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Abstract. Neural Gas is a neural network algorithm for vector quan-
tization. It has not arbitrary established network topology, instead its
topology is changing dynamically during training process. Originally,
the Neural Gas is an unsupervised algorithm. However, there are sev-
eral extensions that enables Neural Gas to use the information about
sample’s class. This significantly improves the accuracy of obtained clus-
ters. Therefore, the Neural Gas was successfully used in classification
problems. In this paper we present a novel method to learn the Neural
Gas with fully and partially labelled data sets. Proposed method simu-
lates the neuron’s hesitation between membership to the classes during
the learning. Hesitation process is based on neuron’s class membership
probability and Metropolis-Hastings algorithm. The proposed method
was compared with state-of-art extensions of Neural Gas on supervised
and semi-supervised classification tasks on benchmark data sets. Exper-
imental results yield better or the same classification accuracy on both
types of supervision.

Keywords: Neural Gas, Supervised clustering, Semi-supervised cluster-
ing, Classification, Metropolis-Hastings algorithm.

1 Introduction

Neural Gas (NG) is an algorithm for cluster analysis [2], first presented by Mar-
tinez and Shulten [11]. In contrary to well known Self-Organising Maps [10] it has
not arbitrary established network topology, instead its topology is changing dy-
namically during the training process. There are many extensions of NG mainly
focused on finding optimal neurons number [3] or using more sophisticated sim-
ilarity measures than Euclidean [14], [5]. Originally, NG optimises clusters in
unsupervised way, although there are various examples that use NG in classifi-
cation tasks [14], [17]. The methods that enables use of NG for classification can
be divided into three groups.

The first group of methods uses standard NG in an unsupervised manner.
After training for each neuron the class label is designated based on major vote
of sample’s class, which belongs to the neuron. This method is also so-called
’winner-takes-all’ (WTA) strategy [14].
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The second approach combines information about class label in binary coded
manner in attribute vector [13]. Each neuron has two types of weights, cor-
responding to attributes and class. The part of input vector with class infor-
mation is presented only during training. In testing phase, the information of
neuron class label is coded in class weights. This can be interpreted as a fuzzy
class membership. There are several approaches to measure similarity between
neuron’s weights and input vector [18], [19].

Third group of methods arbitrary assigns neurons to the class label [14]. The
neuron is learned only with samples from the corresponding class. During the
testing, the output class label is designed upon the closest neuron’s class. There
are some more sophisticated methods of learning with arbitrary assigned neurons
in NG[5], [7], [4].

Contemporary, more often in data mining are situations that class labels are
not available for all samples in data set. This is because labelling data by human
expert can be expensive. Learning with partially labelled data is so-called semi-
supervised [8].

In this paper we present a novel method for controlling supervision in Neu-
ral Gas algorithm. It is based on neuron’s class membership probability and
Metropolis-Hastings (MH) algorithm [12], [6]. The MH is well known from Sim-
ulated Annealing (SA) method [9]. Proposed method can be used on both data
type: fully and partially labelled. We so-called proposed method as ’Hesitant
Neural Gas’ (HNG). Recently, we proposed a similar method for controlling
learning of neurons in Self-Organising Maps [15].

Firstly, we provide a description of Neural Gas algorithm and three methods to
use it for classification (one from each group). Secondly, the Hesitant Neural Gas
algorithm is described. Then, the comparison of the HNG with other methods
is presented on fully and partially labelled sets. Additionally, on fully labelled
sets HNG is compared to Learning Vector Quantization (LVQ) algorithm [10],
which is a state-of-art method in prototype-based supervised classification.

2 Methods

Let’s denote data set as D = {(xi, ci)}, where xi is an attribute vector, x ∈
Rd and ci is a discrete class number of i-th sample, i = [1, 2, ...,M ] and c =
[1, 2, ..., C]. Sometimes the class number will be encoded as a binary vector and
denoted as yi, where yij = 1 for j = ci and yij = 0 otherwise.

2.1 Neural Gas

In the Neural Gas algorithm each neuron is described by weights vector wj ,
where j = {1, 2, .., N}. For each input sample Di are computed distances to
neurons by following equation:

Dist(wj , Di) = (xi −wj)
T (xi −wj). (1)
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Then distances are sorted and for each neuron a kj rank is assigned, k =
{0, 1, 2, .., N − 1}. The rank kj = 0 is assigned to the closest neuron, whereas
consecutive k are for neurons with greater distance. The kj = N−1 is for the fur-
thest neuron. Then, weight update step is executed. The weights of each neuron
are updated with the following formula:

w′
j = wj + ηe−kj/λ(xi −wj), (2)

where η is a learning rate and λ is a neighbourhood range. The η is decreasing
during learning:

η = η0e
−t/σ, (3)

where t is a current epoch number and σ controls speed of decreasing. Network
is trained till chosen number of learning procedure iterations tstop is exceeded. In
original Neural Gas presented by Martinez and Schulten [11] there were also op-
timised edges, which connect similar neurons. This can be useful for visualization
purposes. However, this is not in the scope of this paper.

2.2 WTA Neural Gas

In the WTA Neural Gas after unsupervised training process the class member-
ship for each neuron is computed. The neuron’s class label is designated base
on major votes of sample’s class for which neuron was selected as the closest
(kj = 0). The disadvantage of this method are so-called ’empty neurons’, when
neuron has no assigned label. This situation is observed, when neuron has never
been selected as the closest during training but is selected for the testing sample.
In case of partially labelled data set, only labelled samples participate in class
voting.

2.3 Fuzzy Neural Gas

The other approach to use NG as classifier is so-called ’Fuzzy Neural Gas’. In
the training process, it takes into consideration the class vector yj additionally
to input attributes. Each neuron contains part of weights corresponding to the
attributes wx

j and class wy
j . The similarity measure between input sample and

neuron is computed during learning process by equation:

Disttrain(wj , Di) = γ(wx
j − xi)

T (wx
j − xi) + (1 − γ)(wy

j − yi)
T (wy

j − yi). (4)

The γ coefficient controls the balance between distance from attributes and class.
The update step is performed with equations:

wx′
j = wx

j + ηγe−kj/λ(xi −wx
j ), (5)

wy′
j = wy

j + η(1 − γ)e−kj/λ(yi −wy
j ). (6)
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In the testing phase, to the network is presented an input vector only with at-
tributes. This step is also so-called ’exploitation phase’. The distance is computed
by:

Disttest(wj , Di) = (wx
j − xi)

T (wx
j − xi). (7)

The output class label is designated based on position of maximum value in
the wy

j weights of the closest neuron. For semi-supervised learning, the second
part of equation (4) is considered only when sample’s class label is available,
otherwise is omitted.

2.4 Class Neural Gas

The last approach arbitrary assigns neurons to the classes. In the training process
neurons take part in the learning only with samples from corresponding class.
During testing, all neurons are considered for distance computation. The output
class label is designated from the closest neuron. We so-called this method as
’Class Neural Gas’ (CNG). In case of learning with samples without class label
all neurons participate in the distance computation during training and testing.

2.5 Proposed Method - Hesitant Neural Gas

In the proposed method, neuron’s class membership is described by a probability.
We note Pj(h) as a probability of j-th neuron’s membership in class number h.
In the training phase, for each sample is selected a group of neurons that will
take part in the weights optimisation. Selection is described by a matrix T , where
T i
j = 1 means that j-th neuron will participate in the learning with i-th sample,

T i
j = 0 otherwise. Neurons are selected in two steps. First choose neurons having

maximum probability for the class matching the class ci of the input sample:

T
i(1)
j =

{
1 if arg maxh(Pj(h)) = ci;
0 otherwise.

(8)

In the second step, remaining neurons are considered, with T
i(1)
j = 0. The deci-

sion on joining into the training with i-th sample is taken upon MH algorithm.
The probability of joining is computed using following equation:

J i
j = 1 − exp(−ρPj(ci)tstop/t), (9)

where ρ is the parameter that controls the intensity of hesitation, ρ ∈ [0, 1].
The greater ρ value, the more neurons are selected additionally to learning in
the MH step. In the eq.(9) the number of training iteration t is used, therefore
neurons will be selected less frequently at the end of learning process than at its
beginning. This can be interpreted as a hesitation of the neuron, which decreases

during the training. Whether the MH decision will be positive (T
i(2)
j = 1), we

draw random number a from an uniform distribution, a ∈ [0, 1]. The neuron will
be added to the training group if a value is smaller than J i

j :

T
i(2)
j =

{
1 if a < J i

j ;
0 otherwise.

(10)
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The final decision on neuron selection is a logical ’or’ of the decisions from two

steps: T i
j = T

i(1)
j ∨ T

i(2)
j . Neurons with T i

j = 0 will not take part in distance
computation step neither in weights update step. After all training samples pre-
sentation, neuron’s class membership probability is updated. During the training
for each i-th sample the neighbourhood value e−kj/λ is added to the neuron’s
probability of membership in a given class:

P ′
j(h) =

N∑
i

T i
je

−kj/λ, for h = ci. (11)

Note, that the neighbourhood is considered only if j-th neuron was selected for
training with i-th sample. The neighbourhood value represents the belonging of
the neuron to the input sample’s class. After all iterations in a given epoch, the
probability is normalized and updated with formula:

Pj(h) =
P ′
j(h)∑C

l=1 P
′
j(l)

. (12)

In case of partially labelled data, we assume that all neurons take part in the
training for samples without class label, thus T i

j = 1 for all neurons. However,
unlabelled samples do not take part in probability of class membership update
(eq. 11). For labelled samples the procedure described above is used.

3 Results

To test performance of the Hesitant Neural Gas method on fully labelled data, we
will compare it to the Learning Vector Quantization algorithm (LVQ) [10], WTA
NG, Fuzzy NG, Class NG, Hesitant NG. The LVQ is not used in comparison on
partially labelled data sets. The comparison is made on 6 real data sets. We used
data sets ’Wine’, ’Ionosphere’, ’Iris’, ’Sonar’, ’Glass’ from the ’UCI Machine Lear-
ing Repository’ 1 [1], and set ’Faces’ are from the ’The ORL Database of Faces’2.
Data sets are described in Table 1. In all experiments we train algorithms with
number of iterations tstop = 200. We use learning rate η1 = 0.1, exponentially
decreasing to η200 = 0.001. The neighbourhood range was λ = 1. All algorithms
were initialized with random samples. For all data sets, we arbitrarily chose the
neurons number - selecting optimal network size is not in the scope of this paper.
The selected values are presented in Table 1. The total number of neurons for
each algorithm type is equal. Additionally, the ρ parameter for the HNG must
be tuned. We checked several values of ρ, ρ = {0.05, 0.25, 0.5, 0.75, 1.0}. The op-
timal value was selected by cross-validation. Selected ρ values for each data set
are presented in Table 1. To demonstrate the impact on number of positive MH
decision depending on different ρ values, we count the number of positive MH
decisions in each learning epoch for all neurons in the network for all considered

1 http://archive.ics.uci.edu/ml/
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://archive.ics.uci.edu/ml/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Table 1. Description of data sets used to test performance, number of neurons used
to each data set and optimal ρ in the Hesitant Neural Gas. (∗In ’Faces’ data set, the
number of attributes was reduced with PCA.)

Train
examples

Test
examples

Attributes Classes # neurons MH ρ

Faces 320 80 50∗ 40 80 0.75

Sonar 166 42 60 2 36 1

Glass 171 43 9 6 24 0.05

Iris 120 30 4 3 12 0.25

Ionosphere 280 71 34 2 24 0.5

Wine 142 36 13 3 12 0.25

ρ values. The demonstration is made on ’Iris’ set and presented in the Fig.1.
It can be observed that, the greater ρ value is, the more positive MH decisions
are made and the more frequently neuron takes part in the training with the
sample from the class different than its major class. For each data set we made
10 repetitions to avoid effect of local minima. At each time training and testing
subsets were redrawn. For comparison measure, we take a percentage of incor-
rect classifications. The obtained mean results on testing subsets are presented
in the Table.2. The results were obtained using all labels from data sets in the
training.

Table 2. Percent of incorrect classification on the testing subsets. Networks were
learned with fully labelled samples. Results are mean and σ over 10 runs.

LVQ
WTA

Neural Gas
Fuzzy

Neural Gas
Class Neural

Gas
Hesitant

Neural Gas

Faces 8.25±3.34 21.38±4.62 18.50±6.66 4.00±2.55 4.50±2.44

Sonar 14.52±7.48 23.1±5.39 19.76±6.92 13.33±6.07 13.57±5.50

Glass 31.16±6.95 34.42±5.98 37.67±9.29 35.35±5.46 29.77±9.79

Iris 4.00±2.11 4.33±4.46 3.67±1.89 4.00±2.11 4.00±2.11

Ionosphere 10.99±2.95 9.44±3.26 8.73±3.44 8.17±2.18 7.89±2.75

Wine 5.00±3.66 5.28±2.76 3.06±2.43 3.06±2.43 3.33±2.87

All sets error 73.92 97.95 91.39 67.91 63.06

The overall classification error on all data sets was the smallest for the pro-
posed HNG method. However, the CNG was the best method on three sets. It
gains the lowest error on ’Faces’, ’Sonar’ and ’Wine’ sets. The HNG was the
best method on two sets: ’Sonar’ and ’Ionosphere’. The FNG method was the
best on two data sets, namely: ’Iris’ and ’Wine’. The HNG and CNG obtained
smaller overall error than the LVQ algorithm. Although, the LVQ method was
better than WTA-NG and FNG. The WTA-NG has the poorest accuracy on all
sets, which can be expected as only this method does not use information about
class labels directly in the learning.
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Fig. 1. Number of positive MH decisions in Hesitant Neural Gas algorithm taken in
each training iteration for different ρ values on ’Iris’ data set
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Fig. 2. Percent of incorrect classification on the testing subsets. Networks were learned
with partially labelled samples. Results are mean and σ over 10 runs.
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To test performance of the proposed HNG method on partially labelled data,
we used only part of available labels from the training subsets in the learning
process, in per cent r = {12.5, 25, 37.5, 50, 75, 87.5, 100}. The results are pre-
sented in the Fig.2. The HNG method achieved the smallest classification error
for ’Faces’, ’Sonar’, ’Glass’ and ’Iris’ data sets when less than a half of available
labels were used during the learning, r < 50. For ’Ionosphere’ and ’Wine’ data
sets when r was smaller than 50, the FNG has the slightly better performance
than the HNG. When small number of labels was used (r < 50), it can be ob-
served that the CNG has the largest classification error on all data sets. Though,
when the number of used labels grows the performance of the CNG significantly
increases. This can be caused by arbitrary assigning class labels to the neuron.
When the number of samples with class labels is smaller than number of samples
without labels, the impact of labelled samples on neurons’ weights is not enough
to force unlabelled samples to belong to correct neurons. For ’Iris’ and ’Wine’
data sets, for r > 50 all methods seems to give similar results. These sets are
rather simple, therefore all methods obtained similar local minima.

4 Conclusions

In this paper we present a novel method that extends Neural Gas algorithm
for supervised and semi-supervised learning. It is so-called the ’Hesitant Neu-
ral Gas’. It controls the neuron’s weights optimisation by selecting a group of
neurons which will participate in the training of the presented sample. At first,
neurons with the same as sample’s class are selected. In the next step, the hesita-
tion mechanism is introduced, which enables neurons with different class to take
part in weights optimisation. The hesitation is based on neuron’s class mem-
bership probability and Metropolis-Hastings algorithm. The hesitation intensity
is controlled by ρ parameter and current training epoch number. The number
of MH positive decisions decrease during learning, which can be interpreted as
making neurons more confident. For unlabelled samples all neurons participate
in the training. The proposed HNG method was compared to other state-of-art
extensions of NG and LVQ algorithm on classification tasks. The results confirm
that proposed method obtains better or similar accuracy than other methods on
both types of supervision. Matlab implementation of the HNG algorithm is avail-
able at http://home.elka.pw.edu.pl/~pplonski/hesitant_neural_gas.
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