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Abstract. Our aim is to propose a method for selecting a radial basis
functions terms to be included into a neural net model. As it is frequently
met in practice, we consider the case of a deficit in the admissible number
of observations (learning sequence) in comparison with a much larger
number of candidate terms. The proposed approach is based on a random
sieve that aims at selecting only necessary RBF’s by a hierarchy of a
large number of random mixing of candidate RBF’s and testing their
significance. The results of simulations are also reported.
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1 Introduction

RBF neural nets have been the subject of intensive research for many years. We
refer the reader to a selected collection of more recent papers and monographs
[8], [5], [12], [15], [4], [10] [6], [7], [20], [21], [22], [32], where references to earlier
works can be found.

In opposite to the present paper, most of the proposed methods require more
observations than candidate terms. Here, we admit a much larger initial size of
an RBF net than the length of a learning sequence. One can wonder how it can
be possible to select terms in such cases. The idea is based on random projec-
tions of a part of the RBF’s and considering them as one term with randomly
selected parameters (or a random mixture of RBF’s). Then, we repeatedly test
the validity of such a mixture of terms, repeating also their random projections.

There are some relationships of our approach with group testing [13] for select-
ing a regression function terms (see [14] for a survey of group testing approaches).
Notice, however, that in [13] the grouping is done according to values of terms,
while here we propose grouping by their random mixing.

Methods that are based on penalizing too many terms, such as AIC, BIC, Cp,
GIC as well as cross-validation or bootstrap (see [9] for these and other criteria)
either require candidate nets to be nested or lead to the need of comparing all
the subsets of candidate terms. With the exception of so called forward term
selection (as done in regression function estimation) they are not applicable in
our case of a larger initial net structure than the length of a learning sequence.
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An aspect – rarely considered in the literature – is a choice of inputs in a
learning sequence for a net structure selection. The exceptions in this respect
include: [1], [17] and the bibliography cited there in.

Random projections have proved their usefulness in solving many highly di-
mensional problems (see [27], [28], [29], where also the references to the proba-
bilistic background of random projections can be found).

Simultaneously with this paper in [26] we have proposed a method for selecting
an optimum experiment design when a random projections method is used for
selecting terms in a regression function estimation. A method sketched briefly
in [26] differs from the one presented here in several respects:

1. the algorithm presented here is dedicated for RBF nets,
2. it is improved in comparison to the one in [26] by adding preliminary re-

duction of the net structure, which leads to more efficient use of a learning
sequence,

3. it can be used not only for selecting proper RBF’s to be introduced to a net,
but also for the choice of independent variables.

2 Problem Statement

For simplicity of the exposition we consider the following version of a RBF net:

y(x) =
r∑

j=1

aj Ker(||x−Cj ||/h1) +

˜K∑

k=1

bk Ker(||x− ck||/h2), (1)

where x ∈ Rd is a vector of the net inputs, y(x) is its output (univariate for
simplicity of the exposition), while Ker : R1 → R1 is a nonnegative kernel
function such that

∫∞
−∞ Ker(t) dt = 1,

∫∞
−∞ tKer(t) dt = 0,

∫∞
−∞ t2 Ker(t) dt <

∞, the Gaussian kernel being the most popular. In (1) the RBF net is split
into two parts. The first one has centers at points Cj ∈ Rd, weights Cj , j =
1, 2, . . . , r and smoothing parameter h1 > 0. This part plays a special role,
because we consider it as a part of an RBF net that is expected to be present
in the final RBF net structure. In applications this part may represent a general
trend, while the second summand in (1) is intended to model more subtle details.

For this reason, we usually select the number of neurons in this part K̃ much
larger than r, which is the number of terms in the first part. Consequently, RBF
centers ck ∈ Rd, k = 1, 2, . . . , K̃ are placed more densely than centers Cj ’s,
while the smoothing parameter h2 should be smaller than h − 1 in order to
better approximate fine details.

We assume that we have a learning sequence (xi, yi), i = 1, 2, . . . , n at our
disposal, where xi ∈ Rd’s are input vectors, while yi’s are observed outputs
of a certain surface or a system that our RBF net is expected to approxi-
mate. In order to tune (1) to approximate yi’s by y(xi)’s we have to choose
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weights ai’s. We also have to select proper terms in the second part of (1) and
tune the corresponding weights. In more detail, our aim is to find

K∑

m=1

bk(m) Ker(||x− ck(m)||/h2), (2)

where K is much smaller than K̃ and a sequence of indexes k(m), m=1, 2, . . . , K,

which a subsequence of all indexes k = 1, 2, . . . , K̃. In other words, our aim is
to select a sub-net of (1) of the form:

y(x) =

r∑

j=1

aj Ker(||x−Cj ||/h1) +

K∑

m=1

bk(m) Ker(||x− ck(m)||/h2) (3)

and to tune its parameters in such a way that
∑n

i=1(yi − y(xi))
2 is minimized.

In our problem statement 0 ≤ K < K̃ is also a decision variable. In order to en-
sure the possibility of estimating aj , j = 1, 2, . . . , r and bk(m), m = 1, 2, . . . , K
we have to confine to K such that r + K ≤ n.

Our task is difficult, because of our assumption that the length n of the
learning sequence is much smaller than K̃. This assumption implies that we
must admit errors in selecting a structure of our RBF net.

We leave outside the scope of this paper the problems of proper selection of
smoothing parameters 0 < h2 ≤ h1 assuming that they are reasonably chosen.
We refer the reader to [8], [32], and the bibliography cited therein for methods
of selecting smoothing parameters. Concerning the choice of centers ck’s, Cj ’s
positions notice that the approach proposed here contains implicitly a way of
selecting centers positions ck(m), m = 1, 2, . . . , K from a much larger collection

ck, k = 1, 2, . . . , K̃. After selecting them, one can adjust their positions as well
as positions of Cj ’s using more traditional methods that are well suited for a
fine positions adjustment of a relatively small number of RBF centers.

It is convenient to introduce a shorthand notations:

N1) for the first sub-net v(x) = [v1(x), v2(x), . . . , vr(x)]T , where T denotes

the transposition, vj(x)
def
= Ker(||x − Cj ||/h1), j = 1, 2, . . . , r and a =

[a1, a2, . . . , ar]T ,

N2) for the second sub-net w(x) = [w1(x), w2(x), . . . , wK̃ ]T , wk(x)
def
=

Ker(||x− ck||/h2), k = 1, 2, . . . , K̃.

Note that v : Rd → Rr and w : Rd → R
˜K .

Using this notation our RBF net can be rewritten as follows:

y(x) = aT v(x) + bT w(x), (4)

where b
def
= [b1, b2, . . . , b ˜K ]T . In our approach to selecting RBF net structure

we shall use the so called t-Student statistical test. Its proper usage requires the
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assumption that our initial RBF net has a sufficiently rich structure that allows
for generating our learning sequence as follows:

yi = (a0)T v(xi) +

K∑

m=1

b0k(m) wk(m)(xi) + εi i = 1, 2, . . . , n, (5)

where a0 ∈ Rr and b0k(m), m = 1, 2, . . . , K are unknown parameters, while
output observations yi contain additive i.i.d. random errors εi, i = 1, 2, . . . , n.
We assume that εi ∼ N (0, σ2

ε ) for formal derivations, although one can use our
algorithm on heuristic grounds, even if these assumptions are violated.

3 Random Projections of Model Terms and Outline of
Their Selection

Details of the proposed method are presented in the next section, while here we
present a general idea.

Our starting point is the following model

ȳ(x, a, β, s) = aT v(x) + β sT w(x), (6)

where a ∈ Rr are unknown weights of our preliminary RBF net, β ∈ R is
an unknown weight of randomly mixed RBF’s w(x). Random mixing of these

terms is done by multiplying them by random vector s ∈ R
˜K which is drawn

at random by the experimenter from the multivariate Gaussian distribution:
N (0, σ2

s I ˜K), σs > 0, where I
˜K is K̃ × K̃ identity matrix. Later on, we shall

write s ∼ N (0, σ2
s I ˜K).

Remark 1. Model (6) resembles a model that was proposed in [2] for selecting
terms in a regression function (see also [31] page 131) as well as models used in
the dimensionality reduction (see [24] and the bibliography cited therein). How-
ever, the fundamental difference is in that here s is selected at random and only
β is estimated, while in [2] both β and s are estimated, which confines the pos-
sibility of applying the latter approach when K̃ + r << n, as assumed here. In
[24] parameters of several deterministic projections of x itself are estimated.

Before starting our random sieve of RBF’s in w(x) it is expedient to test whether
our preliminary net, spanned by RBF’s contained in v(x) is properly selected.
Notice that we can use classical tools of regression analysis (see, e.g., [31]),
because the number of terms in v(x) is smaller than the length of a learning
sequence. In particular, one can estimate a by minimizing

∑n
i=1(yi −aT v(xi))

2

and then test the hypothesis that particular components of a are zero. After
reducing those RBF’s that correspond to nonessential parameters, we can start
our random sieve.

For fixed s, estimates â, β̂ of parameters a and β are obtained by ordinary
least squares (OLS), i.e., minimizing

min
a,β

n∑

i=1

[yi − ȳ(xi, a, β, s)]
2
, (7)
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Then, we state the null hypothesis: H0 : β = 0. Under assumptions: (5) and
εi ∼ N (0, σ2

ε ) we can test it by the well known t-test for regression parameters
(see, e.g., [23]). The rejection of H0 means that our observations contradict
the hypothesis that β = 0. This is an indicator that the mixture sT w(x) may
contain terms that are useful in modeling the learning sequence by our RBF net.
To convince ourselves, new s is drawn N (0, σ2

s I ˜K) and the estimation (7) and
the test are repeated rep times, say.

If H0 was rejected a sufficient number of times (0.2 rep, say), we conclude that
w(x) may contain terms that are worth introducing into the model. Otherwise,
we stop the algorithm, concluding that only aT v(x) are essential and we have
to re-estimate a by OLS.

If H0 was rejected sufficiently many times, we have to identify which terms
are important. To this end vector w(x) will be repeatedly divided (roughly) in
half in further derivations. To define subdivisions it is convenient to introduce an
overloaded notation defined as follows K̃//2 is : if K̃ is even, then K̃//2 = K̃/2,

otherwise, K̃//2 is understood as the largest integer less than K̃/2 for wL(x)

vectors and as the smallest integer larger than K̃/2 for wR(x) vectors. The same
convention is used for further subdivisions wLL(x), wLR(x) etc. and for random
vectors sL, sR ∼ N (0, σ2

s I ˜K//2), assuming that they have the same dimensions

as the corresponding wL(x), wR(x), wLL(x), wLR(x) vectors. Furthermore, we
assume that random vectors sL, sR, sLL, sLR etc. are mutually independent.

The corresponding left and right parts of w(x) will be denoted by wL(x),
wR(x), wLL(x), wLR(x), wRL(x), wRR(x) etc. In subsequent steps the following
RBF nets will be used:

¯̄y(x, a, βL, βR,S) = aT v(x) + βL sTL wL(x) + βR sTR wR(x), (8)

where a ∈ Rr, βL, βR ∈ R, sL, sR ∈ R
˜K//2, S

def
= [sL, sR], w1(x), w2(x) ∈

R
˜K//2

We state the hypothesis that in (8) H0L : βL = 0 and analogously H0R : βR =

0. We draw sL and sR at random and we find the estimate â, β̂L and β̂R by

min
a, βI , βR

n∑

i=1

[yi − ¯̄y(xi, a, βL, βR,S)]
2
. (9)

and t test is applied for β̂L and β̂R. Then we store the results of testing and sL
and sR are again drawn at random and (9) and t tests are repeated rep times,
say. Simultaneously, we increment counters, denoted as cL, and cR, each time
when H0L : βL = 0, respectively H0R : βR = 0, is rejected. If, for preselected
threshold 0 < θ < 1, we have cL < θ rep and cR < θ rep, then STOP – there are
no additional RBF’s that are essential for our net.. Otherwise, if cL ≥ θ rep and
cL > cR we split wL(x) in half and we repeat the above steps for model

¯̄̄y(x, a, βLL, βLR, . . .) = aT v(x) + βLL sTLLwLL(x) + βLR sTLRwLR(x), (10)

(or for its ’right’ counterpart). Simultaneously, if also cR ≥ θ rep, we keep wR(x)
terms for further considerations as prospective, otherwise we skip wR(x) in
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further steps. If our algorithm attains the stage that wLR...RL(x) contains only
one element we add it, after t test, to the list of candidates to be introduced to
our RBF net. If the list of prospective terms is not empty, we enter it as a new
w(x) list and repeat the entire procedure. Finally, we have a list of candidates
that is used as the extension of v(x), the parameters of the extended RBF net
are re-calculated and undergo t tests. A more detailed description of the above
approach is given in the next section.

4 Detailed Description of the Algorithm.

Below, we present a detailed description of the random sieve algorithm. The
notations are the same as in the previous section. In parenthesis we provide
suggested values of parameters that were verified in simulations as useful.

Preparations:
– Collect observations (xi, yi), i=1, 2,. . . , n.

– Select RBF centers Cj, j = 1, 2, . . . , r and ck, k = 1, 2, . . . , K̃.
– Select kernel Ker (Gaussian) and smoothing parameters 0 < h1 < h2 (h1

and h2 should be selected taking the number of observations into account
and a fine tuning based on cross-validation should be performed).

– Form vectors v(x) and w(x) according to N1) and N2).
– Select parameters: σs > 0 (σs = 3) for generating random vectors s etc.
– Choose working significance level 0 < α < 1 (α = 0.1) that is used in

t-test for random sieve and final check significance level 0 < αf < α < 1
(αf = 0.05).

– Choose the number of random projections rep ≥ 1 (rep = 200), i.e., the
number of repetitions of random projections and t-test before deciding
whether a group of RBF’s is prospective or not.

– Select the threshold 0 < θ < 1 (θ = 0.2) as the fraction of positive
trials required to consider a group of RBF’s as perspective (see [3] for
the explanations on critism when multiple testing is used).

Initialization:
– Set counter c0 = 0. It counts how many times H0 was rejected for a

group of RBF’s under consideration.
– Prepare three empty lists: candidates (of RBF’s to be added to a net),

prospective (RBF’s worth to be considered as the most perspective) and
waiting (the list of RBF’s to be considered later).

– Check whether v(x) does not contain unnecessary RBF’s. To this end,
solve the following OLS problem: mina

∑n
i=1(yi−aT v(xi))

2 and test the
sequence of hypothesis H0 : a(j) = 0, j = 1, 2, . . . , r. This is realizable
due to our assumption that r < n. Remove from v(x) those vj(x) for
which H0 : a(j) = 0 was not rejected1. Rename the obtained vector as
v(x) again and again denote its length by r.

1 If the resulting list of preliminary RBF’s is empty, select at least one additional
candidate RBF and add it to this list.
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Step 1. Draw at random s ∈ R
˜K , s ∼ N (0, σ2

s I ˜K). Form RBF net (6) and

calculate â(s) and β̂(s) by OLS. Test the hypothesis: β̂(s) = 0 at the level
α. If the hypothesis is rejected, the set c0 = c0 + 1.

Step 2. Repeat Step 1 rep times. If c0 < θ rep, STOP with the message: proba-
bly there are no RBF’s from the list w(x) to be added, otherwise, go to Step
3.

Step 3. Enter all the terms from w(x) to the prospective list.
Step 4. Split the prospective list in half. Replace wL(x) in (8) by the left part

of this list and wR(x) by the right half. Set counters cL = 0, cR = 0.
Step 5. Generate random Gaussian vectors sL and sR of the same lengths as

the current wL(x) and wR(x) and calculate â(S), β̂L(sL) and β̂R(sR) by

minimizing (9). Test the hypothesis: β̂L(sL) = 0 (respectively, β̂R(sR) = 0)
and set cL = cL + 1 (respectively, set cL = cL + 1), if it is rejected.

Step 5. Repeat Step 5 rep times. If cL < θ rep AND cR < θ rep, go to Step 6.
Otherwise, if cL ≥ cR and
Step 5a. if current wL(x) contains more than one term, then replace all

the content of prospective list by wL(x) and add wR(x) to the waiting
list, but only if cR ≥ θ rep, otherwise, reject wR(x) from considerations
and go to Step 4,

Step 5b. if current wL(x) contains exactly one term, than add it to the
candidate list and add wR(x) to the waiting list, but only if cR ≥ θ rep,
otherwise, reject wR(x) from further considerations. Then replace the
content of the prospective list by all the waiting list, set the waiting
list to be empty and go to Step 4.

If cL < cR, perform Steps 5a) and 5b), replacing the roles wL(x) and wR(x).
Step 6. Final decisions:

– If list candidates is empty, STOP with the message: probably there are
no RBF’s from w(x) to be added.

– If the length of the candidates list is larger than 0 but not larger than
(n−r), then add this list to v(x), estimate the parameters of the extended
RBF net and test their significance at the level αf . Reject nonsignificant
RBF’s, re-calculate parameters a and selected bk’s and STOP, providing
the final list of RBF’s.

– If the length of the candidates list is larger than (n− r), then the candi-
date list is still too long in comparison to available data. It is desirable
to enlarge the learning sequence, replace w(x) by the list of candidates
and go to Step 3. If we cannot get additional learning examples, we can
still replace w(x) by the list of candidates and go to Step 3, but this
time it is more probable than certain essential RBF’s will be left outside
the final net structure.

Remark 2. The above algorithm can also be used for simultaneous selection
of RBF’s and input variables. To this end, it suffices to replace vj(x)’s by
Ker(||SelD[x − Cj ]||/h1) and wk(x) by Ker(||SelD[x − ck]||/h2), where the
selector function SelD[.] is defined as follows. D is a subset of those indexes
{1, 2, . . . , d} of input variables that are not set to zero by function Sel. For ex-
ample, if d = 4 and D = 1, 4, then SelD[[x(1), x(2), x(3), x(4)]] = [x(1), 0, 0, x(4)].
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5 Simulations

The aim of our simulations was to verify performance of the algorithm using an
example of moderate size. For clarity of the interpretation we have simulated a
simple RBF net with input variables on the unit square. Preliminary positions
of Gaussian RBF’s, i.e., those included in v(x) were in the nodes of the following
grid: (i 0.2, j 0.2), i, j = 0, 1, . . . , 5. Thus, v(x) contained r = 36 elements, but

Fig. 1. ”True” surface (left panel) and its reconstruction by one of the randomly sieved
BRF net (right panel)

Fig. 2. A collection of randomly sieved RBF nets for approximating the surface shown
in Fig. 1 (left panel)
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Fig. 3. The second collection of randomly sieved RBF nets for approximating the
surface shown in Fig. 1 (left panel)

only two of them (higher hills in Fig. 1) had weights 2.5 in our simulations,
the rest of the weights were set to zero. As candidates w(x) to be entered to
the net we take RBF’s with centers at the grid: (i 0.1, j 0.1), i, j = 0, 1, . . . , 10.

Thus, K̃ = 121 and we have r + K̃ = 157 RBF’s to be selected. To this end
only n = 50 observations (xi, yi)’s were generated, where xi’s are generated
as the Hammersley sequence (see Tablet1). The reason for selecting a quasi-
random sequence of the Halton and Hammersley type is that it has proved to be
useful in other tasks such as regression estimation (see [19], [30]). Their usefulness

results from a better conditioning of the matrix M
def
=

∑r
i=1 v(xi)v

T (xi), which

has κ(M)
def
= λmax(M)

λmin(M) = 9622 and we can avoid using a regularization. For

comparison, when xi’s are generated as uniform random variables, then κ(M)
is of the order 106 and a kind of regularization is necessary (see, e.g., [15] for a
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discussion on this topic). Also classical design points (see [16]) lead to a good
conditioning of M , but this is achieved by the necessity of applying a large
number of them.

The rest of the parameters were selected as follows h1 = 0.025, h2 = 0.005
and they were not optimized, σs = 3, σε = 0.1.

Two RBF’s (contained in w(x)) should be introduced to the net that is visible
in Fig. 1 (left panel) as the smallest hill and as the hole, with weights 0.75 and
−0.75, respectively. The two large hills (with weights 2.5) were present in a
preliminary part of the net, i.e., in v(x).

We shall say that our algorithm achieved:

– full success (FS), if it detected all four RBF’s and there were no spurious
terms detected,

– partial success (PS), if only one additional RBF from w(x) was detected plus
two RBF’s from v(x), independently whether additional terms in improper
positions were found or not.

The results of the simulations are summarized in Table 1 (left panel). They seem
to be satisfactory, since we had three times more RBF’s to be considered than
observations and in about eighty percent of runs at least one from two RBF’s that
were hidden in the noise was detected. The execution time was varied between
runs and it took from 9 to 122 seconds on a standard PC with the i7 processor.

Table 1. Left panel – the percentage of full (FS) and partial successes (PS). Right
panel – a sequence of 50 Hammersley points used in simulations.

Success FS PS FS+PS

% 18.2 63.6 81.8

6 Concluding Remarks

An important feature of the proposed approach is the dimensionality reduction
that comes from random projections of candidate RBF’s. The idea of using
random projections for this purpose was introduced by the first author in [25] in
the context of usually even larger models arising in the identification of nonlinear
time series. This aspect of the present paper as well as bounds on the probabilities
of properly selecting all necessary RBF’s, while avoiding introducing spurious
ones are outside the scope of this paper.
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One can consider other strategies of running calculations of divided and ran-
domly projected sub-nets that are more suitable for parallel computers. The
proposed approach can also be useful in signal restoration (see, e.g., [11]) for
selecting sin terms that are used for a signal approximation.

References

1. Bazan, M., Skubalska-Rafaj�lowicz, E.: A new method of centers location in Gaus-
sian RBF interpolation networks. In: Rutkowski, L., et al. (eds.) ICAISC 2013,
Part I. LNCS (LNAI), vol. 7894, pp. 20–31. Springer, Heidelberg (2013)

2. Cook, R.D., Weisberg, S.: Partial one-dimensional regression models. Amer.
Stat. 58, 110–116 (2004)

3. Donoho, D., Jin, J.: Higher criticism for detecting sparse heterogeneous mixtures.
The Annals of Statistics 32, 962–994 (2004)

4. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial
basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

5. Fu, X., Wang, L.: Data dimensionality reduction with application to simplifying
RBF network structure and improving classification performance. IEEE Transac-
tions on Systems, Man, and Cybernetics – Part B: Cybernetics 33(3), 399–409
(2003)

6. Hansen, P.C.: Rank-deficient and discrete ill-posed problems. SIAM, Philadelphia
(1998)

7. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks ar-
chitectures. Neural Computation 7(2), 219–269 (1995)
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