
Parallel Approach to Learning of the Recurrent

Jordan Neural Network

Jaros�law Bilski and Jacek Smol ↪ag

Czȩstochowa University of Technology,
Czȩstochowa, Poland

{Jaroslaw.Bilski,Jacek.Smolag}@iisi.pcz.pl

Abstract. This paper presents the parallel architecture of the Jordan
network learning algorithm. The proposed solution is based on the high
parallel three dimensional structures to speed up learning performance.
Detailed parallel neural network structures are explicitly shown.

1 Introduction

The Jordan network is an example of dynamical neural networks. Dynamical
neural networks have been investigated by many scientists in the last decade [6],
[7]. To train the dynamical networks the gradient method was used, see e.g. [15].
In the classical case the neural networks learning algorithms are implemented
on serial computer. Unfortunatelly, this method is slow because the learning
algorithm requires high computational load. Therefore, high performance ded-
icated parallel structure is a suitable solution, see eg. [2] - [5], [13], [14]. This
paper presents a new concept of the parallel realisation of the Jordan learn-
ing algorithm. A single iteration of the parallel architecture requires much less
computation cycles than a serial implementation. The efficiency of this new ar-
chitecture is very satisfying and is explained in the last part of this paper. The
structure of the Jordan network is shown in Fig. 1.

The Jordan network has K neurons in the hidden layer and M neurons in
the network output. The input vector contains N input signals and M previous
outputs. Note that previous signals from output are obtained through unit time
delay z−1. Therefore, the network input vector

[
1, x(1)

1
(t), ..., x(1)

N
(t), x(1)

N+1
(t), ..., x(1)

N+M
(t)

]T
(1)

in the Jordan network takes the form

[
1, x(1)

1
(t), ..., x(1)

N
(t), y(2)

1
(t− 1), ..., y(2)

M
(t− 1)

]T
(2)

L. Rutkowski et al. (Eds.): ICAISC 2013, Part I, LNAI 7894, pp. 32–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallel Approach to Learning of the Recurrent Jordan Neural Network 33

1�

z

1�

z

1�

z

1

1

)(
)1(

1
tx

)(
)1(

tx
N

)(
)1(

1
tx

N �

)(
)1(

tx
MN �

)1(

, KNK
w

�

)2(

, KM
w

)2(

0,1
w

)(
1

ty

)(ty
M

)(
)1(

ty
K

Fig. 1. Structure of the Jordan network

In the recall phase the network is described by

s(1)
i

=
N+M∑
k=0

w(1)
ik

x(1)
k

y(1)
k

(t) = f(s(1)
k

(t))

s(2)
j

=
K∑

k=0

w(2)
jk

x(2)
k

y(2)
j

(t) = f(s(2)
j

(t))

(3)

The parallel realisation of the recall phase algorithm uses architecture which
requires many simple processing elements. The parallel realisation of the Jor-
dan network in recal phase is depicted in Fig. 2a and its processing elements in
Fig. 2b. Four kinds of functional processing elements are used in the proposed
solution. The aim of the processing elements (PE) A is to delay outputs sig-
nals, so that values of signals appear on inputs of the network from previous
instances. Processing elements of type B create matrix which includes values
of weights of the first layer. The input signals are entered for rows elements
parallelly, multiplied by weights and received results are summed in columns.
The activation function for each neuron in the first layer is calculated after de-

termination of product w
(1)
i x(1) in processing element of type D. The outputs

of neurons in the first layer are inputs to the second layer simultaneously. The
product w(2)x(2) for the second layer is obtained in processing elements of type
C similarly.

34 J. Bilski and J. Smol ↪ag

)(tx

)(ty

(1)
W

(2)
W

)2()1(
XY �

1

1

1

1

K

K

0

0

M

A

B

C

D

D

()l

i
s

()l

i
y

()

()
l

i
f s

1�
z

�

)()1(
tw

ij

)1(

j
x

�

(1) (2)

i i
y x�

)()2(
tw

ij

A B

C D

a) b)

Fig. 2. Recal phase of the Jordan network and the structures of processing elements

The gradient method [15] is used to train the Jordan network. We minimise
the following goal criterion

J (t) = 1
2

∑M

j=1
ε
(2)2

j (t) = 1
2

∑M

j=1

(
y
(2)
j (t) − d

(2)
j (t)

)2

(4)

were ε
(2)
j is defined as

ε
(2)
j (t) = y

(2)
j (t) − d

(2)
j (t) (5)

For this purpose it is nesessary to calculate derivative of the goal funcion with
respect to each weight. For weights in the second layer we obtain the following
gradient

∇(2)
αβJ (t) =

∂J (t)

∂w
(2)
αβ

=
∑M

j=1
ε
(2)
j (t)

dy
(2)
j (t)

dw
(2)
αβ

(6)

and after some calculations we obtain derivative

dy
(2)
j (t)

dw
(2)
αβ

=

δjα
dy(2)

α (t)

ds
(2)
α

y
(1)
β (t) +

dy
(2)
j (t)

ds
(2)
j

∑K
i=1 w

(2)
ji

dy
(1)
i (t)

ds
(1)
i

∑M
k=1 w

(1)
i,k+N

dy
(2)
k (t−1)

dw
(2)
αβ

(7)

Weights are updated according to the steepest descent algorithm as follows

w
(2)
αβ (t) = w

(2)
αβ (t− 1) − η∇(2)

αβJ (t) (8)

Parallel Approach to Learning of the Recurrent Jordan Neural Network 35

For the first layer we have

δ
(2)
j (t) = ε

(2)
j (t)

dy
(2)
j (t)

ds
(2)
j

(9)

ε
(1)
i (t) =

∑M

j=1
δ
(2)
j (t)w

(2)
ji (10)

and we obtain the gradient

∇(1)
αβJ (t) =

∂J(t)

∂w
(1)
αβ

=
∑M

j=1 ε
(2)
j (t)

dy
(2)
j (t)

ds
(2)
j

∑K
i=1

[
dy

(1)
i (t)

dw
(1)
αβ

w
(2)
ji

]
=

∑K
i=1

dy
(1)
i (t)

dw
(1)
αβ

ε
(1)
i (t)

(11)

After a few calculations we get

dy
(1)
i (t)

dw
(1)
αβ

=

δiα
dy(1)

α (t)

ds
(1)
α

x
(1)
β (t) +

dy
(1)
i (t)

ds
(1)
i

∑M
k=1 w

(1)
i,k+N

dy
(2)
k (t−1)

ds
(2)
k

∑K
l=1 w

(2)
kl

dy
(1)
l (t−1)

dw
(1)
αβ

(12)

and the weights can be updated by

w
(1)
αβ (t) = w

(1)
αβ (t− 1) − η∇(1)

αβJ (t) (13)

The task of suggested parallel structure will be realisation of all calculations
described by equations (6) - (8) and (11) - (13).

2 Parallel Realisation

In order to determine the derivative in the second layer it is required to know
its previous values. Derivative values will be stored in E PE Fig. 4a. These el-
ements will create 3D matrix of the dimension M × M × (K + 1), see Fig. 3.
They will be useful for realizing inner sum in equation (7). Presented E PE

multiply the respondent elements of derivative matrix
dy

(2)
j

dwαβ
by corresponding to

them weights of the first layer, see Fig. 3. Then, received produtcts in the entire
column are added to each other. The weights are delivered by columns. The first
column is moved to the extreme right position (as a result of the rotation to the
left) W (1) matrix. After a rotation of columns the previous actions are repeated.
These operations are repeated K times until the first column of the matrix will
revert to the original place. At the same time, the obtained results are sent to

the upper 3D matrix of (F) PE (see Fig. 3 and Fig. 4b), multiplied by w
(2)
ji

dy
(1)
i

ds
(1)
i

and
dy

(2)
j

ds
(2)
j

and accumulated. The obtained results - calculation of equation (7) -

are sent back to the lower 3D matrix. In the next step it is necessary to calculate

36 J. Bilski and J. Smol ↪ag

M

M

�

�

�

�

1

M

1

M

1

K

K

K

K

)1(

)1(

i

i

ds

dy

1

0

1

1

j

j

)2(
W

MN �

0

N
)1(

W

1�N

)2(

)2()(

j

j

ds

tdy

)2(

)2()1(

��dw

tdy
k

�

F

E

Fig. 3. Idea of learning the second layer

gradients eq.(6). This is depicted in Fig. 5. The element for weights updating in
eq.(8) is shown in Fig. 6.

Suggested solution leads to acceleration of calculations, but it is not optimal
solution yet. It results from the fact that after multiplication of lower 3D matrix
and the weights matrix, serial summation follows. In this case multiplication
and addition is realized in M ×K steps. It is easily seen that changing manner

�

�

��

�

)2(

)2(

j

j

ds

dy

)1(

)1(

�

�

ds

dy

)2(

ji
w

�y

�

�	
j

PS

)1(

)1(

i

i

ds

dy

�

)1(

, Nki
W �

)2(

)2()1(

��dw

tdy
k

�

� � �

�M

K

K

NKi

dw

tdy
w

1)2(

)2(
)1(

,

)1(

��

a) b)

E F

Fig. 4. The structure of the processing elements for learning the second layer

Parallel Approach to Learning of the Recurrent Jordan Neural Network 37

M

�

1

�

�

�

)2(

�
)2(

��

K

0

�

)2(

j

)2(

)2(

��dw

dy

dw

dy
)2(

)2(

��

�
)2(

��

a) b)

Fig. 5. Architecture for calculating of the gradient ∇(2)
αβ for second layer learning and

the structure of the processing element

of entering of values from weights matrix to derivatives matrix we can reduce
the amount of steps required for execution of the multiplication and addition
operations to M + K − 1. The manner of these weights entering is presented
in Fig. 7. The multiplication is realised only for elements from the first column
depicted by the thick line. In the first step only one element from the last row is
taken into account. In the next cycles the number of rows is incremented, and the
rows that have participated in multiplication are subject to rotation. Rotation
is done from step one to the left until all rows reach the starting position. The
rows are no longer included in the multiplication. As a result, the proposed
modifications in subsequent steps, making the multiplication and summation, as
described in the previous scenario. In this case we will receive the sum of the
new inner product without waiting the M steps. For the first layer we need to
calculate the derivatives (12). Note that equations (12) and (7) have identical
structures. Therefore parallel realisation of the first layer learning is analogous to
the second layer learning. The architecture of the first layer learning is shown in
Fig. 8. Of course in this case the dimensions of the structure and processed data

�

w��

�

����

�

Fig. 6. The weights updating element

38 J. Bilski and J. Smol ↪ag

Fig. 7. Method of entering weights for the second layer learning

correspond to equation (12). After obtaining the derivatives, the value of ε
(1)
i (t)

is calculated, see eq. (9) and (10). The structure for this operation is presented
in Fig. 9. The gradient in eq. (11) is obtained from the analogous structure like
in the second layer (see Fig. 5). All weights are updated in the same time by
elements depicted in Fig. 6.

�

�

�1

1

M

M

N M�

(2)

(2)

k

k

dy

ds1

0

1

i

K

0

1

(1)

(2)

()
i

i

dy t

ds

(1)

(1)

()
i

dy t

dw��

k

l

K

K

K

�
i

1

M N� 1N �

(1)
W

K K

1

Fig. 8. Idea of learning of the first layer

Parallel Approach to Learning of the Recurrent Jordan Neural Network 39

(1)

i

(2)

i

(2)

j
	(2)

(2)

j

j

dy

ds

(2)
W K1

1

1

M

M

�

)()1(
tw

ij

(2)

j
	

(1)

i

(2)

j
	

(2)

i

(2)

(2)

j

j

dy

ds

�

a) c)

b)

Fig. 9. Structure for calculating ε
(1)
i (t) in the first layer (a) and the processing elements

(b) and (c)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

TP

N

b)

0

100000

200000

300000

400000

500000

600000

700000

800000

1 2 3 4 5 6 7 8 9 10

TS

N

a)

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

PF

N

c)

Fig. 10. Number of times cycles in a) classical (serial), b) parallel implementation and
c) performance factor

3 Conclusion

In this paper the parallel realisation of the Jordan neural network was pro-
posed. We assume that all multiplications and additions operations take the same
time unit. For simplicity of the result presentation we assume that K=M=N in
the network. We can compare computational performance of the Jordan par-
allel implementation with sequential architectures up to N=M=10 for inputs
and outputs and up to 10 neurons (K) in the hidden layer of neural network.
Computational complexity of the Jordan learning is of order O(K5) and equals
TS = 2K3M2 + 2K3MN + 2K2M3 + 2K3M + 4K2M2 + 3K2MN + 2KM3 +
7K2M + 4K2N + 8KM2 + KMN + 4K2 + 6M2. In the presented parallel ar-
chitecture each iteration requires only TP = K + M + max(K,M) + 5 time
units (see Fig. 10). Performance factor (PF = TS/TP) of parallel realisa-
tion of the Jordan algorithm achieves nearly 21000 for N=10 inputs, K=10
neurons in the hidden layer and M=10 of neurons in the output layer and it
grows very fast when these numbers grow, see Fig. 10. We observed that the

40 J. Bilski and J. Smol ↪ag

performance of the proposed solution is promising. Analogous parallel aproach
can be used for the advanced learning algorithm of feedforward neural networks,
see eg. [1]. In the future research we plan to design parallel realisation of learning
of other structures including probabilistic neural networks [9]-[11] and various
fuzzy structures[8],[12].

References

1. Bilski, J.: The UD RLS Algorithm for Training the Feedforward Neural Net-
works. International Journal of Applied Mathematics and Computer Science 15(1),
101–109 (2005)

2. Bilski, J., Litwiński, S., Smola̧g, J.: Parallel realisation of QR algorithm for
neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R.,
Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer,
Heidelberg (2004)

3. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent RTRN neural network
learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)

4. Bilski, J., Smola̧g, J.: Parallel Realisation of the Recurrent Elman Neural Network
Learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada,
J.M. (eds.) ICAISC 2010, Part II. LNCS(LNAI), vol. 6114, pp. 19–25. Springer,
Heidelberg (2010)

5. Bilski, J., Smola̧g, J.: Parallel Realisation of the Recurrent Multi Layer Percep-
tron Learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS(LNAI), vol. 7267,
pp. 12–20. Springer, Heidelberg (2012)

6. Kolen, J.F., Kremer, S.C.: A Field Guide to Dynamical Recurrent Neural Networks.
IEEE Press (2001)

7. Korbicz, J., Patan, K., Obuchowicz, A.: Dynamic neural networks for process
modelling in fault detection and isolation. Int. J. Appl. Math. Comput. Sci. 9(3),
519–546 (1999)

8. Li, X., Er, M.J., Lim, B.S., et al.: Fuzzy Regression Modeling for Tool Perfor-
mance Prediction and Degradation Detection. International Journal of Neural Sys-
tems 20(5), 405–419 (2010)

9. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

10. Rutkowski, L.: Non-parametric learning algorithms in the time-varying environ-
ments. Signal Processing 18(2), 129–137 (1989)

11. Rutkowski, L.: Generalized regression neural networks in time-varying environ-
ment. IEEE Trans. Neural Networks 15, 576–596 (2004)

12. Rutkowski, L., Przyby�l, A., Cpa�lka, K.: Novel Online Speed Profile Generation
for Industrial Machine Tool Based on Flexible Neuro-Fuzzy Approximation. IEEE
Transactions on Industrial Electronics 59(2), 1238–1247 (2012)

13. Smola̧g, J., Bilski, J.: A systolic array for fast learning of neural networks. In: Proc.
of V Conf. Neural Networks and Soft Computing, Zakopane, pp. 754–758 (2000)

14. Smola̧g, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Proc. of
IV Conf. Neural Networks and Their Applications, Zakopane, pp. 487–497 (1999)

15. Williams, R., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural networks. Neural Computation, 270–280 (1989)

	Parallel Approach to Learning of the Recurrent Jordan Neural Network
	1 Introduction

	2 Parallel Realisation

	3 Conclusion
	References

