = 2048. Unexpect-
edly, for the particular case of Lf = 1024, the improvement is lower, being about
50%. Note that when Cr = 0.2, there is not a most appropriate TDE algorithm,
since the results depend on the STFT frame size. As the reader can note, despite
that DUET algorithm does not work properly for reverberant problems as the
one proposed here, its results have been significantly increased (reaching more
than 4.5 dB for the best cases), what leads to think about the idea of applying
synchronization of speech mixtures with other BSS algorithms.
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5 Conclusions

This paper focuses on applying synchronization of speech mixtures prior to the
speech separation problem for BSS algorithms that use ILDs and ITDs, DUET
being a very representative example. We have studied a convolutive mixing case
with additive Gaussian noise and with or without reverberation effects, specifi-
cally, we have implemented a problem in a room using the Mirror Image Model
to simulate the reverberation and multipath effects. We pay special attention to
speech separation problems under reverberation effects due to its difficulty.

We have tested seven TDE methods in order to synchronize speech mixtures
and different results have been obtained depending on some parameters as the
reflection coefficient, STFT frame size, etc. Both in the non-reverberant case as
in the reverberant one, an important improvement of the SNR has been obtained.

In the case without reverberation, a considerable increase of the SNR has
been achieved, in some cases, doubling the value of SNR. According the STFT
frame size increases, the SNR increases, for example, the 7.39 dB obtained by
PATH-0.2 for a STFT frame size of 2048. We also realize that broadly, PATH-β
method for values of β equal to 0.1, 0.2 and 0.3, achieves the better results, while
ASDF method performs worse results with longer STFT frame sizes. The rest
of TDE methods work achieving similar results. With reverberation effects, we
have also improved the outcomes of the DUET algorithm, increasing the SNR
close to 70% when longer STFT frame sizes. Unlike the non-reverberant case,
all the algorithms achieve very similar results except ASDF method.

Therefore delays such as, the propagation delay of the sources or the delay
due to synchronization of the microphones, do not affect the results of our BSS
algorithm. To sum up, these results point out to a new filed of research in the
jointly use of TDE and better adapted BSS algorithms to reverberant cases.
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Science (project TEC2012-38142-C04-02) and the Spanish Ministry of Defence
(DEFENSA2011-10032110035).
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