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Abstract. In this paper we present a new method of obtaining near-
optimal points sets for interpolation by Gaussian radial basis functions
networks. The method is based on minimizing the maximal value of the
power function. The power function provides an upper bound on the
local RBF interpolation error. We use Latin hypercube designs and a
space-filling curve based space-filling designs as starting points for the
optimization procedure. We restrict our attention to 1-D and 2-D in-
terpolation problems. Finally, we provide results of several numerical
experiments. We compare the performance of this new method with the
method of [6].
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1 Introduction

Radial bases functions (RBF) were introduced in the solution of the multivari-
ate interpolation problem (see [26] and references cited therein). Radial basis
function networks are two-layer feed-forward networks with RBFs as activation
functions in the hidden units, and linear activation functions in the output units
[22], [4], [25]. It is well known that Gaussian RBF networks can approximate
any continuous mapping on a compact domain [23]. RBF networks have been
extensively applied to pattern recognition [3], function approximation [23], [18],
probability density function estimation [3], [37], [38], regression function estima-
tion [25], [14], [19], approximating the boundary of an object in a binary image
[29], to speed up deterministic search algorithms used for the local optimization
[1], [2], to global optimization in connection with local deterministic procedures
[15], [30] and creating surfaces using radial basis functions from scattered data
[8], [20], among many others.

The purpose of interpolating RBF networks is to approximate functions f :
Rd → R that are given as data {f(xi)}i=1:N on a finite set X = {x1, . . . ,xN} ⊂
Ω ⊂ Rd of distinct points (centers, nodes, knots) by expression

s(x) =

N∑

i=1

wiϕβ(||x − xi||), (1)
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where ||.|| denotes the Euclidean distance between two points in R and ϕβ(r) =
exp(−βr2) is a one dimensional Gaussian function defined for a shape parameter
β = 1

2σ2 > 0. In the interpolant (1) we simply compute the coefficients wi as the
solution of the linear system

AXw = f (2)

where AX = (ϕβ(||xi − xj ||))Ni,j=1 is the information matrix for the set of nodes

X, w = (w1, . . . , wN )T and f = (f1, . . . , fN )T .
Gaussian radial bases functions are infinitely smooth (C∞) and analytic func-

tions. Moreover the Gaussian interpolation matrix AX is positive definite (thus
it is invertible) if the centers are distinct [21]. If AX is positive definite for any
X ⊂ Ω (consisting of distinct points), then ϕβ is said to be positive definite.

Franke [10] found that it is very sensitive to the choice of parameter β. It
is known that the Gaussian radial functions are susceptible to Runge‘s phe-
nomenon, however there exist interpolation node distributions that prevent such
oscillatory behavior of the solution and allow stable interpolation [24]. Usually
interpolation matrix AX is very ill-conditioned, and the weights obtained by solv-
ing (2) yield an interpolation mapping s(x) that exhibits oscillatory behavior in
between data points. Furthermore, the conditioning of the interpolation matrix
grows with the problem size N , since the condition number of interpolation ma-
trix AX, defined as ||AX||2||A−1

X ||2 (where ||.||2 is a spectral metric), depends
mostly on minxi,xj∈X||xi−xj ||. If we fix the number of nodes N the only factor
which is important in the balance between the accuracy of interpolation and the
conditioning of numerical computations is the shape parameter β. The depen-
dence of the condition number on β parameter is less crucial, however too small
values of β (too large values of σ) may result in instability of interpolation due
to a bad conditioning. Moreover, it is possible to use the preconditioning meth-
ods which allows for the stable computation of Gaussian radial basis function
interpolants (see for example [12], [9]).

It is known that, in general, the attainable error and the condition of the
interpolation matrices cannot both be kept small [34]. However, this property is
based on upper bounds of both factors only.

In the interpolation problems a proper choice of interpolation nodes, i.e., the
proper experiment design, is essential for good approximations. It is advisable
to keep the number of interpolation nodes at a reasonable level ( N should be
not too large), because it allows the controlling of the condition number of the
interpolation matrix. Nevertheless, in many cases, the more important factor
is the cost of the function evaluation. For example, in deterministic computer
simulations, which are becoming widely used in science and engineering, the
simulation model is often replaced by an approximating model, based on sim-
ulations in some points. Thus, the problem of node placement design for RBF
interpolation should be considered also in the general context of experiment and
computer experiment design methods. It is known that such type designs should
at least be space-filling in some sense. With no additional assumptions, it is
important to obtain information from the entire design space. Therefore, de-
sign points should be ’evenly spread’ over the entire region. Several space-filling



22 M. Bazan and E. Skubalska-Rafaj�lowicz

criteria are discussed in the literature [33], [17]. The design is often restricted
to a d-dimensional grid of n levels in every dimension, i.e., such that for each
dimension j all nodes coordinate xij are distinct. Such a design is called a Latin
hypercube design (LHD) [33], [30]. The generation of so called low discrepancy
sequences is also often used for space-filling points generation. Faure, Halton
and Sobol sequences, are increasingly popular in computer experiments [33],
[27], [39]. A maximin space-filling design is a set of points such that the sep-
aration distance (i.e. the minimal distance among pairs of points) is maximal.
Notice, that the maximization of the separation distance influences positively
the condition number of the design based RBF interpolation.

In this paper we propose a new method of obtaining near-optimal points
sets for interpolation by Gaussian radial basis functions networks. Motivated by
methods of selecting RBF centers based on placing prototypes of the centers
initially at equidistributed (EQD) points generated along Sierpiński and Hilbert
space-filling curves [28], [19], [39], [36], we propose a minmax optimization pro-
cedure which uses these space-filling curve based space-filling designs as starting
points for minimizing the maximal value of the power function introduced by
Schaback [41], [34], [6], [7].

We restrict our attention to the interpolation problems on a cube in Rd, i.e.,
we assume that Ω = [−1, 1]d.

The paper is organized as follows. Section 2 provides known local error esti-
mates for interpolation by radial basis functions. Section 3 formulates the min-
max optimization problem leading to optimal center location. In section 4 we
present algorithms used for the construction of near-optimal set of interpolation
centers. Section 5 is devoted to numerical tests. Seven out of eight designs ob-
tained using the proposed new method give upper bound values lower than that
generated using the greedy algorithm presented in [6].

2 Interpolation Error Bounds

A general error bound for the interpolation of function f : Rd → R with (1) is
derived (c.f. [41], [34], [40], page 176) using the Lagrange (cardinal) basis for the
interpolation function, i.e.:

s(x) =

N∑

i=1

ui(x)fi,

where ui is a certain continuous function ui : Ω → R, i = 1, . . . , N such that:

ui(xj) = δji, i.e. ui(x) =

{
1 for x = xi

0 for x = xj and j = 1 . . .N and j �= i.
(3)

The existence of a vector u(x) = (u1(x), . . . , uN(x))T for a given x was shown
in [41]. Notice that u depends on ϕβ . Let

R(x) := (ϕβ(||x− x1||), ϕβ(||x− x2||), . . . , ϕβ(||x− xN ||))T .
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Then the vector u(x) is a solution of the system of equations

AXu(x) = R(x). (4)

The interpolation error |f(x) − s(x)| can be bounded by

|f(x) − s(x)| ≤ Pϕβ ,X(x)|f |Nϕβ
(Ω),

where Pϕβ ,X is a power function defined as

Pϕβ ,X(x)2 := ϕβ(0) − 2

N∑

j=1

uj(x)ϕβ(||x− xj ||) +

N∑

i,j=1

ui(x)uj(x)ϕβ(||xi − xj ||)

(5)
and |·|Nϕβ

(Ω) is a norm in the native space generated by the radial basis function

ϕβ (reproducing kernel Hilbert space with ϕβ as its reproducing kernel) [35].
Notice, that one can calculate a value of the power function (5) for any point of
the domain Ω using (4). For a given radial basis function the power function (5)
depends only on a location of data points from X within the domain Ω.

The interpolation matrix AX is ill-conditioned and therefore to solve the sys-
tem (4) we use the singular value decomposition of the matrix AX (c.f. [13]).
Solving (4) for any x ∈ Ω one can calculate a value of the power function (5)
for any point of the domain Ω. Checking whether the obtained u(x) has the
property (3) enables us to choose the shape parameter β for the radial function
ϕβ . Appropriate choice of the value of the shape parameter is a different method
of improving the conditioning of the matrix AX than proposed in [9].

3 A Min-max Problem Formulation

From (2) one can conclude that maxx∈Ω Pϕβ ,X(x) (Ω is a compact set) is the
most important factor in the upperbounding of the interpolation error in the
supremum norm.

Let

X =
(
x
(1)
1 , x

(2)
1 , . . . , x

(d)
1 , . . . , x

(1)
N , x

(2)
N , . . . , x

(d)
N

)
∈ ΩN ⊂ RN ·d

represents an interpolation design X = {xi}Ni=1 where xi = (x
(1)
i , x

(2)
i , . . . , x

(d)
i )

(i = 1, . . . , N). Notice, that in fact, X is a concatenated vector of all design
points contained in the set X.

Let us define function G : RN ·d × R
d → R as

G(X;x) = Pϕβ ,X(x)2. (6)

An optimal design (location of centers) for the radial basis interpolation network
with the radial basis function ϕβ in the domain Ω can be defined as a global min-
imum with respect to maxx∈Ω Pϕβ ,X(x)2. Let us denote F (X) = ||G(X; ·)||sup.
Then the minimization problem to find an optimal design reads:
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min
X∈ΩN

F (X) = min
X∈ΩN

||G(X; ·)||sup = min
X∈ΩN

[max
x∈Ω

G(X;x)]. (7)

4 Algorithms to Solve the Max and the Min Problems

Solving (7) consists of two optimization algorithms. An inner algorithm is used
to find the maximum value of the squared power function Pϕβ ,X(x)2 (6) on
Ω for a given design X. An outer algorithm is used to find a concatenated
vector representing a design X which minimizes F (X) on the domain ΩN , i.e.,
it produces an optimal (or at least near-optimal) interpolation design consisting
of exactly N centers.

The outer optimization problem is a constrained minimization problem. The
values of maxx∈Ω G(Xk;x) are obtained as a result of a simple scan of the domain
Ω. Following the approach presented in [6], we maximize over some very large
discrete set Y ⊂ Ω instead of maximizing on Ω.

To minimize minX∈ΩN F (X) we have used a non-gradient algorithm, as not
much is known about properties of F .

4.1 A Constrained Non-linear Programming Algorithm

Every configuration X in which at least one design point xi (i = 1, . . . , N)
lies on the boundary δΩ of the domain Ω is on the constraint boundary of the
minimization problem (7). The most common approach to deal with constraint
violation is to add a penalty term that depends on how much the constraint is
violated. If a current design contains points that are outside the domain Ω we
have to project these points onto the boundary δΩ.

In numerical experiments presented in this paper Ω = [−1, 1] × [−1, 1]. We
do not use the most common projection method which is the orthogonal projec-
tion defined as X(proj) = arg minY∈δΩ ||X −Y||. Such a projection transforms
points from X that lie outside Ω for which two constraints are violated into the
closest corner of the domain. Such a situation automatically generates a singular
design matrix if there are at least two points that are transformed into the same
corner. It is not a rare situation. The projection for which the overlapping of
transformed centers is less probable is to choose a point on the boundary which
lies on the interval between the point xi to be transformed and the center of the
domain Ω.

Now, we can calculate (6) for X(proj) and add to F (X(proj)) the penalty

proportional to ||X(proj) −X||. Nevertheless, for the sake of simplicity, we omit
a penalty term using only projection. This is motivated by the fact that adding
a penalty term creates an artificial piece of information which is useless from
the optimization point of view. The power function defined outside the domain
Ω provides upperbounds for an interpolation problem defined on other domains
than Ω.
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In numerical experiments we have achieved the best values of the objective
function F using the Rosenbrock algorithm initially described in [31] and mod-
ified by Jacob [16].

4.2 A Stable Calculation of the Objective Function in the Inner
Algorithm

The calculation of (6) which is the objective function for the inner algorithm
requires a stable calculation of the Lagrange representation u(x) for any x ∈ Ω
by solving (4). For N > 40 and for small values of shape parameter β (too large
values of σ, i.e., close to a diameter of the domain space Ω) in Gaussian basis
it may happen that a calculated solution u(x) is not a cardinal solution (see
property (3)).

Problems with a stable solution of (4) for the Gaussian with small values
of a shape parameter were reported in e.g. [9]. Here we propose to choose the
largest possible value of parameter δ that enables us to find a solution u(x)
which guaranties that the property (3) is maintained at the level of the absolute
error of 10−7. In the example presented in the next section (for N = 54) σ value
set to the quarter of the diameter of Xk is sufficient.

4.3 Initial Designs

As mentioned in the previous paragraph we limit our numerical experiments to
Ω = [−1, 1]2. To generate X0 we use four different methods:

1. Space-filling latin hypercube sampling method [33], [30].
2. A uniform design based on the Sierpiński space-filling curve [36].
3. A uniform design based on the Hilbert space-filling curve [36].
4. Quasi-optimal design obtained by the greedy algorithm due to De Marchi,

Schaback and Wendland (DMSW) [6].

The advantage of initial configurations generated with the first three methods
is that they are the initial configuration of N points in Ω ⊂ R

d and N does
not need to be a d-th power of a natural number. The fourth initial distribution
is used in this paper not only as a starting point for the optimization but also
as a reference for comparisons. Up to our knowledge the designs X0 generated
with the algorithm DMSW produce the lowest values of ||Pϕβ ,X(x)2||sup over
Ω among results published in the literature so far for the methods based on
minimizing the power function (5).

5 Numerical Results

5.1 One Dimensional Example

In order to show that the proposed optimization algorithm produces designs that
give a lower interpolation error we interpolate function y = (1+(5x)2)−1 using a
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Gaussian RBF network with 9 centers on the interval [−1, 1]. Radius parameter
σ of Gaussians was set to 1. Figure 1 shows the interpolation curves obtained
for three configurations of centers:

1. obtained by DMSW method [6],
2. centers are scaled zeros of the 9-th Tshebyshev polynomial of the first kind,
3. obtained by our optimization algorithm.

The smallest maximal error is equal to 0.16098 and is obtained by using the
method proposed in the paper. The resulting error is slightly smaller than the
maximal error for the Tshebyshev centers which is equal to 0.16489. The results
obtained by DMSW algorithm [6] are worse with the error supremum equals to
0.21884. The new configuration decreases the Runge phenomenon compared to
the configuration obtained by DMSW algorithm [6].
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Fig. 1. Interpolation of the function y = (1 + (5x)2)−1 with the Gaussain radial basis
function with a shape parameter equals to 1 on 9 nodes from the interval [−1, 1] on
three different node configurations a) obtained by DMSW algorithm [6] b) Tchebyshev
knots c) obtained by our optimization algorithm
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the Gaussain radial basis function with a shape parameter equals to 1 on 9 nodes
from the interval [−1, 1] on three different node configurations a) obtained by DMSW
algorithm [6] b) Tchebyshev knots c) obtained by our optimization algorithm
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5.2 Two Dimensional Example

In this section we present the performance of the proposed design optimization
algorithm launched from 5 randomly generated points forming a Latin hypercube
[33], one optimization started from a Sierpiński filling curve configuration of
centers [36], another one started from a Hilbert filling curve configuration of
centers [36] and one optimization started from the quasi-optimal configuration
of centers generated by DMSW algorithm [6].

To guarantee that the objective function F is not too small and the non-
linear optimisation algorithm runs properly we use a scaling factor of 107 in the
function calculations, i.e., instead of minimizing F we minimize 107F .

Table 1 shows the results obtained for eight different starting configurations:
five initial designs were generated using the Latin hypercube method, one initial
design was a uniform design along the Sierpiński space-filling curve [36], the next
initiali design was s uniform design along the Hilbert filling space curve [36] and
the last one was generated by DMSW quasi-optimal method [6]. As one can see
from this table in four out five different Latin hypercube starting configurations
the proposed scheme was able to decrease the objective function value below
the value calculated for the configuration at the starting configuration gener-
ated using the quasi-optimal method. Also starting from the Sierpiński and the
Hilbert configuration the result was better although it was not better than for
the successful Latin hypercube configurations.

Table 1. Results of numerical experiments for 54 knots placed in Ω = [−1, 1]× [−1, 1].
The first five rows were obtained using the proposed algorithm started from configura-
tions generated using the Latin hypercube method [33]. The sixth row presents results
for the Sierpiński space-filling curve based starting configuration [36]. The seventh row
presents results for the Hilbert space-filling curve based starting configuration [36].
In the eighth row the optimization was started from the quasi-optimal configuration
generated by DMSW method [6]. The first column describes the way the starting con-
figuration was generated, the second one shows the objective function value F at the
starting configuration and the third one shows the number of the objective function
calculations to achieve the value that is shown in the fourth column.

starting configuration starting configuration num. of obj. final configuration
generation method objective f. val. f. calculations objective f. val.

Latin hypercube 1 8693.840221 23778 8.713339
Latin hypercube 2 24004.490524 63693 9.163693
Latin hypercube 3 21275.298287 34164 7.821087
Latin hypercube 4 63583.290885 37070 9.446265
Latin hypercube 5 22191.814212 37195 23.794642

Sierpiński filling curve 15117.265424 42476 13.522486
Hilbert filling curve 24429.318636 36652 12.395903

quasi-optimal 20.815944 36679 10.736679
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The result of the optimization started from de Marchi−Schaback−Wendland configuration
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Fig. 3. Left) The quasi optimal configuration of 54 centers generated using DMSW
method [6]. Right) The configuration obtained by our algorithm started from the quasi
optimal configuration. Both configurations are plotted together with isolines of the
squared power function.
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The result of the optimization started from the Latin hypercube filling configuration
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Fig. 4. Left) An example of latin hypercube configuration of 54 nodes generated using
the algorithm from [33]. Right) The configuration obtained using by our optimization
algorithm started from the the latin hypercube based configuration. Both configura-
tions are plotted together with isolines of the squared power function.
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Fig. 5. Left) An example of a Sierpinski filling curve configuration of 54 nodes (c.f. [36]).
Right) The design obtained by our optimization algorithm started from the Sierpiński
space-filling curve based configuration. Both designs are plotted together with isolines
of the squared power function.
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The result of the optimization started from the Hilbert filling curve starting configuration
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Fig. 6. Left) An example of a Hilbert filling curve configuration of 54 nodes (c.f. [36]).
Right) The design obtained by our optimization algorithm started from the Hilbert
space-filling curve based configuration. Both designs are plotted together with isolines
of the squared power function.

6 Conclusions

We have presented a scheme of using constrained non-linear programming to
calculate the optimal configurations of centers for a radial basis interpolation
process. From eight designs obtained by the proposed optimization algorithm
seven configurations give objective function values lower than that generated as
an initial configuration by DMSW algorithm [6].

The work in this paper focused on the Gaussian kernel. There are many
other positive definite kernels: inverse multiquadric [21], Wendland function [40],
Sobolev splines [34] and others that can be constructed using a method described
in [35]. It should be mentioned that the method proposed in this paper can be
applied to other strictly positive definite radial bases function systems. Fur-
thermore, the proposed method can be used also when we have to extend the
near-optimal design by a new additional point.
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Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI),
vol. 4029, pp. 133–141. Springer, Heidelberg (2006)

38. Skubalska-Rafaj�lowicz, E.: Random Projection RBF Nets for Multidimensional
Density Estimation. Int. J. Appl. Math. Comput. Sci. 18(4), 455–464 (2008)

39. Skubalska-Rafaj�lowicz, E., Rafaj�lowicz, E.: Sampling multidimensional signals by
a new class of quasi-random sequences. Multidimensional System and Signal Pro-
cessing 23, 237–253 (2012)

40. Wendland, H.: Scattered Data Approximation. Cambridge University Press (2005)
41. Wu, Z., Schaback, R.: Local error estimates for radial basis function interpolation

of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)


	A New Method of Centers Location in Gaussian RBF Interpolation Networks
	1 Introduction
	2 Interpolation Error Bounds
	3 A Min-max Problem Formulation
	4 Algorithms to Solve the Max and the Min Problems
	4.1 A Constrained Non-linear Programming Algorithm
	4.2 A Stable Calculation of the Objective Function in the InnerAlgorithm
	4.3 Initial Designs

	5 Numerical Results
	5.1 One Dimensional Example
	5.2 Two Dimensional Example

	6 Conclusions
	References




