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Abstract. Radial Basis Function Neural Networks (RBFNs) are quite
popular due to their ability to discover and approximate complex non-
linear dependencies within the data under analysis. The performance of
the RBF network depends on numerous factors. One of them is a value of
the RBF shape parameter. This parameter has a direct impact on perfor-
mance of the transfer function of each hidden unit. Values of the transfer
function parameters, including the value of its shape, are set during the
RBFN tuning phase. Setting values of the transfer function parameters,
including its shape can be viewed as the optimization problem in which
the performance of the considered RBFN is maximized. In the paper the
agent-based population learning algorithm finding the optimal or near
optimal value of the RBF shape parameter is proposed and evaluated.

1 Introduction

Artificial Neural Networks are used to solve many different kind of problems such
as classification, signal processing, pattern recognition, prediction, time series
analysis, image preprocessing, speaker identification, etc. The RBF networks
are considered as an universal approximation tool similarly to the multilayer
perceptrons (MLPs). However, radial basis function networks usually achieve
faster convergence since only one layer of weights is required [10].

A RBF network is constructed from a three-layer architecture with a feed-
back. The input layer consisting of a set of source units connects the network to
the environment. The hidden layer consists of hidden neurons with radial basis
functions [10]. RBFNs use different functions at each hidden unit. Neverthe-
less, RBFN design is not straightforward. One of the main problems with neural
networks is the lack of consensus on how to best implement them [18].

RBFNs are generally non-linear and belong to a special class of tools which
performance depends on the distance between an input vector and a center
vector, called centroid, prototype or kernel of the basis function. RBFNs ability
is to approximate complex non-linear mapping directly from the input-output
data [13]. The performance of the RBF network depends on numerous factors.
The basic problem with the RBFNs is to set an appropriate number of radial
basis function, i.e. a number of hidden units. Deciding on this number results in
fixing the number of clusters and their centroids. Another factor, called a shape
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parameter of radial basis function, plays also an important role from the point of
view of accuracy and stability of the RBF-based approximations. In numerous
reported applications RBF's contain free shape parameters, which can be tuned
by users. In [9] it is viewed as a disadvantage and somewhat ironic since the
user is forced to make a decision on the choice of the shape parameter. Such an
approach can also decrease chances to finding the optimal network structure [9].

In [11] it was suggested that the shape of radial basis functions should be
changed depending on the data distribution. Such a flexibility should result
in assuring better approximation effect in comparison with other approaches,
where, for example, radial basis function parameters are set by some ad hoc
criterion. A discussion of several approaches to setting shape parameter values
can be found in [11].

In RBFNs the transfer function is represented by the radial basis function
in each hidden unit. The transfer function is a composition of the activation
function and the output function. A large number of different transfer functions
have been proposed in the literature. Universal transfer functions have been
proposed by Hoffmann [12]. Their feature is an ability to change shape smoothly
from one function form to another. A taxonomy of different transfer functions
used for neural network design can be found in [8]. Several possibilities of using
transfer functions (i.e. activation and output functions) of different types in
neural network models, including regularization of networks with heterogeneous
nodes, are discussed in [8].

The paper deals with the problem of deciding on the RBF shape parameter
values with a view to optimize transfer function design. It is shown how the
agent-based population learning algorithm can be used for the RBF shape pa-
rameter setting through selection of transfer functions and their parameters. In
[5] the agent-based population learning algorithm was used to locate only pro-
totypes within the produced clusters. In the proposed extended version of the
algorithm, firstly clusters are produced. Next, the prototypes are determined. In
the second step the parameters of the output function for each hidden unit are
also determined including the type of the transfer function with its shape.

The goal of the paper is to show through computational experiment that
the agent-based population learning algorithm used to locate prototypes and
to set values of parameters of the radial basis functions can be competitive
in comparison with its earlier version presented in [5], as well as with other
RBFN training algorithms. To validate the approach, an extensive computational
experiment has been carried-out. Performance of the proposed algorithm has
been evaluated using several benchmark datasets from the UCI repository [1].

The paper is organized as follows. Section 2 gives a basic account of the RBF
networks. Idea of the agent-based population learning algorithm is presented
in Section 3. Section 4 explains main features of the proposed implementation
of the agent-based population learning algorithm. Section 5 provides details on
the computational experiment setup and discusses its results. Finally, the last
section contains conclusions and suggestions for future research.
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2 RBF Neural Network Background

The output of the RBF network is a linear combination of the outputs of the
hidden units, i.e. a linear combination of the nonlinear radial basis function
generating approximation of the unknown function. In case of the classification
problems the output value is produced using the sigmoid function with a linear
combination of the outputs of the hidden units as an argument. In general, the
RBFN output function has the following form:

-'L' w p sz Tupz (1)

where M defines the number of hidden neurons, G; is a radial basis function
associated with i—th hidden neuron, p; is a vector of parameters, which can
include the location of centroids, dispersion or other parameters describing the
radial function.

One of the most popular output functions of the RBF hidden units is the
Gaussian function [3], which has been chosen to best fit data from each cluster.
In such a case the output function takes the following form:

G(r,b) = 67(;’.)2, (2)

where r is a norm function denoted as r = ||z — ¢||, where z is an input instance,
¢ represents a centroid and b is a value of dispersion (or "width”) of the radial
function. The output function of the RBF hidden unit most frequently is calcu-
lated using the Euclidean distance although other measures of distance can be
also used. Thus, in general case, r refers to the Euclidean norm [9].

The Gaussian function is an example of function where the input instances are
analyzed with respect to the one particular point (centroid) in the data space.
The Gaussian function is also an example of a simple local function. In [8] it has
been concluded that such local functions are useful to produce circular neurons
and a solution especially for classification problems. In [8] it is also shown, that
RBFN constructed using local functions can be very sensitive when the data are
incomplete

Alternatively to the Gaussian function bicentral functions are considered to
be a more promising option. The bicentral functions are formed from N pair
of sigmoids and are defined with respect to two centers ¢; — e* and ¢; + e
The bicentral functions are window type localized functions and are separable.
A feature of the bicentral transfer functions is their flexibility in representing
various probability densities. They can also produce decision region with convex
shapes. These properties result from possibilities of moving the location of two
centers, changing the function dispersion and setting a slope of the function [8].
The bicentral output function has the following form:

N
G(x,c, b7 S) = HU(eSi (.’IIZ — ¢+ ebi))(l - a(eS; (.’IIZ —C — ebi)))v (3)
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where ¢ represents a centroid, b is a corresponding width of the radial function,
N is the dimension of the instance (i.e. the number of attributes), s and s’
represent a slope of the function for the left and the right side in any dimension
of the centroid, o is a sigmoid function with argument z defined as follows:
o(z) =, +el_ 5., where 8 determines the slope of the function and is equal to s
or s’ respectively.

The RBF network initialization is a process, where the set of parameters
of the radial basis functions, including the number of the radial basis func-
tions, their shapes and the number of centroids with their locations, needs to
be calculated or drawn. It is performed during the RBFN tuning. On the other
hand, RBFNs involve finding a set of weights of links between neurons such that
the network generates a desired output signals. The weights are determined in
the RBF network training process. Both processes can be also viewed as solving
the optimization task, where the optimization objective is to minimize the value
of the target function by finding the optimal values of vector weights and vector
of RBF parameters.

Since the RBF neural network initialization and training belong to the class
of computationally difficult combinatorial optimization problems [10], it is rea-
sonable to apply to solve this task one of the known metaheuristics. In this
paper the agent-based population learning, proposed originally in [2], is applied
as a collaborative approach to neural network tuning (see, for example [15]).
In the paper the agent-based population learning algorithm is proposed for the
purpose of the RBFN initialization including prototype selection and choice of
shape parameters. In next sections details of the proposed approach are included.

3 Agent-Based Population Learning Algorithm

In [2]it has been shown that agent-based population learning search can be used
as a robust and powerful optimizing technique. In the agent-based population
learning implementation both - optimization and improvement procedures are
executed by a set of agents cooperating and exchanging information within an
asynchronous team of agents (A-Team). The A-Team concept was originally
introduced in [15].

The concept of the A-Team was motivated by several approaches like black-
board systems and evolutionary algorithms, which have proven to be able to
successfully solve some difficult combinatorial optimization problems. Within
an A-Team agents achieve an implicit cooperation by sharing a population of
solutions, to the problem to be solved.

An A-Team can be also defined as a set of agents and a set of memories,
forming a network in which every agent remains in a closed loop. Each agent
possesses some problem-solving skills and each memory contains a population
of temporary solutions to the problem at hand. It also means that such an ar-
chitecture can deal with several searches conducted in parallel. In each iteration
of the process of searching for the best solution agents cooperate to construct,
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find and improve solutions which are read from the shared, common memory.
All agents can work asynchronously and in parallel.

Main functionality of the agent-based population learning approach includes
organizing and conducting the process of search for the best solution. It involves
a sequence of the following steps:

- Generation of the initial population of solutions to be stored in the common
memory.

- Activation of optimizing agents which execute some solution improvement
algorithms applied to solutions drawn from the common memory and, sub-
sequently, store them back after the attempted improvement in accordance
with a user defined replacement strategy.

- Continuation of the reading-improving-replacing cycle until a stopping cri-
terion is met. Such a criterion can be defined either or both as a predefined
number of iterations or a limiting time period during which optimizing agents
do not manage to improve the current best solution. After computation has
been stopped the best solution achieved so far is accepted as the final one.

More information on the population learning algorithm with optimization proce-
dures implemented as agents within an asynchronous team of agents (A-Team)
can be found in [2]. In [2] also several A-Team implementations are described.

4 An Approach to the RBF Network Tuning

The paper deals with the problem of RBFN initialization through applying the
agent-based population learning algorithm. The main goal is to find the optimal
set of RBF network parameters with respect to:

- Producing clusters and determining their centroids.
- Determining the kind of transfer function for each hidden units and other
parameters of the transfer function.

4.1 Producing Clusters and Determining Their Centroids

Under the proposed approach clusters are produced at the first stage of the
initialization process. They are generated using the procedure based on the sim-
ilarity coeflicient calculated as proposed in [6]. Clusters contain instances with
identical similarity coefficient and the number of clusters is determined by the
value of the similarity coefficient. Thus the clusters are initialized automatically,
which also means that the number of radial basis function is initialized auto-
matically (for details see, for example, [6]).

Next from thus obtained clusters of instances centroids are selected. An agent-
based algorithm with a dedicated set of agents is used to locate centroids within
clusters. In the proposed approach, it is assumed that maximum two centroids
can be selected from each cluster. Obviously, from clusters containing exactly
one instance, only one centroid can be selected.
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4.2 Determining the Kind of Transfer Function

Under the proposed approach the number of cluster centroids determines the
kind of transfer function associated with a given hidden unit. When only one
centroid is selected, the output of the RBF hidden unit is calculated using the
Gaussian function (see equation no. 2). By introducing this condition it is as-
sumed that such hidden have a circular shape of the transfer function.

When the number of selected centroids is greater than one the output of the
RBF hidden unit is calculated using the bicentral function (see equation no. 3).
In this case the algorithm uses a dedicated set of agents responsible for finding
optimal values for the left and the right slope of the transfer function.

The proposed approach may result in producing a heterogenous function net-
work.

4.3 Agent-Based Population Learning Algorithm Implementation

The main feature of the proposed agent-based population learning algorithm
is its ability to select centroids and transfer function parameters in coopera-
tion between agents. Most important assumptions behind the approach, can be
summarized as follows:

- Shared memory of the A-Team is used to store a population of solutions to
the RBFN initialization problem.

- A solution is represented by a string consisting of two parts. The first contains
integers representing numbers of instances selected as centroids. The length
of the first part of the string is equal to, at least, the number of clusters (i.e.
the number of hidden units) and can be greater than the number of hidden
units when one of the clusters is associated with two centroids. The detailed
conditions on the centroid number have been introduced in subsection 4.2.
The second part consists of real numbers for representing left and right slope
of the transfer functions. This part contains 2/N parameters per one hidden
unit.

- The initial population is generated randomly.

- Initially, potential solutions are generated through randomly selecting one
or two centroids from each of the considered clusters.

- Initially, the real numbers representing slopes are generated randomly.

- Each solution from the population is evaluated and the value of its fitness is
calculated. The evaluation is carried out by estimating classification accuracy
or error approximation of the RBFN, which is initialized using centroids, set
of transfer function parameter indicated by the solution and trained using
backpropagation algorithm.

The RBFN initialization problem is solved using two groups of optimizing agents.
The first group includes agents executing procedures for centroid selection. These
procedures are a local search with the tabu for prototype selection and a sim-
ple local search. The both procedures modify a solution by replacing a randomly
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selected instance with some other randomly chosen instance thus far not included
within the improved solution, or by modification through adding or removing an
instance from the improved solution. The only difference between them is that
in the first procedure the replacing takes place only for instances which are not
on the tabu list. After the replacement, the move is placed on the tabu list and
remains there for a given number of iterations. Replacement and modification
are performed randomly with the same probability equal to 0.5.

The second group of optimizing agents includes procedures for estimation of
the slope parameters. One of them is the standard mutation which modifies the
second part of a solution by generating new values of element in the string. The
modification is carried out with a mutation rate of p,,. If the fitness function
value has improved then the change is accepted. The second procedure is an ap-
plication of the non-uniform mutation. The non-uniform mutation acts through
modifying a solution by repeatedly adjusting value of the randomly selected
element in the string until the fitness function value has improved or until %
consecutive improvements have been attempted unsuccessfully. The value of the
adjustment is calculated as:

At y) = y(1 — g1 an)9), (4)

where ¢ is the uniformly distributed real number from (0, 1], N’ is equal to the
length of the current string with values representing the slop of the transfer
function and ¢’ is a current number of adjustment. The mutation is performed
with probability p,.. Both mutation procedures have been successfully applied
in [4].

5 Computational Experiment

This section contains the results of several computational experiments carried
out with a view to evaluate the performance of the proposed approach. In par-
ticular, the reported experiments aimed at evaluating quality of the RBF-based
classifiers constructed using the proposed approach. Experiments aimed at an-
swering the question whether the proposed agent-based approach to RBF net-
work tuning (ABRBF' Tuning) performs better than classical methods of RBFN
initialization? The proposed approach has been also compared with the earlier
version of the approach called ABRBFN 1 introduced in [5], where the agent-
based population learning algorithm has been used only to perform search for a
location of centroids within each of the Gaussian kernel-based clusters.

In the reported experiments the following RBFN initialization approaches
have been also compared:

- The k-means clustering with the agent-based population learning algorithm
used to locate prototypes (in this case at the first stage the k-means clus-
tering has been implemented and next, from thus obtained clusters, the
prototypes have been selected using the agent-based population learning al-
gorithm) - denoted as k-meansABRBF'N.
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- The k-means algorithm used to locate centroids for each of the Gaussian
kernels (in this case at the first stage the k-means clustering has been im-
plemented and the cluster centers have been used as prototypes) - denoted
as k-meansRBFN.

- The random search for kernel selection - denoted as randomRBF N.

Evaluation of the proposed approaches and performance comparisons are based
on the classification and the regression problems. For both cases the proposed
algorithms have been applied to solve respective problems using several bench-
mark datasets obtained from the UCI Machine Learning Repository [1]. Basic
characteristics of these datasets are shown in Table 1.

Each benchmark problem has been solved 50 times, and the experiment plan
involved 10 repetitions of the 10-cross-validation scheme. The reported values of
the quality measure have been averaged over all runs. The quality measure in
case of the classification problems was the correct classification ratio - accuracy
(Acc). The overall performance for regression problems has been computed by
the mean squared error (M SE) calculated as the approximation error over the
test set.

Parameter settings for computations involving ABRBF Tuning are shown
in Table 2. Values of the some parameters have been set arbitrarily in the trials
and errors procedure.

Table 1. Datasets used in the reported experiment

Type Number Number Number Best

Dataset of of of of reported

problem instances attributes classes results
Forest Fires  Regression 517 12 - -
Housing Regression 506 14 - -
WBC Classification 699 9 2 97.5% [1] (Acc.)
Credit Classification 690 15 2 86.9% [1] (Acc.)
Sonar Classification 208 60 2 97.1% [1] (Acc.)
Satellite Classification 6435 36 6 -

Table 2. Parameter settings for ABRBF Tuning in the reported experiment

Parameter

Max number of iteration during the search 500
Max number of epoch reached in RBF network training 1000
Population size 60

Probability of mutation for the standard and non-uniform mutation (pm, pmu) 20%
Range values for left and right slope of the transfer function [-1,1]
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The dispersion of the Radial function has been determined as suggested in
[15]: b; = ming ;=1 mk=i {|lck — ¢il|}, where ¢, and ¢; are centers of clusters.

Table 3 depicts the performance comparison involving ABRBF Tuning, its
earlier version (ABRBFN 1) and some other approaches to RBF initialization
including the k-means clustering with the agent-based population learning algo-
rithm. From the results it can be observed that the proposed algorithm assures
competitive results in comparison to other approaches. The proposed approach
to the RBF network tuning proves to be quite competitive in case of the regres-
sion problems. In case of the classification problem the ABRBF Tuning has
improved accuracy only for one dataset. In three cases the ABRBF Tuning
algorithm is not better than ABRBFN 1. The experiment results show that
ABRBF Tuning applied to the RBF initialization performs better than k-
meansABRBF N, k-meansRBFN and randomRBF N. Only for one dataset
the k-meansABRBF N produced better results.

The results in Table 3 further demonstrate that the ABRBF Twuning can
be superior to the other methods including MLP, Multiple linear regression,
SVM and C4.5. This statement is supported by the fact that in seven cases the
proposed algorithm has been capable to improve the generalization ability.

Table 3. Results obtained for different variants of the proposed algorithm applied to
the task of the RBNF’s training and their comparison with performance of several
different competitive approaches

Problem: Forest Housing WBC  Credit Sonar Satellite

fires
Algorithm: MSE Acc. (%)
ABRBF Tuning 2.07 34.92 94.24 84.05 83.34 83.32
ABRBFN 1 [5] 2.15 35.24 94.56 84.56 82.09 85.05*
k-meansABRBFN [5]  2.29 35.87 95.83 84.16  81.15 83.57*
k-meansRBF N [5] 2.21 36.4 93.9 82.03 78.62 81.4*
randomRBF N [5] 341 47.84 84.92 77.5 72.79 74.84%
Neural network - MLP 2.11 [19] 40.62 [19] 96.7 [7] 84.6 [7] 84.5 [7] 83.75 [14]
Multiple linear 2.38 [19] 36.26 [19] - - - -
regression
SVR/SVM 1.97 [19] 44.91 [19] 96.9 [7] 84.8 [7] 76.9 [7] 85.0 [17]
C 4.5 - - 94.7 [7) 85.5 [7] 76.9 [7] -

* Not present in [5].

6 Conclusions

In this paper the agent-based population learning algorithm for RBF neural net-
work tuning is proposed. The task of the algorithm is to find optimal parameters
of the transfer function including the type of the function and its shape, and the
appropriate centroids within initialized clusters for each hidden units of the RBF
network.
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Important feature of the approach is that the number of clusters, location of
centroids and the transfer function parameters are determined in parallel using a
set of dedicated agents. In the reported computational experiment the proposed
algorithm has proved to be not worse from the earlier its version and in some
cases outperforms other techniques for RBF initialization.

Future research will focus on finding more effective configurations of the RBF
networks by extending the approach adding ability to estimate output weights
of the RBFN. A new set of optimizing agents is planned to be implemented.
It is also planned to carry-out more refined statistical analysis of the results to
obtain a better insight into properties of the proposed approach.

In the future it also is planned to implement the proposed agent-based popu-
lation learning algorithm for construction of the cascade correlation neural net-
work. It is believed that that selection of the most promising transfer function
for each candidate unit from a pool of candidates by the agent-based population
learning algorithm can bring benefits in term of the classification accuracy or
the approximation error.
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