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Abstract. In the paper a new method is proposed which improves the
classification accuracy of decision trees for samples with missing values.
This aim was achieved by adding new nodes to the decision tree. The
proposed procedure applies structures and functions of well-known C4.5
algorithm. However, it can be easily adapted to other methods, for form-
ing decision trees. The efficiency of the new algorithm has been confirmed
by tests using eleven databases from UCI Repository. The research has
been concerned classification but the method is not limited to classifica-
tion tasks.
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1 Introduction

In the current stage of the development of computer science, especially compu-
tational intelligence, we dispose of many methods designed to data processing
and decision making. The important positions are occupied by non-parametric
techniques [8,24,25,26], neural networks [1,10,11,23], fuzzy systems [12,22], rela-
tional systems [30], classifiers based on Pawlak rough sets [17,19] and decision
trees [1,4,27] as well as any hybrid methods [6,7,18,29,31,32]. Actually, all of
them have been already adapted to process also incomplete input data. In this
area hybrid solutions play important role, especially rough fuzzy systems [15,16]
and other high level fuzzy methods [33,34,35]. However, this paper concerns
decision trees only.

As in the case of many other decision system, structure of the decision tree
is determined by a set of samples applied at design time, i.e. learning set. Each
sample concerns single state or observation, and described by a defined set of
attributes. Generally, separated samples belong to one or more class, or to none
of considered classes. In the paper we assume that every learning sample belongs
to exactly one of the considered classes. Moreover, we accept that values of some
attributes describing the samples are missing. This subject has been considered
by a lot of authors. In many papers there are many various solutions for it.
Among others, in [36,37] authors use the internal node strategy in building cost-
sensitive decision trees. Another proposition has been formulated in [2]. Authors
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use a fuzzy random forest, which is an ensemble of fuzzy decision trees. In a
case of missing values on the attribute used in a branch, the sample is further
processed by every sub-node with degree of fulfilment divided by number of sub-
nodes. A similar solution is proposed in [9], but in application for classification
data streams by a fuzzy decision tree. A little more sophisticated approach exist
in a popular algorithm C4.5 [20], where degrees of fulfilment are multiplied
by factors equal to probabilities of use corresponding sub-nodes.

In the paper authors propose an algorithm that adds alternative nodes to
a decision tree in order to improve accuracy of classification in the case when
the sample have missing values of attributes. This approach differs from the
method in CART [3], where surrogate splits are used, but no new nodes are
added to the decision tree. The proposed method applies algorithm C4.5 [20,21],
but it is independent from C4.5, therefore authors in the paper have omitted
description of C4.5, and the proposed bellow algorithm may also work slightly
changed with different methods for building and pruning of decision trees.

The paper is organised as follow. Section 2 contains the genesis of the proposed
algorithm, the main idea and details of the method. Section 3 presents the process
of experiments and obtained results. It contains also the example of wrapped tree
for the simplest benchmark - well known iris classification. The last section is a
summary, conclusions and final remarks.

2 Proposed Method

This section presents genesis of proposed algorithm and details of them. We
called them WrapTree, because it wrapped the original decision tree by addi-
tional branches and nodes which improve the classification accuracy of decision
in the case of missing values.

The starting point of the research was the idea of decision tree forest. In
this solution many decision trees are created, each for different set of available
features. In such ensemble, during classification of a sample only one decision
tree is active. It is the tree prepared for work with specific set of attributes
compatible with set of available attributes in current sample. If the compatible
tree is unavailable, e.g. due to limited system size, the sample is rejected or
processed by most appropriate tree using some more sophisticate methods.

During the preliminary studies about forests of trees the following observations
have been done:

1. There are many cases when decision trees, which were created with different
set of attributes (Va, Vb) are the same, because they use the same subset
of attributes (Vc, Vc ⊆ Va ∧ Vc ⊆ Vb)

2. In some cases decision tree, created with some set of attributes (Va), contains
only one leaf, mainly because of the pruning. In that case there seems to be
no reason to create trees with smaller sets of attributes (Vb � Va) than
mentioned one-element tree.

3. In the most cases the parts of decision trees close to the root are identical
in trees made for various sets of available attributes.
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Our goal is to propose the algorithm creating a single tree wrapped by sup-
plementary branches and nodes dedicated to serving the samples with missing
features. The reference tree is built for serving complete samples by any known
method e.g. C4.5. After wrapping process the resultant tree should assume clas-
sification accuracy comparable to mentioned above tree forest. It occurs also in
the case of missing features. The total number of branches and nodes should be
significantly lower.

Due to mentioned cases, our algorithm does not store identical trees more than
once, use original tree as a base for new decision trees, and does not add new
nodes for any branches, when it is unnecessary. These features reduce greatly
time and resources needed to create the decision tree in comparison to a method,
which create decision trees separately for each chosen sets of available attributes.

Because final decision tree is the equivalent to composition of many decision
trees, which have been created with different sets of attributes, there is necessity
to add proper method checking if chosen attribute has non-missing value.

2.1 Extending of Reference Tree

As was mentioned above, the reference decision tree is prepared by any known
algorithm, e.g. C4.5. However, such a tree must be extended to be able to work
with supplementary branches and nodes which will be prepared by the pro-
posed algorithm. As a result the reference decision tree will contain four types
of branches, i.e.

– Numerical — determine if the value of examined attribute is greater than
defined threshold or not. This type of branches occurs only when former
branches on the processed path excluded case of inaccessibility of exam-
ined attribute value, i.e. the examined in branch attribute has been former
examined for the same sample.

– Symbolic — determine if the attribute takes defined value or label or not. As
previous one this type of branch occurs if, basing on previous branches, we
are sure that value of examined feature is available in the processed sample.

– Numerical or lack — if value of the examined attribute is available they
determine if the value of examined attribute is greater than the defined
threshold or not. When value of examined attribute is not available the
alternative subtree is assigned.

– Symbolic or lack — if value of examined attribute is available they determine
if the attribute takes the defined value or label or not. When value of the
examined attribute is not available, the alternative subtree is assigned.

Both types of numerical branches have applied in a reference tree shown in Fig. 1.

2.2 Adding of New Nodes

The alternative subtrees, wrapped the reference tree, are created by the proposed
procedure (WrapTree) presented below. This procedure is recursive. It adds to
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Fig. 1. Results of the algorithm for G volmax = 0, 1, 2, iris database, 135 samples
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some branches of existing decision tree an alternative node. These newly created
nodes are used afterwards as a root of a newdecision tree,which are createdbyC4.5,
but with limited set of available attributes.

Procedure. WrapTree

Input: a node of decision tree (tree node(act)), set of already used attributes
(P (act)), set of excluded attributes (G(act)), set of samples (X(act)),
vector of samples weights (w(act)), maximal size of the G(act)

and intensity of a algorithm (constant G volmax).
Result: Modification of the node tree node(act) or its child.

1 if tree node(act) is a leaf then return;

2 if ||G(act)|| ≥ G volmax then return;

3 if
∑

xs:xs∈X(act) w
(act)
s < 1 then return;

4 v(act) = decision attribute of tree node(act);

5 if v(act) /∈ P (act) then
// new attribute

6 create an empty node (tree node(alt)) alternative to tree node(act);

7 create a decision sub-tree using tree node(alt) as a root, with samples X(act),

their weights w(act) and set of available attributes V −
{
G(act) ∪

{
v(act)

}}
;

8 PruneTree(tree node(alt), X(act), w(act));

9 WrapTree(tree node(alt), P (act),G(act) ∪ {v(act)}, X(act), w(act), G volmax);

10 P (act) = P (act) ∪ {v(act)};

11 foreach child node tree node(sub) of tree node(act) do

12 determine X(sub),w(sub) for tree node(sub); // in two variants

13 WrapTree(tree node(sub), P (act),G(act), X(act), w(act), G volmax);

The procedure requires the following input parameters set by operator: con-
stant integer parameter G volmax greater than 0, but not greater than the num-
ber of attributes (n), pointer to node of a decision tree (tree node(act)), sets of
already used (P (act)) and excluded (G(act)) attributes, set of samples (X(act))
and vector of their weights (w(act)). In the first execution of the procedure, root
node is pointed, all samples with their initial weights (usually all of them equal
to 1) and empty sets of already used and excluded attributes.

Parameter G volmax defines the intensity of the algorithm, and affects the
number of nodes added. We can estimate that the obtained by our procedure

wrapped tree is equivalent of an ensemble (forest) of 1 +

(
n
1

)
+

(
n
2

)
... +(

n
G volmax

)
trees, created using various sets of attributes. The first tree of

such forest is created using complete samples. The other trees are build us-
ing samples with combination of n − G volmax to n − 1 available attributes.
When G volmax = 1, then proposed algorithm create one decision tree, that is
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Table 1. Properties of the used data sets

data set no. of samples no. of attributes no. of classes

dermatology 366 34 6
ecoli 336 7 8
glass 214 9 2
ionosphere 351 34 2
iris 150 4 3
page-blocks 5473 10 5
parkinsons 195 22 2
pendigits 10992 16 10
pima diabetes 768 8 2
vowel 528 10 11
wisconsin 699 9 2

equivalent to a composition of n + 1 trees (Treea, a = 1 . . . n + 1). The first
one is the reference tree, prepared for complete samples served. The following
trees (Treea, a = 2 . . . n + 1) are created omitting one attribute (va−1). When
G volmax = n, the algorithm makes tree that is equivalent to composition of de-
cision trees created for every possible combination of available sets, including
empty set.

Procedure WrapTree in each execution concerns on the single node of the de-
cision tree and may recursively execute itself on sub-nodes. In the beginning
(commands 1-3) WrapTree checks if at least one of stopping condition is fulfilled.
These stopping conditions are: verify if the current node is a leaf, and does not
have sub-nodes; check if defined maximal level of recursion (G volmax) has been
achieved, verify if a sum of samples weights is too small. After that, the proce-
dure checks if an attribute in the current node has been already used (command
5), if not, then: adds a new empty node (tree node(alt)), and connects it to cur-
rent node; create a new sub tree (command 7) using the same set of samples and
their weights, but set of attributes reduced by excluded attributes (G(act)) and
attribute of current node (v(act)); then prune that tree (command 8), after that
execute WrapTree (command 9) for created and pruned sub-tree with the same
settings, but with set of forbidden attributes enlarged by the current attribute
(v(act)); later adds current attribute to set of already used attributes (command
10). It is worth to mention, that commands 7-8 use C4.5 algorithm, but they can
be easily substituted by other decision tree building algorithms. After creation
of alternative node procedure processes each sub-node (command 11), which are
not the alternative node. At first, procedure determine set of samples and their
weights, which should be directed to this sub-node (command 12), and then ex-
ecute WrapTree (command 13) with determined before set of samples and their
weights. In the paper two variants of the method to determine samples and their
weights for sub-node (command 12) are proposed, which differ when learning
samples have missing values:
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1. X(sub) = all samples, that have available current attribute (v(act)) and ful-
filled condition in tree node(act) for child node tree node(sub).

w
(sub)
s =

{
w

(act)
s if xs ∈ X(sub)

0 else,

where xs is a sample with index s.
2. X(sub) = all samples, that have available value for current attribute (v(act))

and fulfilled condition in tree node(act) for child node tree nodesub; or miss-
ing value for current attribute (v(act)).

w
(sub)
s =

⎧⎪⎨
⎪⎩
w

(cur)
s if xs ∈ X(sub) ∧ v(act) ∈ Ps

w
(cur)
s · p(cur,sub) if xs ∈ X(sub) ∧ v(act) ∈ Gs

0 else,
where Ps is a set of attributes with non-missing values for sample xs, Gs is a
set of attributes with missing values for sample xs, p

(cur,sub) is a probability,
that learning samples which reached tree node(act), and had available val-
ues for attribute v(act), were sent to tree node(sub). This method is similar
to used in C4.5 [20].

By default the first method were used, which has lower accuracy of classification
samples in learning set in case of missing values in learning and testing set, but
produce smaller decision trees.

Table 2. Efficiency of classification

number of missing values in sample 1 3
G volmax 0 1 0 1 3
dataset

dermatology .883 .894 .863 .892 .892
ecoli .594 .656 .465 .486 .528
glass .882 .882 .790 .837 .838
ionosphere .881 .879 .871 .853 .845
iris .947 .953 .767 .693 .813
page-blocks .766 .825 .614 .646 .714
parkinsons .851 .838 .778 .838 .838
pendigits .941 .959 .910 .921 .929
pima diabetes .687 .681 .628 .657 .637
vowel .703 .765 .510 .566 .605
wisconsin .929 .948 .946 .943 .946

winner 3 8 1 2 9

3 Experiments and Results

All experiments performed to 10-fold cross validation. It states, that whole set
of samples is divided into 10 subsets with nearly equal number of samples. All
experiments are repeated 10 times and every final result are average for 10 tests.
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In each test consecutive subset is chosen as the testing set and remaining 9
subsets as the learning set.

The algorithm was tested using data sets (Table 1) from UCI Repository [14].
Each sample belonged to exactly one class and all attributes were numerical. In
the paper efficiency of classification is computed not as simple accuracy of clas-
sification but as average accuracy of classification for samples in each class,

efficiency =
1

m

∑
j=1...m

⎛
⎝ 1

||ωj ||
∑

xs:xs∈ωj

correctly classified(xs)

⎞
⎠ , (1)

where m is a number of samples, ωj is j class, ||ωj || is number of testing samples
that belongs to ωj , correctly classified(xs) is a logical function, which states
if sample xs was properly classified.

For testing purposes databases were prepared in two variants (a number
of missing values in sample = {1,3}), according to number of attributes with
missing values for each sample. Distribution of missing values within data sets
was pseudo-random, but constructed system tried to enforce the same number
of missing values for each attribute.

Table 3. Number of nodes in decision tree

number of missing values in sample 1 3
G volmax 0 1 0 1 3
dataset

dermatology 32.2 179.0 54.8 239.4 2236.7
ecoli 57.4 216.1 76.8 207.5 664.2
glass 14.0 53.7 19.8 60.4 204.2
ionosphere 27.2 153.1 27.4 143.0 1294.1
iris 21.2 44.5 39.8 63.5 100.8
page-blocks 128.8 627.7 131.2 534.4 2914.1
parkinsons 22.6 89.0 20.4 79.8 457.0
pendigits 908.0 5737.6 1796.8 7782.7 61448.3
pima diabetes 24.0 88.8 12.8 50.4 271.3
vowel 190.0 875.0 302.0 994.0 4695.0
wisconsin 33.2 131.5 51.8 167.1 563.9

average difference – +338,9% – +261,0% +2045,3%

Experiments were performed with standard for C4.5 parameters of building
tree and pruning. Parameter G volmax was set to values: 0, which means that
algorithm WrapTree was disabled; 1 and 3. Parameter G volmax = 3 was tested
only for samples with 3 missing parameters, because all decision tree created
with G volmax greater than number of missing values in testing sample works
exactly the same.
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Table 4. Number of the used nodes during classification

number of missing values in sample 1 3
G volmax 0 1 0 1 3
dataset

dermatology 5.4 5.2 7.3 6.0 5.9
ecoli 8.3 6.0 17.6 10.3 6.3
glass 4.0 3.8 7.6 5.6 4.8
ionosphere 5.6 5.4 6.6 6.0 5.9
iris 6.4 4.3 23.3 10.2 4.9
page-blocks 11.8 8.6 19.1 11.0 7.8
parkinsons 4.6 4.3 5.1 4.3 4.2
pendigits 13.2 10.3 28.7 15.5 11.0
pima diabetes 5.3 4.4 5.6 5.0 4.4
vowel 11.8 8.3 29.7 14.2 9.0
wisconsin 5.3 4.4 11.1 7.0 5.4

average difference – -17.5% – -32.3% -44.6%

Results of the experiments are shown in tables: Table 2 – average efficiency
of classification of each class according to 1, Table 3 – mean number of nodes
in decision tree, Table 4 – average number of nodes used during classification
of testing samples.

4 Final Remarks

In the paper, authors presented a new method for improving accuracy of classifi-
cation by decision trees in case of samples with missing values. The effectiveness
of a solution has been confirmed by series computer simulations. As expected,
the tests showed that size of decision trees significantly increased after proposed
procedure execution. The size is notwithstanding smaller than corresponding
tree forest. Moreover, the wrapped tree use smaller number of nodes than other
solution designed to process samples with missing features.

The future works with presented idea will concerns extending the interpretabil-
ity of the knowledge contained in the tree. In this subject the inspiration could be
a proposition that comes from fuzzy systems [5]. Also the ensembles of wrapped
trees combined with other types of classification [28] could be promising. They
could use e.g. AdaBoost or bagging metaalgorithms [13].
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