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Abstract. Identity verification based on on-line signature is a com-
monly known biometric task. Some methods based on the on-line sig-
nature biometric attribute used for identity verification use information
from partitions of the signature. Efficiency of these methods is relatively
high. In this paper we would like to present a new approach to signature
trajectories partitioning, based on selection of the discretization points
groups. The new method was compared to other methods, with use of
the SVC2004 public on-line signature database.

1 Introduction

Signature is a biometric attribute commonly used in identity verification process.
This attribute may be categorized into two groups - off-line (static) signature
and on-line (dynamic) signature. Off-line signature contains only information
about shape of the signature. Systems which use this type of signature may
be used for example for verification identity of person who signed some kind
of documents. On-line signature contains many additional information about
dynamics of signing process. This kind of signatures are acquired with use of some
digital input device, e.g. graphic tablet. Dynamic signatures are more reliable
than static ones, because they are more difficult to forge (see e.g. [6]).

One of the most effective method of identity verification with use of dynamic
signature is method based on signature trajectories partitioning (see e.g. [9],
[11]). In [11] velocity signal is split into three bands and strokes which belong
to the medium-velocity band are used for discrimination purposes. Method pre-
sented in [9] assumes division of velocity and pressure signals into two parts.
After this process four partitions are created. Each partition contains template
created from trajectories of training signatures which belong to the partition.
Then selection of the most discriminative partition (called stable partition) is
performed. Stable partition is selected on the basis of similarities between each
training signature of the user and the template. The template from selected
partition is compared to the test signature during verification process. Identity
verification is performed on the basis of this comparison, signature is classified
as genuine or forgery. Our approach to identity verification, presented in [31],
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also refers to partitioning of signature trajectories. In our method all partitions
are considered during verification process, because we assume that all partitions
may contain useful information about signer. All partitions have also weights
of importance calculated individually for each signer, therefore partitions which
are more characteristic for the user will be more important during verification
process. During classification phase classifier based on the t-conorm with the
weights of arguments is used (see [1]-[4], [23]). This approach is more effective
than approach with use only one partition.

In this paper we present a new method of signature partitioning based on
selection of discretization points groups. This method also divide signature tra-
jectories into few partitions which are weighted by weights of importance and
are used during classification process. Classification is performed with use a
neuro-fuzzy system (see e.g. [2]-[3], [7], [12]-[15], [17]-[18], [22]-[28]).

This paper is organized into four sections. In Section 2 the new approach
to signature trajectories partitioning with selection of the discretization points
groups is presented. Simulation results are presented in Section 3. Conclusions
are drawn in Section 4.

2 Signature Verification Based on discretization Points
Groups

2.1 General Idea of the Algorithm

In this paper we propose a new method of signature partitioning. The method
may be summarized as follows: (a)In our approach partitions are used during the
training and classification phase. (b)Classification process is performed with use
of weights of importance. Weights are calculated individually for each signer and
for each partition. Partitions are created in a new way, so that the interpretation
of weights is different from the weights considered in [31]. (c)Proposed classifier
bases on flexible neuro-fuzzy system with weights of antecedents (see e.g. [2]-[3],
[22]). The weights of importance are associated with the parts of the signatures.
The conception of use of weights in triangular norms and neuro-fuzzy systems
is described in [5], [22].

The algorithm is performed as follows:

- Step 1. Partitioning of signatures. Signatures are partitioned with use
of the method which creates vertical partitions, selecting best discretization
points groups. Each of vertical partitions has the same width. Number of
vertical partitions is the same for each user (see Fig. 1).

- Step 2. Template generation. In this step templates for each partition
are generated. Templates are created on the basis of signatures generated by
signer during training data acquisition phase. Each template contains aver-
age values of signature signals. This step is performed only during training
phase.
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- Step 3. Calculation of signatures similarity in each partition. In
this phase similarities between each signature of the user and template are
calculated. The similarities are calculated for each partition.

- Step 4. Computation of the weights of importance. During this step
weights of importance for each partition are created. Values of weights are
based on mean distance between training signatures and template and also
on similarity in distances between training signatures and template. This
step is performed only during training phase.

- Step 5. Creation decision boundary for each partition. During this
step linear decision boundary between genuine signatures and forged signa-
tures is created individually for the user (see [31]). This step is performed
only during training phase. Genuine signatures of the other users may be
used as forged signatures (see e.g. [29]).

- Step 6. Determination of the fuzzy rules used in classification
phase. Fuzzy rules describe a way of test signature classification. The rules
based on the fuzzy sets, which use decision boundaries determined in the
step 5. Therefore they may be interpretable.

- Step 7. Classification. In this step signature is classified as genuine or
forgery. Classification process is performed on the basis of distances between
template and sample signature in the partitions. This step is performed only
during test phase. In the verification process flexible neuro-fuzzy system
of the Mamdani type is used. Each of the antecedents of this classifier is
associated with the weight determined in Step 2.

We can see that steps 1-6 are performed during training phase, while steps 1,3,7
are performed during test phase.

2.2 Determination of Partitions and Weights of Partitions

First, partitioning of the signatures is performed. The new approach presented in
this paper assumes partitioning based on selected time intervals of signing. This
approach is possible to implement because lengths of the all signature signals
are the same through the pre-processing. Pre-processing of the signatures is
performed after the acquisition phase. Lengths of the signatures are fitted by the
Dynamic Time Warping algorithm (see e.g. [16]) which use velocity or pressure
signal. Next, each signal is divided into parts of the same width. Membership
of the k -th sample of the j -th signature of the i-th user to the p-th partition is
described as follows:

part
{s}
i,j,k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for 0 < k ≤ K
PN{s}

2 for K
PN{s} < k ≤ 2K

PN{s}
...

PN{s} for (PN{s}−1)K
PN{s} < k ≤ K

, (1)

where s is a signal type (velocity or pressure) used during alignment phase, i is
the user number (i = 1, 2, . . . , I), j is the signature number (j = 1, 2, . . . , J), K
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is a number of samples, k is the sample number (k = 1, 2, . . . ,K) and PN{s} is
a number of partitions. In this method we have assumed, that PN{v} = PN{z}.
Partitioning method is shown in Fig. 1.
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Fig. 1. Signature partitioning

After partitioning, templates of the signatures are generated. Generation of
the templates is based on the training signatures. Templates are concerned with
the user and assigned to the partition. Generation of an element of template
ta

{s}
p,i,k, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, k = 1, 2, . . . ,K, for the k -th time

step of the p-th partition of the i-th signer for signatures aligned with use of s
signal (v velocity or z pressure) and a trajectory (x or y) is calculated by the
formula:

ta
{s}
p,i,k =

1

J

J∑

j=1

a
{s}
p,i,j,k, (2)

where a{s}p,i,j,k, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . ,K,
is trajectory (x or y) value in the k -th sample of the p-th partition of the j -th
signature of the i-th signer. Template ta

{s}
p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I,

of the p-th partition of the i-th signer for signatures aligned with use of s signal
(v velocity or z pressure) and a trajectory (x or y) is described by the following
equation:

ta
{s}
p,i =

[
ta

{s}
p,i,1, ta

{s}
p,i,2, ..., ta

{s}
p,i,k

]
. (3)

Next, distances between each template and each signature trajectory are cal-
culated. Distance da

{s}
p,i,j , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, j = 1, 2, . . . , J ,

between template of the p-th partition of the i-th signer generated for signa-
tures aligned with use of s signal (v velocity or z pressure) and a trajectory (x
or y), and the j -th signature of the i-th signer is described as follows:
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da
{s}
p,i,j =

√
√
√
√

K∑

k=1

(
ta

{s}
p,i,k − a

{s}
p,i,j,k

)2

, (4)

where a{s}p,i,j,k, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . ,K,
is a a trajectory (x or y) value in the k -th sample of the p-th partition of the
j -th signature of the i-th signer.

Next, distances between templates and signatures in two dimensional space are
calculated. Distance d

{s}
p,i,j , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, j = 1, 2, . . . , J ,

between the j -th signature trajectory of the i-th signer and template of the i-th
signer in the p-th partition generated for signatures aligned with use of s signal
is calculated by the formula:

d
{s}
p,i,j =

√
(
dx

{s}
p,i,j

)2

+
(
dy

{s}
p,i,j

)2

. (5)

Next, weights of importance for each partition are calculated. First step to com-
pute weights of importance is calculation of mean distances between signatures
and template in partitions. Mean distance between signatures of the i-th signer
and template of the i-th signer in the p-th partition d̄

{s}
p,i , p = 1, 2, . . . , PN{s},

i = 1, 2, . . . , I, related to signal s (v velocity or z pressure) is calculated by the
formula:

d̄
{s}
p,i =

1

J

J∑

j=1

d
{s}
p,i,j . (6)

Then, standard deviation of distances in each partition should be calculated.
Standard deviation of signatures σ

{s}
p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, of

the i-th user from the p-th partition related to signal s (velocity or pressure) is
calculated using the following equation:

σ
{s}
p,i =

√
√
√
√ 1

J

J∑

j=1

(
d̄
{s}
p,i − d

{s}
p,i,j

)2

. (7)

Next, weights of importance are calculated. Weight w
′{s}
p,i , p = 1, 2, . . . , PN{s},

i = 1, 2, . . . , I, of the p-th partition of the i-th user related to signal s (velocity
or pressure) is calculated by the following formula:

w
′{s}
p,i = d̄

{s}
p,i σ

{s}
p,i . (8)

After that, weights should be normalized. Normalization of weight is used to sim-
plify the classification phase. Weight w

{s}
p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I,

of the p-th partition of the i-th user related to signal s (velocity or pressure) is
normalized by the following equation:
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w
{s}
p,i = 1− 0.9 · w′{s}

p,i

max
{
w

′{s}
1,i , . . . , w

′{s}
PN{s},i

} . (9)

Use of coefficient 0.9 in formula (9) causes that partition with the lowest value
of weight of importance is also used in classification process.

Next, selection of location of decision boundary and determination of the
value dlrnmax

{s}
p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, s ∈ {v, z} is performed

(see [31]). The determined values have an impact on spacing of fuzzy sets,
which represent values {low, high} assumed by the PN{v} + PN{z} linguistic
variables "the truth of the i-th user signature from p-th partition of s signal"
(p = 1, 2, . . . , PN{s}, s ∈ {v, z}).

2.3 Signature Classification

In the last step signature verification is performed. In this step flexible Mamdani-
type neuro-fuzzy system is used (see e.g. [2]-[3], [22]). Our system works on the
basis of two fuzzy rules presented as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R1 :

[
IF

(
dtst

{s}
1,i isA

1
1,i

{s}) ∣
∣
∣w

{s}
1,i OR . . .

(
dtst

{s}
PN{s},iisA

1
PN{s},i

{s}) ∣
∣
∣w

{s}
PN{s},i THENyiisB

1

]

R2 :

[
IF

(
dtst

{s}
1,i isA

2
1,i

{s}) ∣
∣
∣w

{s}
1,i OR . . .

(
dtst

{s}
PN{s},iisA

2
PN{s},i

{s}) ∣
∣
∣w

{s}
PN{s},i THENyiisB

2

] , (10)

where

- dtst
{s}
p,i , s ∈ {v, z}, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, are input linguis-

tic variables, whose numeric value is a distance between the test signature
trajectory of the i-th signer and decision boundary in the p-th partition for
signatures aligned with use of s signal.

- A1
p,i

{s}, A2
p,i

{s}, p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, are input fuzzy sets
related to the signal s ∈ {v, z} shown in Fig. 2.

- yi, i = 1, 2, . . . , I, is input linguistic variable interpreted as reliability of
signature.

- B1, B2 are output fuzzy sets shown in Fig. 2.
- w

{s}
p,i , p = 1, 2, . . . , PN{s}, i = 1, 2, . . . , I, s ∈ {v, z}, are weights of the p-th

partition of the i-th user related to signal s.
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Fig. 2. Input and output fuzzy sets of the flexible neuro-fuzzy system of the Mamdani
type for signature verification

Signature is considered true if the following assumption is satisfied:

ȳi =

S∗

⎧
⎨

⎩

μA2
1,i

{s}

(
dtst

{s}
1,i

)
, . . . ,

μA2

PN{s},i

{s}

(
dtst

{s}
PN{s},i

)
;w

{s}
1,i , . . . , w

{s}
PN{s},i

⎫
⎬

⎭

⎛

⎜
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⎜
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{s}

(
dtst
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)
;w

{s}
1,i , . . . , w

{s}
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⎫
⎬

⎭
+

S∗

⎧
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μA1
1,i

{s}

(
dtst

{s}
1,i

)
, . . . ,

μA1

PN{s},i

{s}

(
dtst

{s}
PN{s},i

)
;w

{s}
1,i , . . . , w

{s}
PN{s},i

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

> cthi,

(11)
where

- S∗ {·} is a weighted t-conorm of the algebraic type (see [2]).
- ȳi, i = 1, 2, . . . , I, is the value of the output signal of applied neuro-fuzzy

system described by rules (10). Detailed description of the system can be
found in [2]. Formula (11) is the result of the general relationship describing
the transformation of the input signal of Mamdani-type system.

- cthi ∈ [0, 1] - coefficient determined experimentally during training phase
for each user to eliminate disproportion between FAR and FRR error (see
[29]). The parameters cthi ∈ [0, 1], computed individually for the i-th user,
i = 1, 2, . . . , I, are used during verification process in the test phase.

In future research we plan to use probabilistic neural networks for classification
of dynamic signature ([8], [19]-[21]).
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3 Simulation Results

Public SVC 2004 database (see [29]) was used during simulation. The database
contains 40 signers and for each signer 20 genuine and 20 forgery signatures. The
test was performed five times, every time for all signers stored in the database.
During training phase 5 genuine signatures (numbers 1-10) of each signer were
used. During test phase 10 genuine signatures (numbers 11-20) and 20 forgery
signatures (numbers 21-40) of each signer were used. All the methods were im-
plemented in the authorial testing environment to compare the results.

In the Table 1 we present simulation results. FAR (False Acceptance Rate)
and FRR (False Rejection Rate) values are commonly used in biometrics (see
e.g. [10]). It should be noted, that method based on vertical partitions achieves
the best results.

Table 1. Results of simulation performed by our system

Method Average
FAR

Average
FRR

Average
error

Khan et al. [9] 12.30 % 13.90 % 13.10 %
Zalasiński and Cpałka [31] 11.13 % 11.45 % 11.29 %
Our method 11.35 % 9.80 % 10.57 %

4 Conclusions

In this paper a new method of signature partitioning is presented. The method
assumes division of signals on the basis of discretization points time index val-
ues. All partitions are used during training and verification process. They are
described by weights of importance which contain information about reliabil-
ity of the partition. Achieved high accuracy of signature verification proves the
correctness of the proposed method.
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